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Abstract: Final grain production and quality in durum wheat are affected by biotic and abiotic stresses.
The association mapping (AM) approach is useful for dissecting the genetic control of quantitative traits,
with the aim of increasing final wheat production under stress conditions. In this study, we used AM
analyses to detect quantitative trait loci (QTL) underlying agronomic and quality traits in a collection
of 294 elite durum wheat lines from CIMMYT (International Maize and Wheat Improvement Center),
grown under different water regimes over four growing seasons. Thirty-seven significant marker-trait
associations (MTAs) were detected for sedimentation volume (SV) and thousand kernel weight
(TKW), located on chromosomes 1B and 2A, respectively. The QTL loci found were then confirmed
with several AM analyses, which revealed 12 sedimentation index (SDS) MTAs and two additional
loci for SV (4A) and yellow rust (1B). A candidate gene analysis of the identified genomic regions
detected a cluster of 25 genes encoding blue copper proteins in chromosome 1B, with homoeologs
in the two durum wheat subgenomes, and an ubiquinone biosynthesis O-methyltransferase gene.
On chromosome 2A, several genes related to photosynthetic processes and metabolic pathways
were found in proximity to the markers associated with TKW. These results are of potential use for
subsequent application in marker-assisted durum wheat-breeding programs.

Keywords: durum wheat; genome wide association study; GWAS water use; agronomic traits; MTAs;
candidate genes; TKW; sedimentation volume; SDS; YR

1. Introduction

Wheat is one of the most widely grown crops worldwide (FAO, 2015), and is essential for
the human diet [1]. Its importance and worldwide dominance are due, in part, to its agronomic
adaptability. Durum wheat (Triticum durum) is a tetraploid wheat species (AABB genomes) mainly
grown in the Mediterranean basin, in the Northern Plains (between the USA and Canada), in the
arid areas of South Western USA and in Northern Mexico [2]. Durum wheat is well-adapted to a
broad range of climatic conditions (including dry environments) and marginal soils, and has low
water requirements [3,4]. Climatic conditions, as temperature and water availability, together with
biotic stresses, can strongly affect durum wheat development and production [3–6]. Crop adaptation
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is a central objective for breeding progress, driving improvement in final production, quantity and
quality [7,8]. For over two decades, CIMMYT (International Maize and Wheat Improvement Center)
has had an intensive breeding and improvement programme focused on the acceleration of durum
productivity in developing countries.

Grain quality is an important breeding aim determining product end-use linked to financial returns.
It is influenced by both genetic and environmental conditions [9], and biotic and abiotic stresses during
growth and at key development stages [10]. Temperature, water availability and soil properties, especially
nitrogen content, influence the final quality and protein content of wheat and its end-products [11–13].

There is a growing need to increase wheat yield without losing grain quality [14,15]. Key end-use grain
quality traits include grain protein content (GPC), gluten strength, kernel size and vitreousness [7,16]
and are all influenced by climatic conditions [17]. A number of agronomic components influence
final productivity, including phenology (maturity) and plant architecture (plant height and lodging
resistance). The majority of important agronomic traits, including yield, are controlled or influenced
by multiple genes and are quantitatively inherited [18]. In addition, most are influenced by the
environment and interactions between environmental and genetic (GxE) effects [19–23]. One of the
most common methods currently used for dissection of quantitative agronomic and quality traits is the
association mapping (AM) approach [24].

AM, originating in human genetics, was initially combined with linkage disequilibrium (LD)
to identify the role of genes and linked markers for the determination of disease loci [25]. It is now
widely used in plant and crop genetics. Some of the first studies based on LD mapping applied in plants
were done in maize [26], rice [27] and oat [28]. AM has the main objective of determining, based on LD,
correlations between genotypes and phenotypes in a panel of selected individuals [29]. It can support the
development of new genetic markers for use in marker-assisted plant breeding [30]. It also facilitates the
analysis of genetic variation underlying traits for further characterisation of the loci of interest [31].

Single nucleotide polymorphism (SNP) markers are commonly used in quantitative trait loci
(QTL) mapping experiments [32,33] and genome-wide association studies (GWAS) for the detection
of marker-traits associations (MTAs) in wheat [34–38]. DArTseq, a variant of the microarray-based
DArT technology, has also been widely used in QTL mapping [39–41]. It reduces the complexity of
the genome, using combinations of restriction enzymes [42] and next-generation sequencing. Several
studies have assessed MTAs in durum wheat. The analyzed traits include grain yield, yield and
yield components [6,37,43,44], heading date [6], and grain quality traits (thousand kernel weight,
vitreousness, protein content, sedimentation index [17,45–47], yellow colour [48,49]).

In this study, three panels of elite durum wheat lines from CIMMYT were assessed in field trials
conducted over multiple seasons and with differing water regimes. The AM approach was used to
detect SNP and DArT markers associated with heterogeneous agronomic and quality trait data in order
to test the approach as a tool for marker discovery within a live and ongoing breeding programme.

2. Material and Methods

2.1. Plant Material, Phenotyping and Genotyping

Panels of elite durum lines from CIMMYT wheat preliminary yield trials (PYT), comprising a total
of 294 accessions (Supplementary Materials Table S1) were used for agronomic and quality assessment.
PYT trials consisted of the best advanced breeding lines which were promoted to unreplicated trials,
including one or two repeated checks. The trials were sown, assessed and analysed according to their
specific statistical designs [50] and consisted of two blocks with different water treatments, one with
full irrigation (FI) and the other with reduced irrigation (RI). In the FI treatment four to five irrigations
were applied during the field season to maintain the optimal soil moisture conditions, whilst in the
RI block a single irrigation was applied at planting, in order to ensure establishment. In both water
treatments the irrigation was applied by gravity in furrows. The rainfall data (https://www.meteoblue.
com/en/weather/historyclimate/weatherarchive/ciudad-obreg%c3%b3n_mexico_4013704) for the four

https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/ciudad-obreg%c3%b3n_mexico_4013704
https://www.meteoblue.com/en/weather/historyclimate/weatherarchive/ciudad-obreg%c3%b3n_mexico_4013704
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field seasons is included in Supplementary Materials Figure S1. The agronomic and quality assessment
of the panels over seasons is summarised in Table 1.

Table 1. Agronomic and quality assessment of wheat field trials. The number of lines, year, location
and water regime applied is shown.

Wheat Panel No. of Assessed Lines
Field Season

2012 2013 2014 2015

1 98 YAQ-FI

2 97 YAQ-FI YAQ-FI
YAQ-RI

3 98 YAQ-FI YAQ-FI YAQ-FI
YAQ-RI YAQ-RI

YAQ: Yaqui (Mexico); FI: Full irrigation; RI: Reduced irrigation.

Field experiments were conducted at CIMMYT’s experimental station in the Yaqui Valley,
Mexico (27.282848◦ N; 109.923878◦ W) over four field seasons (2012 to 2015 harvest years, inclusive).
Wheat panels 2 and 3 were phenotypically assessed across years, while panel 1 was only grown in 2012.
The experimental plots (1.6 × 3 m) were sown in November/December of each year and harvested
in May of the following year. Data for yellow rust were assessed in semi-controlled conditions at
CIMMYT’s experimental station in Toluca (Mexico).

Plant material for genetic analysis was harvested for each line at the 4th leaf stage (growth
stage 14 on the Zadoks scale [51]) and immediately frozen in dry-ice. Samples were stored at −80 ◦C
until DNA extraction. Approximately 100 mg of frozen tissue was used for DNA isolation with a
DNeasy Plant Mini Kit from Qiagen, following the manufacturer’s protocol. DNA sample quality and
concentration were assessed using electrophoresis on a 0.8% agarose gel and the restriction enzyme
Tru1I (ThermoFisher) was used to check for the absence of nucleases in DNA prior to genotyping.

Samples were genotyped by Diversity Arrays Technology Pty Ltd. (Montana St, University
of Camberra, Bruce ACT 2617, Australia) (DArT) using DartSeqTM. A total of 35,509 polymorphic
dominant DArT markers and 9142 biallelic SNP markers were generated. Both datasets were thinned
by removing one marker from each pair with a correlation coefficient of >0.95. The final dataset
consisted on 14,588 DArT markers (of which 8411 were mapped) and 5716 SNP markers (4142 mapped
markers). DartSeqTM genotyping and mapping of the corresponding markers to the wheat reference
genome sequence RefSeq v1 from the International Wheat Genome Sequencing Consortium (IWGSC,
http://www.wheatgenome.org/) was performed by DArT (diversityarrays.com), as described by
Sukumaran et al. [43]. The distribution of markers across the A and B subgenomes is given in Table 2.

Table 2. Molecular markers distribution across the wheat genome. The distribution of DArT (Diversity
Arrays Technology, left) and single nucleotide polymorphism (SNP, right) markers across the durum
wheat A and B subgenomes and the number of unmapped markers are shown.

DArT Markers SNP Markers

Chr A B Un Total 1 A B Un Total 1

1 377 866 37 1280 193 444 16 653
2 563 791 69 1423 320 375 19 714
3 496 818 33 1347 250 352 11 613
4 585 325 10 920 283 171 4 458
5 312 725 13 1050 162 376 2 540
6 449 690 21 1160 262 308 5 575
7 623 573 35 1231 293 287 9 589

Total 2 3405 4788 218 8411 1763 2313 66 4142
Un 6177 1574

Total 14,588 5716

Chr: chromosome; A: wheat A subgenome; B: wheat B subgenome; Un: unmaped; 1: total markers by group; 2: total
markers by genome.

http://www.wheatgenome.org/
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2.2. Phenotypic Data

Ten agronomic and quality traits were assessed for three durum wheat elite line panels: days to
heading (days, DTH); plant height (cm, PH); lodging (%, LOD); yellow rust (%, YR); yellow colour (YC);
sedimentation index (cm3, SDS); sedimentation volume (cm3, SV); grain protein content (%, GPC);
thousand kernel weight (g, TKW); and grain yield (Kg/ha, GY). Agronomic traits (DTH, PH, LOD,
YR, TKW and GY) were assessed under both water treatments (FI and RI), and quality traits (YC, SV,
SDS and GPC) were only evaluated under FI conditions. Visual disease evaluation and phenology
assessments were made in the field, while quality parameters were evaluated on grain samples
post-harvest. DTH, PH and LOD and YR were visually assessed at the field trials in Yaqui, while
YR was assessed at Toluca. To assess DTH, heading date was recorded as the time when 50% of the
spikes have emerged from the flag leaf sheath (stage 59 in Zadoks scale [51]); PH was recorded by
measuring the distance between the stem’s base and the top of the spike (awns not included); LOD
was assessed as the percentage of lodging plot; and YR was assessed as the percentage of leaves with
rust pustules. YC was assessed by a rapid colorimetric method with a Minolta color meter following
CEN/TS 15,465:2008 [52–54]; SDS was evaluated following UNE 34,903:2014 [55,56]; SV and GPC were
assessed by Near-infrared spectroscopy (NIRs) [57]; TKW was measured by weighing 2 samples of
100 entire kernels randomly chosen previously dried at 70 ◦C for 48 h.

The correlation between the assessed traits was analysed using the ‘cor’ function in R [58–60].
Then, an analysis of variance (ANOVA) was undertaken, using the ‘aov’ function in R [61], to obtain
the descriptive statistics for each trait.

Traits were analysed using a Q + K linear mixed-model [62,63] which follows the model equation:

y = Xβ + Sα + Qv + Zµ + ε (1)

where y is a vector of observed phenotypes; X, S and Z are matrices related to β, α and µ, respectively;
β is a vector of fixed effects; α is a vector of marker effects; Qv is a vector of population effect; µ is a
vector of polygenic effects (with covariance proportional to a kindship or relationship matrix); and ε is
a vector of residuals.

