Personal pdf file for M. López-Segovia, F. Pareja-Blanco, P. Jimenez-Reyes, J. J. González-Badillo

Determinant Factors of Repeat Sprint Sequences in Young Soccer Players

Authors
Affiliations

M. López-Segovia ${ }^{1,2}$, F. Pareja-Blanco ${ }^{3}$, P. Jiménez-Reyes ${ }^{4}$, J. J. González-Badillo ${ }^{3}$

${ }^{1}$ Research Group, Murcia Soccer Federation, Murcia, Spain ${ }^{2}$ INNOVA, Health \& Sport Institute
${ }^{3}$ Faculty of Sport, Pablo de Olavide University, Seville, Spain
${ }^{4}$ Physical Activity and Sports Science, Catholic University of San Antonio, Murcia, Spain

Key words

- repeated sprint ability
- muscle strength
- intermittent fitness testing
- vertical jump
- kicking
- metabolites
accepted after revision
June 17, 2014

Bibliography

DOI http://dx.doi.org/
10.1055/s-0034-1385880

Published online:
September 26, 2014
Int J Sports Med 2015; 36 :
130-136 © Georg Thieme
Verlag KG Stuttgart • New York
ISSN 0172-4622

Correspondence

Manuel López-Segovia

Research Group

Murcia Soccer Federation
C/Cabecicos 830008 Murcia 30008 Murcia
Spain
Tel.: + 34/665/384 257
Fax: +34/968/205 054
manlopezsegovia@hotmail.com

Abstract

The aim of this study was to investigate the relationships between repeated explosive effort sequences $(20+20 \mathrm{~m}$ shuttle sprint with change of direction, kicking and jumping), metabolic response (lactate and ammonia), and fitness qualities (strength and endurance) in under-19 soccer players. 21 players completed: 1) sprint test: $30 \mathrm{~m}\left(\mathrm{~T}_{30}\right)$ and $40 \mathrm{~m}(20+20 \mathrm{~m})$ shuttle sprints; 2) countermovement jumps (CMJ); 3) maximal kicking; and 4) 9 repeated-explosive effort sequences (RES); 4) a progressive isoinertial loading test in full squat to determine the load which subjects achieved $\sim 1 \mathrm{~m} \cdot \mathrm{~s}^{-1}\left(\mathrm{~V}_{1^{-}}\right.$ load); 6) Yo-Yo Intermittent Recovery Test Level 1 (YYIRT-1). Mean sprint time of the 9 repeated

Introduction

The high-intensity performance of a soccer player is considered to be key factor in elite soccer [31]. For this reason, different researchers have aimed to clarify the importance of the main aspects from different repeated sprints protocols [4, 9, 12, 13]. With regard to aerobic influence, maximal oxygen uptake might not be the most important determinant of repeated sprint ability (RSA) $[1,2,4,5,9,13-15,29,30]$. Therefore, it is suggested that other factors have influence on the ability to endure repeated sprints. One of them might be the soccer player's strength. However, while the relationship between strength variables and single sprint has been widely studied showing clear relationships between them [11,22,26,39], the possible association between strength and RSA has received less attention. On the other hand, blood lactate concentration as consequence of glycolytic energetic contribution has been associated with the reduction in strength or power output [33] and RSA in soccer players [31]. The other metabolite recently used
sprints ($\mathrm{RSA}_{\text {mean1-9 }}$) showed correlation with V_{1} -$\operatorname{load}(r=-0.52[-0.79,-0.25])$ metabolic response (lactate, $\mathrm{r}=0.67$ [$0.47,0.87]$ and ammonia, $\mathrm{r}=0.53$ [0.27, 0.79]). YYIRT-1 correlated with RSA mean1-9 $^{\text {m }}$ $\left(\mathrm{r}_{\mathrm{w}}=-0.78[-0.92,-0.64]\right)$ when the body weight was controlled. Furthermore, the 3 first sprints ($\mathrm{RSA}_{\text {mean1-3 }}$) correlated with RSA $_{\text {best }}(\mathrm{r}=0.93$ [$0.88,0.98]$), V_{1}-load ($\mathrm{r}=-0.64[-0.86,-0.42]$), and $\mathrm{T}_{30}(\mathrm{r}=0.63[0.41,0.85])$. These results suggest that the soccer player's lower body strength (V_{1}-load, jumping and sprinting) explains a large part of the performance in the first sequences, whereas the aerobic capacity, estimated through YYIRT-1, becomes more important to performance as the number of sprints is increases.

Fig. 1 Schematic of the repeated explosive effort sequences.
efforts (sprinting, jumping and kicking) with changes of direction.
Considering the aforementioned research related to RSA, the main purpose of this study was to investigate the relationship between repeated explosive effort sequences (RES) with specific skills (jumping and kicking) and metabolic response (lactate and ammonia) as well as fitness qualities (strength and endurance) in under-19 soccer players. We hypothesized that a soccer player's lower body strength would be relevant in the performance of the first sprints, jumps and kicks, whereas the intermittent endurance and the metabolic response would have more influ-

Material and Methods

∇

Subjects
21 soccer players (mean \pm SD: age 18.4 ± 0.8 years, height $1.78 \pm 0.07 \mathrm{~m}$, body mass $71.9 \pm 6.8 \mathrm{~kg}$) volunteered to participate in this study. Subjects played in the U-19 Spanish National League division and participated in 4 training sessions (90 min each) plus one official game per week. Of the 4 weekly training sessions, 2 were focused on developing the physical conditioning such as improving the aerobic performance of the players. To this end, players executed high-intensity interval running, phys-ical-technical circuits and small-sided games. After being informed about the purpose, testing procedures and potential risks of the investigation, all subjects gave their voluntary writ- ten consent to participate. For those players who were minors, written consent was obtained from their parents. No physical limitations, health problems or musculoskeletal injuries that could affect testing or training were found following a medical examination. The present investigation met the ethical standards of this journal [19] and was approved by the Research Ethics Committee of Pablo de Olavide University.

