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A B S T R A C T

Viral diseases are responsible for high rates of mortality and subsequent economic losses in modern aquaculture.
The nervous necrosis virus (NNV) produces viral encephalopathy and retinopathy (VER), which affects the fish
central nervous system. It is considered one of the most serious viral diseases in marine aquaculture, the
European sea bass (Dicentrarchus labrax) being amongst the most susceptible. We have evaluated the European
sea bass brain derived cell line (DLB-1) susceptibility to NNV genotypes and evaluated its transcriptomic profile.
DLB-1 cells supported NNV gene transcription and replication since strains belonging to the four NNV genotypes
produce cytopathic effects. Afterwards, DLB-1 cells were infected with an RGNNV strain, the one which showed
the highest replication, for 12 and 72 h and an RNA-seq analysis was performed to identify potential genes
involved in the host-NNV interactions. Differential expression analysis showed the up-regulation of many genes
related to immunity, heat-shock proteins or apoptosis but not to proteasome or autophagy processes. These data
suggest that the immune response, mainly the interferon (IFN) pathway, is not powerful enough to abrogate the
infection, and cells finally suffer stress and die by apoptosis liberating infective particles. GO enrichment also
revealed, for the first time, the down-regulation of terms related to brain/neuron biology indicating molecular
mechanisms causing the pathogenic effect of NNV. This study opens the way to understand key elements in sea
bass brain and NNV interactions.

1. Introduction

Nervous necrosis virus (NNV), a member of the Family Nodaviridae,
Genus Betanodavirus, which affects more than 130 marine and fresh-
water fish species, is one of the most devastating marine fish viruses
worldwide and a serious economic threat to aquaculture [1]. NNV is a
naked, icosahedral virus of 25–30 nm, composed of 2 positive single-
stranded RNA segments, RNA1 and RNA2, which are capped but not
polyadenylated. The virus infects cells from the brain, spinal cord and
retina causing viral encephalopathy and retinopathy (VER) leading to
mortality rates of up to 100% in many fresh and marine water fish
species [2]. NNV strains are currently classified in four different gen-
otypes: striped jack nervous necrosis virus (SJNNV), tiger puffer ner-
vous necrosis virus (TPNNV), barfin flounder nervous necrosis virus
(BFNNV) and red-spotted grouper nervous necrosis virus (RGNNV) [3].

Since the first isolation of NNV in the SSN-1 cell line from Channa
striatus [4] and subsequent setup of its E−11 cell line clone [5], other
fish cell lines have been reported to support NNV replication. Regarding
very susceptible fish species such as groupers (Epinephelus spp.), the GF-
1 cell line derived from fins [6] has been one of the most used for NNV
infections.

Several aspects of NNV-host interaction have been discovered using
fish cell lines, namely SSN-1 and GF-1 cells. Focusing on the cell
membrane, it has been reported that NNV particles interact with N-
glycosylated receptors rich in sialic acid in SNN-1 cells or with the heat-
shock cognate protein 70 (HSC70), belonging to the heat shock protein
(HSP) family, in GF-1 cells [7,8]. In addition, it was suggested that NNV
entered the cell via the spherical pit and membrane ruffling leading to
both micro- and macro-pinocytosis pathways [7], though more recently
it has been documented that NNV virus like particles (VLP) entered into
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susceptible cells by clathrin-mediated endocytosis [8]. Once inside the
cell, the virus starts its replication by rendering the host machinery to
its own benefit. At early infection stages, RNA1 produces the RNA-

Fig. 1. Nodavirus replicates in the DLB-1 cell line and produces cytopathic ef-
fect. A-D. Phase contrast microscope images from DLB-1 cultures incubated at
25 °C with RGNNV genotype: mock-infected (A), 24 h (B), 72 h (C) or 96 h (D).
Bars correspond to 100 μm. E. Transcription of viral RNA-dependent RNA
polymerase (rdrp) and capsid (cp) genes in DLB-1 cultures after 12 or 72 h of
infection. Bars represent the relative gene expression mean ± SEM (n=3 re-
plicates).

Table 1
DLB-1 susceptibility to the four Betanodavirus genotypes.