These analyses were carried out using GenStat (14th Edition) to generate the best linear unbiased
estimates (BLUEs) of variety performance in different ways: (i) across years and blocks; (ii) across
years for each block (FI and RI); (iii) across a reduced dataset (years 2013 and 2014) and blocks; and (iv)
across the reduced dataset for each block. The resulting datasets (available in Supplementary Material
Table S2) were then used in different association mapping analyses.

2.3. Population Structure and Linkage Disequilibrium

Population structure was assessed using principal component analysis (PCA) based on the
combined DArT and SNP genotyping datasets. Euclidean distances were calculated using the R
package ‘ggfortify’ [64] and the PCA was visualised with ‘ggplot2’ [65].

The pattern of linkage disequilibrium (LD) was assessed between each pair of SNP markers on
the same chromosome across the two constitutive genomes with the allele frequency correlation (r2)
using the ‘popgen’ package in R [66]. A heatmap was obtained with the D’ and r2 values for each
chromosome and a scatterplot to determine LD decay (genetic distance in cM).

2.4. Association Mapping (AM)

The AM analyses were performed on the BLUEs obtained above using an additive model with
‘rrBLUP’ [67] and ‘GWASpoly’ [68] packages in R in different ways. Two marker-based kinship matrices
(k-matrix), created from a subset of 14,588 DArT and 5716 SNP markers, respectively, were used
for the adjustment based on relatedness of individuals (Supplementary Materials Tables S3 and S4).
A minor allele frequency (maf) threshold of 0.05 was used. To establish a p-value detection threshold
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for statistical significance of associations, the Bonferroni correction, which employs a threshold of α/m
to ensure the genome-wide type error I of 0.05, was applied with a total of 1000 permutations.

Associated DartSeqTM and SNP markers were blasted against the wheat reference assembly
RefSeqv1 [69] with no indels or mismatches allowed, using an ad hoc Java program, to confirm
their physical mapping location on the A or B genomes. The molecular markers were also mapped
against the durum wheat genome (https://www.interomics.eu/durum-wheat-genome) to confirm their
physical positions. In addition, to identify candidate genes, results were filtered, selecting the hits
with best e-value for each molecular marker, and candidate genes were manually selected based on
their annotations.

3. Results

3.1. Phenotypic Assessment

Results from the ANOVA for all the traits across years and water treatments are shown in Table 3.
The mean phenotypic values across years were calculated for each block and panel to evaluate the
influence of water conditions on the assessed traits (Table 3). Days to heading during the field seasons
assessed ranged from 63 to 94 days. In plots with lower water availability (RI block), the spike
emergence from the flag leaf took place approximately 11 days earlier than in FI plots. Plant height
ranged from 39 to 110 cm showing differences between water regimes, with a decrease of 25–30 cm
under RI conditions. Likewise, and as result of the RI treatment, GY (ranging from 1.35 to 10.63 ton/ha)
and TKW (from 29.6 to 63.2 g) also varied, being reduced by 4–5 tons/ha and 7–10 g, respectively, in the
low water availability RI treatment. This strong RI treatment resulted in very low heritability values
for DTH, PH and LOD.

Several significant phenotypic correlations were observed between the analysed traits (Figure 1
and Supplementary Materials Table S5). The most correlated traits were PH and GY (r = 0.90,
p-value = <2.2 × 10−16), followed by DTH and GY (r = 0.87, p-value = <2.2 × 10−16), SDS and SV
(r = 0.85, p-value = <2.2 × 10−16) and also DTH and PH (r = 0.82, p-value = <2.2 × 10−16). Other traits
showed important positive correlations too, including YC and DTH (r = 0.69, p-value = 2.82 × 10−09),
GY and TKW (r = 0.66, p-value = <2.2 × 10−16), PH and TKW (r = 0.62, p-value = <2.2 × 10−16), GY
and YC (r = 0.53, p-value = 0.039) and DTH and TKW (r = 0.49, p-value = <2.2 × 10−16). Negative
correlations were also observed for SDS and GPC (r = −0.38, p-value = <2.2 × 10−16), and for GPC and
YC (r = −0.08, p-value = <2.2 × 10−16) (Figure 1).
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Table 3. Summary of overall phenotypic data including analysis of variance (ANOVA) results and broad sense heritability (h2) for agronomic and quality traits.

ANOVA

Min 1 Mean 2 Max 3 Df Sum Sq Mean Sq F Value Pr (>F) Significance h2 Mean Across Years

Panel 1 2 2 3 3
Water regimes FI FI RI FI RI

DTH (days) 63 79.38 94 1 1.8 1.768 0.24 0.626 *** 0.14 87.55 83.73 72.54 81.95 70.51
PH (cm) 39 81.97 110 1 167.5 167.51 8.025 6.59 × 10−03 ** 0.16 92.98 93.31 62.58 89.32 63.74

GY (ton/ha) 1.35 5.68 10.63 1 24.52 24.516 121.6 4.16 × 10−15 *** 0.44 10 7 2.03 6 2.33
TKW (g) 29.6 44.69 63.2 1 38.6 38.65 2.064 1.57 × 10−01 0.41 49.25 47.58 37.29 47.06 40.22

YR 0 2.286 40 1 358.5 358.5 6.702 1.25 × 10−02 * 0.00 4.77 3.98 0 0 0
LOD (%) 0 2.142 90 1 0 0 - - - 0.01 0.1 0 0 9.25 0

YC 14.6 16.59 20 1 0.008 0.0085 0.02 8.89 × 10−01 0.59 17.21 17.09 - 16.35 -
SV (ml) 7 10.51 14.5 1 2.54 2.536 2.388 0.128 0.57 10.87 10.14 - 10.36 -

SDS 0.54 0.854 1.19 1 0.0927 0.09268 14.86 3.25 × 10−04 *** 0.55 1 1 - 1 -
GPC (%) 10.4 12.33 14.9 1 5.965 5.965 16.41 1.74 × 10−04 *** 0.31 11.67 12.38 - 12.12 -

DTH: days to heading; PH: plant height; LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YR: yellow rust; LOD: lodging; YC: yellow color; SV: sedimentation volume; SDS:
sedimentation index; GPC: grain protein content; FI: full irrigation block; RI: reduced irrigation block; 1: minimum value across years and water regimes; 2: mean across years and water
regimes; 3: maximum value across years and water regimes; Df: degrees of freedom; Sq: sum square; F value: measure of significance in the F-test; Pr (>F): p-value associated with the F
statistic; Significance levels: 0 = ‘***’; 0.001 = ‘**’; 0.01 = ‘*’; 0.1 = ‘ ’; Df = degrees of freedom.
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3.2. Population Structure and Linkage Disequilibrium

The PCA used a total of 14,588 DArT and 5716 SNP markers. The first and second principal
components explained 3.91% of the genetic variation (Figure 2). No underlying genetic structure was
detected within or between the panels assessed. LD was estimated using the mapped SNP markers
dataset. LD decay was determined within 20–30 cM for all the chromosomes (Figure 3). Using the
classification defined by Maccaferri et al. [70], the markers presented loose linkage (Class 2), showing a
distance value between 21 to 50 cM.
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3.3. AM Analysis

Thirty-seven significant marker-trait associations (MTAs) were detected for TKW and SV across all
years and water treatments with most of the significant markers located on chromosome 2A (Table 4).
Twenty DArT and seven SNP markers were found in association with TKW on chromosome 2A (with
additive effects ranging from −3.41 to 3.46). In addition, eight unmapped DArT and one SNP marker
were also associated with TKW (additive effects ranged from −3.39 to 3.46 g). Most of these MTAs
showed a negative additive effect, reducing the final weight value (ranging from −2.84 to −3.19 g),
and only two MTAs were found to increase TKW (values of 2.97 and 3.09 g). Finally, a single SNP
associated with SV was located on chromosome 1B (showing a positive effect increasing the final
value by 1.26 mL). The resulting Manhattan and QQ-plots from this AM analysis are included in
Supplementary Materials Figures S2–S5.

The AM analyses on partitioned subsets of the data consistently detected the QTLs for TKW and
SV. Nevertheless, the individual assessment of the water treatments significantly reduced the number
of MTAs found, due in part to less available data for the RI block (Supplementary Material Table S6).
The initial dataset of 294 durum wheat elite lines was reduced to 200 lines (assessed during the 2013
and 2014 seasons) to give a dataset balanced across assessment years. Using this reduced dataset for
AM analysis, the results confirmed the QTLs previously found for the full dataset (Supplementary
Materials Table S6). The analysis also detected an additional locus for SV on chromosome 4A, and a
locus for YR on chromosome 1B (with additive effects of −0.84 and 2.79, respectively).
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Table 4. Significant marker-trait associations found in durum wheat elite lines across years and water treatments.

Trait Threshold Marker Chromosome Pos (cM) −log10
(p-Value)

Marker
Effect

Mapping in
Pseudomolecule

Physical
Pos (bp) 1

Mapping in
Durum

Physical
Pos (bp) 2

SV 5.09 SNP620 1B 139.21 5.5 1.26 1B 555,056,387 1B 547,593,323
TKW 5.71 DArT3154 2A 60.5 6.42 3.21 2A 533,610,520 2A 527,494,277
TKW 5.71 DArT3155 2A 60.5 6.11 −3.1 2A 174,036,184 2A 171,903,830
TKW 5.71 DArT3156 2A 60.5 7.28 −3.41 1B 134,638,820 1B 127,479,665
TKW 5.09 SNP1153 2A 68.47 5.38 −2.84 2A 582,636,674 2A 480,204,288
TKW 5.71 DArT3119 2A 68.91 6.77 −3.29 2A 536,825,718 2A 530,570,836
TKW 5.71 DArT3145 2A 69.27 7.1 3.43 2A 581,794,741 2A 550,694,987
TKW 5.71 DArT3146 2A 69.27 6.99 3.43 2A 566,208,089 2A 559,043,176
TKW 5.71 DArT3150 2A 69.42 7.23 3.4 2A 541,302,108 2A 535,046,952
TKW 5.71 DArT3162 2A 70.06 6.71 3.31 2A 535,235,854 2A 529,032,623
TKW 5.09 SNP1183 2A 70.31 6.45 −3.15 2A 541,200,911 2A 534,959,463
TKW 5.09 SNP1184 2A 70.31 6.79 −3.19 2A 541,391,854 2A 535,114,521
TKW 5.09 SNP1185 2A 70.31 5.45 −2.86 2A 532,153,681 2A 526,046,873
TKW 5.71 DArT3165 2A 70.31 7.17 3.46 2A 541,391,851 2A 534,959,463
TKW 5.71 DArT3169 2A 70.53 7 3.42 2B 477,405,138 2A 534,564,999
TKW 5.09 SNP1189 2A 70.84 6.46 −3.16 2A 542,687,204 2A 536,453,217
TKW 5.71 DArT3172 2A 70.96 5.91 3.13 2A 567,734,347 2A 557,502,938
TKW 5.71 DArT3174 2A 71.04 6.7 3.37 2A 566,457,122 2A 558,803,456
TKW 5.71 DArT3175 2A 71.14 6.13 3.2 2A 544,391,768 2A 538,104,252
TKW 5.71 DArT3176 2A 71.14 6.07 −3.17 2A 546,445,797 2A 540,140,599
TKW 5.71 DArT3180 2A 71.38 7.03 3.43 2A 567,736,123 2A 557,501,162
TKW 5.71 DArT3181 2A 71.38 6.2 3.2 2A 582,287,689 2A 551,184,512
TKW 5.71 DArT3182 2A 71.38 6.41 3.27 2A 569,404,524 2A 555,838,382
TKW 5.09 SNP1198 2A 71.64 6.39 3.09 2A 572,356,489 2A 552,887,972
TKW 5.09 SNP1199 2A 71.75 5.75 2.97 2A 567,787,911 2A 557,449,430
TKW 5.71 DArT3187 2A 71.94 7.07 3.35 2A 541,302,102 2A 535,046,946
TKW 5.71 DArT3198 2A 72.36 6.47 3.24 2A 535,235,860 2A 529,032,620
TKW 5.71 DArT3201 2A 72.56 6.19 3.12 2A 569,404,462 2A 555,838,444
TKW 5.71 DArT10906 - - 6.16 −3.16 2A 566,964,200 2A 558,292,372
TKW 5.09 SNP8395 - - 6.41 −2.85 2A 532,853,960 2A 526,751,856
TKW 5.71 DArT20759 - - 7.23 3.4 2A 541,302,217 2A 535,047,061
TKW 5.71 DArT20961 - - 7.17 3.46 2A 532,080,607 2A 525,972,283
TKW 5.71 DArT21317 - - 6.06 3.18 2A 568,431,288 2A 556,806,491
TKW 5.71 DArT21609 - - 7.04 −3.36 - - - -
TKW 5.71 DArT21773 - - 6.34 −3.17 - - - -
TKW 5.71 DArT21834 - - 6.35 −3.28 2A 546,445,800 2A 540,140,602
TKW 5.71 DArT22064 - - 6.75 −3.39 - - 2A 549,657,924

