
PANOS FIRBAS NISANTZIS

COMPARATIVE FUNCTIONAL GENOMICS
AND

ARTIFICIAL NEURAL NETWORKS
FOR THE STUDY OF THE

EVOLUTION OF
CIS-REGULATION

Tesis Doctoral

Supervisors:

Universidad Pablo de Olavide, Sevilla 2019

José Luis Gómez-Skarmeta

Programa de doctorado:

Centro Andaluz de Biología del Desarrollo
Regulación génica y morfogénesis

Biotecnología, Ingeniería y Tecnología Química

Ignacio Maeso

v

Declaration of Authorship
I, Panos Firbas Nisantzis, declare that this thesis titled, “Comparative func-
tional genomics and artificial neural networks for the study of the evolu-
tion of cis-regulation” and the work presented in it are my own. I confirm
that:

• This work was done wholly or mainly while in candidature for a
research degree at this University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other in-
stitution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with oth-
ers, I have made clear exactly what was done by others and what I
have contributed myself.

Signed:

Date:

vii

As you set out for Ithaka
hope the voyage is a long one
full of adventure, full of discovery.

Laistrygonians and Cyclops,
angry Poseidon—don’t be afraid of them:
you’ll never find things like that on your way
as long as you keep your thoughts raised high,
as long as a rare excitement
stirs your spirit and your body.

Laistrygonians and Cyclops,
wild Poseidon—you won’t encounter them
unless you bring them along inside your soul,
unless your soul sets them up in front of you.

Hope the voyage is a long one.
May there be many a summer morning when,
with what pleasure, what joy,
you come into harbors seen for the first time;
may you stop at Phoenician trading stations
to buy fine things,mother of pearl and coral, amber and ebony,
sensual perfume of every kind — as many sensual perfumes as you can;
and may you visit many Egyptian cities
to gather stores of knowledge from their scholars.

Keep Ithaka always in your mind.
Arriving there is what you are destined for.
But do not hurry the journey at all.
Better if it lasts for years,
so you are old by the time you reach the island,
wealthy with all you have gained on the way,
not expecting Ithaka to make you rich.

Ithaka gave you the marvelous journey.
Without her you would not have set out.
She has nothing left to give you now.

And if you find her poor, Ithaka won’t have fooled you.
Wise as you will have become, so full of experience,

you will have understood by then what these Ithakas mean.

-Ithaka, C.P.Cavafy

ix

UNIVERSIDAD PABLO DE OLAVIDE

Resumen

Centro Andaluz de Biología del Desarrollo

Regulación génica y morfogénesis

Doctor of Philosophy

Comparative functional genomics and artificial neural networks for
the study of the evolution of cis-regulation

by Panos Firbas Nisantzis

La regulación transcripcional es el primer y quizás más importante paso de la reg-
ulación génica, una compleja serie de dinámicas que, en última instancia, controla
qué cantidad de producto génico se expresará en una célula en cada momento.
Los distintos niveles de actividad transcripcional y la acumulación diferencial de
tránscritos resultante conducen a la diferenciación celular, la piedra angular de la
vida multicelular.

La transcripción se regula mediante la interacción de distintas proteínas (factores
en trans) que se unen al ADN en sitios específicos del genoma (elementos cis).
Las primeras llamadas Factores de Trancripción y a los segundos Elementos Reg-
uladores en Cis (TFs y CREs respectivamente, por sus siglas en inglés).

Estudiada desde la perspectiva de la evolución genómica, la regulación transcrip-
cional es excepcionalmente interesante. Los CREs pueden evolucionar con rela-
tiva rapidez y se considera que sus cambios son el motor principal de la evolución
morfológica en animales. Así, una pequeña modificación que afecte a un sitio de
unión de un TF durante el desarrollo embrionario podría dar lugar a efectos en
cascada y alterar profundamente la forma del organismo.

http://faculty.university.com

x

En este trabajo, nos enfrentamos a dos aspectos de este amplio campo de investi-
gación.

Para la primera parte del trabajo, investigaremos la evolución de la regulación en
cis en el origen de los vertebrados. Para ello, empleamos el exhaustivo conjunto
de datos genómicos, transcriptómicos y epigenómicos que generamos para el an-
fioxo mediterráneo (Branchiostoma lanceolatum). El anfioxo es un organismo
ideal para tales investigaciones ya que, por varias razones tanto genómicas como
morfológicas, se puede considerar que es el linaje existente que guarda una mayor
similitud con el ancestro común de todos los cordados. Contrapondremos los
datos de anfioxo con la igualmente extensa colección de datos que hemos gener-
ado para el pez cebra, así como con datos adicionales de peces medaka y de ratón.

Para la segunda parte, nos centramos en el problema de identificar sitios de unión
de TFs en el genoma. Aplicamos un enfoque matemático de vanguardia, una red
de convolución o red neuronal (NN) que integra al mismo tiempo información
de secuencia genómica con información de señal de ATAC-seq, para predecir
con precisión sitios reales de unión de TFs usando únicamente experimentos de
ATAC-seq. En este trabajo presentaremos nuestra NN y los resultados obtenidos
al compararla con otras técnicas actuales. Estos resultados muestran que nuestro
método puede resultar muy valioso en análisis genómicos actuales, ya que permite
reemplazar con un solo experimento de ATAC-seq múltiples experimentos de
ChIPseq, reduciendo de manera muy significativa los costes y el tiempo de los ex-
perimentos de secuenciación. Además, nuestra NN puede ser entrenada primero
en una especie con datos de ChIPseq previamente disponibles y usarse después
en otras especies diferentes, un enfoque que es particularmente atractivo para re-
alizar comparaciones evolutivas, especialmente en el caso de nuevos organismos
modelo.

xi

Comparative functional genomics and artificial neural networks for
the study of the evolution of cis-regulation

Transcriptional regulation is the first and perhaps most important step in gene
regulation, a complex set of dynamics that ultimately controls how much of a
gene’s product a cell will produce at any moment in time. Differential gene tran-
script levels and the resulting accumulating differences drive cell differentiation
which is the cornerstone of multicellular life.

Transcription regulation happens through the interplay of trans- acting proteins
which bindDNAon specific cis-acting sites of the genome. We call the first Tran-
scription Factors (TFs) and the second Cis-Regularoty Elements (CREs). The
study of transcription regulation is exceptionally interesting through the lens of
genomic evolution. CREs evolve faster over time and are considered the primary
driver of animal form evolution. A relatively small change that influences a target
site for a TF during development might have cascading effects and dramatically
change the organism’s form.

In this work, we face two parts of this broad research field. For the first part of
the work, we will investigate the evolution of cis-regulation at the root of the
vertebrate tree. To do this, we will rely on a very thorough dataset of genomic,
transcriptomic and epigenomic data that was generated for the Mediterranean
amphioxus (Branchiostoma lanceolatum) that includes a de novo sequenced and as-
sembled genome. Amphioxus is an ideal organism for such inquiries since, for a
number of good reasons, it can be considered to be very similar to what the com-
mon ancestor of all chordates once was.We will juxtapose this amphioxus dataset
against an equally exhaustive dataset on zebrafish, as well as additional data, from
medaka and mouse.

For the second part, we focus on the problem of identifying TF binding sites
on the genome. We apply a state of the art mathematical approach, a convolu-
tion network or neural network, to integrate genomic sequence information and
ATAC-seq signal information at the same time to accurately predict real TF bind-
ing sites. This can prove to be a very valuable tool in modern genomic analysis
since many CHIPseq assays for different TFs can be replaced with a single ATAC-
seq experiment, significantly cutting costs in time and sequencing. Furthermore,
this tool can be trained in a species where data is available and then used in a

xii

different species, an approach that is particularly appealing for evolutionary com-
parisons and even more so for novel model organisms. We will present the NN
and results obtained when comparing it to the current state of the art.

xiii

Acknowledgements

I would like to thank my supervisor Dr.José Luis Gómez-Skarmeta for setting off
this adventure by inviting me in his lab, and for maintaining it with his support
and guidance. I am immensely grateful to my co-supervisor Dr. Ignacio ”Nacho”
Maeso for his support, mentoring, and friendship.

I would also like to personally thank Dr. Juan Tena and Dr. Silvia Naranjo who
took me under their wings when I reached Sevilla and showed me the ropes of
wet and dry biology. My gratitude also goes out to Dr. Manuel Irimia, for our
brilliant collaboration that produced the bulk of this work here. It has been an
immensely pleasant and didactic experience.

The DEVCOM network was a huge part of this chapter of my life, so I would like
to expressmy gratitude to everyone involved in it, supervisors and students. It has
really been an unforgettable experience. While on the topic of the ITN, I would
like to express my appreciativeness to some people whose faces or names I do
not know. That is, those responsible for the Marie Skłodowska-Curie Actions. I
wish for a future with manymore programs that support young scientists in basic
research with livable salaries.

I would also like to thank professor Boris Lenhard for his warm welcome, the
great work, and the generally great time I had in my secondment in his lab in
London. The same goes for professor Gert Jan Veenstra and Dr. Simon van
Heeringen for my secondment in Nijmegen and also to everyone in both labs. It
was a great pleasure to work with you even for the short time of the secondments.
Equally so for Dr. Héctor Escrivà, whose hospitality cannot be exaggerated, and
his lab in Banyuls-sur-Mer.

Further, I would like to warmly thank all my lab-mates, all CABDites, as well as
all my friends in Spain, Greece, Portugal, the Netherlands, the U.K. or wherever
else in the world your lives lead you. I would also like to thankmy family for their
love and support, most of all my parents, for providing a rock-solid foundation
in my life, encouraging me in everything I have ever attempted, and for leading
exemplary lives.

Finally, I would like to thank Renata for her love and companionship, and for
inspiring me to work hard and follow my dreams.

xv

To my parents,
who are unfailingly there for me

xvi

FOREWORD: A FEW WORDS ON THE THESIS
ITSELF

Adoctoral dissertation is the culmination of a doctorate candidacy. The defendant
is called to present the context and the results of their work, and is expected to
demonstrate expertise and novelty. This author feels very strongly that the struc-
ture of the document itself is a field where expertise and novelty can be shown,
and that it should be subject to improvements when those serve the dissemination
of knowledge which is the goal of academic writing.

For this, and with the conviction that transparency and reproducibility are the
twomost important pillars of scholastic integrity, theMethods sectionwere struc-
tured around a modern, digital type of document. These documents, also known
as notebooks 1, allow a user to interweave beautifully formatted text with pro-
gramming code and figures. In a single document we can present our thought
process (in the text), the very actual method (the code) and the results (the figure)
side by side.

On account of the methods being structured this way, someone can download the
digital copy of the thesis and the assorted data and directly execute ourmethods on
their ownmachine. We feel that this is a very intuitive, transparent and complete
method of sharing scientific work. In fact, almost all of the figures presented in
this work can be produced de-novo by running the provided notebooks and using
the provided data.

The compilation script runs all of the notebooks and includes their output figures
in the final thesis document. It also formats the notebooks in a print-friendly form
and includes them as chapters in our Methods section of the thesis document.
Because the notebooks include programming code, they are very lengthy which
makes them unsuitable to include between the introduction and results, so we
have included them at the end of the document.

The only analyses that are not automated like this are those corresponding to the

1Jupyter notebooks: https://jupyter.org/

xvii

very first steps of analyzing high-throughput data, which are too large to dis-
tribute with the thesis 2, and the neural-network tests which require too much
computing time to meaningfully automate. Of course all steps have been docu-
mented and are appropriately presented.

The author feels that this approach provides more detailed than typical presenta-
tion of themethods used, without interrupting the flow of the document between
the introduction and the results and that the departure from norm is thusly justi-
fied.

REPOSITORY / CONTACT INFORMATION

An online repository for the thesis can be found at

https://gitlab.com/panosfirbas/dissertation

Further the author can be contacted at

panosfirbas[at]protonmail.com

2 Nevertheless the appropriate scripts are provided so that these steps can also be
recreated

xviii

Contents

Declaration of Authorship v

Resumen ix

Abstract xi

Acknowledgements xiii

Foreword: A fewwords on the Thesis itself xvi

Repository - Contact Info xvii

I Introduction 1
0.1 Transcription Regulation . 5

1 Trans-Regulation 7
1.1 DNA-protein Binding . 7
1.2 Wet lab techniques . 9
1.3 Dry lab techniques . 11

PWMs . 12
Other seq-based approaches 12

1.4 Neural Networks . 13
How NNs work . 14

1.5 Other non seq-based approaches 18
1.6 Nimrod . 20

2 Cis-Regulation 23
2.1 Cis-Regulation . 23

Promoters . 24
Enhancers . 24

2.2 Chromatin accessibility . 25
ATAC-seq . 26

2.3 Histone modifications . 30
H3K4me3 . 32
H3K27ac . 33

xix

2.4 Under the light of Evolution . 33
on the Tree of life . 34
Amphioxus . 36
Whole Genome Duplications 36

3 Objectives 39

II Results: The origins of vertebrate gene regulation 41

4 Introductory Analyses 43
4.1 The genomes . 43
4.2 Intergenic regions . 45
4.3 GREAT regions . 46
4.4 Histone Modification ChIP-seq 47

Width of peaks . 48
Number of peaks/ Genome coverage 49

4.5 ATAC-seq . 52
4.6 CRE-TSS distances . 53
4.7 Higher regulatory content . 55

Matched genomic region sizes 56
Downsampling . 59

5 Conservation of cis regulation 61
5.1 NACC . 61
5.2 The phylotypic period . 64
5.3 Gene Modules . 67

TheWGCNA analysis . 67
Homologous Gene Content 68
Cis-Regulatory Content . 70

6 Regulatory content and gene fate afterWGD 75
Gene Fate after WGD . 75
CREs per paralog . 77
Increased regulatory complexity in functionally specialized ohnologs
. 78

III Results: Detecting TF binding with a Neural Network 85
6.1 Training concepts . 88

Choice of data . 88
Batch size . 89
Learning rate . 90
Early stopping . 90

xx

Evaluating a classifier . 91
6.2 CTCF and p63 . 92

7 Architecture 95
7.1 The first two layers . 95
7.2 Merging the first two layers . 99
7.3 The deeper layers . 100

8 Training results 105
8.1 Early stopping . 105
8.2 Batch size . 106
8.3 Learning rate . 107

9 Performance and comparison with other tools 109
9.1 Cross species . 111

IV Discussion 115

10 Evolution of Cis regulation 117
10.1 Conservation of CREs . 117

Functional conservation . 119
10.2 Complexity . 120

Complexity andWGD . 121
10.3 Fate . 124

11 On artificial Neural Networks and TF binding sites 127

12 Conclusions 131

V Methods 133

13 Notebooks 135
13.1 PWMs used . 135
13.2 TF annotation and TF binding specificity prediction 136
13.3 TF motif mapping onto ATAC-seq peaks 137
13.4 GenomeSizes . 137
13.5 Intergenic and GREAT size distributions 141
13.6 Make TSS files . 143
13.7 Make GREAT-like files . 148
13.8 Make Intergenic region files . 151
13.9 ChIP-seq overview . 152
13.10 ATAC-seq overview . 166
13.11 CRE-TSS distances . 172
13.12 CRE count distributions . 180

xxi

13.13 CRE count stratified . 197
13.14 Downsampling . 203
13.15 Cis-content Phylotypic . 208
13.16 Module-module comparisons 219
13.17 NACC . 235

VI Appendices 245
13.18 Tables . 247
13.19 Nimrod data . 248
13.20 ATAC-seq data . 249
13.21 Genomes . 249
13.22 RNA assays . 249

References 255

List of Figures 274

List of Tables 274

1

Part I

Introduction

3

Gene Regulation

All cells in an organism share the same genetic library. The dynamics that drive
the differential usage of this library, in time and in space allowed for multicel-
lularity, tissue specification, organ-formation, axis formation and more. In other
words, without the ability to use the genetic informationwritten on their genomes
in various ways, the clones of cells would only be able to form unicellular colonies
instead of the great variety of organisms that exist.

These dynamics, or regulation of gene expression (gene-regulation), are con-
trolled bymechanisms in essentially every step of the production of a gene product
(protein or RNA). They dictate how much, of which protein, at what time, will
be produced. In this work, we will focus on the first and arguably most important
of those steps, the regulation of transcription; how much RNA will be produced
from a given gene’s coding sequence. Later steps such as RNA-processing, RNA-
transfer or translation are also important, but out of the scope of this work.

During development, an organism has to unpack all of its complexity out of a sin-
gle cell, from a single copy of its genome 3 (and some maternal RNA that jump-
starts the process). Everything needs to run smoothly at this stage since small di-
vergences from “the program” can have big consequences for the organism. It is in
this stage of an organism’s life that we encounter the greatest complexity in gene

3 This might mean a different number of copies per chromosome, depending on the
species

4

expression patterns, and where gene-regulation mechanisms have the biggest ef-
fects. Small deviations in regulation during development can lead to significant
changes in form [1] and since form can influence reproductive success, gene reg-
ulation is under heavy evolutionary pressure.

The dynamics of transcription-regulation during development and through evo-
lution bring together three fields of research and the interesting questions that
can be asked rise exponentially.

In the duration of this work, we attempted to answer a number of these ques-
tions, with a varying degree of success. Here, we present two bodies of our work
that yielded the most noteworthy insights and results. One is the development
of a modern informatics tool to detect where proteins bind on the DNA, an im-
portant question as will be discussed, and the other is the analysis of a rich set of
epigenomic data in an attempt to shed light in some of the aspects of regulatory
evolution of vertebrates.

0.1. Transcription Regulation 5

0.1 TRANSCRIPTION REGULATION

Since the 80s when DNA elements were starting to get investigated for their role
in transcription[2][3] [4],we learned to talk about enhancers, promoters, insula-
tors, ultra-conserved regions, transcription factors, transcription-factor binding
sites, chromatin accessibility, chromatin modifications and so on and so forth.

Our eyes have been opened to the vast complexities of transcription regulation
and the relevant vocabulary is taking shape. Our current understanding, simpli-
fied (Fig. 1), is that some proteins (Transcription Factors) bind on somehow spe-
cific locations on the DNA molecule and help regulate gene transcription. They
do this through complex interactions with other such proteins that bind on prox-
imal or distal positions, or proteins that do not directly bind DNA but are nev-
ertheless important for the interactions, as well as other molecules such as non-
coding RNAs etc. The way that all this influences gene transcription is through
the facilitation or obstruction of the binding of the proteins that actually tran-
scribe DNA (transcriptionalmachinery), on the locationswhere they need to bind
in order to start the transcription. This in essence turns transcription on or off
and controls the gene’s production.

Transcription Start SiteLocal Transcription Factors

Distal Transcription Factors The Transcriptional "Machinery"

Co-Factors

The gene bodyDNA

Figure 1: Transcription Regulation: A simplified model. Transcription Factors
bind on specific locations of the genome and control transcription by
bringing the transcriptional machinery to the gene’s transcription start
site.

7

1

Trans-Regulation

1.1 DNA-PROTEIN BINDING

Wecall theseDNA-binding, transcription-regulating proteinsTranscriptionFac-
tors (TF). They act on a different molecule than themselves (trans) so we call gene
regulation, when investigated through these proteins, trans-regulation.

TFs bind toDNA throughphysical interactions between the amino acid side chains
of the protein and the accessible edges of the base pairs of the DNA molecule.
Those include direct hydrogen bonds, water-mediated hydrogen bonds and hy-
drophobic contacts. [5]

We can categorize proteins based on the domains 1 that they consist of. TFs con-
tain domains that make contact with the DNAmolecule by presenting a protrud-
ing surface and/or a flexibly extended structure [6]. We call these ‘binding do-
mains’ and they are a useful way of classifying TFs into families.

1protein fragments that can fold correctly without the rest of the polypeptide

8 Chapter 1. Trans-Regulation

In humans for example, themost abundandTF family, the C2H2 family, is charac-
terized by zinc-finger binding domains, a protein motif that is coordinated by one
or more zinc Ions. The second most abundant family, called the homeodomain
family, is characterized by a type of loop-helix-loop binding domain[7]. These are
just two examples from the big variety of TF families that have evolved in eukary-
otes[8]. The other partner of this interaction, the DNA molecule, also presents
itself in a variety of shapes and is not always found in its canonical (B-DNA) dou-
ble helix form [9, 10] further complicating the dynamics of protein-DNA inter-
actions.

BINDING SITES

In order to study trans regulation, a common first question is “where does protein
X bind on the genome”. Between the various shapes of both the TFs and the
DNA molecule, a plethora of emerging features seem to contribute in TF-DNA
readout, on multiple levels. First and foremost, at least in terms of frequency of
use in research, is the strong preference for specific genomic sequence patterns
that many TFs display [11–17].

Every base pair has a unique hydrogen bonding signature (in the major groove,
not in theminor) making it intuitive to imagine a sort of “alphabet” or code on the
genomic sequence that TFs would recognize, much like tRNA molecules recog-
nize trinucleotides. Specific sequence patternswill create specific hydrogen bond-
ing signatures on the DNAmolecule, to which different TFs will bind with differ-
ent affinity. Thanks to observations derived from three-dimensional structures of
protein-DNA complexes [18], the base-readout mechanism of TF-DNA binding
has been very well established, but is nevertheless not the entire picture.

In some cases, the nucleotide sequence offers binding opportunities not by hy-
drogen bonds on the major groove, but rather by conforming the DNAmolecule.
A good such example is the opening of the minor groove in the complex formed
between TBP and the TATA box [19, 20]. In another case, a Drosophila Hox
protein is shown to bind to particular minor groove narrowings which emerge
as sequence specific characteristics and create a local dip in electrostatic potential
[9].

1.2. Wet lab techniques 9

SomeTFs form complexeswith non-binding factors 2which can change the bind-
ing affinity of the complex [21, 22]. Some need to be bound in multifactor com-
plexes [23]. Some factors contain multiple independent DNA binding domains.
[24]

Most of the DNA is usually found in a tightly packed chromatin state, occupied by
nucleosomes. Histones, the protein parts of nucleosomes, are the most important
DNA binding proteins and their dynamics and their effects on gene regulation
are complex enough to warranty a section later on in this work. Some factors are
heavily deterred by nucleosome occupancy [25–27] while others compete with
nucleosomes [28, 29], potentially interacting with them [30–32] (Fig. 1.1).

Besides all that, the DNA might be methylated which can inhibit or promote TF
binding [33].

Unfortunately then, answering the “where does it bind” question is anything but
simple.

Transcription Factors

Chromatin

DNAHistone Nucleosome

Figure 1.1: The chromatin, as viewed in the ”Beads on a string” model. Different
TFs have different preferences with regards to their binding sites.

1.2 WET LAB TECHNIQUES

The identification of TF Binding Sites (TFbs) has relied heavily on structural bi-
ology and more recently in modern, high-throughput technologies have helped
yet another research area, identifying TFbs.

2 Also known as co-factors

10 Chapter 1. Trans-Regulation

The Encyclopedia of DNA Elements (ENCODE) Consortium, an international
collaboration of research groups with the goal of cataloging the functional ele-
ments of the human genome, tackles the problem of identifying TFbs with ChIP-
seq3 assays against TFs (listing about 2500 such assays in human context so far).

This technique is the currently best wet-lab approach to answer the question: “In
this biological sample, which parts of the genome are more likely to be bound
to protein X” with direct evidence.With ChIP-seq, we can detect regions on the
genome that interact with a protein of our choice (for which an appropriate anti-
body must be available). Very briefly (Fig. 1.2), we cross-link proteins and DNA
and then fragment the chromatin. We immuno-precipitate 4 the protein of in-
terest while it is still bound to DNA and then isolate the DNA and sequence the
fragments that were collected. The sequenced fragments are then mapped on a
reference genome (Fig. 1.3). The regions of the reference genome where we de-
tect more reads than expected are the regions of the genome that were touching
our protein in vivo. The results of such an assay, after some statistical analysis,
are regions (that can range in size up to 300bp or more) where we have high
confidence that our favorite protein binds.

For some questions that a researcher might have, this resolution will be limit-
ing. To increase the resolution and have a single-base-resolution predictions, we
combine our direct-evidence data with computational methods.

3Chromatin ImmunoPrecipitation with sequencing
4We ’pinch’ our protein with a targeted antibody to isolate it from the rest of the

sample

1.3. Dry lab techniques 11

Histone

Histone antibody
TF antibody

Histone antibody

DNA

TF

TF antibody

DNA

sequencing reads

sequencing reads

reference genome

reference genome

a b c

Figure 1.2: ChIP-seq simple model: With targeted antibodies (a), we isolate our
protein of choice while it’s still attached toDNA (b). We finally sequence
this DNA and align it on a reference genome (c).

Figure 1.3: By mapping the sequenced reads from a ChIP-seq experiment on a
genome, we generate a count of reads at each base-pair. These counts
can be visualized as a signal over the genome. Here, various such signals
are shown in different colors around the TSS of a gene.

1.3 DRY LAB TECHNIQUES

Computationalmethodsmodel theTF-DNA interactions, using knowledge gained
by direct-evidence experiments, and then apply the model in order to offer pre-
dictions on conditions for which direct-evidence data is not available. The goal
of any such approach is to reach the predictive power of a molecular biology assay
but of course this is, for now, impossible. Nevertheless, these techniques are inte-
gral to modern regulation analysis since they can be applied essentially for free in
comparison to biological assays and even though the results are technically imper-
fect, they are still very useful for biological predictions of high quality, especially
when used in tandem with biological data.

12 Chapter 1. Trans-Regulation

1.3.1 PWMS

The most commonly used of these models are the Position Weight Matrices (
PWMs) which exploit the observation that many TFs have a strong preference
for specific genomic sequence patterns [5].

A PWM then, models a certain number of bases and contains a weight for each
of the 4 nucleotides in each of those positions [11](a weight per base for each po-
sition: a position weight matrix). These simple mathematical objects can lead to
very fast sequence searches [34] and perhaps more importantly, can be visualized
in a very intuitive way (Fig. 1.4). As a consequence they have been used exten-
sively to identify putative sites of TFs. In fact they are often found as the basis of
more complex computational methods.

In comparison to consensus sequences, an earlier approach to this concept, PWMs
handle mismatches in a more plastic way, since they can score each base in each
position separately instead of relying in a perfectmatch or not, but there are draw-
backs in this model as well. For example, PWMs incorrectly assume that each
position contributes independently in the binding and they don’t account for po-
sition interdependencies [35].

a b

Figure 1.4: A position weight matrix on the right (ID #MA0139) and its logo on the
left, for the transcription factor CTCF

1.3.2 OTHER SEQ-BASED APPROACHES

Plenty of effort has been invested in improving or surpassing PWMs. From im-
proving the PWM model [36, 37], to alternative models such as dinucleotide
weight matrices [38], alternative heuristic approaches [35], hiddenMarkovmod-
els, variable-order Bayesian networks or the TF Flexible Model [35]. Despite the

1.4. Neural Networks 13

plethora of alternatives, nomethod has managed, yet, to replace PWMs as the ba-
sic model to detect single base resolution TFbs. PWMs are improved over time,
as new direct-evidence data is collected, they are fast to implement and very in-
tuitive owning to their ability to be represented as logos.

1.4 NEURAL NETWORKS

Artificial Neural Networks (NN) are computer systems or frameworks, not a spe-
cific algorithm themselves. They are inspired by biological neural networks and
employ a variety of algorithms towork.They are enjoying an era of great develop-
ment and popularity, thanks to advancements in technology, namely the increased
computational power of Graphics processing units (GPU) and landmark papers
such as the work by Krizhevsky et al. in [39], that firmly established NNs at the
forefront of computer vision, artificial intelligence and machine learning. A few
years into this explosion of NNs, NN-based programs are the best chess-playing
“algorithms” and have managed, for the first time, to beat human champions in
the game of Go, one of the last bastions of human intellectual supremacy over the
machine.

Nevertheless, NNs are not a new idea; the theoretical base was already explored
in the 19th century. In fact, the perceptron algorithm, a simple artificial NN, was
at the core of the development of PWMs [11, 40].

Artificial NNs are heavily inspired by real biological neural networks, but that
similarity helpsmostly inmaking themodel’s designmore intuitive. Amore prag-
matic description of the NN is as a very complex, impressively capable and effi-
cient, linear algebra model. What can be abstracted as neurons for the benefit of
human intuition, is distilled in largematrix operations. That is whyNNs resurged
after sufficiently powerful GPUs were developed; GPUs are exceptionally good at
handling big matrix operations (this is what computer graphics boils down to as
well).

14 Chapter 1. Trans-Regulation

Figure 1.5: An iconic figure from Krizhevsky et al. 2012 [39] (cited 27801 times
according to google scholar)

1.4.1 HOW NNS WORK

NNs are a generalized framework with many different manifestations so fully ex-
plaining them is beyond the scope of this work and the expertise of the writer.
NNs were quickly employed with success in genomic analyses and became the
bleeding edge of TFbs analyses so we will limit ourselves to presenting a sim-
ple/general NN as they have been employed in genetic analyses. This is a one
dimensional model in comparison to the typically two dimensional image analy-
sis models. Furthermore, we will not delve in many of the inner workings of the
model such as backpropagation or batching, learning rates etc.

NNs work in ‘layers’, conceptually layers of neurons. Each layer reads from the
layer ‘below’ it and outputs to the layer ‘above’ it. The first layer ‘reads’, or takes as
input, the raw input (an image, a sound wave, a genomic sequence). The second
layer reads, or takes as input, the output of the first layer. The third layer reads
the second and so on. The last layer’s output is the output of the entire model.

For a NN model that works with genomic sequences, the position weight matrix
that was discussed above (see Chapter 1.3.1) is a great starting point to explain
how such a system works.

Let us consider a simpler, 3 positions long PWMand a toy genomic sequence. To
employ the PWM, we ‘place’ it on the first position of our sequence.

We calculate the score of the PWM in that position by getting the proper score
for each of the three positions and adding them up (simplified). In our example,
we get 0 for the G in the first position, 1 for the A in the second and 0 again for

1.4. Neural Networks 15

the C in third for a total score of 1.

We continue by ‘sliding’ the PWM one position at a time and calculating a score
in each position. In our example, the second position on the sequence gets a total
score of 0 and the third position gets a score of 2.

We continue sliding the PWM along the sequence until we have a score for every
possible position.

16 Chapter 1. Trans-Regulation

We have now created a second sequence, of numbers instead of nucleotides. The
normal PWM analysis would continue to identify which of the scores on that se-
quence are statistically significant and output the best positions as putative bind-
ing sites for the PWM.

In each of the positions on the sequence where we placed our PWM, we read
three nucleotides of the sequence and output one number. Instead of thinking in
terms of sliding amatrix along the sequence, we can think about a layer of neurons
stretched along our sequence.

This is what the first layer of a one dimensional NN looks like. The second layer
takes the output of the first layer as its input

We can addmore layers like these, or slightly different depending on the nature of
the problem. A very common layer type is what is called a “fully connected layer”.
That can be perceived as a single neuron that takes as input all of the neurons of

1.4. Neural Networks 17

the previous layer. One of these almost always lies at the end of a neural network,
serving as the output layer.

An important detail, is that in our abstraction so far, each neuron outputs one
value. In NN applications, neurons contain more than one weight matrix and
output multiple values, one for each matrix. In other words, each layer (neurons
of the same layer share matrices) concurrently learns multiple weight matrices
and outputs one value for each to the downstream layers. In NN jargon, we call
these channels, and interpret them as different channels of information.

The weight matrices of the neurons are computed in the training phase. Dur-
ing that phase,we present to the model a large number of sequences, each one
accompanied by a label, stating if the sequence is what we are looking for or not.

For each sequence shown to the model, its values are fed to and pass through
the network of neurons and the final output value of the network is produced.
During the training phase, the network adapts its internal weight matrices so that
its output value can best predict the real label of each sequence.

After having seen all the input data for a number of times, the model cannot im-
prove its matrices anymore, at which point the training phase has finished. We
nowhave amodel, with innermatrices that are unknown to us (hidden layers) but

18 Chapter 1. Trans-Regulation

configured in a way that the model as a whole is as good as possible at predicting
the label of the sequence, for example whether it is a TF binding site or not.

We can now use the model to make predictions in a set of sequences for which
we do not have a known label.

The power of NNs comes from the layering of information. The first layer of
our example, could be conceived as learning a number of PWMs. The second
layer will be learning higher order matrices, PWMs of PWMs. The model’s grip
to human intuition is already waning at this point and only gets weaker as more
layers are added. Nevertheless, some interesting work has been made towards
investigating the inner parts of such a genomic NN, leading to PWM-logo-like
visualizations of the NN’s matrices [41].

These higher order ‘features’ that the inner layers learn, allow the model to have
great plasticity. For example, it can assign more or less importance to any of the
positions, it can handle “if this then that” logic and much more. Furthermore,
NNs are typically employed as big windows of hundreds to a thousand base pairs.

This allows the NN to incorporate a much wider and broader sets of features that
are ”hinted” by the sequence. Nucleosome occupancy, DNA shape, etc, play a role
in TF occupancy and can be at least to a degree inferred from, or modeled on,
the genomic sequence. The NN unwittingly models many sequence-dependent
characteristics , incorporating everything in its large collection of matrices. In
recent applications, NNs have been used to determine and visualize TFbs [41–43]
, to predict non-coding function de novo from sequence [44], and to predict the
effects of noncoding variants [45] among others.

1.5 OTHER NON SEQ-BASED
APPROACHES

Adrawback of the class ofmodels that, like PWMs or seq-basedNNs, model bind-
ing based only on the genomic sequence is that they are context-ignorant. As was
noted earlier, the spatially and temporally specific binding of TFs on DNA is cru-
cial to cell differentiation and the binding sites of a factor will change drastically
between different cell contexts. The same TF will be bound on different genomic

1.5. Other non seq-based approaches 19

sites in different tissues. A sequence-only model’s answer will always be the same
since the only data it can rely on is the sequence, which remains the same between
samples. Some models are designed specifically with this weakness in mind and
apply methods to mitigate it [46].

We can improve our results by using multiple models in tandem, such as using
the output of a tool that models DNA-shape based on sequence, to better inform
our TFbs predictions. However, every such attempt will still suffer from the same
shortcomings of sequence-only modeling. To further improve our investigation,
we need additional biological data (from a wet lab experiment). Nucleosome oc-
cupancy, histone modification levels, transcription levels are all very useful addi-
tional contexts to inform TFbs discovery.

A very interesting option for such an endeavor are the DNA-accessibility assays
DNAase 5 and ATAC-seq6 (see later chapters). The twomethods are very similar,
with ATAC-seq being newer faster and cheaper. In these assays, we introduce a
protein that is able to cut the DNA (a nuclease and a transposase, respectively) to
our chromatin sample, and after sequencing we can deduce in which regions of
the genome the protein made a cut most times. Regions of the DNA molecule
that are tightly packed and inactive will not be accessible to the DNA cutting pro-
tein, but in regionswith regulatory activity, theDNAmoleculewill bemuchmore
accessible and vulnerable. We use these techniques to identify accessible regions
which we treat as a proxy to active regulatory regions (see chapter 2.2). The iden-
tification of such regions is already a great step for this analysis as we can filter for
putative TFbs that fall inside those regions. Those putative TFbs have a higher
chance to be real binding events that contribute in transcription regulation.

Besides this, many DNA-binding proteins also protect the underlying DNA from
the cutting activity and consequently leave a “footprint” on the DNAse/ATAC-
seq signal, a depression of signal in an otherwise active region.

A few models have been developed to take advantage of this phenomenon.

The Wellington algorithm [49] models protein–DNA interactions as localized
imbalanced between plus aligned and minus aligned sequencing reads.

5DNase I hypersensitive sites sequencing [47]
6Assay for Transposase-Accessible Chromatin using sequencing [48]

20 Chapter 1. Trans-Regulation

Centipede[50] applies a hierarchical Bayesian mixture model to infer regions of
the genome that are bound by particular transcription factors. Two other ap-
proaches, msCentipede[51] and Romulus[52], take further steps to improve on
the idea. [50]. PIQ[53] uses machine learning techniques tomodel themagnitude
and shape of genome-wide DNase profiles and identify occupied TFbs.

This approach of modeling the DNA accessibility data instead of the DNA se-
quence has its own drawbacks. For example, different TFs have different occu-
pancy times and strengths and as a result someTFs do not bindDNA long enough,
or strong enough or in enough cells in our biological sample to leave a mark on
the accessibility signal.

1.6 NIMROD

Most, if not all, of the computational approaches to identify occupied TFbs that
we mentioned so far, rely on PWMs for the first step of their analysis. The idea
is to scan the genome for potential PWM hits and then provide a second metric,
more accurate than the PWM score, to evaluate the validity of those hits.

We have further divided them in two other categories, the models that rely only
on genomic sequence and those that rely on DNA accessibility data. The later
might still rely on PWMs as “seeding” but to our knowledge nomethod integrates
genomic sequence and accessibility signal in the same model.

We developed a NN to attempt such an approach 7.

We know that NNs based on just genomic sequence already give great results
because they integrate signal from a large region around the putative PWMs. We
also know that ATAC-seq signal can inform the detection of good TFbs. We
expect that integrating the two signals in a single NN, we will manage to take

7We called it Nimrod, since it is our second and improved attempt at building a tool
that reliably detects TFbs. Our firstmodel, whichwas built around the concept of hunting
footprints on ATAC-seq signal, was affectionately called Elmer after the cartoon charac-
ter with questionable hunting skills. Bugs Bunny once ironically called Elmer ’Nimrod’
after the great biblical hunter, reshaping the meaning of the word in modern culture.

1.6. Nimrod 21

advantage of both of the signals and the high-order features that onewould expect
in this context.

In the results part of this work, we will present the architecture of our model and
results obtained with it.

23

2

Cis-Regulation

2.1 CIS-REGULATION

We’ve talked about TFs and how they bind on specific positions on the DNA to
regulate gene transcription. These TF binding sites (TFbs) are typically found
clustered in regions of the genome which can, themselves, be interpreted as func-
tional units of the gene regulation system. These Cis Regulatory Elements (CREs)
only drew scientific interest after the period of “Modern Synthesis” but by now
are recognized as important players in the evolution of organisms. In fact, their
effect on the expression of developmental genes distinguishes them as one of the
major drivers of animal form evolution [54–56].

CREs have traditionally been categorized based on their distance to a gene’s tran-
scription start site and their observed effect on the transcription levels of their tar-
get gene. Elements laying just upstream of the TSS of a gene are called promoters
and distal elements are split into enhancers and silencers. Further nuanced names
can be used depending on the analysis used such as ‘poised enhancers’ or ‘active
enhancers’[57, 58].

As the community’s knowledge and understanding of cis-regulation deepens, there
appear to be very few differences between promoters and enhancers, challenging

24 Chapter 2. Cis-Regulation

the established view of separating them the two as distinct classes[59, 60].

2.1.1 PROMOTERS

Perhaps the most straight forward CRE to talk about are promoters. They are
after all the most ancient and basic of elements, being found in all subdivisions
of life, including viruses. We call promoter the genomic region that starts at a
gene’s TSS and extends upstream and on the same strand for an arbitrary length
of DNA, usually some several hundred base pairs [61]. Promoters contain TFbs,
sometimes with very deep evolutionary conservation (TATA box, initiator), spe-
cially so in the ‘core promoter’ region, the region directly adjacent to the TSS.

It is here, on the gene’s promoter, that the regulatory complexity collapses into
whether the appropriate RNA polymerase will bind and begin transcribing the
gene or not. The metazoan promoters, perhaps as a natural consequence of hav-
ing to integratemore complicated regulatory information, aremore complex [61]
than those of bacteria or single-cell eukaryotes. Typically we can assign one pro-
moter per gene, although bidirectional promoters are not uncommon. In fact,
there is evidence that promoter directionality is an acquired feature and not the
default state [62].

Although proximal promoters may not contain all of the information required to
precisely control transcription of individual genes in time and space during de-
velopment, analysis of promoters alone can generate meaningful models of tran-
scriptional regulatory networks [63]. Because of the very direct and obvious con-
nection of any gene to its promoter (the promoter lies upstream of the TSS), pro-
moters are the easiest class of CREs to identify and assign to a gene; we just need to
know where the TSS of the gene is and look X number of bases upstream. From
there we can look for TFbs in the promoter region and assign them to the gene’s
regulatory network.

2.1.2 ENHANCERS

While we can identify promoters by just looking upstream of the TSS of a gene,
a second major category of CREs called enhancers can be found both upstream

2.2. Chromatin accessibility 25

and downstream of a TSS and at distances that can span megabases and skip over
neighboring genes.

Aswe discuss extensively in thiswork, cis-regulation, and by extension enhancers,
is of paramount importance to proper development and not surprisingly plenty of
connections to disease have also been established [64–67], driving further interest
in the field.

Researchers would originally detect these elements with enhancers trap assays, a
reporter gene and its promoter are randomly inserted in a genome with a trans-
posable element. This construct will at times find itself inserted in a genomic
context where it will be regulated by some enhancer to drive expression of our re-
porter gene with a specific pattern. We can then determine where our construct
was inserted and look around it in the genome for putative enhancer regions.

Other approaches relied on scanning the genome for TFbs (via PWM hits) and
then detecting regions with statistically denser concentrations of TFbs (reviewed
in [68]). Binding events outside of regulatory elements are less likely to have a
significant impact on transcription [64, 69] so it makes sense to focus our effort in
the regions with many putative TFbs. In a modern version of the same genomic
modeling approach, neural networks are trained to not only predict TFbs but
directly predict CREs.

Nowadays, we look for enhancers with genome-wide sequencing assays that take
advantage of chromatin features such as accessibility or histonemodifications (see
following sections).

To confirm that a putative region is indeed an enhancer, we apply a similar ap-
proach where we clone our putative enhancer region next to a reporter gene and
insert them together in a genome. Our putative enhancer should now be activated
in the contexts where the original enhancer is also activated and it should drive
expression of out reporter gene in the same domains [70].

2.2 CHROMATIN ACCESSIBILITY

While CREs contain the necessary context for TFs to bind on them, they are not
always available. As was discussed in Chapter 1.1, DNA is typically ’occupied’

26 Chapter 2. Cis-Regulation

by nucleosomes and that makes the binding sites unavailable to most TFs. This
offers an opportunity for research though because active regions of the genome
should be accessible to other proteins. If we can detect the regions where DNA is
accessible, we can detect the regions that contribute to regulation.

Deoxyribonuclease I (DNase I) is an endonuclease 1 that cleaves DNA relatively
non specifically, although some biases have been identified [71]. In DNase-seq
[47], DNase I is exploited to detect regions of the genome that are hypersensitive
to it and thus, accessible. Using DNase I to determine chromatin accessibility is an
old trick [72] and the principle was further refined in FAIRE-seq[73] and ATAC-
seq[48].

These techniques have been widely employed in a plethora of contexts that are
too many and varied to be listed here. The ENCODE project, which we have
used as a metric of recent scientific interest in techniques, lists 767 DNAse-seqs
experiments in human samples.

2.2.1 ATAC-SEQ

With ATAC-seq (Assay for Transposase-Accessible Chromatin), we exploit an-
other DNA cutting protein, the transposase Tn5. Transposases are proteins that
“copy-paste” or “cut-paste” genomic elements (transposons, or transposable elements).
This ability of transposons (which often encode for their own transposase), al-
lows these elements to evolve on a separate plane than their host organisms, like
viruses or parasitic microorganisms do. Their effect on the genome is inherently
mutagenic though, so transposons cannot be too aggressive otherwise they will
kill their host and die themselves. Nevertheless, transposases are the most abun-
dant genes in nature [74].

TheTn5protein is actually a retro-transposase, a family of proteins used by viruses
to insert viral retro-transcribed DNA in naked/exposed bacterial genomes. It
works as a dimer, two molecules attach and cleave DNA at specific 19bp sites
that surround the transposon. The two parts of the dimer come together to form
a homodimer, merging the two cuts on the “main” DNA molecule and removing
the intermediate piece which is now bent like a hairpin. The reverse process then

1Enzymes that cleave the phosphodiester bond within a polynucleotide chain

2.2. Chromatin accessibility 27

follows in a different part of the genome. The dimer cleaves the DNA and inserts
the intermediate hair-pinned DNA, potentially reversed[75].

We can “load” Tn5 in vitro with DNA of our choosing as long as it contains the
19bp binding sites that the transposase expects. We can make small DNA pieces
that include both these 19bp sequences and the DNA bar-codes that are required
by next generation sequencing processes. The pieces don’t need to form a hairpin,
each part of the dimer will attach to a DNA piece and a cut will be created in the
host’s DNA after the insertion.

Figure 2.1: In the ATAC-seq protocol, TN5 transposase is introduced to isolated
chromatin. The transposase cleaves DNA where is it accessible but not
where it is packed around histones.

Exposing host DNA to a high concentration of these preloaded Tn5 proteins will
result in the concurrent cleavage of the genome in the regions where the DNA
molecule is accessible [75]. The fragments will also have sequencing barcodes at
their ends, which the transposases inserted.

Figure 2.2: When the Tn5 cleaves DNA, it ligates high throughput sequencing bar-
codes (represented here in orange and green). This will allow the se-
quencing in later steps. Doing the cleaving and tagging in a single step is
one of the reasons why the ATAC-seq protocol is an attractive option.

28 Chapter 2. Cis-Regulation

The fragments can now be directly sequenced andmapped to a reference genome,
giving us a genome wide signal of DNA accessibility.

Figure 2.3: In the final steps of the ATAC-seq protocol, the fragments are isolated,
sequenced and mapped to a reference genome. This way we get a count
of Tn5 cleaves on every position of the genome, the ATAC-seq signal.

As was discussed, transposases cannot be too active and Tn5, true to form, has
very low activity in nature. The protein used in molecular techniques had its
activity amplified through a series of mutations [76].

ATAC-seq is a very attractive experiment for the simplicity of execution and rich-
ness of data it provides. Besides allowing us to determine accessible regions of the
chromatin, the nature of the sequencing reads allows us to infer nucleosomal po-
sitions [77] and detect TF binding sites.

In this, we work extensively with ATAC-seq data generated on whole embryos
during the early development of zebrafish and amphioxus, generated by labmates
and collaborators.

29

Epigenetics

While DNA accessibility marks the regions that are actively participating in cis-
regulation, it is only a consequence of the mechanisms that control regulation.

One of the first debates in biologywas about the way inwhich complex organisms
develop. An early popular theory was that organisms are pre-formed, perhaps
existing as little homunculi inside sperm, and then simply grow during develop-
ment. Preformationism lasted as the dominant theory until the end of the 19th
century or early 20th, by which time enough evidence had been gathered to show
that actually organisms develop based on a plan that is orchestrated by nothing
more than complex chemical reactions, a process that would be called “epigene-
sis” [78]. The discovery that genes, as they were understood at the time, could
be associated to specific regions of chromosomes solidified epigenesis as a lead-
ing theory [79] and the identification of DNA as the main information-holding
molecule changed the landscape even further.

