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Abstract 

The purpose of this study was to examine the differences in coordination variability in 
running gait between trained runners and non-runners using continuous relative phase 
analysis. Lower extremity kinematic data were collected for twenty-two participants during 
the stance phase. The participants were assigned to either a runner or non-runner group 
based on running volume training. Segment coordination and coordination variability were 
calculated for selected hip-knee and knee-ankle couplings. Independent t-tests and 
magnitude based inferences were used to compare the two groups. There were limited 
differences in the continuous relative phase and its variability among runners and non-
runner groups. The runners group achieved moderately lower coordination compared with 
non-runners group in the phase angle for hip abduction/adduction and knee 
flexion/extension. The runners tended to show moderately lower coordination variability in 
the phase angle for knee flexion/extension and subtalar inversion/eversion in comparison to 
non-runners group. These results suggested that levels of experience as estimated from 
weekly training volume had little influence on coordination and its variability. 

  



Introduction 

Running is a fundamental skill that is acquired during childhood and can be improved with 

practise (Malina, Bouchard, & Bar-Or, 2004). There are various perspectives in the literature 

on the assessment of running biomechanics, including the  analysis of intersegmental 

coordination (Hamill, Van Emmerik, Heiderscheit, & Li, 1999) which can facilitate the 

assessment of synchrony between segment movements. A lack of within-limb coordination 

across the stance phase could cause disturbances, which could in turn, increase  injury risk 

or reduce movement efficiency (Boyer, Silvernail, & Hamill, 2014; DeLeo, Dierks, Ferber, & 

Davis, 2004; Hamill et al., 1999). It is also known that the level of coordination of a moving 

segment can be influenced by the level of practical skill (Bernstein, 1967).  

In recreational runners, there are considerable variations in the level of practise, particularly 

training volume, with some runners demonstrating large training volumes (more than 50 km 

per week) and others, smaller volumes (approximately 25 km per week). Recent research 

has found differences in kinematic waveforms of the pelvis, hip, knee and foot during the 

running gait cycle between runners of differing training volumes (Boyer et al., 2014).  

However, there remains a lack of research examining the effect of practise volume on 

coordination in running. Consequently, more studies are needed to provide more 

understanding of the interrelation between inter-limb coordination and training volume and 

thereby deepen insights on running biomechanics. 

A factor which may affect the coordination variability is the task-related skill level of the 

participants. The relationship between variability and skill level is complex because this 

depends on the type of movement analysed (Preatoni et al., 2013). Thus it should not be 

necessarily assumed that increased movement variability is attributed to higher levels for 

any task (Hiley, Zuevsky, & Yeadon, 2013). To date, few studies have examined the 

variability of running gait and coordination in relation to skill level. Nakayama et al. (2010) 

observed less variability in trained runners than non-runners suggesting that larger practice 



volumes in a task could produce stable and consistent motor patterns. These results 

however, could be limited to the type of variability analysed. Hamill, Palmer and Van 

Emmerik (2012) identified two types of variability: “End-point” variability (e.g. stride length, 

stride time, etc.) and coordinative variability (segmental relations). From this perspective, 

the “end-point” variability should decrease at higher skill levels (Nakayama et al., 2010), 

while high coordinative variability should permit a greater degree of flexibility in the 

movement pattern that may facilitate the goal-directed performance against any disturbance 

(Hiley et al., 2013). 

The continuous relative phase (CRP) has been used as a method to provide a continuous 

measure of joint coupling during the stride cycle, using the relative phasing between two 

segments or joints (Hamill, Haddad, & McDermott, 2000). This measure provides a 

coordination variability profile which permits the calculation of the standard deviation on a 

point-by-point basis over the complete cycle or a portion of the running cycle (Hamill et al., 

2012). Previous research (Dierks & Davis, 2007; Hamill et al., 2012, 1999; Hein et al., 2012; 

Miller, Meardon, Derrick, & Gillette, 2008) has focused on analysing whether CRP variability 

differentiates between healthy and injured runners however, the effects of other aspects 

such as the skill level, which could influence the coordination between segments remain 

unclear.  