Genotype Strain Cell culture at 20 °C Cell culture at 25 °C

CPE RNA copy numberb CPE RNA copy numberd Titere

RGNNV SGWak97 −/−a 4 ± 0.14/4.25 ± 0.1 +/+c 5.51 ± 0.11/6.64 ± 0.15 4 ± 0.25/5.5 ± 0
SJNNV SJNag97 −/− 3.84 ± 0.16/4.09 ± 0.11 +/+ 5.29 ± 0.14/6.37 ± 0.08 3.75 ± 0.14/5 ± 0.14
BFNNV JFIwa98 −/− 4.03 ± 0.12/4.35 ± 0.14 +/+ 5.12 ± 0.16/6.26 ± 0.1 3.75 ± 0.14/5 ± 0.14
TPNNV TPKag93 −/− 3.97 ± 0.2/4.3 ± 0.16 +/+ 4.85 ± 0.14/6.11 ± 0.12 3.25 ± 0.25/4.75 ± 0.14
RGNNV/SJNNV SpSs-IAusc160.03 −/− 3.92 ± 0.11/4.21 ± 0.09 +/+ 5.37 ± 0.12/6.54 ± 0.09 3.75 ± 0.14/5.25 ± 0

a, no cytopathic effect (CPE) observed in the first inoculation or after subcultivation on 25 cm2
flasks; b, Log10(mean RNA1 copies/ml) and standard deviation

detected on the first culture/subculture; c, observation of cytopathic effect after first culture/subculture; d, Log10(mean RNA1 copies/ml) and standard deviation
detected on the first culture/subculture e, Log10(mean TCID50/ml) and standard deviation on the first culture/subculture.

Fig. 2. Differentially expressed genes (DEGs) in DLB-1 cells upon NNV infec-
tion. A. Bar plots showing the number of up-regulated and down-regulated
genes in DLB-1 cells after 12 or 72 h of NNV infection. Venn diagrams of up-
regulated (B) and down-regulated (C) genes.
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dependent polymerase (RdRp) but also two other proteins in the sub-
genomic RNA3 fragment, B1 and B2, which are mainly involved in viral
cycle regulation and do not form part of the virion [9]. Thus, early
production of B1 has anti-necrotic effects on host cells [10] and arrests
them in the G1/S cycle phase [11] increasing the cellular shelf-life. On
the contrary, the B2 protein acts by inhibiting the interfering RNA
protection system from the cells [12], induces the production of re-
active oxygen species (ROS) [13] and favours both apoptosis and ne-
crosis cell death [14,15]. Although further functional studies are ne-
cessary to know the precise mechanisms behind NNV-fish cell
interactions, the use of massive transcriptomic techniques is throwing
some light onto this issue. Thus, RGNNV infection either in vitro or in
vivo resulted in the differential expression of genes (DEG) related to the
retinoic acid-inducible gene I (RIG-I) like receptors, interferon, apop-
tosis, oxidative phosphorylation, PI3K-Akt and MAPK signalling or
endoplasmic reticulum stress among others [16–20].

Unfortunately, although several brain cell lines derived from dif-
ferent fish species have been obtained [21–26], reduced information is
available at either transcriptional or functional levels in target tissues or
derived-cell lines. These studies could represent valuable tools to un-
derstand virus neurotropism and actions on the central nervous system.
Therefore, in this study we have evaluated the capacity of the DLB-
1 cell line, derived from European sea bass (Dicentrarchus labrax) brain
[27], to support NNV replication and also analysed their transcriptome
by means of the RNA-seq platform. Results will be discussed to throw
some light on NNV-brain cells interaction and pathogenesis.

2. Materials and methods

2.1. DLB-1 cell line and nodavirus

The DLB-1 cell line obtained from the European sea bass brain was

Fig. 3. Fold change of the 25 top up-regulated and down-regulated genes in the European sea bass DLB-1 cells after NNV infection.
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used [27]. Cell monolayers were grown at 25 °C in L-15 Leibovitz
medium containing 0.16% NaCl, 15% foetal bovine serum (FBS),
20 mM HEPES, 2mM glutamine, penicillin (100 IU/ml) and strepto-
mycin (100 μg/ml) and subcultured by trypsinization every week.

Betanodavirus strains belonging to each of the four recognized
genotypes as well as a reassortant strain were tested: SJNag97 (SJNNV),
SGWak97 (RGNNV), JFIwa98 (BFNNV), TPKag93 (TPNNV) and SpSs-
IAusc160.03 (RGNNV/SJNNV) were used. Viruses were propagated
using E−11 cell cultures [5]. Cell monolayers were grown in L-15
medium containing 5% FBS, penicillin (100 IU/ml) and streptomycin
(100 μg/ml). Inoculated cells were incubated at 25 °C up to a maximum
of 7 days. When the cytopathic effect (CPE) became extensive, culture
media were harvested and clarified by centrifugation at 3000 g for
15min at 4 °C and stored at −80 °C. Virus titration was conducted on
monolayers of E−11 cells in 96-well plates using serial 10-fold dilu-
tions in triplicate. Plates were incubated for ten days at 25 °C. The 50%
tissue culture infective dose (TCID50/mL) was then calculated [28].