In 1970 Laskey and Gurdon [80] show that the DNA of a somatic cell nucleus
was competent to direct embryogenesis when introduced into an enucleated egg.
That means that somatic cells inherit the entirety of the genomic information
of the zygote. Yet the divergent phenotypes between differentiated cells and the
communication of those to daughter cells were also undeniable. The information
is in the DNA, but different cells have the same DNA, so how are they different?
This is the burning question behind the term epigenetic, as it is understood today.
Riggs et al, in 1996 [81] defined it as “the study of mitotically and/or meiotically
heritable changes in gene function that cannot be explained by changes in DNA
sequence”.

30 Chapter 2. Cis-Regulation

One of the first[78] such heritable[82] changes was DNA methylation, a process
by which methyl groups are added to the DNA molecule[83]. This alteration of
the DNA molecule can influence gene expression in at least two ways. One is
to interfere with TF binding by making the methylated site inhospitable to the
TF. The second way is by recruiting proteins that are associated with chromatin
modifiers to make the chromatin environment repressive [83].

2.3 HISTONE MODIFICATIONS

Chromatin modifiers are enzymes that apply a range of post-translational mod-
ifications of the most abundant DNA-binding proteins; the histones. The DNA
molecule is packed tightly in the nuclei of eukaryotes, wrapped around octamers
of the “core” histones (one copy of H3-H4 tetramer and two copies of H2A-H2B
dimer) whose amino-terminal tails pass over and between the DNA superhelix to
contact neighboring particles[84].

Most nucleosomes also recruit either histone H1 or high mobility group (HMG)
proteins (sometimes both) which bind to the outside of the nucleosome to form
a particle known as the chromatosome[85].

The first connection of histone modifications to gene regulation was proposed
surprisingly early in 1964when, with aworkingmodel that considered histones as
proteins that bind toDNAand repress RNA transcription, Allfrey andMirsky[86]
presented their findings that acetylation and methylation of histone takes place
post-translationally and that acetylation specially “may affect the capacity of the
histones to inhibit ribonucleic acid synthesis in vivo”[86].

Since then, the nucleosome was described and a lot of the details of the above
model were illuminated. The N-terminal tails of histones, where most modifica-
tions take place, can undergo a large variety ofmodifications (at least eight distinct
types) but acetylation, methylation and phosphorylation have dominated scien-
tific interest [87]. Besides modifications of the N tails, reports of modifications
located within the globular domain of histones are surfacing [88].

In the ‘beads on a string’ model, the DNA molecule is first wrapped around his-
tones and then wrapped into higher order structures facilitated by the histones.
The nucleosomes can now be thought of as a sequence of units which, besides

2.3. Histone modifications 31

the raw genomic sequence, also vary in nucleosomal structure, thanks to modi-
fications. The beaded string now forms a new ‘primary structure’ of chromatin
which can give rise to a multitude of higher order structures[89].

The tight packaging essentially blocks access to the DNA molecule, which is a
double edged sword. On one hand, foreign DNA such as retroviral elements
are silenced. On the other hand, of course, the cell needs access to the DNA for
many processes. To overcome this, cells employ specialized chromatin remodel-
ing complexeswhich either reorganize nucleosomes directly in anATPdependent
manner, or toggle modifications on the histone tails which can alter nucleosome
structure, stability and dynamics. [90]

To study these modifications in the modern context, we typically perform ChIP-
seq assays with antibodies that recognize the modified histone. This isolates the
fragments of DNA thatwere in proximity to the target histone. We then sequence
the fragments and map them on a reference genome to acquire genomic tracks
of said modification. Regions of the genome that harbored our target modified
histone in a significant percentage of the cell population of the sample will give a
stronger signal in the sequencing experiment.

Chromatin

Compacted Chromatin

Poised ChromatinEnhancing modification

No modification

Repressing modification

Figure 2.4: Histone modifications influence the way that nucleosomes interact with
other nucleosomes and consequently influence the local chromatin state.
A modification that makes the nucleosomes pack together tightly (here,
in the bottom row) will solidify the chromatin and repress local gene ex-
pression since it doesn’t allow DNA to be accessed by proteins. In con-
trast, an enhancing modification (top row), would relax the packing of
the chromatin, facilitating the binding of transcriptionally relevant pro-
teins on the DNA.

32 Chapter 2. Cis-Regulation

2.3.1 H3K4ME3

The tri-methylation of the fourth lysine of histone 3, one of the post translational
modifications of histones that were just discussed, is ubiquitously found on the
promoters of eukaryotic genes that are undergoing transcription [91]. It is me-
diated by the Set1 protein and the COMPAS (Complex Proteins Associated with
Set1)complex [92] which are recruited in the promoter by the RNA polymerase
II elongation factors Paf and FACT[91].

H3K4me3 activity is conserved in eukaryotes but not without differences. Specif-
ically in chicken, it was observed thatwhile H3K4me3 can be used to classify genes
in active and inactive and preferentially associates with the transcribed regions of
genes, it can still be detected in lower quantities on inactive genes[93].

In humans, H3K4me3 is mediated by Set9, which competes with histone deacety-
lases and precludes theH3k9methylation by Suv39h1[94]. Up to 75%of our genes
were found to be tri-methylated even without detectable RNA elongation [95].

Nevertheless, H3K4me3 was one of the epigenetic marks most employed by the
ENCODE project in its attempt to identify functional elements on the human
genome. At the time of writing, 168 different ChIP-seq assays against H3K4me3
are available for human cells and tissues on the ENCODE project’s page and 106
for mouse. These assays were conducted in order to characterize promoter re-
gions. It is believed that nucleosomes that aremodified by H3K4me3 form a chro-
matin state that somehow facilitates transcription initiation.

In zebrafish too, H3K4me3 has been shown to be enriched at transcriptional start
sites, an association which correlates with gene expression [96, 97].

We contribute to the effort to investigate thismodification by providingH3K4me3
assays in two new developmental stages of zebrafish, significantly enhancing the
resolution of the available data during the development of the popular model or-
ganism.

2.4. Under the light of Evolution 33

2.3.2 H3K27AC

As we discussed earlier, TFs bind on DNA in sites both proximal and distal to
TSSs. The regions of these distal binding sites usually behave as ‘hotspots’, offer-
ing binding sites for multiple TFs. We can think of those regions as functional
units of the gene regulation system andwe can categorize them depending on fur-
ther characteristics such as chromatin state, or chromatin accessibility (see later
chapter).

H3K27ac is another heavily investigated histone modification (ENCODE: 97 in
human, 93 in mouse). Acetylation has long been associated with transcriptional
activation, in contrast to histone deacetylation which is generally thought to have
roles in transcriptional repression[90].

Originally investigated in yeast [98] and later in human andmouse [99], H3K27ac
was initially reported to be highly enriched at promoter regions of transcription-
ally active genes [100] but later was also established as an important mark to de-
tect active enhancers[57, 58, 101], including distal cis regions which seemingly
increase gene transcription levels. H3K27ac has also been investigated in early
zebrafish development where it was shown to positively correlate with gene ex-
pression [97].

In this work, we present H3K27ac assays in two new developmental stages of
zebrafish, significantly enhancing the resolution of the available data during the
development of the popular model organism.

2.4 UNDER THE LIGHT OF EVOLUTION

The study of animals and their form is the simplest, most intuitive first step to-
wards studying life and has kept scholars busy since the times of Aristotle. Un-
fortunately comparative anatomy would only be rekindled in the West after the
stupor of ecclesiastical absolutism of the middle ages. We urge the reader to read
E. W. Gudger’s 1934 paper on renaissance and the pioneers of ichthyology in the
early 16th century [102]. Among them Pierre Belon who, among other works,
published a comparison of a human to a bird skeleton, and is singled out as the
“prophet” of modern comparative anatomy.

34 Chapter 2. Cis-Regulation

By the time Darwin was publishing the origin of species, the concepts of homol-
ogy and analogywerewell understood by his contemporaries. Thatwas before the
general acceptance of phylogeny [103]. As the era of molecular biology dawned,
the concept of homology was expanded to refer to proteins, which were initially
investigated based on their chemical similarities [104] and later on based on their
sequence. And just like that, we started talking about homologous genes.

Molecular phylogenies confirmed somemorphological phylogenies, clarified some
and revolutionized others. We discovered that the coding sequences of genes dis-
play remarkable conservation in the tree of life with some of them, particularly
those involved in transcription and translation, being traceable all the way to the
universal common ancestor.

On the cis-regulatory level things are less straight forward. While some conser-
vation can be observed between close species (e.g. human andmouse), and in rare
cases over longer distances (e.g. in all vertebrates) a high degree of turnover is also
evident and cis-regulation conservation seemingly disappears over longer evolu-
tionary distances (e.g. human-fly)(see Chapter 10). Overall the conservation of
cis-regulatory elements is poorly understood.

In this work, we investigate the evolution of cis-regulation in a branch of the tree
of life where intriguing questions remain unanswered. In the following sections,
we introduce this branch, our model organism, and what we hope to learn from
our analyses.

2.4.1 ON THE TREE OF LIFE

Protostomia

Deuterostomia

Ecdysozoa

Spiralia

Chordata

Ambulacraria

Hemichordata

Echinodermata

Cephalochordata

Olfactores
Urochordata (tunicates)

Vertebrata

Figure 2.5: Somemajor animal groups in the
vicinity of vertebrates

The vertebrate pattern is one of life’s
successful discoveries. Thanks to their
highmorphological diversity, they oc-
cupy a huge variety of niches. They
come in all forms and shapes and they
are of course of special interest to
us since we ourselves belong in this
group. Outside of vertebrates, life can
seem quite alien but inside this group
our similarities are obvious, verte-
brates have a spine like us, most of

2.4. Under the light of Evolution 35

them have some form of hands and
legs, they have an obvious head and
mouth. They include the vast majority of animals that humans are typically fa-
miliar with: fish, amphibians, reptiles, birds and mammals. Non vertebrates are
mostly jelly like, worm-like, or insects, forms that we cannot empathize with very
much.

The most vertebrate-like but non-vertebrate organisms are the cephalochordates
2 and the tunicates. These two groups together with vertebrates form the group
of chordates. Tunicates, also known as urochordates, are marine organisms that
start their lives as tadpole-looking larvae. Most of them later undergo a dramatic
metamorphosis into a sack- like filter-feeding organism that is often attached to
rocks or stones.

Figure 2.6: The metamoprhosis, on the left, transforms the tadpole to the adult
form, on the right. Illustrations from ”A guide to the shell and starfish
galleries”, Department of Zoology, British museum (Natural history)
1901.

After molecular comparisons became available, it was shown that tunicates are
the closest organisms to vertebrates [105]. This came as a bit of a surprise since
amphioxi lookmuchmore like a ‘minimal’ vertebrate than urochordates who look

2of which Amphioxi are the only extant members

36 Chapter 2. Cis-Regulation

quite alien-like in their adult form. This should work as a good reminder that
small and alien looking life forms aren’t less evolved than us.

2.4.2 AMPHIOXUS

Amphioxus is a small, fish-like, benthic organism that lives in shallow waters
around the earth. In fact, about 35 different species have been described, in three
genera; Branchiostoma, Epigonicthys and Asymmetron[106].

Amphioxus is a slow-evolving organism and considering howmuchmore it looks
like a vertebrate in comparison to urochordateswho are closer to us, it is tempting
to consider that this is probably what the common ancestor chordate looked like.

Amphioxi possess typical chordate characteristics, such as a dorsal hollow neural
tube and notochord, a ventral gut and a perforated pharynx with gill slits, seg-
mented axial muscles and gonads, a post- anal tail, a pronephric kidney, and ho-
mologues of the thyroid gland and adenohypophysis. However, they lack typical
vertebrate-specific structures, such as paired sensory organs (image-forming eyes
or ears), paired appendages, neural crest cells and placodes [107]. [108]

Themanymorphological homologies between amphioxus and vertebrates as well
as its place on the phylogenetic tree are two great motivations to research am-
phioxus, but its genomic simplicity can be evenmore intriguing than its morpho-
logical.

2.4.3 WHOLE GENOME DUPLICATIONS

Among other vertebrate-specific genomic characteristics such as their large inter-
genic distances[109, 110] or their high methylation-dependent regulation of em-
bryonic transcriptional enhancers [111], vertebrates have undergone two rounds
of whole genome duplication (WGD). Twice at some point near the root of the
vertebrate tree (details are still being debated) the whole genome was kept in du-
plicate. These genome duplication events, have been considered to bemajor driv-
ing forces in the evolution of vertebrate and plant complexity and form [112, 113].
Interestingly, teleosts, a group of vertebrates with a third duplication, shows fur-
ther greater complexity, comprising nearly 50% of all vertebrate species[114] and
99% of all extant fish species [115]. Despite efforts thought, scientists have not

2.4. Under the light of Evolution 37

managed to show this expected increase in morphological diversity in the fossil
record [116, 117], therefore the link betweenWGD and increase in animal shape
complexity remains disputed.

Amphioxus doesn’t share this genomic characteristic and only has a single, evolved,
copy of the ancestral proto-chordate genome [118, 119]. As a consequence, for
the vast majority of genes that we can detect in amphioxus we can find from a
single up to eight copies of genes in zebrafish and up to four copies in mouse and
human. That’s because teleosts have undergone a third, fish specific genome du-
plication. The genes that are kept in multiple copies are vary often related to gene
regulation and development which is how, as we discuss in Chapter 10.2, WGDs
might increase the evolutionary potential of organisms.

Once a gene is retained in duplicate, it is interesting to consider what might hap-
pen to the two ohnologues 3. The classical, as of 1999, model of evolution of
duplicate genes predicts that one of the copies will slowly accumulate deleterious
mutations until it degenerates. Force et al. proposed an alternative model, the
DDC model and supported their position with relevant observations [121]. The
Duplication-Degeneration-Complementation (DDC) model, suggests that muta-
tions on the duplicated CREs of duplicated genes can increase the probability that
the pair of genes will be kept, and that by sharing deletions of such elements, the
copies will partition the ancestral expression landscape.

The copies, they hypothesize, might each lose function in some of the ancestral
domains, a process called ’subfunctionalization’. Alternatively, one copy would
retain all functions while the other loses more and more expression domains,
which is named ’specialization’. The two might also both keep all ancestral ex-
pression (’redundancy’) or one or both might discover new niches of expression
(’neofuncionalization’).

A further elaboration, theDDImodel [122] (Duplication–Degeneration–Innovation)
argues that duplicated genes evolve simpler regulatory landscapes during the pro-
cess of subfunctionalization, which makes their regulatory landscapes more re-
ceptive to change and thus increases their diversification potential.

Little is know about the actual patterns of gene or cis evolution after WGDs.

3Gene duplicates resulting from WGD, in honor of Susumu Ohno who first
cosidered the implications of gene duplication in evolution [120]

38 Chapter 2. Cis-Regulation

Although intuitively attractive, the DDC and DDI hypotheses have been difficult
to test for the vertebrate WGDs due to lack of genome-wide transcriptomic and
regulatory data from appropriate outgroups. Amphioxus with its lack of WGDs
is a great candidate model organism for these questions so probing those will be
one of our main goals. In the discussion part, we will explore some of the relevant
work and see how our results align with that and the proposed models.

39

3

Objectives

To sum up, the following are some of the objectives that we will try to address in
this work:

1. To what degree is cis-regulation conserved in chordates? Is the anatomi-
cally and morphologically conserved chordate body plan reflected on con-
served cis-regulation?

2. How do duplicated genes evolve after aWGD event? Do our observations
fit with existing models? What happens to their cis-regulatory landscape?

3. Histological and morphological complexity has increased in vertebrates.
Does this reflect on cis-regulation complexity and can we quantify it?

4. Can a NN that integrates genomic sequence and ATAC-seq signal compe-
tently classify TF binding sites ?

5. Would such a model be able to generalize its TF binding site classification
ability in a cross-species manner?

41

Part II

Results: The origins of vertebrate
gene regulation

43

4

Introductory Analyses

The results presented in this part titled ”The origins of vertebrate gene regula-
tion”, were created as part of our collaboration in the work that was publish in
[123]. Here we will focus on the analyses that we contributed to that work, re-
volving around ATAC-seq and cis-regulation.

4.1 THE GENOMES

Genomic analyses are applied on reference genomes which are at times updated
so it serves to clarify which exact reference genomes where used here. For am-
phioxus, weworkwith the novel genome for theMediterranean amphioxus Bran-
chiostoma lanceolatum which was assembled by collaborators as part of our work
in [123]. For the other organisms our choices are listed in Table 13.5

The genome assemblies themselves are used here as tools but we must not for-
get that they are the product of hard biological data and thus a valuable resource
themselves so at least a brief analysis is called for.

44 Chapter 4. Introductory Analyses

amphioxus zebrafish medaka mouse

species of reference genome

0.0

0.5

1.0

1.5

2.0

2.5

Ba
se
pa
ir
s
 p
er
 c
at
eg
or
y
(i
n
Gb
)

1e9

Repeats
N's
Effective Genome

Figure 4.1: Sizes of genomic categories in our refer-
ence genomes. The repeated regions are
based on publically available repeat-masks
for each genome. The amphioxus repeats
were annotated by our collaborators as
prts of our publication [123]. ”N’s” refers
to the number of unidentified bases in the
reference genome. Effective genome is
everything that is left after marking re-
peats and Ns [notebook: 13.4]

Having undergone two rounds
of whole genome duplication,
vertebrates started their jour-
ney through evolution with
four times the genetic ma-
terial of their single copy
ancestor. This is reflected
in the their current genome
size, but not always and in
varying degrees. For ex-
ample, even though teleosts
have undergone a third whole
genome duplication, both ze-
brafish andmedaka havemuch
smaller genome sizes than
mice. Interestingly teleosts,
the vertebrate groupwithmost
variety of species among ver-
tebrates, have smaller genomes
than tetrapods in general. Medaka
has a particularly small genome,
perhaps mostly on account of
the much smaller number of
repeated elements that it con-
tains. In fact if we discard the
regions of the genome that we
can mark as repeats, medaka
has a slightly larger “effective” genome size.

Amphioxus has a smaller genome than all the mentioned vertebrates and is com-
posed by repeated elements in slightly smaller but similar degrees to zebrafish and
mouse.

4.2. Intergenic regions 45

4.2 INTERGENIC REGIONS

The genome size differences are reflected on the amount of space that can be at-
tributed to each gene. Considering intergenic distances 1 as a measure of that, we
see a clear increase between amphioxus and vertebrates.

amphioxus zebrafish medaka mouse
species of reference genome

0

1

2

3

4

5

6

7

Si
ze

 o
f

In
te

rg
en

ic
 R

eg
io

ns

 (
10

^y
 b

as
ep

ai
rs

)

Figure 4.2: The distributions of Intergenic sizes, the distance between consecutive
TSSs, for orthologous genes in our reference genomes [notebook: 13.5]

1simply the distances between successive genes (see 13.6 and 13.8)

46 Chapter 4. Introductory Analyses

4.3 GREAT REGIONS

A different way to assign genomic regions to genes, is to use the GREATmethod
[124]. We applied this method (see Chapter 13.7) to our genomes and observed
the same dynamics once more.

amphioxus zebrafish medaka mouse
species of reference genome

0

1

2

3

4

5

6

Si
ze

 o
f

GR
EA

T
Re

gi
on

s
 (

10
^y

 b
as

ep
ai

rs
)

Figure 4.3: The distributions of GREAT region sizes for homologous genes in our
reference genomes [notebook: 13.5]

4.4. Histone Modification ChIP-seq 47

4.4 HISTONE MODIFICATION CHIP-SEQ

As mentioned before, H3K4me3 is a marker of active promoters, while H3K27ac
marks promoters as well as active enhancers. Processing the high-throughput se-
quencing data provides us with ChIP-seq “signal”, a measurement of ChIP-seq ac-
tivity for each base-pair of the reference genome, measuring the degree to which
each base-pair was collected in the molecular biology experiment.

This signal varies in strength between different regions of a genome, but forms
“peaks” over pertinent regions. We aim to detect these peak regions which is the
ultimate fruit of such an assay. These are our putative-enhancers or promoters.

Sometimes a peak from one region of the genome will have lower signal from a
different “richer” region but is nevertheless a region displaying significant activity
and should be detected. This means that we cannot simply set a threshold on the
signal to detect significant regions but instead we need to employ more robust
statistical methods.

We have at our disposal a set of ChIP-seq datasets, for these two types of his-
tone modification, obtained in a number of developmental stages in amphioxus
and zebrafish. We applied a peak-calling pipeline on these datasets, employing
previously described methods and proved bioinformatic tools (see 13.9).

This gives us a set of ChIP-seq peaks, for two different marks in a variety of de-
velopmental stages.

48 Chapter 4. Introductory Analyses

4.4.1 WIDTH OF PEAKS

At first glance (Fig: 4.4), looking at the width of the peaks, little differences can
be detected between amphioxus and zebrafish.

8h 15h 36h
developmental stage

0

250

500

750

1000

1250

1500

1750

2000

wi
dt

h
of

 p
ea

ks
 (

in
 b

p)

H3K27ac Amphioxus

dom
e
shi

eld80e
pi 8so

m 24h 48h

developmental stage

0

250

500

750

1000

1250

1500

1750

2000

wi
dt

h
of

 p
ea

ks
 (

in
 b

p)

H3k27ac Zebrafish

8h 15h 36h
developmental stage

0

250

500

750

1000

1250

1500

1750

2000

wi
dt

h
of

 p
ea

ks
 (

in
 b

p)

H3K4me3 Amphioxus

dom
e
shi

eld80e
pi 8so

m 24h 48h

developmental stage

0

250

500

750

1000

1250

1500

1750

2000

wi
dt

h
of

 p
ea

ks
 (

in
 b

p)

H3k4me3 Zebrafish

Figure 4.4: Distributions of peak widths from the ChIP-seq assays. The H3k27ac
experiments are in the top row and H3k4me3 in the lower row. Am-
phioxus on the left, zebrafish on the right.

4.4. Histone Modification ChIP-seq 49

4.4.2 NUMBER OF PEAKS/ GENOME COVERAGE

We went on to compare the number of putative elements. Having duplicated its
genes at some point in its evolutionary past, one could expect zebrafish to have
more transcriptionally active promoters at any developmental stage. Neverthe-
less, the H3K4me3 experiments yielded similar numbers of elements between the
two species (Fig: 4.5), furthermore declining in similar fashion through the course
of development.

8h 15h 36h
developmental stage

0

2

4

6

8

H3
K4

me
3

nu
mb

er
 o

f
pe

ak
s

(k
)

H3K4me3 Amphioxus

dom
e
shi

eld 80e
pi 8so

m 24h 48h

developmental stage

0

2

4

6

8
H3

K4
me

3
nu

mb
er

 o
f

pe
ak

s
(k

)

H3K4me3 Zebra

Figure 4.5: Number of peaks, regions of statistically significant signal, in the
H3K4me3 assays

50 Chapter 4. Introductory Analyses

Differences only start to appear when we compare the number of putative en-
hancers (Fig: 4.6). The number of H3K27ac-marked regions is higher in zebrafish
and increase as development progresses in comparison to the regions marked in
amphioxus whose numbers stay stable.

8h 15h 36h
developmental stage

0

1

2

3

4

5

6

7

H3
K2

7a
c

nu
mb

er
 o

f
pe

ak
s

(k
)

H3K27ac Amphioxus

dom
e
shi

eld 80e
pi 8so

m 24h 48h

developmental stage

0.0

2.5

5.0

7.5

10.0

12.5

15.0

H3
K2

7a
c

nu
mb

er
 o

f
pe

ak
s

(k
)

H3K27ac Zebrafish

Figure 4.6: Number of peaks, regions of statistically significant signal, in the
H3K27ac assays

Despite the smaller count of cis elements marked by these two experiments, a
larger percentage of amphioxus’s genome is covered by them (Fig: 4.7).

4.4. Histone Modification ChIP-seq 51

8h 15h 36h
developmental stage

0

2

4

6

8

10

%
of

 g
en

om
e

co
ve

re
d

by
 p

ea
ks

H3K27ac Amphioxus

dom
e
shi

eld 80e
pi 8so

m 24h 48h

developmental stage

0

2

4

6

8

%
of

 g
en

om
e

co
ve

re
d

by
 p

ea
ks

H3K27ac Zebrafish

8h 15h 36h
developmental stage

0

2

4

6

8

10

%
of

 g
en

om
e

co
ve

re
d

by
 p

ea
ks

H3K4me3 Amphioxus

dom
e
shi

eld 80e
pi 8so

m 24h 48h

developmental stage

0

1

2

3

4

5

%
of

 g
en

om
e

co
ve

re
d

by
 p

ea
ks

H3K4me3 Zebrafish

Figure 4.7: The percentage of the reference genome that is covered by regions with
statistically significant ChIP-seq signal in our assays.

52 Chapter 4. Introductory Analyses

4.5 ATAC-SEQ

Similarly to ChIP-seq, we applied a peak-calling pipeline to our list of ATAC-seq
experiments to obtain ATAC-seq peaks in a number of developmental stages of
amphioxus, zebrafish and medaka, as well as two cell lines of mouse. [notebook:
13.10]

The numbers of ATAC-seq peaks, like the putative enhancers detected through
H3K27ac, are higher in vertebrates than amphioxus (Fig: 4.8), and increasing
throughout development (more plots at 13.10).

4.6. CRE-TSS distances 53

8 15 36 60
0

0

10

20

30

40

50

AT
AC

-s
eq

 n
um

be
r

of
 p

ea
ks

 (
K)

Amphioxus

dom
e
shi

eld 80e
pi 8so

m 24h 48h

0

0

25

50

75

100

125

150

175

AT
AC

-s
eq

 n
um

be
r

of
 p

ea
ks

 (
K)

Zebrafish

DE ESC
0

0

50

100

150

200

AT
AC

-s
eq

 n
um

be
r

of
 p

ea
ks

 (
K)

Mouse

dom
e

shi
eld 8so

m 24h 48h

0

0

20

40

60

80

100

120

AT
AC

-s
eq

 n
um

be
r

of
 p

ea
ks

 (
K)

Medaka

Figure 4.8: The number of detectedATAC-seq peaks in our experiments [notebook:
13.10]

4.6 CRE-TSS DISTANCES

A more interesting inquiry than the raw number of peaks is how those peaks are
distributed on the genome. Since ATAC-seq marks all regulatorily active regions
of the genome, we need other clues to inform us on their function.

Such a clue can be obtained from the genome. A peak that overlaps a TSS is
likely the gene’s promoter while a peak at a large distance is likely an enhancer or

54 Chapter 4. Introductory Analyses

silencer.

To examine the distribution of peaks around TSSs, we plotted (Fig: 4.9) the cu-
mulative distributions of distances from our various experiments. In this plot, the
y axis spans from 0 to 1 and measures the percentage of total peaks that are found
at an equal or smaller distance than the value on the X axis.

100 101 102 103 104 105 106 107

Distance to TSS

0.0

0.2

0.4

0.6

0.8

1.0

CD
F(

x)

amphi
zebra
medaka
mouse

Figure 4.9: The cumulative distribution function (CDF) of the distances of ATAC-
seq peaks from TSSs. For each point in X, Y percentage of peaks have X
or less distance to a TSS. i.e. roughly 20% of zebrafish peaks and 80% of
amphioxus are found at a distance of 104 or less from a TSS. [notebook:
13.11]

Wecan see a clear difference between amphioxus and the vertebrates, but the ver-
tebrates themselves are also clearly in order of genome size. Maybe this is simply
the effect of larger genomes. To clarify, we normalized all peak-TSS distances by
the average intergenic distance of each genome. In the resulting plot (Fig: 4.9),
the vertebrates behave very similarly to each other while amphioxus is still clearly
distinct.

It looks like cis regulatory landscapes of vertebrates have been expanded, with cis
regulatory elements being found at larger distances from promoters.

4.7. Higher regulatory content 55

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Distance to TSS in units of 'average intergenic distance'

0.0

0.2

0.4

0.6

0.8

1.0
CD

F(
x)

amphi
zebra
medaka
mouse

Figure 4.10: Like in 4.9 but now distances to TSS are normalized by the average
intergenic distance. i.e. 70% of ATAC-seq peaks in vertebrates and
more than 80% in amphioxus are found at a distance of less than the
average intergenic distance. [notebook:13.11]

4.7 HIGHER REGULATORY CONTENT

The next question arising through our train of thought is if vertebrate genes are
controlled by more cis regulatory elements than their amphioxus homologues.
To investigate this we need to assign cis elements to genes, which is not a simple
task. It is known that cis regulatory elements can be found in surprisingly long
distances from their target gene(s), even with other genes found between them.
Lacking adequate direct, biologically-collected datawith regards towhich element
interacts with what gene, we necessarily have to adopt a suboptimal scheme.

A typical such approach is to assign each putative element to its nearest gene on
the genome. We employed an improvement on this concept, the GREATmethod
(more in chapter 13.7).

With this, we can count the number of assignable cis regulatory elements per gene
and examine their distribution.

56 Chapter 4. Introductory Analyses

bla
_8
bla

_15
bla

_36
bla

_60

dre
_do

me

dre
_sh

iel
d

dre
_80

epi

dre
_8s

om

dre
_24

h

dre
_48

h

ola
_do

me

ola
_sh

iel
d

ola
_8s

om

ola
_24

h

ola
_48

h

mmu
_ES

C
mmu

_DE
0

5

10

15

20

25

30
CR

Es
 p

er
 g

en
e

GR
EA

T

Figure 4.11: Distribution of the number of ATAC-seq peaks within each gene’s
regulatory landscape (as estimated by GREAT in each of our experi-
ments. For each species (from left to right: amphioxus(ola), zebrafish
(dre), medaka(ola), mouse(mmu)), we plot stage or cell line [notebook:
13.12]

4.7.1 MATCHED GENOMIC REGION SIZES

We find more ATAC-seq peaks per gene’s GREAT region in vertebrates, but, as
we commented in previous sections, genes in vertebrates also have larger genomes
and larger intergenic regions (Example in Chapter 6.0.1, Fig. 6.2). Can the in-
crease in regulatory content be singularly explained by the increase of space?

We split genes in amphioxus and zebrafish in categories based on the size of their
GREAT region (Fig. 4.13), by dividing that size by 10000. This way, category 1
is all genes with a GREAT region of under 10kb, category 2 is GREAT regions
larger than 10kb but smaller than 20kb and so on. We repeated the same process
with intergenic regions instead of GREAT regions in Fig. 4.12.

In both cases, we found that zebrafish genes consistently had more ATAC-seq
peaks, even at comparable genomic sizes, indicating that besides the increase in
genomic size, the higher regulatory content is also driven by an increase of CRE
density.

4.7. Higher regulatory content 57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Intergenic region size (10Kb)

0

10

20

30

40

50
CR

E
co

un
t

in
 I

nt
er

ge
ni

c
re

gi
on

s

species
bla
dre

Figure 4.12: The counts of ATAC-seq peaks in the intergenic regions of genes, on
the Y axis. Genes are grouped based on the size of their intergenic re-
gion. i.e. category 1 is all genes with a intergenic region of under 10kb,
category 2 is intergenic regions larger than 10kb but smaller than 20kb
and so on.

58 Chapter 4. Introductory Analyses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GREAT region size (10Kb)

0

5

10

15

20

25

30
CR

Es
 i

n
ge

ne
 G

RE
AT

species
bla
dre

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
GREAT region size (10Kb)

0

10

20

30

40

50

60

CR
Es

 i
n

ge
ne

 G
RE

AT

bla
dre

Figure 4.13: The counts of ATAC-seq peaks in the GREAT regions of genes, on the
Y axis. Genes are grouped based on the size of their GREAT region. i.e.
category 1 is all genes with a GREAT region of under 10kb, category 2
is GREAT regions larger than 10kb but smaller than 20kb and so on.

4.7. Higher regulatory content 59

4.7.2 DOWNSAMPLING

To examine the possibility that this increase is a result of richer, more deeply
sequenced experiments, we down-sampled vertebrate experiments. That is, we
randomly discard a portion of the reads of a rich experiment and repeat the peak-
calling procedure. We removed more and more of reads from a zebrafish and a
medaka experiment and found that we had to lower the coverage of vertebrates
to 20% of our richest amphioxus coverage in order to break the effect.

bla dre ola
0

5

10

15

20

25

CR
Es

 i
n

ge
ne

 G
RE

AT

101
100
90
80
70
60
50
40
30
20
10
0

Figure 4.14: The counts of CREs at increasing levels of downsampling [see note-
book: 13.14]. At 100, is the mean coverage (sequencing reads per ef-
fective genome size) of our two richest amphioxus replicates. At 101
is the peaks found in the slightly richer of those two replicates alone.
In zebrafish and medaka, we tried increasingly harsh downsampling in
order to bring the coverage of those experiments at lower levels than
the ones from amphioxus.

61

5

Conservation of cis regulation

5.1 NACC

Looking for evidence of regulatory conservation, we appliedNeighborhoodAnal-
ysis of Conserved Co-expression (NACC) [125], a method developed to compare
heterogeneous, non-matched sample sets across species. This allowed us to use
all of our available RNAseq data without having to worry about matching them
across the species. In total we had 49 Amphioxus, 31 zebrafish, 65 mouse and 52
human samples. They consist of assays on embryonic stages, organs, cell lines etc.
The full list can be found in 13.22.

The method investigates to what degree gene neighborhoods, genes that are ex-
pressed similarly across a set of tissues, remain as a neighborhood in another
species where we can detect the orthologous for each gene. For each gene, we
get a NACC score which is smaller the more conserved the gene’s neighborhood
is. By plotting the distributions of the NACC values for all of the genes and con-
trasting it to the same distribution made with randomized orthologies (Fig. 5.1)
we can see a clear conservation of gene regulation between amphioxus and hu-
man.

62 Chapter 5. Conservation of cis regulation

Using human as a reference species we applied the NACC analysis to mouse, ze-
brafish and amphioxus to reveal an interesting pattern of the regulatory similari-
ties as revealed by NACC, increasing with evolutionary proximity (Fig. 5.2).

0 1 2 3 4 5 6 7 8
NACC score

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Human - Amphioxus
NACC
NACC randomized

Figure 5.1: Distributions ofNACCvalues for orthologous genes (in blue) or random
orthology assignments (red) between Human and Amphioxus. Lower
NACC values imply higher conservation of relative expression.[see
notebook:13.17]

5.1. NACC 63

0 1 2 3 4 5 6 7
NACC score

Mmu

Dre

Bla

sp
ec

ie
s

Human - All
NACC
NACC randomized

Figure 5.2: Distributions ofNACCvalues for orthologous genes (in blue) or random
orthology assignments (red) in three chordate species (mouse, zebrafish
and amphioxus) against human. Lower NACC values imply higher con-
servation of relative expression. When we randomize the orthology
connections, the distribution shifts to the right, meaning that on aver-
age genes that are co-expressed in one species, stay co-expressed in the
other species as well. [see notebook:13.17]

64 Chapter 5. Conservation of cis regulation

5.2 THE PHYLOTYPIC PERIOD

The phylotypic period is a characteristic shared by vertebrates when morpholog-
ical differences are their minimum. That is, vertebrates start their development
with different forms, becomemore similar to the others at their phylotypic period
and then diverge to the great spectrum of vertebrate form variety.

Previous comparative analyses among vertebrate transcriptomes [126] also showed
a developmental stage of maximal similarity in gene expression, coinciding with
the so-called vertebrate phylotypic period, in agreementwith the hourglassmodel
[127, 128]. However, similar comparisons with tunicates and amphioxus have
thus far not resolved, at the transcriptomic level, a phylotypic period shared across
all chordates [129].

As part of our work in [123], our collaborators tested whether a period of maxi-
mal gene expression similarity exists between amphioxus and vertebrates. They
did pairwise comparisons of RNAseq data from developmental time courses in
amphioxus, zebrafish, medaka, frog and chicken and revealed a consistent period
of higher similarity between amphioxus and all vertebrate species (Fig. 5.3), cor-
responding to the 4-7 somite neurula (18-21 hpf).

5.2. The phylotypic period 65

Eg
gs

32
ce

lls

Bl
as

tu
la

7h
pf

8h
pf

10
hp

f

15
hp

f

18
hp

f

21
hp

f

24
hp

f

27
hp

f

36
hp

f

50
hp

f

60
hp

f

Pr
eM

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

C
hicken

Z
ebrafish

M
edaka

F
rog15-20hpf

St 16-19

Eg
gs

2-
4

ce
lls

2h
pf

1K
 c

el
ls

D
om

e
Sh

ie
ld

8h
pf

Bu
d

12
hp

f
16

hp
f

20
hp

f
26

hp
f

28
hp

f
48

hp
f

72
hp

f
12

0h
pf

7d
pf

Eggs

32 cells

Blastula

7hpf

8hpf

10hpf

15hpf

18hpf

21hpf

24hpf

27hpf

36hpf

50hpf

60hpf

PreMet

28 30 32 34
Amphioxus stage

G
en

e
ex

pr
es

si
on

 d
is

ta
nc

e

JSD distance

20-26hpf

HH6-19

Figure 5.3: Left) Stages of minimal transcriptomic divergence (Jensen-Shannon
Distance, JSD) to each amphioxus stage in four vertebrate species. The
grey box outlines the ‘phylotypic’ period of minimal divergence, with
the corresponding vertebrate periods indicated (the range given by the
two closest stages). Dispersions correspond to the standard deviation
computed over 100 bootstrap resamplings of the ortholog set. Right)
Heatmap of pairwise transcriptomic distances (Jensen-Shannonmetrics)
between amphioxus and zebrafish stages. Smaller distance (red) indi-
cates higher similarity.

Continuing our investigation of cis-regulatory conservation from Chapter 5.1,
we set out to investigate if the transcriptomic phylotypic dynamics are reflected
on the cis-regulatory level. If gene transcription levels are ultimately controlled
by TF-DNA binding events, one would expect to find similar TF binding sites in
the regulatory landscapes of genes that are expressed similarly.

For our analysis (see 13.15), we looked into atac peaks that are open in each devel-
opmental stage, and counted statistically significant hits for a large set (see chapter
13.1) of PositionWeightMatrices. Having counts for all the PWMs at each stage,
allows us to compare the stages to each other based on their cis-regulatory con-
tent.

After normalizing the PWM counts, we compute the correlation levels between
stages. If two stages are highly correlated it means that the same PWMs are im-
portant or unimportant in those stages.

66 Chapter 5. Conservation of cis regulation

Wepresent our correlation values in a heatmap, just like in (Fig. 5.3) (a), to show-
case how our analysis revealed similar dynamics

8 15 36 60 hep
amphioxus dev. stages

do
me

sh
ie

ld
80

ep
i

8s
om

24
h

48
h

ze
br

af
is

h
de

v.
 s

ta
ge

s

cis-content correlation

−0.50

−0.25

0.00

0.25

0.50

Figure 5.4: Zebrafish and amphioxus pairwise correlation of relative TF motif en-
richment z-scores in ATAC-seq peaks active at different developmental
stages. Four developmental stages and hepatic tissue from amphioxus
are compared against six developmental stages of zebrafish. [see note-
book:13.15]

We can also visualize our analysis as a line plot, again to showcase the similarities
to the RNA-based comparisons. Our results are consistent with the hourglass
model, with the twomost similar stages (in terms of cis-regulatory content) being
those directly preceding the RNA phylotypic period.

5.3. Gene Modules 67

8h 15h 36h 60h hepatic

0.3

0.4

0.5

0.6

Figure 5.5: For each amphioxus stages (on the x axis), we plot the maximum sim-
ilarity (the y axis is inverted) to any zebrafish stage. This similarity is
what was plotted in Fig. 5.4 [see notebook: 13.15]

5.3 GENE MODULES

5.3.1 THE WGCNA ANALYSIS

Having established that at least on some level, there’s conservation of gene net-
works between amphioxus and vertebrates, we wanted to investigate deeper. As
part of our work for [123], our collaborators applied a gene clustering analysis
on 17 and 27 RNAseq datasets in amphioxus and zebrafish respectively. The
Weighted Gene Correlation Network Analysis clusters together genes that are
highly correlated, meaning they have similarly low or high transcriptomic levels
across the various tissues/samples/organs.

This analysis yielded 25 and 23 clusters in amphioxus and zebrafish, with vary-
ing size (number of genes in each cluster). Wemanually annotated those clusters,
based on their overall gene expression and GO enrichment profiles. As an ex-
ample, in Fig: 5.6 we show the annotation of two modules in each species. The
two on the left were labeled as ’cilium’ and the two on the right ”Neural tube” and
”Brain” respectively.

68 Chapter 5. Conservation of cis regulation

BP CC

cR
PK

M

0

10

102

Eg
gs

32
ce

lls
8h

pf
15

hp
f

36
hp

f
Pr

em
et

O
va

ry
Te

st
is

N
. T

ub
e

Sk
in

M
us

cl
e

G
ut

H
ep

at
ic

G
ill

ba
rs

C
irr

i

0

10

102

103

Eg
gs

2h
pf

12
hp

f
20

hp
f

26
hp

f
7d

pf
O

va
ry

Te
st

is
Br

ai
n

Sk
in

M
us

cl
e

In
te

st
in

e
Li

ve
r

G
ills

Sp
er

m

Eg
gs

32
ce

lls
8h

pf
15

hp
f

36
hp

f
Pr

em
et

O
va

ry
Te

st
is

N
. T

ub
e

Sk
in

M
us

cl
e

G
ut

H
ep

at
ic

G
ill

ba
rs

C
irr

i

0

10

102

103

104

Eg
gs

2h
pf

12
hp

f
20

hp
f

26
hp

f
7d

pf
O

va
ry

Te
st

is
Br

ai
n

Sk
in

M
us

cl
e

In
te

st
in

e
Li

ve
r

G
ills

Sp
er

m

0

10

102

103

104

cR
PK

M

BP CC
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

cilium organization
cilium assembly
cilium morphogenesis

mtub. cytoskeleton
cytoskeleton
motile cilium
axoneme
cell projection

cilium organization
cilium morphogenesis
cilium assembly

cilium
axoneme
cell projection
mtub. org. center
mtub. cytoskeleton

cell surface receptor sign.path
signal transduction
behavior
reg. memb. potential
neurological system process

neuron projection
dendrite
axon

nervous sys. development
homophilic cell adh. via plas. memb.
intracellular signal transduction
neuron development
generation of neurons

membrane
presynapse
ion channel complex

-log pval -log pval -log pval -log pval

Figure 5.6: For two pairs of modules (from left to right, Cilium-amphioxus, Cilium-
zebrafish, Neural Tube-amphioxus, Brain-zebrafish), the distribution of
expression values using the cRPKM (corrected for mappability Reads
Per Kbp andMillionmapped reads) metric for all genes within the given
module across each sample on the top. In the bottom, the enriched GO
terms within each module (BP, Biological Process; CC, Cellular Compo-
nent). From our work in [123]

5.3.2 HOMOLOGOUS GENE CONTENT

Having detectedmodules of genes in both species, and noticing how in some cases
their activity is detected in the same homologous tissues, questions arise. For
example; are the two muscle modules composed of the same (orthologous) genes? We
did pairwise comparisons between the modules of the two species, examining if a
given zebrafish module is enriched in orthologous genes that are included in any
of the amphioxus modules, and present these pairwise enrichments in a heatmap
5.7. By further clustering the rows and columns of this matrix, we can reveal how
some modules of genes have remained tightly co-regulated from their common
ancestor to amphioxus and zebrafish.

5.3. Gene Modules 69

Ov
ar

y/
 T

es
ti

s(
tr

an
sl

at
io

n)
Eg

gs
/

32
 c

el
ls

(c
el

l
cy

cl
e)

32
 c

el
ls

8h
pf

 e
mb

ry
o(

tr
an

sc
ri

pt
io

n,
 s

pl
ic

eo
so

me
)

Ci
li

um
Mi

to
ch

on
dr

io
n

He
pa

ti
c(

li
pi

d
ca

ta
bo

li
sm

)
Sk

in
Gu

t/
 H

ep
at

ic
Mu

sc
le

N.
tu

be
(n

eu
ro

tr
an

s.
)

N.
tu

be
(n

eu
ro

ge
n.

)
Pr

ot
ea

so
me

15
hp

f
em

br
yo

Ci
rr

i
/

Pr
eM

et
.

/
Mu

sc
le

 -
 a

ct
om

yo
si

n
Ov

ar
y/

 E
gg

s
8-

36
hp

f
em

br
yo

/
Sk

in
/

Ci
rr

i(
me

mb
.

sy
nt

.)
Gi

ll
s/

 P
re

Me
t

la
rv

ae
36

hp
f

em
br

yo
Im

mu
ne

Gi
ll

s
He

pa
ti

c
Pr

eM
et

.l
ar

va
e

Gu
t

Ci
rr

i(
me

mb
.

sy
nt

.)

Intestine
Liver(oxi-red.proc.
Kidney
Spliceosome
RNA,ribosome,proteasome
Ovary/ Sperm
Translation,ribosome,RNA bin.
Mitochondrion
Cilium
Pancreas/ Testis
Brain
12-26hpf embryo
Muscle
Heart
Eye
Skin
20-26hpf embryo
Gills
Immune
Gills/ Skin
Liver(carboxi.met.)
larvae 7d melanin
12-26hpf embryo/ Skin

8
12
16
20
24

Figure 5.7: Heatmap showing the level of statistical significance of orthologous gene
overlap between WGCNA modules in the two species as derived from
hypergeometric tests. (-log10(pvalue)) [see notebook: 13.16]

70 Chapter 5. Conservation of cis regulation

5.3.3 CIS-REGULATORY CONTENT

We continued on the same spirit of comparing the modules between the species,
but this time we wanted to investigate to what degree the modules are similar
on their cis-regulatory context. Similarly to what we did for the phylotypic cis-
regulatory analysis, we counted instances of significant PWM hits inside a ge-
nomic region assigned to each gene. After summing the counts for each module
and properly normalizing, we can compare modules just like we compared devel-
opmental stages in Fig. 5.4.

We tested the correlation coefficient of these relative motif enrichment scores for
all of our intra-species pairs of modules and found significant positive values for a
large fraction of the pairs that also displayed high homology conservation (in Fig.
5.7). In such cases, the most enriched TF motifs within each cluster were highly
consistent between amphioxus and zebrafish and included TFs with well-known
roles in tissue-specific development and differentiation e.g. Rfx for cilia, Hox for
brain, Hnf1a for liver and gut, Ghrl for skin, Mef2 for muscle, and Elf1 and Spic
for immune function. Some of these are shown in Fig. 5.9, and the rest can be
computed in the relevant analysis notebook (chapter 13.16).