Thus, the objectives of this study were to examine the differences in coordinative variability 

in running gait between trained runners and non-runners. Continuous relative phase (CRP) 

analysis was used to assess coordination variability differences between trained runners 

and non-runners. It was hypothesised that there would be differences in coordination 

variability between runners of different skill levels. 

  



Methods 

Twenty-two participants were recruited and these were divided into two groups. A runner 

group, who had undergone running distance training of at least five days per week for the 

previous 12 months.  A non-runners, who had not undergone running distance training nor 

practiced recreational running more than two days a week. The runners group consisted of 

10 competitive females athletes (participating in regional and national championships) aged 

23 ± 2 years, with a mass of 52 ± 5 kg and a height of 1.61 ± 0.06 m with training volume 

greater than 35 km per week. The non-runners group consisted of 12 females aged 24 ± 4 

years (mean ± SD), with a mass of 55 ± 5 kg and a height of 1.64 ± 0.05 m with training 

volume not exceeding 20 km per week. There were no significant differences between the 

two groups with regard to their mean age, height, and weight (t < 1.191, p > 0.247). All 

participants had been free from any lower extremity musculoskeletal injury in the previous 

12 months. The study had ethical approval from the University research ethics committee 

and all participants signed informed consent forms before participating in the study. 

A 5-camera VICON motion capture system (Bonita-3, Vicon Motion Systems, Oxford, UK), 

and 9-mm retro-reflective markers, were used to collect 3-dimensional (3D) kinematic data 

at 200 Hz during treadmill running (Magna Pro, BH, Spain). Markers were placed in the 

same manner described by Pohl, Lloyd and Ferber (2010). In brief, 14 anatomical markers 

were attached bilaterally to the following landmarks: the greater trochanters, medial and 

lateral knee joint lines and medial and lateral malleoli. Technical marker clusters, glued to a 

rigid plastic shell, were placed on the pelvis (three markers), and bilateral thigh and shank 

(four markers each) with self-adhering straps. Three markers were taped to the heel counter 

of each of the standard running shoes (Nike, Air Pegasus). These twenty-five markers 

represented seven rigid segments. 



Following placement of all the anatomical and segment markers, the participant was asked 

to stand for a static trial where standing position was controlled using a graphic template 

placed on the treadmill with feet positioned 0.3 m apart and pointing straight ahead. Once 

the feet were placed in the standardized position, the subject was asked to cross their arms 

over their chest and stand still while one-second of marker location data were recorded to 

identify joint centre locations and to calculate the segment coordinate systems. Upon 

completion of the static trial, the 14 markers on the anatomical landmarks were removed. 

All participants were permitted as much time as they required to select a comfortable 

treadmill speed and to accommodate to the treadmill. Running kinematic data were collected 

while participants ran at a self-selected, comfortable speed on a treadmill for 30 seconds 

during which, approximately 30-45 consecutive strides were collected for processing and 

analysis. After marker trajectories were filtered with a 10 Hz low-pass, 2nd order recursive 

Butterworth filter, 3D rigid body kinematics were calculated using 3D GAIT software 

(Running Injury Clinic Inc., Calgary, Alberta, Canada), then segmented for the stance phase 

based on a single value decomposition approach outlined by Söderkvist and Wedin (1993) 

and the joint coordinate system suggested by Cole, Nigg, Ronsky and Yeadon (1993). 

For analysis, the stance phase was divided into four phases similar to previous studies (Hein 

et al., 2012; Perry & Burnfield, 2010). Loading stance was defined as the first 20% of stance 

phase, midstance phase ranged from 21% to 50% of stance phase, terminal stance phase 

ranged from 51% to 80% of stance phase, and the  last 20% of the stance phase was defined 

as pre-swing. 

CRP variability was calculated using a custom MATLAB routine (The Mathworks, Natick, 

MA). In brief, the CRP was calculated by generating a phase plane portrait of the time-

normalised angular velocity curves, which were plotted against the time-normalised angular 

position curves for two segments of interest. Phase angles were calculated for all 101 points 

in the phase plane portrait and the CRP angle was calculated by subtracting the phase angle 



of the distal segment from the phase angle of the proximal segment. CRP values ranged 

between -180° to 180° with CRP values of 0° indicating complete in-phase coupling and 

180° or -180° indicating complete out-of-phase coupling. 

