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ABSTRACT 

Prohibitins (PHBs) are a class of conserved mitochondrial proteins that 

profoundly influence ageing. PHB depletion shortens the lifespan of wild type 

animals, while it causes a dramatic extension in metabolically compromised 

daf-2(e1370) mutants. This opposing lifespan phenotype is attributed to 

alterations in mitochondrial function and metabolism, but the exact function of 

PHBs is yet to be deciphered.  This project was developed to better understand 

the function of the essential mitochondrial prohibitins in the regulation of 

ageing. To elucidate novel signalling mechanisms mediating the metabolic 

adjustments that lead to opposite ageing outcomes in response to PHB 

depletion, we performed a kinase RNAi screen using prohibitin deletion 

mutants. First, we characterized prohibitin deletion mutants. As these mutants 

are sterile, they are maintained balanced heterozygous. We accomplished a 

sorting protocol for selection of homozygous PHB mutants. We used vital Nile 

Red (NR) staining as a read-out as PHB depletion reduces NR staining. In order 

to quantify the intensity of NR staining, we developed an image analysis 

protocol. From the screen, we identified the conserved Glycogen Synthase 

Kinase-3 (GSK-3), as a strong suppressor of the reduced NR staining phenotype 

caused by prohibitin deletion mutants.  

Beyond its role as a regulator of insulin-dependent glycogen synthesis, GSK-3 

also controls critical cellular functions. We investigated how GSK-3 influences 

longevity in conditions of compromised insulin signalling and mitochondrial 

impairment. We demonstrate that GSK-3 depletion decreases wild type 

lifespan but does not affect phb-2 mutants. However, the long lived daf-2 and 

phb-2;daf-2 mutants show strong suppression in lifespan upon loss of GSK-3. 

We show that GSK-3 is ubiquitously expressed via CRISPR-Cas9 endogenous 

gene tagging. We examined several parameters, including alterations in energy 

stores - glycogen/triglycerides, mitochondrial respiration and lipid composition 

to deduce how metabolic alterations upon GSK-3 depletion influence lifespan 

and found that these varied in a genetic background specific manner. 

Additionally, we also prove that the activity of GSK-3 is essential in the 

intestine for normal ageing and especially for the long lived daf-2 mutants. Our 

data thus, delineates a novel role for GSK-3 in metabolism and its interplay 

with IIS and mitochondrial metabolism in ageing regulation. 
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ABBREVIATIONS 

°C - Degree Celsius 
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AMPK - AMP-activated protein kinase 
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PHA-4 - Defective pharyngeal development  

  protein 4 
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PTGS - Posttranscriptional gene silencing 
RISC - RNA-induced silencing complex 
RNAi - Ribonucleic acid interference 
ROS - Reactive oxygen species 
rpm - Revolution per minute 
siRNA - Small interfering RNAs 
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Tet - Tetracycline 
TOR - Target of rapamycin 
Tyr - Tyrosine 
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1. Caenorhabditis elegans as a model organism  

Caenorhabditis elegans (Caeno meaning recent; rhabditis meaning rod; elegans 

meaning nice) is a tiny, free-living, transparent nematode. It feeds on bacteria 

and can be easily isolated from rotting vegetable matter (Barriere and Felix 

2014). They are up to 1mm long in length and are usually observed under a 

dissecting or a compound microscope (Brenner 1974). It is easy and cheap to 

propagate large quantities of worms in the lab, either on a nutritive agar with a 

layer of E. coli cells or in liquid medium. Cholesterol is added because C. 

elegans is unable to synthesize sterol de novo. This method has been 

standardized amongst laboratories to enhance reproducibility of experiments 

(Houthoofd et al. 2003). Worms are usually grown at 15°C or 20°C. Worms 

develop much slower at lower temperatures, whereas at higher temperatures 

the rate of development is faster but reproductive health is often 

compromised. 

Originally derived from mushroom compost isolate, Dr. Sydney Brenner 

introduced the N2 strain that is being used as wild type, in the late 1950s. 

Though he had initially developed the nematode as a model organism to help 

answer questions in development and neurobiology (Brenner 1974),  over 

time, C. elegans has been developed and studied in laboratories worldwide in 

all research areas including metabolism, gene regulation, protein biology, 

ageing, evolution, etc. The Caenorhabditis Genetics Center (CGC), University of 

Minnesota (Gershon and Gershon 2002; Stiernagle 2006) provides nematode 

strains to the C. elegans community and it is recommended that experiments 

should be performed with stocks provided by the CGC. C. elegans has three 

Nobel prizes to its credit - awarded to Dr. Brenner, Dr. Horvitz, and Dr. Sulston 

in 2002 for their discoveries concerning genetic regulation of organ 

development and programmed cell death (apoptosis), awarded to Dr. Fire and 

Dr. Mello for their work on RNA interference (RNAi) in 2006 and awarded to 

Dr. Chalfie in 2008 for development of green fluorescent protein (GFP) as a 

biological marker (Corsi et al. 2015). 

1.1 Life cycle of C. elegans   

The lifecycle of C. elegans at 25°C is 3 days. During its normal development, the 

worm undergoes embryogenesis, hatches from an egg and then progresses 
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through four larval (L1 to L4) stages to an egg-laying adult (Figure 1). Worms 

increase in size as they progress through the larval stages. The end of each 

stage is marked by a period of inactivity - lethargus. During this period, the 

worms cease pharyngeal pumping. Lethargus ends with the molting (ecdysis) 

of the old cuticle. Reproductive adult hermaphrodites produce progeny for a 

period of 2-3 days, ~ 12 hrs after the L4 molt. Without food, animals arrest at 

the L1 stage. When they resume feeding, they grow normally to adulthood. 

Under conditions of environmental stress, namely, alterations in population 

density, food availability and ambient temperature, an arrested developmental 

variant of the worm is formed called the dauer larva (from the German dauern, 

to last or to endure). The decision to form dauer is taken at the late L1 larval 

stage. Dauers were first described by Cassada and Russell (Cassada and Russell 

1975) and exhibit different morphological and behavioural features. Dauer 

larvae are thinner in comparison to all the other larval stages (Corsi et al. 2015) 

(Figure 1) and have a specialized cuticle. Dauer larvae do not pump, their oral 

orifices are closed by an internal plug and their pharynxes are constricted. They 

can be easily differentiated from L3 larvae under a dissecting microscope (Hu 

2007). Dauer larvae can survive for up to a year if prevented from desiccation 

(Wood and Johnson 1994). Once favourable conditions are sensed, dauers 

resume development maintaining their normal lifespan. Therefore, the dauer 

stage is considered a non-ageing developmental stage.   

 

Figure 1: Life Cycle of C. 

elegans. Bar 0.1 mm 

(Corsi et al. 2015). 
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The worm exists mostly as a self-fertilizing hermaphrodite, though males arise 

at a frequency of <0.2%. It is hard to distinguish between hermaphrodites 

(females) or males until the L4 stage (Figure 1). In adults, females are 

characterized by a wider girth and tapered tail, whereas, males have a slimmer 

girth and a fan-shaped tail (Figure 1, Adult, black arrowhead). 

1.2 C. elegans tissue system 

C. elegans has a defined tissue system. During hermaphrodite development, 

1090 somatic cells are generated; of which 131 undergo apoptosis at 

distinctive times. There are 959 somatic nuclei in an adult hermaphrodite of 

which 302 are neurons and 95 are body wall muscle cells. On the other hand, 

the adult male has 1031 somatic nuclei, of which 381 are neurons (extra 

neurons are mostly for male mating behavior). The adult male despite having 

more cells, is slightly slender and shorter (approx. 0.8 mm) as compared to the 

hermaphrodite. The animal is composed of a series of concentric tubes (Figure 

2C). The epidermis encloses a pseudocoelomic fluid-filled cavity that houses 

the main organ systems. 

 

Figure 2: Anatomical features 

of C. elegans. A. 

Hermaphrodite worm. B. 

Male worm. C. Cross-section 

of the hermaphrodite in (A) 

shows the four body wall 

muscle quadrants 

surrounded by the epidermis 

and cuticle with the intestine 

and gonad housed within the 

pseudocoelomic cavity 

(Images modified from 

www.wormatlas.org). 

Epidermis - The epidermis of the embryo through a series of cell fusions makes 

large multinucleate epidermal cells that secrete the cuticle. The cuticle is a 

protective layer of specialized extracellular matrix (ECM), composed of 

collagen, lipids and glycoproteins and establishes body shape and provides 

anchoring points for muscle contraction (Figure 3A). Mutations in genes 

required for cuticle formation produce visible phenotypes, example - the Roller 

http://www.wormatlas.org/


IInnttrroodduuccttiioonn  

 

 

10 

(Rol) phenotype (a result of mutations in collagen genes wherein animals move 

in a corkscrew fashion) or the Dumpy (Dpy) phenotype (wherein worm has 

normal width but reduced length). At the end of each larval stage, C. elegans 

sheds its cuticle and secretes a new one to house the growing organism.  

 

Figure 3: Tissue morphology of C. elegans. A. Cross section of the outer layers of the worm show 

muscle cells below the epidermis and cuticle. Transmission electron microscopy (TEM) image B. 

Developing oocytes in the gonad (rectangular cells - clear, circular nucleus inside) followed by 

the spermatheca (where oocytes are fertilized), and multiple embryos in the uterus C. Anterior 

view of the worm showing the mouth, the pharynx, and the start of the intestine  D. Single body 

wall muscle cell with 6 muscle arms extending to the ventral nerve cord (lateral view) (Images 

from www.wormatlas.org). 

Muscles - Body wall muscles that run along the length of the body (Figure 2A 

and 3D) are four quadrants that are connected to the epidermis. The regular 

contraction and relaxation of these muscles leads to the sinusoidal movement 

of the animal.  Apart from body wall muscles, C. elegans has muscles that 

control eating - pharyngeal muscles; egg laying - vulval and uterine muscles 

and the contractile gonad sheath, mating - male specific tail muscles and 

defecation - enteric muscles. 

Digestive System - Bacteria enters through the mouth (anterior region of the 

animal) and passes through the pharynx, a two-lobed neuromuscular pump 

that grinds the food before it is passed on to the intestine for digestion (Figure 

3C). The C. elegans intestine consists of 20 large, polyploid epithelial cells 

arranged in pairs that form a tube running the length of the animal. The 

intestine is attached to the posterior pharynx (Figure 4A).  

http://www.wormatlas.org/
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The primary function is digestion of food and absorption of nutrients. It also is 

a storage organ involved in synthesis and storage of macromolecules. It 

contains a large number of storage granules that change in size, shape and 

number during development (Figure 4C). The intestine is also involved in 

initiation of innate immune responses to pathogens. In hermaphrodites, the 

intestine is also involved in synthesis and secretion of yolk particles. The 

intestine is also thought to be the major organ in which fatty acid metabolism 

takes place.  

 
Figure 4: The intestine of C. elegans . A. The intestine is positioned on the left side of the body 

anterior to the vulva and on the right side of the body posterior to it (ventral view). B. Adult 

intestine runs parallel to the gonad along the length of the body (ventral view). DIC 

image. C. Autofluorescent birefringent granules fill the intestine throughout its length. This is the 

same animal as in B. Epifluorescent image. Images from Wormatlas.  

Nervous system - The nervous system of the adult hermaphrodite has 302 

neurons whereas an adult male has 383 neurons (Figure 5). This simplicity was 

a key feature when Dr. S. Brenner proposed C. elegans as a choice for a new 

model organism (Brenner 1974). 

 
Figure 5: C. elegans nervous system. Image shows some major nerve bundles,  ventral nerve cord 

(VNC), dorsal nerve cord (DNC), nerve ring and ganglia - ring ganglia, retrovesicular ganglion 

(RVG), pre-anal ganglion (PAG), dorsal-root ganglion (DRG) (Image is from the OpenWorm 

browser utility (openworm.org)). 
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A majority of neuronal cell bodies are arranged in the head, in the ventral cord 

and in the tail. Neurons have a simple structure with one or two neurites (or 

processes) exiting from the cell body with the exception of some, for example - 

mechanosensory neurons, that have branched neuritis. 

Reproductive system - The somatic gonad, located at the centre of the body, 

consists of two mirror-image U-shaped tubes in hermaphrodites (Figure 2A,B), 

whereas in males the gonad consists of a single U-shaped lobe (not shown). 

Both gonads house the germline where the oocytes and sperm develop (Figure 

3B, 6A). The somatic gonad and the germline develop together during larval 

stages until animals reach maturity at the young adult stage. Oocytes can be 

fertilized by sperm from the hermaphrodite or sperm obtained from males 

through mating. In the C. elegans germline, one can observe all stages of 

meiosis at once as the germline is a visible gradient of development (Figure 6). 

This property makes it extremely useful for germline studies (Figure 6B). 

 

Figure 6: C. elegans germline. A. Micrograph of a single early adult gonad arm, with gonad arm 

and proximal-most oocyte outlined. When the first oocyte is ovulated, sperm are pushed into 

the spermatheca (Atwell et al. 2015). B. Single gonad arm dissected from a hermaphrodite 

showing germ cell DNA (DAPI stained). Meiosis begins in the Pachytene region (upper right) and 

continues around the loop of the gonad until oocytes are formed. Stored sperm are located in 

the spermatheca of the gonad (bottom right). PCD - Programmed cell death. Images from 

WormAtlas (www.wormatlas.org). 

Secondary sexual mating structures are the vulva in the females and the fan-

shaped tail in males. The vulva located on the ventral side of the 

hermaphrodite is the means for sperm entry from the male and egg laying 

from the uterus. Both sexes are diploid for the five autosomal chromosomes. 

The hermaphrodites have two X chromosomes and males have a single X 

chromosome. C. elegans has no Y chromosome and the genotype of males is 

referred to as XO. The majority of offspring produced by self-fertilization are 

http://www.wormatlas.org/
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hermaphrodites. Only 0.1-0.2% of the progeny are males due to rare meiotic 

non-disjunction of the X chromosome. But upon male fertilization, male sperm 

outcompetes that of the hermaphrodite and 50% of males arise. This feature is 

extremely useful for genetic crosses. 

1.3 Nomenclature  

In C. elegans nomenclature, gene names, allele designations, reporter genes 

are written italicized. Gene names consist of 3-4 letters, a hyphen and an 

Arabic number, followed by the mutation (allele) names, usually 1-3 letters and 

an Arabic number. Non-italicized three-letter abbreviations are used to 

indicate the phenotype, which is synonymous with the gene name; but the first 

letter is capitalized. For example, daf-2(e1370) refers to the mutation e1370 in 

the gene daf-2, in which mutation causes a Daf (defective in dauer formation) 

phenotype. The protein product is written in non-italic capitals (DAF-2). Genes 

that have been identified through bioinformatics approaches get systematic 

gene identification (e.g. ZK154.3) until further studies facilitate a gene name.  

In case of strain names, 2 or more capital letters and a number, for example, 

CB429 and TU38 are used to designate a strain containing one or more genetic 

differences. The letters indicate the laboratory that constructed the strain. 

Strains created in our laboratory are pre-fixed with the letters MRS. A more 

comprehensive guide to worm nomenclature description can be found at 

http://www.wormbase.org/about/userguide/nomenclature.  

1.4 Unique attributes of C. elegans  

A combination of several features apart from the ones discussed earlier, make 

C. elegans attractive as a premiere model organism for research. Animal 

populations can be cryo-preserved for years, thus, a large number of strains 

can be maintained. Males can be induced by short exposures to higher 

temperatures. Animals can be synchronized by hypochlorite (bleach) treatment 

of gravid adults - only eggs survive this treatment as they are protected by an 

egg-shell. As the worm is transparent, developmental biologists have used it to 

examine biological problems at the single-cell level. The same also facilitates 

studies in living animals utilizing fluorescent protein reporters (Chalfie et al. 

1994). Worms are non-pathogenic.  
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The entire C. elegans genome (100Mb) has been sequenced and annotated (C. 

elegans Sequencing Consortium, 1998). It has 20104 predicted protein coding 

genes (WormBase release WS264, year 2018)(Gerstein et al. 2010). The 

dedicated website WormBase (www.wormbase.org) provides an incredible 

bioinformatics resource (Bieri et al. 2007; Lee et al. 2018). Another online  

resource on C. elegans research is the Wormbook (www.wormbook.org) 

(Girard et al. 2007) that also houses C. elegans methods (WormMethods) and 

the C. elegans Newsletter (The Worm Breeder's Gazette).  