Experimental design

All the tests were carried out at the end of the season (May) over a period of 3 consecutive weeks. Furthermore, each test was performed at least 48 h after the most recent game. All tests were conducted at the same time of day, from 5:00 p.m. to 9:00 p.m. Subjects completed all testing following preliminary familiarization and pre-testing. In the first session a battery of tests was performed in the following order: 1$) 30 \mathrm{~m}$ and $40 \mathrm{~m}(20+20 \mathrm{~m})$ all-out running sprints; 2) countermovement vertical jumps (CMJ); 3) maximal instep kicking; and 4) RES test. In the second testing session players completed a progressive isoinertial loading test in full squat. Finally, in the third session YYIRT-1 was performed. In the preceding 2-week period, 4 preliminary familiarization sessions were undertaken with the purpose of emphasizing proper execution technique in the different tests assessed.

Sessions took place at a neuromuscular research laboratory under the direct supervision of the investigators, at the same time of day for each subject and under constant environmental conditions ($20^{\circ} \mathrm{C}, 60 \%$ humidity). Before the tests were completed, subjects executed a standardized warm-up directed by both the primary researcher along and the coach. During the execution of these tests, the players were verbally encouraged to give their maximal effort. The tests executed for the measurement of performance are explained in detail below.

Measurement of sprint capacity

Two 30 m sprints, separated by a 3 min rest, were performed on an indoor running track. Photocell timing gates (Polifemo Radio Light, Microgate, Bolzano, Italy) were placed at 0 and $30 \mathrm{~m}\left(\mathrm{~T}_{30}\right)$. A standing start with the lead-off foot placed 1 m behind the first timing gate was used. Subjects were required to give an all-out maximal effort in each sprint, and the best of both trials was kept for analysis.

Measurements of ball velocity and jumping ability

The players performed 3 maximal instep kicks with their dominant leg with 3 m approach run, aiming at a circled target measuring 1 m in diameter and located in the middle of a goal $(3 \times 2 \mathrm{~m})$ (0 Fig. 1). 3 kicks were performed with an interval of 1 min between each. From the 3 trials, the highest ball velocity observed was selected for further analysis ($\mathrm{KICK}_{\text {best }}$). The speed of each kick was measured using radar device (Stalker Sport, Applied Concepts Inc, Texas, USA). The radar was placed at a short distance from the ball (5 m) behind the indoor soccer goal, and elevated 1 m off the ground. A ball of standard characteristics (FIFA) was used. Jump height was calculated to the nearest 0.1 cm from flight time measured with an infrared timing system (Optojump; Microgate, Bolzano, Italy). Subjects completed 3 maximal countermovement jumps with their hands on their hips (without arm swing), and the average of these jumps was recorded ($\mathrm{CM}_{\mathrm{best}}$). For complete recovery, 1 min rests were taken between jumps. After the 3 jumps, the players executed the RES test.

Repeated-explosive efforts sequence test (RES)

Before the RES, subjects executed a standardized warm-up consisting of a 5 min low-intensity run, $3 \times 30 \mathrm{~m}$ progressive accelerations, and a maximal 30 m sprint, interspersed by 3 min of passive recovery. Thereafter, 30 m all-out running sprint, 2 maximal $40 \mathrm{~m}(2 \times 20 \mathrm{~m})$ shuttle sprints, maximal instep kicking and jump ability were evaluated. The best maximal single shuttle sprint time $(20+20 \mathrm{~m})$ was used as the players' reference performance ($\mathrm{RSA}_{\text {best }}$). Repeated sprint tests began 3 min after the last jump. The RES consisted in a 40 m shuttle sprint $(20+20 \mathrm{~m}$ with 180° turns) plus a maximal kick and 2 vertical jumps without recovery time between actions, repeated 9 times with 1 min
of recovery between sequences. The maximal ball velocity of each instep kicking was registered. The mean of all kicks performed after each sprint ($\mathrm{KICK}_{\text {mean }}$) was used for further analysis. After kicking the ball, the players performed 2 CMJ without arm swing separated by 5 s . The average height of these jumps was recorded for later analysis ($\mathrm{CMJ}_{\text {mean }}$). Capillary blood samples were obtained immediately thereafter. Each 40 m sprint was initiated from a standardized position 1 m behind the starting line. Subjects assumed the ready position and awaited the start signal 5 s prior to the beginning of each sprint. The players sprinted to a line 20 m away and then returned to the starting line. Players were instructed to perform all sprints as fast as possible. The reliability of a sequence similar to that used in the present study has been demonstrated ($\mathrm{CV}=1.0 \%, 90 \%$ confidence interval ($0.7-1.6$) for mean shuttle-sprints time with a CMJ performed between sprints, and CV $=2.9 \%, 90 \%$ confidence interval (2.1-4.7) for mean jump height) [8]. Time of each sprint was measured to the nearest 0.01 s with photocell timing gates (Polifemo Radio Light, Microgate, Bolzano, Italy). The mean time of the 9 sprints ($\mathrm{RSA}_{\text {mean } 1-9}$) expressed in seconds, and the 3 partial mean sprint times were calculated as follows: the mean of the first 3 sprint times ($\mathrm{RSA}_{\text {mean1-3 }}$), the mean of the fourth, fifth and sixth sprint ($\mathrm{RSA}_{\text {mean4-6 }}$), and finally the mean of the last 3 sprints $\left(\mathrm{RSA}_{\text {mean7-9 }}\right)[3]$. The percent sprint decrement $\left(\mathrm{S}_{\mathrm{dec}}\right)$ was calculated as follows: $\left(\mathrm{RSA}_{\text {mean }} / \mathrm{RSA}_{\text {best }} \times 100\right)-100$ [37]. The percent decrement of jump height ($\mathrm{Sdec}_{\text {Смј }}$) and kicking ($\mathrm{Sdec}_{\text {кіск }}$) was calculated as follows: $\left(1-C M J_{\text {mean }} / C M J_{\text {best }}\right) \times 100$, and $(1-$ $\left.\mathrm{KICK}_{\text {mean }} / \mathrm{KICK}_{\text {best }}\right) \times 100$ [36].