The angular displacement and angular velocity data sets of each stance phase were 

normalised to 101 points. Phase-plane plots were created with angular displacement in the 

x-axis and angular velocity in the y-axis for each joint movement. The phase-plane plots 

were normalised to a range of -1 to +1 for the angular displacement and angular velocity 

was normalised to absolute maximum value (Hamill et al., 1999; Hein et al., 2012; Miller et 

al., 2008). For each phase-plane plot, the phase angle was constructed using the following 

equation: 

∅(𝑡𝑡) = 𝑡𝑡𝑡𝑡𝑡𝑡−1 𝜔𝜔(𝑡𝑡)
𝜃𝜃(𝑡𝑡)

  

Where: Φ is the phase angle, ω is the normalised angular velocity, and θ is the normalised 

angular displacement at time t.  

The phase angle was presented in the range 0º and 180º to avoid discontinuities which can 

appear at the transition from quadrant 2 (180º) to quadrant 3 (-180º) (Hamill et al., 1999; 

Hein et al., 2012). The CRP between two joints was calculated as the difference between 

the phase angles. For each coupling, the distal segment was subtracted from the proximal. 

CRPs were calculated from the phase angles for hip flexion/extension and knee 

flexion/extension (HIPflex/ex-KNEEflex/ex), hip abduction/adduction and knee flexion/extension 

(HIPabd/ad-KNEEflex/ex), knee flexion/extension and ankle flexion/extension (KNEEflex/ex-

ANKLEflex/ex), knee flexion/extension subtalar inversion/eversion (KNEEflex/ex-ANKLEin/ev). 

These joint couplings were selected based on their importance for enhancing running 

performance (Schache, Dorn, Williams, Brown, & Pandy, 2014) and previous research on 

kinematic coupling in runners (Cunningham, Mullineaux, Noehren, Shapiro, & Uhl, 2014; 



Dierks & Davis, 2007; Hafer, Freedman Silvernail, Hillstrom, & Boyer, 2015; Hein et al., 

2012; Kurz, Stergiou, Buzzi, & Georgoulis, 2005; McClay & Manal, 1997; Wheat, 

Baltzopoulos, Milner, Bartlett, & Tsaopoulos, 2005). 

Continuous methods were used to calculate the coordination variability and thus were based 

on the CRP from the stance phase of 10 consecutive strides on the same subject and the 

four previously identified sub-phases of the stance phase. From the CRP data, an ensemble 

average curve and standard deviation of each data point on the mean curve were calculated. 

The average of the standard deviations (SDavg) for all strides were calculated using the 

following equations (James, 2004): 

 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 = ��∑ 𝑆𝑆𝑆𝑆𝑖𝑖
2𝑘𝑘

𝑖𝑖=1
𝑘𝑘

� 

For the equations, SDavg is the average of individual point-by-point standard deviation values; 

i indicates the specific value for the ith sample, SDi is the standard deviation value for the ith 

sample, and k is the number of samples. 

All statistical analysis was conducted using PASW (SPSS, Inc., Chicago, IL). A Shapiro-

Wilk test was executed to verify the normality of data. Independent samples Student’s t-tests 

were conducted to determine group differences in CRP and its variability. The statistical 

significance level was set at P < .05. Statistical significance analysis was completed by the 

estimation of magnitude of differences between groups calculated and expressed as 

standardised differences (Cohen, 1977), which were calculated using pooled standard 

deviations. In determining group differences magnitude based inferences were given priority 

over t-tests. The criteria to interpret the standardised differences were: trivial = 0.00–0.19; 

small = 0.20–0.59; moderate = 0.60–1.19; large = 1.20-1.9; very large = 2.0-4.0 and; nearly 

perfect >4.0 (Hopkins, Marshall, Batterham, & Hanin, 2009). Confidence intervals (90%) and 

probabilities that the true effect was substantially positive and negative were estimated 



according to Hopkins et al. (2009). The scale for interpreting the probabilities for a 

mechanistic effect based on the 90% confidence limits were: <1%, almost certainly not; >1-

5%, very unlikely; >5-25%, unlikely; >25-75%, possibly; >75-95%, likely; >95-99%, very 

likely; and >99%, almost certainly. When the positive and negative values were both >5%, 

the inference was classified as unclear (Batterham & Hopkins, 2006). All calculations were 

completed using a pre-designed spreadsheet (Hopkins, 2006). 