2.2. DLB-1 cells susceptibility to nodavirus

DLB-1 cells grown on 25 cm2-flasks were inoculated by duplicate
with the NNV strains at a multiplicity of infection (MOI) of 0.1. Virus
samples were adsorbed at room temperature for 1 h, then the inoculum
was removed and fresh medium was added to the cells. Infected flasks
were incubated at either 20 or 25 °C and examined daily for the pre-
sence of the cytopathic effect (CPE). After 5–6 days, when the CPE was
extensive, the supernatant from these cultures was collected and used to
infect new flasks. The cultures showing no CPE were also subcultured
by inoculating 0.1ml of the scraped cell suspension onto new cultures.
The subcultivation was terminated after 5 days, when complete de-
struction was observed in most of the infected cultures, at 25 °C and
after 10 days at 20 °C. Viral titration was performed in E−11 cells using
48-well plates as described above.

To determine the virus yield produced from the DLB-1 cell line, viral
suspensions (crude virus) obtained from the flasks were subjected to
RT-qPCR and viral titration. The infected cell cultures with no CPE were

Fig. 4. Validation of the RNA-seq data by means of the qPCR. A. Bar plot showing the fold change in the expression of selected genes in DLB-1 cells after 12 or 72 of
NNV infection compared to control cells as determined by qPCR or RNA-seq. B. Plot represents the mean value for selected genes in each group. Data were fitted by
linear regression and adjusting quality determined. For A and B plots, RNA-seq was conducted using a pool of 3 samples whilst the qPCR was done on the 3 individual
samples. qPCR data are presented as the mean ± SEM (n=3 replicates).
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also subjected to RT-qPCR. To do this, RNA was extracted from 200 μl
from both CPE-positive and -negative cultures (crude virus or scrapped
cell suspension, respectively) using the EZNA Total RNA I kit (Omega
Biotek) in accordance with the supplier's protocol. Synthesis of com-
plementary DNA (cDNA) was performed by mixing the viral RNA with
random primers (Promega) and following the Superscript IV reverse
transcriptase guidelines (Invitrogen). For quantitative real-time PCR
(qPCR), reactions were processed with 2 μl of cDNA samples in 20 μl
final volume using iQTMSYBR® Green Supermix (Bio-Rad) and 200 nM
of each primer SnodR1 F/R [29]. All samples were tested in triplicate. A
10-fold dilution series containing 107–101 copies of a plasmid DNA
containing the full-length cDNA sequence of SpSs-IAusc 160.03 RNA1
was used to create a standard curve.

2.3. RNA-seq study

2.3.1. NNV infection
DLB-1 cells were seeded in 6-well plates and inoculated with the

betanodavirus SGWak97 strain in triplicate as above. 0 h infected cells

were used as controls. After 12 or 72 h (when the CPE was extensive) of
incubation at 25 °C, cells were recovered and the TRIzol LS reagent
(Invitrogen) added.

2.3.2. RNA isolation
Total RNA was isolated using the PureLink® RNA Mini Kit (Life

Technologies) with on-column DNase treatment according to the
manufacturer's instructions. The concentration and the quality of the
RNA were analyzed using a Nanodrop ND1000 (Nanodrop
Technologies) and Agilent 2100 Bioanalyzer (Agilent Technologies).

2.3.3. Stranded mRNA library preparation and sequencing
Total RNA from triplicate samples was equally pooled and used to

prepare the libraries using the TruSeq® Stranded mRNA LT Sample Prep
Kit (Illumina Inc.) according to manufacturer's protocol. After poly-A
mRNA enrichment, fragmentation, cDNA synthesis and ligation, the
final library was constructed and validated on an Agilent 2100
Bioanalyzer with the DNA 7500 assay. Each library was then sequenced
using TruSeq SBS Kit v3-HS (2x76bp length) on HiSeq2000 (Illumina)
following the manufacturer's protocol and analysed as elsewhere [30].

2.3.4. RNA-seq data processing and differential expression analysis
RNA-seq paired-end reads were mapped against the DicLab as-

sembly [30] with STAR [31] and genes were quantified with RSEM [32]
using DicLab annotation [30]. A Fisher exact test was applied for the
detection of differential expression between time points (12 or 72 h
NNV infected vs 0 h or control). Genes following these criteria were
filtered and considered significant DEGs: Δcpm>5 or < -5, FDR (false
discovery rate) < 5% and absolute FC (fold change) > 2 or<0.5.
Gene ontology enrichment analysis of biological processes was per-
formed with GOstats [33]. Protein-protein interaction networks were
built up with the STRING database (https://string-db.org/).

2.4. Validation of RNA-seq data with qPCR

We evaluated the expression of selected genes using qPCR and the
2−ΔCT method [34] to validate the RNA-seq data as previously [30]. To
this end, individual total RNA from triplicates (not pooled) was used to
generate the cDNA using the SuperScript III™ RNAse He Reverse
Transcriptase (Invitrogen) and random hexamers (Invitrogen). qPCR
was carried out with SYBR Green PCR Core Reagents (Applied Biosys-
tems) in an ABI PRISM 7500 instrument (Applied Biosystems). To
normalize the mRNA content the transcription of the house-keeping
elongation factor 1-alpha (ef1a), ribosomal protein L13 alpha(l13a) and
tubulin alpha (tuba) was determined and expressed as 2−ΔCt, where ΔCt
is determined by subtracting the house-keeping genes Ct value from the
target Ct. The primers used are shown in Supplementary Table 1. Ne-
gative samples were also included.