1.5 Limitations of C. elegans 

Phylogenetically, worms are evolutionarily distant from humans (Johnson 

2003; Gruber et al. 2015) and have a simple body plan that lacks defined 

organs/tissues (Plowman et al. 1999; Gruber et al. 2015; Tissenbaum 2015). 

The nematode, C. elegans, lacks many genes from the hedgehog signalling 

cascade which are important for organ patterning during development in 

vertebrates (Corsi et al. 2015). Similarly, they lack some protein kinases that 

are present in humans. Manipulating an organism only 1mm in length is 

challenging especially at the individual tissue level and in studies involving 

biochemistry (Johnson 2003). Moreover, there are no C. elegans cell culture 

lines. Electrophysiology studies of C. elegans neurons and muscles, though 

possible, are very demanding and indirect measurements such as calcium 

imaging are used as read out of neuronal activity (Corsi et al. 2015; Tissenbaum 

2015). Regarding ageing studies, there is little information regarding late life 

pathology of worms. Worms are scored as dead when they fail to respond to 

touch, but the rate of deterioration due to age is not the same for all tissues of 

worms - muscle degradation is faster whereas nervous system is more resilient 

(Johnson 2003; Antebi 2007). 

2. Technologies for C. elegans  

The usefulness of the nematode is further enhanced by technological 

developments. In particular, I describe those utilised in this Thesis, including 

alteration of gene expression, genome editing techniques, manipulation of 

large numbers of worms and automated imaging techniques. These advances 

bypass laborious efforts and project the worm as a model for studying a wide 

range of biological processes with ease. 

http://www.wormbase.org/
http://www.wormbook.org/
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2.1 RNA interference (RNAi) 

RNAi is an evolutionarily conserved process that leads to posttranscriptional 

gene silencing (PTGS) activated by double-stranded RNA (dsRNA) or small 

interfering dsRNA (siRNA)(Figure 7)(Hannon 2002). RNAi has been 

hypothesized  to function as a naturally occurring cellular antiviral defence 

mechanism against foreign dsRNA invasion (Grishok 2005). In the nematode, it 

has emerged as an important tool for studying in vivo gene function (Fire et al. 

1998) as RNAi has the capacity to cross cellular boundaries. Initially used for 

knocking down functions of individual genes, it has now been utilised in several 

organisms on a global level by the production of large scale RNAi libraries that 

target the whole genome. Sequences of identified genes can be known 

immediately and lethal mutations are easier to identify. The inclusion of RNAi 

into research has hastened the pace at which new gene functions are being 

discovered (Kamath and Ahringer 2003; Boutros and Ahringer 2008). 

 

Figure 7: Molecular mechanism of RNAi. A. RNAi 

is initiated by the Dicer enzyme, which processes 

dsRNA into ~22-nucleotide siRNAs which are 

incorporated into a multicomponent nuclease, 

RISC (coded in green). RISC must be activated 

from its dormant form, containing a double-

stranded siRNA to an active form, RISC*, by 

unwinding of siRNAs. RISC* then uses the 

unwound siRNA as a guide to substrate selection. 

B. Representation of Dicer binding and cleaving 

dsRNA (Hannon 2002). 

 

There are four methods for dsRNA delivery in C. elegans - feeding the worm 

with bacteria producing dsRNA (Timmons et al. 2001), injection of dsRNA into 

any region of the worm (Fire et al. 1998), soaking the worms in dsRNA (Tabara 

et al. 1998) or in vivo production of dsRNA from transgenic promoters 

(Tavernarakis et al. 2000). The RNAi in C. elegans is systemic, a distinctive trait 

not seen in Drosophila or mammalian cells, meaning that when dsRNA 

corresponding to the transcript of a gene of interest is introduced into one 

tissue, it leads to RNA silencing even in distant cells.  Long dsRNAs are 
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introduced into C. elegans via ingestion of expressing E.coli and are 

intracellularly diced into small-interfering RNAs (siRNAs) leading to an efficient 

knockdown because many different siRNAs are generated from each dsRNA. 

RNAi by feeding is a less labor-intensive procedure than injection, thus, making 

it convenient for performing RNAi on a large number of worms or for testing a 

large number of different genes and also, is considerably less expensive than 

injection or soaking that requires the in vitro synthesis of dsRNA. 

The systemic effects of RNAi are a huge advantage for large-scale genome wide 

RNAi screens. For large-scale RNAi studies, two RNAi feeding libraries covering 

the whole genome have been made and are currently available.  Both libraries 

use bacterial feeding for dsRNA delivery - the method of choice for large-scale 

screens and routinely used for experiments that target individual genes as well. 

The two libraries differ in the type of template that is used to produce dsRNA 

and the number of targeted genes. The first library, from the Ahringer group 

has 16,757 clones. It was made by cloning gene-specific genomic fragments 

between two inverted T7 promoters (Kamath and Ahringer 2003). The second 

library, from the Vidal group has 11,511 clones and was made by the Gateway 

cloning of full-length open reading frame (ORF) cDNAs into a double T7 vector. 

There is some overlap between the two libraries and together they target 

about 94% of C. elegans genes and efforts are underway to create feeding 

strains for the remaining ones. Individual clones and whole libraries are 

available from Geneservice. The Vidal library is also available from Open 

Biosystems (Ahringer 2006; Antoshechkin and Sternberg 2007; Boutros and 

Ahringer 2008). Using genome-wide RNAi feeding libraries (Kamath and 

Ahringer 2003), genes have been identified that are required for longevity 

(Dillin et al. 2002), signal transduction (Keating et al. 2003), development 

(Fraser et al. 2000) and metabolism (Ashrafi et al. 2003), amongst others. 

Large scale RNAi screens are usually carried out either in 96-well liquid culture 

(rapid and employs liquid-handling devices) or solid media (on agar plates, 

more time consuming but allows detailed phenotypic scoring) (Figure 8). 

Worms can be subjected to RNAi at any stage and assayed later, or mothers 

can be treated and their progeny scored (Boutros and Ahringer 2008).  

http://www.geneservice.co.uk/products/rnai/
http://www.openbiosystems.com/
http://www.openbiosystems.com/
http://www.openbiosystems.com/
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Figure 8: Phenotype based high-throughput RNAi screen strategy. Age-synchronized worms are 

moved to microtiter plates housing the desired RNAi libraries. Each well contains a different 

clone of HT115 E. coli bacteria and produces a specific dsRNA which is taken up by the 

nematodes and induces a knockdown of the corresponding gene. Positive hits from the screen 

are confirmed by sequencing. RNAi feeding can be started at any developmental stage and the 

scoring of the screen depending on the experiment design can be any developmental stage (Sin 

et al. 2014). 

RNAi by feeding method involves cloning of a DNA fragment corresponding to 

the gene of interest into a vector for the expression of dsRNA. L4440 feeding 

vector is used for this purpose which has T7 promoter sites next to both sides 

of the multiple cloning sites (MCS). After a specific DNA fragment is cloned into 

the vector, dsRNA is produced in the bacteria by transcription with T7 

polymerase. The plasmids are then transformed into the bacterial strain HT115 

(DE3), an RNase III-deficient strain of E. coli in which expression of T7 RNA 

polymerase can be induced by addition of isopropyl-β-D-thiogalactopyranoside 

(IPTG). The efficiency of RNAi by feeding is improved by RNase III deficiency 

because the dsRNA produced is more stable in the bacteria. The worm eats the 

bacteria and the dsRNA produced is absorbed by the worms through the 

intestine and distributed throughout the animal (Timmons and Fire 1998; 

Timmons et al. 2001). RNAi efficiency varies spatially and temporally. Late-

stage embryos (whose eggshell may be impermeable to dsRNA), neurons, 

males, and early larval stages have been observed to exhibit resistance to RNAi 

by feeding (Kamath et al. 2001; Timmons et al. 2001). RNAi phenotypes might 

also vary in a gene- and method-dependent manner. Soaking, dsRNA feeding 

or injecting methods are not effective in neurons. In some neurons, only 

injected plasmids producing dsRNA knockdown gene function reproducibly for 

some genes tested (Tavernarakis et al. 2000). 
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2.1.1 Tissue specific RNAi 

Tissue-specific RNAi is done by generating worms that are proficient for RNAi 

only in a tissue of interest, using a transgenic mutant strain that carries an rde-

1 mutation (RNAi resistant). The wild-type rde-1 is then expressed under the 

control of a tissue-specific promoter (in non-neuronal tissues) (Qadota et al. 

2007). Worms are then fed bacteria expressing dsRNA for a gene of interest, 

which reduces activity of that gene only in the specific tissue in which rde-1 is 

expressed (Figure 9). This technique aids researchers to determine spatial 

requirements for gene function or to study genes with pleiotropic effects in 

different tissues. 

    
Figure 9: Tissue specific RNAi. rde-1 mutants are RNAi-deficient. When wild type rde-1 (+) is 

expressed under the control of a tissue-specific promoter (intestinal, muscle or hypodermal), 

worms become RNAi-proficient in the tissue where rde-1 (+) is expressed (Xu and Kim 2011). 

2.2 Genome editing in C. elegans  

Gene expression pattern is routinely monitored in the worm using the reporter 

genes fluorescent protein to study gene function. This requires injection of 

corresponding transgenes into animals - transgenesis (Chalfie et al. 1994). 

Here, exogenous DNA is introduced into the developing oocytes of adult 

hermaphrodite animals via DNA microinjection or DNA-coated microparticle 

bombardment, which then generate transgenic worms among their progeny 

(Rieckher et al. 2009). In microinjection, transgenic worms are obtained by 

injecting the appropriate DNA fragments or plasmids and their progeny will 

carry and inherit the exogenous DNA as an extrachromosomal array that 

contain many copies of the co-injected DNA. However, extrachromosomal 

arrays can be lost during cell divisions, leading to a variable transmission rate 

(Mello et al. 1991). Microinjection is widely used and enables transgenic 

expression of genes, genome editing by the clustered regularly interspersed 

short palindromic repeats (CRISPR)-Cas9 system, or transcription of dsRNA for 
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RNAi. DNA bombardment involves DNA coated gold microparticles that are 

‘shot’ into the worms at high speeds, using a specialized biolistic bombardment 

instrument or ‘gene gun’.  A bulk of transformed worms  generated are 

integrants containing low number of transgene copies, resulting in stable 

transmission of transgenic DNA over future generations (Praitis et al. 2001). 

However, these methods have limitations such as the high copy number 

associated with extrachromosomal arrays and the random site of integration 

associated with bombardment. Newer and more accurate techniques include 

the Mos1-mediated Single Copy Insertion (MosSCI)  method (Frokjaer-Jensen 

et al. 2008) and the CRISPR-Cas9 system (Friedland et al. 2013; Waaijers and 

Boxem 2014) that have rapidly progressed in C. elegans and now facilitate 

targeted mutations in any location in the genome in any genetic background.                                                                                                                                               

2.2.1 CRISPR-Cas9 

CRISPR-Cas9 system for genome engineering has advanced the study of gene 

function, as it allows precise targeted mutations in endogenous genes, 

allowing one to examine the relationship between gene function and 

phenotype. It also facilitates insertion of coding sequence for a fluorescent 

protein and allows monitoring the expression and localization of endogenous 

proteins (Hsu et al. 2014).The CRISPR–Cas9 system compared to other 

approaches is theoretically simpler and has high target specificity.  In brief, a 

single protein (Cas9) is used to generate a DNA break, which is then targeted to 

a DNA sequence using a single short RNA (Figure 10) (Frokjaer-Jensen 2013)  

 

Figure 10: Overview of CRISPR–Cas9 system. The CRISPR–Cas9 enzyme is guided to the target 

site by a single guide RNA. The target sequence is determined by the 20 nucleotides in red 

followed by the PAM sequence (NGG). The double stranded break (DSB) is generated 3 bp 

upstream of the PAM(Frokjaer-Jensen 2013). 

In bacteria, Cas9, an endonuclease is guided to specific DNA sequences by two 

small RNAs - called CRISPR RNAs (crRNAs) and trans-acting crRNAs (tracrRNAs). 
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The crRNAs and tracrRNAs can be engineered to form a chimeric single guide 

RNA (sgRNA). The Cas9 nuclease has two independent nuclease domains that 

each cut one DNA strand, leading to a double stranded break (DSB) (Jinek et al. 

2012). Once the sgRNA is loaded into the Cas9 protein, this complex cleaves 

DNA that is complementary to a 20-bp stretch (the “protospacer”) of the 

sgRNA. To cleave DNA, the 20-bp guide sequence must be followed by another 

nucleotide and then the GG – the protospacer-adjacent motif (PAM) motif.  

Three CRISPR-Cas system types (I, II, and III) exist that use unique mechanisms 

for nucleic acid recognition and cleavage. The CRISPR-Cas9 technology 

originates from type II CRISPR-Cas systems, which provide bacteria with 

adaptive immunity to viruses and plasmids. It has a distinctive property very 

useful for genome engineering applications - these require only a single protein 

for RNA-guided DNA recognition and cleavage - making it the backbone of 

CRISPR-Cas9 technology (Doudna and Charpentier 2014). 

The CRISPR-Cas 9 system has been adapted to several model organisms 

including C. elegans. In order to achieve heritable changes in the worm 

genome, Cas9 protein and sgRNA have to be expressed in the germ line. John 

Calarco was amongst the first to demonstrate Cas9 activity in C. elegans, and 

used this to generate mutations by non-homologous end joining (NHEJ) 

(Friedland et al. 2013), followed by the demonstration of  homologous 

recombination-mediated gene conversion (Tzur et al. 2013).  

DSB repair through NHEJ often leads to generation of small insertions or 

deletions - indels, which might disrupt gene function (Figure 11A,B). On the 

other hand, homologous recombination repair allows gene modification and 

addition of specific tags in the genome. This involves supply of a repair 

template that contains sequences identical to the DNA flanking the target cut 

site. Hence, a sequence of choice can be inserted (Figure 11E-G). In case, 

homologous regions are far apart in the genome, endogenous sequences can 

also be replaced with a desired sequence, for example to create a deletion 

mutant (Figure 11C,D) or to replace a gene with a specific mutant variant 

(Figure 11H-J)(Waaijers and Boxem 2014). 
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Figure 11:  Genome engineering strategies using CRISPR-Cas9. Target sites are indicated by 

sgRNA. (A- B) Non-homologous end joining can be used to generate mutations and deletions. (C–

J) Homologous recombination being used to generate deletions, insert gene tags, or engineer 

point mutations. Homologous regions are indicated by the red lines in the repair constructs. Re-

cleavage after repair is prevented by having the target sequence in the repair template or the 

PAM sequence mutated  (Waaijers and Boxem 2014). 
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Despite the ease of using CRISPR-Cas9 to insert exogenous sequences into a 

genome, several limitations exist. It is time consuming and expensive to 

generate the repair template and guide RNA constructs for each desired 

insertion. Also, one has to exhaustively screen through candidates to identify 

the modified organisms. To identify CRISPR modified animals, commonly used 

strategies such as selectable marker-based strategies and co-CRISPR have been 

optimized and used successfully for insertion of relatively simple sequences, 

such as translational GFP fusions.  

This thesis has used, a PCR-free high-efficiency modular plasmid assembly 

called SapTrap method developed by the Jorgensen Lab. This simplifies the 

production of targeting vectors for tag insertion, as well as the selection of 

successfully modified strains, thus, improving genomic tagging in worms using 

CRISPR (Schwartz and Jorgensen 2016). SapTrap method produces single 

plasmid targeting vectors that, when co-injected with a Cas9 expression 

plasmid, insert genetic tags with high frequency. 

To simplify the repair template production for CRISPR-Cas9 mediated insertion, 

this technique uses a selectable marker for direct identification of modified 

worms. Here, a LoxP-flanked C. briggsae unc-119 selectable marker is 

positioned within a synthetic intron of the tag, such as GFP. The LoxP sites 

allow excision of the unc-119 cassette by CRE recombinase (a recombinase that 

mediates site specific recombination, leaving behind one LoxP site) expression. 