In summary, our results show a high level of transcriptomic and cis-regulatory
conservation underlying basic cellular processes and differentiated tissues in adult
amphioxus and vertebrates.

5.3. Gene Modules 71

Ov
ar

y/
 T

es
ti

s(
tr

an
sl

at
io

n)
Eg

gs
/

32
 c

el
ls

(c
el

l
cy

cl
e)

32
 c

el
ls

8h
pf

 e
mb

ry
o(

tr
an

sc
ri

pt
io

n,
 s

pl
ic

eo
so

me
)

Ci
li

um
Mi

to
ch

on
dr

io
n

He
pa

ti
c(

li
pi

d
ca

ta
bo

li
sm

)
Sk

in
Gu

t/
 H

ep
at

ic
Mu

sc
le

N.
tu

be
(n

eu
ro

tr
an

s.
)

N.
tu

be
(n

eu
ro

ge
n.

)
Pr

ot
ea

so
me

15
hp

f
em

br
yo

Ci
rr

i
/

Pr
eM

et
.

/
Mu

sc
le

 -
 a

ct
om

yo
si

n
Ov

ar
y/

 E
gg

s
8-

36
hp

f
em

br
yo

/
Sk

in
/

Ci
rr

i(
me

mb
.

sy
nt

.)
Gi

ll
s/

 P
re

Me
t

la
rv

ae
36

hp
f

em
br

yo
Im

mu
ne

Gi
ll

s
He

pa
ti

c
Pr

eM
et

.l
ar

va
e

Gu
t

Ci
rr

i(
me

mb
.

sy
nt

.)

Intestine
Liver(oxi-red.proc.
Kidney
Spliceosome
RNA,ribosome,proteasome
Ovary/ Sperm
Translation,ribosome,RNA bin.
Mitochondrion
Cilium
Pancreas/ Testis
Brain
12-26hpf embryo
Muscle
Heart
Eye
Skin
20-26hpf embryo
Gills
Immune
Gills/ Skin
Liver(carboxi.met.)
larvae 7d melanin
12-26hpf embryo/ Skin

0.16
0.20
0.24
0.28
0.32

Figure 5.8: Heatmap of all pairwise correlations between the modules of the two
species, based on the relative TF motif z-scores for each module. Mod-
ules are ordered according to the clustering in Fig. 5.7. [see notebook:
13.16]

72 Chapter 5. Conservation of cis regulation

Figure 5.9: Putting these two heatmaps next to each-other, shows how some pairs of
modules are highly conserved both at the gene and cis-regulatory levels.
The heatmap from Fig. 5.7 is on the left and the heatmap from Fig. 5.8
on the right. Some interesting case are highlighted. From our work in
[123].

5.3. Gene Modules 73

Figure 5.10: Examples of TF binding site motifs with high z-scores from highly cor-
related pairs of modules between zebrafish and amphioxus.From our
work in [123]

75

6

Regulatory content and gene
fate after WGD

6.0.1 GENE FATE AFTER WGD

As was mentioned before, Whole Genome Duplications are significant events
in the developmental history of organisms. Comparing the slow evolving am-
phioxus’s genome which contains no whole-genome duplications to vertebrate
genomes that contain at least two, allows us to investigate what happens to genes
after a WGD event.

Based on the reconstructed homologous gene families, we split genes in categories
based on howmany copies of the gene have been retained in mouse, to keep com-
parisons between vertebrates consistent. This yielded four categories of genes.
The first one, where the gene has been retained in a single copy inmouse (’1-1’), is
enriched for genes that can be labeled as ”House Keeping” (see 13.12), that is genes
that are involved in basic cellular functions that are shared acroos cell types. The
other three categories, where genes are retained from 2 to 4 copies, are in contrast
enriched for genes implicated in transcriptional regulation or development.

By splitting the genes in these categories we can elucidate how Trans-Dev genes
are more likely to be retained in multiple copies, as was discussed in 2.4.3, and

76 Chapter 6. Regulatory content and gene fate after WGD

how these genes are more likely to have larger regulatory landscapes with more
cis-regulatory elements both in amphioxus and in vertebrates (Fig. 6.1) The in-
crease in zebrafish was not attributable to the thirdWGD of teleosts, because us-
ing published ATAC-seq datasets we found an even stronger pattern for mouse
(see the notebook in chapter 13.12).

Plotting only the ’Housekeeping’ and ’Trans-Dev’ labeled genes also highlights the
same dynamic (Fig. 6.2)

amphioxus zebrafish
0

5

10

15

20

25

30

Si
ze

 o
f

GR
EA

T
re

gi
on

 (
*1

0k
b) 1-1

1-2
1-3
1-4

amphioxus zebrafish
0

5

10

15

20

25

30

CR
Es

 i
n

ge
ne

 G
RE

AT

1-1
1-2
1-3
1-4

Figure 6.1: The size of gene GREAT regions (left) and counts of CREs in gene
GREAT regions (right) split in categories based on WGD retention.
Genes found in a single copy in both amphioxus and mouse are denoted
as ’1-1’. Genes found in two copies in mouse but in a single copy in am-
phioxus are ’1-2’ and so on.[see notebook: 13.12]

Chapter 6. Regulatory content and gene fate after WGD 77

8h 15h 36h 60h dome shield 80%
 epiboly

8
 somites

24h 48h
0

5

10

15

20

25

30

35

40

45
CR

Es
 i

n
ge

ne
 G

RE
AT

class
House Keeping
Trans Dev

Figure 6.2: The distribution of counts of CREs in gene GREAT regions, split in
Transdev and Housekeeping subsets [see notebook: 13.12]

6.0.2 CRES PER PARALOG

Interestingly, the number of CREs is very uneven between ohnologs 1: the para-
log with the lowest number of associated CREs generally has a comparable num-
ber to the amphioxus ortholog, but dramatic regulatory expansionswere observed
for some ohnologs (Fig. 6.3). The same patterns were detected for all amphioxus
and zebrafish developmental stages (see notebook: 13.12).

1Gene duplicates resulting fromWGD, in honor of Susumu Ohno who first consid-
ered the implications of gene duplication in evolution [120]

78 Chapter 6. Regulatory content and gene fate after WGD

amphioxus zebrafish
0

10

20

30

40

50
CR

Es
 i

n
ge

ne
 G

RE
AT

1-1max
1-2min
1-2max
1-3min
1-3max
1-4min
1-4max

Figure 6.3: The distribution of counts of CREs in gene GREAT regions, split in cat-
egories based on WGD retention. Only the minimum and maximum
count per gene family is shown [see notebook: 13.12]

6.0.3 INCREASED REGULATORY COMPLEXITY IN FUNCTIONALLY
SPECIALIZED OHNOLOGS

DDC predicts that individual duplicate genes would each have more restricted
expression than an unduplicated outgroup, but their summation would not. To
investigate this, our collaborators focused on seven homologous tissues and two
equivalent developmental stages in amphioxus, zebrafish, frog and mouse, and
marked the expression of each gene in each sample as on or off based on fixed
cut-offs.

By counting an expression-bias metric that they called delta zebra, for each gene
and plotting the distribution of these values, they investigate differences between
amphioxus and vertebrates (Fig. 6.4). The metric is defined as the number of
domains expressed in zebrafish minus the number of domains expressed in am-
phioxus. The left skewing of the distribution plotted in the middle of Fig.6.4 for
example, shows how the majority of ohnologs in zebrafish lose expression do-
mains in comparison to their amphioxus counterparts.

Chapter 6. Regulatory content and gene fate after WGD 79

Figure 6.4: Distribution of the difference in positive domains between zebrafish and
amphioxus for 1-to-1 orthologs (left), individual ohnologs (middle) and
the union of all vertebrate ohnologs in a family (right). See Fig. 6.5 for
schematic of how the values are calculated.

For genes that are conserved in single copies in vertebrates (Fig. 6.4 left), the dis-
tribution of values is centered around 0, indicating that this group of genes tends
to retain the ancestral expression domains. In contrast, when vertebrate genes
from families with multiple copies were compared to their single amphioxus or-
tholog, the distributions were strongly skewed, with many vertebrate genes dis-
playing far more restricted expression domains (Fig. 6.4 middle). Remarkably,
the symmetrical pattern was fully recovered when the expression of all vertebrate
members was combined or the raw expression values summed for each member
within a paralogy group (Fig. 6.4 right).

Although the above findings are consistent with the DDC model, they are also
compatible with an alternative model in which a subset of duplicate genes be-
comes more ‘specialized’ in expression pattern while one or more paralogs retain
the ancestral broader expression. To distinguish between these alternatives, we
analyzed a subset of multi-gene families in which both the single amphioxus or-
tholog and the union of the vertebrate ohnologs were expressed across all nine
compared samples.

We then identified (Fig. 6.5 c): (i) gene families in which all vertebrate paralogs
were expressed in all domains (‘redundancy’), (ii) gene families in which none
of the vertebrate members had expression across all domains (‘subfunctionaliza-
tion’), and (iii) gene families in which one or more vertebrate ohnologs were ex-
pressed in all domains, but at least one ohnolog was not (‘specialization’).

80 Chapter 6. Regulatory content and gene fate after WGD

Figure 6.5: Left: Schematic summary of the analysis shown in Fig. 6.4. Expression
is binarized (on or off) for each amphioxus and vertebrate gene across
nine comparable samples, based on an arbitrary expression cut-off (nor-
malized cRPKM>5). For each vertebrate gene, the number of positive
expression domains is subtracted from the number of domains in which
the single amphioxus ortholog is expressed. Black/White circles repre-
sent on/off expression, respectively. Right: Schematic summary of the
analyses shown in Fig. 6.6, representing the three possible fates after
WGD: Redundancy, all ohnologs are expressed in all domains; Subfunc-
tionalization, none of the ohnologs are expressed in all domains; Spe-
cialization, at least one of the ohnologs in expressed in all domains, but
at least one is not.

We obtained very similar results for the three studied vertebrate species (6.6 a):
between 80 and 88% of gene families fell into either subfunctionalization or spe-
cialization, meaning they show a loss of ancestral expression domains in at least
onemember. Moreover, we found specialization to be consistentlymore frequent
than subfunctionalization as a fate for vertebrate ohnologs.

Chapter 6. Regulatory content and gene fate after WGD 81

Figure 6.6: Left: Distribution of fates afterWGD for families of ohnologs inferred to
be ancestrally expressed in all nine studied domains for each vertebrate
species. Right: Distribution of the percentage of nucleotide sequence
similarity between human and mouse for different classes of ohnologs
based on their fate after WGD. Ohnologs from specialized families are
divided into “Spec. equal” (maintaining all expression domains), “Spec.
mild” (which have lost expression domains, but maintained more than
two), “Spec. strong” (with two or fewer remaining expression domains)

Interestingly, ohnologs that have experienced strong specialization (defined as
having two or fewer remaining expression domains) showed the fastest rates of
sequence evolution and the highest dN/dS ratio betweenhuman andmouse, whereas
genes from redundant families and those ohnologs from specialized families that
retain ancestral expression displayed the lowest levels of sequence divergence (
Fig.6.6, right).

Surprisingly, specialization and subfunctionalization were not correlated with an
obsious loss of CREs as the DDC model would assume. In fact, we observed that
these categories of genes were more likely to have more CREs found inside their
cis landscapes (Fig. 6.7)

82 Chapter 6. Regulatory content and gene fate after WGD

Redun
dant

Subfu
nctio

naliz
ed

Redun
dant

membe
rs

of Sp
ecial

ized Mildl
y

Speci
alize

d Stron
gly

Speci
alize

d

0

5

10

15

20

25

30

35

40

45
CR

Es
 i

n
ge

ne
 G

RE
AT

Figure 6.7: Herewe plot the distribution of counts of CREs in geneGREAT regions.
We split the genes in categories based onWGD fate, as was discussed in
the text and shown in the previous figures [see notebook: 13.12]

Furthermore, we found that ohnologs from specialized families that have lost ex-
pression domains showed significantly more associated regulatory elements than
those with the full ancestral expression. In fact, we observed a strong positive
relationship between the number of ancestral expression domains lost and the
number of putative regulatory elements associatedwith specialized ohnologs (Fig.
6.8)

Chapter 6. Regulatory content and gene fate after WGD 83

0 1 2 3 4 >=5
0

5

10

15

20

25

30

35

40

45
CR

Es
 i

n
ge

ne
 G

RE
AT

Figure 6.8: The distribution of counts of CREs in gene GREAT regions, by number
of expression domains lost when compared to amphioxus homologue
[see notebook: 13.12]

This implies that specialization of gene expression after WGD does not occur
primarily through loss of ancestral tissue-specific regulatory elements, but rather
by complex remodeling of regulatory landscapes involving recruitment of novel
tissue- specific regulatory elements.

85

Part III

Results: Detecting TF binding
with a Neural Network

87

As was mentioned before, an important goal of current transcription regulation
research is to determine where proteins are bound on the genome. This changes
from one biological context to the next so ChIP-seq which gives us the best at-
tainable answer to our question needs to be repeated in any context that we want
to investigate in detail.

Besides the expense in consumables and time, ChIP-seq might be restricted by
antibody availability and does not offer base-pair resolution. To obtain such res-
olution, we employ computational approaches, ofwhich themost commonly used
are the PWMs.

When we use a PWM for a DNA-binding protein, we obtain a large number of
sites on the genome, each accompanied by a PWM-score indicating the predicted
certainty that the protein is indeed bound on that location. Since this is a com-
putational technique, these are putative binding sites and since this is a sequence
only approach, these putative sites are applicable to all biological contexts. In a
context for which we have available ChIP-seq data, we can categorize the putative
sites into true sites, those that overlap with peaks of the ChIP-seq signal, and false
sites, those that do not overlap. This kind of exercise, classifying a set of elements
into two groups, is called binary classification.

The problem is then posed as such: ”For a set of putative PWM sites, how good is any
computational method at classifying them between true and false?”.

Since our proposedmodel includes ATAC-seq data, we refine the problem to ”For
a set of putative PWM sites that are found inside ATAC-seq peaks, how good is any
computational method at classifying them between true and false?”.

Classification is a task in which NNs excel, thus we expected that a NNmodel that
is designed similarly to previous similar attempts but also incorporates ATAC-
seq signal, should be able to better detect binding sites thanks to the additional
information that the accessibility assay carries.

A NNs proficiency at any task depends on its architecture (nature) and its training
(nurture). The architecture of a NN refers to a number of choices with regards to
the design of the network; how many layers should there be? how big should the
neurons be? which optimization algorithm should be used?

The training of the NN is the process in which the NN that we designed is given
data in order to update its internal matrices. A number of choices need to bemade

88

here as well; which data should we use for training? howmuch of the data should
we give to the model at each step ? When should we stop the training?

In both architecture and training, at the current state of NNs, there is no recipe
on how to make most of the choices. Consequently most of our design choices
such as the optimization algorithm, activation functions, the number and design
of layers, the widths of the neurons at each layer, were made empirically, after
determining some possible choices based on relevant literature and testing many
of them. The model can be examined in detail in the relevant python script found
in the repository of our implementation2, made with TensorFlow [130]. The
repository also contains accompanying python code to facilitate the training and
testing of new models.

In chapter 7 we present the main architectural choices of our model, the number
of neurons, number of layers, how they are connected etc.

6.1 TRAINING CONCEPTS

After settling on these design choices, there is further parameters that will in-
fluence the ability of our model to classify TFbs. During the training phase, the
network updates its internal matrices depending on the data that we give it as a
training set. The quality of data, as well as the patterns in which the data is given
and the speed with which we configure the model to update itself all play an im-
portant role in the success of the training phase. Furthermore, there is no set
point at which the training finished so terminating the training phase is itself a
problem to be solved.

6.1.1 CHOICE OF DATA

Regarding our choice of data, since we designed our model around ATAC-seq
signal, we found it appropriate to also design the dataset around the question that
a researcher with an available ATAC-seq set would ask: ”Which of the PWM

2 https://gitlab.com/panosfirbas/nimrod/blob/master/nimrod/model.py

6.1. Training concepts 89

hits inside ATAC-seq peaks are real”. Filtering for PWM hits inside ATAC-seq
peaks is a reasonable first filter for our putative PWM hits on the whole genome
since they are most likely to be transcriptionally relevant. In order to train our
model we need to show it putative PWMs and tell it whether they are real or
not. We defined real hits those PWM hits that overlap a CHIP-seq peak at the
appropriate cell line or tissue. We will use this CHIP-seq based labeling as a point
of reference or golden standard, in order to perform the model training but also
in order to evaluate the performance of all models and tools. When training a
Neural Network, it is important to keep a part of the data out of the training set
so that the network doesn’t ”see” it. We define two such subsets, a validation set to
be used at multiple points during the training phase in order to determine when
the network has finished learning, and a test set which will only be used once at
the end to determine the final competence of the network.

For this, we set aside about 9% of the PWM hits from each of our datasets for
the validation subset, and another 9% for a test subset. Our model will train with
the remaining data which forms the training subset, use the validation subset to
detect convergence, and will be tested on the test subset.

6.1.2 BATCH SIZE

The training of a NN happens in steps and in each step, a batch of PWM hits are
used. In each batch/step, the network computes its output values for each of the
elements of the batch and then compares those to the real labels of the elements
of the batch. Based on the differences, the network calculates the direction to-
wards which it needs to change its internal matrix values. Large batches allow the
network to determine this direction more accurately at each batch, which makes
the network train faster. Smaller batches on the other hand make the updates on
each batchmore erratic and as a consequence the training is slower but this allows
the network to explore more and as a result smaller batches often lead to better
final classification power. In different words, smaller batch sizes are more likely
to escape local minima.

90

6.1.3 LEARNING RATE

While the batch size influences the direction of the model’s updates, the learning
rate influences the size of the step towards that direction. It is common practice to
start the trainingwith a large learning rate to take the first simple steps fast, and to
then decrease the rate in order to better explore the search space. We designed our
model with a decaying learning rate that offers this effect but the initial learning
rate and rate of decay still influence the success of the training phase.

6.1.4 EARLY STOPPING

As was mentioned before, there is no set point at which a NN’s training finished.
A model typically goes over the entire training set multiple times, called epochs.
To determine the end of training, wemonitor a NN’s progress by regularly testing
the network against the validation subset. By regularly testing the model we hope
to detect a point at which our model has stopped improving. To do that we need
a metric of how well our NN is doing.

6.1. Training concepts 91

6.1.5 EVALUATING A CLASSIFIER

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

Random scores
A better classifier
PWM score

Figure 6.9: ROC curves for three classifiers.
The diagonal dotted line is what
we would expect from a random
classifier. The PWM score can
be used itself as a classifier but it
is not very strong. In blue, we
plot what a theoretically better
classifier would look like.

As we mentioned before, our prob-
lem is setup as a binary classifica-
tion problem; ”Which of these pu-
tative PWM hits are real and which
are false?”.Binary classifiers are typi-
cally evaluated with Receiver Operat-
ing Characteristic (ROC) curves [131]
where True Positive Rate (TPR) and
False Positive Rate (FPR) are plotted
against each other. In these plots,
a bad classifier 3 will produce a line
on the 45 degree diagonal, while a
good classifier will produce a down-
ward facing curve. A perfect classifier
would produce a vertical line, from 0,0
to 0,1 since the FPR would remain at
0 while TPR increases with increasing
number of elements.

The score of a PWM can be evalu-
ated as a binary classifier. In Fig. 6.9
we plot the ROC curve for the PWMs
from one of our datasets 4, as well as
the ROC curve for a better classifier of
that set, to showcase how these plots are visually intuitive in showing which clas-
sifier is better.

The ROC curve can be quantified beyond the visual interpretation with a sum-
mary statistic such as the Area Under the Curve (AUC) score which can be inter-
preted in a variety of ways such as the probability that the classifier will rank a
randomly chosen positive instance higher than a randomly chosen negative one.
For the dataset in 6.9, the PWM accomplices an AUC score of 0.66 and the other
classifier reaches 0.9.

3For example, randomly produced scores
4 M1957 CTCF hits overlapped with CTCF ChIP-seq in forebrain of mouse

92

6.2 CTCF AND P63

To design and implement our NN we focused on two TFs, CTCF and p63. We
chose these two factors for a number of reasons. First is availability, since as we
discussed, we need datasets from biological samples for which both ATAC-seq
and ChIP-seq against a protein of interest are available. Another limiting factor,
was our goal to make cross-species comparisons, so we needed cases in which we
have data for several species.

CTCF is particularly interesting and well suited protein for our endeavor. It is
well studied with plenty of data being available, it has good PWMs, and binds
strongly to DNA, leaving strong footprints on the ATAC-seq signal. CTCF has
11 zinc-fingers, small protein structural domains that are characterized by the
inclusion of one or more zinc ions and is a member of the C2H2 family of factors
that was briefly mentioned earlier as one of the most expanded families in human
(chapter 1.1).

Evolutionary speaking, CTCF is restricted to bilaterians and is highly conserved
across most of the animal evolutionary tree [132, 133].

It binds on often conserved [134] sites of the genome. There is good evidence that
the orientation of the binding is important and that distal CTCF proteins come
together and with the help of another protein, cohesin, create a strongly bound
homodimer which forces the DNA to form a loop [135].

CTCF sites preferentially flank transcription factor genes [134] and have been as-
sociatedwith the orchestration of conserved 3D architecture of the genome [136].

Given its ubiquity in animals and clear connections to transcription regulation,
genome compartmentalization and development, CTCF is considered and im-
portant part of the evolution of animal form.

For human, we identified three cells lines with available data 5 and for mouse
nine embryonic tissues, two of which in two developmental stages for a total of
11 samples (Table 13.1). From this, we compiled two super-sets, a human and a
mouse one with which we trained our models.

5ATAC-seq and ChIP-seq against CTCF

6.2. CTCF and p63 93

The tumor protein p63, aka TP63, is a master regulator of epidermal develop-
ment[137] and another great candidate for our experiments with the neural net-
work.

P63 effects major transcriptional changes and contributes to dynamic long-range
chromatin interactions[138]. It has been shown to regulate keratinocyte prolifer-
ation and epidermal stratification[139]. We identified two cases that fit our data
criteria, one in zebrafish embryo and one in a human keratinocytes, and compiled
the datasets listed in table 13.2.

Following, we will describe the architecture of our NN and will then implement
the best training conditions using the data for these 2 factors. Furthermore, we
will compare our model with similar previously published tools and show how
our NN outperforms them and how it can be used across-species.

95

7

Architecture

7.1 THE FIRST TWO LAYERS

This model will take as input genomic sequence and ATAC-seq signal for a win-
dow of 1000 basepairs around PWMhits. The genomic sequence is encoded in
the one-hot scheme; for each genomic position we present five values, one for
each possible base (plus ’n’). Of these five values, at each position, only the one
corresponding to the position’s nucleotide is marked as 1, while the other four are
marked as 0 (Fig. 7.1).

96 Chapter 7. Architecture

Figure 7.1: The genomic sequence signal as a one-hot sequence with zero shown as
white and one shown as black, and a neuron of the first seq-based layer.
The neurons of our model’s first layer read seven positions of the input
sequence and output.

The first layer on the genomic sequence consists of neurons that read 7 basepairs
1 of the raw signal each. In Fig. 7.1 we see one such neuron from layer 1 while in
7.2 we see all the neurons of layer 2 and the output of this first layer. Please note
that the colors in the matrix positions (squares) in those figures were an aesthetic
choice to show that different positions in those matrices have different values.
The colors do not contain any further meaning.

As was mentioned earlier, each neuron outputs a number of values, one for each
of the matrices that the layer is designed to contain. These matrices are 7 columns
wide (one for each position that the neuron ’reads’) and 5 rows tall (one row per
possible base, including ’n’), much like a PWM. In our model, each neuron of the
first layer concurrently learns 64 2 different matrices and outputs 64 channels of
information, or 64 scores of matrices. The total size of the output of the first layer
is 994x64, 994 neurons 3 and 64 channels.

These 64 channels are taken as input by the second layer, which reads the outputs
of 25 of the layer 1 neurons. The matrices of this layer are 25 columns wide (for

1 A choice made empirically
2Another empirically made choice, this number should be high enough to allow cap-

turing complexity but not superfluously high because that slows down the model unnec-
essarily

3 As many 7bp reading neurons as you can fit in 1000bp sequence

7.1. The first two layers 97

each of the inputs taken) and 64 rows tall, one for each channel that the underlying
layer outputs.

This second layer outputs 128 channels of information (Fig. 7.2).

Figure 7.2: The neurons of Seq Layer 2, read 25 of the neurons of the underlying
layer each. Each neuron then combines the input values with its inner
weight matrices and outputs one value for each for a total of 128 output
channels. The inner weight matrices are shared by neurons of the same
layer and are learned during the training phase of the model. Please note
that the colors in the matrix positions (squares) in this figure and the
following were an aesthetic choice to show that different positions in
thematrices have different values. The colors do not contain any further
meaning.

98 Chapter 7. Architecture

Figure 7.3: AN overview of the first two sequence layers of Nimrod

In Fig. 7.3 we see the first two layers of the model, working on the genomic
sequence input. Two more layers with the same configuration 4 are ’built’ on top
of the ATAC-seq signal (Fig. 7.4).

TheATAC-seq signal is a base-pair accurate count of cutting events on the genome.
These cutting events, by nature of paired-end sequencing, have happened in pairs.
The distance of each read to its paired read offers additional information to the
system so we did not want to completely flatten the signal to a one-dimensional
genome-long array.

4The neurons of the first layer read 7 positions and the neurons of the second layer
read 25 neurons

7.2. Merging the first two layers 99

In that spirit, the ATAC-seq signal is grouped in three layers; small, medium and
large fragment size.

Figure 7.4: The first two layers over the ATAC-seq signal are almost identical to the
ones that we designed over the genomic sequence. Notice that the input
array has 3 channels instead of the 5 of the sequence-based input array.
These layers are almost identical in architecture but will learn their own
inner weight matrices, separately from the sequence layers.

7.2 MERGING THE FIRST TWO LAYERS

In the next step, the twoouter layers (Seq layer 2 andATAC layer 2) get ‘zipped’/merged
into a single layer and the now merged signal gets passed to more layers of the
model for even higher order feature discovery. In Fig. 7.5 we see how the two
layers are merged into a ”zipper” layer.

100 Chapter 7. Architecture

Figure 7.5: Each neuron of the zipper layer reads the output of one neuron from Seq
Layer 2 and one from ATAC Layer 2 and outputs 256 channels.

7.3 THE DEEPER LAYERS

The signal gets condensed through a max-pooling layer in the next step. In this
layer the neurons do not overlap and so the number of neurons is drastically re-
duced from 970 to 194 (Fig. 7.6). They output 256 values each.

7.3. The deeper layers 101

Figure 7.6: The neurons of the maxpool layer don’t overlap so their number is re-
duced dramatically.

The signal finally converges to the output layer of the NN after two more layers,
a convolutional one and a fully connected one which collapses the network into
a single neuron. The output layer at the end gives us the network’s output, two
values indicating howmuch confidence the network has on applying either of the
potential labels to the input (Fig. 7.7).

102 Chapter 7. Architecture

Figure 7.7: The model as it condenses into a single pair of values in the layers after
the maxpool step. A final convolution layer (Combo) reads the output
of the maxpool layer and is in turn read by a fully connected layer which
condenses the model’s signal in a single neuron that outputs 256 chan-
nels. Those are finally read by the output neuron that outputs 2 values.

In Fig. 7.8 we have a quick overview of our model.

7.3. The deeper layers 103

Figure 7.8: The model as it condenses into a single pair of values in the layers after
the maxpool step.

Our original input was taken from a 1000bp window around a single PWM hit
on the genome. Sequence and ATAC-seq signal are extracted and given to the
network as input. These arrays of data are fed to the first two layers of the network
and two new arrays are generated, the outputs of Seq layer 1 and ATAC layer 1.
The information continues passing fromone layer to the next until the final layer’s
output where the network gives us a score for ”this is a true binding site” and a
score for ”this is a false site”.

The internal matrices of the network are initialized with random values. At that
stage, the output values of the network are equally random. Our goal is for the
network’s output values to be as good of a predictor as possible of the ”real” label of
any PWMsite that is tested. To do that, wewant to change the network’s internal
matrices, towards values that make the final output values a good predictor.

104 Chapter 7. Architecture

The matrices are changed during a training phase. During that phase, for each
PWM,we feed the input genomic sequence and ATAC-seq signal to the network,
and also provide a ”real” label, as determined by overlapwith an appropriate ChIP-
seq peak. The network uses these labels as guidance. It compares its output values
to the real labels and changes its internal matrices accordingly.

105

8

Training results

8.1 EARLY STOPPING

Aswe said before, the point at which the training of a NN stops needs to be some-
how decided by the user. We monitored the progress of our models by comput-
ing many ’accuracy metrics’ but relied on the AUC metric to inform our decision
about stopping. At fixed steps during training, we would compute the AUC score
that our model would get on the validation subset. We kept track of these values
and if after 20 validation tests the AUC score hadn’t improved, we determined the
training to be finished. Here (Fig. 8.1) we plot an example progress of a model’s
AUC throughout its training, as well as the AUC score of the finished model on
the test set.

106 Chapter 8. Training results

0 100000 200000 300000 400000 500000 600000 700000 800000
Number of batches seen

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

AU
C

on
 V

al
id

at
io

n
Se

t

Figure 8.1: After a fixed number of batched have been processed by the network
during training, we compute the model’s AUC score on the validation
subset of our data. Plotting these scores against the number of batches
that have been sees, as a proxy to time passed, creates the line seen in this
plot. The star marker indicates the point in time when the model’s AUC
score stopped improving in the X axis, and the AUC score of the model
on the test subset in the Y axis.

8.2 BATCH SIZE

In our attempt to optimize the hyper-parameters of the model, we observed that
smaller batch size leads to better model training (see Fig.8.2). This is something
previously observed in relevant literature [140], with an explanation offered that
larger batches allow the model to get stuck in local minima. There is nevertheless
some lower limit in the batch size, at least for our model. In some of our efforts,
when the batch size was set to a value too low, the model would fail to train,
meaning it never manages to escape the randomness of the initial state.

8.3. Learning rate 107

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

A ROC curve

Very small batch AUC:0.91
Small batch AUC:0.90
Big batch AUC:0.89
Very big batch AUC:0.88

Figure 8.2: The batch size, the number of elements that are given to a NN in each
step, is known to be an important factor of training for NNs. Here, we
show the ROC curves of our model trained with four different batch
sizes, ranging fromvery small to very big. The small batch sizes provided
better training for our model, as expected.

8.3 LEARNING RATE

A second parameter that is known to affect NN training is the learning rate. We
implemented a decaying learning rate, meaning that it will start at some initial
value and every X batches its value will decay to 0.9*X. As is shown in Fig. 8.3,
except in extreme cases where the NN trains too slow, the learning rate didn’t
influence the final capabilities of the model as much as the batch size did, never-
theless the is some room for optimizing.

108 Chapter 8. Training results

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

Very fast decay AUC:0.89
Fast decay AUC:0.915
Slow decay AUC:0.914
Very slow decay AUC:0.911

Figure 8.3: The decay rate of the learning rate allows the model to make the first
training steps faster and the later ones slower and more carefully. Here
we show the ROC curves of our model trained with four different decay
rates, ranging from very fast to very slow. The final ability of the model
doesn’t change too drastically, but a carefully chosen learning rate will
help the model achieve slightly better AUC scores.

109

9

Performance and comparison
with other tools

We compared Nimrod to other similar tools that have been designed for the pur-
pose of identifying true binding sites.

TFimpute[46] is another NN that operates only with the genomic sequence and
additionally is designed to take into account the tissue of the given input.

Wellington[49] is an algorithm that detects footprints on the ATAC-seq signal,
indentations cause by DNA-bound proteins.

PIQ[53] is a computationalmethod thatmodels themagnitude and shape of genome-
wideATAC-seq profiles to facilitate the identification of transcription factor (TF)
binding sites.

Our model outperformed all of the other tools in all contexts (Fig. 9.1).

110 Chapter 9. Performance and comparison with other tools

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

Human - All stages

Nimrod AUC:0.94
TF impute AUC:0.9
Wellington AUC:0.65
PWM AUC:0.7
PIQ AUC:0.68

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

Mouse - all

Nimrod AUC:0.94
TF impute AUC:0.9
Wellington AUC:0.64
PWM AUC:0.66
PIQ AUC:0.72

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

P63 human(keratinocytes)

Nimrod 0.94
Tfimp 0.83
PIQ 0.63

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

P63 zebrafish embryo

Nimrod 0.93
Tfimp 0.85
PIQ 0.67

Figure 9.1: The ROC curves of different classification methods/tools on the biggest
possible dataset of each protein-organism pair. Upper left: Nimrod and
other tools on the humanCTCF dataset. Upper right: Nimrod and other
tools on the mouse CTCF dataset. Lower left: Nimrod and the two best
other models in the p63 keratinocytes dataset. Lower right: Nimrod and
the two best other models in the p63 zebrafish dataset.

9.1. Cross species 111

9.1 CROSS SPECIES

One of ourmain objectives was to investigate howwell ourmodel would general-
ize in a cross-species context. Given that the TF proteins themselves don’t change
too radically between organisms, one would reasonably expect that the same fea-
tures that are learned from one context based on sequence and ATAC-seq should
be transferable to a different species.

The model lost, or maintained if you see the glass half-full, a significant amount
of its classification ability when used cross-species (Fig. 9.2). In three of the four
cases, when the model was tested on the other species than the one it was trained
on, it performed worse than the cis-trained model but in many cases still compe-
tently when compared to the other tools.

In the case where our model was trained on the mouse ctcf dataset and the tested
on the human dataset, the model showed exceptional generalization by achieving
the same score on the test set as the cis-trained model. We believe this happened
because the mouse ctcf dataset is by far the richest of the four. This must have
allowed the model to train much better than the other poorer datasets.

The concept of testing a model such as ours in a cross-species manner, implies
the existence of a training step. The model needs to learn in one context and be
tested in another. Consequently, most tools cannot be tested in such a way. Of
the models we previously compared to Nimrod, TFimpute is the only one that
can be tested in this way.

TFimpute retains a good amount of its capabilities when tested cross-species, and
very narrowly outperforms Nimrod in one of the four cases, when trained on
human and tested on mouse (Fig.9.3). When the training dataset is rich enough
for Nimrod though, such as in the case of the mouse dataset, Nimrod achieves
much better results, hinting at a higher potential ceiling.

112 Chapter 9. Performance and comparison with other tools

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

CTCF Human dataset

Nimrod AUC:0.94
TF impute AUC:0.9
Wellington AUC:0.65
PWM AUC:0.7
PIQ AUC:0.68
Nimrod-trans AUC:0.94

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

CTCF mouse dataset

Nimrod AUC:0.94
TF impute AUC:0.9
Wellington AUC:0.64
PWM AUC:0.66
PIQ AUC:0.72
Nimrod trans AUC: 0.82

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

p63 human dataset

Nimrod AUC:0.93
Tfimp AUC:0.85
PIQ AUC:0.67
Nimrod trans AUC:0.81

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

p63 zebrafish dataset

Nimrod AUC:0.93
Tfimp AUC:0.85
PIQ AUC:0.64
Nimrod trans AUC:0.84

Figure 9.2: Here we plot, with a thick orange line, the performance of Nimrodwhen
tested on an organism other than the one used for training (trans-test).
Drawnwith a thick black line, is ourmodel evaluated on the same species
as the one that it was trained on (cis-test). The cis Nimrod test as well
as the other tools which are drawn in thin gray lines are the same ROC
curves as in Fig. 9.1 Top left: In orange, our model that was trained with
mouse data, is tested on the human dataset. In thick black, themodel that
was trained with human data. Top right: In orange, the nimrod model
that was trained with human data, tested in the mouse test set. Lower
left: In orange, the model that was trained with zebrafish data is tested
on the keratinocyte data. Lower right: The model that was trained with
keratinocyte data is tested on the zebrafish test set.

9.1. Cross species 113

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

CTCF mouse-train human-test

TF impute AUC:0.89
Nimrod AUC:0.94

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

CTCF human-train mouse-test

TF impute AUC:0.84
Nimrod AUC:0.83

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

p63 zebra-train human-test

Nimrod AUC:0.84
tfimp AUC:0.83

0.0 0.2 0.4 0.6 0.8 1.0
False Positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
it
iv
e
ra
te

p63 human-train zebra-test

Nimrod AUC:0.81
tfimp AUC:0.76

Figure 9.3: Here, we compare the two models when tested in a cross species way.
Top left: The two models, trained with mouse data and tested on the
human test set. Top right: Trained with human data and tested on the
mouse test set. Lower left: Trained with zebrafish data, tested on ker-
atinocyte test set. Lower right: Trained on keratinocyte, tested on ze-
brafish

115

Part IV

Discussion

117

10

Evolution of Cis regulation

Vertebrates are our intimate neighbors on the tree of life. Exploring the other
chordates, the organism groups lying just outside the vertebrate subtree, is sure
to provide valuable insights.

We chose amphioxus, the most basally divergent chordate, for a number of good
reasons that were discussed in chapter 2.4.2. By comparing epigenomic data ob-
tained during the development of amphioxus to similar data obtain fromzebrafish,
we intended to investigate details of the evolution of cis-regulation in chordates.

10.1 CONSERVATION OF CRES

Investigating the evolution of cis-regulatory elements is a challenging task. Con-
servation in genetics is usually measured in terms of sequence similarities. While
coding sequences do change over evolutionary time, they remain similar enough
that gene homology families can be constructed and some genes have been ob-
served to be universal in life. Here we worked with homologous gene families in
vertebrates which gave us more or less 10-20 thousand genes in each species that
we can trace in the tree of vertebrates.

118 Chapter 10. Evolution of Cis regulation

The same approach on non-coding elements yields some conserved elements, but
the numbers are significantly lower. A few thousand have been identified in ver-
tebrates and separately in fruitflies [141–145] or nematodes [146], but only a few
dozen have been shown to be conserved between human and amphioxus.

In human and mouse, orthologous CREs can be detected very well thanks to the
large degree of conservation of sequence and synteny [147–153]. Which is great
news since despite the high rates of repurposing and turnover[148, 149, 152, 154],
cis-regulation research for therapeutic purposed can be readily investigated in our
most important vertebrate model organism[1, 65].

Thee-way comparisons between human, fly and nematodes found little conserva-
tion of individual regulatory targets and binding patterns [155] and some conser-
vation of fundamental features of transcription [156]. Fruitflies and nematodes
have been shown to be highly derived [157–159] so maybe the lack of CRE con-
servation should not come as a surprise.

Again, the turnover rates of CREs are much higher than coding sequences, but
they can also vary between tissues or cell types [152, 160], developmental stages
or types of CREs [144, 148–150, 160].

Our working model of how regulatory elements work suggests that TFs bind on
themon specific sites. Those designated binding sites, at least theway inwhichwe
understand them and typically model them with PWMs, are always a few base-
pairs apart. Consequently the inter-TFbs genomic positions would not be ex-
pected to be under evolutionary pressure. On top of this, the requirements of
TFs with regards to the sequence are decently plastic. These two dynamics could
explain why cis-regulatory sequence might be more receptive to sequence alter-
ations without a change of function.

Yet, striking exceptions do exist as a few mysterious cis-elements appear to be
ultra-conserved [161, 162] (over 95% sequence similarity) in chordates without
a satisfying explanation. Why would the inter-binding site bases be conserved?
Why are they so deeply conserved? Unfortunately for now these questions remain
a mystery.

10.1. Conservation of CREs 119

10.1.1 FUNCTIONAL CONSERVATION

Amphioxus shares a lot of morphological homologies with vertebrates, axial no-
tochord, a dorsal neural tube flanked by segmented trunkmuscles, pharyngeal gill
slits and a ventral heart [163]. If development and tissue formation is defined by
gene activity, and two organisms display similar developmental and morpholog-
ical patterns, it is reasonable to expect homologous genes to be orchestrating the
homologous tissue formations and homologous cis-regulatory elements to be or-
chestrating the gene expression. This is something that we have seen before in
more closely related lineages but we cannot be certain that it extends to the root
of chordates.

We showed significant amounts of transcriptional conservation in chordates, both
in time and space. Gene neighborhoods 1 from amphioxus tend to remain co-
expressed in human (NACC analysis, Chapter 5.1). Functional modules of genes,
grouped independently in amphioxus and zebrafish, tend to share more homolo-
gous genes when they are associated to the same function (Chapter 5.3.1). For ex-
ample, the brain module of zebrafish is most enriched in orthologous genes when
compared to the neural tube modules from amphioxus. Furthermore, amphioxus
displays a phylotypic period (Chapter 5.2), a period in early development where
the genes of vertebrates, and now as we learned chordates too, are transcribed at
the most similar levels between all species.

So the conserved morphology can be seen in conserved gene transcription. Gene
transcription is controlled by cis-regulation, so if homologous genes in two species
are expressed in similar ways, the function of cis-regulation has been conserved
as well. CREs and the putative TF binding sites that they include have often been
modeled as a language. The binding sites are words and CREs are short phrases or
sets of words that carry some function in cis-regulation. There is some evidence
that the ’words’ are needed in specific order, but also evidence to the contrary.

Instead of investigating individual elements we looked at the ’words’ contained
in the entire regulatory landscapes of genes. We showed that modules of genes
with many shared homologous genes and similar transcription levels, often also
display a similar preference or disinclination for the same TFs. For example, the

1Any given gene and its top most co-expressed other genes

120 Chapter 10. Evolution of Cis regulation

cilium-associated modules from both species are enriched in binding sites of RFX
TFs, known to regulate ciliogenesis [164].

During development too, we see the cis-regulatory content of gene lanscapes re-
flecting the conservation of gene transcription levels. We showed that impor-
tance of different TFbs in different developmental stages, is maximally similar
between the two species at a point in the middle of early development, consistent
with the phylotypic period. In fact, the cis-based phylotypic stage was detected
right before the gene-based period, making it tempting to think that we caught
cause and effect in action, but since we don’t have ATAC-seq experiments for
some of the intermediate stages, we can’t tell for sure.

To recapitulate, we observe an overarching body plan conservation amongst chor-
dates. Amphioxus and vertebrates adhere to the phylotypic developmental pat-
tern and ’use’ conserved modules of genes that are controlled by similar TFs. This
is most clearly shown for gene modules participating in specialized developmen-
tal programs, brain, cilium, skin. It is hard to say if this means something for the
programs that we do not detect to be clearly conserved, or if this is a limitation of
our approach. Even more detailed transcriptomic datasets during development,
perhaps single-cell RNA-seq and ATAC-seq would help shed more light into the
rest of the developmental programs.

Being unable to show homology of CREs based on sequence conservation, the
origin of the cis-similarities between the species remains open to interpretation.
Similar cis activity drives similar gene expression to create similar morphologies.
Did CREs get conserved and elaborated during evolution like genes but to a de-
gree that we cannot tell them apart? did they get lost a rediscovered? Maybe
we don’t even need to consider each CRE as functional unit, and the more vague
conservation of the underlying vocabulary in the vicinity of genes is enough.

10.2 COMPLEXITY

We might have assumed, at some point in history, that humans have the biggest
andmost complex genome in life. We are after all the center of our own universe,
the chosen children, our genome would of course be special.

Unfortunately for our pride, it turns out that even the humble onion has a genome

10.2. Complexity 121

many times bigger than ours. It is to be concluded then that organism complexity
is not directly reflected on genome size.

As far as our model organisms are concerned, amphioxus has a smaller genome
than the vertebrates (Chapter 4.1). The additional genomic space in vertebrates
is not, of course found isolated in some corner of the genome, but rather is dis-
tributed between the genes. This is evident by the fact that vertebrate genes have
larger genomic spaces around them and their putative CREs are found in greater
distances from any TSS (Chapters 4.2 and 4.3). In the microcosm of our work,
an increase in genome size comes with an increase in complexity, although no
meaningful conclusions could be drawn from such a small scope.

But what is animal complexity?

Complex is defined as something composed of two or more parts, the more parts
the higher the complexity. In terms of animals then, complexity could be mea-
sured in terms of distinct tissues or organs or cell lines. Vertebrates have evolved
plenty of new elaborations on the chordate body plan, and all the necessary new
tissues, cell lines and developmental programs that are needed. Aheadwith preda-
tory jaws, complex sensory organs and complex brain, a skeleton are all additions
to the ancestral body plan.They are formed during development when the organ-
ism consists of a relatively small number of structures, which interact to give rise
to more structures, which in turn give rise to more, in a widening cascade (read
about developmental-depth in [165]). Our understanding is that novelties in gene
regulation can lead to novel cell states, or cell lines. These new cell lines interact
with the existing developmental context to produce new structures which lead to
morphological novelties.

New cell populations like the ectodermal placodes or the neural crest have been
implicated in the evolution of tissue innovations in vertebrates [166]. Addition-
ally the neural crest was linked to the recruitment of ancestral regulatory genes,
an observation that connects regulatory diversification to cell type diversification
to tissue diversification.

10.2.1 COMPLEXITY AND WGD

The regulatory landscape in an organism that has just underwent a WGD event
brims with evolutionary potential. Many gene copies are now redundant and can

122 Chapter 10. Evolution of Cis regulation

be lost, but in the process of being lost, a gene might change enough to be used in
a different function, therefore regaining its evolutionary purpose. Genes that are
kept in duplicate can themselves evolve and differentiate, presumably at different
rates.

We have noticed that different categories of genes are retained at different rates.
The general understanding is that genes that are involved in functional modules
such as metabolic pathways, metabolic cascades, regulatory networks, etc. tend to
be preferentially retained. It is suggested that a non stoichiometric production of
the components of these modules will quickly lead to problems for the organism.

Therefore, after a duplication sister genes will be under pressure to maintain a
constant level of transcription, to satisfy the needs of the gene module in which
they are involved[167]. TFs are among the categories of genes that are known
to be preferentially retained, as they are often parts of gene regulatory networks
which are such functional modules. Moreover many TFs are pleiotropic, being
involved in multiple regulatory networks, increasing the importance of conserv-
ing their transcription levels.

Let us consider how aWGD effects a TF and a membrane protein as an counter-
example. A TF’s “concentration” on the genome will remain the same after a du-
plication. In other words, there is now double the amount of binding sites where
theTF is expected and double the amount of TF protein. Themembrane protein’s
concentration on the other hand doubles since we have double the amount of this
protein for the more-or-less same area of membrane. The expected pressure then
would be for the TF system to remain as it is, maintaining the TF copies, and for
the additional membrane protein copy to be lost, so that things return to status
quo.