Pos (cM): position in chromosome in centimorgan; bp: base pairs; SV: sedimentation volume; TKW: thousand kernel weight; “-”: unmapped marker; 1: physical position based on the
wheat reference assembly RefSeqv1 [69]; 2: physical position based on the durum wheat assembly [71].
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3.4. Candidate Genes Analysis

The marker SNP620, located on chromosome 1B and detected in association with SV, was found
included into a cluster of 12 genes encoding blue copper proteins (BCP), with homoeologs in the
two durum wheat subgenomes (Figure 4, Table 5 and Supplementary Material Figure S6). In the
hexaploid wheat genome, this set of genes form a cluster of homeolog triads [72] with a total of
31 genes (Supplementary Materials Table S7 and Figure S7). Additionally, another interesting gene
(TraesCS1B01G568400LC.1) was found closer this marker, coding for the ubiquinone biosynthesis
O-methyltransferase.

There were several markers located in chromosome 2A, in close proximity to some interesting genes.
Markers SNP1183, SNP1184 and DArT3165 were found next to several genes encoding reductase-1
(Figure 4 and Table 5). In addition, the marker SNP8395, also located on the same chromosome, was
found in proximity to the gene TraesCS2A01G309700.1, which encodes a type A response regulator 1
(Figure 4 and Table 5).

Significant MTAs from the partitioned analysis also allowed the identification of
potentially interesting genes. On chromosome 1B, marker DArT1744, previously described by
Mérida-García et al. [73] related to high molecular-weight glutenin subunits, was found in proximity
to genes encoding isocitrate dehydrogenase kinase/phosphatase G and leucine-rich repeat receptor-like
protein kinase family protein. These genes participate in the carbohydrate metabolism during the
Krebs cycle and play a crucial role in plant development and stress responses, respectively [74,75].
On this chromosome, another marker (SNP809) was found in proximity to some interesting genes
encoding sugar transporter proteins. Additionally, some markers located on chromosome 2A were
found in proximity to Acyl-CoA N-acyltransferase genes (SNP1206, SNP8395 and DArT3180) and
chloroplastic zeaxanthin epoxidase (SNP1189) (Supplementary Materials Table S8).
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Table 5. Candidate genes for markers with significant marker-traits associations. Genes located in proximity of markers found in association with TKW and SV
across years and water treatments (within a ±50 kb window). Values for physical position and distance are indicated in base pairs (bp). Chr: chromosome position.
Blue copper proteins are shown in blue colour; ubiquinone biosynthesis O-methyltransferase in purple colour; the regulator response gene in brown colour; and for
reductase 1 genes in green colour. Physical positions and gene annotations are based on the wheat reference assembly RefSeqv1 [69].

Marker Identity Transcript Chr Physical Position Distance Description

DArT3156 88.525 TraesCS1B01G193400LC.1 1B 134,604,832 −33,988 LINE-1 reverse transcriptase-like protein
TraesCS1B01G193500LC.1 1B 134,605,786 −33,034 Retrotransposon protein. putative. unclassified
TraesCS1B01G193600LC.1 1B 134,607,645 −31,175 Retrotransposon protein. putative. unclassified
TraesCS1B01G193700LC.1 1B 134,621,105 −17,715 Retrotransposon protein. putative. unclassified
TraesCS1B01G193800LC.1 1B 134,622,150 −16,670 Solute carrier organic anion transporter family member 2B1
TraesCS1B01G193900LC.1 1B 134,622,613 −16,207 Tetratricopeptide repeat (TPR)-like superfamily protein
TraesCS1B01G194000LC.1 1B 134,632,362 −6458 RNA-directed DNA polymerase (reverse transcriptase)-related family protein
TraesCS1B01G194100LC.1 1B 134,633,505 −5315 LINE-1 reverse transcriptase like
TraesCS1B01G194200LC.1 1B 134,639,730 910 Transposon Ty3-G Gag-Pol polyprotein

TraesCS1B01G114900.1 1B 134,645,780 6960 F-box protein
TraesCS1B01G194300LC.1 1B 134,648,368 9548 Sister chromatid cohesion protein PDS5 homolog B-B
TraesCS1B01G194400LC.1 1B 134,649,000 10,180 BTB/POZ domain containing protein. expressed

DArT21834 100 TraesCS1B01G231000LC.1 1B 176,756,965 −3171 Retrotransposon protein. putative. LINE subclass
TraesCS1B01G137700.1 1B 176,783,830 23,694 Phototropic-responsive NPH3 family protein
TraesCS1B01G137700.2 1B 176,783,926 23,790 Phototropic-responsive NPH3 family protein

TraesCS1B01G231100LC.1 1B 176,788,566 28,430 Disease resistance protein (TIR-NBS-LRR class) family
TraesCS1B01G231200LC.1 1B 176,790,108 29,972 Transposon protein. putative. Mutator sub-class
TraesCS1B01G231300LC.1 1B 176,790,698 30,562 Transposon protein. putative. mutator sub-class
TraesCS1B01G231400LC.1 1B 176,791,607 31,471 Sterile alpha motif (SAM) domain-containing protein

TraesCS1B01G137800.1 1B 176,793,792 33,656 GRF zinc finger family protein. expressed
TraesCS1B01G231500LC.1 1B 176,803,822 43,686 Retrotransposon protein. putative. unclassified

SNP620 100 TraesCS1B01G568300LC.1 1B 555,010,255 −46,132 Blue copper protein
TraesCS1B01G328400.1 1B 555,018,059 −38,328 Blue copper protein
TraesCS1B01G328500.1 1B 555,029,816 −26,571 Blue copper protein

TraesCS1B01G568400LC.1 1B 555,056,445 58 Ubiquinone biosynthesis O-methyltransferase
TraesCS1B01G328600.1 1B 555,057,325 938 Blue copper protein

TraesCS1B01G568500LC.1 1B 555,060,627 4240 Blue copper protein
TraesCS1B01G328700.1 1B 555,063,537 7150 Blue copper protein
TraesCS1B01G328800.1 1B 555,065,987 9600 Blue copper protein
TraesCS1B01G328900.1 1B 555,068,889 12,502 Blue copper protein
TraesCS1B01G329000.1 1B 555,071,391 15,004 Blue copper protein

TraesCS1B01G568600LC.1 1B 555,076,734 20,347 Blue copper protein
TraesCS1B01G329100.1 1B 555,088,083 31,696 Blue copper protein
TraesCS1B01G329200.1 1B 555,090,695 34,308 Blue copper protein

TraesCS1B01G568700LC.1 1B 555,095,491 39,104 purple acid phosphatase 23
TraesCS1B01G568800LC.1 1B 555,096,179 39,792 Disease resistance protein (TIR-NBS-LRR class) family
TraesCS1B01G568900LC.1 1B 555,097,247 40,860 Retrotransposon protein. putative. Ty3-gypsy subclass
TraesCS1B01G569000LC.1 1B 555,098,272 41,885 Retrotransposon protein. putative. Ty3-gypsy subclass
TraesCS1B01G569100LC.1 1B 555,101,471 45,084 50S ribosomal protein L2
TraesCS1B01G569200LC.1 1B 555,103,053 46,666 LINE-1 reverse transcriptase like
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Table 5. Cont.

Marker Identity Transcript Chr Physical Position Distance Description

DArT3155 93.939 TraesCS2A01G213400LC.1 2A 174,011,203 −24,981 Retrotransposon protein. putative. unclassified. expressed
TraesCS2A01G213500LC.1 2A 174,024,497 −11,687 APOLLO

TraesCS2A01G201000.1 2A 174,026,194 −9990 Cytochrome P450-like
TraesCS2A01G213600LC.1 2A 174,034,039 −2145 Retrotransposon protein. putative. unclassified. expressed
TraesCS2A01G213700LC.1 2A 174,039,127 2943 Cytochrome P450

SNP1153 98.551 TraesCS2A01G493000LC.1 2A 582,628,952 −7722 Retrotransposon protein. putative. Ty3-gypsy subclass
TraesCS2A01G493100LC.1 2A 582,629,900 −6774 Retrovirus-related Pol polyprotein from transposon gypsy
TraesCS2A01G493200LC.1 2A 582,630,406 −6268 Retrotransposon protein. putative. unclassified
TraesCS2A01G493300LC.1 2A 582,630,979 −5695 Retrotransposon protein. putative. Ty3-gypsy subclass

TraesCS2A01G344800.1 2A 582,634,003 −2671 RAN guanine nucleotide release factor
TraesCS2A01G344900.1 2A 582,637,903 1229 Nucleosome assembly protein 1-like 1

DArT3119 95.652 TraesCS2A01G457700LC.1 2A 536,796,624 −29,094 Retrovirus-related Pol polyprotein LINE-1

DArT3146 100 TraesCS2A01G333200.1 2A 566,207,430 −659 Kinesin-like protein
TraesCS2A01G333200.2 2A 566,209,291 1202 Kinesin-like protein

DArT3150 100 TraesCS2A01G460800LC.1 2A 541,301,644 −464 1-phosphatidylinositol-3-phosphate 5-kinase FAB1A

DArT3162 100 TraesCS2A01G457200LC.1 2A 535,217,367 −18,487 Acetylglutamate kinase-like protein
TraesCS2A01G457300LC.1 2A 535,221,879 −13,975 LINE-1 reverse transcriptase like
TraesCS2A01G457400LC.1 2A 535,222,237 −13,617 LINE-1 reverse transcriptase

TraesCS2A01G311500.1 2A 535,240,748 4894 NAC domain protein.