To allow concurrent expression of both gfp and unc-119, the unc-119 gene is 

inserted in the opposite orientation relative to gfp. Using this cassette, a 

complete repair template can be generated simply by adding homology arms 

to each side of the gfp tag. We utilized a SapTrap compatible GFP knockout 

(KO) cassette as tag plus marker donor plasmid that can be utilized to study 

gene function in specific tissues (Munoz-Jimenez et al. 2017).  It is based on 

FLP-mediated gene knockout. FLP is a site-specific recombinase from yeast that 

acts at FLP-recombinase targets (FRTs); if two FRTs are in the same orientation, 

FLP will excise the sequence between the FRTs (Hubbard 2014). This GFP KO 

cassette has Frt sites in introns 1 and 2. If crossed to a transgenic strain 

expressing FLP, the second GFP exon will be excised by recombination between 

the two Frt sites. This will cause a frame shift in the third exon leading to 
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generation of a premature termination codon and degradation of any atypical 

GFP::gene of interest transcript by nonsense-mediated mRNA decay.  

Next, to reduce the plasmid assembly workload, a single plasmid was designed 

using Golden Gate strategy, using the restriction enzyme SapI, to encode both 

the sgRNA transcript and the repair template for an individual insertion event.  

The repair template is split into five sections and supplied independently to the 

reaction - 5’ and 3’ homology arms, combined tag and selectable marker, and 

the N- and C- terminal connectors. As the sgRNA targeting sequence and 

homology arms are supplied in the Sap Trap assembly as synthetic, annealed 

oligonucleotides, PCR is not required.  A donor plasmid library supplies the rest 

- fluorescent and non-fluorescent tags, a selectable marker and optional 

regulatory sequences that allow tagging at either termini - N or C (Schwartz 

and Jorgensen 2016). This reduces the expense and time taken to produce 

vectors for genome editing and can provide repair templates that can tag a 

protein in a tissue-specific manner. Eventually, Sap Trap could be used for 

genome-wide projects to verify the expression pattern or to generate 

knockouts of all genes in the C. elegans genome.  

2.3 High-throughput whole animal screening strategies  

The transparency and small size of the worm coupled with the systemic RNAi 

methodology has assisted the design of high-throughput and high-content 

whole worm screens utilising fluorescent protein reporters/dyes (Hamilton et 

al. 2005; Artal-Sanz et al. 2006; O'Rourke et al. 2009a; Lejeune et al. 2012; 

Wahlby et al. 2012). The small size is also compatible with flow cytometric 

systems such as the COPAS (complex object parametric analysis and sorting) 

Biosort System ‘Worm Sorter’ (Pulak 2006) , laFACS (live animal FACS) 

(Fernandez et al. 2012) and automated pipetting devices like MultiFlo (BioTek) 

(Leung et al. 2011), which in turn, have made screenings in multiwell plates 

more convenient. Most high-content RNAi approaches using worms were first 

employed for drug discovery screenings (Kwok et al. 2006) using solid media 

and were laborious. Hence, a liquid based workflow (Lehner et al. 2006; 

O'Rourke et al. 2009a) was adopted using automated robotic liquid handlers 

and imaging platforms. These have been used to search for antimicrobial 

compounds (Moy et al. 2009), to identify pharmaceutical interventions against 

ageing (Gill et al. 2003; Petrascheck et al. 2007; Petrascheck et al. 2009; 
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Maglioni et al. 2015), and to look for disease modifiers (Gosai et al. 2010) and 

have further advanced existing genome-wide screening strategies (Gill et al. 

2003; Moy et al. 2009; O'Rourke et al. 2009a; Gosai et al. 2010).  

2.3.1 Worm sorting  

The COPAS (Worm sorter) facilitates the analysis, sorting, and dispensing of C. 

elegans. Sorting parameters are based on the physical parameters of axial 

length of the object (worm length), optical density of the object (optical 

extinction), and the intensity of fluorescent markers (green/yellow/red). Once 

analyzed, worms are selected and dispensed according to user criteria into 

multi-well plates for high throughput screening (User Manual ; Pulak 2006). 

While the earlier mentioned laFACS and MultiFlo are cheaper options - laFACS 

is limited to sorting only L1 larvae due to the nozzle size limitation, whereas, 

the MultiFlo requires a tightly synchronized population, not suitable for sorting 

herterogenous populations. The COPAS on the other hand is apt for isolation of 

sub-populations of worms from a heterogeneous population on the basis of 

fluorescence, optical densities and for stage/size specific sorting (Pulak 2006). 

Previously, the COPAS has been used to carry out large scale fluorescence 

based stage-specific (L1 to adult) sorting of integrated or extrachromosomal 

strains  based on absence or presence of fluorescence such as GFP+/GFP- (Rea 

et al. 2005; Gosai et al. 2010; Twumasi-Boateng et al. 2014), mCherry+/ 

mCherry- (Miedel et al. 2012; Gamerdinger et al. 2015). Further, to sort worms 

using dual fluorescence (reduced green to red ratio) after EMS to screen for 

mutants defective in dopaminergic cell fate (Doitsidou et al. 2008; Nagarajan et 

al. 2014) and to screen for mutants with increased GFP expression profiles 

following EMS (Kuroyanagi et al. 2006).  

The worm sorter comes equipped with the Profiler feature that gives a list of 

successive point measurements along the object passing through the flow cell 

and builds a fluorescence profile. Based on these measurements, it can detect 

fluorescence intensity peaks along the length of the object. This feature has 

been used for accurate acquisition of GFP strains to make post-embryonic 

developmental chronograms (Dupuy et al. 2007) and sorting L4 worms with 

different transgenic arrays (GFP expression in pharynx from worms that had 

GFP expression in coelomocytes or both) (Duverger et al. 2007). 
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COPAS has also been used for sorting balanced mutants for molecular biology 

purposes at the L3 and L4 larval stages where selection of homozygous worms 

that lacked pharyngeal GFP was done from a mixed population that expressed 

pharyngeal GFP (Latorre et al. 2015; Ruegger et al. 2015). An image based high-

content assay to measure germ cell fate reprogramming has sorted balanced 

strains at the young adult stage. Here, worms that lacked GFP and expressed 

mCherry in the pharynx were sorted from a mixed population that carried both 

GFP and mCherry in the pharynx (Benson et al. 2014). The COPAS, thus, 

provided a solution to a major bottleneck that prevented use of balanced 

strains on a large scale basis. It also reduces time and human errors and 

facilitates new experiments previously considered difficult. 

In this thesis, we have utilized the worm sorter, for sorting a balanced strain. 

This involved sorting and selecting homozygous worms at the L1 larval stage 

that lack GFP expression in the pharynx from a heterozygous balanced 

population expressing pharyngeal GFP.  

2.3.2 Imaging strategies 

A complicated aspect in screening strategies is the integration of effective and 

automated analysis of the acquired data, which is often, in the form of images. 

Automated image based high content platforms allow measurement of 

different properties at the same time unlike high throughput where there is 

only a single readout (Buchser et al. 2004). Acquired images can be stored, 

making it accessible for re-analysis or for screening of other phenotypes. 

Fluorescence microplate readers have been used previously for automated 

real-time fluorescence detection in worms (Gill et al. 2003; Leung et al. 2011). 

For quantitation of complex phenotypes in worms, several software programs 

have been designed and implemented. The  open-source cell image analysis 

program CellProfiler has been used for automated quantification of  worm 

survival (Moy et al. 2009), the Cellomics ArrayScan VTI and its BioApplication, 

the SpotDetector program has been utilized to develop a high-quality drug 

discovery platform (Gosai et al. 2010) and also to screen for pro-longevity 

interventions targeting the mitochondria (Maglioni et al. 2015) . The image-

analysis toolbox “WormToolbox” from the CellProfiler project caters to a 

variety of assays irrespective of the imaging system used (Wahlby et al. 2012; 

Wahlby et al. 2014). This is an open-source, image analysis software designed 
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specifically for C. elegans . A challenging aspect of measurement of single 

worms is that they might overlap during imaging. WormToolbox has got past 

this block, as it is able to computationally untangle worms from within a cluster 

of worms so that data for these worms can be obtained. Apart from size, shape 

and fluorescence measures, the machine-learning algorithm in CellProfiler 

Analyst can be used to spot slight and complex differences in various 

measurable phenotypes (Wahlby et al. 2012). 

In this thesis, an automated image acquisition protocol has been designed 

using the INCA Analyzer 2000 (GE Healhcare), a microscope that facilitates 

high-content screening. Also, worm segmentation protocols were developed 

using the Developer Toolbox software (version 1.9.2) (GE Healthcare), 

accompanying the INCA Analyzer 2000. 

For complex phenotypes lacking robust methods of quantification, such as in 

ageing worms (paralysis, uncoordinated locomotion, less/loss movement) 

‘worm tracking systems’ exist. These include high-throughput softwares like 

the Multi-Worm Tracker (MWT) and the Parallel Worm Tracker (Ramot et al. 

2008; Swierczek et al. 2011) for automated movement behavior analysis and 

tracking, for measurement of thrashing (Buckingham and Sattelle 2009), 

DevStaR (Developmental Stage Recognition) for quantification of 

developmental stages  (White et al. 2013), WormScan  for measuring mortality, 

movement, fecundity and size (Mathew et al. 2012) etc. An upgrade of this is 

the Lifespan Machine that allows automated collection of  lifespan data 

(Stroustrup et al. 2013). As these strategies are further refined, they will open 

the doors for novel and more complex C. elegans based high-throughput 

screenings. 

3. Ageing 

The Oxford Dictionary defines ‘Age’ as the length of time that a person has 

lived or a thing has existed and ‘Ageing’ as the process of growing old. Ageing is 

a fundamental, time-dependent degenerative process transcending species 

and evolutionary boundaries and is inevitable. Understanding the cause of 

ageing is one of the major challenges for this century, as age related 

deterioration is the primary cause factor for afflictions like cancer, Alzheimer’s 

disease, neurodegenerative disorders, cardiovascular diseases, diabetes etc. 
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Tentative hallmarks of the ageing process with an emphasis on mammalian 

ageing are - genomic instability, shortened telomeres, epigenetic alterations, 

loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, 

cellular senescence, stem cell exhaustion and altered intercellular 

communication (Lopez-Otin et al. 2013). Ageing is also accompanied with 

significant alterations in metabolic and physical activity. Though ageing was not 

thought to be a regulated process, genetic and genomic studies have helped 

accelerate ageing research by revealing that ageing is subject to regulation 

from signalling pathways and transcription factors.  Mechanistic insights into 

the genetic regulation of ageing arise from studies done in model organisms 

like yeast, worms and flies. An important goal of ageing studies is to achieve 

life span extension along with an increased quality of life, with minimal side 

effects (Collins et al. 2008; Kaletsky and Murphy 2010; Kenyon 2010b; Lopez-

Otin et al. 2013; Gruber et al. 2015)  

3.1 C elegans in ageing research 

C. elegans is a leading model organism to understand the genetic control of 

longevity owing to its ease of handling and a short and invariant lifespan ( ~ 17 

days at 20 °C). This invariance and the ease of genetic manipulation allows for 

identification of mutants that shorten or lengthen lifespan (Collins et al. 2008; 

Tissenbaum 2015). In worms,  lifespan (synonymous to the total rate of ageing) 

is defined as the number of days, the worm remains responsive to external 

stimuli (Sutphin and Kaeberlein 2009).  

Ageing in the worm (Figure 12) is accompanied with several phenotypic 

features - torpor, cessation of mobility and reproductive capacity, reduction in 

the ability to sense/respond to environmental stimuli and accumulation of 

auto-fluorescent deposits (lipofuscin) in cells - that are also seen in other 

animals (Kaletsky and Murphy 2010). Decline in pharyngeal pumping rate and 

defecation rates are also observed (Houthoofd et al. 2003).  

Hence, aged worms look and behave old, just as people do.  The first evidence 

for a gene that influenced ageing in the worm,  came with the discovery of 

age-1 (Friedman and Johnson 1988) and since then over several 100 genes 

including the insulin receptor daf-2 (Kenyon et al. 1993) have been discovered 

that modulate longevity in C. elegans. 
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Figure 12: Ageing in C. elegans. A. The morphology 

of a young day 5 adult worm is different when 

compared to B. an aged day 16 worm. C. Lipofuscin 

accumulation in a day 16 adult worm. Lipofuscin 

serves as an auto fluorescent ageing biomarker in 

both worms and humans. (Kaletsky and Murphy 

2010) 

 

3.2 Pathways that regulate ageing 

Ageing is subject to regulations by several signalling pathways and 

transcription factors. Though these were first described in organisms like yeast, 

worms and flies, a huge number extend lifespan in mammals as well. These 

include the well described insulin/insulin-like growth factor- 1 (IGF-1) signalling 

pathway, nutrient sensing pathways such as TOR, AMPK and sirtuin regulated 

signalling, germline signalling and epigenetic mechanisms. Apart from ageing, 

these pathways also control biological processes, such as development, 

reproduction, metabolism, etc. Though these pathways have different 

transcription factors, they influence nematode longevity in a conserved 

manner through overlapping processes, for example through modulations in 

lipid metabolism. Here, the insulin/IGF-1 signalling pathway has been 

discussed in more detail, for other pathways influencing ageing, refer Table 1. 

3.2.1 Insulin/IGF-1 signalling pathway 

Around two decades ago, it was discovered that mutations in age-1 (Friedman 

and Johnson 1988) and daf-2 (Kenyon et al. 1993) are capable of doubling the 

lifespan of worms. Further studies revealed the significance of the 

insulin/insulin-like growth factor- 1 (IGF-1) signalling (IIS) pathway in regulation 

of ageing. The IIS was one of the first pathways identified in this regard 

(Kenyon 2005). The lone insulin/IGF-1 receptor in worms is encoded by daf-2, 

and age-1 is the catalytic subunit of the downstream phosphoinositide 3-

kinase (PI3K) (Kimura et al. 1997). Apart from lifespan extension, age-1 and 

daf-2 mutants also exhibit resistant to oxidative stress, hypoxia, heat stress, 

heavy metals and bacterial pathogens (Lithgow et al. 1995; Barsyte et al. 2001). 

These observations supported the idea that the ageing process  is under 
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genetic control (Kenyon 2010b). The IIS pathway also acts as a food and stress 

sensing pathway all through development. When food is in abundance, worms 

progress through the larval stages and into adulthood. But on encountering 

conditions of stress - food limitations or overcrowding, they enter the dauer 

state, marked by delayed reproductive maturity and increased stress 

tolerance. When favourable conditions return, the dauers develop into 

reproductive adults (Cassada and Russell 1975). daf-2 mutants have a 

prominent dauer- constitutive phenotype (Riddle et al. 1981). 

Both the long lived and the dauer phenotypes of daf-2 worms are dependent 

on DAF -16, the downstream FOXO forkhead transcription factor (Riddle et al. 

1981; Kenyon et al. 1993). Ligand binding to the insulin receptor DAF-2 leads to 

activation of its tyrosine kinase activity. This in turn initiates a cascade of 

phosphorylation events that activate several downstream kinases such as AGE-

1/PI3K, PDK-1, AKT-1/2, and SGK-1 which phosphorylate DAF16 leading to its 

inactivation and retention in the cytoplasm, thus, blocking transcription of 

target genes. When IIS pathway is absent or there is a mutation in daf-1 or 

age-1, DAF - 16 enters into the nucleus where it turns on survival genes that 

double lifespan of the worms (Lin et al. 1997; Lee et al. 2001). Loss of the daf-2 

or age-1 also slows down the age-related downfalls. Hence, the IIS pathway 

regulates longevity.  Inhibiting IIS modulates lifespan also through changes in 

gene expression of the heat-shock transcription factor HSF-1 (Hsu et al. 2003); 

SKN-1, a Nrf-like xenobiotic-response factor (Tullet et al. 2008); and PQM-1 (a 

gene encoding the C2H2-type zinc finger and leucine zipper-containing protein) 

(Tepper et al. 2013).  These transcription factors, up regulate or down regulate 

various genes that mediate effects on lifespan (Kenyon 2010b). 

The IIS pathway is an evolutionarily conserved pathway that regulates lifespan 

across many species (Kenyon 2005)(Figure 13). Drosophila melanogaster has a 

single insulin-like receptor (dInR) and reducing IIS signalling or increasing the 

activity of FOXO (the Drosophila orthologue of DAF-16) specifically in adipose 

tissue extends lifespan (Clancy et al. 2001; Tatar et al. 2001; Hwangbo et al. 