This implicates the second actor of transcription regulation; cis-regulatory ele-
ments. If the transcription of a CRE’s target is under pressure to be kept sta-
ble, the pressure would extend to the conservation of the CRE itself. Are CREs
preferentially retained? The evident high-turnover of CREs, even for relatively
close species points to the contrary, but our inability tomatch CREs across species
doesn’t mean that the ancestral element wasn’t retained after theWGDs. Besides,
overprinting of existing CREs is a rampant phenomenon [54].

We showed that vertebrates have more putative regulatory elements in total and
per gene (chapter4.7) and those are further away from the gene’s transcription
start sites (chapter 4.6). A larger number of regulatory elements is to be expected

10.2. Complexity 123

Figure 10.1: The evolutionary pressure on genes copies after a WGD effect might
depend on gene function. After a WGD, if the copy of a TF gene is
lost, the dosage of the TF protein in the system will be halved since
the binding sites where the TF is expected have doubled while the
amount of theTF proteinwon’t. This has amulti-pronged effect on cis-
regulation since multiple target genes will be affected. Consequently
there is strong pressure for the TF to be kept in duplicate. In contrast,
other genes like a cell membrane protein, will be pressed to lose the
redundant copy since that will return the protein to its expected levels.

in the larger genomic landscapes of vertebrates, but we demonstrated that even

124 Chapter 10. Evolution of Cis regulation

if we group genes in buckets of similarly sized landscapes, zebrafish genes con-
tain more CREs in their landscapes than amphioxus genes (chapter 4.7), indicat-
ing that cis regulatory complexity increase in vertebrates can be observed both in
terms of number of elements per gene, but also in terms of density of elements in
similarly sized regions.

Crucially to our previous arguments, ’trans-dev’ labeled genes (TD), genes that are
implicated in transcription and development (many of them TFs), tend to have
more CREs in their landscapes that housekeeping genes. Similarly so for genes
that are retained in multiple copies (many of them TD) versus genes that are kept
in a single copy. This fits with the idea that CREs of genes that are preferentially
retained in several copies would themselves be preferentially retained. Alterna-
tively, maybe CRE-rich genes are like that because for some reason they tend to
create new CREs more often. Interestingly, the homologous genes in amphioxus,
both of the TD category and generally of genes that are kept in multiple copies,
are also richer in CREs than other amphioxus genes, again fitting with the model
of preferential retention and diversification for CREs, specially so for the CREs
of TD genes.

This preferential retention of developmentally crucial elements, both genes and
CREs, pushes the ceiling of complexity for organisms. Before the WGD, at the
node of each regulatory network resided the single copy of a gene. This single
copy needs to be transcribed at certain levels and has some evolutionary ’wiggle-
room’ but there is no safety net. After a WGD, two copies will preferentially be
kept, alongside their cis-landscapes and they can now both evolve while relying
on their copy to buffer any differences from the ancestral expression pattern.

In the following chapter we discuss the various patterns in which this diversifica-
tion of gene copies can happen.

10.3 FATE

As we discussed, different functional categories of genes are expected to exhibit
different rates of retention after a WGD, an expectation that is supported by a
number of biological observations. In Xenopus tropicalis, an allotetraploid organ-
ism, TFs and components of cell cycle and developmental pathways were prefer-
entially retained while other functional categories like DNA-repair where more

10.3. Fate 125

likely to lose one of the copies[168]. This is generally a well established obser-
vation in vertebrates[169] and also noticed in the florida amphioxus, a different
species than the one we worked with [119]. It should be noted that duplicate
genes retained like that can still be lost even after millions of years[169]. We re-
port similar observations when extending the analysis to amphioxus. Genes that
are kept in multiple copies are enriched in trans-dev genes (Chapter 6.0.1).

Once a pair of genes is stabilized in an organism, it would be interesting to know
how the two copies are transcribed. The DDC model predicts that the two genes
will reciprocally lose regulatory units and by extension expression domains and
as a result they will share the ancestral expression between them.

Such a dynamic was convincingly shownwhen considering amphioxus as a proxy
to the ancestral state. When multiple genes are retained after WGD, many gene
copies restrict their expression domains, but the joint expression of all members
recapitulates that of the single amphioxus ortholog, and likely of the ancestral
gene (Chapter 6.0.3).

This observation could also be explained by the pattern of ’specialization’ where
one of the two ohnologues retains the ancestral expression pattern, while the
other only retains expression in a small fraction of the ancestral domains. In
our comparisons of amphioxus to all three vertebrates, the specialization cases
where three times as common as the subfunctionalization cases (Chapter 6.0.3),
showing that the proposed reciprocal loss of function for ohnologues is rather
hard to accomplish. This recapitulates previous results where asymmetric gene-
expression patterns between duplicated geneswere found to be themost common
pattern[170].

This could fit as a nuanced version of the ’classical model’. Maybe instead of one
of the two genes being lost thanks to deleterious mutations, it is lost through loss
of transcription activation. The genes that were strongly specialized, meaning
they only retained expression in two or less of the ancestral domains, were much
more likely to retain expression in the brain than other tissues, an indication of
diversification and recruitment perhaps.

With regards to retention ofCREs, we observed that geneswithmore cis-regulatory
elements in amphioxus where more likely to be retained in multiple copies in
vertebrates 6.0.1, in accordance with the prediction of the the DDC model that
regulatory complexity would increase the probability or retention.

126 Chapter 10. Evolution of Cis regulation

Most discussions on the topic of gene fate after a WGD, treat the CRE-gene dy-
namic as a simple system where one CRE grants one domain of expression to the
gene. A loss of a CRE equates a loss of expression in some context. Interestingly,
the exact opposite seems to be the case according to our data. Subfunctional-
ized and specialized genes were found to have significantly more CREs in their
landscapes than genes who kept the full ancestral pattern(Chapter 6.0.3). Fur-
thermore, strongly specialized genes had more elements than mildly specialized,
and the more expression domains a gene loses, the more CREs it is likely to have.

Coming back toMcSheas’s argument that we touched upon in the previous chap-
ter, ”development [starts with a] relatively small number of structures, which in-
teract to give rise to more structures, which in turn give rise to more, in a widen-
ing cascade”[165]. He calls this Developmental Depth and is the developmental
manifestation of what he calls Structural Depth, an increase in hierarchical com-
plexity through the emergence of a higher level of nesting of parts within wholes.

Considering the hierarchical nature of the newly elaborated structures after a
WGD, we would expect that any gene that is actively transcribed in the paternal
structure will be by default also actively transcribed in the new contexts, conse-
quently for further differentiation to happen, more regulatory control needs to
be applied to the gene in order to override the default condition of the parental
state, thus, an increase of cis-regulation to orchestrate subfunctionalization and
specialization should be expected.

127

11

On artificial Neural Networks
and TF binding sites

Artificial Neural Networks show great promise as a framework to model the dy-
namics of DNA-protein binding. Their hierarchical design allows them to model
large numbers of high-order features and as a consequence they concurrently
model multiple genomic features.

In image analysis, this is easier to visualize. In [171], Lee et al. visualize the two
dimensional features that their model learned by analyzing images. The simple
features learned by the first layer (Fig. 11.1 top) are used to created more com-
plex features in the second layer (Fig. 11.1 bottom) and then even more complex
features in the deeper layers of their model (Fig. 11.2).

128 Chapter 11. On artificial Neural Networks and TF binding sites

Figure 11.1: The features learned by the first two layers of an NN trained on natural
images. The first layer, on the top, learns the most basic of features,
while the second learns combinations of the features learned by the first
layer.

Figure 11.2: Deeper layers of the NN from Fig. 11.1. At these deeper layers, the
combinations of features from lower layers start being recognizable fea-
tures, like eyes, noses, wheels, and eventually faces, cars, animals.

To attempt a parallel in our genomic case, let us consider nucleosomes. They are
a big factor of TF occupancy and hard to predict accurately based on sequence
only. Nucleosomes though, leave a shadow on the ATAC-seq signal, that is a
region of about 140 basepairs that is significantly depleted in sequencing reads

Chapter 11. On artificial Neural Networks and TF binding sites 129

inside another otherwise accessible genomic region. This is something that has
been modeled before in order to track nucleosomes on the genome [77] but not
something that is modeled in any TFbs tool. One could in theory combine two
tools, look for putative TFbs based on some TF-tool and then cross-reference the
results of that with the nucleosome positioning model. But then an additional
model should be created to connect the influence of nucleosomes to TFbs, after
all different TFs have different preferences to nucleosomes.

Our NN should in principle be able to capture and integrate such a complexity
seamlessly. The initial layers on the ATAC-seq signal would learn simple pat-
terns like ”accessible area” (many ATAC-seq reads) or ”non-accessible area” (no
reads). The inner layers would then learn combinations of those, something like
’two accessible areas separated by a 140bp long non-accessible area’ could signal
the presence of a nucleosome which the model would then associate positively or
negatively with the training TF.

These hypotheses are not trivial to investigate. Attempting to make sense of the
inner layers of NNs is often a publication-level amount of work in itself [172, 173]
so any assumptions on how exactly our network recognizes binding sites will have
to remain unexplored. What is clear, is that the model does achieves great levels
of accuracy, especially so when a rich training dataset is available.

High throughput sequencing assays are exploding in popularity and decreasing in
cost so we feel that as more and more genomic data becomes available, tools like
Nimrodwill becomemore andmore important formodern genetic and epigenetic
analyses. An ATAC-seq assay, already offers us insight about the active regula-
tory elements in any biological context. With the help of a well trainedmodel like
Nimrod, we would be able to produce highly accurate detections of TFbs even in
new systems based on a single, and relatively cheap, biological assay. Further-
more, this approach sidesteps the problem of antibody availability which can be
a limiting factor, especially so in new model organisms whose study is necessary
for high-quality evolutionary comparisons.

131

12

Conclusions

1. The tissues, organs and developmental stages that characterize the chor-
date body plan are associated to conserved modules of co-expressed genes
that are also conserved at the cis-regulatory level.

2. This conservation is reflected on the cis-regulatory content of the con-
served genes, highlighting the importance of cis-regulation for function
and development.

3. Vertebrates have increased the complexity of their gene regulatory land-
scapes. This increase is particularly intense in genes involved in transcrip-
tional and developmental regulation and genes that have been retained in
multiple copies after the vertebrate WGDs, especially those ohnologues
that have subfunctionalized or specialized their expression.

4. Contrary to previous expectations, specialization is a much more com-
mon fate for WGD gene duplicates than subfunctionalization. Counter-
intuitively, the ohnologues that restricted their expression increased their
cis-regulatory complexity.

5. Nimrod, our newly implementedNNbased on both genomic sequence and
chromatin accessibility data, predicts TFBSs with high accuracy, outper-
forming previously existing tools.

6. When trained on rich, high quality data of a given species, Nimrod can be
generalized to other species without losing accuracy.

133

Part V

Methods

135

13

Notebooks

13.1 PWMS USED

In this work we use a complex set of PWMs which was created for our needs
of comparing amphioxus to vertebrates. Very briefly, potential PWMs were se-
lected for amphioxus genes based on genomic similarity to genes for which the
binding profile is known. These PWMs were joined to a very thorough dataset
of potential PWMs from the CIS-BP database and theywere clustered, as a whole,
to produce motif clusters. Those are motifs that encapsulate the preferences of a
cluster of similar motifs.

For our work, we further clustered these 462 clusters clusters into super-families
of regulatory genes. For example, if a number of PWMs were only associated
to a single TF, say P63, we would consider all the instances of all these PWM
as an instance of P63. This reduced the number of PWMs and consequently the
complexity of the system. This approach yielded a list of 242 clusters of motifs
assigned to one or more orthologous groups in both amphioxus and zebrafish
(Supplementary Dataset 16), which were used for further analyses.

Following is an more in depth explanation of the PWM-cluster creation, in the
words of our collaborators that did the analysis. Taken from our work[123]

136 Chapter 13. Notebooks

13.2 TF ANNOTATION AND TF BINDING
SPECIFICITY PREDICTION

We identified putative TFs by scanning the amino acid sequences of predicted
protein-coding genes for putative DNA binding domains (DBDs) and, when pos-
sible, we predicted the DNA binding specificity of each TF using the procedures
described in [174]. Briefly, we scanned all protein sequences for putative DBDs
using the 81 Pfam[175] models listed in [176] and the HMMER [177] tool, with
the recommended detection thresholds of per-sequence E-value < 0.01 and per-
domain conditional E-value < 0.01. Each protein was classified into a family based
on its DBD and its order in the protein sequence (e.g., bZIPx1, AP2x2, Home-
odomain+Pou). We then aligned the resulting DBD sequences within each family
using clustalOmega [178], with default settings.

For protein pairs with multiple DBDs, each DBD was aligned separately. From
these alignments, we calculated the sequence identity of all DBD sequence pairs
(i.e. the percentage of amino acid residues that are exactly the same across all po-
sitions in the alignment). Using previously established sequence identify thresh-
olds for each family [174] , we mapped the predicted DNA binding specificities
by simple transfer.

For example, theDBDof BL07183_evm0 (UNCX) is 88% identical to the zebrafish
BX908797.1 protein. Since the DNA binding specificity of BX908797.1 has al-
ready been experimentally determined, and the cut-off for the Homeodomain
family of TFs is 70%, we can infer that BL07183_evm0will have the same binding
specificity as BX908797.1. This approach produced a table with putative TFs and
associated bindingmotifs (when possible) for amphioxus (Supplementary Dataset
16 1.

Next, we created a set of related motifs using the following procedure. We first
downloaded all motif and TF information from CIS-BP version 1.02 [174] . For
all motifs in Supplementary Dataset 16, we selected similar motifs from CIS-BP
based on the Jaccard Index (intersection divided by union) of associated TFs; Jac-
card Index ≥ 0.95was used as the threshold. In addition, based onNCBI taxonomy,

1 Note, this can be accessed from our published work for [123]

13.3. TF motif mapping onto ATAC-seq peaks 137

we selected all motifs from the CIS-BP database that were associated with verte-
brate proteins. From this set of motifs, we selected all motifs where the sum of the
Information Content (IC) of all individual positions was at least 5. We clustered
the motifs using GimmeMotifs [179] with a threshold of 0.9999 (p ≤ 0.0001). All
clustered motifs with a total IC ≤ 5 were discarded. The motif clusters were then
associated with TFs based on the annotation of the individual motifs in CIS-BP
and (Supplementary Dataset 16).

13.3 TF MOTIF MAPPING ONTO ATAC-SEQ
PEAKS

To identify TFs that potentially bind to ATAC-seq peaks, we first used gimme
threshold, from GimmeMotifs [179] , to determine the detection threshold (1%
false positive rate; FPR) for each TF motif, based on randomly selected genomic
sequences with a similar GC content distribution as the ATAC-seq peaks. With
these thresholds, we scanned all ATAC-seq peaks for our consensusmotif clusters
using gimme scan from GimmeMotifs version 0.11.0 [179].

Brief Genome Exploration

A simple analysis of reference genome sizes. To start we load the genomes,
chromosome info files and masks, which are set in preamble.py

To create the data that we’ll plot, we need the raw genomic files which are
too big to share here. The following is the code that was used to calculate the
values of the plot.

>>> # # chrom_info files, two columns with the chromosome names / sizes

... # genome_info_fps = {

... # "zebrafish" : "/Thesis_shallow/data/genomes/chromInfo_danRer10.txt",

... # "amphioxus" : "/Thesis_shallow/data/genomes/chromInfo_braLan71.txt",

... # "medaka" : "/Thesis_shallow/data/genomes/chromInfo_oryLat2.txt",

... # "mouse" : "/Thesis_shallow/data/genomes/chromInfo_mm10.txt"}

... # # repeat masks, set in the pream

... # repeat_fps = {

... # "zebrafish" : zebrafish_mask,

... # "amphioxus" : amphi_mask,

... # "medaka" : medaka_mask,

... # "mouse" : mouse_mask}

... # fasta_fps = {

... # "zebrafish" : "/scratch/genomes/danRer10.fa",

... # "amphioxus" : "/scratch/genomes/Bl71nemr.fasta",

... # "medaka" : "/scratch/genomes/oryLat2.fa",

... # "mouse" : "/scratch/genomes/mm10.fa"}

... # compl = lambda spec: repeat_fps[spec].complement(g=genome_info_fps[spec])

... # def countNs(fp):

... # c = Counter()

... # with open(fp,"r") as fi:

... # for line in fi:

... # if line.startswith(">"):

... # continue

... # else:

... # c+=Counter(line.rstrip().lower())

... # return c

...

...

... # def get_counts(spec):

... # bd = compl(spec)

... # bd = bd.sequence(fi=fasta_fps[spec])

... # thed = countNs(bd.seqfn)

... # Ncount = thed.get('n')

... # effectiveCount = thed.get('a') + thed.get('c') + thed.get('g')+thed.get('t')

... # repDF = repeat_fps[spec].to_dataframe()

... # repeatCount = (repDF['end']-repDF['start']).values.sum()

... # return repeatCount, Ncount, effectiveCount

... # speciesorder = ['amphioxus','zebrafish','medaka','mouse']

... # # The main loop. It goes through all the fasta files so it takes a while

... # lot =[]

... # for spec in speciesorder:

... # lot.append((spec, *get_counts(spec)))

... # df = pd.DataFrame(lot)

... # df.columns = ["species","Repeats",'"N"s',"Effective Genome"]

138

Here we will just plot the final values which we hardcode in the following cell

>>>

... df = pd.DataFrame([["amphioxus",152452412, 20252512,327521540],

... ["zebrafish",756790655,1964425,654384100],

... ["medaka",23221380,168573794,677265199],

... ["mouse",1201953154,78082998,1456094557]])

... df.columns = ["species","Repeats","N's","Effective Genome"]

... df

species Repeats N's Effective Genome

0 amphioxus 152452412 20252512 327521540

1 zebrafish 756790655 1964425 654384100

2 medaka 23221380 168573794 677265199

3 mouse 1201953154 78082998 1456094557

>>> df

species Repeats N's Effective Genome

0 amphioxus 152452412 20252512 327521540

1 zebrafish 756790655 1964425 654384100

2 medaka 23221380 168573794 677265199

3 mouse 1201953154 78082998 1456094557

>>> fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.18, right=.99, top=.95)

... Fwidth = THESIS_PAGEWIDTH/1.5

... Fheight = Fwidth

... # The stacked barplot (it's a bit convoluted...)

... categories = df.columns[1:]

... lo_cases = df.species.values

... N = len(lo_cases) #how many bars in total are we plotting

... palette = sns.color_palette("Blues_r",N)

... ind = np.arange(N) # the x locations for the groups

... width=0.75 #how wide each column will be (if 1 they touch eachother)

...

... c = np.zeros(N)

... cou = 0

... lot=[]

... for cat,vals in df.iloc[:,1:].iteritems():

... p = ax.bar(ind, vals.values, width, bottom=c , color=palette[cou], alpha=1)

... c+=vals.values

... cou+=1

... lot.append(cat)

...

... plt.xticks(ind, lo_cases,rotation=5)

... plt.legend(lot, loc='upper left')

...

... #>>> Name your Axes

... ax.set_ylabel('Basepairs per category (in Gb)')

... ax.set_xlabel('species of reference genome')

139

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

... fig.savefig('../Figures/from_notebooks/tfigure_TheGenomes.pdf')

140

Intergenic and GREAT distance distributions

In this notebook, we plot the distributions of intergenic distances,
the distances between consecutive syntenic transcription start sites, for our 4
reference genomes.

We similarly plot the distributions of GREAT distances, genomice regions
assigned to each gene. For more details look into the "make_great_files" note-
book

The intergenic and GREAT regions are computed in notebooks that are made
available in the thesis appendix and repository.

>>> # We load the precomputed distances

... speciesorder = ['amphioxus','zebrafish','medaka','mouse']

... intergenic_regions_D = {

... "zebrafish" : "/Thesis_shallow/data/genomic_regions/intergenics_Dre.tsv.gz",

... "amphioxus" : "/Thesis_shallow/data/genomic_regions/intergenics_Bla.tsv.gz",

... "medaka" : "/Thesis_shallow/data/genomic_regions/intergenics_Ola.tsv.gz",

... "mouse" : "/Thesis_shallow/data/genomic_regions/intergenics_Mmu.tsv.gz"}

... great_regions_D = {

... "zebrafish" : "/Thesis_shallow/data/genomic_regions/GREAT_dre.bed.gz",

... "amphioxus" : "/Thesis_shallow/data/genomic_regions/GREAT_bla.bed.gz",

... "medaka" : "/Thesis_shallow/data/genomic_regions/GREAT_ola.bed.gz",

... "mouse" : "/Thesis_shallow/data/genomic_regions/GREAT_mmu.bed.gz"}

>>> def loadthing(k,v):

... df = pd.read_csv(v, sep='\t',header=None)

... df['w'] = df[2] - df[1]

... df['species'] = k

... return df[['species','w']].copy()

>>> big = pd.concat([loadthing(k,v) for k,v in intergenic_regions_D.items()])

... big['w'] = big['w'].apply(lambda x: log(x,10))

... gbig = pd.concat([loadthing(k,v) for k,v in great_regions_D.items()])

... gbig['w'] = gbig['w'].apply(lambda x: log(x,10))

>>> fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.13, right=.99, top=.99)

... Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

...

... sns.violinplot(data=big, x='species', order=speciesorder, y='w', ax=ax)

...

... ax.set_ylabel('Size of Intergenic Regions \n (10^y basepairs)')

... ax.set_xlabel('species of reference genome')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_IntergenicSizes.pdf')

141

>>> fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.13, right=.99, top=.99)

...

... sns.violinplot(data=gbig, x='species', order=speciesorder, y='w', ax=ax)

...

... ax.set_ylabel('Size of GREAT Regions \n (10^y basepairs)')

... ax.set_xlabel('species of reference genome')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig("../Figures/from_notebooks/tfigure_GreatSizes.pdf")

142

Creating TSS files

This notebook takes genome anotation files "gtf, gff", extracts
Transctiption start sites,and outputs them as a bed file with the
following columns:

chromosome start end geneid 0 strand

The process is finicky thanks to the differences between the various
anotation files,so details have to be smoothed out in a case by case way.

Zebrafish

>>> known_chroms = pd.read_csv("chromInfo_danRer10.txt",

...

... sep='\t', header=None)[0].values

... with gzip.open('danRer10.gtf.gz','r') as fi:

... lot = []

... for line in fi:

... if line.startswith("#"):

... continue

...

... chrom,db,taip,start,end,dot,strand,frame,info = (

... line.rstrip().split('\t'))

... d = dict([pair.split('"')[:2] for pair in \

... info.replace(' ','').split(";")[:-1]])

... d['chrom'] = chrom

... d['db'] = db

... d['taip'] = taip

... d['start'] = start

... d['end'] = end

... d['strand'] = strand

... d['frame'] = frame

... lot.append(d)

>>> df = pd.DataFrame(lot)

...

... # Fix the chromosome names

... df['chrom'] = (df['chrom']

... .apply(lambda x:'chr{}'.format(x) if x.isdigit() else x))

... mask1 = df['chrom'].str.endswith('.1')

... mask2 = df['chrom'].str.startswith('KN')

... df.loc[mask1,'chrom']= (df['chrom'][mask1]

... .apply(lambda x: x[:-2]))

... df.loc[mask2,'chrom']= (df['chrom'][mask2]

... .apply(lambda x: "chrUn_{}v1".format(x)))

... df.loc[df.chrom=='MT','chrom'] = 'chrM'

...

... # #filter unnecessary ones

... df = df[df['transcript_biotype']=='protein_coding']

... df = df[df['taip']=='transcript']

...

... df = (df

143

... .sort_values(by='transcript_name')

... .drop_duplicates('gene_id', keep='first'))

>>> # # get the tss ranges i want

... df.loc[df['strand']=='-', 'tss'] = df.loc[df['strand']=='-', 'end']

... df.loc[df['strand']=='+', 'tss'] = df.loc[df['strand']=='+', 'start']

... df['start'] = df['tss'].astype(int)

... df['score'] = 0

... # # correct out of bounds stuff

... D = dict(pd.read_csv("chromInfo_danRer10.txt",

... sep='\t', header=None).iloc[:,:2].to_records(index=False))

...

... mask1 = df['start'] >= df['chrom'].map(D)

... df.loc[mask1, 'start'] = df.loc[mask1, 'start'] - 2

... df['start'] = df['start'].clip(lower=0)

... df['end'] = df['start'] + 1

... mask2 = df['end'] >= df['chrom'].map(D)

... df.loc[mask2, 'end'] = df.loc[mask2, 'chrom'].map(D) -1

...

... # # write to disk

... (df[~(df['start']>df['end'])] \

... [['chrom','start','end','gene_id','score','strand']]

... .sort_values(['chrom','start','end'])

... .to_csv("TSS_dre.bed", sep='\t', header=None, index=False))

Amphioxus

>>> with gzip.open("bl71nemr.gtf.gz",'r') as fi:

... lot = []

... line = fi.next()

... while line.startswith("#"):

... line = fi.next()

... # i know this skips one line, fuck this fucking fucknoise

... for line in fi:

... (chrom,db,taip,start,end,

... dot,strand,frame,info) = line.rstrip().split('\t')

... d = dict([pair.split('"')[:2] \

... for pair in info.replace(' ','').split(";")[:-1]])

... d['chrom'] = chrom

... d['db'] = db

... d['taip'] = taip

... d['start'] = start

... d['end'] = end

... d['strand'] = strand

... d['frame'] = frame

... lot.append(d)

... df = pd.DataFrame(lot)

... f2 = df['db'] == 'protein_coding'

... f3 = df['taip'] == 'exon'

>>> # select the TSS with the most evidence per gene:

... f = lambda g,x: int(sorted(

144

... Counter(g.loc[g.exon_number=='1', x].values).items(),

... key=lambda x:x[1], reverse=True)[0][0])

... lot = []

... for gn,g in df[f2 & f3].groupby("gene_id"):

...

... gstr = g['strand'].value_counts().index.values[0]

... if gstr == '-':

... tss = f(g,'end')

... else:

... tss = f(g,'start')

... lot.append((g.chrom.iloc[0], tss, tss+1, gn, gstr))

...

... dftss = pd.DataFrame(lot)

... dftss.columns = ['chrom','start','end','gene_id','strand']

... dftss.head()

chrom start end gene_id strand

0 Sc0000095 792197 792198 BL00000 -

1 Sc0000095 478485 478486 BL00001 -

2 Sc0000095 93743 93744 BL00002 +

3 Sc0000095 352372 352373 BL00003 +

4 Sc0000095 825900 825901 BL00004 +

>>> (dftss.sort_values(by=['chrom','start','end'])

... .to_csv("TSS_bla.bed",sep='\t',index=False))

MEDAKA

>>> with gzip.open('oryLat2.gtf.gz','r') as fi:

... lot = []

... line = fi.next()

... while line.startswith("#"):

... line = fi.next()

... for line in fi:

... (chrom,db,taip,start,end,

... dot,strand,frame,info) = line.rstrip().split('\t')

... d = dict([pair.split('"')[:2] for \

... pair in info.replace(' ','').split(";")[:-1]])

... d['chrom'] = chrom

... d['db'] = db

... d['taip'] = taip

... d['start'] = start

... d['end'] = end

... d['strand'] = strand

... d['frame'] = frame

... lot.append(d)

... df = pd.DataFrame(lot)

>>> df['chrom'] = (df['chrom']

... .apply(lambda x: 'chr{}'.format(x) if x.isdigit() else x))

145

...

... mask1=df['chrom'].str.endswith('.1')

... df.loc[mask1,'chrom']= df['chrom'][mask1].apply(lambda x: x[:-2])

... df.loc[df.chrom=='MT','chrom'] = 'chrM'

...

... f2 = df['gene_biotype'] == 'protein_coding'

... f3 = df['taip'] == 'transcript'

...

...

... df = (df.sort_values(by='transcript_name')

... .drop_duplicates('gene_id', keep='first'))

...

... # # get the tss ranges i want

... df.loc[df['strand']=='-', 'tss'] = df.loc[df['strand']=='-', 'end']

... df.loc[df['strand']=='+', 'tss'] = df.loc[df['strand']=='+', 'start']

... df['start'] = df['tss'].astype(int)

... df['score'] = 0

... # # correct out of bounds stuff

>>> D = dict(pd.read_csv("chromInfo_orylat2.txt",

... sep='\t', header=None).iloc[:,:2].to_records(index=False))

>>> mask1 = df['start'] >= df['chrom'].map(D)

... mask2 = df['end'] >= df['chrom'].map(D)

... df.loc[mask1, 'start'] = df.loc[mask1, 'start'] - 2

... df['start'] = df['start'].clip(lower=0)

... df['end'] = df['start'] + 1

... df.loc[mask2, 'end'] = df.loc[mask2, 'chrom'].map(D) -1

>>> # # write to disk

... (df[~(df['start']>df['end'])]\

... [['chrom','start','end','gene_id','score','strand']]

... .sort_values(['chrom','start','end'])

... .to_csv("TSS_ola", sep='\t', header=None, index=False))

Mouse

>>> with gzip.open("mm10.gtf.gz", "rt") as fi:

... lot = []

... line = fi.next()

... while line.startswith("#"):

... line = fi.next()

... # i know this skips one line, fuck this fucking fucknoise

... for line in fi:

... (chrom,db,taip,start,end,

... dot,strand,frame,info) = line.rstrip().split('\t')

... d = dict([pair.split('"')[:2] for\

... pair in info.replace(' ','').split(";")[:-1]])

... d['chrom'] = chrom

... d['db'] = db

... d['taip'] = taip

... d['start'] = start

146

... d['end'] = end

... # d['dot'] = dot

... d['strand'] = strand

... d['frame'] = frame

... # d['info'] = info

... lot.append(d)

>>> df = pd.DataFrame(lot)

>>> f = lambda g,x: int(sorted(

... Counter(g.loc[g.exon_number=='1', x].values).items(),

... key=lambda x:x[1], reverse=True)[0][0])

... mgb = df.gene_biotype == 'protein_coding'

... mtb = df.transcript_biotype == 'protein_coding'

...

... lot = []

... for gn,g in df[mgb & mtb].groupby("gene_id"):

... gstr = g['strand'].value_counts().index.values[0]

... if gstr == '-':

... tss = f(g,'end')

... else:

... tss = f(g,'start')

... lot.append((g.chrom.iloc[0], tss, tss+1, gn, gstr))

>>> dftss = pd.DataFrame(lot)

... dftss.columns = ['chrom','start','end','gene_id','strand']

... dftss['chrom'] = (dftss['chrom']

... .apply(lambda x: 'chr{}'.format(x) if x.isdigit() else x))

... dftss['chrom'] = (dftss['chrom']

... .apply(lambda x: 'chr{}'.format(x) if x in ['X','Y'] else x))

... mask1 = dftss['chrom'].str.endswith('.1')

... dftss.loc[mask1,'chrom']= dftss['chrom'][mask1].apply(lambda x: x[:-2])

... dftss.loc[dftss.chrom=='MT','chrom'] = 'chrM'

...

... (dftss

... .sort_values(by=['chrom','start','end'])

... .to_csv("TSS_mm10.bed", sep='\t',index=False))

>>> D = dict(pd.read_csv("chromInfo_Mm10.txt", sep='\t',

... header=None).iloc[:,:2].to_records(index=False))

147

Applying the GREAT method on our genomes

We wanted to assign cis regulatory elements to genes in a better way
than "assign to closest gene", so we used the method described in
(http://great.stanford.edu/public/html/).

Briefly, the method assigns a basal area to each gene (-5kb,+5kb) from its Tran-
scription Start Site, and then extends it up to 1Mb each way until another basal
region is met.

The following is code that allows the greation of great-like genomic region
files (.bed) based on a TSS bed file and a chrominfo file. For the needs of our
analyses, we only keep genes that were found in at least one homologue in
another vertebrate species.

>>> PROXIMAL_DOWNSTREAM = 1000

... PROXIMAL_UPSTREAM = 5000

... DISTAL = 1000000

>>> # Example for amphioxus, these

... # need to be changed accordingly

... # for each species

... TSS_FP = "TSS_bla.bed"

... CHROMINFO_FP = "chromInfo_braLan71.txt"

... OUT_FP = "GREAT_bla.bed"

... BASAL_OUT_FP = "BASAL_bla.bed"

... SPECIES_COLUMN = 'BraLan'

>>> def gimme_genes(col):

... log = []

... for thing in genefams['Dre']:

... if thing == thing:

... log += thing

... return log

>>> D = dict(pd.

... read_csv(CHROMINFO_FP, sep='\t', header=None)

... .iloc[:,:2].to_records(index=False))

...

... list_of_genes = gimme_genes(SPECIES_COLUMN)

...

... tss = pd.read_csv(TSS_FP, sep='\t',header=None)

... assert len(tss.columns == 6)

... tss.columns = ['chrom','start','end','name','score','strand']

... tss = tss[tss['name'].isin(list_of_genes)]

...

148

... _p = tss['strand']=='+'

... _n = tss['strand']=='-'

>>> basal = tss.copy()

... # Extend from the TSS to the basal regions

... # + genes

... basal.loc[_p,'start'] -= PROXIMAL_UPSTREAM

... basal.loc[_p,'end'] += PROXIMAL_DOWNSTREAM

... # - genes

... basal.loc[_n,'start'] -= PROXIMAL_DOWNSTREAM

... basal.loc[_n,'end'] += PROXIMAL_UPSTREAM

>>> # We have probably gone under 0 and over the chromosome

... # limit in some cases, so we need to correct:

... # We shouldn't really have any case where the end is

... # under 0 or the start over the chromosome limit though,

... # so let's make sure this doesn't happen without us knowing

... assert len(basal[basal.end <=0])==0

... assert len(basal.loc[basal['start'] >= basal['chrom'].map(D)]) ==0

... # now to correct

... basal['start'] = basal['start'].clip(lower = 0)

... basal['end'] = basal['end'].clip(upper = basal['chrom'].map(D))

... basal = basal.reset_index(drop=True)

...

... (basal[['chrom','start','end','name','score','strand']]

... .sort_values(by=['chrom','start'])

... .to_csv(BASAL_OUT_FP, sep='\t',header=None,index=False))

>>> basal['index'] = basal.index.values

...

... basal_ends_df = basal[['chrom','end','end',

... 'name','score','strand','index']]

... basal_ends_df.columns = ['chrom','start','end',

... 'name','score','strand','index']

... basal_ends_df['start'] -= 1

...

... basal_starts_df = basal[['chrom','start','start',

... 'name','score','strand','index']]

... basal_starts_df.columns = ['chrom','start','end',

... 'name','score','strand','index']

... basal_starts_df['end'] += 1

>>> bed_basal = BT().from_dataframe(basal).sort()

... bed_ends = BT().from_dataframe(basal_ends_df).sort()

... bed_starts = BT().from_dataframe(basal_starts_df).sort()

...

... extend_downstream_df = (bed_ends.closest(bed_basal, D='ref',

... iu=True, N=True, t='first')

... .to_dataframe(names=range(15)))

... extend_downstream_df.set_index(6, drop=True,inplace=True)

... extend_downstream_df.sort_index(inplace=True)

... # cases where no closest was found, probably the rightmost

... # guys in each chromosome

... # we will try to extend by DISTAL and trim it to chrom size later

149

... extend_downstream_df.loc[extend_downstream_df[8]==-1 , 14] = DISTAL

...

... extend_downstream = ((extend_downstream_df

... .iloc[:,-1] -1)

... .clip(lower=0, upper=DISTAL))

>>> extend_upstream_df = (bed_starts

... .closest(bed_basal, D='ref', id=True, N=True, t='first')

... .to_dataframe(names=range(15)))

...

... extend_upstream_df.set_index(6, drop=True,inplace=True)

... extend_upstream_df.sort_index(inplace=True)

...

... # bedtools gives us negative values here

... # we look for the cases where no closest was found

... extend_upstream_df.loc[extend_upstream_df[8]==-1 , 14] = -DISTAL

...

... extend_upstream = ((extend_upstream_df

... .iloc[:,-1] + 1)

... .clip(lower=-DISTAL, upper=0))

... final = basal.copy()

...

... final['start'] = (final['start'] + extend_upstream).clip(lower = 0)

... final['end'] = ((final['end'] + extend_downstream)

... .clip(upper = final['chrom'].map(D)))

...

... (final[['chrom','start','end','name','score','strand']]

... .sort_values(by=['chrom','start'])

... .to_csv(OUT_FP, sep='\t',header=None,index=False))

150

Make the intergenic regions

We define intergenic regions as those between any two consecutive
genes. To extract them, we manipulate a bedfile containing the
TSS. We only keep a subset of genes since the tss file contaings
too many ""fake"" genes, models etc. Out selected genes are all
homologous in vertebrates.

>>> # Here amphioxus as an example, repeat for the other species

... # (i don't shoe the other species here to minimize the

... # printing of the thesis)

... bla_tss =pd.read_csv("TSS_bla.bed", sep='\t', header=None)

... lot = []

...

... for gn,g in bla_tss[bla_tss[3].isin(bla_greg.geneID.values)].groupby(0):

... iterat = g.iterrows()

... _,curr = next(iterat)

... while 1:

... try:

... _,next_ = next(iterat)

... lot.append((gn,curr[1], next_[2], curr[3]))

... lot.append((gn,curr[1], next_[2], next_[3]))

...

... curr = next_

... except StopIteration:

... break

... bla_intergenics = pd.DataFrame(lot)

>>> bla_intergenics.to_csv("intergenics_Bla.tsv",

... sep='\t',header=None, index=False)

151

CHIPseq

(Chromatin immunoprecipitation sequencing)

The methods for material handling and the wet lab parts of these molecu-
lar assays are detailed in previous publications [WHICH ONES?]. We con-
ducted some additional experiments on zebrafish to complement the available
dataset. These include replicates for dome, 80% epiboly and 24hpf, as well as
H3k27ac assays in ducplicate for the shield and 8 somites stages.

In total, we have 5 stages in zebrafish: some, shield, 80% epiboly, 8 somites,
24hpf (these are the words i have typed the most in my phd) and three in am-
phixus: 8hpf, 15hpf, 36hpf.
After the material is sequences we obtain a .fq file, which contains the raw se-
quencing reads, a collection of about 49bp long sequences and their sequenc-
ing quality scores. To use these we must map them to a reference genome, con-
verting each sequence to its absolute coordinates in the genome. We typically
only keep reads that can only be mapped to a single position in the genome in
order to avoid conflicts.

1. Fuentes, M. et al. Preliminary observations on the spawning conditions
of the European amphioxus (Branchiostoma lanceolatum) in captivity. J
Exp Zool B Mol Dev Evol 302, 384-391 (2004).

2. Fuentes, M. et al. Insights into spawning behavior and development of
the European amphioxus (Branchiostoma lanceolatum). J Exp Zool B
Mol Dev Evol 308, 484-493 (2007).

Data processing

We used the following commands to map our .fq files

map to a temporary bam file

>> bowtie2 -p 12 -x ${GenomeIndex} -U ${fqfile} --very-sensitive-local |\

samtools view -Shu - > ${temp_bam}

Sort, remove duplicates, index

>> samtools sort -@ 11 ${temp_bam} | samtools rmdup -s - - > ${final_bam}

>> samtools index ${final_bam}

The resulting .bam files contain the reads, that were succesfully mapped ac-
cording to our settings, as positions on the genome. This is in essence the raw
signal of each experiment.
We used these files to detect peaks with the following command

152

>> macs2 callpeak -f BAM -g ${genome_size} -p 0.005 -t ${fqfile} \

-n ${outmputname} --outdir ${outputfolder}

The macs2 program takes care of estimating an apropriate amount of basepairs
to extend each reach, an important factor in this process.

As a result we obtain a bed file, a set of rows, each describing a genomic region
and some scores regarding how sure we are that this is a statistically important
peak of the signal.

As a final step, for each developmental level, we merge the peaks from the two
respective replicates into one combined file.

Further analysis

To better analyze our peaks, we will need some more data and some code:

>>> load_NP = lambda fp: pd.read_csv(fp, sep='\t',header=None)

...

... speciesorder = ['amphioxus','zebrafish']

...

... amphioxus_stages = ['8h','15h','36h']

... zebrafish_stages = ['dome','shield','80epi','8som','24h','48h']

>>> def get_widths(f, stage):

... df = load_NP(f(stage))

... return pd.DataFrame((df[2]-df[1]))

...

... def get_masked_widths(f, stage,mask):

... df = load_NP(f(stage))

... ndf = BT().from_dataframe(df.iloc[:,:3]).subtract(mask).to_dataframe()

... return pd.DataFrame((ndf.end - ndf.start))

...

... def get_masked_genome_coverage(f, stage,mask, effective):

... df = load_NP(f(stage))

... ndf = BT().from_dataframe(df.iloc[:,:3]).subtract(mask).to_dataframe()

...

... return (ndf.end-ndf.start).sum()*100 / effective

...

... def get_numbers(f, stage):

... return len(load_NP(f(stage)))

Plots

>>> Fwidth = THESIS_PAGEWIDTH/2

... Fheight = THESIS_PAGEWIDTH/2

153

>>> amphi_ef = amphi_k4_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_numbers(amphi_ef,st)

... amphi_lot.append([st, ldf])

... amphi_tp = pd.DataFrame(amphi_lot)

...

... amphi_tp[1] = amphi_tp[1]/10000

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

... ax.set_title('H3K4me3 Amphioxus')

... sns.barplot(data=amphi_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_ylabel('H3K4me3 number of peaks (k)')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peaks.pdf')

>>> zebra_ef = zebra_k4_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_numbers(zebra_ef,st)

... zebra_lot.append([st, ldf])

... zebra_tp = pd.DataFrame(zebra_lot)

... zebra_tp[1] = zebra_tp[1]/10000

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

...

... sns.barplot(data=zebra_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K4me3 Zebra')

... ax.set_ylabel('H3K4me3 number of peaks (k)')

154

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK4peaks.pdf')

>>> amphi_ef = amphi_k27_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_numbers(amphi_ef,st)

... amphi_lot.append([st, ldf])

... amphi_tp = pd.DataFrame(amphi_lot)

...

... amphi_tp[1] = amphi_tp[1]/10000

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

... sns.barplot(data=amphi_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K27ac Amphioxus')

... ax.set_ylabel('H3K27ac number of peaks (k)')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK27peaks.pdf')

155

>>> zebra_ef = zebra_k27_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_numbers(zebra_ef,st)

... zebra_lot.append([st, ldf])

... zebra_tp = pd.DataFrame(zebra_lot)

... zebra_tp[1] = zebra_tp[1]/10000

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

... sns.barplot(data=zebra_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K27ac Zebrafish')

... ax.set_ylabel('H3K27ac number of peaks (k)')

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK27peaks.pdf')

156

>>> amphi_ef = amphi_k4_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_masked_genome_coverage(amphi_ef,st, amphi_mask, amphi_effective)

... amphi_lot.append([st, ldf])

... amphi_tp = pd.DataFrame(amphi_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.17, bottom=.15, right=.99, top=.9)

... sns.barplot(data=amphi_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K4me3 Amphioxus')

... ax.set_ylabel('% of genome covered by peaks')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4genomeCoverage.pdf')

157

>>> amphi_ef = amphi_k27_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_masked_genome_coverage(amphi_ef,st, amphi_mask, amphi_effective)

... amphi_lot.append([st, ldf])

... amphi_tp = pd.DataFrame(amphi_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.17, bottom=.15, right=.99, top=.9)

... sns.barplot(data=amphi_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K27ac Amphioxus')

... ax.set_ylabel('% of genome covered by peaks')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK27genomeCoverage.pdf')

158

>>> zebra_ef = zebra_k4_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_masked_genome_coverage(zebra_ef,st,

... zebrafish_mask, zebrafish_effective)

... zebra_lot.append([st, ldf])

... zebra_tp = pd.DataFrame(zebra_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

...

... sns.barplot(data=zebra_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K4me3 Zebrafish')

... ax.set_ylabel('% of genome covered by peaks')

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK4genomeCoverage.pdf')

159

>>> zebra_ef = zebra_k27_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_masked_genome_coverage(zebra_ef,st, zebrafish_mask,

... zebrafish_effective)

... zebra_lot.append([st, ldf])

... zebra_tp = pd.DataFrame(zebra_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.15, bottom=.15, right=.99, top=.9)

... sns.barplot(data=zebra_tp, x=0,y=1, ax=ax, palette='Blues',)

... ax.set_title('H3K27ac Zebrafish')

... ax.set_ylabel('% of genome covered by peaks')

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK27genomeCoverage.pdf')

160

>>> amphi_ef = amphi_k4_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_widths(amphi_ef,st)

... ldf['stage'] = st

... amphi_lot.append(ldf)

... amphi_tp = pd.concat(amphi_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.22, bottom=.15, right=.99, top=.9)

... sns.boxplot(data=amphi_tp, x='stage',y=0, ax=ax, palette='Blues',

... fliersize=0)

... plt.ylim((0,2000))

... ax.set_title('H3K4me3 Amphioxus')

... ax.set_ylabel('width of peaks (in bp)')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peakwidth.pdf')

161

>>> zebra_ef = zebra_k4_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_widths(zebra_ef,st)

... ldf['stage'] = st

... zebra_lot.append(ldf)

... zebra_tp = pd.concat(zebra_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.22, bottom=.15, right=.99, top=.9)

... sns.boxplot(data=zebra_tp, x='stage',y=0, ax=ax, palette='Blues',

... fliersize=0)

... plt.ylim((0,2000))

... ax.set_title('H3k4me3 Zebrafish')

... ax.set_ylabel('width of peaks (in bp)')

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK4peakwidth.pdf')

162

>>> amphi_ef = amphi_k27_005combo

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_widths(amphi_ef,st)

... ldf['stage'] = st

... amphi_lot.append(ldf)

... amphi_tp = pd.concat(amphi_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.22, bottom=.15, right=.99, top=.90)

... sns.boxplot(data=amphi_tp, x='stage',y=0, ax=ax, palette='Blues', fliersize=0)

... plt.ylim((0,2000))

... ax.set_title('H3K27ac Amphioxus')

... ax.set_ylabel('width of peaks (in bp)')

... ax.set_xlabel('developmental stage')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK27peakwidth.pdf')

163

>>> zebra_ef = zebra_k27_005combo

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_widths(zebra_ef,st)

... ldf['stage'] = st

... zebra_lot.append(ldf)

... zebra_tp = pd.concat(zebra_lot)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.22, bottom=.15, right=.99, top=.9)

... sns.boxplot(data=zebra_tp, x='stage',y=0, ax=ax, palette='Blues', fliersize=0)

... plt.ylim((0,2000))

... ax.set_title('H3k27ac Zebrafish')

... ax.set_ylabel('width of peaks (in bp)')

... ax.set_xlabel('developmental stage')

... plt.xticks(rotation=30)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_zebraK27peakwidth.pdf')

164

165

ATACseq

The methods for material handling and the wet lab parts of these molecular
assays are detailed in previous publications [WHICH ONES?].