  



Results 

The runners group chose a higher speed at comfortable pace, t = 3.809, p < 0.05 (3.38 ± 

0.44 vs. 2.75 ± 0.18 m·s-1) than the non-runners group. The CRP profiles for runners and 

non-runners groups during the stance phase are shown in Figure 1. KNEEflex/ex-ANKLEin/ev 

ranging between ± 50º and remaining close to an in-phase relationship for much of the 

stance phase, while other coupling pairs ranged between ± 150º and demonstrating a more 

out-of-phase coordination pattern. For in-phase motions, CRP values approaching 0º 

indicated that the phase angles for the two joints moved in a similar fashion. A CRP 

approaching ± 180º indicated that the two joints were moving out-of-phase and both motions 

exhibited opposing movements (Dierks & Davis, 2007). 

There were no statistically significant differences between the non-runners and runners 

groups in the CRP values for any of the coupling pairs analysed (t < 1.598, p > 0.126), 

however, the magnitude based inferences enabled more precise tracking of differences 

between groups and some of the differences were substantially clear (Figure 2). For 

example, the runners group achieved the highest similarity in the movements (moderately 

lower average CRP angles) of HIPabd/ad-KNEEflex/ex across of entire stance phase (with 

chances of greater/similar/lower values of 4/9/87%) compared with non-runners group. 

When the stance phase was divided into four intervals the runners group achieved 

moderately lower CRP angles in the HIPabd/ad-KNEEflex/ex during the midstance phase 

(4/17/79%), while the non-runners group achieved moderately lower CRP angles in 

KNEEflex/ex-ANKLEflex/ex (80/16/4%) during pre-swing phase. 

Figure 3 illustrates the CRP variability for the runners and non-runners groups during the 

stance phase in the four coupling relationships that were analysed. Average CRP variability 

in the stance phase across the four coupling pairs analysed ranged from 5.1º to 18.4º. 

Outcome coordination variability increased as more distal segments were involved in the 



CRP variability calculation. The hip flexion-extension coupling pair showed the lowest values 

for average CRP variability (HIPflex/ex-KNEEflex/ex: non-runners group: 5.5, runners group: 

5.1) and the ankle eversion-inversion coupling pair showed the highest values (KNEEflex/ex-

ANKLEev/in: non-runners group: 18.4, runners group: 12.7). 

The results showed that the variability values were not similar throughout the entire stance 

phase and the higher scores of CRP variability were achieved at the start or end of the 

contact period. When the phase angles included only movements in the sagittal plane, the 

higher variability was achieved in the initial stance (HIPflex/ex-KNEEflex/ex > 6.4º, KNEEflex/ex- 

ANKLEflex/ex > 14.5º). Higher CRP variability values were observed in the pre swing phase 

when movements in the frontal plane were included in the coupling pair (HIPabd/ad-KNEEflex/ex 

> 12.6º, KNEEflex/ex- ANKLEin/ev > 17.6º). 

There were no statistically significant differences between the non-runners and runners 

groups in the CRP variability any of the coupling pairs analysed (t < 1.700, p > 0.106). 

However the magnitude based inferences revealed differences in the CRP variability 

between groups in some of parameters studied; these differences tended to show lower 

variability in runners group compared with non-runners group. The average CRP variability 

for KNEEflex/ex-ANKLEin/ev in runners group was moderately lower (with chances of 

greater/similar/lower values of 3/17/80%) in comparison to non-runners group. When 

considering the analysis of the intervals in which the stance phase was divided, moderately 

lower variability in runners group was found in KNEEflex/ex-ANKLEflex/ex during midstance 

phase (2/14/75%), HIPabd/ad-KNEEflex/ex during terminal phase (3/20/77%), KNEEflex/ex-

ANKLEin/ev during pre-swing phase (2/13/85%). 