2004). Mammals have several daf-2 homologs [IGF-1 receptor (IGF-1R), insulin 

receptor (IR)-A and IR-B] that are able to form multiple homodimer and 

heterodimer pairs (Benyoucef et al. 2007). Despite these differences in insulin 

receptor expression, the functional consequences are similar, as reduced IIS 
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also extends life span in multiple mammalian species. In mice, a striking inverse 

correlation between IGF-1 levels and lifespan has been observed amongst 

inbred strains (Yuan et al. 2009). Likewise, longevity in dogs is also inversely 

proportional to body size (Greer et al. 2007b).  Perturbation of insulin/IGF-1 

activity can also increase lifespan in humans. Mutations known to impair IGF-1 

receptor function are overrepresented in certain cohorts of centenarians 

(Kojima et al. 2004; Suh et al. 2008). 

 

Figure 13: Evolutionary conservation 

of the IIS pathway. IIS pathway in C. 

elegans, Drosophila melanogaster and 

mammals. Orthologous signalling 

components are depicted at level with 

each other across the three pathways 

(O'Neill et al. 2012)       

 

Studies on the tissue-specificity of the IIS pathway with respect to longevity 

have established differing results. While restoring DAF-2 and AGE-1 

expression specifically in neurons seems sufficient to decrease the lifespan 

of the long-lived daf-2 and age-1 mutants, the same is not true in the 

intestine (Wolkow et al. 2000).  However, another study established that 

AGE-1 expression in the intestine can decrease the long lifespan of the age-

1 mutant (Iser and Wolkow 2007). Also, in a daf-2;daf-16 mutant, tissue-

specific restoration experiments demonstrated that reestablishment of DAF-

16 expression in the intestine extends the lifespan, whereas in neurons, the 

same exhibited only modest effects on lifespan (Libina et al. 2003). The IIS 

pathway acts both in a cell-autonomous and non-autonomous manner, 

which might explain the complexity associated with lifespan regulation by 
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the IIS pathway (Apfeld and Kenyon 1998; Wolkow et al. 2000; Libina et al. 

2003; Iser and Wolkow 2007; Zhang et al. 2013).  

3.3 Mitochondria in ageing 

Mitochondria are ubiquitous intracellular organelles, primarily involved in 

adenosine triphosphate (ATP) production through oxidative phosphorylation (a 

series of electron transferring reactions via the electron transport chain (ETC) 

located in the mitochondrial inner membrane), which is the main source of 

intracellular energy. These organelles also serve as sites for key processes - 

beta oxidation, the tricarboxylic acid cycle, and apoptosis regulation. Hence, 

mitochondrial function is central to cell homeostasis and survival and has long 

been linked to ageing. Mitochondrial oxidative phosphorylation declines with 

age in diverse organisms (Pulliam et al. 2013).  

The first evidences that disrupting mitochondrial function could directly control 

lifespan came from studies in C. elegans. Loss-of-function mutations in clk- 1 

(clk-1 encodes a protein required for the biosynthesis of ubiquinone - an 

essential cofactor in the ETC), and also mutation of the iron sulfur protein (ISP-

1) of the mitochondrial complex III were found to extend worm lifespan 

(Lakowski and Hekimi 1996; Feng et al. 2001). Eventually, genetic screens in C. 

elegans identified that knockdown of more components of the ETC extended 

lifespan (Dillin et al. 2002; Lee et al. 2003) . A bulk of these results that altered 

expression of ETC components and impaired mitochondrial function, still, led 

to an increase in lifespan. A scenario opposite to human ageing that is 

generally associated with a decline in mitochondrial function (Short et al. 

2005). Likewise, mouse models with increased mitochondrial mutations, 

exhibit accelerated ageing (Trifunovic et al. 2004; Kujoth et al. 2005). A reason 

for these opposing observations could be the scale  of mitochondrial 

dysfunction achieved, as a mild knockdown of various mitochondrial ETC 

components leads to increased lifespan in C. elegans, a higher-efficiency 

knockdown, that  increases mitochondrial impairment, shortens lifespan (Rea 

et al. 2007). There is also genetic evidence in mammalian models that mild 

impairment of mitochondrial function might extend lifespan (Liu et al. 2005).  

Based on work in C. elegans, it has been described that several pathways are 

activated after a mild mitochondrial impairment (Chang et al. 2015). A known 
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mediator is the mammalian hypoxia inducible factor 1 (HIF-1α, encoded in 

worms by hif-1). Activation of hif-1 is required for the extended lifespan of 

several long-lived mitochondrial mutants. Other mediators include the p53 

ortholog CEP-1, the homeobox protein CEH-23, the apoptotic factor CED-3 and 

skinhead-1 SKN-1, the C. elegans ortholog of the mammalian transcription 

factor NF-E2 (Nrf2) (Chang et al. 2015; Finkel 2015). 

Additionally, it has been shown that the lifespan of several ETC mutants are 

also mediated by the transcription factors UBL-5, DVE-1, and ATFS-1, which 

regulate the mitochondrial unfolded protein response (UPRmt). UPRmt is a 

mechanism that monitors protein homeostasis and maintains proper protein 

function within the mitochondria (Yoneda et al. 2004; Durieux et al. 2011). 

Briefly, UPRmt signalling is initiated when the amount of unfolded proteins in 

the matrix exceed the capacity of the mitochondrial chaperones. The ClpXP 

protease degrades unfolded proteins to peptides, which are then exported by 

the putative mitochondrial inner membrane ATP-binding cassette (ABC) 

transporter protein HAF-1 to the cytosol. The presence of these peptides in the 

cytosol leads to the activation and nuclear translocation of the the bZIP 

transcription factor ATFS-1 (via unknown mechanisms). Additionally, UBL-5, a 

ubiquitin-like protein, and the transcription factor DVE-1 are translocated from 

the cytoplasm into intestinal nuclei and form a complex (Benedetti et al. 2006; 

Haynes et al. 2007). These promote ATFS-1 binding and transcriptional up 

regulation of mitochondrial chaperone genes that lead to their import into 

mitochondria, hence, restoring homeostasis.  The UPRmt in C. elegans can be 

visualized by the induction of the mitochondrial chaperones, hsp-6::GFP and 

hsp-60::GFP (Yoneda et al. 2004). 

3.3.1 Mitochondrial Prohibitins  

A class of mitochondrial proteins that influence longevity differentially by 

modulating energy metabolism are prohibitins (Artal-Sanz and Tavernarakis 

2009b), and named as prohibitin because the first prohibitin (PHB1) was 

identified in mammals as a potential tumour suppressor that inhibited 

proliferative activity (McClung et al. 1989). Later, it was shown to be an 

artefact of the 3’UTR (Jupe et al. 1996b; Jupe et al. 1996a). The second 

prohibitin (PHB2) was identified via its binding, to the IgM antigen 

receptor(Terashima et al. 1994). PHB1 was also shown to bind to the IgM 
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receptor and hence, Terashima et al., named these proteins as B-cell receptor 

complex associated proteins (BAP) - BAP32/PHB1 and BAP37/PHB2.  

Prohibitins are ubiquitously expressed, evolutionarily conserved proteins that 

localize to the mitochondria. PHB1 and PHB2 having the molecular weights of 

32kDa and 34kDa respectively, together form the mitochondrial prohibitin 

complex (PHB). They associate with each other to form a high molecular 

weight ring like structure of 1MDa (Back et al. 2002) with a diameter of 20-25 

nm in the inner mitochondrial membrane. About 12 to 16 PHB heterodimers 

contribute to this ring like structure(Figure 14) (Back et al. 2002). Loss of either 

PHB1 or PHB2 leads to absence of the entire prohibitin complex (Nijtmans et 

al. 2000). PHB1 and PHB 2 have around 50% amino acid sequence identity and 

60% similarity. The mitochondrial prohibitin complex has been identified in 

yeast (Steglich et al. 1999; Nijtmans et al. 2000), C. elegans  (Artal-Sanz et al. 

2003) and in human fibroblasts (Nijtmans et al. 2000).  

 

Figure 14: The prohibitin complex. PHB1 and PHB2 compose the mitochondrial prohibitin 

complex. These heterodimers assemble into a ring-like prohibitin complex with alternating 

subunit composition.  The prohibitin complex is located in the mitochondrial inner membrane. 

Intermembrane space- IMS, inner membrane – IM (Merkwirth and Langer 2009) 

Despite extensive research, the exact molecular mechanism of the prohibitin 

complex is yet to be deciphered. Nevertheless, they have been implicated in 

several cellular processes: cell-cycle regulation, cell signalling, senescence, 

nuclear transcriptional activation, apoptosis, mitochondrial biogenesis and may 

also regulate inflammation, obesity, neurodegenerative disorders in mammals 

(Artal-Sanz and Tavernarakis 2009a; Merkwirth and Langer 2009; Theiss and 

Sitaraman 2011). Apart from the initial role proposed for prohibitins in cell 

cycle progression (McClung et al. 1989; Nuell et al. 1991), a variety of roles 

have been proposed for PHBs in the mitochondria. They maintain 

mitochondrial morphology (Artal-Sanz et al. 2003; Kasashima et al. 2006; 

Merkwirth et al. 2008) and cristae structure (Griparic et al. 2004; Ahn et al. 
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2006; Merkwirth et al. 2008) and additionally function as a scaffold that 

recruits membrane proteins to a specific lipid environment (Osman et al. 

2009).  The PHB complex  regulates membrane protein degradation by the 

mitochondrial m-AAA protease (Steglich et al. 1999). It also functions as a 

chaperone that stabilizes unassembled membrane proteins (Nijtmans et al. 

2000; Nijtmans et al. 2002) and also has a role in mitochondrial genome 

stabilization (Wang and Bogenhagen 2006; Bogenhagen et al. 2008; Kasashima 

et al. 2008). Recently, PHB-2 has been established to be a mitophagy receptor 

that is essential for Parkin mediated mitophagy in mammalian cells and C. 

elegans (Wei et al. 2017). 

Prohibitins have been found in circulation (Mengwasser et al. 2004) and on the 

plasma membrane (Terashima et al. 1994). Several experiments have shown 

that PHBs localise predominantly to the mitochondria (McClung et al. 1995; 

Nijtmans et al. 2000), but nuclear localisation of PHB1 (Wang et al. 2002; 

Fusaro et al. 2003) and PHB2 (Sun et al. 2004) has also been shown by several 

investigators.   

In the yeast, Saccharomyces cerevisiae, depletion of PHB decreases replicative 

lifespan of the cells, accompanied with defects in mitochondrial membrane 

potential and extended cell division time (Coates et al. 1997; Berger and Yaffe 

1998). In contrast, in multicellular organisms like C. elegans  (Artal-Sanz et al. 

2003), depleting PHB proteins leads to developmental arrest and germline 

(sterility and small brood size) and somatic defects (reduced body size and 

abnormal somatic gonad) (Artal-Sanz et al. 2003). Also, in C. elegans embryos, 

PHB-2 is required for paternal mitochondrial clearance (Wei et al. 2017).  In 

mice, PHBs are essential for development and neuron-specific PHB2-deficient 

mice exhibit premature death (Park et al. 2005; Merkwirth et al. 2008; 

Merkwirth et al. 2012). PHB depletion also shortens lifespan of petunia flowers 

whether on the plant or detached (Chen et al. 2005). 

A striking feature of PHB depletion in the nematode is with respect to ageing. 

Depletion of PHBs decreases the lifespan of wild type animals, whereas, the 

same in metabolically compromised long lived daf-2 (e1370) IIS mutants leads 

to a dramatic extension in lifespan (Figure 15A,B). Additionally, loss of PHB also 

increases the lifespan of TGF-β pathway mutants (daf-4, daf-7) that controls 

diapause and ageing. Apart from this, PHB deficiency also further extends the 
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lifespan of several mitochondrial (gas-1, mev-1, clk-1, isp-1) and dietary-

restricted (eat-2) mutants (Artal-Sanz and Tavernarakis 2009b). Thus, PHB 

deficiency leads to an opposing ageing phenotype depending on the 

compromised metabolic background. This is seen to be conserved in both mice 

(Ising et al. 2015) and yeast (Schleit et al. 2013). 

 

Figure 15: Prohibitin depletion 

phenotypes in C. elegans. PHB 

deficiency leads to opposing 

lifespan phenotypes.  Survival 

curves depicting A. wild type 

and B. IIS defective daf-

2(e1370) mutants when 

subjected to phb-1/-2(RNAi). 

Reduced Nile Red staining 

upon PHB knockdown, C. Wild 

type animals (left panel) and 

daf-2 mutants (right panel) 

subjected to RNAi with either 

phb-1 or phb-2 (Anterior side 

of the animals is shown) (Artal-

Sanz and Tavernarakis 2009b). 

The ageing process is accompanied by marked alterations in fat metabolism 

and fat utilization is strongly linked to mitochondrial energy metabolism. 

Alterations in the levels of fat content, as measured by vital Nile Red staining, 

also varies differentially upon PHB depletion. Early in adulthood, PHB 

deficiency reduces Nile Red accumulation in both wild type and daf-2 (e1370) 

mutants. However, this reduction is only maintained in the PHB depleted daf-2 

(e1370) mutants through ageing (Artal-Sanz and Tavernarakis 2009b).  Hence, 

prohibitin depletion affects vital NR staining in a genetic background and age-

specific manner (Figure 15C). Despite the lipid staining NR dye establishing 

functions for several metabolic genes (Ashrafi et al. 2003; Mak et al. 2006), its 

usage in vivo has come under controversy as it fails to correlate to triglyceride 

levels (O'Rourke et al. 2009b). This has been addressed in further detail in 

section 4.1.2.1 of the thesis. Inspite of this, we have evidences that PHB 

deficiency broadly influences metabolism. Utilising advanced metabolomics, 

our lab has shown that PHB deficiency in wild type animals and the IIS daf-2 
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(1370) mutants leads to pronounced alterations in fatty acid composition, 

carbohydrate and amino acid metabolism (Lourenco et al. 2015).  

 4. Lipid and carbohydrate metabolism in C elegans  

Lipid and carbohydrate synthesis and breakdown (Figure 16) are highly 

conserved processes and the worm has orthologs for most of the key 

metabolic enzymes, thus major metabolic pathways are present in C. elegans. 

Conserved metabolic pathways include lipid uptake and transport, fat synthesis 

pathways, pathways of β-oxidation in the mitochondria and peroxisomes, 

glycolysis, gluconeogenesis and amino acid metabolism.  

 

Figure 16: Overview of fat 

and sugar synthesis and 

breakdown pathways. 

Carbohydrate and fat 

stores, glycogen and 

triglycerides respectively 

are broken down by cells to 

generate acetylCoA and 

NADH and FADH2 through 

the tricarboxylic acid cycle 

(TCA) cycle. NADH and 

FADH2 are further used to 

generate ATP through 

oxidative phosphorylation. 

Image from Wormbook 

Research in worms has been ongoing to illustrate genes involved in and 

affecting lipid synthesis, storage and breakdown. Also, there have been 

investigations regarding the developmental consequences that occur when 

specific lipids are incorrectly synthesized or when lipid homeostasis is 

deregulated (Ashrafi et al. 2003; McKay et al. 2003; Van Gilst et al. 2005a; Van 

Gilst et al. 2005b; Taubert et al. 2006; Ashrafi 2007; Brock et al. 2007; 

Braeckman et al. 2009; Lemieux and Ashrafi 2015; Watts and Ristow 2017).  

4.1 C. elegans fat 

Just like mammals have adipocytes for storage of fat, C. elegans stores fat in 

lipid droplets, mostly in their intestinal and hypodermal cells. Lipid droplets are 

subcellular organelles that store neutral lipids (Walther and Farese 2012). They 

have an enriched core of hydrophobic lipids such as triacylglycerides (TAGs) 
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and cholesterol esters and are surrounded by a monolayer of phospholipids 

(Zhang et al. 2010b). Apart from this, substantial fat deposits are also found in 

maturing oocytes of the germline as well as fertilized embryos (Figure 

17)(Ashrafi 2007; Lemieux and Ashrafi 2015).      

 

Figure 17: Visualization of lipid droplets using Oil- Red-O staining. Oil-Red-O stain in the 

transparent body of a wild type animal (Head of the animals are towards bottom right). 