In total, we have 6 stages in zebrafish: some, shield, 80% epiboly, 8 somites,
24hpf, 48hpf and four in amphixus: 8hpf, 15hpf, 36hpf, 60hpf. After the mate-
rial is sequences we obtain a .fq file, which contains the raw sequencing reads,
a collection of about 49bp long sequences and their sequencing quality scores.
To use these we must map them to a reference genome, converting each se-
quence to its absolute coordinates in the genome. We typically only keep reads
that can only be mapped to a single position in the genome in order to avoid
conflicts.

1. Fuentes, M. et al. Preliminary observations on the spawning conditions
of the European amphioxus (Branchiostoma lanceolatum) in captivity. J
Exp Zool B Mol Dev Evol 302, 384-391 (2004).

2. Fuentes, M. et al. Insights into spawning behavior and development of
the European amphioxus (Branchiostoma lanceolatum). J Exp Zool B
Mol Dev Evol 308, 484-493 (2007).

Data processing

We used the following commands to map our .fq files

map to a temporary bam file

>> bowtie2 -p 12 -x ${Genomeindex} -1 ${fqfile_1} -2 ${fqfile_2} \

--dovetail -I 0 -X 1200 --very-sensitive | \

samtools view -Shu - > ${temp_bam}

>> samtools sort -@ 11 -T ${temp_bam} | \

samtools rmdup -s - - > ${final_bam}

>>samtools index ${final_bam

In comparison to the CHIPseq experiments, we need to do some preprocess-
ing before looking for peaks. The most important difference is that we will
filter reads by their fragment size and keep only those under a certain thresh-
old. Since our data is pair-ended sequenced, we can deduce the fragment size
of each of dna fragments that were sequenced, that’s the distance between
each two successive reads. Fragments over 146bp long are much more likely
to originate from transposase events that happened on two sides of a nucle-
osome. A nucleosome typically has 146bp wrapped around it, so but taking

166

fragments under 146bp long, we make sure to enrich our signal in nucleosome
free regions which are prime susspects for cis-regulatory elements.

To filter the reads, we used a home made script found in the Appendinx which
we used like this:

We filter for under 120bp to be extra strict

>> Thesis/scripts/get_nf_reads.py ${input_bam_file} 120 24 \

"./results/chunk_{}.bed.gz"

As a result, we obtain the approved sequencing reads in a .bed file format
which we can use to look for peaks. We apply the idr method to detect peaks
in ATACseq and take advantage of having replicates and a more appropriate
type of signal (many shorter peaks).

The analysis between this point and the final peaks file is a bit too long to
include here so it can be found in the appendix :

Appendices / Scripts / ATACseq IDR Peakcalling

Briefly, we apply the IDR method from [1] with no modifications. See [2] for
the code repository of their python package that we used.

1. "Measuring reproducibility of high-throughput experiments" (2011), An-
nals of Applied Statistics, Vol. 5, No. 3, 1752-1779, by Li, Brown, Huang,
and Bickel

2. https://github.com/nboley/idr

>>> load_NP = lambda fp: pd.read_csv(fp, sep='\t',header=None)

...

... speciesorder = ['amphioxus','zebrafish','medaka','mouse']

... amphioxus_stages = ['8','15','36','60']

... zebrafish_stages = ['dome','shield','80epi','8som','24h','48h']

... medaka_stages = ['dome','shield','8som','24h','48h']

... mouse_stages = ['DE','ESC']

>>> def get_widths(f, stage):

... df = load_NP(f(stage))

... return pd.DataFrame((df[2]-df[1]))

... def get_masked_widths(f, stage,mask):

... df = load_NP(f(stage))

... ndf = (BT().

... from_dataframe(df.iloc[:,:3])

... .subtract(mask, nonamecheck=True)

... .to_dataframe())

... return pd.DataFrame((ndf.end - ndf.start))

... def get_masked_genome_coverage(f, stage,mask, effective):

... df = load_NP(f(stage))

... ndf = (BT().

... from_dataframe(df.iloc[:,:3])

... .subtract(mask, nonamecheck=True)

... .to_dataframe())

167

... return (ndf.end-ndf.start).sum()*100 / effective

... def get_numbers(f, stage):

... return len(load_NP(f(stage)))

>>> # load the data for each species

... amphi_ef = amphi_idr

... zebra_ef = zebra_idr

... mouse_ef = mouse_idr

... medaka_ef = medaka_idr

...

... amphi_lot = []

... for st in amphioxus_stages:

... ldf = get_numbers(amphi_ef,st)

... amphi_lot.append([st, ldf])

... amphi_tp = pd.DataFrame(amphi_lot)

...

... zebra_lot = []

... for st in zebrafish_stages:

... ldf = get_numbers(zebra_ef,st)

... zebra_lot.append([st, ldf])

... zebra_tp = pd.DataFrame(zebra_lot)

...

... mouse_lot = []

... for st in mouse_stages:

... ldf = get_numbers(mouse_ef,st)

... mouse_lot.append([st, ldf])

... mouse_tp = pd.DataFrame(mouse_lot)

...

... medaka_lot = []

... for st in medaka_stages:

... ldf = get_numbers(medaka_ef,st)

... medaka_lot.append([st, ldf])

... medaka_tp = pd.DataFrame(medaka_lot)

>>> #the _tp dataframes look like this:

... amphi_tp.head(2)

0 1

0 8 25455

1 15 47002

>>> # divide by 1000 just to make the y axis labels on the plot smaller

... amphi_tpc = amphi_tp.copy()

... amphi_tpc[1] = amphi_tpc[1]/1000

... zebra_tpc = zebra_tp.copy()

... zebra_tpc[1] = zebra_tpc[1]/1000

... mouse_tpc = mouse_tp.copy()

... mouse_tpc[1] = mouse_tpc[1]/1000

... medaka_tpc = medaka_tp.copy()

... medaka_tpc[1] = medaka_tpc[1]/1000

>>>

168

>>> Fwidth = THESIS_PAGEWIDTH/2

... Fheight = THESIS_PAGEWIDTH/2

...

... fig, ax = plt.subplots(1, 1)

... fig.subplots_adjust(left=.19, bottom=.15, right=.99, top=.9)

... sns.barplot(data=amphi_tpc, x=0,y=1, ax=ax, palette='Blues',order=['8','15','36','60'])

... # ax.set_xlabel('amphioxus (dev stages)')

... ax.set_ylabel('ATAC-seq number of peaks (K)')

... fig.set_size_inches(Fwidth, Fheight)

... plt.title('Amphioxus')

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peaks_0.pdf')

...

... fig, ax = plt.subplots(1, 1)

... fig.subplots_adjust(left=.19, bottom=.15, right=.99, top=.9)

... sns.barplot(data=zebra_tpc, x=0,y=1, ax=ax, palette='Blues',)

... # ax.set_xlabel('zebrfish (dev stages)')

... ax.set_ylabel('ATAC-seq number of peaks (K)')

... plt.xticks(rotation=30)

... fig.set_size_inches(Fwidth, Fheight)

... plt.title('Zebrafish')

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peaks_1.pdf')

...

... fig, ax = plt.subplots(1, 1)

... fig.subplots_adjust(left=.19, bottom=.15, right=.99, top=.9)

... sns.barplot(data=mouse_tpc, x=0,y=1, ax=ax, palette='Blues',)

... # ax.set_xlabel('mouse (dev stages)')

... ax.set_ylabel('ATAC-seq number of peaks (K)')

... fig.set_size_inches(Fwidth, Fheight)

... plt.title('Mouse')

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peaks_2.pdf')

...

... fig, ax = plt.subplots(1, 1)

... fig.subplots_adjust(left=.19, bottom=.15, right=.99, top=.9)

... sns.barplot(data=medaka_tpc, x=0,y=1, ax=ax, palette='Blues',)

... # ax.set_xlabel('medaka (dev stages)')

... ax.set_ylabel('ATAC-seq number of peaks (K)')

... plt.xticks(rotation=30)

... fig.set_size_inches(Fwidth, Fheight)

... plt.title('Medaka')

... fig.savefig('../Figures/from_notebooks/tfigure_amphiK4peaks_3.pdf')

169

170

>>>

171

TSS-CRE distances

In this notebook, we plot the cumulative distributions of the distances of AT-
ACseq peaks from TranscriptionStartSites. We also plot the values after nor-
malizing them based on the average intergenic distance of each genome.

>>> # We extract all homologous genes for each species

... # (genefams is loaded in the preamble.py)

... good_amphi_genes = [x for y in genefams['Bla'].dropna() for x in y]

... good_zebra_genes = [x for y in genefams['Dre'].dropna() for x in y]

... good_medaka_genes = [x for y in genefams['Ola'].dropna() for x in y]

... good_mouse_genes = [x for y in genefams['Mmu'].dropna() for x in y]

>>> (len(good_amphi_genes),len(good_zebra_genes),

... len(good_medaka_genes),len(good_mouse_genes))

(20569, 20082, 15978, 19429)

>>> # for a notebook on how to make the TSS file see:

... # myphdthesis/other_notebooks/make_tss.ipynb

... amphi_tss_df = pd.read_csv("/Thesis_shallow/data/genomic_regions/TSS_bla.bed.gz",

... sep='\t')

... amphi_tss_df['score'] = 0

... amphi_tss_df = amphi_tss_df[['chrom','start','end','gene_id','score','strand']]

... amphi_tss_df = amphi_tss_df[amphi_tss_df.gene_id.isin(good_amphi_genes)]

... amphi_tss_bed = BT().from_dataframe(amphi_tss_df)

...

... zebra_tss_df = pd.read_csv("/Thesis_shallow/data/genomic_regions/TSS_dre.bed.gz",

... sep='\t', header=None)

... zebra_tss_df.columns = ['chrom','start','end','gene_id','score','strand']

... zebra_tss_df = (zebra_tss_df[zebra_tss_df.gene_id.isin(good_zebra_genes)]

... .copy())

... zebra_tss_bed = BT().from_dataframe(zebra_tss_df)

...

... medaka_tss_df = pd.read_csv("/Thesis_shallow/data/genomic_regions/TSS_ola.bed.gz",

... sep='\t', header=None)

... medaka_tss_df.columns = ['chrom','start','end','gene_id','score','strand']

... medaka_tss_df =(medaka_tss_df[medaka_tss_df.gene_id.isin(good_medaka_genes)]

... .copy())

... medaka_tss_bed = BT().from_dataframe(medaka_tss_df)

...

... mouse_tss_df = pd.read_csv("/Thesis_shallow/data/genomic_regions/TSS_mmu.bed.gz",

... sep='\t', header=None)

... mouse_tss_df.columns = ['chrom','start','end','gene_id','score','strand']

... mouse_tss_df = mouse_tss_df[['chrom','start','end','gene_id','score','strand']]

... mouse_tss_df = (mouse_tss_df[mouse_tss_df.gene_id.isin(good_mouse_genes)]

... .copy())

... mouse_tss_bed = BT().from_dataframe(mouse_tss_df)

...

... mouse_tss_df.head()

chrom start end gene_id score strand

172

0 chr1 3671498 3671499 ENSMUSG00000051951 0 -

1 chr1 4360314 4360315 ENSMUSG00000025900 0 -

2 chr1 4496413 4496414 ENSMUSG00000025902 0 -

3 chr1 4785710 4785711 ENSMUSG00000033845 0 -

4 chr1 4807823 4807824 ENSMUSG00000025903 0 +

To get the average intergenic regions:

>>> # for a notebook on how to make the intergenics file see:

... # myphdthesis/other_notebooks/make_intergenic_regions.ipynb

...

... amphi_intergenics = (

... pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Bla.tsv.gz",

... sep='\t', header=None))

... amphi_aid = (amphi_intergenics[2]-amphi_intergenics[1]).mean()

...

... zebra_intergenics = (

... pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Dre.tsv.gz",

... sep='\t', header=None))

... zebra_aid = (zebra_intergenics[2]-zebra_intergenics[1]).mean()

...

... medaka_intergenics = (

... pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Ola.tsv.gz",

... sep='\t', header=None))

... medaka_aid = (medaka_intergenics[2]-medaka_intergenics[1]).mean()

...

... mouse_intergenics = (

... pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Mmu.tsv.gz",

... sep='\t', header=None))

... mouse_aid = (mouse_intergenics[2]-mouse_intergenics[1]).mean()

>>> # the average intergenic regions, we'll use these later to normalize

... amphi_aid, zebra_aid, medaka_aid, mouse_aid

(22280.674919495326,

67502.639512022986,

48814.903121566596,

136213.51419155949)

>>> amphi_tss_df.shape, zebra_tss_df.shape, medaka_tss_df.shape, mouse_tss_df.shape

((20569, 6), (20053, 6), (15978, 6), (18842, 6))

173

In the following cells:

The species_APs_ii are ATAC peaks found only inside the intergenic regions,
This way we can investigate their distance to a gene and make sure that those
distances are not affected by the fragmenttion of the genome.

species_closest then is a

>>> amphi_APs = BT(amphi_idr('merged'))

... amphi_APs_ii = (amphi_APs

... .intersect(BT()

... .from_dataframe(amphi_intergenics), u=True))

... amphi_closest = (amphi_APs

... .closest(b=amphi_tss_bed, D='b', io=True, t='first')

... .to_dataframe())

... amphi_ii_closest = (amphi_APs_ii

... .closest(b=amphi_tss_bed, D='b', io=True, t='first')

... .to_dataframe())

...

... zebra_APs = BT(zebra_idr('merged'))

... zebra_closest = (zebra_APs

... .closest(b=zebra_tss_bed, D='b', io=True, t='first', nonamecheck=True)

... .to_dataframe())

... zebra_APs_ii = (zebra_APs

... .intersect(BT()

... .from_dataframe(zebra_intergenics), u=True, nonamecheck=True))

... zebra_ii_closest = (zebra_APs_ii

... .closest(b=zebra_tss_bed, D='b', io=True, t='first', nonamecheck=True)

... .to_dataframe())

...

... medaka_APs = BT(medaka_idr('merged'))

... medaka_closest = (medaka_APs

... .closest(b=medaka_tss_bed, D='b', io=True, t='first',nonamecheck=True)

... .to_dataframe())

... medaka_APs_ii = (medaka_APs

... .intersect(BT()

... .from_dataframe(medaka_intergenics), u=True, nonamecheck=True))

... medaka_ii_closest = (medaka_APs_ii

... .closest(b=medaka_tss_bed, D='b', io=True, t='first', nonamecheck=True)

... .to_dataframe())

...

... mouse_APs = BT(mouse_idr('merged'))

... mouse_closest = (mouse_APs

... .closest(b=mouse_tss_bed, D='b', io=True, t='first')

... .to_dataframe())

... mouse_APs_ii = (mouse_APs

... .intersect(BT()

... .from_dataframe(mouse_intergenics), u=True, nonamecheck=True))

... mouse_ii_closest = (mouse_APs_ii

... .closest(b=mouse_tss_bed, D='b', io=True, t='first', nonamecheck=True)

... .to_dataframe())

Some peaks will not be assigned a "closest" TSS, for example if there no TSS
on the scaffold where the peak was found. We want to get rid of those and we

174

do it by filtering the rows where ’thickStart’==’.’ (those are the rows with no
assignment)

>>> amphi_closest = amphi_closest[amphi_closest.thickStart!='.']

... amphi_ii_closest = amphi_ii_closest[amphi_ii_closest.thickStart!='.']

... zebra_closest = zebra_closest[zebra_closest.thickStart!='.']

... zebra_ii_closest = zebra_ii_closest[zebra_ii_closest.thickStart!='.']

>>> medaka_closest = medaka_closest[medaka_closest.thickStart!='.']

... medaka_ii_closest = medaka_ii_closest[medaka_ii_closest.thickStart!='.']

... mouse_closest = mouse_closest[mouse_closest.thickStart!='.']

... mouse_ii_closest = mouse_ii_closest[mouse_ii_closest.thickStart!='.']

>>> # Make the distances absolute:

... amphi_closest['absdist'] = amphi_closest.blockCount.abs()

... zebra_closest['absdist'] = zebra_closest.blockCount.abs()

... medaka_closest['absdist'] = medaka_closest.blockCount.abs()

... mouse_closest['absdist'] = mouse_closest.blockCount.abs()

... amphi_ii_closest['absdist'] = amphi_ii_closest.blockCount.abs()

... zebra_ii_closest['absdist'] = zebra_ii_closest.blockCount.abs()

... medaka_ii_closest['absdist'] = medaka_ii_closest.blockCount.abs()

... mouse_ii_closest['absdist'] = mouse_ii_closest.blockCount.abs()

Now we manipulate a bit in order to get the data in plotting
order

>>> # we order our peaks by distance

... ac = amphi_closest.sort_values(by='absdist').copy()

... # Then we divide the rank of each peak by the number of peaks

... # this value then becomes: "what % of peaks are above me in the table?"

... ac['EDCV'] = np.arange(len(ac))/len(ac)

... # make a normalized absolute distance:

... ac['absdist_normed'] = ac.absdist/amphi_aid

... ac[['thickStart','EDCV','absdist_normed']].head()

... # to-plot object:

... # we drop the duplicates of 'absdist_normed' and keep only the last instance

... # of each the 'EDCV' value will be our Y acis values with the absdist_normed

... # value on the X axis

... tp_ac = (ac

... .drop_duplicates('absdist_normed',

... keep='last')[['absdist_normed', 'EDCV']]

... .to_records(index=False))

>>> # repeat for the other species

... zc = zebra_closest.sort_values(by='absdist').copy()

... zc['EDCV'] = np.arange(len(zc))/len(zc)

... zc['absdist_normed'] = zc.absdist/zebra_aid

... tp_zc = (zc

... .drop_duplicates('absdist_normed',

... keep='last')[['absdist_normed', 'EDCV']]

... .to_records(index=False))

175

...

... medc = medaka_closest.sort_values(by='absdist').copy()

... medc['EDCV'] = np.arange(len(medc))/len(medc)

... medc['absdist_normed'] = medc.absdist/medaka_aid

... tp_medc = (medc

... .drop_duplicates('absdist_normed',

... keep='last')[['absdist_normed', 'EDCV']]

... .to_records(index=False))

...

... mmuc = mouse_closest.sort_values(by='absdist').copy()

... mmuc['EDCV'] = np.arange(len(mmuc))/len(mmuc)

... mmuc['absdist_normed'] = mmuc.absdist/mouse_aid

... tp_mmuc = (mmuc[mmuc.chrom !='chrY']

... .drop_duplicates('absdist_normed',

... keep='last')[['absdist_normed', 'EDCV']]

... .to_records(index=False))

>>> len(ac),len(zc),len(medc),len(mmuc)

(83471, 252774, 174139, 326486)

>>> len(tp_ac),len(tp_zc),len(tp_medc),len(tp_mmuc)

(29738, 111926, 75342, 176963)

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = (9/16.)*Fwidth

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.14, right=.99, top=.99)

...

... x,y = list(zip(*tp_ac))

... ax.plot(x,y, label='amphi', linewidth=2)

... x,y = list(zip(*tp_zc))

... ax.plot(x,y, label='zebra', linewidth=2, alpha=1,)

... x,y = list(zip(*tp_medc))

... ax.plot(x,y, label='medaka', linewidth=2)

... x,y = list(zip(*tp_mmuc))

... ax.plot(x,y, label='mouse', linewidth=1, alpha=1,

... linestyle='--' , color='black')

...

... plt.legend(loc='lower right')

... plt.xlim((-0.05,4))

...

... #>>> Name your Axes

... ax.set_ylabel(("CDF(x)"))

... ax.set_xlabel(("Distance to TSS in units of 'average intergenic distance'"))

...

... # ax.yaxis.tick_right()

... # ax.yaxis.set_label_position("right")

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

176

... fig.savefig('../Figures/from_notebooks/tfigure_TSSdistanceNorm.pdf')

Now we’ll do the same but without normalizing the distances

>>> # we order our peaks by distance

... ac = amphi_closest.sort_values(by='absdist').copy()

... # Then we divide the rank of each peak by the number of peaks

... # this value then becomes: "what % of peaks are above me in the table?"

... ac['EDCV'] = np.arange(len(ac))/len(ac)

...

... # to-plot object:

... # we drop the duplicates of 'absdist'

... tp_ac = (ac

... .drop_duplicates('absdist',

... keep='last')[['absdist', 'EDCV']]

... .to_records(index=False))

...

... # repeat for the other species

... zc = zebra_closest.sort_values(by='absdist').copy()

... zc['EDCV'] = np.arange(len(zc))/len(zc)

... tp_zc = zc.drop_duplicates('absdist',

... keep='last')[['absdist', 'EDCV']].to_records(index=False)

...

... medc = medaka_closest.sort_values(by='absdist').copy()

... medc['EDCV'] = np.arange(len(medc))/len(medc)

...

... tp_medc = medc.drop_duplicates('absdist',

... keep='last')[['absdist', 'EDCV']].to_records(index=False)

...

... mmuc = mouse_closest.sort_values(by='absdist').copy()

... mmuc['EDCV'] = np.arange(len(mmuc))/len(mmuc)

177

...

... tp_mmuc = mmuc[mmuc.chrom !='chrY'].drop_duplicates('absdist',

... keep='last')[['absdist', 'EDCV']].to_records(index=False)

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = (9/16.)*Fwidth

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.14, right=.99, top=.99)

...

...

... # ax.set_title('ATACseq peak numbers overview')

...

... x,y = list(zip(*tp_ac))

... ax.plot(x,y, label='amphi', linewidth=2)

... x,y = list(zip(*tp_zc))

... ax.plot(x,y, label='zebra', linewidth=2, alpha=1,)

... x,y = list(zip(*tp_medc))

... ax.plot(x,y, label='medaka', linewidth=2)

... x,y = list(zip(*tp_mmuc))

...

... ax.plot(x,y, label='mouse', linewidth=1, alpha=1,

... linestyle='--' , color='black')

...

...

... plt.legend()

... # plt.xscale('log')

... # plt.xlim((10**-3,20))

...

... #>>> Name your Axes

... ax.set_ylabel(("CDF(x)"))

... ax.set_xlabel(("Distance to TSS"))

...

...

... plt.xscale('log')

... # ax.yaxis.tick_right()

... # ax.yaxis.set_label_position("right")

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

... fig.savefig('../Figures/from_notebooks/tfigure_tssDistCDF.pdf')

178

179

The dalton plots

In this notebook we conduct some analyses regarding the distibutions
of counts of ATACseq peaks inside genomic regions assigned to genes.
These are most often GREAT regions (see relevant notebook)

We separate the data in various meaningful ways and plot the distributions
with boxplots.

Definition of trans-dev and housekeeping genes

Orthologous clusters of trans-dev genes (i.e. genes implicated in transcrip-
tional regulation or development were defined based on the GO annotations
for the mouse orthologs. We downloaded GO annotations for mouse from
Ensembl Biomart (release 80) and defined trans-dev genes as those with: (i)
GO:0009790 (embryo development) and/or GO:0030154 (cell differentiation)
Biological Process annotations; and (ii) GO:0043565 (sequence-specific DNA
binding), GO:0007267 (cell-cell signaling) and/or GO:0008380 (RNA splicing)
Molecular Function annotations. In contrast, mouse housekeeping genes were
defined as those with a 1-to-1 ortholog with yeast (Saccharomyces cerevisiae)
based on Ensembl Biomart, and that did not have GO:0009790 (embryo devel-
opment) or GO:0030154 (cell differentiation) Biological Process annotations.
After assigning these categories to the mouse genes, the annotations were
transferred to all genes from the same orthologous group, including homologs
from other species and their paralogs. This resulted in a total of 654/817,
809/916, 680/805 and 362/865 trans-dev/housekeeping genes in mouse, ze-
brafish, medaka and amphioxus, respectively (Supplementary Dataset 10).

Data loading and handling

>>> # This is a dictionary containing dataframes with the GREAT regions of each

... # species

... greg = gr_great

... #how many genes in each species:

... print([(k,len(v)) for k,v in greg.items()])

[('Dre', 20053), ('Bla', 20569), ('Ola', 15978), ('Mmu', 18842)]

for each species we have a dataframe in there, each gene is assigned a genomic
region for GREAT regions those might overlap. Using this in the later steps we
will count the number of ATACseq peaks in the region of each gene

180

>>> greg['Mmu'].head(3)

chrom start end geneID score strand

0 chr1 2670503 4359310 ENSMUSG00000051951 1688807 -

1 chr1 3676503 4495409 ENSMUSG00000025900 818906 -

2 chr1 4365319 4784706 ENSMUSG00000025902 419387 -

>>> # busywork

... stages = {}

... stages['Bla'] = ['8','15','36','60']

... stages['Dre'] = ["dome","shield","80epi","8som","24h","48h"]

... stages['Ola'] = ["dome","shield","8som","24h","48h"]

... stages['Mmu'] = ['DE','ESC']

>>> #load the ATACseq peaks

... peak_beds = {}

... peak_beds['Dre'] = [(BT(zebra_idr(x))

... .sort()

...)for x in stages['Dre']]

... peak_beds['Bla'] = [(BT(amphi_idr(x))

... .sort()

...) for x in stages['Bla']]

... peak_beds['Ola'] = [(BT(medaka_idr(x))

... .sort()

...)for x in stages['Ola']]

... peak_beds['Mmu'] = [(BT(mouse_idr(x))

... .sort()

...)for x in stages['Mmu']]

>>> stagespecorder = ['bla_8','bla_15','bla_36','bla_60',' ',

... 'dre_dome','dre_shield','dre_80epi','dre_8som','dre_24h','dre_48h',' ',

... 'ola_dome','ola_shield','ola_8som','ola_24h','ola_48h',' ',

... 'mmu_ESC','mmu_DE'

...]

We will use the following to split genes in genomic categories
according to how many gene copies are found in mouse
by making some masks for the dataframe

>>> mask_oto = (genefamsC['Bla']==1) & (genefamsC['Mmu']==1) # 1-1

... mask_ottw = (genefamsC['Bla']==1) & (genefamsC['Mmu']==2) # 1-2

... mask_otth = (genefamsC['Bla']==1) & (genefamsC['Mmu']==3) # 1-3

... mask_otfo = (genefamsC['Bla']==1) & (genefamsC['Mmu']==4) # 1-4

...

... masks = [mask_oto, mask_ottw,mask_otth,mask_otfo]

... titles = ['1-1','1-2','1-3','1-4']

... # then some sets

... oto_genes = genefams.loc[mask_oto,['Bla','Dre','Mmu','Ola']]

... oto_genes = set([x for y in oto_genes.values.flatten() if y==y for x in y])

... ottw_genes = genefams.loc[mask_ottw,['Bla','Dre','Mmu','Ola']]

... ottw_genes = set([x for y in ottw_genes.values.flatten() if y==y for x in y])

... otth_genes = genefams.loc[mask_otth,['Bla','Dre','Mmu','Ola']]

181

... otth_genes = set([x for y in otth_genes.values.flatten() if y==y for x in y])

... otfo_genes = genefams.loc[mask_otfo,['Bla','Dre','Mmu','Ola']]

... otfo_genes = set([x for y in otfo_genes.values.flatten() if y==y for x in y])

... # and use the sets to categorize the genes inside the dataframe

... def categorize(x):

... if x in oto_genes:

... return '1-1'

... elif x in ottw_genes:

... return '1-2'

... elif x in otth_genes:

... return '1-3'

... elif x in otfo_genes:

... return '1-4'

... else:

... return 'nop'

We intersect the GREAT file with the ATACpeaks files
to count peaks inside the region of each gene
This is essentially a bedtools intersect (using pybedtools)

>>> bedfields = ['chrom','start','end','name','score','strand']

... big = {}

... big['Dre'] = BT().from_dataframe(greg['Dre']).sort()

... for bee in peak_beds['Dre']:

... big['Dre'] = big['Dre'].intersect(b = bee, c=True,

... sorted=True, nonamecheck=True)

... big['Dre'] = big['Dre'].to_dataframe()

... big['Dre'].columns = bedfields + stages['Dre']

... # the other species:

... big['Bla'] = BT().from_dataframe(greg['Bla']).sort()

... for bee in peak_beds['Bla']:

... big['Bla'] = big['Bla'].intersect(b = bee, c=True,

... sorted=True, nonamecheck=True)

... big['Bla'] = big['Bla'].to_dataframe()

... big['Bla'].columns = bedfields + stages['Bla']

... big['Ola'] = BT().from_dataframe(greg['Ola']).sort()

... for bee in peak_beds['Ola']:

... big['Ola'] = big['Ola'].intersect(b = bee, c=True,

... sorted=True, nonamecheck=True)

... big['Ola'] = big['Ola'].to_dataframe()

... big['Ola'].columns = bedfields + stages['Ola']

... big['Mmu'] = BT().from_dataframe(greg['Mmu']).sort()

... for bee in peak_beds['Mmu']:

... big['Mmu'] = big['Mmu'].intersect(b = bee, c=True,

... sorted=True, nonamecheck=True)

... big['Mmu'] = big['Mmu'].to_dataframe()

... big['Mmu'].columns = bedfields + stages['Mmu']

>>> # These dataframe now look like this

... # For each gene, we have its regulatory region

... # in the first 6 columns

... # and then for each ATACseq stage, one column

... # with a count of peaks per gene

... big['Dre'].sample(5)

182

chrom start end name score strand dome \

10300 chr21 21871040 22084672 ENSDARG00000062056 213632 - 10

13537 chr3 18431140 18559265 ENSDARG00000019932 128125 - 9

10417 chr21 26691246 26881202 ENSDARG00000098766 189956 + 5

10746 chr22 573349 612992 ENSDARG00000059360 39643 - 7

7513 chr19 3231985 3298703 ENSDARG00000014222 66718 + 12

shield 80epi 8som 24h 48h

10300 13 15 23 17 38

13537 8 15 11 9 7

10417 9 14 12 15 23

10746 4 7 6 5 7

7513 6 9 5 8 10

>>> # set the gene ID as index in all dataframes of 'big'

... big_ind = {}

... for k,v in big.items():

... big_ind[k] = v.set_index('name')

... big_ind[k].columns = [str(x) for x in big_ind[k].columns]

>>> # some more dataframe manipulations

... dd_dre = big_ind['Dre'].copy()

... dd_dre['category'] = dd_dre.index.to_series().map(categorize)

... dd_dre['species'] = 'dre'

... dd_dre = dd_dre[stages['Dre']+['category','species','score']]

... dd_dre.columns = stages['Dre']+['category','species','score']

...

... dd_ola = big_ind['Ola'].copy()

... dd_ola['category'] = dd_ola.index.to_series().map(categorize)

... dd_ola['species'] = 'ola'

... dd_ola = dd_ola[stages['Ola']+['category','species','score']]

... dd_ola.columns = stages['Ola']+['category','species','score']

...

... dd_bla = big_ind['Bla'].copy()

... dd_bla['category'] = dd_bla.index.to_series().map(categorize)

... dd_bla['species'] = 'bla'

... dd_bla = dd_bla[stages['Bla']+['category','species','score']]

... dd_bla.columns = stages['Bla']+['category','species','score']

...

... dd_mmu = big_ind['Mmu'].copy()

... dd_mmu['category'] = dd_mmu.index.to_series().map(categorize)

... dd_mmu['species'] = 'mmu'

... dd_mmu = dd_mmu[stages['Mmu']+['category','species','score']]

... dd_mmu.columns = stages['Mmu']+['category','species','score']

>>> # We merge the dataframes of all species into a single one

... # to plot everything together

... # Melting brings the data in the tidy data format which is

... # expected from the seaborn library that we use for plotting

... TOPLOT = pd.concat([

... pd.melt(dd_dre, id_vars=['category','species','score']),

183

... pd.melt(dd_bla, id_vars=['category','species','score']),

... pd.melt(dd_ola, id_vars=['category','species','score']),

... pd.melt(dd_mmu, id_vars=['category','species','score'])

...])

... TOPLOT.columns = ['category','species','score','stage','count']

... TOPLOT['specstage'] = TOPLOT.species + '_' + TOPLOT.stage

... TOPLOT.head(2)

category species score stage count specstage

0 nop dre 4804 dome 0 dre_dome

1 nop dre 2189 dome 0 dre_dome

The plots

All species, per stage

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.09, bottom=.19, right=.99, top=.99)

...

... # ax.set_title('ATACseq peak numbers overview')

... sns.boxplot(data = TOPLOT,

... x='specstage',

... order=stagespecorder,

... y='count',

... fliersize=0, palette='Blues',

... ax=ax

...)

...

... ax.set_ylim((0,32))

... for label in ax.get_xticklabels():

... label.set_rotation(35)

... ax.set_ylabel('CREs per gene GREAT')

... ax.set_xlabel('')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_dalton2.pdf')

184

Amphi-Zebra 1-X gene categories

>>> TP = pd.concat(

... [TOPLOT[(TOPLOT.species=='dre')

... & (TOPLOT.stage=='8som')

... & (TOPLOT.category!='nop')],

... TOPLOT[(TOPLOT.species=='bla')

... & (TOPLOT.stage=='15')

... & (TOPLOT.category!='nop')]

...])

... TP['score'] = TP['score']/10000.

... Fwidth = THESIS_PAGEWIDTH/2

... Fheight = Fwidth

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.18, bottom=.09, right=.98, top=.98)

... # ax.set_title('ATACseq peak numbers overview')

... sns.boxplot(data = TP,

... x='species',

... order=['bla','dre'],

... y='score',

... hue='category',

... hue_order=['1-1','1-2','1-3','1-4'],

... fliersize=0, palette='Blues')

...

... ax.set_ylim((0,30))

... plt.legend(loc='upper left')

... ax.set_xticklabels(['amphioxus','zebrafish'],

... rotation = 0, ha="center")

... ax.set_ylabel('Size of GREAT region (*10kb)')

... ax.set_xlabel('')

185

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_daltonGR.pdf')

Amphi-Zebra 1-X gene categories (GREAT size)

>>> TP = pd.concat(

... [TOPLOT[(TOPLOT.species=='dre')

... & (TOPLOT.stage=='8som')

... & (TOPLOT.category!='nop')],

... TOPLOT[(TOPLOT.species=='bla')

... & (TOPLOT.stage=='15')

... & (TOPLOT.category!='nop')]

...])

... Fwidth = THESIS_PAGEWIDTH/2

... Fheight = Fwidth

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.18, bottom=.09, right=.98, top=.98)

...

... # ax.set_title('ATACseq peak numbers overview')

... sns.boxplot(data = TP,

... x='species',

... order=['bla','dre'],

... y='count',

... hue='category',

... hue_order=['1-1','1-2','1-3','1-4'],

... fliersize=0, palette='Blues')

...

... ax.set_ylim((0,30))

186

... plt.legend(loc='upper left')

... ax.set_xticklabels(['amphioxus','zebrafish'],

... rotation = 0, ha="center")

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_dalton3.pdf')

All species 1-X gene categories (GREAT size)

>>> fig, ax = plt.subplots()

... fig.subplots_adjust(left=.05, bottom=.05, right=.95, top=.95)

... Fwidth = 16

... Fheight = 9

... sns.boxplot(data = TOPLOT,

... x='specstage',

... order=stagespecorder,

... hue='category',

... hue_order = ['1-1','1-2','1-3','1-4'],

... y='count',

... fliersize=0, palette='Blues',

... ax=ax

...)

... ax.set_ylim((0,60))

... plt.legend(loc='upper left')

... ax.set_ylabel('Some Metric (in unit)')

... ax.set_xlabel('Something (in unit)')

... fig.set_size_inches(Fwidth, Fheight)

187

MinMax in each gene family

>>> # The following goes through our data

... # and extracts the smallest and biggest

... # count of peaks in each genomic family

... lot = {}

... lot['Dre'] = []

... lot['Bla'] = []

... # for each category ('1-1','1-2' etc)

... for mask,title in zip(masks, titles):

... # go through the gene families table

... # and for each family

... for i,row in genefams.loc[mask,['Bla','Dre']].iterrows():

... # for each species

... for spec in ['Bla','Dre']:

... try:

... lgl = row[spec]

... #if there's genes in this family for this species

... if lgl == lgl:

... slaice = (big_ind[spec]

... .loc[lgl, stages[spec]])

... slaice = pd.concat(

... [slaice.min(),slaice.max()], axis=1)

... slaice.columns = ['min','max']

... slaice['stage'] = (

... spec + "_" + slaice.index.values)

... slaice = pd.melt(

... slaice, id_vars=['stage'])

... slaice['title'] = title

...

... lot[spec].append(slaice)

... except:

188

... pass

... lot['Dre'] = pd.concat(lot['Dre'])

... lot['Bla'] = pd.concat(lot['Bla'])

... bigmelt3 = pd.concat([lot['Dre']

... , lot['Bla']])

>>> # a hand-made palette

... bcp = sns.color_palette('Blues',4)

... sns.palplot(bcp)

... rcp = sns.color_palette('Reds',4)

... sns.palplot(rcp)

... mycp = {

... '1-1max':(0.90274 , 0.83764, 0.82901),

... '1-1min':(0.99137, 0.79137, 0.70823),

... '1-2max':(0.57960, 0.77019, 0.87372),

... '1-2min':(0.98745, 0.54117, 0.41568),

... '1-3max':(0.29098, 0.59450, 0.78901),

... '1-3min':(0.94666, 0.26823, 0.19607),

... '1-4max':(0.09019, 0.39294, 0.67058),

... '1-4min':(0.73647, 0.08, 0.010117),

... '_':(0,0,0)}

>>> foo = bigmelt3.copy()

... foo['nf'] = foo.title + foo.variable

... foo['norm'] = 0

... toplot = foo.copy()

... toplot['hew'] = toplot.title + toplot.variable

...

... Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.10, bottom=.08, right=.99, top=.99)

189

...

... g = sns.boxplot(

... x="stage",

... y="value",

... hue="hew",

... fliersize=0,

... hue_order=['1-1max','_','1-2min','1-2max',

... '1-3min','1-3max','1-4min','1-4max'],

... palette = mycp,

... order=['Bla_15','Dre_8som'],

... data=toplot,

... ax=ax

...)

...

... ax.set_ylim((0,52))

... ax.set_xticklabels(['amphioxus','zebrafish'])

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... plt.legend(loc='upper left')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_dalton4.pdf')

TransDev / Housekeeping Genes

>>> hkg = pd.read_csv("/Thesis_shallow/data/gene_categories/HouseKeepGenes.tab.gz",

... header=None,sep='\t',usecols=[1,2])

...

... hkg = hkg[hkg[1].isin(['Bla','Dre'])]

... hkgenes = hkg[2].values

190

>>> # We load the housekeeping and later the TD genes

... hkg.head(3)

1 2

1 Bla BL24571

3 Dre ENSDARG00000002720

12 Bla BL05749

>>> tdg = pd.read_csv("/Thesis_shallow/data/gene_categories/TransDevGenes.tab.gz",

... header=None,sep='\t',usecols=[1,2])

...

... tdg = tdg[tdg[1].isin(['Bla','Dre'])]

... tdgenes = tdg[2].values

>>> blac = dd_bla.copy()

... drec = dd_dre.copy()

>>> # apply our TD and HK labels to the rest of the data

... blac['class'] = 'nop'

... drec['class'] = 'nop'

... blac['class'] = blac.apply(

... lambda x: 'TD' if (x.name in tdgenes) else x['class'],

... axis=1)

... blac['class'] = blac.apply(

... lambda x: 'HK' if (x.name in hkgenes) else x['class'],

... axis=1)

... drec['class'] = drec.apply(

... lambda x: 'TD' if (x.name in tdgenes) else x['class'],

... axis=1)

... drec['class'] = drec.apply(

... lambda x: 'HK' if (x.name in hkgenes) else x['class'],

... axis=1)

>>> # To get the pvalues for enrichment of TD/HK in

... # each gene category:

... from scipy.stats import hypergeom

... statf = hypergeom.sf

...

... foo = drec

...

... td_in_population = foo['class'].value_counts()['TD']

... hk_in_population = foo['class'].value_counts()['HK']

...

... pop_size = len(foo)

... for gn,g in foo.groupby('category'):

...

... ss = len(g)

... td_is = g['class'].value_counts().get('TD',0)

... hk_is = g['class'].value_counts().get('HK',0)

... try:

... print('td',gn,

... statf(td_is, pop_size, ss, td_in_population),

191

... sep='\t')

... print('hk',gn,

... statf(hk_is, pop_size, ss, hk_in_population),

... sep='\t')

... except:

... continue

td 1-1 1.0

hk 1-1 0.0

td 1-2 1.92058095378e-11

hk 1-2 1.0

td 1-3 4.41908946369e-45

hk 1-3 1.0

td 1-4 4.18209713364e-27

hk 1-4 1.0

td nop 1.0

hk nop 0.999999999991

>>> # Bit of a lazy compilation of the data we need:

... a = dd_bla.loc[hkg.loc[hkg[1]=='Bla',2].values]

... a['class'] = 'House Keeping'

... b = dd_bla.loc[tdg.loc[tdg[1]=='Bla',2].values]

... b['class'] = 'Trans Dev'

... c1 = pd.concat([a,b])

...

... a = dd_dre.loc[hkg.loc[hkg[1]=='Dre',2].values]

... a['class'] = 'House Keeping'

... b = dd_dre.loc[tdg.loc[tdg[1]=='Dre',2].values]

... b['class'] = 'Trans Dev'

... c2 = pd.concat([a,b])

... c = pd.concat([pd.melt(c1, id_vars=['category','class','species']),

... pd.melt(c2, id_vars=['category','class','species'])])

>>> c.head(3)

category class species variable value

0 1-1 House Keeping bla 8 1

1 1-1 House Keeping bla 8 1

2 1-1 House Keeping bla 8 2

>>> c['catstage'] = c['species'] + '_' + c.variable

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.10, bottom=.08, right=.99, top=.99)

...

... _ = sns.boxplot(data=c,

... x='catstage',

192

... order=stagespecorder[:11],

... y='value',

... hue='class',

... fliersize=0,

... palette=sns.color_palette("colorblind", 8)

...)

... ax.set_ylim((0,45))

... ax.set_xticklabels(['8h','15h','36h','60h','',

... 'dome','shield','80%\n epiboly','8\n somites','24h','48h'],

... rotation=0, ha='center')

...

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_TDHK.pdf')

Genes by fate

Here we plot genes split based on how the ohnologues ’behaved’ in zebrafish.
Redundant genes are genes that both copies retain the full ancestral expres-
sion. Subfunctionalized genes lose domains reciprocally, specialized genes
lose domains but at least one ohnologue maintains the ancestrall expression
(spec_equal). Spec strong genes have lost more domains than spec mild

>>> fate_dict_zebra = dict(

... pd.read_csv("/Thesis_shallow/data/gene_fates/Gene_types-Dre-v3.txt.gz",

... sep='\t',header=None).set_index(0)[1])

... fate_dict_mouse = dict(

... pd.read_csv("/Thesis_shallow/data/gene_fates/Gene_types-Mmu-v3.txt.gz",

193

... sep='\t',header=None).set_index(0)[1])

...

... FATE_ORDER = ['REDUNDANT','SUBFUNCT','SPEC_EQUAL',

... 'SPEC_MILD','SPEC_STRONG']

...

... dd_dre['fate'] = dd_dre.index.to_series().map(fate_dict_zebra)

... NTP = pd.melt(dd_dre, id_vars=['category','fate','species'])

...

... NTP.columns = ['category','fate','species','stage','count']

... NTP['specstage'] = NTP.species + '_' + NTP.stage

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.10, bottom=.20, right=.98, top=.99)

...

... _ = sns.boxplot(data=NTP.dropna(),

... y="count",

... x="fate",

... fliersize=0,

... order=FATE_ORDER,

...

... palette=["#ef2f28ff",

... "#3871c1ff",

... "#b9e4a5ff",

... "#6fca65ff",

... "#308d3eff"

...]

...)

... ax.set_ylim((0,45))

... ax.set_xticklabels(['Redundant','Subfunctionalized',

... 'Redundant members\nof Specialized',

... 'Mildly \nSpecialized',

... 'Strongly \nSpecialized'])

...

...

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... plt.xticks(rotation=15)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_fates.pdf')

194

Genes by domain loss

Here we plot genes split based on how many domains of expression were lost
in comparison to an amphioxus orthologue. This was computed by our col-
laborators so we just load the gene lists:

>>> fate_dict_zebra = dict(

... pd.read_csv("/Thesis_shallow/data/gene_fates/Spec_genes_byLost-Dre-v3.txt.gz",

... sep='\t',header=None).set_index(0)[1])

... dd_dre['fate'] = dd_dre.index.to_series().map(fate_dict_zebra)

... NTP = pd.melt(dd_dre, id_vars=['category','fate','species'])

... NTP.columns = ['category','fate','species','stage','count']

... NTP['specstage'] = NTP.species + '_' + NTP.stage

>>> NTP.loc[NTP['fate']>=5,['fate']] = '>=5'

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.1, bottom=.1, right=.99, top=.99)

... _ = sns.boxplot(data=NTP[NTP.stage=='48h'].dropna(),

... y="count",

... x="fate",

... fliersize=0,

... order=[0,1,2,3,4,'>=5'],

... palette=sns.color_palette("Blues", 10)

...)

... ax.set_ylim((0,45))

195

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_domlost.pdf')

196

Data loading and handling

>>> # This is a dictionary containing dataframes with the GREAT regions of

... # each species

... greg = gr_great

... #how many genes in each species:

... print([(k,len(v)) for k,v in greg.items()])

[('Dre', 20053), ('Bla', 20569), ('Ola', 15978), ('Mmu', 18842)]

for each species we have a dataframe
in there, each gene is assigned a genomic region
for GREAT regions those might overlap
Using this in the later steps we will count the number of ATACseq peaks in
the region of each gene

>>> # busywork

... stages = {}

... stages['Bla'] = ['8','15','36','60']

... stages['Dre'] = ["dome","shield","80epi","8som","24h","48h"]

... stages['Ola'] = ["dome","shield","8som","24h","48h"]

... stages['Mmu'] = ['DE','ESC']

>>> #load the ATACseq peaks

... peak_beds = {}

... peak_beds['Dre'] = [(BT(zebra_idr(x))

... .sort()

...)for x in stages['Dre']]

... peak_beds['Bla'] = [(BT(amphi_idr(x))

... .sort()

...) for x in stages['Bla']]

>>> stagespecorder = ['bla_8','bla_15','bla_36','bla_60',' ',

... 'dre_dome','dre_shield','dre_80epi','dre_8som',

... 'dre_24h','dre_48h'

...]