Blood lactate and ammonia measurement

Capillary blood samples for the determination of lactate and ammonia concentrations were obtained from the fingertip before exercise and 40 s after the third, sixth and ninth sprint sequence. The Lactate Pro LT-1710 (Arkray, Kyoto, Japan) portable lactate analyzer was used for lactate measurements. The suitability and reproducibility of this analyzer has been previously established throughout the physiological range of $1.0-$ $18.0 \mathrm{mmol}_{\mathrm{l}} \mathrm{l}^{-1}$ [28]. Ammonia was measured using PocketChem BA PA-4130 (Menarini Diagnostics, Florence, Italy). Both devices were calibrated before each exercise session according to the manufacturer's specifications.

Yo-Yo intermittent recovery test level 1
This test comprised $2 \times 20 \mathrm{~m}$ shuttle runs at increasing speeds, separated by 10 s of active recovery. The subjects were required to run on an indoor court, guided by a beep signal. The test was terminated when the subjects were no longer able to reach the finish line on the beep signal on 2 consecutive occasions. The total distance covered (m) was recorded as the final result of the test.

Isoinertial progressive loading test

The assessment consisted of an isoinertial test with increasing loads using the full squat exercise performed in a Smith machine (Multipower Fitness Line, Peroga, Murcia, Spain). Players performed a full squat descending at a controlled mean velocity to ascend at maximal velocity to the initial upright position. Initial load was set at 20 kg and was progressively increased in 10 kg increments. Subjects performed 3 repetitions with each load. Only the best repetition at each load according to the criteria of fastest mean propulsive velocity [34] was considered for subsequent analysis. 4 min of recovery were taken between sets. The
test ended when the average velocity of lifting was less than $1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. The load which players were able to achieve a $\sim 1.00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ relative to body mass (V_{1}-load) was used to assess the strength performance. This load was chosen because the maximal power in squat exercise in semi-professional soccer players was attained with a load of $\sim 60 \% 1$ RM, which was lifted at $\sim 1 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ [32]. Warm-up consisted of 5 min of joint mobilization exercises, followed by 2 sets of 8 and 6 repetitions (3 min rests) with loads of 20 and 30 kg , respectively. The relevant kinematic parameters of every repetition were recorded using a dynamic measurement system (T-Force System, Ergotech, Murcia, Spain). Instantaneous velocity was sampled at a frequency of 1000 Hz . The reliability of this system has been recently reported elsewhere [35].

Statistical analysis

Descriptive statistics are expressed as mean \pm SD. The distribution of each variable was examined with the Shapiro-Wilk normality test. Homogeneity of variance was verified by a Levene test. Linear regressions with Pearson's coefficients (r) and 90\% confidence intervals ($90 \% \mathrm{CI}$) were used to calculate the respective relationships between performance parameters analyzed. To isolate the possible effect of body weight on physical performance, these relationships also were adjusted with partial correlations (r_{w}). Intraclass correlation coefficients (ICC) were calculated with the one-way random effects model. The standard error of measurement was calculated as the root mean square of total mean square intra-subject. This standard error was used for the calculation of coefficient of variation. The reliability was assessed in repeated measurements in the same testing session, with an interval of 3 min between sprints and 1 min for jumps and kicks. Within-subject variation for the tests was determined by calculating the coefficient of variation (CV). The probability level of statistical significance was set at $\mathrm{P} \leq 0.05$. The statistical analysis was performed using the SPSS 17.0 (SPSS, Chicago, IL).

Results

Means values and SD of the different variables assessed are reported in © Table 1. Test-retest reliability for $\mathrm{T}_{30}, \mathrm{CMJ}_{\text {best }}$ and KICK $_{\text {best }}$ as measured by the CV were $1.1,2.2$ and 4.1%, respectively, and the ICC ($95 \% \mathrm{CI}$) were 0.90 [0.77-0.96], 0.99 [0.980.99] and 0.83 [0.65-0.92].
$\mathrm{RSA}_{\text {mean1-9 }}$ correlated significantly with $\operatorname{Sdec}_{\text {RSA1-9 }}$ ($\mathrm{r}=0.55$ [0.29, 0.81], $\mathrm{P}=0.03$). Moreover, $\mathrm{RSA}_{\text {mean1-9 }}$ showed significant correlation with V_{1}-load ($\mathrm{r}=-0.52[-0.79,-0.25], \mathrm{P}=0.04$), and with blood metabolites (lactate after the ninth sprint: $\mathrm{r}=0.67$ [0.47 , $0.87], \mathrm{P}=0.003$); and ammonia after the third: $\mathrm{r}=0.56$ [0.28 , $0.84], \mathrm{P}=0.02$; sixth: $\mathrm{r}=0.72$ [$0.52,0.92$], $\mathrm{P}=0.002$; and ninth sprint: $\mathrm{r}=0.55$ [$0.26,0.84], \mathrm{P}=0.03$) (\odot Fig. 2).
RSA $_{\text {best }}$ was associated with $\operatorname{RSA}_{\text {mean } 1-3}(\mathrm{r}=0.93$ [0.88, 0.98], $\mathrm{P}=0.000$) (\odot Fig. 3) and inversely with different measures of decrement RSA-performance (Sdec $_{\text {RSA1-3: }}$: $-0.41[-0.72,-0.10]$, $\mathrm{P}=0.11$; Sdec $_{\text {RSA } 4-6}:-0.61[-0.84,-0.38], \mathrm{P}=0.01$; $\operatorname{Sdec}_{\text {RSA } 7-9}$: $-0.50[-0.78,-0.22], \mathrm{P}=0.06) . \mathrm{RSA}_{\text {best }}$ showed correlation with jump height and sprint capacity $\left(\mathrm{CM}_{\text {best }}: \mathrm{r}=-0.74[-0.91\right.$, $-0.57], \mathrm{P}=0.001 ; \mathrm{CM}]_{\text {mean }}: \mathrm{r}=-0.48[-0.76,-0.20], \mathrm{P}=0.05, \mathrm{~T}_{30}$: $\mathrm{r}=0.79$ [$0.65,0.93], \mathrm{P}=0.000$) and V_{1}-load ($\mathrm{r}=-0.76$ [-0.92 , $-0.61], \mathrm{P}=0.007$). $\mathrm{Sdec}_{\text {KICK }}$ correlated with $\operatorname{Sdec}_{\text {RSA1-9 }}(\mathrm{r}=0.86$ [0.76, 0.96], $P=0.000$).