TAGs are also a component of yolk (similar to mammalian lipoproteins), which 

is synthesized in the intestine and transferred to developing oocytes during 

reproduction. This manner of triglyceride mobilisation during reproduction in 

the nematode is called vitellogenesis. Members of the vitellogenin (vit) family 

function to transport stored lipids in the form of yolk to the oocytes from the 

intestine (Kimble and Sharrock 1983; Schneider 1996). The C. elegans has 6 vit 

genes, vit-1 to vit-6. The vit-1, -2, -3, -4 and -5 genes, contribute to the pool of 

YP170 - the major yolk protein , whereas, the vit-6 encodes a protein that is 

processed into YP115 and YP88 (Blumenthal et al. 1984; Spieth and Blumenthal 

1985). 

4.1.1 Composition of C. elegans fat 

40-55% (approximately) of total lipids are composed of triacylglyceride fat 

stores. This is dependent on diet and growth stage. Also, approximately 35% of 

the dry body mass of the worms is lipid (Braeckman et al. 2009). While the 

triglyceride stores vary depending on diet, phospholipids levels do not vary 
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(Brooks et al. 2009). Phospholipid pools are composed of 55% ethanolamine 

glycerophospholipid, 32% choline glycerophospholipid, 8% sphingomyelin 

(approximately). The remaining 5% are lyso-choline glycerophospholipids, 

cardiolipin, inositol glycerophospholipids. Relative abundance of these might 

change with changes in growth temperature (Ashrafi 2007). The nematode also 

has a wide range of saturated, monounsaturated and polyunsaturated fatty 

acids (PUFAs) including arachidonic (20:4n-6) and eicosapentaenoic acid 

(20:5n-3) as well as monomethyl branched chain fatty acids (mmBCFAs) (Watts 

and Browse 2002). 

4.1.2 Visualization and quantification of C. elegans fat  

As C. elegans is transparent, fat stores can be directly visualized with ease in 

intact animals. Diverse methods ranging from staining techniques, advanced 

non invasive microscopy methods, biochemical extractions and quantifications 

have been employed for this purpose. Only the techniques utilized in this 

thesis have been described here, however, a summary of all methods with 

their respective pros and cons can be found in Table 2.  

4.1.2.1 Vital dye methods 

An easy manner of visualizing fat depots in the worm is supplementing their E. 

coli bacterial diet with vital dyes, like Nile Red or BODIPY-labelled fatty acids 

(BODIPY-FA). This method leads to accumulation of these fluorescent dyes in 

various sub cellular compartments, some of which are lipid droplets while 

others are lysosome related organelles (Schroeder et al. 2007; O'Rourke et al. 

2009b; Mullaney et al. 2010; Zhang et al. 2010a). However, staining methods 

using Nile Red and BODIPY-labelled fatty acid do not distinguish between 

animals with low fat levels and animals that fail to uptake these dyes (Ashrafi 

2007). A major advantage of vital dye labelling is that sample preparation time 

is minimal, lower variability between samples and in vivo studies are 

facilitated. Also, vital dyes are not known to produce any adverse effects on 

the growth rate, brood-size, pharyngeal pumping, dauer formation and 

recovery or lifespan of the worms.  These qualities make it profitable for 

quantitative, robust, high-throughput screening strategies.  
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Nile Red 

Nile Red is a lipophilic dye that fluoresces in hydrophobic environments making 

it a useful indicator of lipid droplets in cells, tissues, or, in the case of C. 

elegans, in living animals. Nile Red produces a peak emission of 560–580 nm 

when in environments that have a high concentration of triacylglycerides or 

very low-density lipoproteins. When in environments that have more of mono- 

or diglycerides, phospholipids, free fatty acids, Nile Red produces a red shifted 

peak emission of  620–640 nm (Greenspan and Fowler 1985). 

As mentioned earlier, C. elegans stores its fat mainly in the gut or intestinal 

epithelial cells apart from the hypodermis and in the embryos. The intestinal 

cells of the worm contain gut granules - cell type specific compartments that 

have been proposed to be lysosome-related organelles (LRO) (Hermann et al. 

2005) that are birefringent and auto fluorescent (Schroeder et al. 2007). These 

granules are different from lysosomes since they lack the key molecular marker 

LMP-1, the C. elegans LAMP homolog of true lysosomes (Schroeder et al. 2007; 

O'Rourke et al. 2009b). But the understanding of these organelle structures or 

the properties of these fat storage structures is very poor. 

In the worm, LROs are sites of accumulation of age-related auto-fluorescence 

(Gerstbrein et al. 2005), sites for cellular reservoir for zinc (Roh et al. 2012) and 

have also been reported to be sites for storage of cholesterol (Wang et al. 

2014). It was also observed that these gut granules are the site of 

accumulation of vital dyes such as Nile Red and BODIPY-FA when these dyes 

are fed to worms mixed within the bacteria. The C. elegans metabolism field 

has extensively used this fluorescent lipophilic dye, Nile Red to indicate fat 

stores, based on the staining of granules in the worm’s main fat storage organ, 

the intestine and the lipophilic properties of the above mentioned dyes. 

Hence, it was concluded that Nile Red stores were the main sites of fat stores.  

It was observed that Nile Red stains eggs, hypodermis, germ line etc. poorly – 

tissues that were known to have a higher content of triglycerides as measured 

by other techniques. Additionally, the IIS defective daf-2(e1370) mutant was 

shown to have a decreased fat phenotype when stained using the vital Nile 

Red and BODIPY-FA staining, the opposite of what was observed with 

biochemical analysis which indicated increased fat levels in the daf-2(e1370) 

mutants. Starvation also produced contrasting results; as expected, triglyceride 
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levels fell with fasting, but Nile Red signal intensity increased in wild type 

animals. Some other metabolic mutants also showed similar discrepancies 

(O'Rourke et al. 2009b; Soukas et al. 2009). Moreover, mutants defective for 

gut granule formation show almost nil staining using Nile Red with normal 

levels of fat stores (Schroeder et al. 2007). This means that fat stored outside 

of gut granules might not be correctly quantified using vital Nile Red. This 

would make it necessary to confirm the observed phenotype with additional 

measures of quantification of lipids.   

Irrespective of this controversy, over 45 papers have used vital Nile Red as a 

proxy stain for fat stores and have implicated over 400 genes in lipid 

regulation. This includes usage in  high-throughput screens (Ashrafi et al. 2003) 

designed to identify gene inactivations that cause fat reduction or 

accumulation. This thesis has utilised the vital Nile Red staining to identify 

signalling pathways required for the reduced NR staining phenotype observed 

upon PHB depletion.   

4.1.2.2 Fixed staining methods 

The very first method employed for histochemical assessment of fat in C. 

elegans was done by fixation using the dye- Sudan Black B (Kimura et al. 1997). 

Since then several other dyes such as Oil- Red-O (ORO)(Soukas et al. 2009) and 

fluorescent dyes such as LipidTox (O'Rourke et al. 2009b), BODIPY (Klapper et 

al. 2011) and Nile Red (Brooks et al. 2009) have been utilized as a proxy for fat 

content. This thesis has utilised the dye, ORO to determine triglyceride levels in 

worms. Fixative staining technique involves fixation of the worms using 

isopropanol or paraformaldehyde and staining with ORO (or any of the above 

listed dyes). The fixative based treatment is followed by image-based 

quantification of the amount of bound dye. ORO dye produces results 

representative of biochemical determination of fat stores (O'Rourke et al. 

2009b; Wahlby et al. 2014). Lipid droplets in the intestine, hypodermis and 

germline can be visualised using this dye (Figure 17). As the worm has a thick 

cuticle, even after fixation, worms are not uniformly permeable to staining. 

Therefore, they are subjected to rapid free/thaw cycles to disrupt the cuticle 

for permeabilisation and penetration of the dye. This technique often disturbs 

lipid droplet morphology after fixation. Also, fixed staining methods often 
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result in broken/destroyed worm bodies, making this method difficult for 

forward genetic approaches.  

The methods discussed above are not without their liabilities regarding both 

execution and analysis. It is always better to use more than one method in 

order to correctly analyse a metabolic phenotype in an organism. 

4.1.3 Fat synthesis and storage  

Fatty acids are known to have roles in selective permeability, membrane 

fluidity and signalling (Watts 2009) and are mostly obtained from the bacterial 

diet. But, C. elegans can also synthesize them de novo from acetyl CoA. In de 

novo synthesis of fatty acids - Acetyl-CoA is carboxylated by acetyl-CoA 

carboxylase (ACC, encoded by pod-2 gene in C. elegans ) to form malonyl-CoA. 

Malonyl- CoA provides 2 carbon units to fatty acid synthase (FAS) to generate 

fatty acids of different lengths, mainly chains of sixteen carbons (C16:0) 

(Rappleye et al. 2003; Ashrafi 2007). Palmitic acid (C16:0) can be integrated 

into TAGs or phospholipids or can be modified by fatty acid elongases and 

desaturases to form a variety of saturated, monounsaturated (MUFAs) and 

polyunsaturated fatty acids (PUFAs) of different lengths (Watts and Browse 

2002; Watts and Ristow 2017).  For storage of fatty acids, fatty acyl-CoAs 

derived from exogenous or endogenous sources are converted to phosphatidic 

acid, diacylglycerol and eventually to triacylglycerols (TAGs)(Salway 2004) that 

are then stored as lipid droplets and yolk. TAGs are a vital energy source during 

embryogenesis, during low food availability and during the dauer stage 

4.1.4 Fat oxidation/breakdown  

The flux of lipids through β-oxidation pathways determines how stored lipids 

are moved. Homologs of mitochondrial and peroxisomal genes encoding 

proteins involved in β-oxidation of fatty acids are present in the nematodes. 

Though many of these are encoded by many different family members, studies 

do suggest that different family members might function under different 

circumstances. Stored triacylglycerides are mobilized by lipolytic enzymes 

called lipases that breakdown triacylglycerides to liberate fatty acids. 

Nematode lipases have homologues for many mammalian lipases including the 

hormone sensitive lipase (C46C11.1), phospholipase A2 (C07E3.9 and C03H5.4) 

and the adipose triglyceride lipase (ATGL).  The C. elegans ATGL is regulated by 
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AMP-activated kinase and modulates lipid mobilization during the dauer stage 

(Narbonne and Roy 2009). Another lipase, LIPase Like-4 (lipl-4) is known to act 

downstream of the signals from the germline to regulate fat storage in C. 

elegans (Wang et al. 2008). 

Fatty acids that are liberated are then activated to their respective acyl-CoA 

derivatives by acyl-CoA synthases. There exist short and medium/long chain 

acyl-CoA synthetases for activation of short and medium/long chain fatty acids. 

There are at least 7 members of the long chain acyl-CoA synthetases in C. 

elegans. Activation of free fatty acids is important for efficient uptake of 

nutrients into cells so that it can be utilized by catabolic or anabolic pathways 

(Mashek and Coleman 2006).  Activated fatty acyl-CoA are oxidised depending 

on their size within mitochondria (short/medium/long chain fatty acids) or 

peroxisomes (very long chain fatty acids). Activated short chain fatty acids can 

translocate freely between the cytosol and the mitochondria of cells, however, 

activated medium- or long chain free fatty acids require the aid of CPT-1 (the 

nematode ortholog of the human carnitine palmitoyltransferase I) to proceed 

to β- oxidation. A bulk of these degradation related enzymes have been shown 

to be expressed in the intestine, hypodermis or both (Mullaney and Ashrafi 

2009). Acyl CoA dehydrogenases involved in β-oxidation pathways breakdown 

fatty acyl-CoAs to acetyl-CoA which can enter the TCA. β-oxidation occurs in 

the mitochondrial matrix and yields reduced electron carriers, whereas 

peroxisomal β-oxidation of long-chain fatty acids is not linked directly to 

energy metabolism as the reduced electron carrier is directly oxidized by 

molecular oxygen yielding hydrogen peroxide. 

4.2 C. elegans carbohydrate  

Carbohydrates are hydrated organic molecules consisting of carbon, hydrogen 

and oxygen and are classified based on their structural complexity. The 

simplest being a monosaccharide, which then form polymers referred to as di-, 

tri-, oligo- and polysaccharides consisting of repeated monosaccharide 

moieties with acetal type linkages. Carbohydrates are a major energy source 

and worms store it as glycogen. Although the bulk of the worm’s carbohydrate 

stores is glycogen (3.3% of the dry body mass) (Cooper and Van Gundy 

1970), significant amounts of trehalose and glucose stores are also found 

(Hanover et al. 2005). Glycogen consists of thousands of glucose molecules and 
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is broken down by an enzymatic process called glycogenolysis. On the other 

hand, excess glucose is stored as glycogen by activation of glycogen synthase. 

There is evidence for glycogen storage as well as glucose mobilization from 

glycogen in the nematodes. It has been observed that dauers not only 

accumulate significant amounts of lipids but also glycogen. Glycogen is 

preferentially mobilized in the dauer state, while glycogen synthesis is 

downregulated (Holt and Riddle 2003; Depuydt et al. 2014). Since glucose can 

be used to generate ATP in the absence of oxygen by means of anaerobic 

glycolysis (Braeckman et al. 2009),it has been shown that increased 

glycogenolysis can mediate survival in states of anoxia  and hypo-osmotic 

stress (Frazier and Roth 2009; LaRue and Padilla 2011; Depuydt et al. 2014; 

LaMacchia and Roth 2015). 

4.2.1 Visualization and quantification of glycogen 

Iodine staining is a simple method, wherein the color of the stain ranges from 

light brown to dark brown indicating presence of glycogen.  But quantitative 

iodine staining is an issue, as the staining is sensitive to the concentration of 

iodine used. Moreover, the color is unstable after staining (Morris 1946; 

Wilson et al. 2002). Effective glycogen staining can be done on whole worms by 

exposing unfixed worms to iodine vapor or a diluted (1:10-1:20) Lugol’s iodine 

solution (2% I2 in 4% KI) (Frazier and Roth 2009). Both methods are easy and 

fast but, the Lugol’s method has lower contrast than the vapor method.  

 

Figure   18: Iodine staining for visualising 

glycogen stores.A wild-type and a daf-2 

(e1370) mutant (top and bottom respectively) 

stained with iodine and photographed 

simultaneously. Glycogen can be seen under 

the pharynx, hypodermis and gut. daf- 2 

(e1370) adults exhibit increased glycogen 

storage as shown (Frazier and Roth 2009). 

Glycogen stores are observed in early embryos. L1 larvae have little glycogen, 

but as larval stages progress, glycogen accumulation is observed in the head, 

tail, hypodermis, or gut in L2/L3 animals. L4 and very young adult animals 

(Figure 18) had maximal glycogen concentration, which shows a decrease as 

the animals begin reproduction (consistent with this process exhausting their 
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stored carbohydrates). In adult males, glycogen is localized in the anterior of 

the worm and absent from the tail hypodermis (Frazier and Roth 2009).   

To validate iodine staining, a histological method - Best’s Carmine was tested 

which gave similar results to the iodine method (Frazier and Roth 2009). A 

means of observing glycogen stores via vital staining is by using Carminic acid. 

But, this method of staining has been observed to stain carbohydrate stores 

only in the intestinal cells or gut of the worms (Hanover et al. 2005; Forsythe et 

al. 2006; LaRue and Padilla 2011).  

4.2.2 Carbohydrate synthesis and storage 

Gluconeogenesis is responsible for synthesizing glucose from noncarbohydrate 

precursors. One of the substrates for gluconeogenesis is glycerol that is derived 

from triacylglyceride breakdown. Excess carbohydrates may be stored as 

glycogen.  While most of the enzymes in gluconeogenesis catalyze reversible 

reactions, few non-reversible reactions of gluconeogenesis are catalyzed by 

phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase, fructose 1, 

6-bisphosphatase and glucose 6-phosphatase. Worms also possess the 

glyoxylate shunt that allows the synthesis of carbohydrates via 

gluconeogenesis from acetyl-CoA obtained from fatty acid β- oxidation. The 

glyoxylate pathway is also known in bacteria, fungi, protists and plants. The 

main glyoxylate cycle enzymes in C. elegans, isocitrate lyase and malate 

synthase, are contained as two separate structural domains in a single protein, 

ICL-1 (Liu et al. 1995). An active glyoxylate pathway (Kahn and McFadden 1980; 

Vanni et al. 1990) has been shown to be required for the survival of long –lived 

daf-2 and several ETC-defective mutants (Mit mutants) as well as the 

mitochondrial mutant clk-1(qm30) (Murphy et al. 2003; Cristina et al. 2009; 

Gallo et al. 2011) 

4.2.3 Carbohydrate oxidation 

Carbohydrates are broken down by glycolytic enzymes to pyruvate and 

ultimately to acetylCoA. They can then be converted to and stored as fats. 