3. Results

3.1. All NNV genotypes replicate in the DLB-1 cell line

Extensive CPE, after 4 days, to total destruction (after 6 days) was
observed in the DLB-1 cell cultures infected with the four NNV strains
incubated at 25 °C as well as NNV gene expression (Fig. 1, Table 1).
However, at 20 °C neither CPE was observed in the cultures incubated
nor qPCR data supported viral replication (Table 1). No statistical dif-
ferences among NNV genotypes were observed regarding viral loads at
25 °C. However, as RGNNV showed high viral loads at 25 °C and con-
sidering that European sea bass is naturally susceptible to this geno-
type, we incubated the DBL-1 cell culture with the SGWak97 strain for
12 or 72 h and used for the RNA-seq experiments. Besides the micro-
scopic observation of the cultures, NNV transcription was confirmed in
these samples by the detection of both cp and rdrp genes, which were
up-regulated from 12 to 72 h (Fig. 1E).

Fig. 5. RNA-seq differential expression of selected immune genes in the
European sea bass DLB-1 cells after 12 or 72 h of NNV infection compared with
control or uninfected cells. Only significant DEGs are included.
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3.2. Differential gene expression in DLB-1 cells upon NNV infection

The RNA-seq analysis resulted in 1.12–1.63× 108 reads, more than
95% of which were unique sequences and lower than 8.89% unmapped
(Supplementary Table 2). These reads were assembled and annotated in
a total of 13,025 genes which were assigned to a functional category
[30]. Gene ontologies were determined and used to extract more re-
levant and applicable conclusions of the differential expression analysis
by gene ontology enrichment.

After evaluation of DEGs (Supplementary Table 3), we obtained
1645 DEGs after 12 h of infection with respect to controls with very
similar number of genes up- and down-regulated (834 and 810, re-
spectively) (Fig. 2A). On the other hand, 72 h after infection, the
number of DEGs was increased up to 2,925, of which 1053 were up-
regulated and 1872 down-regulated. Interestingly, amongst the up- or
down-regulated genes at the two sampling times most of them corre-
sponded to unique genes at 72 h of infection (Fig. 2B and C). We se-
lected the top 25 most DE genes at 72 h of infection and compared them
to the same at 12 h of infection resulting higher regulations at 72 h
(Fig. 3). Among the most up-regulated genes we found genes related to
protein stress (HSP70), immunity (ISG15, TNFRSF9, CD163, DPP4,
SWAP70 or IRF7), vesicle transport (ARF4A, ARL5B), proteasome
(USP53), cytoskeleton (MAP6) or metabolism (GLUD1, CDD, HMOX1)
while most of the down-regulated genes belong to cellular metabolism,
cell cycle arrest and cytoskeleton. In addition, though we made the
RNA-seq analysis with pooled RNA samples, we tested the individual
RNA samples at each infection time by qPCR for some selected genes.
Data were plotted and the regression analysis revealed an R2= 0.99 at
12 h and an R2=0.91 at 72 h demonstrating very good correlation

between pooled RNA-seq and individual qPCR data (Fig. 4).

3.3. NNV infection induces immunity, cellular stress and apoptosis

A GO enrichment analysis was also performed with these up- or
down-regulated genes to ascertain their categorization in the biological
process (Supplementary Table 4). In all cases, the most represented GO
terms are associated with cellular and/or metabolic processes. Apart
from the general cellular metabolism, we will focus on genes related to
immunity (mainly interferon), cellular response to stress and cell death
since NNV infection results in DLB-1 cell death causing extensive CPE.
Regarding the antiviral immune response, we have identified some
important genes in DLB-1 cells upon NNV infection such as, but not
limited to, Toll-like receptors (encoding TLR5m, TLR8, TLR13 and
TLR18), the IFN pathway (encoding IRF2, IRF3, IRF6, IRF7, IRF8, Vi-
perin, Mx, PKR, IFI44, IFI17/ISG15, IFIT2, IFI35, IFI30 or IFIH1/
MDA5), clusters of differentiation (CD163, CD93, CD22, CD63, CD34A,
CD9, CD99, CD226, CD200 or CD44), tumor necrosis factor and related
proteins (TRAF2, TRAF3, TRAF7, TNFRSF9, TNFRSF21, TNFSF10 or
Fas), suppressor of cytokine signalling (SOCS1 or SOCS3B), interleukins
and their receptors (IL1B, IRAK3, IRAK4, IL1R, IL17R, IL31R or IL22R),
genes related to the cytotoxic cells and macrophages (CRTAM, GZMB,
PRF1, MPEG1, or MRC1), transcription factors (related to NF-kB,
STAT6 and STA1-1) as well as major histocompatibility (MHC) I and II
genes (Supplementary Table 3, Fig. 5). Among the most up-regulated
genes are CD93, CD163, CD209, TNFRSF9, IFI44, IRF7 or viperin while
the most down-regulated genes are CD44, CD248A, TNFSF10L, PKR1 or
NFKBIZ.