SNP1183 100 TraesCS2A01G460600LC.1 2A 541,195,856 −5055 Reductase 1
TraesCS2A01G315500.1 2A 541,197,465 −3446 Reductase 1

TraesCS2A01G460700LC.1 2A 541,198,542 −2369 NADH dehydrogenase [ubiquinone] iron-sulfur protein 3. mitochondrial
TraesCS2A01G315600.1 2A 541,200,447 −464 Reductase 1

SNP1184 100 TraesCS2A01G460900LC.1 2A 541,386,879 −4975 Serine-type endopeptidase inhibitor. putative
TraesCS2A01G461000LC.1 2A 541,387,542 −4312 Aldose reductase

TraesCS2A01G315700.1 2A 541,391,385 −469 Reductase 1

DArT3165 98.246 TraesCS2A01G460600LC.1 2A 541,195,856 −5055 Reductase 1
TraesCS2A01G315500.1 2A 541,197,465 −3446 Reductase 1

TraesCS2A01G460700LC.1 2A 541,198,542 −2369 NADH dehydrogenase [ubiquinone] iron-sulfur protein 3. mitochondrial
TraesCS2A01G315600.1 2A 541,200,447 −464 Reductase 1

TraesCS2A01G460900LC.1 2A 541,386,879 −4972 Serine-type endopeptidase inhibitor. putative
TraesCS2A01G461000LC.1 2A 541,387,542 −4309 Aldose reductase

TraesCS2A01G315700.1 2A 541,391,385 −466 Reductase 1

SNP1189 100 TraesCS2A01G316900.1 2A 542,642,276 −44,928 Phosphate carrier protein. mitochondrial
TraesCS2A01G317000.1 2A 542,648,355 −38,849 Zeaxanthin epoxidase. chloroplastic
TraesCS2A01G317000.2 2A 542,649,684 −37,520 Zeaxanthin epoxidase. chloroplastic
TraesCS2A01G317000.3 2A 542,650,147 −37,057 Zeaxanthin epoxidase. chloroplastic

TraesCS2A01G462000LC.1 2A 542,652,662 −34,542 AUGMIN subunit 6
TraesCS2A01G317100.1 2A 542,654,847 −32,357 Mitochondrial carrier protein
TraesCS2A01G317200.1 2A 542,658,154 −29,050 Phosphatase 2C family protein
TraesCS2A01G317300.1 2A 542,686,655 −549 transmembrane protein
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Table 5. Cont.

Marker Identity Transcript Chr Physical Position Distance Description

DArT3172 100 TraesCS2A01G333900.1 2A 567,725,771 −8576 RNA-dependent RNA polymerase
TraesCS2A01G334000.1 2A 567,735,196 849 MLP protein

DArT3174 100 TraesCS2A01G333300.1 2A 566,454,172 −2950 F-box/RNI-like superfamily protein
TraesCS2A01G481800LC.1 2A 566,461,411 4289 Transposon Ty3-G Gag-Pol polyprotein
TraesCS2A01G481900LC.1 2A 566,462,897 5775 Craniofacial development protein 2
TraesCS2A01G482000LC.1 2A 566,478,234 21,112 Retrotransposon protein. putative. unclassified

DArT3175 100 TraesCS2A01G319300.1 2A 544,359,272 −32,496 target of AVRB operation1
TraesCS2A01G464000LC.1 2A 544,395,881 4113 Retrotransposon protein. putative. unclassified

DArT3176 98.182 TraesCS2A01G464500LC.1 2A 546,477,078 31,281 Transposon Ty3-I Gag-Pol polyprotein
TraesCS2A01G464600LC.1 2A 546,478,437 32,640 Transposon Ty3-I Gag-Pol polyprotein
TraesCS2A01G464700LC.1 2A 546,479,163 33,366 Transposon Ty3-I Gag-Pol polyprotein

DArT3180 100 TraesCS2A01G333900.1 2A 567,725,771 −10,352 RNA-dependent RNA polymerase
TraesCS2A01G334000.1 2A 567,735,196 −927 MLP protein

DArT3182 100 TraesCS2A01G483800LC.1 2A 569,357,751 −46,773 autoinhibited Ca(2+)-ATPase. isoform 4
TraesCS2A01G335600.1 2A 569,363,189 −41,335 Zinc finger family protein

DArT3187 98.551 TraesCS2A01G460800LC.1 2A 541,301,644 −458 1-phosphatidylinositol-3-phosphate 5-kinase FAB1A

DArT3198 98.305 TraesCS2A01G457200LC.1 2A 535,217,367 −18,493 Acetylglutamate kinase-like protein
TraesCS2A01G457300LC.1 2A 535,221,879 −13,981 LINE-1 reverse transcriptase like
TraesCS2A01G457400LC.1 2A 535,222,237 −13,623 LINE-1 reverse transcriptase

TraesCS2A01G311500.1 2A 535,240,748 4888 NAC domain protein.

DArT3201 100 TraesCS2A01G483800LC.1 2A 569,357,751 −46,711 autoinhibited Ca(2+)-ATPase. isoform 4
TraesCS2A01G335600.1 2A 569,363,189 −41,273 Zinc finger family protein

DArT10906 98.551 TraesCS2A01G482500LC.1 2A 566,976,225 12,025 RNA-directed DNA polymerase (Reverse transcriptase)
TraesCS2A01G333600.1 2A 566,986,482 22,282 Gibberellin-regulated protein 2

SNP8395 96.296 TraesCS2A01G309400.1 2A 532,849,120 −4840 Pentatricopeptide repeat-containing protein
TraesCS2A01G309500.1 2A 532,854,936 976 Smr domain containing protein
TraesCS2A01G309600.1 2A 532,859,077 5117 Acyl-CoA N-acyltransferase isoform 2
TraesCS2A01G309600.2 2A 532,859,077 5117 Acyl-CoA N-acyltransferase isoform 2
TraesCS2A01G309700.1 2A 532,865,797 11,837 Response regulator

DArT20759 97.619 TraesCS2A01G460800LC.1 2A 541,301,644 −573 1-phosphatidylinositol-3-phosphate 5-kinase FAB1A

DArT20961 100 TraesCS2A01G308900.1 2A 532,040,483 −40,124 Translocase of chloroplast
TraesCS2A01G309000.1 2A 532,077,143 −3464 GTPase Der
TraesCS2A01G309100.1 2A 532,085,578 4971 Protein NRT1/PTR FAMILY 1.1
TraesCS2A01G309100.2 2A 532,085,909 5302 Protein NRT1/PTR FAMILY 1.1
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4. Discussion

The maintenance of crop production is a current and pressing need given growing populations
and reduced availability of arable land [76]. There is an increasing need for breeding programs to
improve yield potential and the adaptation of new varieties to different biotic and abiotic stresses [77].
Abiotic stresses, including drought and heat, are impacting productivity on the million hectares of
wheat grown worldwide each year [78]. Detailed molecular and phenotypic characterization are
valuable tools in the dissection of complex traits [79], and especially those that are influenced by water
availability [14].

The improvement of key traits is essential for better end-use production quantity and quality in
wheat [80]. In this study, we analysed a set of 10 agronomic and quality traits under full irrigation
conditions (FI), with an additional six traits also assessed under low water availability (RI) in order to
understand trait variation under contrasting water regimes in the CIMMYT durum wheat breeding
programme. Irrigation conditions influenced some important yield and yield-related traits such as
GY and TKW, as well as adaptive traits including DTH and PH (Table 3). The RI treatments had
decreased final yields in line with previous observations [6,81]. Previous reports have also shown
TKW to be reduced by high temperatures [17], most likely related to water availability. Groos et al. [82]
assessed the genetic basis of grain yield and protein content in a segregating population of wheat RILs
grown at six locations and also identified effects from GxE interactions involving protein content and
yield. Our mean trait values corroborated this, with the highest values for GY recorded for FI blocks
across panels (see Table 3). A similar trend was shown for DTH, PH and TKW, which decreased under
low-water regimes.

Correlations between the assessed traits showed that GY was positively correlated with two
different phenology traits (PH and DTH). This is in agreement with Maccaferri et al. [6], who showed
important positive and negative correlations for GY and DTH, and also positive correlations for GY
and PH in several environments with different water regimes. DTH and PH were also positively
correlated (Supplementary Materials Table S5), with taller plants having a longer time period to the
emergence of the tip of the spike stage.

Wheat TKW is an important yield component with a direct effect on grain yield [83,84]. In line
with this, our results showed a significant and positive correlation between TKW and GY. However,
the previously reported negative correlation between TKW and DTH [6] was not observed, potentially
as result of temperatures and water availability from emergence to heading, and also from heading to
harvest. Rharrabti et al. [17] previously highlighted a positive correlation between protein content
and TKW, which is in agreement with the results obtained in the present study. They highlighted that
warm temperatures during grain filling could negatively affect this correlation.

Significant associations between endosperm proteins (gliadin and glutenin subunits) and SV have
been previously highlighted [85,86]. Here we found a positive correlation (r = 0.15) between SV and
GPC. This correlation is thought to be the result of grain protein content influencing the sedimentation
volume value [87], which depends on the degree of protein hydration and oxidation [88]. Finally,
for sedimentation index (SDS) analysis, we observed a negative correlation with protein content, in
agreement with results presented by Rharrabti et al. [17,45]. This is also in agreement with Oelofse
et al. [89] who highlighted the significant influence of protein content on the SDS sedimentation
test [90–92].

The SNP and DArT markers used to analyze patterns of genetic structure (Figure 2) and LD
(Figure 3) for the durum wheat lines revealed no detectable genetic structure and consistent patterns of
LD across chromosomes (LD was estimated to extend ~20 cM). These results support the suitability
of durum elite line sets currently in use in breeding programmes for the practical application of
GWAs analysis. The rate of unmapped markers was lower for SNP than for DArT markers (27.5% vs.
42.0%, Table 2), indicating higher precision in genetically mapping SNP markers, probably as a result
of co-dominance.
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In the assessment of MTAs for quality and yield-related traits, different AM analyses were
performed on subsets of the dataset. Several MTAs for SV and TKW were detected across years and
water regimes, located on chromosomes 1B and 2A, respectively. All GWAS analyses corroborated the
major QTLs previously detected, and reported two new QTLs, one for YR in chromosome 1B, and
another for SV in chromosome 4A.

Associations on chromosome 1B were significant for wheat quality. There are known loci including
Gli-B1/Glu-B3 on this chromosome, which are of great importance for some gliadin and glutenin
subunits [93]. In fact, the candidate gene analysis reported the presence of a high molecular-weight
glutenin subunit (HMW-GS) gene in the proximity of marker DArT1744 (found to be significantly
associated with SV and SDS), which was previously described by Mérida-García et al. [73] in association
with specific weight. In line with this, Pogna et al. [93] highlighted the importance of Glu-B3 for
determining protein quality with these endosperm proteins showing significant effects on SV, which
also showed a high and positive correlation with SDS in our study (Figure 1 and Supplementary
Materials Table S5). Likewise, Blanco et al. [86] reported three QTLs on chromosomes 1B, 6A and 7B
(based on the analysis of 259 polymorphic markers) associated with SDS and SV in a recombinant
inbred line population. In the present study, we found a SNP marker (SNP620) associated with
SV, showing a positive additive effect of 1.26 (see Table 4) and also with SDS (marker effect of 0.11)
(Supplementary Materials Table S6). This marker was previously placed on chromosome 1B, in the
same location as MTAs for gluten index and sedimentation index [73]. Other previous studies, such as
Reif et al. [94] and Fiedler et al. [95], also reported markers associated with SV on chromosome 1B,
but with differing genetic positions. The additional locus for SV found on chromosome 4A (marker
DArT9459) has not been previously reported.

Marker SNP620, significantly associated with SV, is located within a cluster of homoeolog gene
triads coding for blue copper proteins (Table 5 and Supplementary Materials Figure S6). These proteins
have been described containing a copper atom, and participate in redox processes [96], with a crucial
role in the electron shuttle in plants [97]. In addition, Yao et al. [98] described the blue copper protein
genes as the targets of miR408 in wheat, which is involved in the regulation of gene transcription
required for heading time [99]. In our study SNP620 was also found in proximity to a gene coding
for an ubiquinone biosynthesis O-methyltransferase. Liu et al. [100] highlighted its crucial role as an
electron transporter in the electron transport chain of the aerobic respiratory chain. This ubiquinone
gene is involved in plant growth and development, is implied in chemical compounds biosynthesis and
metabolism which are involved in plant responses to stress, and also participates in gene expression
regulation and cell signal transduction [100].