Most enzymes in glycolysis catalyze reversible reactions. The irreversible steps 

in glycolysis are catalyzed by hexokinase, phosphofructokinase-1 and pyruvate 

kinase.  
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5. Protein kinases 

Kinases are enzymes that by phosphorylation can alter other proteins. These 

control key biochemical pathways by phosphorylation of substrate proteins 

and account for ~2% of genes in several eukaryotic genomes making them one 

of the largest gene families. Kinases are known to modify the activities of up to 

30% of all cellular proteins (Manning 2005). Protein phosphorylation regulates 

basic functions of all eukaryotes such as DNA replication, cell cycle control, 

gene transcription, protein translation, signal transduction, growth, 

differentiation, apoptosis and energy metabolism (Plowman et al. 1999).  

Kinases are also a part of several conserved signalling pathways that are known 

to modulate ageing. Also, several of these signalling pathways have been 

described to cross-talk via their kinase components.  Kinases are evolutionarily 

conserved and C. elegans has homologs for over 80% of the human kinome. 

The fact that 53 kinase families are conserved amongst yeast, invertebrate and 

mammalian kinomes shows the diversity of essential functions mediated by 

kinases (Figure 19A)(Manning 2005). 

A                                               B              

 

Figure 19: C. elegans kinome A. 

Distribution of 212 kinase 

subfamilies throughout four 

kinomes (Manning 2005) B. 

Hyperbolic tree representation of 

C. elegans protein kinases with the 

major protein kinase groups are 

labelled in different colours 

(Plowman et al. 1999). 

Based on the current accepted classification of protein kinases (as per the  

KinBase resource - http://www.kinase.com/kinbase/ (Manning et al. 2002a)), 

the C. elegans  kinome is divided into two groups –the atypical protein kinases 

(aPKs) and the conventional eukaryotic protein kinases (ePKs). aPKs are a small 

set of protein kinases that do not share clear sequence similarity with ePKs, but 

have been shown experimentally to have protein kinase activity (Manning et 

al. 2002b). ePKs are the largest group and share a conserved catalytic domain. 

ePKs have been further classified into eight families (Plowman et al. 1999; 

Manning et al. 2002a; Manning et al. 2002b)(Figure 19B) 

http://www.kinase.com/kinbase/4
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1. AGC family (including cyclic-nucleotide and calcium-phospholipid dependent 

kinases, ribosomal S6-phosphorylating kinases, G protein-coupled kinases, and 

all close relatives of these groups) 

2. CAMKs (calmodulin-regulated kinases) 

3. CK1 family (casein kinase 1, and close relatives) 

4. CMGC family (including cyclin-dependent kinases, mitogen-activated protein 

kinases, CDK-like kinases, and glycogen synthase kinase) 

5. RGC family (receptor guanylate cyclase kinases, which are similar in domain 

sequence to tyrosine kinases, TKs) 

6. STE family (including many kinases functioning in MAP kinase cascades) 

7. TK family (tyrosine kinases) 

8. TKL family (tyrosine kinase- like kinases (TKLs), a diverse group resembling 

TK but which are in fact serine-threonine kinases) 

9. Other group consisting of a mixed collection of kinases that could not be 

classified easily into the previous families. 

In C. elegans, kinome wide screenings have been employed to enhance the 

current understanding of kinases in different processes. For example, to 

understand the influence of kinases in muscle protein degradation, a kinase 

screening for over 90% of the kinome  was initiated (Lehmann et al. 2013) 

wherein 40% of kinases studied were found to be of importance in establishing 

or maintaining muscle cell health, with most kinases required for both. Also, 

kinases from the Ahringer and the ORFeome library were screened to identify 

kinases involved in germline hyperplasia (Qi et al. 2017). 

5.1 Glycogen Synthase Kinase -3 (GSK-3)  

GSK-3 is an evolutionarily conserved serine-threonine kinase. It was first 

identified as one of the several protein kinases capable of phosphorylating and 

inactivating glycogen synthase, an enzyme that catalyses the last step in 

glycogen synthesis. This was reported in rabbit skeletal muscles and was the 

third such kinase to be discovered, hence named GSK-3 (Embi et al. 1980; 

Woodgett and Cohen 1984). GSK-3 was later on identified as a major tau 

protein kinase (Ishiguro et al. 1993).These findings showed the importance of 

GSK-3 in glucose metabolism and neurodegeneration, which remain major 

areas of GSK-3 research.  Despite its original name, the functions of this kinase 

extend far beyond its role in glycogen metabolism. GSK-3 has been implicated 
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in a wide range of biological scenarios including signalling pathways and 

processes such as cell fate determination, metabolism, transcriptional control 

across several species (reviewed in (Cohen and Frame 2001; Woodgett 2001). 

Later on, it was shown through studies using L6 myotubes that insulin 

signalling through protein kinase B inhibits GSK-3 (Parker et al. 1983; Cross et 

al. 1995) resulting in the dephosphorylation of substrates of GSK-3, including 

glycogen synthase and eIF2B (eukaryotic initiation factor 2B). This leads to the 

insulin-induced stimulation of glycogen and protein synthesis (Cohen and 

Frame 2001).  

5.1.1 GSK-3 isoforms, orthologues and expression 

GSK-3 is ubiquitously expressed and is composed of 2 highly homologous 

genes, GSK-3α (51 kDa) and GSK-3β (47 kDa) (Woodgett 1990) which have 

similar biological functions and belong to the CMGC group of protein kinases. 

Both isoforms have 11 exons and share 98% similarilty within their kinase 

domains, with substantial differences in their N- and C-terminal domains (Lau 

et al. 1999; Yao et al. 2002). Immunoelectron microscopy and sub fractionation 

studies in rat cerebellum showed that GSK-3β locates in the cytoplasm, with 

small amounts detected in the mitochondria and nucleus; while GSK-3α is not 

detected in the mitochondria (Hoshi et al. 1995). The Drosophila orthologue of 

GSK-3 is Zeste-White3 or Shaggy (Bourouis et al. 1990; Siegfried et al. 1990) 

and is known to regulate segment polarity and wing organization. GSK-3 

homologues are conserved through eukaryotic evolution (Ali et al. 2001). Many 

species like fish, amphibians, lizards have both isoforms, while birds have only 

GSK-3β and appear to have selectively lost GSK-3α (Plyte et al. 1992; Bianchi et 

al. 1993; Alon et al. 2011). GSK-3α KO mice are viable (MacAulay et al. 2007) 

whereas, GSK-3β KO mice are inviable (Hoeflich et al. 2000). This distinct 

phenotype difference between GSK-3α and -β KO mice prompted further study 

of their individual roles. So far, no isoform-selective inhibitors exist. However, 

GSK-3 conditional KO models have been generated that allow for tissue-

specific deletion of isoforms. 

5.1.2 GSK-3 regulation  

In contrast to other kinases, GSK-3 is unusual in that it is typically active under 

basal conditions and is inhibited in response to a variety of inputs (Dorn and 
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Force 2005). GSK-3 mediated phosphorylation of substrates usually leads to 

inhibition of those substrates, hence, the inhibition of GSK-3 leads to functional 

activation of its downstream substrates. Regulation of pathways in which GSK-

3 is involved may occur through inactivating phosphorylation by other protein 

kinases on serine-21 of GSK-3α or serine-9 of GSK-3β. In vitro studies have 

shown that insulin, growth factors, or certain amino acids inactivate GSK-3 

through phosphorylation at serine 21 (GSK-3α) or serine 9 (GSK-3β) through 

the action of kinases such as AKT/PKB, p90rsk, and p70rsk (Cross et al. 1995; 

Eldar-Finkelman et al. 1995). Also through changes in tyrosine phosphorylation 

of GSK-3α at Tyr-279/GSK-3β at Tyr-216 (Cole et al. 2004). More than 50 

targets have been reported to be phosphorylated by GSK-3, including 

metabolic enzymes, signalling molecules, structural proteins, and transcription 

factors. GSK-3 also exerts a strong influence on several signalling pathways that 

regulate various cellular functions (Doble and Woodgett 2003; Force and 

Woodgett 2009; Xu et al. 2009; Cheng et al. 2011; Kaidanovich-Beilin and 

Woodgett 2011) and is downstream of several signalling pathways such as IIS, 

Wnt, Hedgehog and Notch (Doble and Woodgett 2003; Sutherland 2011).  

Here, we will limit the discussion to insulin and Wnt signalling pathway, as they 

are more relevant to this thesis. As mentioned earlier for insulin signalling, 

GSK-3 also plays a key inhibitory role in the Wnt pathway, however, the 

molecular mechanism of this is still unclear. The Wnts are a family of secretory 

glycoproteins functioning in diverse developmental processes (Miller 2002). 

Wnt signalling can be either the canonical or the noncanonical pathway. Here 

we focus on canonical Wnt signalling. A cytoplasmic destruction complex 

consisting of GSK-3, Casein Kinase 1 (CK1), Adenomatous Polyposis Coli (APC) 

and Axin mediate the phosphorylation of β-Catenin, targeting it for 

polyubiquitinylation and degradation in proteasomes. In the presence of Wnt, 

the destruction complex becomes inactivated. Wnt triggers signalling by 

binding to Frizzled and LDL-receptor related protein 6 (LRP6), causing the 

aggregation of Dishevelled (Dvl) and Axin on the plasma membrane (Bilic et al. 

2007; Zeng et al. 2008; Wu and Pan 2010), unphosphorylated β-catenin 

accumulates in the cytoplasm and translocates to the nucleus, where it can 

associate with the TCF/LEFs and become a transcriptional transactivator. A 

model to explain how GSK-3 is inhibited in canonical Wnt signalling suggests 

that Wnt signalling initiates sequestration of GSK-3 from the cytosol into multi-
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vesicular endosomes, thus reducing its cytosolic levels. Though β-Catenin also 

translocates into the endosomes with GSK-3, once cytosolic GSK-3 is 

sufficiently degraded, newly translated β-Catenin is not phosphorylated and 

accumulates in the nucleus (Taelman et al. 2010). 

5.1.3Therapeutic perspectives 

Deregulation of GSK-3 function has been implicated in many age related 

pathophysiological processes such as diabetes, Alzheimer’s disease, bipolar 

disorder and cancer, making GSK-3, a tempting therapeutic target. Lithium was 

one of the first inhibitors of GSK-3 to be discovered (Klein and Melton 1996) 

and shown to work in intact cells (Stambolic et al. 1996). Lithium activates 

glycogen synthase and stimulates glucose synthesis in primary rat adipocytes 

(Cheng et al. 1983) and  in muscle. Stronger inhibitors like, SB 216763 and SB 

415286, exhibit high rates of glycogen synthesis in HeLa cells (Coghlan et al. 

2000). Since then many chemical inhibitors of GSK-3 have been developed. 

Lithium has been used for the past several years for treatment of bipolar 

disorder, Alzheimer’s disease, depression and stroke (Chiu and Chuang 2010). 

5.1.4 GSK-3 in nematodes  

The C. elegans orthologue of mammalian gsk-3β is gsk-3 (previously called, 

sgg-1). In C. elegans, the function of Wnt genes, including GSK-3 is required for 

endoderm specification and mitotic spindle orientation (Schlesinger et al. 

1999). GSK-3 also influences C blastomere differentiation during embryonic 

development independently of its well documented role in Wnt signalling. It 

restricts the specification of mesendodermal tissue to a single blastomere 

(Maduro et al. 2001). Wnt signalling regulates diverse biological processes, but, 

how such varied responses are produced is not yet clear (Sawa and Korswagen 

2013). In worms, loss of BAR-1 reduces the activity of the FOXO ortholog DAF-

16 in dauer formation and lifespan (Essers et al. 2005). BAR-1 also has a role in 

vulval precursor cell specification, with bar-1(ga80) mutants exhibiting delayed 

development (van der Bent et al. 2014) along with an incomplete vulva, a 

protruding vulva and egg-laying defects (Eisenmann et al. 1998). Additionally, 

Wnt signalling contributes to spindle orientation, cell corpse clearance, and 

gonadal migration. These depend on a common process of cell cytoskeleton 

modification. Wnt pathway signals to CED-10/Rac (engulfment pathway) via 
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two separate branches to regulate modulation of the cytoskeleton in different 

scenarios. Cell corpse clearance and gonadal migration require the MOM-5 /Fz 

receptor, GSK-3, and APC/APR-1, that activates the CED-2/5/12 branch of the 

engulfment machinery. Rearrangement of mitotic spindles requires the MOM-

5/Fz receptor, GSK-3, and β-catenins, but not the downstream factors LIT-

1/NLK or POP-1/Tcf (Cabello et al. 2010). The canonical Wnt pathway also 

mediates anteroposterior axon guidance in motor neurons (Maro et al. 2009). 

GSK-3 dynamics also include regulating oocyte to embryo transition along with 

KIN-19 (Nishi and Lin 2005; Shirayama et al. 2006). gsk-3 also inhibits the 

RAS/ERK pathway function and regulates oocyte growth (Arur et al. 2009). It 

has been proposed that GSK-3 phosphorylates SKN-1 under normal conditions, 

and prevents it from accumulating in intestinal nuclei, whereas in conditions of 

oxidative stress, p38 pathway signalling and PMK-1phosphorylation of SKN-1 

are dramatically increased that counteracts inhibition of SKN-1 by GSK-3 (An et 

al. 2005).A kinome wide screening has also indicated GSK-3 as being essential 

in protein homeostasis, autophagy and in maintaining mitochondrial network 

and sarcomere structure in muscle (Lehmann et al. 2013)  

5.1.5 GSK-3 in ageing and metabolism  

GSK-3α KO mice have a short lifespan (Zhou et al. 2013). In worms, gsk-3 

(nr2047) mutants have been shown to have a 36% reduction in median lifespan 

compared with wild type. Hence, loss of GSK-3 is detrimental to lifespan 

(McColl et al. 2008). Inhibition of GSK-3 via administration of lithium has  been 

observed to extend lifespan, in yeast, flies, humans and C. elegans (McColl et 

al. 2008; Zarse et al. 2011; Sofola-Adesakin et al. 2014; Tam et al. 2014; 

Castillo-Quan et al. 2016). Lithium addition in the diet can also modulate 

resistance to stress and metabolism in Drosophila, via inhibition of GSK-3 

(Castillo-Quan et al. 2016). Recently, there is evidence from studies during late 

oogenesis in Drosophila, that decreased insulin signalling initiates ETC 

remodeling and mitochondrial respiratory quiescence through GSK3 (Sieber et 

al. 2016). GSK-3 was also implicated in inhibition of AMPK activity - a key kinase 

that regulates cellular energy homeostasis (Suzuki et al. 2013; Saldivia et al. 

2016).
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Depletion of prohibitins (PHBs) reduces lifespan in wild type worms, while, 

under compromised insulin signalling it extends lifespan. PHB depletion also 

alters Nile Red (NR) staining in vivo both, in wild type and IIS mutants early in 

adulthood while the phenotype is retained only in IIS mutants during ageing. 

Thus, loss of PHBs influences ageing and metabolism in a genetic background 

specific manner. The unique phenotype of PHBs can help to better understand 

how mitochondrial function regulates lifespan in reponse to different cues. 

Therefore, the main objective of this thesis is to reveal novel regulators 

involved in the metabolic response to PHB deletion in wild type and IIS 

mutants. The specific objectives towards the achievement of this goal are: 

1. Characterise C. elegans prohibitin deletion mutants. 

2. Establish an automated sorting and imaging strategy to screen for genetic 

interactions of essential genes. 

3. Identify signalling pathways mediating the response to PHB depletion by 

performing a kinase RNAi screen. 

4. Investigate the role of GSK-3, a candidate identified in the RNAi screen, in 

ageing and metabolism.
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1. Characterisation of mitochondrial PHB deletion mutants  

Prohibitin proteins are essential for embryonic development and for somatic 

and germline differentiation in the larval gonad of C. elegans (Artal-Sanz et al. 