Regarding the response to stress, we identified 23 genes from the

Table 2
Genes related to the heat-shock protein family identified in the DLB-1 cell line infected with NNV. Classification based on HUGO Gene Nomenclature Committee
(HGNC). FC, fold change respect to the control; FDR, false discovery rate; *, undetected in control but expressed in NNV-infected.

Approved Name Approved Symbol Synonyms Acc. Number FC 12 h FC 72 h FDR 12 h FDR 72 h

HSP70 family
Heat-shock protein family A (Hsp70) member

1A
HSPA1A HSPA1, HSP70-1 DLAgn_00212020 1064.58 2587.52 4E-05 1E-04

Heat-shock protein family A (Hsp70) member 4 HSPA4 HS24/P52, HSPH2 DLAgn_00045090 3.36 3.70 5E-05 1E-04
Heat-shock protein family A (Hsp70) member 5 HSPA5 GRP78, BiP DLAgn_00131720 30.32 74.34 2E-05 7E-05
Heat-shock protein family A (Hsp70) member 8 HSPA8 HSPA10, HSC71, HSC70, HSP73 DLAgn_00033880 5.14 9.76 4E-05 1E-04
Heat-shock protein family A (Hsp70) member 9 HSPA9 HSPA9B, GRP75, PBP74, mot-2, mthsp75 DLAgn_00106140 3.43 5.34 9E-05 2E-04
Heat-shock protein family A (Hsp70) member

12A
HSPA12A FLJ13874, KIAA0417 DLAgn_00018000 1.13 0.28 6E-01 5E-05

Heat-shock protein family A (Hsp70) member
13

HSPA13 STCH DLAgn_00030090 1.74 2.04 1E-05 5E-05

Heat-shock protein family A (Hsp70) member
14

HSPA14 HSP70-4, HSP70L1 DLAgn_00205090 1.19 2.21 4E-04 6E-05

HSP90 family
Heat-shock protein 90 alpha family class A

member 1
HSP90AA1 HSPC1, HSPCA, Hsp89, Hsp90, FLJ31884,

HSP90N
DLAgn_00068070 22.78 34.10 8E-05 2E-04

Heat-shock protein 90 alpha family class B
member 1

HSP90AB1 HSPC2, HSPCB DLAgn_00169960 1.29 1.16 8E-05 2E-04

Heat-shock protein 90 beta family member 1 HSP90B1 HSP90BA, TRA1, GP96, GRP94 DLAgn_00070720 1.70 4.32 2E-04 6E-04
TNF receptor associated protein 1 TRAP1 HSP75. HSP90L DLAgn_00189970 1.19 1.55 3E-05 8E-05
Small HSP family
Heat-shock protein family B (small) member 1 HSPB1 HSP27, HSP28, Hs.76067, Hsp25, CMT2F DLAgn_00039710 12.67 18.57 8E-06 5E-05
Heat-shock protein family B (small) member 5 HSPB5 crystallin alpha B, CRYAB; CRYA2 DLAgn_00001610 1.32 4.55 2E-05 1E-09
Heat-shock protein family B (small) member 6 HSPB6 DLAgn_00064530 1.01 1.98 3E-02 5E-05
Heat-shock protein family B (small) member 7 HSPB7 FLJ32389, Hsp20, PPP1R91 DLAgn_00029000 53.28 1.18 7E-06 6E-01
Heat-shock protein family B (small) member 8 HSPB8 cvHSP DLAgn_00122020 1.36 3.70 2E-05 6E-05
Heat-shock protein family B (small) member 11 HSPB11 C1orf41, HSPCO34, PP25, IFT25 DLAgn_00117650 0.84 1.42 2E-05 2E-02
Heat-shock protein 30 kDa HSP30 DLAgn_00219140 * * 7E7 5E5
Chaperonins
Heat-shock protein family D (Hsp60) member 1 HSPD1 SPG13, GroEL, HSP60 DLAgn_00054840 2.31 5.21 5E-05 1E-04
Heat-shock protein family E (Hsp10) member 1 HSPE1 CPN10, GroES, HSP10, EPF DLAgn_00054830 2.15 6.42 3E-05 8E-05
DNAJ (HSP40) family
DnaJ Heat-shock protein family (Hsp40)

