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8Instituto Espa~nol de Oceanografı́a, Centro Oceanográfico de Murcia, 30860 Puerto de Mazarrón, Murcia, Spain
9NOAA, National Marine Fisheries Service, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula, MS 39567, USA

*Corresponding author: tel: þ34 971 133 720; e-mail: patricia.reglero@ieo.es.

Reglero, P., Balbı́n, R., Abascal, F. J., Medina, A., Alvarez-Berastegui, D., Rasmuson, L., Mourre, B., Saber, S., Ortega, A., Blanco, E., de la Gándara,
F., Alemany, F. J., Ingram, G. W., Hidalgo, M. Pelagic habitat and offspring survival in the eastern stock of Atlantic bluefin tuna. – ICES Journal
of Marine Science, doi:10.1093/icesjms/fsy135.

Received 14 March 2018; revised 16 August 2018; accepted 20 August 2018.

In this manuscript, we test how an understanding of geographical variation in larval fitness in relation to temperature and habitat use could be a useful
method to improve our understanding of recruitment and develop better indices of annual recruitment. On the basis of the assumption that growth
and survival of tuna larvae are influenced by temperature, we have developed a potential larval survival index for Atlantic bluefin tuna (Thunnus thyn-
nus) by combining empirical data from egg and larval rearing experiments with temperature data from hydrodynamic models. The experiments were
designed to test the full range of temperature variability that bluefin larvae would experience in the field and provide a mechanistic understanding of
the processes driving egg and larval survival. We then developed a biological model using the temperature-related growth expressions and a size-
dependent survival function for the larvae. The biological model was applied to a time-series of spatially explicit temperature data for the western
Mediterranean from the Strait of Gibraltar to 6�E, which includes the major recognized bluefin tuna eastern stock spawning area, the Balearic Sea. Our
results show that areas with high probabilities of larval survival coincide with those that would be considered as optimal based on other data sources
(ichthyoplankton surveys, spawning female locations from commercial fisheries data, and adult tracking data). However, evidence of spawning has
been found in areas with suboptimal thermal habitats, as predicted by the model, which we discuss regarding sampling effort and salinity fronts. There
was a good match between the survival index and recruitment indices from standardized CPUE fisheries data. These results have implications for our
understanding of the recruitment process of the eastern stock of Atlantic bluefin tuna, since they suggest that the combined effects of temporal and
spatial variability of the environment drive recruitment success, which has important implications for the management of the species.
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Introduction
The environments in which fish reproduce usually provide

favourable food conditions for the larvae, suitable temperatures

for egg and larval development, and/or suitable retention areas

(Mullon et al., 2002). Given the difficulties in directly studying

both spawning and recruitment processes for many species, par-

ticularly large pelagic fish, a knowledge of the effects of environ-

mental variability on egg and larval growth and survival rates can

be used alternatively to forecast spawning locations, reproductive

output, and/or recruitment strength. Most fisheries assessment

models and much of fisheries theory is predicated on a relation-

ship between the number of spawners and the eventual recruits

that they produce. Although there is strong evidence for environ-

mentally driven recruitment (Vert-Pre et al., 2013; Szuwalski

et al., 2015), environmental information is rarely included in

stock assessments of large pelagic fish. Understanding and moni-

toring the physical and biological processes that control recruit-

ment, the ecological cornerstone of determining fish population

dynamics, is essential for improving current fisheries stock assess-

ments. Particularly, there is a need to take into account geograph-

ical variability in offspring fitness if spatial management decisions

are to be taken in the future (Berger et al., 2017).

Atlantic bluefin tuna (Thunnus thynnus) are managed by the

International Commission for the Conservation of Atlantic Tunas

(ICCAT) as two separate stocks: an eastern and a western stock.