Table 1 Values in selected neuromuscular performance variables.

$\mathrm{RSA}_{\text {best }}(\mathbf{s})$	RSA ${ }_{\text {mean1-9 }}(\mathbf{s})$	RSA ${ }_{\text {mean } 1-3}(\mathrm{~s})$	RSA ${ }_{\text {mean4-6 }}(\mathbf{s})$	RSA ${ }_{\text {mean7-9 }}(\mathbf{s})$	$\mathrm{T}_{30 \mathrm{~m}}$ (s)	YYIRT-1 (m)
7.10 ± 0.20	7.54 ± 0.20	7.26 ± 0.20	7.61 ± 0.28	7.83 ± 0.40	4.21 ± 0.11	1760 ± 329
Sdec $_{\text {RSA1-9 }}$ (\%)	$\mathrm{Sdec}_{\text {RSA1-3 }}$ (\%)	$\mathrm{Sdec}_{\text {RSA4-6 }}$ (\%)	Sdec $_{\text {RSA7-9 }}$ (\%)	$\mathrm{CM}]_{\text {best }}(\mathrm{cm})$	CM $]_{\text {mean }}(\mathrm{cm})$	Sdec $_{\text {CMJ }}$ (\%)
5.8 ± 3.1	1.8 ± 1.1	7.3 ± 5.4	9.5 ± 6.7	35.3 ± 4.1	28.2 ± 3.1	17.6 ± 6.0
$\mathrm{KICK}_{\text {best }}\left(\mathbf{k m} \cdot \mathbf{h}^{\mathbf{- 1}}\right.$)	$\mathrm{KICK}_{\text {mean }}\left(\mathbf{k m} \cdot \mathbf{h}^{\mathbf{- 1}}\right)$	Sdec $_{\text {Kıск }}$ (\%)	\mathbf{V}_{1}-load (kg)	Lactate3 (mmol $\cdot \mathrm{L}^{-1}$)	Lactate6 (mmol $\cdot \mathrm{L}^{-1}$)	Lactate9 (mmol $\cdot \mathrm{L}^{-1}$)
97.5 ± 5.6	89.6 ± 5.2	7.9 ± 4.7	60.3 ± 9.8	11.6 ± 4.2	13.7 ± 3.3	15.1 ± 2.6
Ammonia3 ($\mu \mathrm{mol} \cdot \mathrm{L}^{-1}$)	Ammonia6 ($\mu \mathrm{mol} \cdot \mathrm{L}$	Ammonia9 ($\mu \mathrm{m}$				
151.0 ± 58.7	171.4 ± 46.3	186.5 ± 43.2				
Data are mean \pm SD						
RSA $_{\text {mean 1-9, }}, \mathrm{RSA}_{\text {mean 1-3 }}, \mathrm{RSA}_{\text {mean4-6 }}, \mathrm{RSA}_{\text {mean }}$-9: mean sprint time of the 9 sprints; mean of the first 3 sprints; mean of the fourth, fifth and sixth sprint; and mean of the seventh, eighth and ninth sprint RSA $_{\text {best: }}$: the best time of the 9 sprints						
$S^{S d e c}{ }_{\text {RSA1-9 }}$, Sdec $_{\text {RSA1-3 }}$, Sdec $_{\text {RSA4-6 }}, \operatorname{Sdec}_{\text {RSA7-9 }}$: percent sprint decrement for the 9 sprints; for the first 3 sprints; for the fourth, fifth and sixth sprint; and for the seventh, eighth and ninth sprint						
V_{1}-load: The load which participants were able to elicit a $\sim 1.00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ relative to body mass						
YYIRT-1: Yo-Yo Intermittent Recovery Test Level 1, $\mathrm{T}_{30 \mathrm{~m}}$: 30 m sprint time						
$\mathrm{CM} \mathrm{J}_{\text {best: }}$: countermovement jump height without fatigue, $\mathrm{CM} \mathrm{J}_{\text {mean }}$: mean jump height of the 9 repeat sprint sequences, $\mathrm{Sdec}_{\mathrm{CM}]}$: percent jump height decrement for the 9 repeat sprint sequences						
KICK $_{\text {best: }}$: maximal kick velocity without fatigue, KICK $_{\text {mean }}$: mean kick velocity of the 9 repeat sprint sequences, Sdec $_{\text {KICk: }}$: percent kick velocity decrement for the 9 repeat sprint sequences						
Lactate3: blood lactate after the third sprint, Lactate6: blood lactate after the sixth sprint, Lactate9: blood lactate after the ninth sprint						
Ammonia3: blood ammonia after the third sprint, Ammonia6: blood ammonia after the sixth sprint, Ammonia9: blood ammonia after the ninth sprint						

Fig. 2 Correlation coefficients (90% confidence intervals) describing the relationships between mean performance of the 9 repeated sprints (RSA $_{\text {mean1-9 }}$) and best repeated sprint time (RSA $_{\text {best }}$), mean of the first 3 sprint times (RSA $_{\text {mean } 1-3}$), mean of the fourth, fifth and sixth sprint ($\mathrm{RSA}_{\text {mean4-6 }}$), mean of the last 3 sprints (RSA mean7-9), percent sprint decrement of the first 3 sprint times (${S d^{\prime} C_{\text {RSA } 1-3} \text {), mean of the fourth, }}^{2}$ fifth and sixth sprint $\left(S d e c_{\text {RSA4-6 }}\right)$, mean of the last 3 sprints (Sdec RSA -9), Yo-Yo Intermittent Recovery test level 1 (YYIRT-1), sprint capacity (T_{30}), best (CM Jbest $)$ and mean ($\mathrm{CM} J_{\text {mean }}$) jump height, load which players were able to achieve a $\sim 1.00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ relative to body mass ($\mathrm{V}_{1 \text {-load }}$), and blood metabolites (lactate and ammonia).