member A1
DNAJA1 HSJ2 DLAgn_00182280 2.34 2.35 1E-05 5E-05

DnaJ Heat-shock protein family (Hsp40)
member C4

DNAJC4 HSPF2 DLAgn_00108040 0.93 1.91 3E-05 2E-04
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heat-shock protein families (HSP70, HSP90, small HSP, chaperonins
and DNAJ families) (Table 2), almost all of them up-regulated after
NNV infection as well as 29 tripartite motif (TRIM) family of proteins,
related to autophagy, apoptosis, immunity or carcinogenesis, that are
involved in the proteasome biology. Among those genes in the GO term
of cell death, many genes were identified in the KEGG apoptosis
pathway (Fig. 6). Thus, genes encoding proteins that favor apoptosis
cell death, such as Fas, TRAF2, AIP, Bid, Bax, CASP3, CASP6, CASP7,
CASP9, CASP10, CytC, DIABLO or Apaf-1 were shown to be up-regu-
lated by NNV infection, pointing to this cell death mechanism as the
most important in DLB-1 cells. Genes related to immunity, response
stress and apoptosis were divided into up- and down-regulated to
evaluate protein-protein interaction networks by STRING. Data show
tight clusters in the apoptosis-, IFN- and HSP-related proteins identified
after NNV infection (Fig. 7).

3.4. NNV infection down-regulates GO terms associated to brain and
neuronal biology

The DLB-1 cell line was ascribed to a glial origin by the gene ex-
pression or glial markers (gfap and coro1a) and by the lack of neuronal
ones (map2 and rbfox3) [27]. However, with this more extensive tran-
scriptomic study, markers to both of them were clearly identified
(nestin, coro1a, map2, rbfox3, cd86, cd40, synaptophysin or stathmin
among others) (Supplementary Table 3).

We further investigated the GO terms related to brain and neuronal
biology in fish after NNV infection for the first time. To this regard, very
few GO terms (with a very low number of counts) were found sig-
nificantly altered after 12 h of infection or up-regulated at 72 h of in-
fection (Supplementary Table 4). However, in DLB-1 cells infected with

NNV for 72 h, GO enrichment analysis detected significant down-reg-
ulation of processes such as neurogenesis (87 terms), neuron differ-
entiation (77 terms), brain development (53 terms), regulation of
neuron projection development (13 terms), hindbrain development (17
terms), neural nucleus development (8 terms), neural tube formation (7
terms) and some other minor represented GO terms (Supplementary
Table 4). These transcripts were identified and protein-protein inter-
actions showed a tight interaction among some of the proteins after
STRING analysis (Fig. 8). They were mainly related to cytoskeleton or
vesicle trafficking.

4. Discussion

Nodavirus results in serious outbreaks both in wild and cultured fish
species and its distribution and animal susceptibility is continuously
expanding. To further research NNV characterization, more tools for its
diagnostics, prophylaxis and treatment, at both research and applied
levels, are necessary. Thus, the generation of cell lines susceptible to
NNV infections are valuable tools that fulfil all these applications.
Although several cell lines supporting NNV infection have been gen-
erated from fish tissues, very few are available from the actual target
tissues, namely the brain and retina. We have characterized a brain cell
line derived from the European sea bass, DLB-1 [27], for its capacity to
support NNV replication. Although DLB-1 cells were identified as glial
cells, the transcriptomic profile described herein suggests they are
neuron stem cells, as documented for other fish brain derived cell lines
[35,36]. Previous studies have demonstrated that fish cell lines derived
from fish brain tissues [21–26] are susceptible to RGNNV genotypes,
the only one tested. Our results clearly demonstrate that all the NNV
genotypes are able to infect the DLB-1 cell line and produce CPE at

Fig. 6. Identification and regulation of genes related to the KEGG apoptotic pathway (KEGG hsa04210 pathway) in the DLB-1 cells infected with NNV.
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25 °C, although the RGNNV strain replicated to the highest extent. The
time-course infection results in the appearance of CPE around 72 h of
infection as established for these viruses in other cell lines. Un-
expectedly, both BFNNV and TPNNV strains seemed not to replicate in
DBL-1 cell line at 20 °C, which is considered their optimal growth
temperature in E−11 cell line (Iwamoto et al., 2003). Further studies
will be necessary to establish the reasons of the different response to
temperature in both cell lines. Although this study has used the re-
ference RGNNV isolate SGWak97 more studies should be performed to
ascertain the benefits of this cell line for virological studies and to
further characterize host-NNV interactions in brain tissue with other
isolates.