As with most assessed fish, estimates of recruitment and the func-

tional shape of the stock–recruit relationship are major sources of

uncertainty. There is no consensus among experts on which type

of stock–recruit relationship to use, and trends in recruitment for

the two stocks have been suggested to be correlated either with

spawning biomass or environmental variability (e.g. see references

in Porch and Lauretta, 2016). For the eastern stock, the functional

form of the stock–recruit relationship remains elusive, as evi-

denced by the clear asynchronous fluctuation between spawning

biomass and recruitment at a multidecadal scale (Anonymous,

2017; Figure 1), with high spawning biomass being associated

with low recruitment events until the 1990s, low spawning bio-

mass associated with high recruitment events during the 1990–

2000s, and again high spawning biomass associated with low re-

cruitment events since 2008. On the other hand, the increasing

trend in annual recruitment from the 1970s to the early 2000s has

been related to increasing summer temperatures in the

Balearic Sea (Harford et al., 2017), which suggests a significant

environment–recruitment relationship. However, the scenario

seems to be more complex since estimates from the latest assess-

ment show that recruitment is decreasing despite the continual

warming trend (Anonymous, 2017; Figure 1). This scenario sug-

gests a potential density-dependent control at large temporal

scales that, in combination with large-scale increasing trends in

water temperature due to climate warming in the Mediterranean,

may explain long-term fluctuations in recruitment. However,

short-term variations, particularly the interannual variation that

has occurred in the last decade, challenge the hypothesis of a di-

rect thermal influence on interannual variability in recruitment

(Figure 1).

The current challenge to developing a model of the recruit-

ment dynamics of Atlantic bluefin tuna is to understand the

mechanistic influence of regional environmental drivers that link

spatial patterns of larval performance to interannual variability in

recruitment. We applied laboratory-derived, temperature-

dependent growth and survival relationships for Atlantic bluefin

tuna eggs and larvae to temperature records from the western

Mediterranean during the spawning season. We then used these

data to develop an annual index of potential larval survival in one

of the primary spawning areas of the eastern stock of Atlantic

bluefin tuna. We tested the hypothesis that thermal conditions

which promote growth and survival of Atlantic bluefin eggs and

larvae coincide with the location of a major spawning ground

around the Balearic Islands in the western Mediterranean basin.

Further, we hypothesize that these thermal conditions are associ-

ated with temporal variation in annual recruitment. We

compared our index to available indices of recruitment from

fisheries-dependent data. Our final goal was to produce

mechanistic-based knowledge that will allow scientists to include

environmental variability and its spatial trends into future stock

assessments of Atlantic bluefin tuna.

Material and methods
Study site and time-series
Atlantic bluefin tuna are managed separately as two stocks.

The eastern stock is defined as being east of the 45�W meridian

(Figure 2a). This study focuses on the western Mediterranean

portion of the eastern stock (Figure 2b). The major spawning and

breeding area for the eastern stock of Atlantic bluefin tuna

(Alemany et al., 2010; Harford et al., 2017) is the Balearic Sea, lo-

cated in the centre of the western half of the western

Mediterranean Sea (Figure 2c). The data analysed in this study

were from 2000 to 2014, the same years for which detailed moni-

toring of the spatial distribution of larvae, spawners, and tracking

data of Atlantic bluefin tuna in the western Mediterranean were

available for comparison to the model results. This time-series

includes years with variability in thermal conditions, recruitment,

and spawning-stock biomass (Figure 1).

Time-series of spatially explicit environmental data
The selection of environmental data to use in this study was based

on the ability of the available oceanographic models to reproduce

the CTD observations collected during 2000–2014. Using data

from summer 2004, 72 CTD observations (Alemany et al., 2010)

were compared with temperature and salinity fields at 5-m depth

from four different oceanographic models to test how well the

models represented the spatial variability of these variables. The

four different models include two versions of the Mediterranean

model available from the Copernicus Marine Service (CMEMS-

MED version v02 and sv03, http://marine.copernicus.eu), the

GLORYS2V1 version of MERCATOR (https://www.mercator-

ocean.fr), and the MEDAR-MEDATLAS summer climatological

values. Model data were extracted from the grid-point that con-

tained the CTD station. In this way, it was possible to construct a

time-series for each model. The four model time-series were com-

pared with the CTD observations using a Taylor diagram (Taylor,

2001). Dynamic height (DH) was calculated by vertically integrat-

ing the specific volume obtained from the CTD data, using 600 m

as the level of no motion, as described by Balbı́n et al. (2014). The

same methodology was applied to the model and climatological

data.
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Comparison of temperatures from the model data to CTD

observations indicates that both of the CMEMS-MED model ver-

sions were the best at replicating the spatial pattern of the CTD

observations (with a correlation coefficient close to 0.9 and

a centred Root-Mean-Square difference around 0.4�)
(Supplementary Figure S1). This indicates that the horizontal

structure of temperature variability was well replicated. In the

case of salinity, the MEDAR-MEDATLAS climatological values

were the most strongly correlated with the observations (with a

correlation coefficient of 0.6), while the CMEMS-MED models

present values of only around 0.4 and a centred Root-Mean-

Square difference around 0.3� (Supplementary Figure S2).