2003).  In line with that homozygous mutants having a null phb-1 allele develop 

into gametogenesis-defective sterile adults due to maternal effect (Artal-Sanz 

and Tavernarakis 2009b). This makes PHBs part of the approximately 30% of 

the genes in the worm genome, that have been categorized as essential genes 

- based on information from screens for lethal or sterile mutants (Brenner 

1974; Kemphues 2005). A bulk of these was associated with developmental 

processes, and hence, the study of such lethal mutations may disclose new 

information about essential biological processes.Lethal mutations can be 

propagated and stably maintained in heterozygosis, by introduction of 

balancer chromosomes. Briefly, these are chromosomal rearrangements that 

allow lethal or sterile mutations to be maintained in a stable way in 

heterozygosis. They carry chromosomal errors like inversions or translocations 

that suppress recombination and thus, prevent loss of terminal alleles in a 

population. About 85% of the worm genome has been successfully balanced by 

this manner, with ongoing efforts aimed at covering the whole genome. A bulk 

of the balancers carry fluorescent transgenes (commonly, GFP) that enable 

easy identification of heterozygous animals. Homozygous animals are 

identified with ease as they lack fluorescent transgene expression (Edgley et al. 

2006; Chen et al. 2015; Iwata et al. 2016). 

Homozygous PHB deletion mutants resulting from heterozygous mothers 

exhibit sterility and hence, need to be maintained as balanced heterozygous to 

be viable. The phb-2 deletion was balanced using an inversion on chromosome 

II - mIn1[dpy-10(e128) mIs14 (myo-2::GFP)], which carries an integrated 

pharyngeal GFP. Balancer homozygotes are Dumpy and sterile (because of the 

dpy-10(e128) allele) having two copies of GFP (Figure 20, left), heterozygotes  

are phenotypically wild type having a single copy of GFP (Figure 20, middle) 

and homozygous PHB deletion mutants lack GFP (Figure 20, right) and are 

sterile. As we intended to study PHB deletion mutants in an IIS depleted daf-

2(e1370) mutant background, phb-2(tm2998);daf-2(e1370) double mutants 

were generated. Since the same allleles are used all through this thesis, 

mutants can be referred just by the gene name for simplicity. 

http://www.wormbase.org/db/get?name=e128;class=Variation
http://www.wormbase.org/db/misc/etree?name=mIs14;class=Transgene
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Figure 20: Mitochondrial deletion mutant, phb-2(tm2998). Balanced phb-2(tm2998) deletion 

mutants containing the chromosomal inversion mIn1[dpy-10(e128)mIs14(myo-2::GFP)]. 

Homozygous phb-2 mutants are smaller in size and lack GFP (right). All worm images were 

acquired at the Young Adult stage using an Olympus Stereoscope.  

 

On the other hand, phb-1 deletion was balanced by a reciprocal translocation 

between chromosomes I and III - hT2[bli-4(e937)qIs48(myo-2::GFP)](I;III). 

However, the qIs48 element housing the GFP transgene is not very stable 

(Fernandez et al. 2012) and is often lost, making the task of distinguishing the 

homozygous phb-1 worms from the heterozygous wild type difficult and thus, 

not suitable for large scale experiments. In C. elegans, the phenotypes elicited 

by knockdown of either phb-1 or phb-2 via RNAi are the same (Artal-Sanz and 

Tavernarakis 2009b; Lourenco et al. 2015). Also, both subunits of the PHB 

complex have been confirmed as absent in both phb-1 (tm2571) and phb-

2(tm2998) mutants (Hernando-Rodriguez et al. 2018). Therefore, we focused 

on phb-2 deletion mutants. 

1.1 Development is severely delayed in PHB mutants 

As mentioned earlier, C. elegans develops through four larval stages (L1, L2, L3 

and L4) before exiting as a reproductive young adult (YA). All the larval stages 

are separated by periods of molting (M1, M2, M3 and M4). We utilised a 

recently developed technique to precisely measure the duration of each larval 

developmental stage. Briefly, we use C. elegans expressing the firefly luciferase 

(LUC) constitutively and ubiquitously throughout development (Lagido et al. 

2008). The luciferase enzyme catalyses oxidation of luciferin generating light. 

As C. elegans is transparent, the LUC-marked strains emit light when provided 

with exogenous luciferin. The absence of luciferin intake during the molts 

provokes a decrease in the bioluminescence signal (Olmedo et al. 2015). 



RReessuullttss  

 

 

56 

Luminescence signal can be determined in single animals. For this purpose, 

LUC::GFP was introduced in daf-2 and phb-2 mutants, as well as phb-2; daf-2 

double mutants. Development from arrested L1s was measured at 20°C. phb-2 

and phb-2; daf-2  mutants exhibit a strong delay in development in comparison 

with wild-type and daf-2 mutants (Figure 21A).  
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Figure 21: Quantification of the duration of larval stages and periods of molting, using the 

LUC::GFP bioluminescent reporter. A. Average duration of development for wild type (n = 17), 

daf-2 (n=19), phb-2 (n = 14) and phb-2; daf-2 (n= 11) at 20 ºC. Red represents the molts as 

inferred by low LUC signal. Error bars represent the SD of the duration of each interval. B. 

Duration of all larval stages (L1-L4). C. Duration of all molting cycles. Scatter plot representative 

of one of two independent experiments (***P ≤ 0.001, **P ≤ 0.01, ns- not significant; 1 way 

ANOVA, Bonferroni’s multiple comparison test). 

 

When comparing each larval stage, we observe that phb-2 deletion extends the 

duration of all larval stages, both in wild type and in daf-2 mutants (Figure 

21B). However, the duration of the molting cycles are not significantly affected 

by phb-2 deletion, with the exception of the M4, which is extended in both 

genetic backgrounds (Figure 21C).Additionally, we also note that the duration 

of larval and molting stages is longer in daf-2 mutants, when compared against 
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the wild type, especially the L2 stage, as previously established (Ruaud et al. 

2011; Olmedo et al. 2015).  

1.2 Pharyngeal pumping is reduced in PHB mutants 

Alterations in physiological processes such as delayed development, altered 

defecation, feeding and pharyngeal pumping rates, reduction in mobility, low 

brood size, etc. often accompany scenarios wherein mitochondrial function has 

been compromised (Tsang and Lemire 2003). Pharyngeal pumping was 

observed to be reduced in wild type animals when subjected to phb-1/-2 RNAi 

(Artal-Sanz et al. 2003). PHB deletion in both wild type and daf-2 mutants 

significantly reduced the rate of pharyngeal pumping (Figure 22).  

         

0

100

200

300

Day 1 Day 5

**
***

**

**

phb-2(tm2998)
daf-2(e1370)

wild type

phb-2(tm2998);daf-2(e1370)

p
h

ar
n

yx
 p

u
m

p
s 

p
e

r 
m

in

                          
Figure 22: Pharyngeal pumping rates in wild type, phb-2, daf-2 and phb-2;daf-2 mutants. Bar 

graph representative of one of two independent experiments (n>10, Mean ± SD, 1 way ANOVA, 

Dunn’s multiple comparison test, ***P ≤ 0.001, **P ≤ 0.01) 

We also observed daf-2 mutants displayed lower rates of pumping in 

comparison to wild type animals on both day 1 and day 5. daf-2 mutants have 

been previously shown to have reduced pharyngeal contractions albeit at a 

lower temperature of 15°C (Bansal et al. 2015; Dillon et al. 2016). Pharyngeal 

pumping decreases during ageing (Huang et al. 2004; Bansal et al. 2015). We 

observed the same from day 1 to day 5 across all genetic backgrounds (Figure 

22). 

1.3 Lifespan of the PHB mutants 

PHB mutants, phb-1(tm2571), phb-2(tm2998) and phb-2(tm2998);daf-2(e1370) 

were subjected to lifespan analysis on E.coli OP50 to verify whether they 

recapitulate the results obtained using RNAi against phb-1 and phb-2 (Artal-

Sanz and Tavernarakis 2009b). Similar to the lifespan phenotype observed 
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upon RNAi, both phb-1 and phb-2 deletion mutants lived shorter than wild type 

animals. On the other hand, phb-2;daf-2 double mutants exhibited increased 

longevity in comparison to daf-2 mutants (Figure 23, Table 3). 
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Figure 23: Lifespan of phb-1, 

phb-2 and phb-2;daf-2 

mutants on E.coli OP50. 

Survival curves are 

representative of two 

independent longevity 

assays. 

1.4 Nile Red staining is reduced in PHB mutants 

It has been previously shown that prohibitin depletion reduces Nile Red 

staining both, in wild type and daf-2 mutants early in adulthood. However, as 

animals age, this phenotype is retained only by daf-2 mutants on phb-1/2 RNAi 

(Artal-Sanz and Tavernarakis 2009b). We assayed the same using PHB mutants 

to evaluate if Nile Red could be used for screening purposes. The phb-2 

mutants show reduced Nile Red staining (Figure 24A) in comparison to wild 

type, but reach wild type levels on day 15.  

However, phb-2 deletion in daf-2 mutants exhibited low staining all throughout 

ageing up to day 25 (Figure 24B,C), thus, recapitulating the Nile Red phenotype 

observed upon phb-1/-2 RNAi. Nile Red staining accumulates through the 

course of ageing in all genetic backgrounds.  
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Figure 24: Reduced Nile Red staining in mitochondrial PHB mutants. A-B Comparion of Nile Red 

staining during the course of ageing (day 1 to 15) in A. wild type and phb-2 mutants - images (left 

panel), the quantification of the same (right panel) and in B. phb-2;daf- 2 mutants as compared 

to the daf-2 mutants (left) and bar graph representing average pixel intensity (right). The bar 

graphs are representative of two independent experiments in both A and B (n>70 for day 1 & 5, 

n>50 for day 10 and n>25 for day 15 - all conditions, Mean ± SD, 1 way ANOVA , Dunn’s multiple 

comparison test, ***P ≤0.001, **P ≤ 0.01, ns >0.05; D-Day). C. Nile Red staining of daf-2 and 

phb-2;daf-2 mutants on day 20 and 25. Bar graph representative of two independent 

experiments (n>60, Mean ± SD, 1 way ANOVA, Dunn’s multiple comparison test, ***P ≤ 0.001; D- 

Day). 

1.5 Triglyceride levels are increased in PHB mutants  

Vital dyes have been strongly debated over what exactly they are staining 

within the nematode in the recent past. Hence, we analyzed the lipid status of 

PHB mutants using Oil-Red-O, a fixative based staining method more reliable 

for analysing fat content. We observed increased Oil-Red-O staining in PHB 
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mutants (Figure 25). In accordance with previously published data, daf-2 

mutants showed increased triglycerides (Yen et al. 2010) in comparison to wild 

type animals. Moreover, phb-2;daf-2 mutants displayed more triglyceride 

content in comparison to daf-2 mutants (Figure 25).  
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Figure 25: Oil-Red-O staining of mitochondrial PHB mutants compared to wild type and daf-2 

mutant backgrounds on first day of adulthood (Day1). Worms were stained using the quick Oil-

Red-O method (wild type (n=52), phb-2 (n =38), daf-2 (n =67), phb-2;daf-2 (n =34), Mean ± SD, 

***P < 0.001; 1 way ANOVA, Bonferroni’s multiple comparison test). Representative images are 

shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 



RReessuullttss  

 

 

61 

2. Automated worm-sorting and image analysis for the study of essential 
genes  

2.1 Sorting conditions for homozygous PHB deletion mutants 

The worm sorter, COPAS, was used to facilitate sorting of the mitochondrial 

PHB mutants. Previously, similar sorting conditions have been reported for 

selection of homozygous worms that lack pharyngeal GFP from a mixed 

population at the L3 (Latorre et al. 2015)and L4 (Ruegger et al. 2015)larval 

stages. In this thesis, worms were sorted at the L1 larval stage in order to 

facilitate RNAi from the start of larval development. 

In order to select the population of interest lacking pharyngeal GFP, we initially 

acquired data from over 200-500 worms in order to gate a proper region of 

worms hence, excluding unhatched eggs, dead corpses within the samples, 

curled worms etc. The data of acquired worms can be stored as.txt or in an 

excel format for review, in order to set proper conditions and also for future 

references. Based on that, we drew a gating region within a particular area on 

Extinction PeakHeight (Ext PH) vs Extinction PeakWidth (Ext PW)( see Figure 

26, upper dot plot). This aids in selection of worms that have a certain maximal 

optical density and a certain length above the set threshold avoiding unwanted 

objects. Next, we viewed green PeakWidth vs green PeakHeight parameters in 

the sort dot plot that enabled us to view the different populations of worms: 

homozygous phb-2 worms (non - GFP in the pharynx), heterozygous wild type 

(GFP expression in the pharynx) and dumpy worms (GFP expression in the 

pharynx)( see Figure 26, lower dot plot). This reflects the relative green 

fluorescence within the earlier gated population. We select and sort the 

nonGFP homozygous worms (Figure 27, A and B) from the mixed population. 

Once, sorting parameters were successfully established, we sorted around 40 

PHB homozygous larvae per well in a 96-well microtitre plate. Under ideal 

working conditions, one plate took approximately 40 minutes. Worms were 

grown till the young adult stage in bacteria producing dsRNA supplemented 

with Nile Red. In order to quantify the intensity of Nile Red staining, we 

designed a customized protocol for worm segmentation.  
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Figure 26: Screenshot of the dot plot view with the established gating (upper) and sorting (lower) 

conditions for phb-2(tm2998) mutants. The scale, gains, thresholds, photomultiplier tube (PMT) 

control levels, the sort delay and width are values that were adjusted based on several sorting 

tests and specific values were chosen that are best for the sample being analyzed.  

                    A                                                                 B 

 
Figure 27: Screenshot of the sorting regions. Sorting dot plot of  A.  phb-2(tm2998)/mIn1 

balanced animals, where the population of phb-2(tm2998) homozygous L1 larvae that are sorted 

is marked by a circle and B. phb-2(tm2998);daf-2(e1370)/mIn1 balanced animals, where the phb-

2(tm2998);daf-2(e1370) homozygous L1 larvae is marked by a square. 

2.2 High-throughput imaging strategies  

2.2.1 Image acquisition and analysis  

Image acquisition was done using the IN Cell Analyzer 2000, an inverted 

microscope designed for automated fluorescent imaging and analysis of cells. 

We optimized imaging and segmentation protocols to be applied to C. elegans. 
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Building an imaging protocol starts with an acquisition protocol that 

establishes the plates and selection of wells to be imaged, amongst other 

parameters such as wavelengths and exposure times to use. Once an 

established protocol is run, the system works without user input to complete 

the imaging. Once worms reached the desired stage, here, the young adult (YA) 

stage, images were acquired by utilizing the 2x objective, in three different 

channels – brightfield, FITC/GFP and Cy3/Red at identical settings and 

exposure times (see Materials and Methods). Image analysis for quantification 

of Nile Red intensity was performed with a user-defined protocol created using 

the Developer Toolbox software (version 1.9.2) (GE Healthcare). This software 

accompanies the IN Cell Analyzer 2000 and enables direct upload and 

automated analysis of image stacks. The FITC/GFP channel was added for well 

segmentation and to spot accidently sorted heterozygous worms with 

pharyngeal GFP expression which were then removed from the data analysis. 

The segmentation protocol was built from individual sets of targets which were 

then linked together to obtain all the required measurement regions in one 

target. Each target was created step by step -1) pre-processing to enhance the 

image prior to segmentation, 2) segmentation of the target to generate a 

mask, after which post processing operations were added to clean up the 

target mask. Once the targets had been created and optimized, measurements 

were made in the individual targets or the linked target sets. The following 

targets were created: thewell edge (used to subtract out any well debris), the 

worm and the dilated worm (used to calculate background intensities adjacent 

to the worm). First, intensity based well segmentation was done using the auto 

fluorescence of the well edge in the FITC/GFP channel and after post-

processing refinement steps, the resultant segmentation mask was inverted to 

give the well edge (Figure 28A). Next, the bright field image was enhanced 

using a pre-processing step to achieve better segmentation of worms in the 

brightfield channel (Figure 28B). After post processing, refinement of the worm 

mask and subtraction of the well edge to remove well artefacts, acceptance 

criteria based on morphological parameters were applied to remove unwanted 

worms and debris (Figure 28C). The worm mask was transferred sequentially to 

the Cy3/Red channel which enabled additional acceptance criteria based on 

intensity measures to be applied if necessary to further refine the final worm 

target set (Figure 28D).The final worm mask was then copied and dilated to 
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generate a region around the worm to enable calculation of immediate 

backgroundintensity (Figure 28E). 