>>> bedfields = ['chrom','start','end','name','score','strand']

... big = {}

... big['Dre'] = BT().from_dataframe(greg['Dre']).sort()

... for bee in peak_beds['Dre']:

... big['Dre'] = big['Dre'].intersect(b = bee,

... c=True, sorted=True, nonamecheck=True)

... big['Dre'] = big['Dre'].to_dataframe()

... big['Dre'].columns = bedfields + stages['Dre']

... # the other species:

... big['Bla'] = BT().from_dataframe(greg['Bla']).sort()

... for bee in peak_beds['Bla']:

... big['Bla'] = big['Bla'].intersect(b = bee,

... c=True, sorted=True, nonamecheck=True)

... big['Bla'] = big['Bla'].to_dataframe()

197

... big['Bla'].columns = bedfields + stages['Bla']

>>> # These dataframe now have

... big['Dre'].sample(3)

chrom start end name score strand dome \

11503 chr23 14173274 14336427 ENSDARG00000061445 163153 - 7

15364 chr5 11443577 11529953 ENSDARG00000053019 86376 - 6

12326 chr24 23870711 23914384 ENSDARG00000057789 43673 - 3

shield 80epi 8som 24h 48h

11503 14 19 10 13 13

15364 5 8 9 8 4

12326 1 3 1 2 5

>>> buz = pd.melt(big['Dre'][['score'] + stages['Dre']],

... id_vars=['score'])

... buz['species'] = 'dre'

...

... biz = pd.melt(big['Bla'][['score'] + stages['Bla']],

... id_vars=['score'])

... biz['species'] = 'bla'

...

... buz['score'] = buz['score'].apply(lambda x: int(x/10000))

... biz['score'] = biz['score'].apply(lambda x: int(x/10000))

...

... comb = pd.concat([biz,buz])

... comb.head()

score variable value species

0 16 8 6 bla

1 34 8 11 bla

2 21 8 6 bla

3 8 8 4 bla

4 11 8 8 bla

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.09, bottom=.15, right=.99, top=.98)

...

... sns.boxplot(data=comb[comb['score']<=15],

... x='score',hue='species',y='value',

... fliersize=0,

... palette=sns.color_palette("colorblind", 8))

...

... plt.ylim((0,30))

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('GREAT region size (10Kb)')

198

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_stratified1.pdf')

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.09, bottom=.15, right=.99, top=.98)

...

... sns.boxplot(data=comb[(comb['score']>15) & (comb['score']<=30)],

... x='score',hue='species',y='value',

... fliersize=0,

... palette=sns.color_palette("colorblind", 8))

...

... plt.ylim((0,60))

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('GREAT region size (10Kb)')

... plt.legend(loc='upper left')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_stratified2.pdf')

199

>>> gr_interg = {}

... gr_interg['Dre'] = pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Dre.tsv.gz",

... sep='\t', header=None)

... gr_interg['Dre'].columns = ['chrom','start','end',

... 'geneID1','geneID2']

... gr_interg['Dre']['score'] = (gr_interg['Dre']['end']

... - gr_interg['Dre']['start'])

... gr_interg['Bla'] = pd.read_csv("/Thesis_shallow/data/genomic_regions/intergenics_Bla.tsv.gz",

... sep='\t', header=None)

... gr_interg['Bla'].columns = ['chrom','start','end',

... 'geneID1','geneID2']

... gr_interg['Bla']['score'] = (gr_interg['Bla']['end']

... - gr_interg['Bla']['start'])

>>> greg = gr_interg.copy()

... bedfields = ['chrom','start','end','name','score','strand']

... big = {}

... big['Dre'] = BT().from_dataframe(greg['Dre']).sort()

... for bee in peak_beds['Dre']:

... big['Dre'] = big['Dre'].intersect(b = bee,

... c=True, sorted=True, nonamecheck=True)

... big['Dre'] = big['Dre'].to_dataframe()

... big['Dre'].columns = ['c','st','e','id1','id2','score'] + stages['Dre']

... # the other species:

... big['Bla'] = BT().from_dataframe(greg['Bla']).sort()

... for bee in peak_beds['Bla']:

... big['Bla'] = big['Bla'].intersect(b = bee,

... c=True, sorted=True, nonamecheck=True)

... big['Bla'] = big['Bla'].to_dataframe()

... big['Bla'].columns = ['c','st','e','id1','id2','score'] + stages['Bla']

>>> buz = pd.melt(big['Dre'][['score'] + stages['Dre']], id_vars=['score'])

... buz['species'] = 'dre'

200

...

... biz = pd.melt(big['Bla'][['score'] + stages['Bla']], id_vars=['score'])

... biz['species'] = 'bla'

...

... buz['score'] = buz['score'].apply(lambda x: int(x/10000))

... biz['score'] = biz['score'].apply(lambda x: int(x/10000))

...

... comb = pd.concat([biz,buz])

... # comb['score'] = comb['score'].clip(upper=19)

... comb.head()

score variable value species

0 28 8 5 bla

1 5 8 4 bla

2 1 8 1 bla

3 10 8 5 bla

4 2 8 3 bla

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.09, bottom=.15, right=.99, top=.98)

...

... sns.boxplot(data=comb[comb.score<=19],

... x='score',hue='species',

... y='value',

... fliersize=0,

... palette=sns.color_palette("colorblind", 8))

...

... plt.ylim((0,50))

... ax.set_ylabel('CRE count in Intergenic regions')

... ax.set_xlabel('Intergenic region size (10Kb)')

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_stratified_intergenics.pdf')

201

202

Downsampling

In this analysis, we have called peaks (macs2 in each replicate, then idr peaks
on the results of the macs2 peaks) in all stages, with increasingly lower number
of reads.

For example, the file in

data/atac_peaks/downsampling/zebra_danRer10_8som_15600000_idr01Peaks.bed.gz

is idr atac peaks called with 15600000 reads (in each replicate) of the reads
from the 8somite zebrafish experiments which means that its coverage
(15600000/avail_genome[’zebra’]) is 0.89 (we’ll call it 90%) of the amphioxus
coverage (9200000/ avail_genome[’amphi’])

The number of reads was chosen so as to have 100%, 90%, 80% etc of the am-
phioxus number.

The question is, do we still have more peaks in the vertebrates with worse (less
reads) experiments?

>>> # assign genomic regions to the genes

... greg = gr_great

...

... print([(k,len(v)) for k,v in greg.items()])

[('Dre', 20053), ('Bla', 20569), ('Ola', 15978), ('Mmu', 18842)]

>>> stages = {}

... stages['Bla'] = ['15']

... stages['Dre'] = ["8som"]

... stages['Ola'] = ["8som"]

>>> # some hardcoded numbers

... df = pd.DataFrame([['zebra', 1371719383, 1369631918, 756790655, 756666441,

... 0.5517095292076951, 0.0015217872006989541, 612841263, 653072511],

... ['amphi', 495353434, 474881800, 152452412, 152231682,

... 0.3077649240642995, 0.041327328317259604, 322429388, 347547588],

... ['medaka', 869000216, 700386597, 23221380, 23181494,

... 0.026721949629526905, 0.19403173427979903, 677165217, 846778620]])

... df.columns = ['species','genome','genome_notN','repMask','repnotN',

... '% genome in repM','% genome is N','effective','previous_effective']

>>> df

species genome genome_notN repMask repnotN % genome in repM \

0 zebra 1371719383 1369631918 756790655 756666441 0.551710

1 amphi 495353434 474881800 152452412 152231682 0.307765

2 medaka 869000216 700386597 23221380 23181494 0.026722

203

% genome is N effective previous_effective

0 0.001522 612841263 653072511

1 0.041327 322429388 347547588

2 0.194032 677165217 846778620

We will normalize the number of reads based on the amount of available
genome in each species.
That is the total genome minus the regions covered by the repeat masker.

Unintuitively, medaka ends up with more available genome that zebrafish be-
cause of the very large number of blacklisted regions in zebrafish.

>>> avail_genome = dict(df[['species','effective']].to_records(index=False))

... avail_genome

{'zebra': 612841263, 'amphi': 322429388, 'medaka': 677165217}

This is how many reads the bla sample has. It was much easier to hard code
this number than to count in this notebook:

>>> # We calculate coverage as the

... # #ofReads per kilobase of available genome:

... Bla_coverage = 9200000*1000/ avail_genome['amphi']

... # the percentages are not exactly 70 or 80 etc,

... #so we will force-smooth them

... # a tiny bit to make the graphs better.

... fixcols =[1,10,20,30,40,50,60,70,80,90,100]

We have the downsample series in the data subfolder, so lets load them up:

>>> greg_ = BT().from_dataframe(greg['Dre']).sort()

... pre_cols = ['chrom','start','end','gene','width','strand']

... cols = []

...

... for thing in glob(

... "../data/atac_peaks/downsampling/zebra_danRer10_8som_*_idr01Peaks.bed.gz"):

... reads = int(re.findall(r"[0-9]+", thing)[2])

...

... # The coverage in this experiment:

... cov = reads*1000/avail_genome['zebra']

... # The coverage in relation to the Bla one

... cov = round(cov*100 / Bla_coverage,2)

... cov = int(round(cov))

... cols.append(cov)

... greg_ = greg_.intersect(b=BT(thing), nonamecheck=True, c=True)

...

... counts_Dre = greg_.to_dataframe(names=pre_cols+cols)

... counts_Dre = counts_Dre[pre_cols+ sorted(cols)]

... counts_Dre.columns = pre_cols + fixcols

... dre_melt = pd.melt(counts_Dre[['gene']+fixcols], id_vars='gene')

... dre_melt.columns = ['gene','pc','count']

204

Same for medaka:

>>> greg_ = BT().from_dataframe(greg['Ola']).sort()

... pre_cols = ['chrom','start','end','gene','width','strand']

... cols = []

...

... for thing in glob(

... "../data/atac_peaks/downsampling/medaka_8som_*_idr01Peaks.bed.gz"):

... reads = int(re.findall(r"[0-9]+", thing)[1])

...

... cov = reads*1000/avail_genome['medaka']

... cov = round(cov*100 / Bla_coverage,2)

... cov = int(round(cov))

...

... cols.append(cov)

... greg_ = greg_.intersect(b=BT(thing), nonamecheck=True, c=True)

...

... counts_Ola = greg_.to_dataframe(names=pre_cols+cols)

... counts_Ola = counts_Ola[pre_cols+ sorted(cols)]

... counts_Ola.columns = pre_cols + fixcols

... ola_melt = pd.melt(counts_Ola[['gene']+fixcols], id_vars='gene')

... ola_melt.columns = ['gene','pc','count']

For amphioxus we’ll only load two stages, the full non-downsampled one
(101%) and the very minimally downsampled one (100%), which has only been
downsampled so that the two replicates have the same number of reads.

>>> org = "bla"

... stage='15'

...

... full_peaks = '../data/atac_peaks/amphi_15_idrpeaks.bed.gz'

... sub_peaks = '../data/atac_peaks/downsampling/amphi_15_9200000_idr01Peaks.bed.gz'

...

...

... greg_ = BT().from_dataframe(greg['Bla']).sort()

... cols = ['chrom','start','end','gene','width','strand']

...

... greg_ = greg_.intersect(b=BT(full_peaks), nonamecheck=True, c=True)

... greg_ = greg_.intersect(b=BT(sub_peaks), nonamecheck=True, c=True)

...

... counts_Bla = greg_.to_dataframe(names=cols + [101,100])

...

... bla_melt = pd.melt(counts_Bla[['gene',101,100]], id_vars='gene')

... bla_melt.columns = ['gene','pc','count']

>>> bla_melt['species'] = 'bla'

... ola_melt['species'] = 'ola'

... dre_melt['species'] = 'dre'

>>> bla_melt.head(2)

gene pc count species

0 BL09450 101 10 bla

205

1 BL10006 101 17 bla

>>> toplot = pd.concat([dre_melt, ola_melt, bla_melt])

... toplot.sample(5)

gene pc count species

89254 ENSORLG00000016834 50 4 ola

201554 ENSDARG00000040338 100 0 dre

156282 ENSDARG00000092285 70 7 dre

34690 ENSDARG00000007405 10 0 dre

9704 ENSORLG00000002351 1 0 ola

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.10, bottom=.08, right=.85, top=.98)

...

... # ax.set_title('ATACseq peak numbers overview')

... sns.boxplot(

... data=toplot,

...

... x = 'species',

... order= ['bla','dre','ola'],

... hue='pc',

... hue_order=[101,100,90,80,70,60,50,40,30,20,10,0],

...

... fliersize=0,

... y='count',

... palette='Blues_r'

...)

... # ax.set_xlim(0, 3*np.pi)

... ax.set_ylim((0,25))

... # plt.legend(loc='upper left')

...

... # for label in ax.get_xticklabels():

... # label.set_rotation(45)

...

... plt.legend(loc='upper left')

... #>>> Name your Axes

... ax.set_ylabel('CREs in gene GREAT')

... ax.set_xlabel('')

... # ax.yaxis.tick_right()

... # ax.yaxis.set_label_position("right")

... plt.legend(bbox_to_anchor=(1.0, 1),)

...

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_downsampling.pdf')

206

Let’s calculate some PValues:

>>> lot = []

... blavals = (toplot

... .loc[(toplot.species=='bla') & (toplot.pc==101),'count'].values)

... blavals_sub = (toplot

... .loc[(toplot.species=='bla') & (toplot.pc==100),'count'].values)

...

... for gn,g in toplot.groupby(['species','pc']):

... species,pc = gn

... if species=='bla':

... continue

... pv = MWU(g['count'].values , blavals,

... alternative='greater').pvalue

... pv_sub = MWU(g['count'].values , blavals_sub,

... alternative='greater').pvalue

...

... lot.append([species, pc, pv_sub,pv])

...

...

... df = pd.DataFrame(lot)

... df.columns = ['species','% of reads','pVal to downsampled Amphi',

... 'pVal to full Amphi']

... df.sample(3)

species % of reads pVal to downsampled Amphi pVal to full Amphi

4 dre 40 3.859252e-283 1.817653e-94

17 ola 60 0.000000e+00 0.000000e+00

7 dre 70 0.000000e+00 3.523587e-268

207

Comparison of motif similarity at embryonic stages.

We wanted to investigate if the two species display similarities in their cis-
regulatory content. As a first step, we will assess the similarity of develop-
mental stages in the two species based on what TFs are important in them.
This notebook contains a few supplementary plots regarding the data and sta-
tistical manipulations we apply.

For each experiment (stage), we look into the atac peaks and get counts of
"motifs" (PWM significant hits) for a large database of factors. We can then
compare two stages based on those counts. We can for example calculate the
correlation between stages and thus, we created a heatmap of correlation for
the developmental stages of the two species.

We counted motifs (PWMs) in dynamic ATAC peaks of our various develop-
mental stages. We divided each motif’s count by the total hits of the motif in
all stages and then scaled the values in each stage.

Preparation

Motif families

We have a large set of Position Weight Matrices, which we group together by
their protein e.g. AP-2_Average_15 and AP-2_Average_17 are different posi-
tion weight matrices, but both assigned to the ’Tfap2e’ transcription factor so
we will consider all instances of these two PWMs as instances of Tfap2e.

Another example, are ARID_BRIGHT_RFX_Average_2,ARID_BRIGHT_RFX_Average_3
and ARID_BRIGHT_RFX_M4343_1.02 :
These 3 PWMs all are assigned to the TFs "Rfx1;Rfx2;Rfx4;Rfx7" so we will
consider all instances of those 3 PWMs
to be instances of a "Rfx1;Rfx2;Rfx4;Rfx7" protein family.

To accomplish this, we will make a dictionary that maps PWMs to Protein
family names :

The mapped motifs:

>>> dan_motif_bed = BT("/myphdthesis/data/PWM/danre_pwm_hits.bed.gz")

... bla_motif_bed = BT("/myphdthesis/data/PWM/bralan_pwm_hits.bed.gz")

... bla_motif_bed.head(2)

208

Sc0000000 5593 5598 Homeodomain_Average_626 6.60757208173 +

Sc0000000 5695 5707 C2H2_ZF_Average_154 10.8804149236 +

The ATACseq peaks

We have compiled a set of peaks that turn ON or OFF in a reasonable pattern
during development, and called these peaks ’dynamic’.

Per stage we will only consider these dynamic peaks.

We load them in pyBedTool objects, BT().

We load the stages from each stage, and keep the ones that have been marked
as logicaldynamic

ATAC dynamic peaks

ATACseq peak calling is performed individually in each experiment (devel-
opmental stage). Some regions will be open in more than one stage, but due
to the nature of the experiments, or because these open regions open slightly
more or slightly less in different stages/tissues/cells, we cannot expect these
regions to be called with perfectly accurate edges. In order then to track peaks
from one stage to another, we considered peaks from different stages to be the
"same peak" if they overlap. I.e., if we call a peak in stage 0, from base 10 to
base 23 and then another peak in stage 1 from base 5 to base 21, we would
consider these two peaks to be the same peak, having remained open for the
two stages.

stage 0

chrX 10 23

stage 1

chrX 5 21

chrX 50 55

We merged the peaks from all experiments to obtain a set of all regions we
could consider a peak I.e., the two previously mentioned example peaks
would be merged into one:

merged peaks

chrX 5 23

chrX 50 55

We then consider each of those peaks as active or not active in the various
stages depending on whether or not it overlaps with a peak from the stage.

209

merged peaks

chrX 5 23 <--- is active in both stages

chrX 50 55 <--- is only active in stage 1

If we mark the activity of a peak with zeros and ones, we can summarize its
activity. The "chrX 5 23" peak from our example would have "11" activity, and
the other peak would have "01" activity. I.e., we have six developmental stages
for zebrafish, so if a peak "turns on" in the third stage and then off again in the
sixth stage, it would have activity: "001110".

We considered a subset of peaks as "logically dynamic" if they had one of the
following activity profiles:

'000011', '000110', '001100', '011000', '110000',

'000111', '001110', '011100', '111000',

'001111', '011110', '111100',

'011111', '111110'

Peaks with only one active stage we considered "stage specific", and peaks that
we always active were considered "constitutive".

>>> # some helper functions to get the dynamic peaks per stage

... a_dynamic = BT(

... "/myphdthesis/data/atac_peaks/amphi_logicaldynamic_idr.bed.gz")

... def bla_stagepeaks(stage):

... sd = BT(amphi_idr(stage))

... sd = sd.intersect(a_dynamic,u=True, nonamecheck=True)

... return sd.sort()

...

... z_dynamic = BT(

... "/myphdthesis/data/atac_peaks/zebra_danRer10_logicaldynamic_idr.bed.gz")

... def dan_stagepeaks(stage):

... sd = BT(zebra_idr(stage))

... sd = sd.intersect(z_dynamic,u=True, nonamecheck=True)

... return sd.sort()

...

... amphi_stages = ['8','15','36','60','hep']

... zebra_stages = ['dome','shield','80epi','8som','24h','48h']

...

... bla_peaks = [bla_stagepeaks(stage) for stage in amphi_stages]

... dan_peaks = [dan_stagepeaks(stage) for stage in zebra_stages]

>>> dan_peaks = [BT().from_dataframe(x.to_dataframe().iloc[:,:3])

... for x in dan_peaks]

... bla_peaks = [BT().from_dataframe(x.to_dataframe().iloc[:,:3])

... for x in bla_peaks]

... bla_peaks[0].head(3)

Sc0000000 311943 312518

Sc0000000 319117 319493

Sc0000000 356649 356918

210

>>> TFids = sorted(set(SFDu.values()))

>>> # Here we get a dictionary, mapping the TF unique numbers to a total

... # count per organism

... # We will use this to normalize later on

... _temp = (BT(zebra_idr('merged'))

... .sort()

... .intersect(dan_motif_bed, loj=True, sorted=True,

... nonamecheck=True)

... .to_dataframe())

...

... # we then map the SFDu dictionary on the column carrying the PWM names,

... # drop empty rows,and get a count (with Counter, a handy python extension

... # of dictionaries) of each unique ID

... dan_totals = Counter(_temp['thickStart'].map(SFDu).dropna().astype(int))

...

... _temp = (BT(amphi_idr('merged'))

... .sort()

... .intersect(bla_motif_bed, loj=True, sorted=True, nonamecheck=True)

... .to_dataframe())

... bla_totals = Counter(_temp['thickStart'].map(SFDu).dropna().astype(int))

...

... # we cast the total counts in a list with a proper orger:

... dan_normalizer = [dan_totals.get(x,1) for x in TFids]

... bla_normalizer = [bla_totals.get(x,1) for x in TFids]

>>> # the resulting DataFrame after the LOJ operation.

... # for each ATAC peak,we get all its intersections with PWMs

... _temp.head(2)

chrom start end name score strand thickStart \

0 Sc0000000 5589 5975 Sc0000000 5593 5598 Homeodomain_Average_626

1 Sc0000000 5589 5975 Sc0000000 5695 5707 C2H2_ZF_Average_154

thickEnd itemRgb

0 6.607572 +

1 10.880415 +

>>> #dan_totals is a dictionary mapping the uniqueIds of PWMs to counts

... list(dan_totals.items())[:3]

[(0, 3653), (1, 16725), (2, 1848)]

>>> # The "normalizer" lists are derived from the dictionaries and are in

... # order of "TFids"

... bla_normalizer[:3]

[1188, 3585, 930]

211

Mapping the motifs to peaks:

We did this already to get the normalization counts, now we will do it with
the stage dynamic peaks

>>> # Here we make a dataframe per stage per organism

... # Each DataFrame corresponds to one stage and maps motifs to the

... # peaks that were active on

... # that stage. We use the LEFT OUTER JOIN function of bedtools to

... # join motifs to peaks:

... bla_lojs = [(stage

... .sort()

... .intersect(bla_motif_bed, sorted=True, loj=True,

... nonamecheck=True)

... .to_dataframe()) for stage in bla_peaks]

... dan_lojs = [(stage

... .sort()

... .intersect(dan_motif_bed, sorted=True, loj=True,

... nonamecheck=True)

... .to_dataframe()) for stage in dan_peaks]

>>> # For example, the DF for the first stage of amphioxus:

... bla_lojs[0].head(2)

chrom start end name score strand \

0 Sc0000000 311943 312518 Sc0000000 311942 311946

1 Sc0000000 311943 312518 Sc0000000 312028 312035

thickStart thickEnd itemRgb

0 C2H2_ZF_Average_177 5.460094 +

1 Grainyhead_M6529_1.02 7.510921 +

>>> # Finally, we make a DF with counts for each TF in each stage:

... # These are the counts in the dynamic peaks

... ddf = pd.DataFrame(TFids)

... ddf.columns = ['fam']

...

... for en,stage in enumerate(zebra_stages):

... ddf[stage] = (ddf['fam']

... .map(Counter(dan_lojs[en]['thickStart']

... .dropna()

... .map(SFDu)

... .dropna()

... .astype(int))))

...

... ddf.set_index('fam', inplace=True, drop=True)

...

... ddf = ddf.T.fillna(1)

... ddf.iloc[:,:4]

fam 0 1 2 3

212

dome 161 729 74 389

shield 409 1931 165 1014

80epi 638 2991 228 1657

8som 756 3693 298 2357

24h 785 3911 333 2504

48h 672 3333 335 2185

>>> # And the same for amphioxus

... bdf = pd.DataFrame(TFids)

... bdf.columns = ['fam']

... for en,stage in enumerate(amphi_stages):

... bdf[stage] = (bdf['fam']

... .map(Counter(bla_lojs[en]['thickStart']

... .dropna()

... .map(SFDu)

... .dropna()

... .astype(int))))

...

... bdf.set_index('fam', inplace=True, drop=True)

...

... bdf = bdf.T.fillna(1)

... bdf.iloc[:,:4]

fam 0 1 2 3

8 73 257 50 251

15 196 618 172 707

36 219 652 177 942

60 236 761 217 1155

hep 212 608 144 998

>>> # we divide the count in each stage by the total count

... bdf = bdf/bla_normalizer

... ddf = ddf/dan_normalizer

... bdf.iloc[:,:4]

fam 0 1 2 3

8 0.061448 0.071688 0.053763 0.052129

15 0.164983 0.172385 0.184946 0.146833

36 0.184343 0.181869 0.190323 0.195639

60 0.198653 0.212273 0.233333 0.239875

hep 0.178451 0.169596 0.154839 0.207269

>>> # At this point, some TFs have 0 counts, so lets clean them out:

... btodrop = set(bdf.T[bdf.sum() ==0].index.values)

... dtodrop = set(ddf.T[ddf.sum() ==0].index.values)

...

... todrop = btodrop.union(dtodrop)

...

213

... bdf = bdf.drop(todrop, axis=1)

... ddf = ddf.drop(todrop, axis=1)

>>> # the distributions of the various stages at this point:

... for irow,row in ddf.iterrows():

... sns.kdeplot(row)

>>> # let's scale the counts in order to make stages comparable

... ddf.loc[:,:] = preprocessing.scale(ddf.values, axis=1)

... bdf.loc[:,:] = preprocessing.scale(bdf.values, axis=1)

>>> # the distributions after scaling:

... for irow,row in ddf.iterrows():

... sns.kdeplot(row)

214

The final table:

In the end, we have a scaled count per motif for each organism-stage. For
example the first 5 TF scaled counts in zebrafish-shield look like this:

>>> ddf.loc['shield',:].head(3)

fam

0 1.143067

1 1.350141

2 -0.201232

Name: shield, dtype: float64

We can then get a corellation between any two cases

>>> scaled_counts_in_zebra_shield = ddf.loc['shield',:]

... scaled_counts_in_amphi_hep = bdf.loc['hep',:]

... # The first value is the pearson metric and the second is

... # the metric's pvalue,how certain we are for the metric.

... pearsonr(scaled_counts_in_zebra_shield.values,

... scaled_counts_in_amphi_hep.values)

(-0.18212360335862862, 0.004478666595009111)

215

>>> # We can make a table with pair-wise correlations for all stages

... TABLE = pd.DataFrame()

... for dstage in zebra_stages:

... for bstage in amphi_stages:

... TABLE.loc[dstage, bstage] = pearsonr(

... ddf.loc[dstage].values,bdf.loc[bstage].values)[0]

... TABLE

8 15 36 60 hep

dome 0.472447 0.413344 -0.020947 -0.233493 -0.217931

shield 0.427724 0.620226 0.304749 -0.079934 -0.182124

80epi 0.248738 0.577668 0.509119 0.113895 -0.064038

8som -0.016492 0.297138 0.525042 0.289232 0.156917

24h -0.091795 0.182115 0.427101 0.263281 0.264657

48h -0.225320 0.018198 0.359862 0.292274 0.196003

>>> # We can make a table with pair-wise correlations for all stages

... TABLE_pvals = pd.DataFrame()

... for dstage in zebra_stages:

... for bstage in amphi_stages:

... TABLE_pvals.loc[dstage, bstage] = pearsonr(

... ddf.loc[dstage].values,bdf.loc[bstage].values)[1]

... TABLE_pvals

8 15 36 60 hep

dome 7.373361e-15 2.101586e-11 7.457777e-01 0.000248 0.000641

shield 3.487620e-12 4.056149e-27 1.354005e-06 0.215337 0.004479

80epi 9.188728e-05 6.117028e-23 2.309811e-17 0.076998 0.321167

8som 7.985353e-01 2.536864e-06 1.510216e-18 0.000005 0.014542

24h 1.545583e-01 4.480531e-03 3.776619e-12 0.000034 0.000030

48h 4.115778e-04 7.782047e-01 8.243826e-09 0.000004 0.002191

We can visualize the table in a heatmap:

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth*(9/16.)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.15, right=1, top=.92)

...

... # ax.set_title('ATACseq peak numbers overview')

... sns.heatmap(TABLE,

... annot=False,

... cmap="RdBu_r",

... vmax=0.66, vmin=-0.66,

... ax=ax

...)

... ax.set_title("cis-content correlation")

... #>>> Name your Axes

... ax.set_ylabel('zebrafish dev. stages')

216

... ax.set_xlabel('amphioxus dev. stages')

... # ax.yaxis.tick_right()

... # ax.yaxis.set_label_position("right")

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_phyloheat.pdf')

Or we can plot the minimum distance per amphioxus stage, to show the hour-
glass behaviour

>>> x = [0, 1, 2, 3, 4]

... labels = ['8h','15h','36h','60h','hepatic']

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = Fwidth/3

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.075, bottom=.17, right=0.99,

... top=.97)

...

... # ax.set_title('ATACseq peak numbers overview')

... ax.plot(TABLE.max().values, linewidth=2)

... ax.set_xticks(x)

... ax.set_xticklabels(labels)

... ax.tick_params(direction ='out',

... length=10, width=1, colors='black')

... ax.invert_yaxis()

...

... # ax.set_title("cis-content correlation")

... #>>> Name your Axes

... # ax.set_ylabel('zebrafish dev. stages')

... # ax.set_xlabel('amphioxus dev. stages')

... # ax.yaxis.tick_right()

217

... # ax.yaxis.set_label_position("right")

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_phyloline.pdf')

218

Gene modules comparisons

Weighted Gene Correlation Network Analysis (WGCNA)

Some more details can be found in our work [1], briefly:

To obtain modules of coexpressed genes across developmental stages and adult tissues,
we used WGCNA . We selected 17 amphioxus and 27 zebrafish samples, including
replicates of adult tissues when possible. Of 20,569 amphioxus and 20,082 zebrafish
genes that had an ortholog in at least one other species used for gene family con-
struction, 16,421 and 18,285 genes, respectively, had enough variance (CV ≥ 1), to
be considered for further analysis. WGCNA was run with default parameters (soft-
Power settings 9 in amphioxus and 7 in zebrafish; with unsigned networks), resulting
in 25 and 23 modules in amphioxus and zebrafish, respectively. Genes in each clus-
ter were assigned positive or negative correlation status. Each cluster was assigned
a tissue affinity and/or functional category based on its overall gene expression and
GO enrichment profiles (Supplementary File 1). Next, to assess the statistical signif-
icance of homolog overlap between each pair of clusters from each species, we counted
the number of overlapping homologous groups (i.e. paralogs within a gene family
were not counted multiple times), and performed a hypergeometric test taking as back-
ground only the number of homologous groups with members in both amphioxus and
zebrafish.

1. Marlétaz, F., Firbas, P. N., Maeso, I., Tena, J. J., Bogdanovic, O.,
Perry, M., . . . Irimia, M. (2018). Amphioxus functional genomics and
the origins of vertebrate gene regulation. Nature, 564(7734), 64–70.
https://doi.org/10.1038/s41586-018-0734-6

2. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted corre-
lation network analysis. BMC Bioinformatics 9, 559 (2008).

What we will do

•

Assignment of genes to modules (WGCNA / MFUZZ)

We use WGCNA to cluster genes by their RNA activity in various TRNAseq
experiments, both in developmental stages and pure tissue samples. This anal-
ysis assigns each gene in a single cluster. These clusters have names like "blue".
"green" etc.We manually explore the clusters, and by determining at which ex-
periment the genes of the cluster seem to be differentially expressed (but also

219

by GO analysis on each cluster), we assign more meaningful names to the clus-
ters , like "liver", "muscle" etc. The translating dictionaries are in this notebook.

•

Grouping of genes into homology-families

•

Assignment of genome regions to genes

We assign a BASAL region to each gene, it starts from its TSS and extends
5kb upstream and 1kb downstream, or untill it encounters another TSS.

•

cis-regulatory level comparisons

We scan the genome for a large set of motifs (see relevant notebook) and
extract the motifs that are found inside each gene’s basal region. By sum-
ming the counts in each module, we have counts of motifs per module.
Now we can compair modules on cis-regulatory level

>>> ### translate the uninformative color names to manually made

... #informative names for each module

... ### Cleaner versions of these dictionaries at the

... #bottom of the notebook

... transA = {'black' : '32 cells','blue' : 'N.tube(neurotrans.)',

... 'brown' : 'Gills','cyan' : 'N.tube(neurogen.)',

... 'darkmagenta' : 'Ovary/ Testis(translation)',

... 'darkorange' : 'Cilium','darkred' : 'Muscle',

... 'darkseagreen4' : '8-36hpf embryo/ Skin/ Cirri(memb. synt.)',

... 'darkslateblue' : '8hpf embryo(transcription, spliceosome)',

... 'darkturquoise' : '36hpf embryo',

... 'green' : 'Eggs/ 32 cells(cell cycle)',

... 'greenyellow' : 'Hepatic(lipid catabolism)',

... 'lavenderblush3' : 'Cirri / PreMet. / Muscle - actomyosin',

... 'lightpink4' : '15hpf embryo','magenta' : 'Skin',

... 'navajowhite2' : 'Immune','palevioletred3' : 'Ovary/ Eggs',

... 'pink' : 'Gut','plum1' : 'Gut/ Hepatic','plum2' : 'Proteasome',

... 'red' : 'PreMet.larvae','salmon' : 'Cirri(memb. synt.)',

... 'sienna3' : 'Hepatic','thistle2' : 'Gills/ PreMet larvae',

... 'turquoise' : 'Mitochondrion'}

... transZ = {'bisque4' : "larvae 7d melanin",'black' : "Ovary/ Sperm",

... 'blue' : "Brain",

... 'brown' : "Cilium",

... 'brown4' : "Liver(carboxi.met.)", #/ lipid trans

... 'coral2' : "Mitochondrion",

... 'darkgreen' : "Intestine",

220

... 'darkgrey' : "RNA,ribosome,proteasome",

... 'darkmagenta' : "Translation,ribosome,RNA bin.",

... 'darkorange' : "Muscle",

... 'darkred' : "Liver(oxi-red.proc.", #/ hemostasis)

... 'darkseagreen4' : "12-26hpf embryo/ Skin",

... 'darkslateblue' : "Immune",

... 'green' : "Spliceosome",

... 'honeydew1' : "12-26hpf embryo",

... 'ivory' : "Eye",

... 'lightcyan' : "Heart",'lightgreen' : "Pancreas/ Testis",

... 'magenta' : "Gills",'pink' : "Skin",

... 'salmon' : "20-26hpf embryo",'yellow4' : "Kidney",

... 'yellowgreen' : "Gills/ Skin"}

Preprocessing:

>>> # Here we load the mapping of genes to modules from csv

... # into dictionaries:

... dan_cl = pd.read_csv(

... "/Thesis_shallow/data/wgcna_results/wgcna_dre_modulekey.tab.gz", sep='\t')

... dan_cl.columns = ['geneID','clusterID','updown']

... dan_cl_d = dict(dan_cl[['geneID','clusterID']].to_records(index=False))

... bla_cl = pd.read_csv(

... "/Thesis_shallow/data/wgcna_results/wgcna_bla_modulekey.tab.gz", sep='\t')

... bla_cl.columns = ['geneID','clusterID','updown']

... bla_cl_d = dict(bla_cl[['geneID','clusterID']].to_records(index=False))

>>> buz = pd.DataFrame(bla_cl.clusterID.value_counts())

... buz["alt name"] = [transA[x] for x in buz.index.values]

>>> buz.head(3)

clusterID alt name

green 1672 Eggs/ 32 cells(cell cycle)

turquoise 1287 Mitochondrion

greenyellow 1273 Hepatic(lipid catabolism)

>>> bla_cl.clusterID.value_counts().head()

green 1672

turquoise 1287

greenyellow 1273

darkmagenta 1168

blue 1105

Name: clusterID, dtype: int64

221

>>> # we load the gene family bindings into a dictionary where

... # key = geneID

... # value = unique gene family number (some integer)

... gfams = genefams

... gfamsC = genefamsC

...

... gfamsD = {}

... for rowi, row in gfams.iterrows():

... for species in ['Bla','Dre']:

... thing = row[species]

... if thing ==thing:

... for gene in thing:

... gfamsD[gene] = int(rowi)

>>> # fam_of maps all genes to their gene family ID

... fam_of = {}

... for rowi,row in gfams[['Bla']].dropna().iterrows():

... thing = row.Bla

... if thing ==thing:

... for gene in thing:

... fam_of[gene]= rowi

... for rowi,row in gfams[['Dre']].dropna().iterrows():

... for gene in row.Dre:

... fam_of[gene]= rowi

>>> # We compute the upper tail of the hypergeometric distribution

... # (survival function) for each pair of modules as a metric of enrichment

... fon = []

... gimme_fams = lambda g: [fam_of.get(x) for x in g.geneID.tolist()]

... # Population size:

... gene_POP = len(gfams)

... PVS = pd.DataFrame()

... # for each module in zebra

... for gn,g in dan_cl.groupby('clusterID'):

... # for each module in amphioxus:

... for bgn,bg in bla_cl.groupby('clusterID'):

...

... fams = set(gimme_fams(g))

... bfams = set(gimme_fams(bg))

...

... gene_SS = len(fams) # Sample Size

... gene_SIP = len(bfams) # Success in Population

... gene_SIS = len(bfams.intersection(fams)) # success in sample

...

... if gene_SIS>0:

... #statf is the survival function of the hypergeom. distribution

... fish = statf(gene_SIS-1, gene_POP, gene_SS, gene_SIP)

... fon.append((gene_SIS, gene_SS, gene_SIP,

... gene_POP, transZ[gn], transA[bgn]))

... else:

... fish =1

...

... PVS.loc[transZ[gn], transA[bgn]] = fish

...

... # the translating dictionaries are at the end of the notebook

222

>>> fon = pd.DataFrame(fon)

... fon.columns = ["common gene families (Success in Sample)",

... "zebra families (Sample Size)",

... "amphi families (Success in Polulation)",

... "Total Families (population)",

... "zebra cluster", "amphi cluster"]

The gene-based heatmap

>>> # we get the -log transformation of the pvalues, clip them to a workable range

... mPVS = PVS.applymap(lambda x: -log(x,10)).copy().clip(upper=25,lower=0)

...

... # We will compute the clustering outselves in order to be able to re-use it,

... # and to have better control

... # we cluster by row and by column, based on euclidean distance

... # and complete method:

... linkage_HG_rows = hc.linkage(

... sp.distance.squareform(

... PWD(mPVS.values, metric='euclidean'),

... checks=False), method='complete')

... linkage_HG_cols = hc.linkage(

... sp.distance.squareform(

... PWD(mPVS.T.values, metric='euclidean'),

... checks=False), method='complete')

...

... # Calculating the clustering like this, allows us to use the

... # same clustering later on

>>> Fwidth = THESIS_PAGEWIDTH

... Fheight = THESIS_PAGEWIDTH*1.2

... ret = sns.clustermap(mPVS,

... row_linkage = linkage_HG_rows,

... col_linkage = linkage_HG_cols,

... linewidths=0.01,

... figsize =(12,12),

... cmap='Reds',

... vmax=25, vmin=5

...)

... ax = ret.ax_heatmap

...

... for tick in ax.get_xticklabels():

... tick.set_rotation(90)

... tick.set_fontsize(6)

... for tick in ax.get_yticklabels():

... tick.set_rotation(0)

... tick.set_fontsize(6)

...

... fig = ret.fig

...

... fig.subplots_adjust(left=.045, bottom=.35, right=.68, top=.98)

...

223

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

... fig.savefig('../Figures/from_notebooks/tfigure_WGCNAHEAT.pdf')

We now want to map PWMs to modules

To do this, we will use the BASAL region of genes:

>>> # gene to "gene region" connection

... # This dataframe connects each gene to a genomic region:

224

... dan_greg = gr_basal['Dre']

... dan_greg.columns = ['chrom','start','end','geneID','score','strand']

... # dan_greg = dan_greg[['chrom','start','end','geneID','score','strand']]

...

... bla_greg = gr_basal['Bla']

... bla_greg.columns = ['chrom','start','end','geneID','score','strand']

... # bla_greg = bla_greg[['chrom','start','end','geneID','score','strand']]

and of course the PWMs that have been mapped on ATACseq peaks already:

>>> # load the PWM hits in a pybedtools object and sort

... dan_motif_bed = BT(

... "/Thesis_shallow/data/PWM/danre_pwm_hits.bed.gz").sort()

... bla_motif_bed = BT(

... "/Thesis_shallow/data/PWM/bralan_pwm_hits.bed.gz").sort()

...

... amphi_stages = ['8','15','36','60','hep']

... zebra_stages = ['dome','shield','80epi','8som','24h','48h']

We will now compute the LOJ intersection of the PMs to the BASAL regions,
For each gene this will give us all PWMs in its "regulatory landscape"

>>> # Map the cluster ID to gene IDs:

... dan_greg['cluster'] = dan_greg.geneID.map(dan_cl_d)

... dan_greg = dan_greg[~dan_greg.cluster.isnull()]

...

... bla_greg['cluster'] = bla_greg.geneID.map(bla_cl_d)

... bla_greg = bla_greg[~bla_greg.cluster.isnull()]

...

... # cast the gene region dataframes into pybedtools objects

... # and intersect with motifs (with LEFT OUTER JOIN)

... dan_loj = (BT()

... .from_dataframe(dan_greg[['chrom','start','end','cluster','score','strand']])

... .sort()

... .intersect(dan_motif_bed, loj=True, nonamecheck=True, sorted=True)

...).to_dataframe()[['chrom','start','end','name','score','strand','blockCount']]

...

... dan_loj = dan_loj[dan_loj.blockCount != '.']

... dan_loj['fam'] = dan_loj.blockCount.map(SFDu)

... dan_loj = dan_loj[~dan_loj['fam'].isnull()]

... dan_loj.fam = dan_loj.fam.astype(int)

...

... bla_loj = (BT()

... .from_dataframe(bla_greg[['chrom','start','end','cluster','score','strand']])

... .sort()

... .intersect(bla_motif_bed, loj=True, nonamecheck=True, sorted=True)

...).to_dataframe()[['chrom','start','end','name','score','strand','blockCount']]

...

... bla_loj = bla_loj[bla_loj.blockCount != '.']

... bla_loj['fam'] = bla_loj.blockCount.map(SFDu)

... bla_loj = bla_loj[~bla_loj['fam'].isnull()]

... dan_loj.fam = dan_loj.fam.astype(int)

... bla_loj.head()

...

... # we had

225

... # gene_module --> genes

... # genes --> genomic_regions

... # motifs --> genomic_positions

... # and we managed to connect them:

... # module/cluster --> genes -> genomic regions --> motifs

chrom start end name score strand blockCount \

1 Sc0000000 20509 26510 blue 6001 + C2H2_ZF_Average_244

5 Sc0000000 20509 26510 blue 6001 + ARID_BRIGHT_RFX_M4343_1.02

6 Sc0000000 20509 26510 blue 6001 + RFX_Average_38

7 Sc0000000 20509 26510 blue 6001 + bZIP_Average_125

8 Sc0000000 20509 26510 blue 6001 + C2H2_ZF_M6539_1.02

fam

1 11.0

5 3.0

6 3.0

7 236.0

8 21.0

>>> # convert the left outer join dataframes into

... # tables that contain a count per TF per stage:

... bla_loC = [Counter(g.fam) for gn,g in bla_loj.groupby("name")]

... bla_temp = pd.DataFrame(bla_loC)

... bla_temp = bla_temp.fillna(0)

... clustorder = [transA[gn] for gn,g in bla_loj.groupby("name")]

...

... bla_temp.index = clustorder

... bla_table = bla_temp.copy()

...

... dan_loC = [Counter(g.fam) for gn,g in dan_loj.groupby("name")]

... dan_temp = pd.DataFrame(dan_loC)

... dan_temp = dan_temp.fillna(0)

... clustorder = [transZ[gn] for gn,g in dan_loj.groupby("name")]

...

... dan_temp.index = clustorder

... dan_table = dan_temp.copy()

... dan_table.iloc[:,:3].head()

0 1 2

larvae 7d melanin 223 537 14.0

Ovary/ Sperm 368 2109 52.0

Brain 1714 5518 129.0

Cilium 531 3008 61.0

Liver(carboxi.met.) 29 107 0.0

There might be some differences in the columns of the two tables, lets fix that:

>>> # Get a list of the TFs that are found in both species:

226

... dan_allfams = set(dan_table.columns)

... bla_allfams = set(bla_table.columns)

... allfams = sorted([int(x) for x in dan_allfams

... .intersection(bla_allfams)])

>>> len(dan_allfams), len(bla_allfams),len(allfams)

(243, 242, 242)

Normalization/Scaling

>>> plt.figure()

... for rowi,row in bla_table.iterrows():

... sns.kdeplot(row.values)

... plt.title('Distributions of counts in each module before normalization')

... plt.show()

...

... # We divide each count with the sum for each TF,

... # to normalize for TF promiscuity

... bla_toplot = (bla_table

... .loc[:,allfams]/bla_table.loc[:,allfams].sum())

...

... plt.figure()

... for rowi,row in bla_toplot.iterrows():

... sns.kdeplot(row.values)

... plt.title('Distributions of counts in each module\

... after normalizing the columns')

... plt.show()

...

... # then scale the rows to normalize for module size

... bla_toplot.loc[:,:] = scale(bla_toplot, axis=1)

...

... plt.figure()

... for rowi,row in bla_toplot.iterrows():

... sns.kdeplot(row.values)

... plt.title('Distributions of counts in each module after scaling the rows')

... plt.show()

...

... dan_toplot = (dan_table

... .loc[:,allfams]/dan_table.loc[:,allfams].sum())

... dan_toplot.loc[:,:] = scale(dan_toplot, axis=1)

227

228

We can now directly compare modules between the two species.
We compute pairwise correlations next:

>>> ouf = pd.DataFrame()

...

... for dani,danrow in dan_toplot.iterrows():

... for blai,blarow in bla_toplot.iterrows():

... ouf.loc[dani,blai] = pearsonr(danrow.values, blarow.values)[0]

>>> ouf.iloc[:3,:3]

32 cells N.tube(neurotrans.) Gills

larvae 7d melanin -0.151380 0.052799 0.086495

Ovary/ Sperm 0.062331 -0.057291 -0.042298

Brain -0.054350 0.270706 0.114507

>>> # Get euclidean distances for each pair of modules in a table:

... dists = pd.DataFrame(PWD(dan_toplot,bla_toplot, metric="correlation"))

... dists.columns = bla_toplot.index

... dists.index = dan_toplot.index

...