Therefore, salinity was not well represented in the models and

could not be used for calculations of the location of frontal areas.

Taylor analysis of DH showed that observations from the

MEDAR-MEDATLAS were correlated with observations, with

correlation coefficients of 0.65, and for all the other models with

correlations coefficients below 0.35 (results not shown).

Therefore, the DH of mesoscale structures was not well repre-

sented in the models, demonstrating that geostrophic currents

derived from the models were not usable for detailed calculations

of possible drift effects. As such, only temperature data were well

represented by the available models for the period of study

(2000–2014) and, therefore, only the temperature model from

CMEMS-MED was used.

We compared the average temperature between 1 and 15 June

each year from 2002 to 2014 in an area centred in the Balearic

Islands (0.5–4.5�E 38.2–40.5�N) using the CMEMS-MED model

and satellite data (L4 JPL MUR product, only available since

2002). This comparison shows that the CMEMS-MED model

replicates very well the interannual variability of temperature in

the area (Supplementary Figure S3). Therefore, the model can be

used to model the temporal and spatial variations in temperature.

Given the low capability of the model to represent salinity, we

used maps of salinity derived from field cruises to investigate the

distribution of larvae and adults relative to this variable within

the spatial coverage of the cruises centred in the area around the

Balearic Islands instead. Summer surveys carried out during

2001–2005 and 2012–2014 had enough spatial resolution to

resolve the typical regional mesoscale structures, therefore allow-

ing the identification of the location of salinity fronts, while the

area covered in 2006 and 2011 was too small (Supplementary

Figure S4). No CTD salinity data were available in 2007–2010.

Temperature data from SeaBird 911þ and SeaBird 25 CTDs were

processed using the Sea-Bird Electronics Data Processing rou-

tines, and salinity was calibrated using IAPSO standard seawater

and a Guildline 8400A salinometer (see details in Balbı́n et al.,

2014).

Geographical fitness of larval survival and annual
survival index
Simulations were conducted to analyse whether the spatio-

temporal variability of environmental variables influenced the

geographical fitness of larval survival. Specifically, we tested the

influence of the spatial and temporal temperature variability on

the survival of eggs spawned each day to flexion stage throughout

the spawning season. These simulations were conducted without

explicitly incorporating any spatial spawning strategy.

Eggs were released daily throughout the western

Mediterranean (from 6�W to 6�E). Releases were scaled using a

given probability of being released (P) estimated from fitting a

polynomial function to the gonadosomatic index of 528 females

sampled from the commercial fishery from the Strait of Gibraltar

to the Balearic Sea in the western Mediterranean during spring-

summer 2003–2014 (Reglero et al., 2018a):

P ¼ 28:3156þ 0:0024609 d2 � 7:4867e�06 d3 � 4:5819 d0:5

(1)

where P is the probability of egg release and d is the day of the

year.

Daily probability of egg release was normalized so that release

probabilities summed to 1 at the end of each spawning season.

We made two assumptions: (i) the same spawning window

applies to all years and (ii) the duration of an individual fish’s

spawning period is independent of the spawner’s body size. For

each day and position, the eggs hatched into larvae following a

Figure 1. Estimates of spawning-stock biomass in thousands of tonnes (white dots) and recruitment at age 1 in millions of fish (black dots)
from the 2017 assessment for the eastern stock of Atlantic bluefin tuna (Anonymous, 2017) and increasing average temperatures in July for
the Balearic Sea over the years [crosses and fit (temperature¼ 0.0288 year – 36.842; r2¼ 0.16; p< 0.01) as dash line].
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survival function relating hatching success, H, to temperature T

(in �C) in a temperature range between 17 and 34�C (Reglero

et al., 2018a) formulated as:

H ¼ –1:27T 2 þ 63:78T–727:98; r2 ¼ 0:92; p < 0:001

(2)

The eggs hatched into larvae with an initial average dry weight

(W0) based on measurements of recently hatched larvae in the

laboratory (W0¼ 0.018 mg DW, 60.007 s.d., n¼ 27; Reglero

et al., 2018a). Growth from hatching to the post-flexion larval

stage was modelled for each daily cohort in each spatial unit as a

function of temperature. These models were developed using the

maximum potential specific growth rates at each temperature

obtained using age–weight relationships from laboratory experi-

ments of Atlantic bluefin tuna larvae (Reglero et al., 2018a). The

maximum potential specific growth rates SGR (mg mg�1 d�1) in-

creased with temperature (T) and better fit a linear relationship

expressed as:

SGR ¼ 0:0418T–0:8355 ðr2 ¼ 0:84; p < 0:001Þ (3)

The applicable range of temperature on which the relationship

is based is 22–29�C (Reglero et al., 2018a).