On chromosome 1B we also found a significant MTA for yellow rust, in agreement with previous
studies in durum and bread wheat, which placed different markers significantly associated with this
trait, but in differing genetic positions [101–104]. The candidate gene analysis revealed the proximity of
this marker (SNP809) to sugar transporter protein genes. Sugars are formed during the photosynthetic
process and are essential for plant nutrition. The sucrose transport has been considered of great
importance for plant productivity [105]. In line with this, the sucrose is involved in the gene expression
regulation of the supposedly sugar-sensing pathway [106,107].

The majority of MTAs for TKW were located on chromosome 2A, showing both positive and
negative effects. Previous studies have reported different markers in association with this quality
trait, including a number mapped on chromosome 2A [38,108–110]. One of the markers found by
Yao et al. [38] (SSR marker gwm445 on chromosome 2A (68.2 cM), belongs to the same QTL found in
this study for the marker SNP1153 (chromosome 2A, 68.6 cM), and also found by Juliana et al. [111]
in bread wheat lines from CIMMYT’s first year-yield trials. Sukumaran et al. [43] analysed a durum
wheat panel of 208 lines under yield potential, heat and drought stress conditions, and identified
markers on chromosome 2A with a similar position to those detected in this study (4 markers at 70 cM
and 6 markers at 69 cM) under heat stress conditions. They highlighted that several SNP markers were
related to transmembranes or were uncharacterized proteins. We found several candidate genes for this
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important TKW QTL (Table 5) among which the most striking feature is the presence of four reductase
1 genes (NADPH-dependent 6′-deoxychalcone synthase) and a type A response regulator 1 (Figure 4).
These genes are both related with photosynthesis. Hu et al. [112] highlighted that NADPH plays a
crucial role in biological processes in plants, such as the regulation of the production of reactive oxygen
species (ROS) for the stress tolerance [113,114]. Additional GWAS analyses using reduced datasets
revealed other interesting genes for this QTL (chromosome 2A, Supplementary Materials Table S8),
encoding for the Acyl-CoA N-acyltransferase and the chloroplastic zeaxanthin epoxidase. The first
gene has several functions in signaling and metabolic pathways [115]. The zeaxanthin epoxidase plays
an important role in the xanthophyll cycle and abscisic acid (ABA) biosynthesis. The xanthophyll cycle
has a main function in the dissipation of light energy excess and also increasing the photosynthetic
system stability [116].

The proposed approach has successfully detected genetic markers with significant associations
with TKW, SV, SDS and YR. These are of potential use in durum wheat breeding programs, and can be
further interrogated to the candidate gene level using the RefSeqv1 bread wheat genome reference [69]
and the durum wheat genome reference [71].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/1/144/s1:
Figure S1: Rainfall data for Ciudad Obregon (Mexico) for the growing seasons 2012–2015; Figure S2: Manhattan
plots for durum wheat mapped DArT markers. DTH: days to heading; PH: plant height; GY: grain yield; TKW:
thousand kernel weight; YC: yellow color; SV: sedimentation volume; SDS: sedimentation index; and GPC: grain
protein content; Figure S3: Manhattan plots for durum wheat mapped SNP markers. DTH: days to heading;
PH: plant height; GY: grain yield; TKW: thousand kernel weight; YC: yellow color; SV: sedimentation volume;
SDS: sedimentation index; and GPC: grain protein content; Figure S4: Quantile quantile-plots from genome-wide
association studies (GWAS) analysis for durum wheat DArT markers (mapped and unmapped). DTH: days
to heading; PH: plant height; LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color;
SV: sedimentation volume; SDS: sedimentation index; and GPC: grain protein content; Figure S5: Quantile
quantile-plots from GWAS analysis for durum wheat SNP markers (mapped and unmapped). DTH: days to
heading; PH: plant height; LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color;
SV: sedimentation volume; SDS: sedimentation index; and GPC: grain protein content; Figure S6: Blue copper
protein gene cluster on durum wheat chromosome 1B. High confidence genes are shown in green colour, low
confidence genes are shown in yellow; Figure S7: Cluster tree of blue copper protein gene homoeologs in bread
wheat (RefSeqv1 [69]). For chromosome 1A, high confidence (HC) and low confidence (LC) genes are shown in
brown and orange colour, respectively; for chromosome 1B, HC and LC genes are shown in dark and light green
colour, respectively; for chromosome 1D, HC and LC genes are shown in dark and light blue colour, respectively;
Table S1: Durum wheat elite lines assessed; Table S2: Best Linear Unbiased Estimates (BLUEs) outputs for all
assessed traits and the association mapping analyses performed in durum wheat: [i] across years and blocks;
[ii] across years for each block (FI and RI); [iii] across years and blocks for a reduced dataset (years 2013 and 2014);
and [iv] across the reduced dataset for each block. DTH: days to heading; GPC: grain protein content; GY: grain
yield; PH: plant height; SDS: sedimentation index; SV: sedimentation volume; TKW: thousand kernel weight; and
YC: yellow colour; YR: yellow rust; LOD: lodging; Table S3: Kinship matrix for durum wheat DArT markers;
Table S4: Kinship matrix for durum wheat SNP markers; Table S5: Phenotypic correlations between the assessed
traits in durum wheat and their corresponding p values. YR: yellow rust; DTH: days to heading; PH: plant height;
LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color; SV: sedimentation volume; SDS:
sedimentation index; and GPC: grain protein content; Table S6: Marker-trait associations found for the association
mapping analyses performed in durum wheat: [i] across years and blocks; [ii] across years for each block (FI and
RI); [iii] across years and blocks for a reduced dataset (years 2013 and 2014); and [iv] across the reduced dataset for
each block. SV: sedimentation volume; TKW: thousand kernel weight; SDS: sedimentation index; YR: yellow
rust; “-”: unmapped marker; Table S7: Homoeolog triads for blue copper protein genes mapped in the wheat
reference assembly RefSeqv1 [69]; Table S8: Candidate genes for GWAS analyses performed in durum wheat:
[i] across years for each block (FI and RI); [ii] across years and blocks for a reduced dataset (years 2013 and 2014);
and [iii] across the reduced dataset for each block. Molecular markers mapping positions are shown both in the
durum wheat genome [71] and the wheat reference assembly RefSeqv1 [69]; Supplementary Material S1. R script
used to perform the GWAS analysis; Supplementary Material S2. R script used to perform the LD analysis.

Author Contributions: P.H., I.S. and K.A. conceived the experiment. K.A. and I.S. selected the plant materials
and agronomic traits. K.A. managed the field trials and contributed the phenotypic data. I.S., P.H., G.D., S.G.,
R.M.-G. and A.R.B. analysed the genotypic and phenotypic data. R.M.-G. isolated the DNA. R.M.-G., A.R.B. and
P.H. carried out the AM analyses. R.M.-G., A.R.B. and P.H. drafted the manuscript. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by project P12-AGR-0482 from Junta de Andalucía (Andalusian
Regional Government), Spain (Co-funded by FEDER). ARB is supported by the UK Biotechnology and
Biological Sciences Research Council (BBSRC) ‘Designing Future Wheat’ cross-institute strategic programme

http://www.mdpi.com/2073-4395/10/1/144/s1


Agronomy 2020, 10, 144 18 of 23

(BB/P016855/1). PH is supported by the Spanish Ministry of Economy, Industry and Competitiveness (MINECO)
project AGL2016-77149-C2-1-P.

Conflicts of Interest: The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

References

1. Curtis, B.C. Wheat in the world. In Bread Wheat Improvement and Production; Curtis, B.C., Rajaram, S., Gomez
Macpherson, H., Eds.; Plant Production and Protection Series; Food and Agriculture Organization of the
United Nations: Rome, Italy, 2002; Volume 30, pp. 1–17.

2. Ranieri, R. Geography of Durum Wheat Crop; Pastaria Open Fields: Collecchio, Italy, 2015.
3. Bozzini, A.; Fabriani, G.; Lintas, C. Origin, Distribution, and Production of Durum Wheat in the World.

In American Associate of Cereal Chemists International, Durum Wheat, 2nd ed.; AACC International Press:
Saint Paul, MN, USA, 2012. [CrossRef]

4. Nachit, M.M. Durum wheat breeding for Mediterranean drylands of north Africa and west Asia. In Durum
Wheats: Challenges and Opportunities; Rajaram, S., Saari, E.E., Hettel, G.P., Eds.; Wheat Special Report;
CIMMYT: Ciudad Obregón, Mexico, 1992.

5. Singh, R.P.; Huerta-Espino, J.; Fuentes, G.; Duveiller, E.; Gilchrist, L.; Henry, M.; Nicol, M.J. Resistance to
diseases. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M.M., Fonzo, D.,
Araus, J.L., Er, W.H.P., Slafer, G.A., Eds.; Food Prod Press: Binghamton, NY, USA, 2005; pp. 291–315.

6. Maccaferri, M.; Sanguineti, M.C.; Demontis, A.; El-Ahmed, A.; Garcia del Moral, L.; Maalouf, F.; Nachit, M.;
Nserallah, N.; Ouabbou, H.; Rhouma, S.; et al. Association mapping in durum wheat grown across a broad
range of water regimes. J. Exp. Bot. 2011, 62, 409–438. [CrossRef]

7. Abdalla, O.; Dieseth, J.A.; Singh, R.P. Breeding durum wheat at CIMMYT. In Durum Wheats: Challenges and
Opportunities; Rajaram, S., Saari, E.E., Hettel, G.P., Eds.; Wheat Special Report; CIMMYT: Ciudad Obregón,
Mexico, 1992.

8. Wrigley, C.W. Wheat: An overview of the grain that provides our daily bread. In Encyclopedia of Food Grains;
Colin, W., Wrigley, H.C., Koushik, S., Jonathan, F., Eds.; Elsevier: Oxford, UK, 2016; pp. 105–116. [CrossRef]

9. Triboi, E.; Abad, A.; Michelena, A.; Lloveras, J.; Ollier, J.L.; Daniel, C. Environmental effects on the quality of
two wheat genotypes: 1. quantitative and qualitative variation of storage proteins. Eur. J. Agron. 2000, 13,
47–64. [CrossRef]

10. Halford, N.G.; Curtis, T.Y.; Chen, Z.; Huang, J. Effects of abiotic stress and crop management on cereal grain
composition: Implications for food quality and safety. J. Exp. Bot. 2015, 66, 1145–1156. [CrossRef]

11. Blumenthal, F.; Batey, I.L.; Wrigley, C.W.; Moss, H.J.; Mares, D.J.; Barlow, E.W.C. Interpretation of grain
quality results from wheat variety trials with reference to high temperatures stress. Aust. J. Agric. Res. 1991,
42, 325–334. [CrossRef]

12. Campbell, C.A.; Davidson, H.R.; Winkleman, G.E. Effect of nitrogen, temperature, growth stage and duration
of moisture stress on yield components and protein content of manitou spring wheat. Can. J. Plant Sci. 1981,
61, 549–563. [CrossRef]

13. Uhlen, A.K.; Hafskjold, R.; Kalhovd, A.H.; Sahlström, S.; Longva, Å.; Magnus, E.M. Effects of cultivar and
temperature during grain filling on wheat protein content, composition, and dough mixing properties.
Cereal Chem. 1998, 75, 460–465. [CrossRef]

14. Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for Yield Potential and Stress Adaptation in Cereals.
Crit. Rev. Plant Sci. 2008, 27, 377–412. [CrossRef]

15. Curtis, T.; Halford, N.G. Food security: The challenge of increasing wheat yield and the importance of not
compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [CrossRef]

16. Steiger, D.K.; Elias, E.M.; Joppa, L.R.; Cantrell, R.G. Quality Evaluation of Lines Derived from Crosses of
Langdon (Triticum dicoccoides) Substitution Lines to a Common Durum Wheat. In Durum Wheats: Challenges
and Opportunities; Rajaram, S., Saari, E.E., Hettel, G.P., Eds.; Wheat Special Report; CIMMYT: Ciudad Obregón,
Mexico, 1992.

17. Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Nuñez, V.; Garcia del Moral, L.F. Durum wheat quality in
Mediterranean environments II. Influence of climatic variables and relationships between quality parameters.
Field Crops Res. 2003, 80, 133–140. [CrossRef]

http://dx.doi.org/10.1016/B978-1-891127-65-6.50006-4
http://dx.doi.org/10.1093/jxb/erq287
http://dx.doi.org/10.1016/B978-0-12-394437-5.00020-6
http://dx.doi.org/10.1016/S1161-0301(00)00059-9
http://dx.doi.org/10.1093/jxb/eru473
http://dx.doi.org/10.1071/AR9910325
http://dx.doi.org/10.4141/cjps81-078
http://dx.doi.org/10.1094/CCHEM.1998.75.4.460
http://dx.doi.org/10.1080/07352680802467736
http://dx.doi.org/10.1111/aab.12108
http://dx.doi.org/10.1016/S0378-4290(02)00177-6


Agronomy 2020, 10, 144 19 of 23

18. Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Pearson Education Limited:
Harlow, UK, 1997; p. 464.

19. Borghi, B.; Corbellino, M.; Ciuffi, M.; La fiandra, D.; Destefanis, E.; Sgrulletta, D.; Boggini, G.; Di Fonzo, N.
Effect of heat-shock during grain filling on grain quality of bread and durum wheats. Aust. J. Agric. Res.
1995, 46, 1365–1380. [CrossRef]

20. Garrido-Lestache, E.; Lopez-Bellido, R.J.; Lopez-Bellido, L. Durum wheat quality under Mediterranean
conditions as affected by N rate, timing and splitting, N form and S fertilization. Eur. J. Agron. 2005, 23,
265–278. [CrossRef]

21. Holland, J.B. Genetic architecture of complex traits in plants. Plant Biol. 2007, 10, 156–161. [CrossRef]
22. Jackson, P.; Robertson, M.; Cooper, M.; Hammer, G. The role of physiological understanding in plant breeding;

from a breeding perspective. Field Crops Res. 1996, 49, 11–39. [CrossRef]
23. Taghouti, M.; Gaboun, F.; Nsarellah, N.; Rhrib, R.; El-Haila, M.; Kamar, M.; Abbad-Andaloussi, F.; Udapa, S.M.

Genotype x Envitonment interactin for quality traits in durum wheat cultivars adapted to different
environments. Afr. J. Biotechnol. 2010, 9, 3054–3062.

24. Flint-Garcia, S.A.; Thuillet, A.C.; Yu, J.; Pressoir, G.; Romero, S.M.; Mitchell, S.E.; Doebley, J.; Kresovich, S.;
Goodman, M.M.; Buckler, E.S. Maize association population: A high-resolution platform for quantitative
trait locus dissection. Plant J. 2005, 44, 1054–1064. [CrossRef]

25. Bodmer, W.F. Human genetics: The molecular challenge. BioEssays: News and Reviews in Molecular.
Cell. Dev. Biol. 1987, 7, 41–45. [CrossRef]

26. Bar-Hen, A.; Charcosset, A.; Bourgoin, M.; Guiard, J. Relationship between genetic markers and morphological
traits in a Maize inbred lines collection. Euphytica 1995, 84, 145–154. [CrossRef]

27. Virk, P.S.; Ford-Lloyd, B.V.; Jackson, M.T.; Pooni, H.S.; Clemeno, T.P. Predicting quantitative variation within
rice germplasm using molecular markers. Heredity 1996, 76, 296–304. [CrossRef]

28. Beer, M.U.; Wood, P.J.; Weisz, J.; Fillion, N. Effect of cooking and storage on the amount and molecular weight
of (1→3) (1→4)-d-glucan extracted from oat products by an in vitro digestion system. Cereal Chem. 1997, 74,
705–709. [CrossRef]

29. Zondervan, K.T.; Cardon, L.R. The complex interplay among factors that influence allelic association.
Nat. Rev. Genet. 2004, 5, 89–100. [CrossRef]

30. Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat
(Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177. [CrossRef]

31. Maccaferri, M.; Sanguineti, M.C.; Mantovani, P.; Demontis, A.; Massi, A.; Ammar, K.; Kolmer, J.A.;
Czembor, J.H.; Ezrati, S.; Tuberosa, R. Association mapping of leaf rust response in durum wheat. Mol. Breed.
2010, 26, 189–228. [CrossRef]

32. Marcotuli, I.; Gadaleta, A.; Mangini, G.; Signorile, A.M.; Zacheo, S.A.; Blanco, A.; Simeone, R.; Colasuonno, P.
Development of a High-Density SNP-Based Linkage Map and Detection of QTL for beta-Glucans, Protein
Content, Grain Yield per Spike and Heading Time in Durum Wheat. Int. J. Mol. Sci. 2017, 18, 1329. [CrossRef]

33. Liu, J.; Luo, W.; Qin, N.; Ding, P.; Zhang, H.; Yang, C.; Mu, Y.; Tang, H.; Liu, Y.; Li, W.; et al. A 55 K SNP
array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat.
Theor. Appl. Genet. 2018, 131, 2439–2450. [CrossRef]

34. Marcotuli, I.; Houston, K.; Schwerdt, J.G.; Waugh, R.; Fincher, G.B.; Burton, R.A.; Blanco, A.; Gadalena, A.
Genetic Diversity and Genome Wide Association Study of beta-Glucan Content in Tetraploid Wheat Grains.
PLoS ONE 2016, 11, e0152590. [CrossRef]

35. Poland, J.A.; Brown, P.J.; Sorrells, M.E.; Jannink, J.L. Development of high-density genetic maps for barley
and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 2012, 7, e32253.
[CrossRef]

36. Somers, D.J.; Banks, T.; Depauw, R.; Fox, S.; Clarke, J.; Pozniak, C.; McCartney, C. Genome-wide linkage
disequilibrium analysis in bread wheat and durum wheat. Genome 2007, 50, 557–567. [CrossRef]

37. Wang, S.X.; Zhu, Y.L.; Zhang, D.X.; Shao, H.; Liu, P.; Hu, J.B.; Zhang, H.; Zhang, H.P.; Chang, C.; Lu, J.; et al.
Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines
using SNP markers. PLoS ONE 2017, 12, e0188662. [CrossRef]

38. Yao, J.; Wang, L.; Liu, L.; Zhao, C.; Zheng, Y. Association mapping of agronomic traits on chromosome 2A of
wheat. Genetica 2009, 137, 67–75. [CrossRef]

http://dx.doi.org/10.1071/AR9951365
http://dx.doi.org/10.1016/j.eja.2004.12.001
http://dx.doi.org/10.1016/j.pbi.2007.01.003
http://dx.doi.org/10.1016/S0378-4290(96)01012-X
http://dx.doi.org/10.1111/j.1365-313X.2005.02591.x
http://dx.doi.org/10.1002/bies.950070109
http://dx.doi.org/10.1007/BF01677953
http://dx.doi.org/10.1038/hdy.1996.43
http://dx.doi.org/10.1094/CCHEM.1997.74.6.705
http://dx.doi.org/10.1038/nrg1270
http://dx.doi.org/10.1534/genetics.105.044586
http://dx.doi.org/10.1007/s11032-009-9353-0
http://dx.doi.org/10.3390/ijms18061329
http://dx.doi.org/10.1007/s00122-018-3164-9
http://dx.doi.org/10.1371/journal.pone.0152590
http://dx.doi.org/10.1371/journal.pone.0032253
http://dx.doi.org/10.1139/G07-031
http://dx.doi.org/10.1371/journal.pone.0188662
http://dx.doi.org/10.1007/s10709-009-9351-5


Agronomy 2020, 10, 144 20 of 23

39. Li, H.; Vikram, P.; Singh, R.P.; Kilian, A.; Carling, J.; Song, J.; Burgueno-Ferreira, J.A.; Bhavani, S.;
Huerta-Espino, J.; Payne, T.; et al. A high density GBS map of bread wheat and its application for
dissecting complex disease resistance traits. BMC Genom. 2015, 16, 216. [CrossRef]

40. Ren, R.; Ray, R.; Li, P.; Xu, J.; Zhang, M.; Liu, G.; Yao, X.; Kilian, A.; Yang, X. Construction of a high-density
DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a
genetic population derived from a cross between feral and cultivated-type watermelon. Mol. Genet. Genom.
2015, 290, 1457–1470. [CrossRef] [PubMed]

41. Sanchez-Sevilla, J.F.; Horvath, A.; Botella, M.A.; Gaston, A.; Folta, K.; Kilian, A.; Denoyes, B.; Amaya, I.
Diversity Arrays Technology (DArT) Marker Platforms for Diversity Analysis and Linkage Mapping in a
Complex Crop, the Octoploid Cultivated Strawberry (Fragaria x ananassa). PLoS ONE 2015, 10, e0144960.
[CrossRef] [PubMed]

42. Kilian, A.; Huttner, E.; Wenzl, P.; Jaccoud, D.; Carling, J.; Caig, V.; Evers, M.; Heller-Uszynska, K.; Cayla, C.;
Patarapuwadol, S.; et al. The fast and the cheap, SNP and DArT-based whole genome profiling for crop
improvement. In The Wake of the Double Helix: From the Green Revolution to the Gene Revolution, Proceedings of the
International Congress Avenue Media, Bologna, Italy, 27–31 May 2005; Tuberosa, R., Phillips, R.L., Gale, M., Eds.;
Avenue Media: Bologna, Italy, 2005; pp. 443–461.

43. Sukumaran, S.; Reynolds, M.P.; Sansaloni, C. Genome-Wide Association Analyses Identify QTL Hotspots
for Yield and Component Traits in Durum Wheat Grown under Yield Potential, Drought, and Heat Stress
Environments. Front. Plant Sci. 2018, 9, 81. [CrossRef]

44. Turuspekov, Y.; Baibulatova, A.; Yermekbayev, K.; Tokhetova, L.; Chudinov, V.; Sereda, G.; Ganal, M.;
Griffiths, S.; Abugalieva, S. GWAS for plant growth stages and yield components in spring wheat (Triticum
aestivum L.) harvested in three regions of Kazakhstan. BMC Plant Biol. 2017, 17 (Suppl. 1), 190. [CrossRef]

45. Johnson, M.; Kumar, A.; Oladzad-Abbasabadi, A.; Salsman, E.; Aoun, M.; Manthey, F.A.; Elias, E.M.
Association Mapping for 24 Traits Related to Protein Content, Gluten Strength, Color, Cooking, and Milling
Quality Using Balanced and Unbalanced Data in Durum Wheat [Triticum turgidum L. var. durum (Desf)].
Front. Genet. 2019, 10. [CrossRef]

46. Mangini, G.; Gadaleta, A.; Colasuonno, P.; Marcotuli, I.; Signorile, A.M.; Simeone, R.; De Vita, P.;
Mastrangelo, A.M.; Laido, G.; Pecchioni, N.; et al. Genetic dissection of the relationships between grain yield
components by genome-wide association mapping in a collection of tetraploid wheats. PLoS ONE 2018, 13,
e0190162. [CrossRef]

47. Mengistu, D.K.; Kidane, Y.G.; Catellani, M.; Frascaroli, E.; Fadda, C.; Pe, M.E.; Dell’Acua, M. High-density
molecular characterization and association mapping in Ethiopian durum wheat landraces reveals high
diversity and potential for wheat breeding. Plant Biotechnol. J. 2016, 14, 1800–1812. [CrossRef]

48. Pozniak, C.J.; Knox, R.E.; Clarke, F.R.; Clarke, J.M. Identification of QTL and association of a phytoene
synthase gene with endosperm colour in durum wheat. Theor. Appl. Genet. 2007, 114, 525–537. [CrossRef]

49. Reimer, S.; Pozniak, C.J.; Clarke, F.R.; Clarke, J.M.; Somers, D.J.; Knox, R.E.; Singh, A.K. Association mapping
of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 2008, 51,
1016–1025. [CrossRef]

50. Van Ginkel, M.R.; Trethowan, R.; Cukadar, B. A Guide to the CIMMY Bread Wheat Program; Wheat Special
Report No 5; CIMMYT: Ciudad Obregón, Mexico, 1998.

51. Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14,
415–421. [CrossRef]

52. Henstchel, V.; Kranl, K.; Hollmann, J.; Lindhauer, M.G.; Bohm, V.; Bitsch, R. Spectrophotometric determination
of yellow pigment content and evaluation of carotenoids by high-performance liquid chromatography in
durum wheat grain. J. Agric. Food Chem. 2002, 50, 6663–6668.

53. Martinez, C.S.; Ribotta, P.D.; León, A.E.; Añon, M.C. Colour assessment on bread wheat and triticale fresh
pasta. Int. J. Food Prop. 2010, 15. [CrossRef]

54. Beleggia, R.; Platani, C.; Nigro, F.; Papa, R. Yellow pigment determination for single kernels of durum wheat
(Triticum durum Desf.). Cereal Chem. 2011, 88, 504–508. [CrossRef]

55. Axford, D.W.E.; McDermott, E.E.; Redman, D.G. Small-scale test for breadmaking quality of wheat.
Cereal Foods World 1978, 23, 477–478.

56. Seabourn, B.W.; Xiao, Z.S.; Tilley, T.; Herald, T.J.; Park, S.H. A rapid, small-scale sedimentation method to
predict bread-making quality of hard winter wheat. Crop Sci. 2012, 52, 1306–1315. [CrossRef]

http://dx.doi.org/10.1186/s12864-015-1424-5
http://dx.doi.org/10.1007/s00438-015-0997-7
http://www.ncbi.nlm.nih.gov/pubmed/25702268
http://dx.doi.org/10.1371/journal.pone.0144960
http://www.ncbi.nlm.nih.gov/pubmed/26675207
http://dx.doi.org/10.3389/fpls.2018.00081
http://dx.doi.org/10.1186/s12870-017-1131-2
http://dx.doi.org/10.3389/fgene.2019.00717
http://dx.doi.org/10.1371/journal.pone.0190162
http://dx.doi.org/10.1111/pbi.12538
http://dx.doi.org/10.1007/s00122-006-0453-5
http://dx.doi.org/10.1139/G08-083
http://dx.doi.org/10.1111/j.1365-3180.1974.tb01084.x
http://dx.doi.org/10.1080/10942912.2010.513215
http://dx.doi.org/10.1094/CCHEM-02-11-0013
http://dx.doi.org/10.2135/cropsci2011.04.0210


Agronomy 2020, 10, 144 21 of 23

57. Williams, P.C.; Norris, K. Near Infrared Technology in the Agricultural and Food Industries, 2nd ed.; American
Association of Cereal Chemistry, Inc.: St Paul, MN, USA, 2001.

58. Becker, R.A.; Chambers, J.M.; Wilks, A.R. The New S Language: A Programming Environment for Data Analysis
and Graphics; Wadsworth & Brooks/Cole: Pacific Grove, CA, USA, 1988.

59. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]
60. Kendall, M.G. The treatment of ties in rank problems. Biometrika 1945, 33, 239–251. [CrossRef]
61. Chambers, J.M.; Freeny, A.; Heiberger, R.M. Chapter 5: Analysis of Variance; Designed Experiment.

In Statistical Models in S; Chambers, J.M., Hastie, T.J., Eds.; Wadsworth & Brooks/Cole: Pacific Grove, CA,
USA, 1992; pp. 145–193.

62. Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh Bi, I.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.;
Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [CrossRef]

63. Kang, H.M.; Zaitlen, N.A.; Wade, C.M.; Kirby, A.; Heckerman, D.; Daly, M.J.; Eskin, E. Efficient control of
population structure in model organism association mapping. Genetics 2008, 178, 1709–1723. [CrossRef]

64. Horikoshi, M.; Tang, Y. ggfortify: Data Visualization Tools for Statistical Analysis Results. R J. 2016, 8,
474–489.

65. Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009.
66. Marchini, J.L. Popgen: Statistical and Population Genetics. R Package Version 1.0-3. 2013. Available online:

http://CRANR-projectorg/package=popgen/ (accessed on 14 January 2020).
67. Endelman, J.B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome

2011, 4, 250–255. [CrossRef]
68. Rosyara, U.R.; De Jong, W.S.; Douches, D.S.; Endelman, J.B. Software for Genome-Wide Association Studies

in Autopolyploids and Its Application to Potato. Plant Genome 2016, 9. [CrossRef] [PubMed]
69. Appels, R.; Eversole, K.; Feuillet, C.; Keller, B.; Rogers, J.; Stein, N.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.;

Poland, J.; et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome.
Science 2018, 361, eaar7191.

70. Maccaferri, M.; Sanguineti, M.C.; Noli, E.; Tuberosa, R. Population structure and long-range linkage
disequilibrium in a durum wheat elite collection. Mol. Breed. 2005, 15, 271–290. [CrossRef]

71. Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.;
Lux, T.; Prade, V.M.; Milner, S.G.; et al. Durum wheat genome highlights past domestication signatures and
future improvement targets. Nat. Genet. 2019, 51, 885–895. [CrossRef]

72. Galvez, S.; Merida-Garcia, R.; Camino, C.; Borrill, P.; Abrouk, M.; Ramirez-Gonzalez, R.H.; Biyiklioglu, S.;
Amil-Ruiz, F.; Dorado, G.; Budak, H.; et al. Hotspots in the genomic architecture of field drought responses
in wheat as breeding targets. Funct. Integr. Genom. 2019. [CrossRef]

73. Mérida-García, R.; Guozheng, L.; He, S.; González-Dugo, V.; Dorado, G.; Gálvez, S.; Solís, I.; Zarco-Tejada, P.;
Reif, J.C.; Hernández, P. Genetic dissection of agronomic and quality traits based on association mapping
and genomic selection approaches in durum wheat grown in Southern Spain. PLoS ONE 2019. [CrossRef]

74. Ikeda, T.; Laporte, D.C. Isocitrate Dehydrogenase Kinase/Phospatase: AceK alleles that express kinase but
not phosphatase activity. J. Bacteriol. 1991, 1801–1806. [CrossRef]

75. Liu, P.L.; Du, L.; Huang, Y.; Gao, S.M.; Yu, M. Origin and diversification of leucine-rich repeat receptor-like
protein kinase (LRR-RLK) genes in plants. BMC Evol. Biol. 2017, 17, 47. [CrossRef]

76. Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting cereal demand while protecting natural
resources and improving environmental quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [CrossRef]

77. Araus, J.L.; Slafer, G.A.; Reynolds, M.P.; Royo, C. Plant Breeding and Drought in C3 Cereals: What Should
We Breed For? Ann. Bot. 2002, 89, 925–940. [CrossRef] [PubMed]

78. Ortiz, R.; Sayre, K.D.; Govaerts, B.; Gupta, R.K.; Subbarao, G.V.; Ban, T.; Hodson, D.; Dixon, J.;
Ortiz-Monasterio, I.; Reynolds, M. Climate change: Can wheat beat the heat? Agric. Ecosyst. Environ. 2008,
126, 46–58. [CrossRef]

79. Alonso-Blanco, C.; Aarts, M.G.; Bentsink, L.; Keurentjes, J.J.; Reymond, M.; Vreugdenhil, D.; Koornneef, M.
What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 2009,
21, 1877–1896. [CrossRef] [PubMed]

80. Amaya, A.; Peña, R.J. Utilization and quality of durum wheat. In Durum Wheats: Challenges and Opportunities;
Rajaram, S., Saari, E.E., Hettel, G.P., Eds.; Wheat Special Report; CIMMYT: Ciudad Obregón, Mexico, 1992.

http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1093/biomet/33.3.239
http://dx.doi.org/10.1038/ng1702
http://dx.doi.org/10.1534/genetics.107.080101
http://CRANR-projectorg/package=popgen/
http://dx.doi.org/10.3835/plantgenome2011.08.0024
http://dx.doi.org/10.3835/plantgenome2015.08.0073
http://www.ncbi.nlm.nih.gov/pubmed/27898814
http://dx.doi.org/10.1007/s11032-004-7012-z
http://dx.doi.org/10.1038/s41588-019-0381-3
http://dx.doi.org/10.1007/s10142-018-0639-3
http://dx.doi.org/10.1371/journal.pone.0211718
http://dx.doi.org/10.1128/JB.173.5.1801-1806.1991
http://dx.doi.org/10.1186/s12862-017-0891-5
http://dx.doi.org/10.1146/annurev.energy.28.040202.122858
http://dx.doi.org/10.1093/aob/mcf049
http://www.ncbi.nlm.nih.gov/pubmed/12102518
http://dx.doi.org/10.1016/j.agee.2008.01.019
http://dx.doi.org/10.1105/tpc.109.068114
http://www.ncbi.nlm.nih.gov/pubmed/19574434


Agronomy 2020, 10, 144 22 of 23

81. Maccaferri, M.; Sanguineti, M.C.; Corneti, S.; Ortega, J.L.A.; Salem, M.B.; Bort, J.; DeAmbrogio, E.; García
del Moral, L.F.; Demontis, A.; El-Ahmed, A.; et al. Quantitative trait loci for grain yield and adaptation of
durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 2008, 178, 489–511.
[CrossRef]

82. Groos, C.; Robert, N.; Bervas, E.; Charmet, G. Genetic analysis of grain protein-content, grain yield and
thousand-kernel weight in bread wheat. Theor. Appl. Genet. 2003, 106, 1032–1040. [CrossRef]

83. Sen, C.; Toms, B. Character association and component analysis in wheat (Triticum aestivum L.). Crop. Res.
2007, 34, 166–170.

84. Shamsi, K.; Petrosyan, M.; Noor-mohammadi, G.; Haghparast, A.; Kobrace, S.; Rasekhi, B. Differential
agronomic responses of bread wheat cultivars to drought stress in the west of Iran. Afr. J. Biotechnol. 2011,
10, 2708–2715.

85. Blanco, A.; de Giovanni, C.; Laddomada, B.; Sciancalepore, A.; Simeone, R.; Devos, K.M.; Gale, M.D.
Quantitative trait loci influencing grain protein content in tetraploid wheats. Plant Breed. 1996, 115, 310–316.
[CrossRef]

86. Blanco, A.; Bellomo, M.P.; Cenci, A.; De Giovanni, C.; D’Ovidio, R.; Iacono, E.; Laddomada, B.; Pagnotta, M.A.;
Porceddu, E.; Sciancalepore, A.; et al. A genetic linkage map of durum wheat. Theor. Appl. Genet. 1998, 97,
721–728. [CrossRef]

87. Pasha, I.; Anjum, F.M.; Butt, M.S.; Sultan, J.I. Gluten quality prediction and correlation studies in spring
wheats. J. Food Qual. 2007, 30, 438–449. [CrossRef]

88. Shewry, P.R.; Tatham, A.S. Wheat. In The Royal Society of Chemistry; Elsevier Science B.V.: Amsterdam,
The Netherlands, 2000; pp. 335–339.