Fig. 3 Correlation coefficients (90% confidence intervals) describing the relationships between the mean of the first 3 (RSA mean $1-3)$, fourth, fifth and sixth ($R S A_{\text {mean4-6 }}$), and the last 3 repeated-sprints (RSA $_{\text {mean7-9 }}$), and best sprint time ($\mathrm{RSA}_{\text {best }}$), percent sprint decrement of the 9 sprints (Sdec), Intermittent Recovery test level 1 (YYIRT-1), sprint capacity $\left(T_{30}\right)$, best ($C M J_{\text {best }}$) and mean ($\left.C M J_{\text {mean }}\right)$ jump height, load which players were able to achieve a $\sim 1.00 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ relative to body mass ($\mathrm{V}_{1 \text {-load }}$), and blood metabolites (lactate and ammonia).

It was found a correlation between YYIRT-1 and final blood ammonia ($\mathrm{r}=-0.63$ [$-0.85,-0.41], \mathrm{P}=0.02$). V_{1}-load showed significant relationships with $C M J_{\text {best }}(r=0.54[0.28,0.80]$, $\mathrm{P}=0.02), \mathrm{T}_{30}(\mathrm{r}=-0.51[-0.78,-0.24], \mathrm{P}=0.02)$, and $\mathrm{RSA}_{\text {mean } 1-3}$ ($\mathrm{r}=-0.64[-0.86,-0.42], \mathrm{P}=0.004$). Finally, $\mathrm{CM} \mathrm{J}_{\text {mean }}$ correlated significantly with blood metabolites (lactate after the ninth
sprint: $\mathrm{r}=-0.54[-0.80,-0.28], \mathrm{P}=0.03$; and ammonia after the third: $\mathrm{r}=-0.53[-0.83,-0.23], \mathrm{P}=0.04$; sixth: $\mathrm{r}=-0.51[-0.81$, $-0.21], \mathrm{P}=0.05$; and ninth sprint: $\mathrm{r}=-0.63[-0.88,-0.38]$, $\mathrm{P}=0.01$). Partial correlations are shown in 0 Table 2.
Table 2 Matrix of partial correlations between repeated-sprint performance, technical skills, fitness and metabolic variables.

	RSA ${ }_{\text {best }}$	Sdec $_{\text {RSA1-9 }}$	CM $]_{\text {best }}$	CM $]_{\text {mean }}$	$\mathrm{KICK}_{\text {best }}$	$\mathrm{KICK}_{\text {mean }}$	YYIRT-1	V_{1}-load	Lactate9	Ammonia9
RSA ${ }_{\text {mean } 1-9}$	0.39 [0.04, 0.74]	0.46 [0.14, 0.78]	-0.32 [-0.69, 0.05]	-0.41 [-0.75, -0.07]	0.39 [0.04, 0.74]	0.08 [-0.33, 0.49]	$-0.78[-0.94,-0.62]^{* *}$	-0.54 [-0.83, -0.25]	0.30 [-0.07, 0.67]	0.71 [0.51, 0.91]*
RSA ${ }_{\text {best }}$		-0.61 [-0.87, -0.35]*	-0.46[-0.78, -0.14]	$-0.33[-0.70,0.04]$	$0.31[-0.06,0.78]$	0.58 [0.31, 0.85]	$-0.50[-0.81,-0.19]$	-0.55 [-0.84, -0.26]	0.50 [0.19, 0.81]	$0.25[-0.14,0.64]$
Sdec RSA1-9 $^{\text {a }}$			0.17 [-0.23, 0.57]	-0.01 [-0.42, 0.40]	-0.07[-0.48, 0.34]	$-0.58[-0.85,-0.31]$	-0.21 [-0.60, 0.18]	0.12 [-0.29, 0.53]	-0.22 [-0.61, 0.17]	0.35 [-0.01, 0.71]
CM ${ }_{\text {best }}$				0.90 [0.82, 0.98]***	$-0.29[-0.67,0.09]$	$-0.25[-0.64,0.14]$	0.65 [0.41, 0.89]*	0.08 [-0.33, 0.49]	-0.49[-0.80, -0.18]	$-0.68[-0.90,-0.46]^{* *}$
CMJ ${ }_{\text {mean }}$					-0.10 [-0.51, 0.31]	$-0.03[-0.44,0.38]$	0.69 [0.47, 0.91]*	-0.09 [-0.50, 0.32]	$-0.70[-0.91,-0.49]^{*}$	-0.81[-0.95, -0.67]**
$\mathrm{KICK}_{\text {best }}$						0.82 [0.69, 0.95]**	-0.32 [-0.69, 0.05]	-0.57 [-0.85, -0.29]	0.04 [-0.37, 0.45]	0.32 [-0.05, 0.69]
$\mathrm{KICK}_{\text {mean }}$							-0.07 [-0.48, 0.34]	-0.48[-0.80, -0.16]	$0.19[-0.21,0.59]$	0.04 [-0.37, 0.45]
YYIRT-1								0.27 [-0.11, 0.65]	-0.58 [-0.85, -0.31]	$-0.75[-0.93,-0.57]^{* *}$
V_{1}-load									0.19 [-0.21, 0.59]	-0.21 [-0.60, 0.18]
Lactate9										0.56 [0.28, 0.84]

 to body mass; Lactate9: blood lactate after the ninth sprint; Ammonia9: blood ammonia after the ninth sprint. ${ }^{*}$ Denotes significance at $\mathrm{P} \leq 0.05$. ${ }^{* *}$ Denotes significance at $\mathrm{P} \leq 0.01$. ${ }^{* * *}$ Denotes significance at $\mathrm{P} \leq 0.001$