  



Discussion 

The main finding in this study was that there were few differences in CRP and CRP variability 

between runners and non-runners groups. Only three CRP variables analysed showed 

moderate differences between groups. In addition, these were in opposite directions 

depending on the joint coupling analysed. The HIPabd/ad-KNEEflex/ex profile (average and 

during midstance phase) in runners group was closer to in-phase coupling than in non-

runners group, while the KNEEabflex/ex-ANKLEflex/ex profile during preswing phase in non-

runners group was closer to in-phase coupling than in runners group. This discrepancy in 

results was consistent with the literature for different skills. Depending on the skill analysed 

and the coupling joints examined, CRP profiles between groups of differing performance 

levels may be: similar (Seifert et al., 2011), closer to in-phase in experts (Williams et al., 

2016) or novices (Seifert, Leblanc, Chollet, & Delignières, 2010). These results suggest the 

need for more studies which analyse the influence of performance level on the CRP profile 

in order to determine if this can be effectively used to distinguish athletes of different 

performance levels. 

Although in four of the parameters that analysed the CRP variability, a moderately increase 

in coupling variability was observed in the of non-runners group compared to runners group, 

most variables indicated unclear differences between groups. These results are in contrast 

to previous studies (Nakayama et al., 2010) that analysed the influence of running 

experience on the variability of gait cycle parameters but found that running experience was 

accompanied by lower variability in gait measures. For example, Nakayama et al. (2010) 

observed lower variability of stride time when comparing runners and non-runners groups, 

however, these apparently conflicting results may be due to the difference in the parameters 

analysed. Nakayama et al. (2010) analysed parameters related to end-point variability such 

as the spatio-temporal variables, while the present study analysed joint coordination 

variability. Reduced end-point variability can be expected in trained runners resulting from 



optimization of the task (Nakayama et al., 2010) whereas a higher level of coordination 

variability could be explained by greater flexibility in achieving a particular movement task 

(Hamill et al., 2012). Despite this, the results of this study showed that the variability of joint 

coupling during the stance phase was not dependent running experience or by 

consequence, training volume.   

To our knowledge, no previous studies have investigated differences in coordination 

variability between runners with respect to skill level, while several studies have analysed 

the influence of skill level on the coordination variability in different sport skills (Cazzola, 

Pavei, & Preatoni, in press; L. Seifert et al., 2011; Ludovic Seifert, Leblanc, Chollet, & 

Delignières, 2010; Sides & Wilson, 2012; Williams et al., 2015). These studies suggested 

that coordination variability may be a useful surrogate measure for detecting skill-dependent 

factors in sports performance. However in the present study, very few differences were 

found in the coordination variability throughout the stance phase of running between runners 

and non-runners groups. 

The apparent discrepancy between running and other skills could be explained by various 

factors. Since this study used a treadmill to evaluate the coordination variability in runners, 

the imposition of a constant velocity could have removed the tendency to adapt to sudden 

changes in the environment and less flexibility in movement was required by the participants 

(Cazzola et al., in press; Lindsay, Noakes, & McGregor, 2014; Wheat, Baltzopoulos, Milner, 

Bartlett, & Tsaopoulos, 2005). This factor could reduce the range of variability scores in both 

groups resulting in equalisation of the measures of coordination variability. Despite this, 

recent research on the coordination variability on a treadmill in race walkers (Cazzola et al., 

in press) found differences between race walkers of different skill levels. Translating these 

findings to running, suggests that the use of a treadmill to assess variability may not be the 

sole cause of similarity in CRP variability across groups. 