Mortality (M) was modelled as a function of larval size (W)

following the expression (McGurk, 1986 cited in Reglero et al.,

2018a):

M ¼ 0:00022W�0:85 (4)

Equations (1)–(4) are used to compute daily larval growth and

mortality for the time period from hatching until the larvae reach

the flexion stage. This assigns a survival probability to each posi-

tion and initial day. To visualize the process, the accumulated

survival probability for each position was calculated as the time

integral of the survival probabilities for each initial day. Using dif-

ferent areas, mean values from these maps were calculated for

interannual comparison.

Larval and adult spatial data
Annual geographical larval fitness from our model was compared

with the observed spatial distribution of larvae and adult fish in

the western Mediterranean. Atlantic bluefin tuna larvae were

sampled on cruises conducted during spring and summer during

2001–2014 in an area that covered 180� 220 miles around the

Balearic Islands with a 10-nautical mile separation between sta-

tions (Alemany et al., 2010). During 2001–2005, larvae were col-

lected using Bongo nets with a mouth diameter of 60 cm

equipped with 333-mm meshes down to 70 m depth, whereas

from 2006 onward, larvae were collected using Bongo nets with a

mouth diameter of 90 cm equipped with 500-mm meshes down to

30 m depth (see Alemany et al., 2010; Ingram et al., 2017; Reglero

et al., 2018a for more details). Fish larvae from one replicate, pre-

served in 4% buffered formalin in seawater, were sorted using a

stereoscopic microscope, and the total number of Atlantic bluefin

tuna larvae was enumerated. We selected only data from stations

where presence was positive and data on date, latitude, and longi-

tude were available.

For the location of Atlantic bluefin tuna spawners, position

data were obtained from commercial fishing activities (purse-

seine and longline) and electronic tagging information.

Information on date, latitude, and longitude of the sets of bluefin

tuna schools by the purse-seine vessel “La Frau II” was provided

by Grup Balfegó for the years 2000–2014. On the basis of previous

histological studies (Aranda et al., 2013a), all purse-seine opera-

tions in the area were assumed to target schools of actively

spawning fish. In contrast, longlines are set over a broader exten-

sion in the western Mediterranean and target a more diverse pop-

ulation of Atlantic bluefin tuna in terms of reproductive state

(Medina et al., 2007). Hence, GPS positions of longline catches

were used only when they captured spawning females. Spawning

condition was confirmed by histological analysis when the ovary

contained postovulatory follicles and/or migratory-nucleus

oocytes and/or hydrated oocytes.

A total of 47 bluefin tuna adults were tagged underwater

within the purse-seine nets during regular commercial fishing

around the Balearic Islands early in the spawning seasons of 2009

(14 June), 2010 (8 June), and 2011 (9 June) (Aranda et al.,

2013b). Another 24 bluefin tuna were tagged, half of them under-

water and half onboard the support vessels, in the traps located in

the Strait of Gibraltar area early in the 2011 spawning season

(Abascal et al., 2016). Fish were tagged with pop-up satellite tags

(MK10 and miniPAT; Wildlife Computers, Redmond, WA, USA)

attached by a monofilament tether to a dart, which was inserted

Figure 2. Study area. (a) The distribution of the eastern stock of Atlantic bluefin tuna encompasses the region of the Atlantic eastward from
the 45� meridian and the Mediterranean Sea. (b) The western Mediterranean is the area located most west within the Mediterranean Sea.
(c) The Balearic Sea is located in the western Mediterranean Sea.
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into the dorsal musculature at the base of the second dorsal fin.

Transmitted information was first processed using the manufac-

turer software (DAP processor; Wildlife Computers). Tracks were

estimated by Collecte Localisation Satellite (CLS) using a Kalman

filter/smoother approach constrained by light level, sea surface

temperature, and bottom topography as described by Royer and

Lutcavage (2008). We only included paths for June and July,

which included part of the fish migration to the breeding grounds

(only in the case of fish tagged in the tuna traps), the spawning

period, and the return to the foraging areas in the Atlantic Ocean.