... dists.iloc[:3,:3]

32 cells N.tube(neurotrans.) Gills

larvae 7d melanin 1.151380 0.947201 0.913505

Ovary/ Sperm 0.937669 1.057291 1.042298

Brain 1.054350 0.729294 0.885493

229

The final plot:

We can now directly visualize the table with the correlations.
We will use the clustering we got for the gene-based table earlier:

>>> # we can now visualize the TF-based distances

... # we'll use the clustering from the gene-based comparison

...

...

... Fwidth = THESIS_PAGEWIDTH

... Fheight = THESIS_PAGEWIDTH*1.2

... # fig, axx = plt.subplots()

...

...

... ret = sns.clustermap(1-dists,

...

... # The previously computed clustering

... row_linkage=linkage_HG_rows,

... col_linkage=linkage_HG_cols,

...

... linewidths=0.01,

... figsize =(12,12),

...

... vmax=0.35,

... vmin=0.15,

... cmap = 'Reds'

...)

...

... ax = ret.ax_heatmap

...

... for tick in ax.get_xticklabels():

... tick.set_rotation(90)

... tick.set_fontsize(6)

... for tick in ax.get_yticklabels():

... tick.set_rotation(0)

... tick.set_fontsize(6)

...

... fig = ret.fig

... fig.subplots_adjust(left=.045, bottom=.35, right=.68, top=.98)

... fig.set_size_inches (Fwidth, Fheight)

... fig.savefig('../Figures/from_notebooks/tfigure_WGCNAHEAT2.pdf')

230

PWM z-scores plots

>>> def RBOscore(l1, l2, p = 0.98):

... # https://github.com/ragrawal/measures/blob/master/measures/rankedlist/RBO.py

...

... """

... Calculates Ranked Biased Overlap (RBO) score.

... l1 -- Ranked List 1

... l2 -- Ranked List 2

... """

... # if l1 == None: l1 = []

231

... # if l2 == None: l2 = []

...

... sl,ll = sorted([(len(l1), l1),(len(l2),l2)], key=lambda x: x[0])

... s, S = sl

... l, L = ll

... if s == 0: return 0

...

... # Calculate the overlaps at ranks 1 through l

... # (the longer of the two lists)

... ss = set([]) # contains elements from the smaller list till depth i

... ls = set([]) # contains elements from the longer list till depth i

... x_d = {0: 0}

... sum1 = 0.0

... for i in range(l):

... x = L[i]

... y = S[i] if i < s else None

... d = i + 1

...

... # if two elements are same then

... # we don't need to add to either of the set

... if x == y:

... x_d[d] = x_d[d-1] + 1.0

... # else add items to respective list

... # and calculate overlap

... else:

... ls.add(x)

... if y != None: ss.add(y)

... x_d[d] = x_d[d-1] + (1.0 if x in ss else 0.0) + (1.0 if y in ls else 0.0)

... #calculate average overlap

... sum1 += x_d[d]/d * pow(p, d)

...

... sum2 = 0.0

... for i in range(l-s):

... d = s+i+1

... sum2 += x_d[d]*(d-s)/(d*s)*pow(p,d)

...

... sum3 = ((x_d[l]-x_d[s])/l+x_d[s]/s)*pow(p,l)

...

... # Equation 32

... rbo_ext = (1-p)/p*(sum1+sum2)+sum3

... return rbo_ext

>>> superfams_['u'] = superfams_[0].map(SFDu)

... SF = superfams_.set_index('u')

>>> # Select some interesting cases and plot the RBOscore

... # for those TFs in both species:

... flag=0

... for drown, drow in dan_toplot.iterrows():

... for brown, brow in bla_toplot.iterrows():

... ld = drow.sort_values(ascending=False).index.values

... lb = brow.sort_values(ascending=False).index.values

... rbo = RBOscore(ld,lb, 0.85)

... if rbo >0.25:

...

232

...

... d = dan_toplot.loc[drown,:].sort_values(ascending=False)

... dset = set(d[d>1.5].index.values)

...

... b = bla_toplot.loc[brown,:].sort_values(ascending=False)

... bset = set(b[b>1.5].index.values)

...

... gset = dset.intersection(bset)

...

... gee = SF.loc[gset].drop_duplicates(subset=2).copy()

...

... gee['Danio'] = gee.index.to_series().map(d.loc[gset])

... gee['Bla'] = gee.index.to_series().map(b.loc[gset])

...

...

... tp = gee[[0,'Danio','Bla']]

...

... plt.figure(figsize=(16,1.5*len(gset)))

... order = tp.loc[tp.sum(axis=1)

... .sort_values(ascending=False)

... .index,0].values

...

... sns.barplot(data=pd.melt(tp,id_vars=0),

... x='value',y=0, hue='variable',

... order=order,

... palette={'Danio':'#0072b2',

... 'Bla':'#cc79a7'})

...

... title = "{}_{} ".format(drown, brown)

... plt.title(title)

... sns.despine()

... plt.xlim((0,6))

...

... plt.show()

... flag=1

... break

... # use this to limit output when printing

... if flag:

... break

233

234

Quick Overview:

Implementation of the NACC analysis[1]

Consider a test gene T, with orthologues in speciesA (sA) and speciesB (sB).

We define neighborhood of gene T in sA (NA), the 20 genes with the most
similar pattern of expression [2] for a set of RNAseq experiments in species A.
Similarly, the neighborhood of the gene in sB (NB), is calculated based on a
range of RNAseq experiments in sB. [3]

We can compute the average distance from T to its neighbor genes in sA as DA,
and the distance in sB as DB. These two distances are computed on different
sets of RNA data, so they are not comparable.

To compare the expression of the gene in the two species, we will get the or-
thologous genes
of NA, and of NB. This gives us orthologous Neighborhood A (NoA) and NoB.
NoA is a list
of genes in sB and NoB is genes of sA.[4]

We can now compute DoA and DoB, the average distance of T to NoA and NoB.
oNA is a list of distances computed in sB, so it’s comparable to NB,
and oNB is comparable to NA.

The NACC value of T is then computed like so:

NACC = ((DoA - DB) + (DoB - DA)) / 2

We calculated NACC values for a subset of genes from each organism, based
on their orthology connection to other species. We only used genes from ho-
mology families where there is :

• only one Amphioxus paralogue We wanted to avoid gene families that
expanded before the WGDs

• at least one human paralogue but at most 4 human paralogues human
was our reference species

• at least one paralogue in species 2 but at most 8 Again, to avoid gene
families with too many members

For the control distributions, we applied exactly the same process, with the
only difference being that we had shuffled/randomized the orthology con-
nections.

1. Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T.,
. . . Consortium, T. M. E. (2014). A comparative encyclopedia of

235

DNA elements in the mouse genome. Nature, 515(7527), 355–364.
https://doi.org/10.1038/nature13992

2. Based on Euclidean distance

3. To keep thigs simpler, will will only accept one gene (the one with the
smallest distance) per orthologous gene family in a neighborhood.

4. Again, for simplicity, from each gene family we will take for orthologous
the gene with the smallest distance to T.

>>> def get_results(rpkms, set1,set2, metric):

...

... XB = rpkms.loc[set1,:].copy().fillna(0.0)

... XA = rpkms.loc[set2,:].copy().fillna(0.0)

...

... res = pd.DataFrame(cdist(XA,XB, metric))

...

... res.columns = XB.index

... res.index = XA.index

... del XA,XB

...

... res = res.reindex(index=list(res.columns) +\

... list(res.index.difference(res.columns)))

...

... fillval = res.max().max() + 0.01

...

... np.fill_diagonal(res.values, fillval)

... res = res.fillna(fillval)

...

... return res

... def yield_gene_combos(spec2):

... # To work only with 1-1-1-1-1 genes:

... #foo = gfams.loc[(gfamsC.Hsa==1) & (gfamsC.Mmu==1)

... # & (gfamsC.Dre==1) & (gfamsC.Bla==1) & (gfamsC.Dme==1), ['Hsa',spec2]]

...

... foo = gfams.loc[(gfamsC.Bla==1)

... & (gfamsC.Hsa>0)

... & (gfamsC[spec2]>0)

... & (gfamsC.Hsa<=4)

... & (gfamsC[spec2]<=8),

... ['Hsa',spec2]]

... for irow,row in foo.iterrows():

... for hsagene in row.Hsa:

... yield hsagene, row[spec2]

... def get_sets(spec2):

...

... foo = gfams.loc[(gfamsC.Hsa==1)

... & (gfamsC[spec2]==1),['Hsa',spec2]].copy()

... foo = foo.applymap(lambda x: x[0])

... foo = foo[~foo[spec2].duplicated(keep=False)]

...

... assert (len(foo.Hsa)

... == len(set(foo.Hsa.values))

... == len(foo[spec2])

... == len(set(foo[spec2].values)))

236

...

... oto1 = foo.Hsa.values

... oto2 = foo[spec2].values

... foo = gfams.loc[(gfamsC.Hsa>0) & (gfamsC[spec2]>0),

... ['Hsa',spec2]].copy()

... multi1 = set(reduce(add, foo.Hsa))

... multi2 = set(reduce(add, foo[spec2]))

...

... return oto1,oto2,multi1,multi2

...

... def load_crpkms(fp, css=None):

... crpkms = pd.read_csv(fp, sep='\t').fillna(0)

... crpkms.drop("NAME", axis=1, inplace=True)

... crpkms = crpkms.set_index('ID')

... crpkms = crpkms.applymap(lambda x: log(x+1,10))

...

... if css:

... crpkms = crpkms.loc[:,css]

...

... crpkms = crpkms[crpkms.std(axis=1)>0]

...

... return crpkms

>>> def get_naccs(spec2, fp2):

... fp1 = "/Thesis_shallow/data/cRPKM/crpkm_hsa.tab.gz"

... metric = 'euclidean'

...

... acc_gfams = (gfamsC.loc[(gfamsC[spec2]>=1)

... & (gfamsC.Hsa>=1), :]

... .index.values)

... crpkms1 = (load_crpkms(fp1)

... .loc[reduce(add, gfams

... .loc[(gfamsC[spec2]>=1)

... & (gfamsC.Hsa>=1), 'Hsa']), :]

... .fillna(0.0))

... crpkms2 = (load_crpkms(fp2)

... .loc[reduce(add, gfams

... .loc[(gfamsC[spec2]>=1)

... & (gfamsC.Hsa>=1), spec2]), :]

... .fillna(0.0))

...

... print("loaded crpkms")

... res1 = pd.DataFrame(cdist(crpkms1,crpkms1, 'euclidean'))

... res2 = pd.DataFrame(cdist(crpkms2,crpkms2, 'euclidean'))

... res1 = res1.set_index(crpkms1.index.values)

... res1.columns = crpkms1.index.values

... res2 = res2.set_index(crpkms2.index.values)

... res2.columns = crpkms2.index.values

...

... yol = (res2

... .reset_index()

... .drop_duplicates(subset='index', keep='last')

... .set_index('index'))

... res2 = (yol.T

... .reset_index()

... .drop_duplicates(subset='index', keep='last')

237

... .set_index('index').T)

...

... print("computed distances")

...

... lon = []

... lon_r = []

...

... for g1,listog in yield_gene_combos(spec2):

...

... D_sp1 = pd.DataFrame(res1.loc[g1,:])

... D_sp1['gf'] = D_sp1.index.to_series().map(gfamsD)

... D_sp1 = D_sp1.dropna()

... g1fam = gfamsD[g1]

...

...

... for g2 in listog:

... D_sp2 = pd.DataFrame(res2.loc[g2,:])

... D_sp2['gf'] = D_sp2.index.to_series().map(gfamsD)

... D_sp2 = D_sp2.dropna()

... g2fam = gfamsD[g2]

... if g1fam!=g2fam:

... continue

... ourfam = g1fam

...

... neigb1 = (D_sp1[(D_sp1.gf!=ourfam)

... & (D_sp1.gf.isin(acc_gfams))]

... .sort_values(by=g1)

... .drop_duplicates(subset='gf')

... .iloc[:20,:])

...

... neigb2 = (D_sp2[(D_sp2.gf!=ourfam)

... & (D_sp2.gf.isin(acc_gfams))]

... .sort_values(by=g2)

... .drop_duplicates(subset='gf')

... .iloc[:20,:])

...

... m2 = pd.merge(

... neigb2,

... (D_sp1

... .loc[D_sp1.gf.isin(neigb2.gf.values)]

... .sort_values(by=g1)

... .drop_duplicates(subset='gf')

... .set_index('gf')

... .loc[neigb2.gf.values,:]

... .reset_index()

...),

... on='gf')

...

... m2R = (neigb1.loc[:,g1] -

... D_sp2.sample(20).loc[:,g2].values).abs()

...

... m1 = pd.merge(

... neigb1,

... (D_sp2

... .loc[D_sp2.gf.isin(neigb1.gf.values)]

... .sort_values(by=g2)

... .drop_duplicates(subset='gf')

238

... .set_index('gf')

... .loc[neigb1.gf.values,:]

... .reset_index()

...),

... on='gf')

... m1R = (neigb2.loc[:,g2] -

... D_sp1.sample(20).loc[:,g1].values).abs()

...

... DB = m2[g2].mean()

... DBA = m2[g1].mean()

... DBAR = D_sp1.sample(20).loc[:,g1].mean()

...

... DA = m1[g1].mean()

... DAB = m1[g2].mean()

... DABR = D_sp2.sample(20).loc[:,g2].mean()

...

... NACC = ((DAB-DA)+(DBA-DB))/2

... NACCR = ((DABR-DA)+(DBAR-DB))/2

...

... lon.append(NACC)

... lon_r.append(NACCR)

...

... return lon, lon_r

>>> gfams = genefams

... gfamsC = genefamsC

... gfamsD = {}

... for rowi, row in gfams.iterrows():

... for species in ['Bla','Dre','Mmu','Hsa','Dme']:

... a = row[species]

... if a==a:

... for gene in a:

... gfamsD[gene] = int(rowi)

>>> # This is a bit slow:

... # I run it once and stored the results in pickles for quick loading and plotting

... # lon_bla, lonr_bla = get_naccs('Bla', "/Thesis_shallow/data/cRPKM/crpkm_bla.tab.gz")

... # lon_mmu, lonr_mmu = get_naccs('Mmu', "/Thesis_shallow/data/cRPKM/crpkm_mmu.tab.gz")

... # lon_dre, lonr_dre = get_naccs('Dre', "/Thesis_shallow/data/cRPKM/crpkm_dre.tab.gz")

Because the above process is a bit slow, I have included the reults in pickled objects:
>>> prec_lon_bla, prec_lonr_bla = (pickle

... .load(open("/Thesis_shallow/data/pickles/finalNACC_allGenes_lon_lonr_BLA.pickle",

... "rb")))

... prec_lon_mmu, prec_lonr_mmu = (pickle

... .load(open("/Thesis_shallow/data/pickles/finalNACC_allGenes_lon_lonr_MMU.pickle",

... "rb")))

... prec_lon_dre, prec_lonr_dre = (pickle

... .load(open("/Thesis_shallow/data/pickles/finalNACC_allGenes_lon_lonr_DRE.pickle",

... "rb")))

239

The plots

>>> # style for the plotting library

... sns.set_style('white')

... # the bins in which we make the histograms

... # we have to set them like this so that they

... # are the same between different datasets

... beans = np.linspace(0,10,100)

>>> # One plot, we can do the other species similarly

... Fwidth = THESIS_PAGEWIDTH

... Fheight = THESIS_PAGEWIDTH*(9/16.)

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.10, bottom=.13, right=.97, top=.92)

...

... sns.distplot(prec_lon_bla,

... kde=False,

... bins=beans,

... norm_hist = True,

... hist_kws={'edgecolor':'black'},

... label="Orthologous Neighborhood Genes",

... color=(0.003921, 0.450980, 0.698039,1),

... ax=ax)

...

... sns.distplot(prec_lonr_bla,

... kde=False,

... color=(0.83529, 0.36862, 0.0,1),

... bins=beans,

... norm_hist = True,

... hist_kws={'edgecolor':'black'},

... label="Random Genes",

... ax=ax)

...

... handles, labels = ax.get_legend_handles_labels()

... plt.legend(handles=handles, labels=['NACC','NACC randomized'])

...

... plt.xlim((0,8))

... plt.ylabel("Density")

... plt.xlabel("NACC score")

... plt.title("Human - Amphioxus")

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

... fig.savefig('../Figures/from_notebooks/tfigure_NACC1.pdf')

240

Let’s merge all the data together for one single plot:

>>> df_mmu = pd.concat([pd.melt(pd.DataFrame(prec_lon_mmu,

... columns=['nacc'])),

... pd.melt(pd.DataFrame(prec_lonr_mmu,

... columns=['nacc_r']))])

... df_mmu['species'] = 'mmu'

... df_bla = pd.concat([pd.melt(pd.DataFrame(prec_lon_bla,

... columns=['nacc'])),

... pd.melt(pd.DataFrame(prec_lonr_bla,

... columns=['nacc_r']))])

... df_bla['species'] = 'bla'

... df_dre = pd.concat([pd.melt(pd.DataFrame(prec_lon_dre,

... columns=['nacc'])),

... pd.melt(pd.DataFrame(prec_lonr_dre,

... columns=['nacc_r']))])

... df_dre['species'] = 'dre'

...

... biggy = pd.concat([df_bla, df_mmu, df_dre])

...

>>> # One plot, we can do the other species similarly

... Fwidth = THESIS_PAGEWIDTH

... Fheight = THESIS_PAGEWIDTH

...

... fig, ax = plt.subplots()

... fig.subplots_adjust(left=.11, bottom=.1, right=.98, top=.94)

...

...

... sns.violinplot(data=biggy, y = 'species',

241

... hue='variable',

... x='value', split=True,

... order = ['mmu','dre','bla'],

... scale_hue=True, bw=0.2,

... inner= "quartile",

... palette={'nacc':(0.00392, 0.45098, 0.69803),

... 'nacc_r':(0.83529, 0.36862, 0.0)

... },

... ax=ax

...)

...

... ax.tick_params(direction ='in',

... length=10, width=1.5,

... colors='black',labelsize='x-large')

...

... ax.set_yticklabels(['Mmu','Dre','Bla'], rotation=0)

... handles, labels = ax.get_legend_handles_labels()

... plt.legend(handles=handles,

... labels=['NACC','NACC randomized'])

...

... plt.xlim((0,7))

...

... # plt.ylabel("Density")

... plt.xlabel("NACC score")

... plt.title("Human - All")

... fig.set_size_inches (Fwidth, Fheight)

... #>>> OUTPUT NAME

... fig.savefig('../Figures/from_notebooks/tfigure_NACC2.pdf')

242

243

245

Part VI

Appendices

13.18. Tables 247

13.18 TABLES

248

13.19 NIMROD DATA

CTCF M1957
Species tissue/line time PWMs in

ATAC-
peaks

False
PWMs in
ATAC-
peaks

True
PWMs in
ATAC-
peaks

human gm12878 - 116127 74714 41413
human hl60 - 68766 57015 11751
human k562 - 28167 20275 7892
human SUM - 213060 20275 7892
mouse forebrain 0 dpf 130990 88583 42407
mouse heart 0 dpf 80803 55838 24965
mouse hindbrain 0 dpf 100442 69499 30943
mouse intestine 0 dpf 69254 45820 23434
mouse kidney 0 dpf 65319 45825 19494
mouse liver 0 dpf 111338 79152 32186
mouse liver 14 dpf 76591 57005 19586
mouse lung 0 dpf 134393 92074 42319
mouse lung 14 dpf 97812 75691 22121
mouse midbrain 0 dpf 62569 41983 20586
mouse stomach 0 dpf 84259 54525 29734
mouse SUM - 1013770 705995 307775

Table 13.1: Overview of the dataset for the M1957 PWM of CTCF

P63 M2321
Species tissue/line time PWMs in

ATAC-
peaks

False
PWMs in
ATAC-
peaks

True
PWMs in
ATAC-
peaks

human keratinocytes- 172317 121763 50554
zebrafish embryo 24h 219800 190362 29438

Table 13.2: Overview of the dataset for the M2321 PWM of P63

13.20. ATAC-seq data 249

H3K4me3/H3K27ac
species stage 1 stage 2 stage 3 stage 4 stage 5
amphioxus 8h 15h 36h 60h
zebrafisg dome shield 80%epiboly 8 somites 24h

Table 13.3: The histone modication assays that we analyzed ”from scratch”

ATAC-seq
species stage 1 stage 2 stage 3 stage 4 stage 5 stage 6
amphioxus 8h 15h 36h 60h
zebrafisg dome shield 80%epiboly 8 somites 24h 48h
medaka dome shield 80%epiboly 8 somites 24h 48h

mouse Embryonic stem cells Definite endoderm

Table 13.4: The ATAC-seq assays that we analyzed ”from scratch”

13.20 ATAC-SEQ DATA

13.21 GENOMES

species genome assembly file Annotation File
amphioxus Bl71nemr.fa Bla_annot-FINAL_v4_names.gtf.gz
zebrafish Danrer10.fa Danio_rerio.GRCz10.80.gtf.gz
medaka Orylat2.fa Oryzias_latipes.MEDAKA1.85.gtf.gz
mouse Mm10.fa Mus_musculus.GRCm38.89.gtf.gz

Table 13.5: The genomes used

13.22 RNA ASSAYS

250

Tissue/Stage Species Samples ID
Eggs_G_a Amphioxus Eggs_G_a
Eggs_G_b Amphioxus Eggs_G_b
Embr_32cells_G_a Amphioxus Embr_32cells_G_a
Embr_32cells_G_b Amphioxus Embr_32cells_G_b
Embr_32cells_G_c Amphioxus Embr_32cells_G_c
Embr_32cells_a Amphioxus Embr_32cells_a
Embr_32cells_b Amphioxus Embr_32cells_b
Embr_Blastula_G_a Amphioxus Embr_Blastula_G_a
Embr_Blastula_G_b Amphioxus Embr_Blastula_G_b
Embr_7h_G_a Amphioxus Embr_7h_G_a
Embr_7h_G_b Amphioxus Embr_7h_G_b
Embr_8h_a Amphioxus Embr_8h_a
Embr_8h_b Amphioxus Embr_8h_b
Embr_10h_b Amphioxus Embr_10h_b
Embr_10h_o Amphioxus Embr_10h_o
Embr_11h_G_a Amphioxus Embr_11h_G_a
Embr_11h_G_b Amphioxus Embr_11h_G_b
Embr_15h_G_a Amphioxus Embr_15h_G_a
Embr_15h_G_b Amphioxus Embr_15h_G_b
Embr_15h_a Amphioxus Embr_15h_a
Embr_15h_b Amphioxus Embr_15h_b
Embr_18h_G_a Amphioxus Embr_18h_G_a
Embr_18h_G_b Amphioxus Embr_18h_G_b
Embr_24h_o Amphioxus Embr_24h_o
Embr_27h_G_a Amphioxus Embr_27h_G_a
Embr_27h_G_b Amphioxus Embr_27h_G_b
Embr_36h_G Amphioxus Embr_36h_G
Embr_36h_d Amphioxus Embr_36h_d
Embr_36h_e Amphioxus Embr_36h_e
Embr_50h_G_a Amphioxus Embr_50h_G_a
Embr_50h_G_b Amphioxus Embr_50h_G_b
Embr_60h_G_a Amphioxus Embr_60h_G_a
Embr_60h_G_b Amphioxus Embr_60h_G_b
PreMetam_G Amphioxus PreMetam_G
Cirri_b Amphioxus Cirri_b
Epidermis_b Amphioxus Epidermis_b
FemGonads_b Amphioxus FemGonads_b
Gills_b Amphioxus Gills_b
Gills_o Amphioxus Gills_o
Gut_b Amphioxus Gut_b
Gut_o Amphioxus Gut_o
Hepatic_b Amphioxus Hepatic_b
Hepatic_o Amphioxus Hepatic_o
MaleGonads_b Amphioxus MaleGonads_b
MaleGonads_o Amphioxus MaleGonads_o
Muscle_b Amphioxus Muscle_b
Muscle_o Amphioxus Muscle_o
NeuralTube_b Amphioxus NeuralTube_b
NeuralTube_o Amphioxus NeuralTube_o

Table 13.6: The Amphioxus RNA samples used for the NACC analysis

13.22. RNA assays 251

Tissue/Stage Species Samples ID
Eggs Zebrafish Egg_a
Eggs Zebrafish Egg_b
Eggs Zebrafish Egg_c
2 hpf Zebrafish Embr_2hpf
12 hpf Zebrafish Embr_12hpf
20 hpf Zebrafish Embr_20hpf
26 hpf Zebrafish Embr_26hpf
7 dpf Zebrafish Embr_7dpf_a
7 dpf Zebrafish Embr_7dpf_b
7 dpf Zebrafish Embr_7dpf_c
Heart Zebrafish Heart
Muscle rep 1 Zebrafish Muscle_a
Muscle rep 2 Zebrafish Muscle_b
Ovary Zebrafish Ovary
Pancreas_CAC Zebrafish Pancreas_CAC
Pancreas_nonCAC Zebrafish Pancreas_nonCAC
Sperm Zebrafish Sperm
Brain rep 1 Zebrafish Brain_a
Brain rep 2 Zebrafish Brain_b
Eye Zebrafish Eye
Gills rep 1 Zebrafish Gills_a
Gills rep 2 Zebrafish Gills_b
Intestine rep 1 Zebrafish Intestine_a
Intestine rep 2 Zebrafish Intestine_b
Liver rep 1 Zebrafish Liver_a
Liver rep 2 Zebrafish Liver_b
Kidney rep 1 Zebrafish Kidney_a
Kidney rep 2 Zebrafish Kidney_b
Skin Zebrafish Skin
Testis rep 1 Zebrafish Testis_a
Testis rep 2 Zebrafish Testis_b

Table 13.7: The Zebrafish RNA samples used for the NACC analysis

252

Tissue/Stage Species Samples ID
Oocyte Mouse Oocyte
Embryo 2 cells Mouse Embr_2C
Embryo 4 cells Mouse Embr_4C
Embryo 8 cells Mouse Embr_8C
ESC_CGR8 Mouse ESC_CGR8
ESC_D3 Mouse ESC_D3
ESC_E14 Mouse ESC_E14
ESC_J1 Mouse ESC_J1
ESC_OS25_TT2 Mouse ESC_OS25_TT2
ESC_v65 Mouse ESC_v65
iPS_a Mouse iPS_a
iPS_b Mouse iPS_b
PGC_E13_5 Mouse PGC_E13_5
PGC_E9_5_11_5 Mouse PGC_E9_5_11_5
Testis rep 1 Mouse Testis_a
Testis rep 2 Mouse Testis_b
Embr_Limb_E14_5 Mouse Embr_Limb_E14_5
Embr_Liver_E14_5 Mouse Embr_Liver_E14_5
NPC_a Mouse NPC_a
NPC_b Mouse NPC_b
Ventricular_Zone Mouse Ventricular_Zone
Embr_Brain_E11_5 Mouse Embr_Brain_E11_5
Embr_Brain_E14_5 Mouse Embr_Brain_E14_5
Embr_Cortex_E17_5 Mouse Embr_Cortex_E17_5
Whole_Brain rep 1 Mouse Whole_Brain_a
Whole_Brain rep 2 Mouse Whole_Brain_b
Cortex Mouse Cortex
Frontal_Lobe Mouse Frontal_Lobe
Cerebellum Mouse Cerebellum
Retina_Eye Mouse Retina_Eye
Neurons Mouse Neurons_a
Myoblast_0h rep 1 Mouse Myoblast_0h_a
Myoblast_0h rep 2 Mouse Myoblast_0h_b
Myoblast_60h Mouse Myoblast_60h
Myoblast_120h Mouse Myoblast_120h
Myoblast_168h Mouse Myoblast_168h
Muscle rep 1 Mouse Muscle_a
Muscle rep 2 Mouse Muscle_b
Heart rep 1 Mouse Heart_a
Heart rep 2 Mouse Heart_b
proB_T_cells Mouse proB_T_cells
Trophoblast_SC Mouse Trophoblast_SC
Placenta rep 1 Mouse Placenta_a
Placenta rep 2 Mouse Placenta_b
Stomach Mouse Stomach
Intestine Mouse Intestine
Colon Mouse Colon
Kidney rep 1 Mouse Kidney_a
Kidney rep 2 Mouse Kidney_b
Liver rep 1 Mouse Liver_a
Liver rep 2 Mouse Liver_b
Adrenal Mouse Adrenal
Bladder Mouse Bladder
FatPad_MammGland Mouse FatPad_MammGland
Lung Mouse Lung
Ovary Mouse Ovary
Spleen Mouse Spleen
Thymus Mouse Thymus
MEF rep 1 Mouse MEF_a
MEF rep 2 Mouse MEF_b
CL_CH12 Mouse CL_CH12
CL_MEL Mouse CL_MEL
CL_3T3 Mouse CL_3T3
CL_N2A rep 1 Mouse CL_N2A_a
CL_N2A rep 2 Mouse CL_N2A_b

Table 13.8: The Mouse RNA samples used for the NACC analysis

13.22. RNA assays 253

Tissue/Stage Species Samples ID
Frontal_Gyrus_old Human Frontal_Gyrus_old
Frontal_Gyrus_young Human Frontal_Gyrus_young
Whole_Brain Human Whole_Brain
Sup_Temporal_Gyrus Human Sup_Temporal_Gyrus
Cerebellum Human Cerebellum
Cortex Human Cortex
Heart Human Heart
Muscle rep 1 Human Muscle_a
Muscle rep 2 Human Muscle_b
ESC_H1 rep 1 Human ESC_H1_a
ESC_H1 rep 2 Human ESC_H1_b
ESC_H1 rep 3 Human ESC_H1_c
ESC_H1 rep 4 Human ESC_H1_d
ESC_H9 rep 1 Human ESC_H9_a
ESC_H9 rep 2 Human ESC_H9_b
ESC_HES2 Human ESC_HES2
iPS rep 1 Human iPS_a
iPS rep 2 Human iPS_b
Placenta_Epith Human Placenta_Epith
EpithelialCells Human EpithelialCells
HFDPC Human HFDPC
CL_K562 Human CL_K562
CL_HeLa Human CL_HeLa
CL_293T Human CL_293T
CL_MB231 Human CL_MB231
CL_PNT2 Human CL_PNT2
CL_Gm12878 Human CL_Gm12878
Neuroblastoma Human Neuroblastoma
Melanocytes Human Melanocytes
Fibroblasts Human Fibroblasts
Adipose_Breast Human Adipose_Breast
Adrenal Human Adrenal
Amnion Human Amnion
Chorion Human Chorion
Colon Human Colon
Decidua Human Decidua
Endometrium Human Endometrium
Endothelium Human Endothelium
GLS_cells Human GLS_cells
Kidney Human Kidney
Liver Human Liver
Lung Human Lung
Lymph_node Human Lymph_node
Ovary Human Ovary
Placenta Human Placenta
Prostate Human Prostate
Testis Human Testis
Thyroid Human Thyroid
WBC_MC Human WBC_MC
MSC Human MSC
NPC rep 1 Human NPC_a
NPC rep 2 Human NPC_b

Table 13.9: The Human RNA samples used for the NACC analysis

255

References

[1] Darío G Lupiáñez et al. “Disruptions of topological chromatin domains
cause pathogenic rewiring of gene-enhancer interactions.” In: Cell 161.5
(2015), pp. 1012–1025. issn: 1097-4172. doi: 10.1016/j.cell.2015.
04.004.

[2] Christophe Benoist and Pierre Chambon. “In vivo sequence requirements
of the SV40 early promoter region”. In: Nature 290.5804 (1981), p. 304.

[3] P Gruss, R Dhar, and G Khoury. “Simian virus 40 tandem repeated se-
quences as an element of the early promoter”. In: Proceedings of the Na-
tional Academy of Sciences 78.2 (1981), pp. 943–947. issn: 0027-8424. doi:
10 . 1073 / pnas . 78 . 2 . 943. url: https : / / www . pnas . org /
content/78/2/943.

[4] Mark Mercola et al. “Transcriptional enhancer elements in the mouse
immunoglobulin heavy chain locus”. In: Science 221.4611 (1983), pp. 663–
665.

[5] Matthew Slattery et al. Absence of a simple code: How transcription factors
read the genome. 2014. doi: 10.1016/j.tibs.2014.07.002. arXiv:
NIHMS150003.

[6] Stephen C Harrison. “A structural taxonomy of DNA-binding domains”.
In: Nature 353.6346 (1991), pp. 715–719.

[7] JuanM. Vaquerizas et al. “A census of human transcription factors: Func-
tion, expression and evolution”. In: Nature Reviews Genetics 10.4 (2009),
pp. 252–263. issn: 14710056. doi: 10.1038/nrg2538.

https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1016/j.cell.2015.04.004
https://doi.org/10.1073/pnas.78.2.943
https://www.pnas.org/content/78/2/943
https://www.pnas.org/content/78/2/943
https://doi.org/10.1016/j.tibs.2014.07.002
http://arxiv.org/abs/NIHMS150003
https://doi.org/10.1038/nrg2538

256 REFERENCES

[8] A. de Mendoza et al. “Transcription factor evolution in eukaryotes and
the assembly of the regulatory toolkit in multicellular lineages”. In: Pro-
ceedings of the National Academy of Sciences 110.50 (2013), E4858–E4866.
issn: 0027-8424. doi: 10.1073/pnas.1311818110.

[9] Rohit Joshi et al. “Functional Specificity of a Hox ProteinMediated by the
Recognition of Minor Groove Structure”. In: Cell 131.3 (2007), pp. 530–
543. doi: 10.1016/J.CELL.2007.09.024.

[10] Giovanni Marsico et al. “Whole genome experimental maps of DNA G-
quadruplexes in multiple species”. In: Nucleic Acids Research 47.8 (2019),
pp. 3862–3874. issn: 0305-1048. doi: 10.1093/nar/gkz179.

[11] G.D. Stormo. “DNAbinding sites: representation and discovery”. In:Bioin-
formatics 16.1 (2000), pp. 16–23. doi: 10.1093/bioinformatics/16.
1.16.

[12] Harmen J. Bussemaker, Barrett C. Foat, and Lucas D. Ward. “Predic-
tive Modeling of Genome-Wide mRNA Expression: From Modules to
Molecules”. In: Annual Review of Biophysics and Biomolecular Structure 36.1
(2007), pp. 329–347. issn: 1056-8700. doi:10.1146/annurev.biophys.
36.040306.132725.

[13] Gwenael Badis et al. “Diversity and complexity in DNA recognition by
transcription factors.” In: Science (NewYork, N.Y.) 324.5935 (2009), pp. 1720–
3. issn: 1095-9203. doi: 10.1126/science.1162327.

[14] Gary D Stormo and Yue Zhao. “Determining the specificity of protein–
DNA interactions”. In: Nature Reviews Genetics 11.11 (2010), p. 751.

[15] Matthew T Weirauch et al. “Evaluation of methods for modeling tran-
scription factor sequence specificity.” In:Nature biotechnology 31.2 (2013),
pp. 126–34. issn: 1546-1696. doi: 10.1038/nbt.2486.

[16] Arttu Jolma et al. “DNA-binding specificities of human transcription fac-
tors.” In: Cell 152.1-2 (2013), pp. 327–39. issn: 1097-4172. doi: 10.1016/
j.cell.2012.12.009.

[17] Michael AWhite et al. “Massively parallel in vivo enhancer assay reveals
that highly local features determine the cis-regulatory function of ChIP-
seq peaks.” In: Proceedings of the National Academy of Sciences of the United
States of America 110.29 (2013), pp. 11952–7. issn: 1091-6490. doi: 10.
1073/pnas.1307449110.

[18] Remo Rohs et al. “The role of DNA shape in protein–DNA recognition”.
In:Nature 461.7268 (2009), pp. 1248–1253. doi:10.1038/nature08473.

https://doi.org/10.1073/pnas.1311818110
https://doi.org/10.1016/J.CELL.2007.09.024
https://doi.org/10.1093/nar/gkz179
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1093/bioinformatics/16.1.16
https://doi.org/10.1146/annurev.biophys.36.040306.132725
https://doi.org/10.1146/annurev.biophys.36.040306.132725
https://doi.org/10.1126/science.1162327
https://doi.org/10.1038/nbt.2486
https://doi.org/10.1016/j.cell.2012.12.009
https://doi.org/10.1016/j.cell.2012.12.009
https://doi.org/10.1073/pnas.1307449110
https://doi.org/10.1073/pnas.1307449110
https://doi.org/10.1038/nature08473

REFERENCES 257

[19] YoungchangKimet al. “Crystal structure of a yeastTBP/TATA-box com-
plex”. In: Nature 365.6446 (1993), pp. 512–520. issn: 0028-0836. doi: 10.
1038/365512a0.

[20] Joseph L. Kim, Dimitar B. Nikolov, and Stephen K. Burley. “Co-crystal
structure of TBP recognizing the minor groove of a TATA element”. In:
Nature 365.6446 (1993), pp. 520–527. issn: 0028-0836. doi: 10.1038/
365520a0.

[21] Trevor Siggers et al. “Non-DNA-binding cofactors enhanceDNA-binding
specificity of a transcriptional regulatory complex.” In: Molecular systems
biology 7 (2011), p. 555. issn: 1744-4292. doi: 10.1038/msb.2011.89.

[22] Matthew Slattery et al. “No Title”. In: Cell 147.6 (2011). issn: 1097-4172.

[23] Daniel Panne. “The enhanceosome”. In: Current Opinion in Structural Biol-
ogy 18.2 (2008), pp. 236–242. issn: 0959-440X. doi: 10.1016/J.SBI.
2007.12.002.

[24] T. Siggers andR.Gordan. “Protein-DNAbinding: complexities andmulti-
protein codes”. In: Nucleic Acids Research 42.4 (2014), pp. 2099–2111. issn:
0305-1048. doi: 10.1093/nar/gkt1112.

[25] Xiao Liu et al. “Whole-genome comparison of Leu3 binding in vitro and
in vivo reveals the importance of nucleosome occupancy in target site
selection.” In:Genome research 16.12 (2006), pp. 1517–28. issn: 1088-9051.
doi: 10.1101/gr.5655606.

[26] Lu Bai and Alexandre VMorozov. “Gene regulation by nucleosome posi-
tioning.” In: Trends in genetics : TIG 26.11 (2010), pp. 476–83. issn: 0168-
9525. doi: 10.1016/j.tig.2010.08.003.

[27] Tommy Kaplan et al. “Quantitative models of the mechanisms that con-
trol genome-wide patterns of transcription factor binding during early
Drosophila development.” In: PLoS genetics 7.2 (2011), e1001290. issn:
1553-7404. doi: 10.1371/journal.pgen.1001290.

[28] K.J. Polach and J. Widom. “A Model for the Cooperative Binding of Eu-
karyotic Regulatory Proteins to Nucleosomal Target Sites”. In: Journal of
Molecular Biology 258.5 (1996), pp. 800–812. issn: 00222836. doi: 10 .
1006/jmbi.1996.0288.

[29] Iros Barozzi et al. “Coregulation of transcription factor binding and nu-
cleosome occupancy through DNA features of mammalian enhancers.”
In:Molecular cell 54.5 (2014), pp. 844–857. issn: 1097-4164. doi:10.1016/
j.molcel.2014.04.006.

https://doi.org/10.1038/365512a0
https://doi.org/10.1038/365512a0
https://doi.org/10.1038/365520a0
https://doi.org/10.1038/365520a0
https://doi.org/10.1038/msb.2011.89
https://doi.org/10.1016/J.SBI.2007.12.002
https://doi.org/10.1016/J.SBI.2007.12.002
https://doi.org/10.1093/nar/gkt1112
https://doi.org/10.1101/gr.5655606
https://doi.org/10.1016/j.tig.2010.08.003
https://doi.org/10.1371/journal.pgen.1001290
https://doi.org/10.1006/jmbi.1996.0288
https://doi.org/10.1006/jmbi.1996.0288
https://doi.org/10.1016/j.molcel.2014.04.006
https://doi.org/10.1016/j.molcel.2014.04.006

258 REFERENCES

[30] Sebastian Glatt, Claudio Alfieri, and Christoph WMüller. “Recognizing
and remodeling the nucleosome”. In: Current Opinion in Structural Biology
21.3 (2011), pp. 335–341. issn: 0959440X. doi: 10.1016/j.sbi.2011.
02.003.

[31] Kenneth S Zaret and Jason S Carroll. “Pioneer transcription factors: es-
tablishing competence for gene expression.” In:Genes & development 25.21
(2011), pp. 2227–41. issn: 1549-5477. doi: 10.1101/gad.176826.111.

[32] Richard I Sherwood et al. “Discovery of directional and nondirectional
pioneer transcription factors by modeling DNase profile magnitude and
shape”. In:Nature Biotechnology 32.2 (2014), pp. 171–178. issn: 1087-0156.
doi: 10.1038/nbt.2798.

[33] Silvia Domcke et al. “Competition between DNA methylation and tran-
scription factors determines binding ofNRF1”. In:Nature 528.7583 (2015),
pp. 575–579. issn: 0028-0836. doi: 10.1038/nature16462.

[34] Jean-Michel Claverie and Stéphane Audic. “The statistical significance of
nucleotide position-weightmatrixmatches”. In:Bioinformatics 12.5 (1996),
pp. 431–439. doi: 10.1093/bioinformatics/12.5.431.

[35] Anthony Mathelier and Wyeth W. Wasserman. “The Next Generation
of Transcription Factor Binding Site Prediction”. In: PLoS Computational
Biology 9.9 (2013). Ed. by Ilya Ioshikhes, e1003214. issn: 1553-7358. doi:
10.1371/journal.pcbi.1003214.

[36] Eilon Sharon, Shai Lubliner, and Eran Segal. “A Feature-Based Approach
to Modeling Protein–DNA Interactions”. In: PLoS Computational Biology
4.8 (2008). Ed. by Gary Stormo, e1000154. issn: 1553-7358. doi: 10 .
1371/journal.pcbi.1000154.

[37] N. I. Gershenzon, Gary D. Stormo, and Ilya P. Ioshikhes. “Computational
technique for improvement of the position-weightmatrices for theDNA/pro-
tein binding sites”. In: Nucleic Acids Research 33.7 (2005), pp. 2290–2301.
issn: 1362-4962. doi: 10.1093/nar/gki519.

[38] Rahul Siddharthan. “Dinucleotide Weight Matrices for Predicting Tran-
scription Factor Binding Sites: Generalizing the PositionWeightMatrix”.
In: PLoS ONE 5.3 (2010). Ed. by Raya Khanin, e9722. issn: 1932-6203. doi:
10.1371/journal.pone.0009722.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Clas-
sification with Deep Convolutional Neural Networks. 2012.

https://doi.org/10.1016/j.sbi.2011.02.003
https://doi.org/10.1016/j.sbi.2011.02.003
https://doi.org/10.1101/gad.176826.111
https://doi.org/10.1038/nbt.2798
https://doi.org/10.1038/nature16462
https://doi.org/10.1093/bioinformatics/12.5.431
https://doi.org/10.1371/journal.pcbi.1003214
https://doi.org/10.1371/journal.pcbi.1000154
https://doi.org/10.1371/journal.pcbi.1000154
https://doi.org/10.1093/nar/gki519
https://doi.org/10.1371/journal.pone.0009722

REFERENCES 259

[40] Gary D. Stormo et al. “Use of the ‘Perceptron’ algorithm to distinguish
translational initiation sites in E. coli”. In:Nucleic Acids Research 10.9 (1982),
pp. 2997–3011. issn: 0305-1048. doi: 10.1093/nar/10.9.2997.

[41] Jack Lanchantin et al. “Deep Motif: Visualizing Genomic Sequence Clas-
sifications”. In: (2016). arXiv: 1605.01133.

[42] Babak Alipanahi et al. “Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning”. In: Nature Biotechnology 33.8
(2015), pp. 831–838. issn: 1087-0156. doi: 10.1038/nbt.3300.

[43] Alyssa Morrow et al. “Convolutional Kitchen Sinks for Transcription
Factor Binding Site Prediction”. In: (2017). arXiv: 1706.00125.

[44] Daniel Quang and Xiaohui Xie. “DanQ: a hybrid convolutional and re-
current deep neural network for quantifying the function of DNA se-
quences.” In:Nucleic acids research 44.11 (2016), e107. issn: 1362-4962. doi:
10.1093/nar/gkw226.

[45] Jian Zhou andOlgaGTroyanskaya. “Predicting effects of noncoding vari-
ants with deep learning–based sequence model”. In:Nature Methods 12.10
(2015). issn: 1548-7091. doi: 10.1038/nmeth.3547.

[46] QianQin and Jianxing Feng. “Imputation for transcription factor binding
predictions based on deep learning”. In: PLOS Computational Biology 13.2
(2017). Ed. by Ilya Ioshikhes, e1005403. issn: 1553-7358. doi: 10.1371/
journal.pcbi.1005403.

[47] AlanPBoyle et al. “High-resolutionmapping and characterization of open
chromatin across the genome.” In: Cell 132.2 (2008), pp. 311–22. issn:
1097-4172. doi: 10.1016/j.cell.2007.12.014.

[48] Jason D Buenrostro et al. “Transposition of native chromatin for fast and
sensitive epigenomic profiling of open chromatin, DNA-binding pro-
teins andnucleosomeposition”. In:NatureMethods 10.12 (2013), pp. 1213–
1218. issn: 1548-7091. doi: 10.1038/nmeth.2688.

[49] Jason Piper et al. “Wellington: a novel method for the accurate identi-
fication of digital genomic footprints from DNase-seq data.” In: Nucleic
acids research 41.21 (2013), e201. issn: 1362-4962. doi: 10.1093/nar/
gkt850.

[50] R. Pique-Regi et al. “Accurate inference of transcription factor binding
from DNA sequence and chromatin accessibility data”. In: Genome Re-
search 21.3 (2011), pp. 447–455. issn: 1088-9051. doi: 10 . 1101 / gr .
112623.110.

https://doi.org/10.1093/nar/10.9.2997
http://arxiv.org/abs/1605.01133
https://doi.org/10.1038/nbt.3300
http://arxiv.org/abs/1706.00125
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1038/nmeth.3547
https://doi.org/10.1371/journal.pcbi.1005403
https://doi.org/10.1371/journal.pcbi.1005403
https://doi.org/10.1016/j.cell.2007.12.014
https://doi.org/10.1038/nmeth.2688
https://doi.org/10.1093/nar/gkt850
https://doi.org/10.1093/nar/gkt850
https://doi.org/10.1101/gr.112623.110
https://doi.org/10.1101/gr.112623.110

260 REFERENCES

[51] Anil Raj et al. “msCentipede: Modeling Heterogeneity across Genomic
Sites and Replicates Improves Accuracy in the Inference of Transcrip-
tion Factor Binding”. In: PLOS ONE 10.9 (2015). Ed. by Deyou Zheng,
e0138030. issn: 1932-6203. doi: 10.1371/journal.pone.0138030.