Discussion

To the best of our knowledge, this is the first study with soccer players that has described the relationships between repeated explosive effort sequences (RES) interspersed with soccer-specific skills such as jumping and kicking, and indicators of strength and endurance fitness, as well as the acute metabolic response during that repeated sequence. In the present study it was observed that performance in the first sequences (1-3) is explained mainly by the soccer player's strength and sprint capacity, but is more related to endurance as the number of sequences increase (starting with number 4).
Thus, an important and unique finding of this study is that there exists an almost perfect correlation ($\mathrm{r}=0.93$ [0.88, 0.98], $\mathrm{P}=0.000$) between $\mathrm{RSA}_{\text {best }}$ and $\mathrm{RSA}_{\text {mean } 1-3}$, whereas this relationship decreases in RSA mean4-6 $(\mathrm{r}=-0.05[-0.42,0.62])$ and RSA $_{\text {mean7-9 }}(r=-0.07[-0.44,0.30])$. These results might be due to performance in the first sprints possibly being explained by proper sprint capacity, since there is not an excessive impairment of performance ($\mathrm{Sdec}_{\text {RSA1-3 }}=1.8 \%$). However, the decrease in performance is considerable starting with the fourth sprint (0 Table 1), according with other authors [13,16]. Therefore, performance might depend on other factors, such as aerobic contribution [16]. It is probable that this absence of a relationship between $\mathrm{RSA}_{\text {best }}$ and $\mathrm{RSA}_{\text {mean4-6 }}$ and $\mathrm{RSA}_{\text {mean7-9 }}$ as well as between $R S A_{\text {best }}$ and $R S A_{\text {mean1-9 }}$ is responsible. In this regard, there is considerable controversy in the literature. We have found a study in which the relationship between $\mathrm{RSA}_{\text {best }}$ and RSA ${ }_{\text {mean }}$ was not observed [15]. On the other hand, there are studies $[12,13,28]$ that have found relationships between RSA $_{\text {best }}$ and RSA mean. In these studies, however, the sprint total distances ($180-240 \mathrm{vs} .360 \mathrm{~m}$) as well as the number of sprints (6-7 vs. 9) were lower than those used in our study. Thus, this absence of a relationship could be linked to the greater number of sprints and the longer sprint distance that may have increased the contribution of oxidative phosphorylation to the total energy expenditure $[15,16,18]$ and therefore decreased the importance of the fastest sprint in the RSA mean1-9. .
According to previous studies [4,9,27], RSA best and performance impairment were related. A plausible explanation might be that faster subjects tend to have higher percentage of fast twitch fibers [10]. Moreover, it has been reported that PCr resynthesis is slower in the fast fibers [38]. The finding that faster subjects had greater performance impairment may be related to the hypotheses presented above. On the other hand, we have observed a relationship between $\mathrm{RSA}_{\text {mean1-9 }}$ and $\mathrm{Sdec}_{\text {RSA1-9 }}$ ($\mathrm{r}=0.55$ [0.29 , 0.81], $\mathrm{P}=0.03$) in line with previous studies [15,29]. Furthermore, the exhaustive analysis of the repeated-sequences test performed every 3 sprints, showed that the relationships between $\mathrm{RSA}_{\text {mean } 1-9}$ and $\operatorname{Sdec}_{\text {RSA1-3 }}(\mathrm{r}=0.36,[0.04,0.68], \mathrm{P}=0.16)$, Sdec $_{\text {RSAA-6 }}(\mathrm{r}=0.43,[0.13,0.73], \mathrm{P}=0.09)$ and $\mathrm{Sdec}_{\text {RSA }}-99(\mathrm{r}=0.57$, [$0.32,0.82$], $\mathrm{P}=0.03$) increased with the number of sprints. These results support our hypothesis because RES performance is more related to endurance performance as the number of sprints increase.
Consistent with previous studies [26,39], we have found a relationship between a soccer player's strength and both sprint and jump performance. The finding that sets our investigation apart is that V_{1}-load was associated with $\mathrm{RSA}_{\text {best }}$ ($\mathrm{r}=-0.76$ [-0.92, -0.61$], \mathrm{P}=0.007$), $\mathrm{RSA}_{\text {mean } 1-3}(\mathrm{r}=-0.64[-0.86,-0.42]$, $\mathrm{P}=0.004$), and $\mathrm{RSA}_{\text {mean } 1-9}(\mathrm{r}=-0.52[-0.79,-0.25], \mathrm{P}=0.04)$. However, this relationship tends to decrease in the partial