Time-series of recruitment
Time-series of recruitment were estimated using a fishery-

dependent recruitment index employed in the latest assessment

for the eastern stock by ICCAT conducted in 2017 (Anonymous,

2017). We split this time-series into two time-series due to

changes in fishing gear. The first, 2000–2006, used an age-

aggregated index of 2- and 3-year-old fish harvested by the

Spanish bait boat fishery, whereas the index after 2006 used an

age-aggregated index of 5–6 year olds. We did not consider esti-

mates of recruitment data from VPA outputs, given the uncer-

tainty in the VPA estimates that result in unreliable values for

recent dates (Anonymous, 2017).

Results
Geographic patterns of spawning and larval survival may be

explained by the role that temperature plays on the early

life stages of Atlantic bluefin tuna (Figure 3; Supplementary

Figure S5). Potential hatching probabilities were �40–60% every-

where in the western Mediterranean except in the northern and

southern limits (Gulf of Lions and Alboran Sea, respectively)

where temperatures were usually lower than 20�C and, therefore,

hatching probabilities were very low (Figure 3a–c; Supplementary

Figure S5). However, potential larval survival areas were much

more restricted than potential hatching areas (Figure 3d–f;

Supplementary Figure S5). The area around the Balearic Sea

remained optimal for larval survival despite annual differences in

temperature, suggesting it to be the best area in the western

Mediterranean for bluefin tuna larval survival (Figure 3d–f,

Supplementary Figure S5). Latitudes above 41�N and below

36.5�N always had the lowest larval survival; in some cases, no

larvae survived (Figure 3d–f, Supplementary Figure S5). Warmer

summers enlarged the longitudinal extension of potential areas

with enhanced larval survival, whereas colder years shrunk poten-

tial larval habitats (Figure 3d and f). As a consequence of optimal

thermal conditions for the eggs and larvae, 2003 and 2006

resulted in good year classes from the model, 2005 and 2009–

2010 in moderate year classes, and the rest of the years in poor

year classes (Figures 3d–f and 4, and Supplementary Figure S5).

The geographic distribution of areas that promote increased

larval fitness are consistent with the spatial reproductive strategy

of bluefin tuna, as shown by the spatial overlap of larvae and

spawning females as well as of modelled data (Figure 3d–f,

Supplementary Figure S5). The locations of spawners, as observed

from fisheries data, were spatially restricted to the area of the ba-

sin around the Balearic Sea as were potential larval habitats pre-

dicted by the model and the presence of larvae from

ichthyoplankton surveys (Figure 3d–f, Supplementary Figure S5).

Tracks of adults indicated movements from the Strait of Gibraltar

towards the areas with the highest larval survival (Figure 3f,

Supplementary Figure S5). Spawning was also observed in subop-

timal thermal habitats, as predicted by the model, south of the

islands despite suitable thermal habitats nearby (Supplementary

Figure S5). We could not test these habitats with the data avail-

able from observations since ichthyoplankton surveys were only

available at local scales (10 s of km), and sampling was conducted

mostly south of the islands and rarely north (see sampled stations

as dots in Supplementary Figure S4). Nor did industrial and long-

line fisheries or electronic tags cover the overall thermal suitable

habitats (Figure 3, Supplementary Figure S5). Spatial limitations

in sampling effort could be important in explaining distributions

at the local scale, such as in 2004 and 2007, when maps suggest

that larvae and spawners were distributed in low-quality thermal

habitats, although higher-quality habitats were located nearby, or

in 2013, with relatively high-quality habitat north of the islands,

but with larvae being distributed mostly south (Supplementary

Figure S5).

The presence of spawning in suboptimal thermal habitats, yet

in relatively stable locations, (in every year, it is observed mainly

south of the islands, and seldom or rarely to the north), could

also be an indication that the adults use other cues to determine

spawning locations at a smaller spatial scale. Besides temperature,

characterization of habitat requirements and preferences at the

local scale could be influenced by the formation of salinity gra-

dients due to the convergence of less-saline recent Atlantic

waters and more-saline-resident Atlantic waters (Supplementary

Figure S4). The northernmost area of the Balearic archipelago is

usually occupied by resident Atlantic water, whereas the conflu-

ence of new and resident Atlantic water usually occurs at the

southern border of the surveyed area, south of the islands, as for

example in 2002, 2003, 2004, and 2012 or crossing the Mallorca

Channel towards Cabrera Island, as in 2001 and 2005

(Supplementary Figure S4). The potential larval survival index

from the model and the recruitment index from the bait boat

fishery followed a similar trend (Figure 5), suggesting a direct

thermal influence on interannual variability in recruitment at the

short-term scale in recent years. The strong signal for the 2003

year class both in the model and in the bait boat fishery data is

particularly remarkable.