[52] Aleksander Jankowski, Jerzy Tiuryn, and Shyam Prabhakar. “Romulus:
robustmulti-state identification of transcription factor binding sites from
DNase-seq data.” In:Bioinformatics (Oxford, England) 32.16 (2016), pp. 2419–
26. issn: 1367-4811. doi: 10.1093/bioinformatics/btw209.

[53] Richard I Sherwood et al. “Discovery of directional and nondirectional
pioneer transcription factors by modeling DNase profile magnitude and
shape.” In:Nature biotechnology 32.2 (2014), pp. 171–178. issn: 1546-1696.
doi: 10.1038/nbt.2798.

[54] Ignacio Maeso and Juan J. Tena. “Favorable genomic environments for
cis- regulatory evolution: A novel theoretical framework”. In: Seminars
in Cell & Developmental Biology 57 (2016), pp. 2–10. issn: 10849521. doi:
10.1016/j.semcdb.2015.12.003.

[55] Sean B. Carroll. “Evo-Devo and an Expanding Evolutionary Synthesis:
A Genetic Theory of Morphological Evolution”. In: Cell 134.1 (2008),
pp. 25–36. issn: 00928674. doi: 10.1016/j.cell.2008.06.030.

[56] Hopi E. Hoekstra and Jerry A. Coyne. “The locus of evolution: evo devo
and the genetics of adaptation.” In: Evolution 61.5 (2007), pp. 995–1016.
issn: 00143820. doi: 10.1111/j.1558-5646.2007.00105.x.

[57] Menno PCreyghton et al. “HistoneH3K27ac separates active frompoised
enhancers and predicts developmental state.” In: Proceedings of theNational
Academy of Sciences of the United States of America 107.50 (2010), pp. 21931–
6. issn: 1091-6490. doi: 10.1073/pnas.1016071107.

[58] Alvaro Rada-Iglesias et al. “A unique chromatin signature uncovers early
developmental enhancers in humans.” In:Nature 470.7333 (2011), pp. 279–
83. issn: 1476-4687. doi: 10.1038/nature09692.

[59] Tae-Kyung Kim and Ramin Shiekhattar. “Architectural and Functional
Commonalities betweenEnhancers and Promoters”. In:Cell 162.5 (2015),
pp. 948–959. issn: 0092-8674. doi: 10.1016/J.CELL.2015.08.008.

[60] Robin Andersson. “Promoter or enhancer, what’s the difference? Decon-
struction of established distinctions and presentation of a unifyingmodel”.
In: BioEssays 37.3 (2015), pp. 314–323. issn: 02659247. doi: 10.1002/
bies.201400162.

https://doi.org/10.1371/journal.pone.0138030
https://doi.org/10.1093/bioinformatics/btw209
https://doi.org/10.1038/nbt.2798
https://doi.org/10.1016/j.semcdb.2015.12.003
https://doi.org/10.1016/j.cell.2008.06.030
https://doi.org/10.1111/j.1558-5646.2007.00105.x
https://doi.org/10.1073/pnas.1016071107
https://doi.org/10.1038/nature09692
https://doi.org/10.1016/J.CELL.2015.08.008
https://doi.org/10.1002/bies.201400162
https://doi.org/10.1002/bies.201400162

REFERENCES 261

[61] Boris Lenhard, Albin Sandelin, and Piero Carninci. “Metazoan promot-
ers: emerging characteristics and insights into transcriptional regulation”.
In:Nature Reviews Genetics 13.4 (2012), pp. 233–245. issn: 1471-0056. doi:
10.1038/nrg3163.

[62] Yi Jin et al. “The Ground State and Evolution of Promoter Region Direc-
tionality.” In: Cell 170.5 (2017), 889–898.e10. issn: 1097-4172. doi: 10.
1016/j.cell.2017.07.006.

[63] Piero Carninci et al. “Genome-wide analysis of mammalian promoter ar-
chitecture and evolution”. In: Nature Genetics 38.6 (2006), pp. 626–635.
issn: 10614036. doi: 10.1038/ng1789.

[64] Lorenzo Pasquali et al. “Pancreatic islet enhancer clusters enriched in type
2 diabetes risk-associated variants”. In:Nature genetics 46.2 (2014), p. 136.

[65] Jaret M Karnuta and Peter C Scacheri. “Enhancers: bridging the gap be-
tween gene control and humandisease”. In:HumanMolecular Genetics 27.R2
(2018), R219–R227. issn: 0964-6906. doi: 10.1093/hmg/ddy167.

[66] Jae-SeokRoe et al. “EnhancerReprogramming Promotes Pancreatic Can-
cer Metastasis”. In: Cell 170.5 (2017), 875–888.e20. issn: 00928674. doi:
10.1016/j.cell.2017.07.007.

[67] Lei Xiong et al. “Aberrant enhancer hypomethylation contributes to hep-
atic carcinogenesis through global transcriptional reprogramming.” In:
Nature communications 10.1 (2019), p. 335. issn: 2041-1723. doi:10.1038/
s41467-018-08245-z.

[68] Stein Aerts. “Computational Strategies for the Genome-Wide Identifica-
tion of cis-Regulatory Elements and Transcriptional Targets”. In: Current
Topics in Developmental Biology 98 (2012), pp. 121–145. issn: 0070-2153.
doi: 10.1016/B978-0-12-386499-4.00005-7.

[69] Benoit Ballester et al. “Multi-species, multi-transcription factor binding
highlights conserved control of tissue-specific biological pathways.” In:
eLife 3 (2014), e02626. issn: 2050-084X. doi: 10.7554/eLife.02626.

[70] Evgeny Z. Kvon. “Using transgenic reporter assays to functionally char-
acterize enhancers in animals”. In: Genomics 106.3 (2015), pp. 185–192.
issn: 0888-7543. doi: 10.1016/J.YGENO.2015.06.007.

[71] Eduardo G Gusmao et al. “Analysis of computational footprinting meth-
ods for DNase sequencing experiments”. In: Nature Methods 13.4 (2016),
pp. 303–309. issn: 1548-7091. doi: 10.1038/nmeth.3772.

https://doi.org/10.1038/nrg3163
https://doi.org/10.1016/j.cell.2017.07.006
https://doi.org/10.1016/j.cell.2017.07.006
https://doi.org/10.1038/ng1789
https://doi.org/10.1093/hmg/ddy167
https://doi.org/10.1016/j.cell.2017.07.007
https://doi.org/10.1038/s41467-018-08245-z
https://doi.org/10.1038/s41467-018-08245-z
https://doi.org/10.1016/B978-0-12-386499-4.00005-7
https://doi.org/10.7554/eLife.02626
https://doi.org/10.1016/J.YGENO.2015.06.007
https://doi.org/10.1038/nmeth.3772

262 REFERENCES

[72] Jurg Stalder et al. “Tissue-specific DNA cleavages in the globin chromatin
domain introduced by DNAase I”. In: Cell 20.2 (1980), pp. 451–460. issn:
0092-8674. doi: 10.1016/0092-8674(80)90631-5.

[73] Paul G Giresi et al. “FAIRE (Formaldehyde-Assisted Isolation of Regu-
latory Elements) isolates active regulatory elements from human chro-
matin.” In: Genome research 17.6 (2007), pp. 877–85. issn: 1088-9051. doi:
10.1101/gr.5533506.

[74] Ramy K Aziz, Mya Breitbart, and Robert A Edwards. “Transposases are
the most abundant, most ubiquitous genes in nature.” In: Nucleic acids re-
search 38.13 (2010), pp. 4207–17. issn: 1362-4962. doi: 10.1093/nar/
gkq140.

[75] Andrew Adey et al. “Rapid, low-input, low-bias construction of shotgun
fragment libraries by high-density in vitro transposition”. In: Genome Bi-
ology 11.12 (2010), R119. issn: 1465-6906. doi: 10.1186/gb-2010-11-
12-r119.

[76] William S. Reznikoff. “Tn5 as amodel for understandingDNA transposi-
tion”. In:MolecularMicrobiology 47.5 (2003), pp. 1199–1206. issn: 0950382X.
doi: 10.1046/j.1365-2958.2003.03382.x.

[77] Alicia N Schep et al. “Structured nucleosome fingerprints enable high-
resolutionmapping of chromatin architecturewithin regulatory regions.”
In: Genome research 25.11 (2015), pp. 1757–70. issn: 1549-5469. doi: 10.
1101/gr.192294.115.

[78] Gary Felsenfeld. “A brief history of epigenetics.” In:Cold SpringHarbor per-
spectives in biology 6.1 (2014). issn: 1943-0264. doi:10.1101/cshperspect.
a018200.

[79] T. H. Morgan. “An attempt to analyze the constitution of the chromo-
somes on the basis of sex-limited inheritance in Drosophila”. In: Journal
of Experimental Zoology 11.4 (1911), pp. 365–413. issn: 0022-104X. doi:
10.1002/jez.1400110404.

[80] R A Laskey and J B Gurdon. “Genetic content of adult somatic cells tested
by nuclear transplantation fromcultured cells.” In:Nature 228.5278 (1970),
pp. 1332–4. issn: 0028-0836.

[81] V.E.A. Russo, R.A. Martienssen, and A.D. Riggs. Epigenetic Mechanisms
of Gene Regulation. Cold Spring Harbor monograph series. Cold Spring
Harbor Laboratory Press, 1996. isbn: 9780879694906. url: https : / /
books.google.es/books?id=clnwAAAAMAAJ.

https://doi.org/10.1016/0092-8674(80)90631-5
https://doi.org/10.1101/gr.5533506
https://doi.org/10.1093/nar/gkq140
https://doi.org/10.1093/nar/gkq140
https://doi.org/10.1186/gb-2010-11-12-r119
https://doi.org/10.1186/gb-2010-11-12-r119
https://doi.org/10.1046/j.1365-2958.2003.03382.x
https://doi.org/10.1101/gr.192294.115
https://doi.org/10.1101/gr.192294.115
https://doi.org/10.1101/cshperspect.a018200
https://doi.org/10.1101/cshperspect.a018200
https://doi.org/10.1002/jez.1400110404
https://books.google.es/books?id=clnwAAAAMAAJ
https://books.google.es/books?id=clnwAAAAMAAJ

REFERENCES 263

[82] Bilian Jin, Yajun Li, and Keith D Robertson. “DNAmethylation: superior
or subordinate in the epigenetic hierarchy?” In: Genes & cancer 2.6 (2011),
pp. 607–17. issn: 1947-6027. doi: 10.1177/1947601910393957.

[83] OzrenBogdanović andGert JanC.Veenstra. “DNAmethylation andmethyl-
CpG binding proteins: developmental requirements and function”. In:
Chromosoma 118.5 (2009), pp. 549–565. issn: 0009-5915. doi: 10.1007/
s00412-009-0221-9.

[84] K Luger et al. “Crystal structure of the nucleosome core particle at 2.8 A
resolution”. In: Nature 389.6648 (1997), pp. 251–260.

[85] PeterN.Cockerill. “Structure and function of active chromatin andDNase
I hypersensitive sites”. In: FEBS Journal 278.13 (2011), pp. 2182–2210.
issn: 1742464X. doi: 10.1111/j.1742-4658.2011.08128.x.

[86] V G Allfrey, R Faulkner, and A E Mirsky. “Acetylation and methylation
of histones and their possible role in the regulation of RNA synthesis.” In:
Proceedings of the National Academy of Sciences of the United States of America
51 (1964), pp. 786–94. issn: 0027-8424.

[87] Tony Kouzarides. “Chromatin modifications and their function.” In: Cell
128.4 (2007), pp. 693–705. issn: 0092-8674. doi: 10.1016/j.cell.
2007.02.005.

[88] Adam F. Kebede, Robert Schneider, and Sylvain Daujat. “Novel types and
sites of histone modifications emerge as players in the transcriptional
regulation contest”. In: FEBS Journal 282.9 (2015), pp. 1658–1674. issn:
1742464X. doi: 10.1111/febs.13047.

[89] Karolin Luger, Mekonnen L Dechassa, and David J Tremethick. “New
insights into nucleosome and chromatin structure: an ordered state or
a disordered affair?” In: Nature reviews. Molecular cell biology 13.7 (2012),
pp. 436–47. issn: 1471-0080. doi: 10.1038/nrm3382.

[90] Yupeng Zheng, Paul M. Thomas, and Neil L. Kelleher. “Measurement of
acetylation turnover at distinct lysines in human histones identifies long-
lived acetylation sites”. In:Nature Communications 4.1 (2013), p. 2203. issn:
2041-1723. doi: 10.1038/ncomms3203.

[91] CristinaCruz et al. “Tri-methylation of histoneH3 lysine 4 facilitates gene
expression in ageing cells”. In: Elife 7 (2018), e34081.

https://doi.org/10.1177/1947601910393957
https://doi.org/10.1007/s00412-009-0221-9
https://doi.org/10.1007/s00412-009-0221-9
https://doi.org/10.1111/j.1742-4658.2011.08128.x
https://doi.org/10.1016/j.cell.2007.02.005
https://doi.org/10.1016/j.cell.2007.02.005
https://doi.org/10.1111/febs.13047
https://doi.org/10.1038/nrm3382
https://doi.org/10.1038/ncomms3203

264 REFERENCES

[92] T.Miller et al. “COMPASS:A complex of proteins associatedwith a trithorax-
related SET domain protein”. In: Proceedings of the National Academy of
Sciences 98.23 (2001), pp. 12902–12907. issn: 0027-8424. doi: 10.1073/
pnas.231473398.

[93] Robert Schneider et al. “HistoneH3 lysine 4methylation patterns in higher
eukaryotic genes”. In:Nature Cell Biology 6.1 (2004), pp. 73–77. issn: 1465-
7392. doi: 10.1038/ncb1076.

[94] K. Nishioka et al. “Set9, a novel histone H3 methyltransferase that facil-
itates transcription by precluding histone tail modifications required for
heterochromatin formation”. In:Genes&Development 16.4 (2002), pp. 479–
489. issn: 08909369. doi: 10.1101/gad.967202.

[95] Matthew G. Guenther et al. “A Chromatin Landmark and Transcrip-
tion Initiation at Most Promoters in Human Cells”. In: Cell 130.1 (2007),
pp. 77–88. issn: 0092-8674. doi: 10.1016/J.CELL.2007.05.042.

[96] AaronW. Aday et al. “Identification of cis regulatory features in the em-
bryonic zebrafish genome through large-scale profiling of H3K4me1 and
H3K4me3 binding sites”. In:Developmental Biology 357.2 (2011), pp. 450–
462. issn: 0012-1606. doi: 10.1016/J.YDBIO.2011.03.007.

[97] Ozren Bogdanovic et al. “Dynamics of enhancer chromatin signatures
mark the transition from pluripotency to cell specification during em-
bryogenesis.” In:Genome research 22.10 (2012), pp. 2043–2053. issn: 1549-
5469. doi: 10.1101/gr.134833.111.

[98] Noriyuki Suka et al. “Highly SpecificAntibodiesDetermineHistoneAcety-
lation Site Usage in Yeast Heterochromatin and Euchromatin”. In:Molec-
ular Cell 8.2 (2001), pp. 473–479. issn: 1097-2765. doi: 10.1016/S1097-
2765(01)00301-X.

[99] Benjamin A Garcia et al. “Organismal differences in post-translational
modifications in histones H3 and H4.” In: The Journal of biological chem-
istry 282.10 (2007), pp. 7641–55. issn: 0021-9258. doi: 10.1074/jbc.
M607900200.

[100] Zhibin Wang et al. “Combinatorial patterns of histone acetylations and
methylations in the human genome.” In:Nature genetics 40.7 (2008), pp. 897–
903. issn: 1546-1718. doi: 10.1038/ng.154.

https://doi.org/10.1073/pnas.231473398
https://doi.org/10.1073/pnas.231473398
https://doi.org/10.1038/ncb1076
https://doi.org/10.1101/gad.967202
https://doi.org/10.1016/J.CELL.2007.05.042
https://doi.org/10.1016/J.YDBIO.2011.03.007
https://doi.org/10.1101/gr.134833.111
https://doi.org/10.1016/S1097-2765(01)00301-X
https://doi.org/10.1016/S1097-2765(01)00301-X
https://doi.org/10.1074/jbc.M607900200
https://doi.org/10.1074/jbc.M607900200
https://doi.org/10.1038/ng.154

REFERENCES 265

[101] Stefan Bonn et al. “Tissue-specific analysis of chromatin state identifies
temporal signatures of enhancer activity during embryonic development”.
In: Nature Genetics 44.2 (2012), pp. 148–156. issn: 1061-4036. doi: 10.
1038/ng.1064.

[102] E.W. Gudger. “The Five Great Naturalists of the Sixteenth Century: Be-
lon, Rondelet, Salviani, Gesner and Aldrovandi: A Chapter in the History
of Ichthyology”. In: Isis 22.1 (1934), p. 21. issn: 0021-1753. doi: 10.1086/
346870.

[103] A L Panchen. “Homology–history of a concept.” eng. In: Novartis Founda-
tion symposium 222 (1999), pp. 5–23. issn: 1528-2511 (Print).

[104] W M Fitch. “Distinguishing homologous from analogous proteins.” In:
Systematic zoology 19.2 (1970), pp. 99–113. issn: 0039-7989.

[105] Frédéric Delsuc et al. “Tunicates and not cephalochordates are the closest
living relatives of vertebrates”. In: Nature 439.7079 (2006), p. 965.

[106] TakeshiKon et al. “Phylogenetic position of awhale-fall lancelet (Cephalo-
chordata) inferred fromwholemitochondrial genome sequences”. In:BMC
Evolutionary Biology 7.1 (2007), p. 127.

[107] Michael Schubert et al. “Amphioxus and tunicates as evolutionary model
systems”. In: Trends in Ecology & Evolution 21.5 (2006), pp. 269–277. issn:
0169-5347. doi: 10.1016/J.TREE.2006.01.009.

[108] Stephanie Bertrand et al. “Evolutionary crossroads in developmental bi-
ology: amphioxus.” In: Development (Cambridge, England) 138.22 (2011),
pp. 4819–30. issn: 1477-9129. doi: 10.1242/dev.066720.

[109] Eric S. Lander et al. “Initial sequencing and analysis of the human genome”.
In: Nature 409.6822 (2001), pp. 860–921. issn: 00280836. doi: 10.1038/
35057062. arXiv: 11237011.

[110] Craig E Nelson, Bradley M Hersh, and Sean B Carroll. “The regulatory
content of intergenic DNA shapes genome architecture”. In: Genome Bi-
ology 5.4 (2004), R25. issn: 1474-760X. doi: 10.1186/gb-2004-5-4-
r25.

[111] Ozren Bogdanović et al. “Active DNA demethylation at enhancers during
the vertebrate phylotypic period”. In:Nature Genetics 48.4 (2016), pp. 417–
426. issn: 1061-4036. doi: 10.1038/ng.3522.

https://doi.org/10.1038/ng.1064
https://doi.org/10.1038/ng.1064
https://doi.org/10.1086/346870
https://doi.org/10.1086/346870
https://doi.org/10.1016/J.TREE.2006.01.009
https://doi.org/10.1242/dev.066720
https://doi.org/10.1038/35057062
https://doi.org/10.1038/35057062
http://arxiv.org/abs/11237011
https://doi.org/10.1186/gb-2004-5-4-r25
https://doi.org/10.1186/gb-2004-5-4-r25
https://doi.org/10.1038/ng.3522

266 REFERENCES

[112] Linda Z Holland et al. “The amphioxus genome illuminates vertebrate
origins and cephalochordate biology.” In: Genome research 18.7 (2008),
pp. 1100–11. issn: 1088-9051. doi: 10.1101/gr.073676.107.

[113] Marie Sémon and Kenneth H.Wolfe. “Consequences of genome duplica-
tion”. In: Current Opinion in Genetics and Development 17.6 (2007), pp. 505–
512. issn: 0959437X. doi: 10.1016/j.gde.2007.09.007.

[114] Frédéric Delsuc et al. “Tunicates and not cephalochordates are the closest
living relatives of vertebrates”. In: Nature 439.7079 (2006), pp. 965–968.
issn: 0028-0836. doi: 10.1038/nature04336.

[115] Adriana Canapa et al. “Transposons, Genome Size, and Evolutionary In-
sights inAnimals”. In:Cytogenetic andGenomeResearch 147.4 (2015), pp. 217–
239. issn: 1424-8581. doi: 10.1159/000444429.

[116] Philip C.J. Donoghue and Mark A. Purnell. “Genome duplication, ex-
tinction and vertebrate evolution”. In: Trends in Ecology & Evolution 20.6
(2005), pp. 312–319. issn: 0169-5347. doi: 10.1016/J.TREE.2005.
04.008.

[117] John T. Clarke, Graeme T. Lloyd, and Matt Friedman. “Little evidence
for enhanced phenotypic evolution in early teleosts relative to their liv-
ing fossil sister group”. In: Proceedings of the National Academy of Sciences
113.41 (2016), pp. 11531–11536. issn: 0027-8424. doi: 10.1073/PNAS.
1607237113.

[118] Paramvir Dehal and Jeffrey L. Boore. “Two rounds of whole genome du-
plication in the ancestral vertebrate”. In: PLoS Biology 3.10 (2005), e314.
issn: 15457885. doi: 10.1371/journal.pbio.0030314.

[119] Nicholas H. Putnam et al. “The amphioxus genome and the evolution of
the chordate karyotype”. In:Nature 453.7198 (2008), pp. 1064–1071. issn:
0028-0836. doi: 10.1038/nature06967.

[120] SusumuOhno. Evolution by Gene Duplication. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1970. isbn: 978-3-642-86661-6. doi: 10.1007/978-
3-642-86659-3.

[121] Allan Force et al. “Preservation of duplicate genes by complementary,
degenerative mutations”. In: Genetics 151.4 (1999), pp. 1531–1545. issn:
00166731. doi: 10101175.

https://doi.org/10.1101/gr.073676.107
https://doi.org/10.1016/j.gde.2007.09.007
https://doi.org/10.1038/nature04336
https://doi.org/10.1159/000444429
https://doi.org/10.1016/J.TREE.2005.04.008
https://doi.org/10.1016/J.TREE.2005.04.008
https://doi.org/10.1073/PNAS.1607237113
https://doi.org/10.1073/PNAS.1607237113
https://doi.org/10.1371/journal.pbio.0030314
https://doi.org/10.1038/nature06967
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10.1007/978-3-642-86659-3
https://doi.org/10101175

REFERENCES 267

[122] S. Jimenez-Delgado, J. Pascual-Anaya, and J. Garcia-Fernandez. “Implica-
tions of duplicated cis-regulatory elements in the evolution ofmetazoans:
the DDI model or how simplicity begets novelty”. In: Briefings in Func-
tional Genomics and Proteomics 8.4 (2009), pp. 266–275. issn: 1473-9550.
doi: 10.1093/bfgp/elp029.

[123] Ferdinand Marlétaz et al. “Amphioxus functional genomics and the ori-
gins of vertebrate gene regulation”. In: Nature 564.7734 (2018), pp. 64–
70. issn: 0028-0836. doi: 10.1038/s41586-018-0734-6.

[124] Cory YMcLean et al. “GREAT improves functional interpretation of cis-
regulatory regions”. In:Nature Biotechnology 28.5 (2010), pp. 495–501. doi:
10.1038/nbt.1630.

[125] Feng Yue et al. “A comparative encyclopedia of DNA elements in the
mouse genome”. In:Nature 515.7527 (2014), pp. 355–364. doi: 10.1038/
nature13992.

[126] Naoki Irie and Shigeru Kuratani. “Comparative transcriptome analysis
reveals vertebrate phylotypic period during organogenesis”. In: Nature
Communications 2.1 (2011), p. 248. doi: 10.1038/ncomms1248.

[127] Itai Yanai. “Development and Evolution through the Lens of Global Gene
Regulation”. In: Trends in Genetics 34.1 (2018), pp. 11–20. doi: 10.1016/
J.TIG.2017.09.011.

[128] DDuboule. “Temporal colinearity and the phylotypic progression: a basis
for the stability of a vertebrate Bauplan and the evolution of morpholo-
gies through heterochrony.” In: Development (Cambridge, England). Supple-
ment 42 (1994), pp. 135–142. issn: 09501991. doi:10.1007/SpringerReference_
34725.

[129] HaiyangHu et al. “Constrained vertebrate evolution by pleiotropic genes”.
In:Nature Ecology & Evolution 1.11 (2017), pp. 1722–1730. doi: 10.1038/
s41559-017-0318-0.

[130] Martín Abadi et al. “TensorFlow: Large-ScaleMachine Learning on Het-
erogeneous Distributed Systems”. In: (2016). arXiv: 1603.04467.

[131] TG Tape. “Using the Receiver Operating Characteristic (ROC) curve to
analyze a classification model”. In: Univ. Nebraska Med. Cent (2000), pp. 1–
3.

https://doi.org/10.1093/bfgp/elp029
https://doi.org/10.1038/s41586-018-0734-6
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1038/nature13992
https://doi.org/10.1038/nature13992
https://doi.org/10.1038/ncomms1248
https://doi.org/10.1016/J.TIG.2017.09.011
https://doi.org/10.1016/J.TIG.2017.09.011
https://doi.org/10.1007/SpringerReference_34725
https://doi.org/10.1007/SpringerReference_34725
https://doi.org/10.1038/s41559-017-0318-0
https://doi.org/10.1038/s41559-017-0318-0
http://arxiv.org/abs/1603.04467

268 REFERENCES

[132] MatteoVietri Rudan and SuzanaHadjur. “GeneticTailors: CTCF andCo-
hesin Shape the Genome During Evolution”. In: Trends in Genetics 31.11
(2015), pp. 651–660. issn: 0168-9525. doi: 10.1016/J.TIG.2015.09.
004.

[133] Peter Heger et al. “The chromatin insulator CTCF and the emergence
of metazoan diversity”. In: Proceedings of the National Academy of Sciences
109.43 (2012), pp. 17507–17512. issn: 0027-8424. doi: 10.1073/pnas.
1111941109. url: https://www.pnas.org/content/109/43/
17507.

[134] David Martin et al. “Genome-wide CTCF distribution in vertebrates de-
fines equivalent sites that aid the identification of disease-associated genes”.
In: Nature Structural & Molecular Biology 18.6 (2011), pp. 708–714. issn:
1545-9993. doi: 10.1038/nsmb.2059.

[135] Rodolfo Ghirlando and Gary Felsenfeld. “CTCF: making the right con-
nections.” In: Genes & development 30.8 (2016), pp. 881–91. issn: 1549-
5477. doi: 10.1101/gad.277863.116.

[136] Melisa Gomez-Velazquez et al. “CTCF counter-regulates cardiomyocyte
development andmaturation programs in the embryonic heart”. In: PLOS
Genetics 13.8 (2017). Ed. by Gregory S. Barsh, e1006985. issn: 1553-7404.
doi: 10.1371/journal.pgen.1006985.

[137] Eduardo Soares and Huiqing Zhou. “Master regulatory role of p63 in epi-
dermal development and disease”. In: Cellular and Molecular Life Sciences
75.7 (2018), pp. 1179–1190. issn: 1420-682X. doi: 10.1007/s00018-
017-2701-z.

[138] Jillian M. Pattison et al. “Retinoic acid and BMP4 cooperate with p63 to
alter chromatin dynamics during surface epithelial commitment”. In: Na-
ture Genetics 50.12 (2018), pp. 1658–1665. issn: 15461718. doi: 10.1038/
s41588-018-0263-0.

[139] Lingjie Li et al. “TFAP2C- and p63-Dependent Networks Sequentially
Rearrange Chromatin Landscapes to Drive Human Epidermal Lineage
Commitment”. In: Cell Stem Cell 24.2 (2019), 271–284.e8. issn: 18759777.
doi: 10.1016/j.stem.2018.12.012.

[140] Nitish Shirish Keskar et al. “On Large-Batch Training for Deep Learning:
GeneralizationGap and SharpMinima”. In:CoRR abs/1609.04836 (2016).
arXiv: 1609.04836. url: http://arxiv.org/abs/1609.04836.

https://doi.org/10.1016/J.TIG.2015.09.004
https://doi.org/10.1016/J.TIG.2015.09.004
https://doi.org/10.1073/pnas.1111941109
https://doi.org/10.1073/pnas.1111941109
https://www.pnas.org/content/109/43/17507
https://www.pnas.org/content/109/43/17507
https://doi.org/10.1038/nsmb.2059
https://doi.org/10.1101/gad.277863.116
https://doi.org/10.1371/journal.pgen.1006985
https://doi.org/10.1007/s00018-017-2701-z
https://doi.org/10.1007/s00018-017-2701-z
https://doi.org/10.1038/s41588-018-0263-0
https://doi.org/10.1038/s41588-018-0263-0
https://doi.org/10.1016/j.stem.2018.12.012
http://arxiv.org/abs/1609.04836
http://arxiv.org/abs/1609.04836

REFERENCES 269

[141] Pär G Engström et al. “Genomic regulatory blocks underlie extensive mi-
crosynteny conservation in insects”. In:Genome research 17.12 (2007), pp. 1898–
1908.

[142] Robert K. Bradley et al. “Binding site turnover produces pervasive quan-
titative changes in transcription factor binding between closely related
Drosophila species.” In: 8.3 (2010). Ed. by Gregory A. Wray, e1000343.
issn: 1545-7885. doi: 10.1371/journal.pbio.1000343.

[143] Qiye He et al. “High conservation of transcription factor binding and evi-
dence for combinatorial regulation across six Drosophila species”. In:Na-
ture Genetics 43.5 (2011), pp. 414–420. issn: 1061-4036. doi: 10.1038/
ng.808.

[144] Mathilde Paris et al. “ExtensiveDivergence of Transcription Factor Bind-
ing in Drosophila Embryos with Highly Conserved Gene Expression”. In:
PLoS Genetics 9.9 (2013). Ed. by Patricia Wittkopp, e1003748. doi: 10.
1371/journal.pgen.1003748.

[145] PierreKhoueiry et al. “Uncoupling evolutionary changes inDNAsequence,
transcription factor occupancy and enhancer activity.” In: eLife 6 (2017).
issn: 2050-084X. doi: 10.7554/eLife.28440.

[146] Tanya Vavouri et al. “Parallel evolution of conserved non-coding ele-
ments that target a common set of developmental regulatory genes from
worms to humans”. In: Genome biology 8.2 (2007), R15.

[147] Camille Berthelot et al. “Complexity and conservation of regulatory land-
scapes underlie evolutionary resilience of mammalian gene expression”.
In: Nature Ecology and Evolution 2.1 (2018), pp. 152–163. issn: 2397334X.
doi: 10.1038/s41559-017-0377-2. arXiv: 125435 [10.1101].

[148] Justin Cotney et al. “The evolution of lineage-specific regulatory activities
in the human embryonic limb”. In: Cell 154.1 (2013).

[149] Steven K Reilly et al. “Evolutionary genomics. Evolutionary changes in
promoter and enhancer activity during human corticogenesis.” In: Science
(New York, N.Y.) 347.6226 (2015), pp. 1155–9. issn: 1095-9203. doi: 10.
1126/science.1260943.

[150] Diego Villar et al. “Enhancer evolution across 20 mammalian species”. In:
Cell 160.3 (2015). issn: 1097-4172.

[151] AndrewB. Stergachis et al. “Conservation of trans-acting circuitry during
mammalian regulatory evolution”. In:Nature 515.7527 (2014). issn: 1476-
4687. doi: 10.1038/nature13972.

https://doi.org/10.1371/journal.pbio.1000343
https://doi.org/10.1038/ng.808
https://doi.org/10.1038/ng.808
https://doi.org/10.1371/journal.pgen.1003748
https://doi.org/10.1371/journal.pgen.1003748
https://doi.org/10.7554/eLife.28440
https://doi.org/10.1038/s41559-017-0377-2
http://arxiv.org/abs/125435
https://doi.org/10.1126/science.1260943
https://doi.org/10.1126/science.1260943
https://doi.org/10.1038/nature13972

270 REFERENCES

[152] Jeff Vierstra et al. “Mouse regulatory DNA landscapes reveal global prin-
ciples of cis-regulatory evolution.” In: Science (New York, N.Y.) 346.6212
(2014), pp. 1007–12. issn: 1095-9203. doi:10.1126/science.1246426.

[153] Xiang Zhou et al. “Epigenetic modifications are associated with inter-
species gene expression variation in primates”. In: 15.12 (2014), p. 547.
issn: 1474-760X. doi: 10.1186/s13059-014-0547-3.

[154] Duncan T Odom et al. “Tissue-specific transcriptional regulation has di-
verged significantly between human and mouse.” In: Nature genetics 39.6
(2007), pp. 730–2. issn: 1061-4036. doi: 10.1038/ng2047.

[155] Alan P. Boyle et al. “Comparative analysis of regulatory information and
circuits across distant species”. In: Nature 512.7515 (2014). issn: 1476-
4687. doi: 10.1038/nature13668.

[156] Mark B. Gerstein et al. “Comparative analysis of the transcriptome across
distant species”. In:Nature 512.7515 (2014). doi:10.1038/nature13424.

[157] Brian Hendrich and Susan Tweedie. “The methyl-CpG binding domain
and the evolving role of DNA methylation in animals”. In: Trends in Ge-
netics 19.5 (2003), pp. 269–277. issn: 0168-9525. doi: 10.1016/S0168-
9525(03)00080-5.

[158] Manuel Irimia et al. “Extensive conservation of ancientmicrosynteny across
metazoans due to cis-regulatory constraints.” In: Genome research 22.12
(2012), pp. 2356–2367. issn: 1549-5469. doi: 10.1101/gr.139725.
112.

[159] Oleg Simakov et al. “Insights into bilaterian evolution from three spi-
ralian genomes”. In: Nature 493.7433 (). issn: 1476-4687. doi: 10.1038/
nature11696.

[160] Alex S. S Nord et al. “Comparative analysis of the transcriptome across
distant species”. In: Cell 155.7 (2013). issn: 1097-4172.

[161] N. Harmston, A. Baresic, and B. Lenhard. “The mystery of extreme non-
coding conservation”. In: Philosophical Transactions of the Royal Society B:
Biological Sciences 368.1632 (2013), pp. 20130021–20130021. issn: 0962-
8436. doi: 10.1098/rstb.2013.0021.

[162] I. Maeso et al. “Deep conservation of cis-regulatory elements in meta-
zoans”. In: Philosophical Transactions of the Royal Society B: Biological Sci-
ences 368.1632 (2013), pp. 20130020–20130020. issn: 0962-8436. doi:10.
1098/rstb.2013.0020.

https://doi.org/10.1126/science.1246426
https://doi.org/10.1186/s13059-014-0547-3
https://doi.org/10.1038/ng2047
https://doi.org/10.1038/nature13668
https://doi.org/10.1038/nature13424
https://doi.org/10.1016/S0168-9525(03)00080-5
https://doi.org/10.1016/S0168-9525(03)00080-5
https://doi.org/10.1101/gr.139725.112
https://doi.org/10.1101/gr.139725.112
https://doi.org/10.1038/nature11696
https://doi.org/10.1038/nature11696
https://doi.org/10.1098/rstb.2013.0021
https://doi.org/10.1098/rstb.2013.0020
https://doi.org/10.1098/rstb.2013.0020

REFERENCES 271

[163] Juan R. Martinez-Morales. “Toward understanding the evolution of ver-
tebrate gene regulatory networks: Comparative genomics and epigenomic
approaches”. In: Briefings in Functional Genomics 15.4 (2016), pp. 315–321.
issn: 20412657. doi: 10.1093/bfgp/elv032.

[164] Juan Wang, Hillel T. Schwartz, and Maureen M. Barr. “Functional Spe-
cialization of Sensory Cilia by an RFX Transcription Factor Isoform”. In:
Genetics 186.4 (2010), pp. 1295–1307. issn: 0016-6731. doi: 10.1534/
genetics.110.122879.

[165] Daniel W. McShea. “Possible largest-scale trends in organismal evolu-
tion: Eight “Live Hypotheses””. In: Annual Review of Ecology and Systemat-
ics 29.1 (1998), pp. 293–318. doi: 10.1146/annurev.ecolsys.29.1.
293.

[166] Detlev Arendt. “The evolution of cell types in animals: Emerging prin-
ciples from molecular studies”. In: Nature Reviews Genetics 9.11 (2008),
pp. 868–882. issn: 14710056. doi: 10.1038/nrg2416.

[167] Jean-Francois Gout and Michael Lynch. “Maintenance and Loss of Du-
plicated Genes by Dosage Subfunctionalization”. In:Molecular Biology and
Evolution 32.8 (2015), pp. 2141–2148. issn: 0737-4038. doi: 10.1093/
molbev/msv095.

[168] AdamM. Session et al. “Genome evolution in the allotetraploid frogXeno-
pus laevis”. In:Nature 538.7625 (2016), pp. 336–343. issn: 0028-0836. doi:
10.1038/nature19840.

[169] Tine Blomme et al. “The gain and loss of genes during 600million years of
vertebrate evolution”. In:Genome Biology 7.5 (2006), R43. issn: 14656906.
doi: 10.1186/gb-2006-7-5-r43.

[170] DomnéFarrè andM.MarAlbà. “Heterogeneous patterns of gene-expression
diversification in mammalian gene duplicates”. In: Molecular Biology and
Evolution 27.2 (2010), pp. 325–335. issn: 07374038. doi:10.1093/molbev/
msp242.

[171] Honglak Lee et al. “Convolutional deep belief networks for scalable un-
supervised learning of hierarchical representations”. In: Proceedings of the
26th annual international conference onmachine learning. ACM. 2009, pp. 609–
616.

[172] Luisa M. Zintgraf, Taco S. Cohen, and Max Welling. “A New Method
to Visualize Deep Neural Networks”. In: CoRR abs/1603.02518 (2016).
arXiv: 1603.02518. url: http://arxiv.org/abs/1603.02518.

https://doi.org/10.1093/bfgp/elv032
https://doi.org/10.1534/genetics.110.122879
https://doi.org/10.1534/genetics.110.122879
https://doi.org/10.1146/annurev.ecolsys.29.1.293
https://doi.org/10.1146/annurev.ecolsys.29.1.293
https://doi.org/10.1038/nrg2416
https://doi.org/10.1093/molbev/msv095
https://doi.org/10.1093/molbev/msv095
https://doi.org/10.1038/nature19840
https://doi.org/10.1186/gb-2006-7-5-r43
https://doi.org/10.1093/molbev/msp242
https://doi.org/10.1093/molbev/msp242
http://arxiv.org/abs/1603.02518
http://arxiv.org/abs/1603.02518

272 REFERENCES

[173] Luisa M. Zintgraf et al. “Visualizing Deep Neural Network Decisions:
Prediction Difference Analysis”. In: CoRR abs/1702.04595 (2017). arXiv:
1702.04595. url: http://arxiv.org/abs/1702.04595.

[174] Mathew G. Lewsey et al. “Determination and Inference of Eukaryotic
TranscriptionFactor Sequence Specificity”. In:Cell (2014). issn: 00928674.
doi: 10.1016/j.cell.2014.08.009.

[175] Robert D. Finn et al. Pfam: The protein families database. 2014. doi: 10.
1093/nar/gkt1223.

[176] MatthewT.Weirauch and T. R. Hughes. “A catalogue of eukaryotic tran-
scription factor types, their evolutionary origin, and species distribution”.
In: Sub-Cellular Biochemistry (2014). issn: 03060225. doi: 10.1007/978-
90-481-9069-0_3.

[177] Sean R Eddy. “A new generation of homology search tools based on prob-
abilistic inference.” In:Genome informatics. International Conference onGenome
Informatics (2009). issn: 0919-9454.

[178] Fabian Sievers et al. “Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega”. In:Molecular Systems
Biology (2011). issn: 17444292. doi: 10.1038/msb.2011.75.

[179] Simon J. van Heeringen and Gert Jan C. Veenstra. “GimmeMotifs: A de
novo motif prediction pipeline for ChIP-sequencing experiments”. In:
Bioinformatics (2011). issn: 13674803. doi:10.1093/bioinformatics/
btq636.

http://arxiv.org/abs/1702.04595
http://arxiv.org/abs/1702.04595
https://doi.org/10.1016/j.cell.2014.08.009
https://doi.org/10.1093/nar/gkt1223
https://doi.org/10.1093/nar/gkt1223
https://doi.org/10.1007/978-90-481-9069-0_3
https://doi.org/10.1007/978-90-481-9069-0_3
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.1093/bioinformatics/btq636
https://doi.org/10.1093/bioinformatics/btq636

273

List of Abbreviations

TF Transcription Factor
TFbs Transcription Factor binding site
CRE Cis Regulatory Element
TSS Transcription Start Site
NN artificial Neural Network
GO Gene Ontology
WGD Whole Genome Duplication
ROC Receiver Operating Characteristic

274

List of Figures

1 Transcription Regulation . 5

1.1 Beads on a string . 9
1.2 ChIP-seq simple model . 11
1.3 ChIP-seq on a genome browser 11
1.4 A PWM . 12
1.5 An iconic NN . 14

2.1 ATAC-seq protocol . 27
2.2 ATAC-seq protocol . 27
2.3 ATAC-seq protocol . 28
2.4 Histone modifications simple model 31
2.5 Vertebrates on the tree of life 34
2.6 Tunicate Illustrations . 35

4.1 Effective genome sizes . 44
4.2 Intergenic distance sizes . 45
4.3 GREAT region sizes . 46
4.4 ChIP-seq peak widths . 48
4.5 H3K4me3 peak numbers . 49
4.6 H3K27ac peak numbers . 50
4.7 ChIP-seq genome coverage 51
4.8 ATAC-seq peak counts . 53
4.9 ATAC-seq peak - TSS distances 54
4.10 ATAC-seq peak - TSS distances normalized 55
4.11 CRE count distributions 2 . 56
4.12 Matched genomic sizes . 57
4.13 Matched genomic sizes . 58
4.14 Downsampling . 59

5.1 Human-Amphioxus NACC 62

LIST OF FIGURES 275

5.2 Human-Chordates NACC . 63
5.3 Phylotypic period: RNA . 65
5.4 CIS Phylotypic . 66
5.5 CIS Phylotypic . 67
5.6 WGCNA module annotation 68
5.7 Module-module homology comparisons 69
5.8 Module-module Cis-Regulatory comparisons 71
5.9 Module-module comparisons 72
5.10 Module-module comparisons 73

6.1 Homology groups - Landscape sizes and CRE counts 76
6.2 CRE counts HousekeepingTransdev 77
6.3 CRE counts homology groups MINXMAN 78
6.4 Gene Fate . 79
6.5 Gene Fate - Schematics . 80
6.6 Gene Fate - Distributions . 81
6.7 CRE counts by WGD fate . 82
6.8 CRE counts by domains lost 83
6.9 ROC curve examples . 91

7.1 Nimrod Seq Layer 1 neuron 96
7.2 Nimrod Seq Layer 2 . 97
7.3 Nimrod Seq Layer 1 & 2 . 98
7.4 Nimrod ATAC layers . 99
7.5 Nimrod zipper Layer . 100
7.6 Nimrod Max Pool . 101
7.7 Nimrod Max Pool . 102
7.8 Nimrod Max Pool . 103

8.1 NN training progress . 106
8.2 NN batch size . 107
8.3 NN learning rate . 108

9.1 Comparisons to other tools 110
9.2 Cross species nimrod . 112
9.3 Cross species comparisons . 113

10.1 WGD effects on different genes 123

11.1 NN features . 128

276

11.2 NN high order features . 128

List of Tables

13.1 M1957 dataset . 248
13.2 M2321 dataset . 248
13.3 ChIP-seq assays . 249
13.4 ATAC-seq assays . 249
13.5 The genomes used . 249
13.6 RNA for NACC - Amphioxus 250
13.7 RNA for NACC - Zebrafish 251
13.8 RNA for NACC - Mouse . 252
13.9 RNA for NACC - Human . 253

	Declaration of Authorship
	Resumen
	Abstract
	Acknowledgements
	Foreword: A few words on the Thesis itself
	 Repository - Contact Info
	I Introduction
	Transcription Regulation
	Trans-Regulation
	DNA-protein Binding
	Wet lab techniques
	Dry lab techniques
	PWMs
	Other seq-based approaches

	Neural Networks
	How NNs work

	Other non seq-based approaches
	Nimrod

	Cis-Regulation
	Cis-Regulation
	Promoters
	Enhancers

	Chromatin accessibility
	ATAC-seq

	Histone modifications
	H3K4me3
	H3K27ac

	Under the light of Evolution
	 on the Tree of life
	Amphioxus
	Whole Genome Duplications

	 Objectives

	II Results: The origins of vertebrate gene regulation
	 Introductory Analyses
	The genomes
	Intergenic regions
	GREAT regions
	Histone Modification ChIP-seq
	Width of peaks
	Number of peaks/ Genome coverage

	ATAC-seq
	CRE-TSS distances
	Higher regulatory content
	Matched genomic region sizes
	Downsampling

	 Conservation of cis regulation
	 NACC
	The phylotypic period
	 Gene Modules
	The WGCNA analysis
	 Homologous Gene Content
	 Cis-Regulatory Content

	 Regulatory content and gene fate after WGD
	 Gene Fate after WGD
	 CREs per paralog
	 Increased regulatory complexity in functionally specialized ohnologs

	III Results: Detecting TF binding with a Neural Network
	Training concepts
	Choice of data
	Batch size
	Learning rate
	Early stopping
	 Evaluating a classifier

	CTCF and p63

	Architecture
	The first two layers
	Merging the first two layers
	The deeper layers

	Training results
	Early stopping
	Batch size
	Learning rate

	Performance and comparison with other tools
	Cross species

	IV Discussion
	Evolution of Cis regulation
	Conservation of CREs
	Functional conservation

	Complexity
	Complexity and WGD

	Fate

	On artificial Neural Networks and TF binding sites
	 Conclusions

	V Methods
	Notebooks
	PWMs used
	TF annotation and TF binding specificity prediction
	TF motif mapping onto ATAC-seq peaks
	GenomeSizes
	Intergenic and GREAT size distributions
	Make TSS files
	Make GREAT-like files
	Make Intergenic region files
	ChIP-seq overview
	ATAC-seq overview
	CRE-TSS distances
	CRE count distributions
	CRE count stratified
	Downsampling
	Cis-content Phylotypic
	 Module-module comparisons
	NACC

	VI Appendices
	Tables
	Nimrod data
	ATAC-seq data
	Genomes
	RNA assays

	References
	List of Figures
	List of Tables