RSA $_{\text {mean4-6 }}(\mathrm{r}=-0.44[-0.74,0.14], \mathrm{P}=0.10)$ and $\mathrm{RSA}_{\text {mean7-9 }}$ ($\mathrm{r}=-0.11[-0.47,0.26], \mathrm{P}=0.68$). The relationship between $\mathrm{V}_{1}-$ load and RSA was also observed by López-Segovia et al., [25] who reported that the load that maximized the mechanical power output ($\sim \mathrm{V}_{1}$-load) was associated with the soccer player's ability to maintain performance in a repeated sprint protocol of 40 m straight-line with 2 min of rest. Along this line of research, previous studies focusing on resistance training found an increase in mean performance during a repeated-sprint test [17,20]. However, while we have found a correlation with all the sprints, an analysis every 3 sprints shows that this correlation decreases as sprints are repeated in the same way as with the association observed between RSA $_{\text {best }}$ and RSA mean. . Therefore, the results of our study suggest that lower body strength, represented by sprint capacity and the magnitude of V_{1}-load, explains a portion of the performance in $R S A_{\text {best }}$ and $R S A_{\text {mean } 1-3}$, but not in $\mathrm{RSA}_{\text {mean4-6 }}$ and $\mathrm{RSA}_{\text {mean7-9. }}$. These relationships confirm the initial hypothesis, what means that the influence of strength decreases as the number of sprints increases.
Regarding blood metabolites, relationships were found between repeated explosive efforts ability ($\mathrm{RSA}_{\text {mean 1-9 }}$ and $\mathrm{CM} \mathrm{J}_{\text {mean }}$) and blood metabolites (lactate and ammonia). These relationships indicate that players who achieved better performance in efforts of this kind suffered less metabolic stress than players who achieved worse performance. Rampinini, et al., (2009) also reported that soccer players who achieved better $\mathrm{RSA}_{\text {mean }}$ produced lower blood lactate concentration ($\mathrm{r}=0.66$). Although the differences between the protocols used ($10 \times 10 \mathrm{~s}$ of running at $18 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ with 20 s of walking recovery at $5 \mathrm{~km} \cdot \mathrm{~h}^{-1}$ between each bout) make direct comparative between both studies difficult, the results observed show a relationship between blood lactate and RSA performance. With regard to blood ammonia, we have not found any study that examines the acute response of this metabolite to RSA. The observed relationship in our study between increased blood ammonia concentration and lower RES performance suggests that the decreased availability of ATP or PCr levels would limit the maintenance of performance in RES, since increased blood ammonia concentration is interpreted as indicative of net degradation of adenine nucleotides in the muscle [6].
YYIRT- 1 showed correlations with RSA $_{\text {mean } 1-9}$ and $\mathrm{CMJ}_{\text {mean }}$ when the body weight was controlled (0 Table 2). This variable has proven to be important in sequences of this type being able to differentiate RSA performance [12], and has attained strong correlations with indices of RSA before and after training [36]. Additionally, the aerobic energetic contribution would be higher when the sprints are high in number, long, and alternated with brief active recovery periods [16]. Consequently, in prolonged effort (9 sprints of average duration 7.54 s) with an active recovery that included technique skills (jumping and kicking), the aerobic contribution might facilitate a decrease in the activation of the purine cycle with lower blood ammonia concentration, as shown by the negative correlation between this metabolite and YYIRT-1 ($\mathrm{r}_{\mathrm{w}}=-0.75[-0.91,-0.59], \mathrm{P}=0.02$). The relationships found among blood ammonia, YYIRT-1 and the RES ability suggest that a higher aerobic performance may contribute to the restoration of PCr and ATP levels [38] and, thereby, improved performance in these actions. Despite the relationship found between sprint performance and jumping height $[26,39]$, the relationship between repeated sprint and repeated technical actions remains unclear. A previous study [7] examined the influence of adding a jump during repeated-sprint running
sequences. While the study found a relationship between RSA $_{\text {best }}$ and $C M J_{\text {best }}$ similar to ours ($\mathrm{r}=-0.53$ vs. -0.48), its author reported a correlation between $R S A_{\text {mean }}$ and $C M J_{\text {mean }}$ that we did not find ($\mathrm{r}=-0.58$ vs. $-0.35, \mathrm{P}=0.17$). This discrepancy might be explained by the fatigue caused in our study being higher likely for 2 reasons: 1) in our study we performed jumping but also kicking; 2) in our case the distance of every sprint was longer (40 vs. 25 m). This higher fatigue was expressed by higher values of jump height loss ($17.6 \mathrm{vs} .11 .8 \%$), blood lactate concentration ($15.0 \mathrm{vs} .10 .4 \mathrm{mmol} \cdot \mathrm{L}^{-1}$) and sprint performance decrement (5.8 vs. 3.4\%).
The kicking velocity did not show a relationship with any of the variables assessed. This finding could be explained by the fact that kicking is an action very different from sprinting or jumping. However, it seems that fatigue influences kicking velocity in similar way to affect actions such as sprinting or jumping, as shown in the correlations between $\operatorname{Sdec}_{\text {KICK }}$ and $\operatorname{Sdec}_{\text {RSA1-9 }}$, ($\mathrm{r}=0.86$ [0.76, 0.96], $\mathrm{P}=0.000$), and $\operatorname{Sdec}_{\mathrm{CMJ}}(\mathrm{r}=0.50[0.22,0.78]$, $\mathrm{P}=0.05$). We have not found any study analyzing the acute effect produced by an RSA test on kicking velocity. However, a previous study [23] examined the effect on this variable to perform an intermittent exercise that was considered to simulate soccer field conditions. However, this study did not analyze the possible relationship between ball-kicking velocity with other variables. In conclusion, the results of the present study suggest that a soccer player's strength, represented by sprint capacity and magnitude of V_{1}-load, explain a large part of the performance in the first sequences, whereas this influence is decreases as the number of sprints increases. Conversely, the aerobic capacity gains importance for performance as the number of sprints increases. Higher blood lactate and ammonia concentrations are indicators of lower mean performance in repeated maximal actions (sprinting and jumping). As a limitation of this study, we cannot perform a direct assessment between maximal oxygen uptake and the muscle fiber type as a percentage. This fact could limit a deeper interpretation of the results. Therefore, the possible mechanisms that result in performance should be interpreted cautiously. The results of the present study can contribute to raising awareness about repeating soccer-specific actions such as sprinting, jumping and kicking. A practical application of this study is that repeated sprint and specific skills sequences should be used to assess and develop the ability of team-sport players to repeat specific maximal actions, such as sprinting, jumping and kicking. As a future line of research, it would be interesting to assess the evolution of the different variables analyzed and their relationships over the course of a season or the maturation of the soccer players in general.

Conflict of interest: The authors declare no conflicts of interest. No grant support for the project was received.