Discussion
Our work corroborates previous hypotheses that the Balearic Sea

is an optimal area for Atlantic bluefin tuna egg and larval survival,

regardless of interannual variability in summer temperature.

Offspring always have a higher chance of surviving to the flexion

stage here than in any other region/area of the analyzed western

Mediterranean. We have monitored the occurrence of Atlantic

bluefin tuna larvae and spawning females in the area since 2000

and have confirmed that bluefin tuna repeatedly spawn in the

Balearic Sea, a spatial reproductive strategy that optimizes the

chances of survival for the offspring in terms of temperature. The

geographic range for best larval survival expands southwestward

in warmer years, whereas it is restricted to the Balearic Sea in

colder years. This contraction–expansion of potential larval habi-

tat is reflected in the annual survival index, highest in the warm-

est years and lowest in the coldest years. The index complements

previous temperature indices (e.g. Harford et al., 2017), down-

scaling the process to a regional index that mechanistically reflects

the influence of temperature on eggs and larvae, but also changes

in the spatial distribution of suitable spawning areas.
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Figure 3. Spatial distribution of the cumulative proportion of eggs successfully hatching for (a) 2003, (b) 2005, and (c) 2011. Spatial
distribution of the cumulative proportion of larval survival to the post-flexion stage for (d) 2003 (good larval survival index), (e) 2005
(moderate larval survival index), and (f) 2011 (poor larval survival index). Note the different scales in the figure for each year. Positive locations
for the presence of Atlantic bluefin tuna larvae (red dots), spawning females captured by purse-seine (green dots), and by longline (pink dots)
are shown on top of the larval survival. Movements of bluefin tuna adults during June–July are shown in grey from tagged fish in 2011.
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The basis for deriving the habitat suitability index in our study

was laboratory-derived larval growth and weight-at-age models at

different temperatures under the assumption that this relation-

ship reflects growth rates in nature. Results from other laboratory

experiments on cultured larval Pacific bluefin (Thunnus orienta-

lis) and yellowfin (T. albacares) tuna have also shown a clear in-

crease in growth rates with temperature when the effect

of temperature was isolated from other variables (Tanaka et al.,

2008; Kimura et al., 2010; Wexler et al., 2011), suggesting a po-

tential relationship between growth and temperature. There are

very few field-based growth estimates for Atlantic bluefin tuna,

and those available have been estimated for a narrow thermal

range or age interval either in the Mediterranean (Garcı́a et al.,

2006) or in the Gulf of Mexico (Malca et al., 2017), to indicate

how similar laboratory growth rates are to those from field-

captured larvae at comparable temperatures. There are indica-

tions that growth rates may increase with temperature, although

more studies on growth rates are needed before we can use a

field-derived relationship to estimate specific growth rates in rela-

tion to temperature (see review in Muhling et al., 2017). Potential

differences between laboratory estimates and field rates could af-

fect interpretations of time–space variability in thermal habitat

survival indices. On the other hand, there could be a situation

where thermal conditions of habitat are good or maximal, but

other conditions, e.g. poor food availability, in which the habitat

index would overestimate survival probability. Timing of spawn-

ing in Atlantic bluefin tuna has been shown to be related to both

temperature and food abundance for larvae, while competition

and predation among tuna larvae, via cannibalism or piscivory,

can affect larval survival in a very oligotrophic area (Reglero

et al., 2011, 2018a). Nowadays, distribution of food at the basin

spatial scale can only be approached from chlorophyll measure-

ments, but since there is no correlation between spatial patterns

in chlorophyll and food availability for tuna larvae (Reglero et al.,

2017), we cannot yet characterize potential survival habitats re-

garding food availability.