The biomechanical differences between stance and swing phases in running could also 

provide some explanations for the results of this study. During the stance phase, the lower 

limb adjusts the movement pattern as a closed kinetic chain whereas during the swing, it 

behaves like an open kinetic chain. Similar to previous studies (Dierks & Davis, 2007; Foch 

& Milner, 2013; Hein et al., 2012), the present study analysed the coordination variability 

only in the stance phase. Nevertheless, closed kinetic chain activities could result in lower 

variability due to the reduced need for adaptability to environmental changes compared with 

open kinetic chain activities. Hamill et al. (1999) analysed the CRP variability between 

healthy and injured runners during the entire gait cycle and observed greater differences 

during the swing phase compared to stance phase. Although the highest peaks of variability 

were achieved in the transition periods between stance and swing. In the present study the 

variability was studied separately in the different functional sub phases in which the support 

phase can be divided.  

The few differences found between groups did not concentrate on a single subphase. The 

three variables that showed differences between groups were distributed in three different 

subphases without showing a clear tendency.Therefore, the similar levels of coordination 

variability between the runners of different experience in this study could be due to the 

expected lower variability in closed kinetic chain tasks. Despite this, Sides & Wilson, (2012) 

observed differences in coordination variability in the  closed kinetic chain task of cycling 

between cyclists of different levels of experience. Although the running stance phase and 

cycling can be considered as closed kinetic chain tasks, further studies are needed to 

determine if coordination variability can be used to distinguish between athletes of different 

skill level in closed kinetic chain tasks. 

In this study the participants self-selected their running velocity and the mean velocities of 

the two groups were different. This difference was expected due to the differences in the 

levels of performance between groups. It is assumed that the self-selected velocity 



represented the velocity at which participants completed the largest volume of training and 

therefore represented the participants’ most common kinematic patterns during running. It 

is possible that the differences in velocity could largely explain the results of this study. 

Previous research on coordination variability shows several studies that use self-selected 

running velocities (Hafer et al., 2015; Hamill et al., 1999; Kurz et al., 2005; Miller et al., 2008) 

and others that use specifically defined velocities (Dierks & Davis, 2007; Foch & Milner, 

2013; Hein et al., 2012). Choosing the same velocity for both groups could result in changes 

in coordination variability and a change in the running velocity could also be accompanied 

by changes in the amplitude of movement or alterations in the timing of the movement. This 

could modify the predefined movement pattern and consequently change the variability in 

coordination patterns (Bartlett, Wheat, & Robins, 2007). Further studies are needed to 

advance the understanding of how the running velocity influences the coordination 

variability. 

In summary, this study has demonstrated limited differences in the level of CRP and CRP 

variability among runners and non-runners groups and thus different levels of experience as 

estimated from weekly training volume. The few differences found in the CRP values 

suggest that the degree of coordination of the lower limb joints during running at a self-

selected speed is not affected by the experience of the runners. Although few CRP variability 

parameters were different between groups, these differences were in the same direction: 

the runners group showed lower variability degree in the CRP profile. This suggests the 

need for more studies which analyse how the running experience affects the coordination 

variability. 
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Figures 

 
Figure 1. Average continuous relative phase for non-runners (dashed) and runners (black) 
groups normalized to stance phase: a) HIPflex/ex-KNEEflex/ex, b) HIPabd/ad-KNEEflex/ex, c) 
KNEEflex/ex-ANKLEflex/ex, d) KNEEflex/ex-ANKLEin/ev 95% confidence intervals and effect sizes 
(ES) values are also presented. The vertical lines divide stance phase into four intervals 
according to (Perry & Burnfield, 2010) 

  



 
Figure 2. Differences (90% confidence intervals) in CRP and CRP variability for:  a) HIPflex/ex-
KNEEflex/ex, b) HIPabd/ad-KNEEflex/ex, c) KNEEflex/ex-ANKLEflex/ex, d) KNEEflex/ex-ANKLEin/ev. 
Shaded areas represent trivial differences 

  



 
Figure 3. Average continuous relative phase variability for non-runners (dashed) and 
runners (black) groups normalized to stance phase: a) HIPflex/ex-KNEEflex/ex, b) HIPabd/ad-
KNEEflex/ex, c) KNEEflex/ex-ANKLEflex/ex, d) KNEEflex/ex-ANKLEin/ev. 95% confidence intervals 
and effect sizes (ES) values are also presented. The vertical lines divide stance phase into 
four intervals according to (Perry & Burnfield, 2010) 

 

 