89. Oelofse, R.M.; Labuschagne, M.T.; van Deventer, C.S. Influencing factors of sodium dodecyl sulfate
sedimentation in bread wheat. J. Cereal Sci. 2010, 52, 96–99. [CrossRef]

90. Cubadda, R.E.; Carcea, M.; Marconi, E.; Trivisonno, M.C. Influence of protein content on durum wheat
gluten strength determined by the SDS sedimentation test and by other methods. Cereal Foods World 2007, 52,
273–277. [CrossRef]

91. Carter, B.P.; Morris, C.F.; Anderson, J.A. Optimizing the SDS sedimentation test for end-use quality selection
in a soft white and club wheat-breeding program. Cereal Chem. 1999, 76, 907–911. [CrossRef]

92. De Villiers, O.T.; Laubscher, E.W. Use of the SDSS test to predict the protein content and bread volume of
wheat cultivars. S. Afr. J. Plant Soil 1995, 12, 140–142. [CrossRef]

93. Pogna, N.E.; Autran, J.C.; Mellini, F.; Lafiandra, D.; Feillet, P. Chromosome 1B-encoded gliadins and glutenins
subunits. J. Cereal Sci. 1990, 11, 15–34. [CrossRef]

94. Reif, J.C.; Gowda, M.; Maurer, H.P.; Longin, C.F.; Korzun, V.; Ebmeyer, E.; Bothe, R.; Pietsch, C.; Wurschum, T.
Association mapping for quality traits in soft winter wheat. Theor. Appl. Genet. 2010, 122, 961–970. [CrossRef]

95. Fiedler, J.D.; Salsman, E.; Liu, Y.; Michalak de Jimenez, M.; Hegstad, J.B.; Chen, B.; Manthey, F.A.; Chao, S.;
Xu, S.; Elias, E.M.; et al. Genome-Wide Association and Prediction of Grain and Semolina Quality Traits in
Durum Wheat Breeding Populations. Plant Genome 2017, 10. [CrossRef]

96. Sykes, A.G. Plastocyanin and the Blue Copper Proteins. In Long-Range Electron Transfer in Biology. Structure
and Bonding; Springer: Berlin/Heidelberg, Germany, 1990; pp. 175–224. [CrossRef]

97. Feng, H.; Zhang, Q.; Wang, Q.; Wang, X.; Liu, J.; Li, M.; Huang, L.; Kang, Z. Target of tae-miR408,
a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy
cupric stress and stripe rust. Plant Mol. Biol. 2013, 83, 433–443. [CrossRef]

98. Yao, Z.J.; Lin, R.M.; Xu, S.C.; Li, Z.F.; Wan, A.M.; Ma, Z.Y. The molecular tagging of the yellow rust resistance
gene Yr7 in wheat transferred from differential host Lee using microsatellite markers. Sci. Agric. Sin. 2006,
39, 1146–1152.

99. Zhao, X.Y.; Hong, P.; Wu, J.Y.; Chen, X.B.; Ye, X.G.; Pan, Y.Y.; Wang, J.; Zhang, X.S. The tae-miR408-Mediated
Control of TaTOC1 Genes Transcription Is Required for the Regulation of Heading Time in Wheat. Plant Physiol.
2016, 170, 1578–1594. [CrossRef]

100. Liu, G.; Zhao, Y.; Gowda, M.; Longin, C.F.H.; Reif, J.C.; Mette, M.F. Predicting hybrid performances for
quality traits through genomic-assisted approaches in central European wheat. PLoS ONE 2016, 11, e0158635.
[CrossRef] [PubMed]

http://dx.doi.org/10.1534/genetics.107.077297
http://dx.doi.org/10.1007/s00122-002-1111-1
http://dx.doi.org/10.1111/j.1439-0523.1996.tb00925.x
http://dx.doi.org/10.1007/s001220050948
http://dx.doi.org/10.1111/j.1745-4557.2007.00133.x
http://dx.doi.org/10.1016/j.jcs.2010.03.010
http://dx.doi.org/10.1094/CFW-52-5-0273
http://dx.doi.org/10.1094/CCHEM.1999.76.6.907
http://dx.doi.org/10.1080/02571862.1995.10634353
http://dx.doi.org/10.1016/S0733-5210(09)80178-1
http://dx.doi.org/10.1007/s00122-010-1502-7
http://dx.doi.org/10.3835/plantgenome2017.05.0038
http://dx.doi.org/10.1007/3-540-53260-9_7
http://dx.doi.org/10.1007/s11103-013-0101-9
http://dx.doi.org/10.1104/pp.15.01216
http://dx.doi.org/10.1371/journal.pone.0158635
http://www.ncbi.nlm.nih.gov/pubmed/27383841


Agronomy 2020, 10, 144 23 of 23

101. Maccaferri, M.; Zhang, J.; Bulli, P.; Abate, Z.; Chao, S.; Cantu, D.; Bossolini, E.; Chen, X.; Pumphrey, M.;
Dubcovsky, J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici)
in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 Genes Genomes Genet. 2015, 5,
449–465. [CrossRef]

102. Liu, W.; Maccaferri, M.; Rynearson, S.; Letta, T.; Zegeye, H.; Tuberosa, R.; Chen, X.; Pumphrey, M. Novel
Sources of Stripe Rust Resistance Identified by Genome-Wide Association Mapping in Ethiopian Durum
Wheat (Triticum turgidum ssp. durum). Front. Plant Sci. 2017, 8, 774. [CrossRef] [PubMed]

103. Godoy, J.G.; Rynearson, S.; Chen, X.; Pumphrey, M. Genome-Wide Association Mapping of Loci for
Resistance to Stripe Rust in North American Elite Spring Wheat Germplasm. Phytopathology 2018, 108,
234–245. [CrossRef]

104. Liu, W.; Naruoka, Y.; Miller, K.; Garland-Campbell, K.A.; Carter, A.H. Characterizing and Validating Stripe
Rust Resistance Loci in US Pacific Northwest Winter Wheat Accessions (Triticum aestivum L.) by Genome-wide
Association and Linkage Mapping. Plant Genome 2018, 11. [CrossRef]

105. Lemoine, R. Sucrose transporters in plants: Update on function and structure. Biochim. Biophys. Acta 1999,
1465, 246–262. [CrossRef]

106. Koch, K.E. Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mole Biol.
1996, 47, 509–540. [CrossRef]

107. Smeekens, S.; Rook, F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol 1997,
115, 7–13. [CrossRef]

108. Sun, X.-Y.; Wu, K.; Zhao, Y.; Kong, F.-M.; Han, G.-Z.; Jiang, H.-M.; Huang, X.-J.; Li, R.-J.; Wang, H.-G.; Li, S.-S.
QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 2008, 165,
615–624. [CrossRef]

109. Patil, R.M.; Tamhankar, S.A.; Oak, M.D.; Raut, A.L.; Honrao, B.K.; Rao, V.S.; Misra, S.C. Mapping of QTL for
agronomic traits and kernel characters in durum wheat (Triticum durum Desf.). Euphytica 2013, 190, 117–129.
[CrossRef]

110. Cui, F.; Fan, X.; Chen, M.; Zhang, N.; Zhao, C.; Zhang, W.; Han, J.; Ji, J.; Zhao, X.; Yang, L.; et al. QTL detection
for wheat kernel size and quality and the responses of these traits to low nitrogen stress. Theor. Appl. Genet.
2016, 129, 469–484. [CrossRef] [PubMed]

111. Juliana, P.; Poland, J.A.; Huerta-Espino, J.; Shrestha, S.; Crossa, J.; Crespo-Herrera, L.; Henrique Toledo, F.;
Govidan, V.; Mondal, S.; Kumar, U.; et al. Improving grain yield, stress resilience and quality of bread wheat
using large-scale genomics. Nat. Genet. 2019. [CrossRef] [PubMed]

112. Hu, C.H.; Wei, X.Y.; Yuan, B.; Yao, L.B.; Ma, T.T.; Zhang, P.P.; Wang, X.; Wang, P.Q.; Liu, W.T.; Li, W.Q.; et al.
Genome-Wide Identification and Functional Analysis of NADPH Oxidase Family Genes in Wheat During
Development and Environmental Stress Responses. Front. Plant Sci. 2018, 9, 906. [CrossRef] [PubMed]

113. Kaya, H.; Nakajima, R.; Iwano, M.; Kanaoka, M.M.; Kimura, S.; Takeda, S.; Kawarazaki, T.; Senzaki, E.;
Hamamura, Y.; Higashiyama, T.; et al. Ca2+-activated reactive oxygen species production by Arabidopsis
RbohH and RbohJ is essential for proper pollen tube tip growth. Plant Cell 2014, 26, 1069–1080. [CrossRef]

114. Gupta, D.K.; Pena, L.B.; Romero-Puertas, M.C.; Hernández, A.; Inouhe, M.; Sandalio, L.M. NADPH oxidases
differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity. Plant Cell Environ.
2017, 40, 509–526. [CrossRef]

115. Fu, W.; Shen, Y.; Hao, J.; Wu, J.; Ke, L.; Wu, C.; Huang, K.; Luo, B.; Xu, M.; Cheng, X.; et al. Acyl-CoA
N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton.
Sci. Rep. 2015, 5, 11790. [CrossRef]

116. Sui, N.; Li, M.; Meng, Q.-W.; Tian, J.-C.; Zhao, S.-J. Photosynthetic Characteristics of a Super High Yield
Cultivar of Winter Wheat During Late Growth Period. Agric. Sci. China 2010, 9, 346–354. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1534/g3.114.014563
http://dx.doi.org/10.3389/fpls.2017.00774
http://www.ncbi.nlm.nih.gov/pubmed/28553306
http://dx.doi.org/10.1094/PHYTO-06-17-0195-R
http://dx.doi.org/10.3835/plantgenome2017.10.0087
http://dx.doi.org/10.1016/S0005-2736(00)00142-5
http://dx.doi.org/10.1146/annurev.arplant.47.1.509
http://dx.doi.org/10.1104/pp.115.1.7
http://dx.doi.org/10.1007/s10681-008-9794-2
http://dx.doi.org/10.1007/s10681-012-0785-y
http://dx.doi.org/10.1007/s00122-015-2641-7
http://www.ncbi.nlm.nih.gov/pubmed/26660466
http://dx.doi.org/10.1038/s41588-019-0496-6
http://www.ncbi.nlm.nih.gov/pubmed/31548720
http://dx.doi.org/10.3389/fpls.2018.00906
http://www.ncbi.nlm.nih.gov/pubmed/30083172
http://dx.doi.org/10.1105/tpc.113.120642
http://dx.doi.org/10.1111/pce.12711
http://dx.doi.org/10.1038/srep11790
http://dx.doi.org/10.1016/S1671-2927(09)60103-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Material and Methods 
	Plant Material, Phenotyping and Genotyping 
	Phenotypic Data 
	Population Structure and Linkage Disequilibrium 
	Association Mapping (AM) 

	Results 
	Phenotypic Assessment 
	Population Structure and Linkage Disequilibrium 
	AM Analysis 
	Candidate Genes Analysis 

	Discussion 
	References