Long-term average increasing temperatures in the

Mediterranean may explain the positive trend in recruitment over

long time-series (decadal scale), but may not work in the short-

term (interannual scale), particularly in the last decade

(Figure 1). Our index shows that thermal conditions in 2003 and

2006 were optimal for Atlantic bluefin tuna egg and larvae

survival compared with other years. The 2003 year class is recog-

nized as one of the strongest, dominating catches from the

Japanese longline and the Spanish baitboat fisheries (Rodrı́guez-

Marı́n et al., 2013; Suzuki et al., 2013; Kimoto and Itoh, 2017),

which fits well with optimal environmental conditions in the

spawning grounds. Year 2003 was characterized by anomalous

warm water that has been considered as a major heat wave in

Mediterranean waters. Evidence in the fisheries data for a strong

2006 year class is not as clear. Most of the 2004–2007 year classes

were not considered by the ICCAT Bluefin Tuna Working Group

to be realistic (Anonymous, 2017). Information on recent recruit-

ment is currently highly uncertain, because no fishery captures

eastern bluefin tuna until about age 7 or 8 (Anonymous, 2017),

and trends in capture per unit effort (CPUE) for these age classes

can be subject to other cumulative sources of variation, other than

recruitment. Comparing the model to the Spanish baitboat fisher-

ies index, based on an index of 2- and 3-year-olds in 2000–2004,

otherwise 5- and 6-year-olds, suggest an effect of temperature on

recruitment. In the case of ages 2–3, the fit between the survival

index and the fisheries index is very good, although short, and in

the case of ages 5 and 6, there is a match in spite of all the sources

of uncertainty in the CPUE standardization and all the factors that

are acting between recruitment and the time fish reach that age.

There are some difficult data issues with the recruitment data

from virtual population analysis (VPA) models used in assess-

ments that reduces the likelihood of a meaningful link between re-

cruitment estimated from the assessment and the new indices we

have developed. Therefore, we have not made quantitative use of

VPA data (Brooks and Deroba, 2015). Current data availability for

this stock limits our understanding of recruitment processes and

the ability to resolve which factors drive variations in this species.

There are still some issues that may limit the application of

the survival index developed in this study to the entire

Mediterranean (Atlantic bluefin tuna eastern stock). The habitat

index shown in our study is only for the western Mediterranean,

whereas some areas within the eastern and central Mediterranean

are also spawning areas for this species (Reglero et al., 2018a).

Contributions of other spawning areas to the survival index, as it

Figure 4. Time-series of the potential larval survival index obtained
from the model for 2000–2014.

Figure 5. Variation in recruitment and the potential larval survival
index for the eastern stock of Atlantic bluefin tuna. Annual variation
in the recruitment corresponds to ages 2–3 (black dots) and ages
5–6 (white dots) estimated from the baitboat index (Anonymous,
2017) (corrected for time lag of 2 and 5 years, respectively) and
survival index (crosses). Note data are only available for 2000–2010
within the time-series considered in this study.
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is estimated now, are assumed to have constant proportions in all

years, which is an untested hypothesis, since egg production that

occurs in the different areas has not yet been documented. If the

contribution of each region only depends on temperature, then

similar temperature regimes across areas would result in similar

egg production for a given area. However, spatial contributions

of total stock egg production in the different areas have not been

tested, and proportions might change from year to year.

It has been shown that salinity and salinity fronts are impor-

tant in defining bluefin tuna spawning places in the western

Mediterranean (Reglero et al., 2012; Alvarez-Berastegui et al.,

2014, 2016), and both temperature and salinity should ideally be

used for developing recruitment models, so that both effects are

incorporated. One procedure could be to use salinity to define

the location and size of the more probable spawning area in each

year and then, given that region, define its thermal suitability for

growth and survival (i.e. a measure of habitat quality) using the

relationships derived from the laboratory. In this way, habitat

size, location, and quality might be configured more representa-

tively than they are in existing indices and could perhaps explain

more variability in recruitment. Unfortunately, hydrographic

models were unable to describe salinity variations, and the many

CTD data from our extensive fieldwork were only available for a

small area within the entire western Mediterranean. Therefore, we

currently do not have tools to develop a salinity-derived habitat

index.

We have combined different samplings to provide the most ac-

curate spatial spawning distribution in relation to temperature,

although some bias occurs due to different sampling efforts. In

some years, the only data available were from the fisheries since

no larval survey could be conducted (e.g. 2007). Sampling effort

during larval surveys is more concentrated southward than north

of the islands. Purse-seiners have recently been taking their quota

in just a few days or less, so the spatially derived data from the

purse-seine fleet provides relatively few data points. Also, in the

fisheries data, we have included only those captures where we

were assured that the fish were actually spawning, as inferred

from ovarian histological analyses. There is quite a demand to

link egg–larval ecology to recruitment of this stock that requires

continuity in sampling, as the ones used in our study, but also

new sampling (e.g. seasonal-repeated surveys, otolith analyses of

the survivors) covering a wide spatial and temporal scale.

Priorities for this species should be identified in the ICCAT work-

ing groups together with stakeholders and scientists.