In the last decade the evaluation of host-NNV interactions by -omic
technologies has proven to be very useful at gene level, leading to the
description of pivotal transcripts involved in fish cell-NNV interactions
[16–20]. Top up-regulated genes in the European sea bass brain DLB-
1 cell line infected with NNV was the heat-shock protein 70 (HSP70).
Heat-shock proteins, called molecular chaperons, are a heterogeneous
group of proteins induced under stress situations, leading to protein
denaturation, such as heat, nutrient deficiency, oxidative stress, pollu-
tion, inflammatory diseases and viral or bacterial infections [37]. Be-
sides HSP70, many other members of the HSP family were also sig-
nificantly up-regulated upon NNV infection. Similarly, other studies
have also identified the implication of HSP-members upon NNV chal-
lenge such as HSP30, HSP70 and HSP90 in either fish cell lines or brain
[18–20,38]. These proteins are involved in protein folding and trans-
location, avoiding protein denaturation and degradation of misfolded
proteins and have an important role in viral infections [39]. On the one
hand, they are involved in correct antigenic presentation by the MHC I
or II, that favors a proper immunity, and on the other they ensure a

proper formation of the viral proteins and the capsid formation, leading
to the new virus progeny to be infective. Interestingly, HSC70 was also
up-regulated in DLB-1 cells infected with NNV. This protein has been
clearly related to NNV binding and entry into fish cells, since HSC70
was detected in the cellular membrane of grouper GF-1 cell lines and
NNV entry was blocked by incubation with HSC70 antibodies [8], in a
similar way to other mammalian viruses [39]. Interestingly, some other
HSPs, such as HSP70 or glucose-regulated protein (GRP) 78/BiP,
though not its primary location site, are present in the cellular mem-
brane and involved in virus binding and entry as well as targeting the
infected cell for immune cell recognition [20,39,40]. GRPs, mainly
present in the endoplasmic reticulum (ER), are greatly involved in the
response against RNA virus, GRP78/BiP being one of the most im-
portant and first sensors of protein misfolding, whose interaction with
folded proteins acts as positive feedback for stress responses. Thus, we
detected up-regulation of GRP75, GRP94, but mainly GRP78/BiP, in
NNV-infected DLB-1 cells. This is confirmed by previous studies de-
tecting the increased expression of GRP78 upon NNV infection as well
as its interaction and co-localization with NNV CP and RdRP proteins
[19,41]. These data point to the importance of the HSPs during viral
infections and deserves further characterization to understand the host-
virus crosstalk, as well as their relationship with other affected cellular
processes, such as immunity or apoptosis.

Immune-related genes in DLB-1 cells were also up-regulated upon
NNV-infection, indicating that DLB-1 cells recognize and respond to
NNV infection, but the immune response triggered is not efficient en-
ough, because the viruses replicate and kill the cells. For example, re-
garding the IFN response against viruses, some of the key elements were
identified as DEGs in the RNA-seq analysis. Strikingly, some important
IFN genes were down-regulated by NNV infection (IFIH1/MDA5, PKR1,

Fig. 7. Protein-protein network interactions of major genes related to immunity, apoptosis and response to stress. STRING analysis for the up-regulated (A) and
down-regulated (B) genes in DLB-1 cells infected with NNV.
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IFI44, IFI30, IFIT2 or IRF2BP2) while others, although up-regulated,
were decreased during the NNV infection time (Mx, TANK, IFI35) in-
dicating a response decay. Although some of these genes have been
detected in previous studies using transcriptomic analysis [18,20,42],
the relationship between the transcription of IFN-related genes and the
viral susceptibility/resistance of fish cells is not clearly stated. Thus,
individual overexpression of genes encoding fish MDA5 [43], MAVS
[44], TBK1 [45], Mx [46] or ISG15 [47] has resulted in increased re-
sistance to NNV infections, whereas in the case of LGP2 [48], this re-
sulted in increased viral susceptibility. In addition, we demonstrated
that upon RGNNV strain infection, genes related to the IFN pathway
were induced during the infection time in the resistant fish species
gilthead seabream but generally decreased in the brain of the very
susceptible European sea bass [49], pointing to a clear lack of corre-
lation between the IFN response and effective cellular response in
susceptible fish species, which merits deeper analysis. Additionally,
regarding CD markers, CD44, CD226 and CD276 are involved in natural
killer and lymphocyte activation while CD93, CD163 or CD209 are in
endocytosis and phagocytosis processes and their expression suggest a
macrophage activation and lymphocyte reduction. This is partly con-
firmed by the increased expression of macrophage-related genes such as
SLC1, MRC1 or MARCKSL1B as well as of the IL1B, the main proin-
flammatory cytokine, and some interleukin receptors. Though there is

not much information at this respect it is known that fish infection by
virus, including NNV, induces IL1B production and activates macro-
phages at either functional or transcriptomic levels [50–52]. Interest-
ingly, though we failed to find the transcript for TNFa we found many
TNFa-related genes significantly regulated. Thus, genes coding for
TRAF2, TRAF3, and mainly TNFRSF9, are up-regulated, which might
lead to immunostimulation via NF-kB pathway. However, NF-kB seems
not to be up-regulated as suggested by the low alteration of their
regulated immune genes and the up-regulation of NFKBIAA, one of its
inhibitors. Then, TNF-related genes would be favouring the apoptosis,
the other cellular effects they mediate. In this regard, Fas, TNFAIP3,
TNFAIP8, TNFAIP8L2B and TNFAIP8L3, known positive regulators of
apoptosis are also up-regulated suggesting that this TNF pathway is
more related to apoptosis than to immunity. Taking into consideration
all these findings DLB-1 cells are infected by RGNNV and regulate genes
involved in different immune responses though further functional stu-
dies would be necessary to ascertain their role in host-NNV interactions.