[^0]5 Bishop D, Edge J, Goodman C. Muscle buffer capacity and aerobic fitness are associated with repeated-sprint ability in women. Eur J Appl Physiol 2004; 92: 540-547
6 Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK, Nevill AM. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man. J Physiol 1995; 482 (Pt 2): 467-480
7 Buchheit M. Performance and physiological responses to repeatedsprint and jump sequences. Eur J Appl Physiol 2010; 110: 1007-1018
8 Buchheit M, Spencer M, Ahmaidi S. Reliability, usefulness, and validity of a repeated sprint and jump ability test. Int J Sports Physiol Perform 2010; 5: 3-17
9 Castagna C, Manzi V, D’Ottavio S, Annino G, Padua E, Bishop D. Relation between maximal aerobic power and the ability to repeat sprints in young basketball players. J Strength Cond Res 2007; 21: 1172-1176
10 Colliander EB, Dudley GA, Tesch PA. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions. Eur J Appl Physiol 1988; 58: 81-86
11 Comfort P, Stewart A, Bloom L, Clarkson B. Relationships between strength, sprint, and jump performance in well-trained youth soccer players. J Strength Cond Res 2014; 28: 173-177
12 Chaouachi A, Manzi V, Wong del P, Chaalali A, Laurencelle L, Chamari K, Castagna C. Intermittent endurance and repeated sprint ability in soccer players. J Strength Cond Res 2010; 24: 2663-2669
13 da Silva JF, Guglielmo LG, Bishop D. Relationship between different measures of aerobic fitness and repeated-sprint ability in elite soccer players. J Strength Cond Res 2010; 24: 2115-2121
14 Dawson B, Fitzsimons M, Ward D. The relationship of repeated sprint ability to aerobic power and performance measures of an aerobic work capacity and power. Aust J Sci Med Sport 1993; 25: 88-93
15 Dupont G, Millet GP, Guinhouya C, Berthoin S. Relationship between oxygen uptake kinetics and performance in repeated running sprints. Eur J Appl Physiol 2005; 95: 27-34
16 Dupont G, McCall A, Prieur F, Millet GP, Berthoin S. Faster oxygen uptake kinetics during recovery is related to better repeated sprinting ability. Eur J Appl Physiol 2010; 110: 627-634
17 Edge J, Hill-Haas S, Goodman C, Bishop D. Effects of resistance training on $\mathrm{H}+$ regulation, buffer capacity, and repeated sprints. Med Sci Sports Exerc 2006; 38: 2004-2011
18 Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 1993; 75: 712-719
19 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med 2013; 34: 1025-1028
20 Hill-Haas S, Bishop D, Dawson B, Goodman C, Edge J. Effects of rest interval during high-repetition resistance training on strength, aerobic fitness, and repeated-sprint ability. J Sports Sci 2007; 25: 619-628
21 Ingebrigtsen J, Jeffreys I. The relationship between speed, strength and jumping abilities in elite junior handball players. Serb J Sports Sci 2012; 6: 83-88
22 Keiner M, Sander A, Wirth K, Schmidtbleicher D. Long-term strength training effects on change-of-direction sprint performance. J Strength Cond Res 2014; 28: 223-231

23 Kellis E, Katis A, Vrabas IS. Effects of an intermittent exercise fatigue protocol on biomechanics of soccer kick performance. Scand J Med Sci Sports 2006; 16: 334-344
24 Kin-Isler A, Ariburun B, Ozkan A, Aytar A, Tandogan R. The relationship between anaerobic performance, muscle strength, and sprint ability in American football players. Isokinet Exerc Sci 2008; 16: 87-92
25 López-Segovia M, Dellal A, Chamari K, González-Badillo JJ. Importance of muscle power variables in repeated and single sprint performance in soccer players. J Hum Kinet 2014; 40: 201-211
26 López-Segovia M, Marques MC, van den Tillaar R, González-Badillo JJ. Relationships between vertical jump and full squat power outputs with sprint times in u21 soccer players. J Hum Kinet 2011; 30: 135144
27 Mendez-Villanueva A, Hamer P, Bishop D. Fatigue in repeated-sprint exercise is related to muscle power factors and reduced neuromuscular activity. Eur J Appl Physiol 2008; 103: 411-419
28 Pyne DB, Boston T, Martin DT, Logan A. Evaluation of the Lactate Pro blood lactate analyser. Eur J Appl Physiol 2000; 82: 112-116
29 Pyne DB, Saunders PU, Montgomery PG, Hewitt AJ, Sheehan K. Relationships between repeated sprint testing, speed, and endurance. J Strength Cond Res 2008; 22: 1633-1637
30 Rampinini E, Bishop D, Marcora SM, Ferrari Bravo D, Sassi R, Impellizzeri $F M$. Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players. Int J Sports Med 2007; 28: 228-235
31 Rampinini E, Sassi A, Morelli A, Mazzoni S, Fanchini M, Coutts AJ. Repeated-sprint ability in professional and amateur soccer players. Appl Physiol Nutr Metab 2009; 34: 1048-1054
32 Requena B, Gonzalez-Badillo JJ, de Villareal ES, Ereline J, Garcia I, Gapeyeva H, Paasuke M. Functional performance, maximal strength, and power characteristics in isometric and dynamic actions of lower extremities in soccer players. J Strength Cond Res 2009; 23: 13911401
33 Sahlin K. Metabolic factors in fatigue. Sports Med 1992; 13: 99-107
34 Sanchez-Medina L, Perez CE, Gonzalez-Badillo JJ. Importance of the propulsive phase in strength assessment. Int J Sports Med 2010; 31: 123-129
35 Sanchez-Medina L, Gonzalez-Badillo JJ. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med Sci Sports Exerc 2011; 43: 1725-1734
36 Serpiello FR, McKenna MJ, Stepto NK, Bishop DJ, Aughey RJ. Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 2011; 111: 669-678
37 Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport 2006; 9: 181-184
38 Tesch PA, Thorsson A, Fujitsuka N. Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J Appl Physiol 1989; 66: 1756-1759
39 Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med 2004; 38: 285-288

[^0]: References
 1 Aziz AR, Chia M, Teh KC. The relationship between maximal oxygen uptake and repeated sprint performance indices in field hockey and soccer players. J Sports Med Phys Fitness 2000; 40: 195-200
 2 Aziz AR, Mukherjee S, Chia MY, Teh KC. Relationship between measured maximal oxygen uptake and aerobic endurance performance with running repeated sprint ability in young elite soccer players. J Sports Med Phys Fitness 2007; 47: 401-407
 3 Bishop D, Spencer M, Duffield R, Lawrence S. The validity of a repeated sprint ability test. J Sci Med Sport 2001; 4: 19-29
 4 Bishop D, Lawrence S, Spencer M. Predictors of repeated-sprint ability in elite female hockey players. J Sci Med Sport 2003; 6: 199-209