A critical tool to improve our understanding of geographical

fitness in terms of larval growth and survival is the use of realistic

hydrodynamic models that simulate realistic drift trajectories

coupled to individual-based models that can include behaviour

(Fiksen et al., 2007). Limitations to this approach arise from the

lack of well-calibrated and validated circulation models at re-

gional scales, the lack of species-specific formulations of growth

and survival through ontogeny, the lack of interannual spatial

distribution data of both adults and offspring, and the lack of

time-series validation of circulation models that generally are

updated without maintaining continuity of time-series, which is

critical for fisheries studies. To minimize the methodological bias

and support the potential operationalization and future imple-

mentation of an individual-based model, in the present study, we

have ensured: (i) a careful validation of temperature data from

the hydrodynamic model in the study area, (ii) the use of growth

expressions obtained from laboratory experiments specifically for

Atlantic bluefin tuna and applied to observed temperature

records during the spawning season, and (iii) a comparison of

model results with field observation data of geographic distribu-

tions of larvae and adults.

While circulation models mimic currents well at large spatial

and temporal scales, they may perform poorly at the regional spa-

tial and short temporal scales. Our validation shows that available

models, with a sufficiently long time-span to be of use for our re-

search, are not capable of accurately reproducing the spatial dis-

tribution of different water masses, characterized by their salinity,

and mesoscale activity in the area. This limited our ability to

(i) reproduce frontal structures and (ii) include drift trajectories

to estimate the larval survival index. Bluefin tuna spawning is

related to patterns in water masses that explain interannual differ-

ences in the spatial distribution of larvae in the area (Alvarez-

Berastegui et al., 2016). The circulation models tested did not

provide accurate salinity data and, therefore, spatial patterns in

salinity and fronts could not be reproduced properly. As such,

drift trajectories could not be estimated accurately and, therefore,

were not included in the estimation of the potential larval survival

index. However, location of the density front in the Balearic Sea,

identified from salinity gradients, would signal the best areas for

offspring survival. While circulation model outputs may repro-

duce well general patterns of retention-dispersal in large areas of

the Mediterranean, they fail to reproduce detailed interannual

patterns in the study area when they strongly depend on meso-

scale circulation. Novel multiplatform observing systems, linking

modelling capabilities and in situ data, can provide validated

high-resolution models for recent years to assess the oceano-

graphic mesoscale scenario in the western Mediterranean

(Tintoré et al., 2013; Juzá et al., 2016). Our study represents a

trade-off between temporal availability of modelling products

and the capability of models to reproduce different environmen-

tal variables and key ecological processes.

One common procedure in the literature is to use formulae re-

lating temperature and growth for different species than the pri-

mary study species under the assumption that the functions are

similar. However, formulae and adaptations to local environ-

ments have been shown to be species-specific, and we should be

cautious when using expressions that are not specific to the popu-

lation under study. In our case, we were able to design a set of

experiments using Atlantic bluefin tuna and cover the full range

of temperature variability observed in the field (Reglero et al.,

2018a). On the other hand, we know that surface temperatures

are good descriptors of egg and larval habitat for this species,

which always occupies the first meters of the water column and

show no clear vertical migration patterns (Reglero et al., 2018b).

We have assumed the same spawning window for all the years

that may result in slightly higher mortalities in years when the

water warms later since eggs will be produced, but not survive.

Despite the fact that we developed specific growth functions for

Atlantic bluefin tuna, we used a size-dependent mortality curve

derived from McGurk (1986). One recommendation is to esti-

mate species-specific mortality curves, which will need to be con-

sidered in the future.

Directly including environmental variability in stock assess-

ment models or including fisheries-independent recruitment in-

dices are two ways to improve current stock assessment models

for the eastern spawning stock of Atlantic bluefin tuna. The index

we proposed may be more useful, not as a measure of absolute re-

cruitment, but as a relative index in the stock assessment.
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New assessment working groups for this species may need to dis-

cuss the best methodology for incorporating observed environ-

mental effects on bluefin tuna growth and survival in current

assessments. Survival maps combined with hatching areas would

allow the implementation of spatial regulations that would mini-

mize bycatch of bluefin tuna spawners and maximize offspring

survival in the western Mediterranean. These could be useful

tools if spatial decisions are to be taken for the management of

the eastern stock of Atlantic bluefin tuna or if climate change

effects in spatial distributions are to be taken into account at dif-

ferent temporal scales (Tommasi et al., 2017).

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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