As a consequence of the HSP family expression and inefficient im-
mune response, NNV replicates causing cell apoptosis, as previously
demonstrated [11,13–15,17,19,22,53]. NNV infection up-regulated
genes related to both intrinsic and extrinsic apoptosis cell death in DLB-
1 cells, leading to dysregulation in the balance of pro/anti-apoptotic
factors and the up-regulation of several caspases. The TRIM family of

Fig. 8. Protein-protein network interactions of major genes related to brain and neuron development and function found down-regulated in DLB-1 cells infected with
NNV for 72 h.
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proteins are well-known important players during disease and are in-
volved in autophagy, immunity and carcinogenesis because they act as
targeting proteins to the proteasome degradation machinery but also as
regulators of many cellular pathways [54,55]. Interestingly, though we
detected some TRIM genes, we failed to clearly detect an important up-
regulation of their expression, suggesting that proteins synthetized
during infection are kept in the right folding state, probably due to the
overexpressed HSPs, guaranteeing the proper formation of infective
NNV particles. Moreover, this could be related to the lack of autophagy
of NNV proteins, since no significant alteration of major genes involved
in autophagy, such as akt genes, was detected. Although this autophagy
has been documented for some other fish viruses [56–58], no such
observations have been documented in the case of NNV. In addition,
little up-regulation of genes encoding TRIM21, TRIM23 and TRIM25
was observed, which might be related to the immune response. For
example, TRIM23 and TRIM25 act upon several mediators of the IFN
pathway leading to its activation, though TRIM21 does the opposite
[55]. Overexpression studies of fish TRIMs have shown that TRIM8,
TRIM39 or TRIM47 increase IFN response and/or viral resistance
[59–61], though TRIM13 reduces them [62]. Thus, further studies are
needed to ascertain the interactions between different pathways and
their particular correspondence to the final cellular response or phe-
notype.

Regarding the central nervous system, the target tissue for NNV
replication and disease, none of the transcriptomic studies after NNV
infection have focused on the identification of GO terms related to brain
or neuronal biology. Interestingly, we found significant down-regula-
tions in DLB-1 cells after 72 h of infection with NNV. Most of the
transcripts identified were related to the cytoskeleton and vesicle
biology, very important pathways for neurons. For example, STRING
analysis showed interaction between Zinc finger proteins such as ZIC5,
ZIC2 or GLI2. Thus, defects in ZIC2 results in animal disease due to
abnormal brain development and neuronal behaviour [63], while its
down-regulation results in latent virus reactivation [64]. Regarding
proteins with the highest interactions, we found down-regulation of
RAC1, a member of the Rho family of GTPases, an essential player in
the neuronal cytoskeleton that regulates synaptic spines through actin
polymerization [65]. For its part, FYN is a tyrosine-protein kinase that
plays a role in many biological processes including cytoskeletal re-
modelling and neuronal migration, myelination, synaptic plasticity and
the regulation of excitatory and inhibitory receptors [66] and also acts
by regulating Rho GTPases. Other down-regulated proteins with strong
connections and key functions on neuronal biology found in DLB-1 cells
infected with NNV are EFNB2, ACTR2, PARD3, SRGAP2, LAMB1,
NCKAP1, APP, FGFR2, SEMA3A, most of them involved in cytoskeleton
and vesicle formation/transport in neurons. These data suggest that the
failure of vesicle transport upon NNV infection could be a major me-
chanism behind the pathogenic effects on the fish nervous system.
Further studies are needed to ascertain the implications of NNV infec-
tion in the brain at molecular levels.

In conclusion, the European sea bass brain DLB-1 cell line is sus-
ceptible to nodavirus replication, especially to the RGNNV genotype.
Transcriptome analysis reveals an important induction of genes related
to heat-shock protein, immunity, apoptosis, but not autophagy, while
genes related to cellular metabolism, cell cycle and cytoskeleton were
down-regulated, suggesting that the virus changes the cell machinery to
its benefit to produce infective particles. Interestingly, it is the first time
we found the down-regulation of pathways leading to a normal brain
and neuronal development and behaviour, which might explain the
pathogenic effects on the nervous system. This information describes
the valuable tool generated to understand fish-NNV interactions with
potential applicability in the field of fish aquaculture.
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