 
Figure 28: Outline of the image segmentation protocol for balanced mutants. A. Well 

segmentation was done in the GFP channel based on intensity and then the image was inverted. 

B. The image in the brightfield channel was subjected to pre-processing to enhance the contrast, 

to enable ease of segmentation. The segmented worms were tagged in blue. To select worms 

and to exclude artefacts/debris, acceptance criteria based on morphological parameters were 

applied (these can be modulated as per user requirement).C. Next, the well edge was subtracted 

from the segmented worms (blue) and overlapping worms (yellow) were excluded. D. This 

segmented worm mask was transferred to the Cy3/Red channel. E. For background subtraction, 

the segmented worms were dilated in order to measure theintensity of the immediate 

background. 

In the final sequence, the targets, worm and background, were linked together 

to get both measurements together in one target. The software links two 

targets at a time and there must be at least one pixel overlap to achieve a 

linkage. Thus, the final Worm Mask was linked to Dilated Worm Mask, to result 
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in a target which has both measurement regions - worm mask and dilated 

worm mask (Figure 29A). By the dilation of the worm, we can measure and 

subtract the intensity of the immediate background. This feature is very useful 

when screenings require usage of dyes (such as the one used in this thesis), as 

dyes can stain plastic and can cause different background intensities 

depending on the area of the well being measured. A comprehensive list of 

measures for each worm was collected covering morphological and Intensity 

based measures from the Cy3/Red channels (Figure 29B). 

For experiments that involved older worms, the analysis protocol was checked 

at each step and the segmentation parameters, post processing steps and 

acceptance criteria were re-optimized. 

A 

 
B 

 

Figure 29:  Target linking and background subtraction A. Target linking to compose a final target. 

Worm mask and dilated worm were linked together. The final target shows the two 

measurement regions: the worms outlined in blue, the immediate background outlined in cyan. 

B. Identified targets with the corresponding measurements. The output sheet from the 

Developer toolbox with the segmented worms and their measures such as fiber length (Fiber 

length worm), Intensity of the worm (Int Worm), intensity of the immediate background (Int 

Bkgd Cy3), background subtraction (Int Worm - Bkgd) and the area of the worm (area). 

Additional measures like major axis length, X/Y position, form factor can be added as per user 

requirement during target linking. 
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2.2.2 Improved image analysis incorporating identification of heterozygous 
worms using Developer Toolbox 

The above image acquisition and segmentation protocol has been modified to 

incorporate a step that correctly identifies unwanted heterozygous worms with 

green pharynx. This was required as the sorting with the COPAS might not 

always be efficient, resulting in eventual heterozygous worms with pharyngeal 

GFP expression in the screening plates. This modified protocol follows the 

same initial steps of well segmentation in the green channel image and 

segmentation of worms in the brightfield image, followed by subtraction of the 

well edge (Figure 28). Once worms were well delineated, green heads of the 

heterozygous worms with pharyngeal GFP were segmented in the FITC/GFP 

channel image and acceptance criteria based in area and intensity were used 

to better define green heads (Figure 30 and 31A). In the final sequence, the 

targets were linked together to get all three measurement regions together in 

one target. Here, Final Worm Mask was linked to Dilated Worm Mask, Worm-

Green Head was linked to Dilated Worm Mask, then using a composed link 

these two groups were linked together to result in a target which has all three 

measurement regions, final worm mask,the dilated worm and the worm minus 

green head linked together ( Figure 30 and 31B).  User defined morphological 

and intensity based measurementswere collected for each worm from both 

green and red channels (Figure 31C).  
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Figure 30: Outline of the protocol for identification of heterozygous worms with GFP expression 

in the pharynx. Briefly, post well segmentation in the green channel, the worms were segmented 

after enhancing the contrast in the Brightfield Channel (Image A). Acceptance criteria were 

applied to remove artefacts (Blue accepted, Yellow rejected). The worm mask was transferred to 

the green image to identify, if needed, worms with green heads based on the green head ID 

(Image B and C). The final worm mask dilated (Image E), the dilated region around the worm, 

was used to calculate the immediate background intensity. Finally, the targets labelled by 

asterisks  are linked together to get all three measurement regions, i.e,  Dilated worm, Worm 

minus Green Head and Final Worm Mask,  together in one target.  
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A 

 
B 

 

C 

 
Figure  31: Identification of heterozygous animals (Green Head ID). A. After worm delineation in 
the brightfield channel, green heads were segmented and tagged in red. In the next step, the 
identified green heads were subtracted from the worm bodies. As a result, segmented worms 
appear blue without the green heads, thus, “worm minus green head”.Segmented worms are 
dilated (bottom panel) in order to facilitate measurement of the intensity of the immediate 
background. B. A balanced heterozygous animal expressing pharyngeal GFP has been identified 
(red arrow) within a population of homozygous phb-2 mutants. The heterozygous animal 
exhibits increased Nile Red staining in comparison to the homozygous phb-2 mutants.C. 
Segmentation analysis output of the analysis for balanced mutants. Intensity of the worm 
subtracting the background intensity in the green image (Int Worm - Bkgd FITC), identification of 
green head (green head ID) and intensity of the worm subtracting the background intensity in 
the red image (Int Worm - Bkgd Red) are depicted in the analysis output.  Target 12 is the 
correctly identified heterozygous worm with a green head ID greater than 0. 
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2.3 Open-sourcing of the segmentation protocol through CellProfiler                   

These segmentation protocols built via the Developer toolbox limits their 

usage to researchers with access to the GE Healthcare platform. To get around 

this disadvantage, we implemented the protocol in the free and open source 

CellProfiler software (Hernando-Rodriguez et al. 2018), thus, providing an 

analysis pipeline to identify green head worms, and capable of measuring 

intensities in both green and red channels.  

We compared worm segmentation outputs resulting from the Developer 

Toolbox and CellProfiler and found them comparable (Figure 32B). We 

evaluated wild type and phb-2 mutants after Nile Red staining and observed 

lower Nile Red staining in phb-2 mutants irrespective of the software used for 

segmentation (Figure  32C), hence, validating this method. The image analysis 

protocol generated through the CellProfiler software is easily adaptable to the 

user’s needs in terms of different fluorescent markers, image formats and 

image resolutions. 
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Figure 32: Open sourced segmentation protocol (CellProfiler).A.Representative images of wild 

type and phb-2(tm2998) mutants taken sequentially in the brightfield, GFP and Cy3 channels 

using the IN Cell Anlayzer 2000.B.Comparison of the image segmentation output for wild type 

and phb-2(tm2998) mutants generated from Developer toolbox (GE Heathcare) versus 

CellProfiler. C. Quantification ofNile Red staining of phb-2(tm2998) mutants versus wild type 

animals. Graphical representation of data obtained from the Developer toolbox and CellProfiler 

protocols. As previously shown, depletion of phb-2 reduces Nile Red staining using both of the 

protocols (*** P value < 0.0001; Unpaired t-Test) 
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3. A kinase RNAi screen to identify genetic interactors of mitochondrial 
prohibtins  
 
The opposing ageing phenotypes elicited by lack of PHBs provided an 

opportunity to understand which cellular signalling pathways may differentially 

regulate ageing depending on external or internal energy demands (Artal-Sanz 

and Tavernarakis 2009b). This project was aimed at identifying genes that 

might play a role in regulating metabolic responses to prohibitin depletion 

under conditions in which PHB depletion affects ageing in an opposite manner.  

We performed an RNAi screen to identify relevant signalling pathways involved 

in PHB-mediated phenotypes, by screening the contribution of all kinases 

represented in the ORFeome RNAi library (Rual et al. 2004). Kinases are 

conserved signalling molecules modulating cellular processes and popular 

targets for drug discovery. Moreover, the C. elegans  kinome has 81% 

homology with human kinases (Manning 2005). We utilised phb-2 and phb-2; 

daf-2 mutants for the screening and exploited the reduced Nile Red staining 

phenotype observed upon PHB depletion in wild type and IIS mutants (Figure 

24) (Artal-Sanz and Tavernarakis 2009b) as a read out. Despite the 

discrepancies surrounding vital Nile Red staining (O'Rourke et al. 2009b; 

Soukas et al. 2013; Wang et al. 2014) it is extremely convenient for screening 

strategies and has helped identify gene inactivations that modulate fat 

metabolism (Ashrafi et al. 2003).  

As mentioned earlier, the PHB mutants are balanced strains and require a 

laborious selection of homozygous PHB mutants. Hence, we grew worms in 

liquid cultures to scale up the worm populationand employed the worm sorter, 

COPAS, for sorting worms of interest. The ORFeome kinase sub-library 

contained 264 kinases, 32 clones did not grow and hence, the total number of 

analyzed kinases is 232. The 232 kinases are housed in three 96 well plates 

where the last row has been left empty to house controls. For quantification of 

the Nile Red staining, a worm segmentation protocol was developed for the 

imaging platform IN Cell Analyzer 2000 (GE Healthcare) (Figure 33). 
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Figure 33:  Overview of the RNAi screening strategy. Worms are grown in liquid media to 
generate large populations.  Homozygous PHB mutants are sorted at L1 stage from a mixed 
population of balanced heterozygous animals into multiwell plates using the COPAS Biosort 
“worm sorting”.  Next, bacteria containing the ORFeome kinase RNAi sublibrary are added to the 
wells, supplemented with Nile Red and worms are incubated at 20°C. When worms reach the 
desired stage, plates are washed to clear bacteria and they are imaged in brightfield and 
fluorescent channels using an automated microscope, IN Cell Analyzer (GE Healthcare). A user-
defined image segmentation protocol is used to define potential hits based on the intensity of 
Nile Red staining of worms in comparison with the control.  

We screened for RNAi clones that increase Nile Red staining and, thus, 

suppress the reduced Nile Red phenotype of phb-2 deletion in otherwise wild 

type animals and in daf-2 insulin receptor mutants. The empty vector pL4440 

stained with 100nM was run in all the plates as negative control. In order to 

ensure the effectiveness of the RNAi screen, additionally a positive control was 

established -sgk-1(RNAi) that increases Nile Red staining (Jones et al. 2009). 

The primary screen comprised two biological replicates using phb-2 and phb-2; 

daf-2 mutants. 4-6 wells with empty vector and 2 wells with positive control 

were run in the primary screen. 41 RNAi clones that were above the range 

representing +1SD from the mean of the control (empty vector) and were 

recurring in both sets of biological repeats were chosen to be screened a third 

and final time. The 41 candidates were re-tested in a liquid format and resulted 

in a final list of 26 significant candidates (Figure 34). 
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Figure 34: Heatmap depicting the 

behaviour of the 26 kinases 

identified from the RNAi screen 

upon Nile Red staining in PHB 

deficient backgrounds. These 

clones cause a significant 

difference in Nile Red staining 

with respect to the control, in 

any of the two genetic 

backgrounds (One way ANOVA, 

Dunn’s multiple comparison test, 

ns = not significant p>0.05, 

*=p<0.01, ** = p<0.01, *** = p< 

0.001) 

We only recovered kinases that suppressed the reduced Nile Red staining 

phenotype of PHB mutants. We did not observe any kinases enhancing this 

phenotype. The identified kinases could be put into 18 functional groups with a 

bulk related to phosphorylation (Figure 35), followed by kinases whose 

function is related to reproduction and development, where PHB has been 

shown to be essential (Artal-Sanz et al. 2003). We also observed kinases 

related to lipid storage and the Wnt signalling pathway. Amongst the 

candidates, we also encountered kinases that have been previously shown to 

modulate longevity and fat metabolism and previously shown to interact with 

PHB, such as SGK-1, the serum and glucocorticoid kinase 1,regulates fat 

metabolism in C. elegans (Jones et al. 2009; Soukas et al. 2009) and interacts 

with PHB to regulate lifespan and the mitochondrial unfolded protein response 

(UPRmt)(Gatsi et al. 2014). Apart from this, we also identified the S6 

kinase/RSKS-1, a conserved substrate of the mechanistic Target of Rapamycin 

(mTOR) complex 1 (Laplante and Sabatini 2012) that regulates fat (Shi et al. 

2013) and interacts with PHB to regulate lifespan in yeast (Schleit et al. 2013). 

Another kinase that was identified in the screening was MTK-1, an ortholog of 

human MAP3K4 (mitogen activated protein kinase kinase kinase 4) that also 

interacts with PHB. PHB mutants subjected to mtk-1 RNAi exhibit increased 

UPRmt (Villringer and Artal-Sanz, unpublished data). Among the kinases related 

to Wnt signalling, a strong candidate was the glycogen synthase kinase-3, GSK-
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3. GSK-3 is a conserved serine/threonine kinase that is phosphorylated upon 

prohibitin depletion in mice hippocampus (Merkwirth et al. 2012). Here, we 

observed that lack of gsk-3 suppresses the reduced Nile Red staining 

phenotype of PHB mutants.  

 
Figure 35:  Classification of the identified 26 kinases according to function built using DAVID 

Bioinformatics Resource 6.8. Significantly enriched GO terms (p<0.05) have been represented.  

As our goal was to ultimately identify genes involved in the lifespan phenotype 

conferred by PHB depletion, we pre-selected certain candidates to ascertain 

their role in longevity upon mitochondrial prohibitin depletion (Appendix 1, 

A1.2-A1.5).  
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4. Establishing the role of GSK-3 in longevity and metabolism  

Among the pre-selected candidates, GSK-3 was chosen for further analysis. 

GSK-3 is a multifaceted conserved kinase and a known target of AKT that 

regulates systemic metabolism (Cross et al. 1995; Cohen and Frame 2001). 

GSK-3 has many substrates and is involved in many other processes including 

in Wnt signalling and in disease pathologies (Kaidanovich-Beilin and Woodgett 

2011; Sutherland 2011; Patel and Woodgett 2017). Additionally, the role of 

GSK-3 has been studied immensely in early nematode development 

(Schlesinger et al. 1999; Maduro et al. 2001; Nishi and Lin 2005; Arur et al. 

2009; Maro et al. 2009; Cabello et al. 2010) and while GSK-3 has established 

functions in metabolic regulation in other organisms (MacAulay et al. 2007; 

Alon et al. 2011; Zimmermann et al. 2013; Castillo-Quan et al. 2016; Chen et al. 

2016; Sieber et al. 2016; Markussen et al. 2018), a role for GSK-3 in metabolism 

in C. elegans is unknown. Based on these observations, we decided to ascertain 

the role of GSK-3 with a focus on how its depletion might alter the longevity 

and metabolism seen upon mitochondrial prohibitin depletion and also 

compromised IIS signalling.  

4.1 GSK-3 differentially regulates lifespan in C. elegans depending on the 

metabolic status 

Previously, gsk-3(nr2047) mutants have been shown to exhibit reduced 

lifespan at 25°C (McColl et al. 2008). Wild type animals on gsk-3 RNAi showed a 

mild reduction in lifespan (Figure 36) as observed in gsk-3(nr2047) mutants, 

while the long lifespan of IIS mutants was almost fully suppressed upon GSK-3 

depletion, showing for the first time that GSK-3 is essential for the long lived 

phenotype of insulin mutants (Figure 36, Table 4). The lifespan of phb-2 

mutants on gsk-3 RNAi was only very mildly affected, while the double phb-2; 

daf-2 mutants showed a strong reduction, similar to daf-2 mutants. Thus, GSK-

3 depletion resulted in a differential reduction in lifespan across all genetic 

backgrounds. This phenotype was similar irrespective of addition of FUdR, to 

prevent progeny production (Refer Appendix 2.1, Table 4). We also inhibited 

GSK-3 by addition of lithium (a chemical compound previously shown to inhibit 

GSK-3 (Stambolic et al. 1996)) in wild type and daf-2(e1370) mutants, and 

observed suppression of lifespan at 20°C, contrary to published data (Refer 

Appendix 2.2, Table 4 ). 
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All genetic backgrounds exhibited vulval bursting on gsk-3(RNAi), the 

phenotype being more severe in wild type animals (Table 4). Though we 

censored worms that exhibited vulval explosion during lifespan assays (like 

most laboratories), this phenomenon has been described in detail as age 

associated vulval integrity defects (Avid) by the Kaeberlein Lab and has been 

proposed as a marker for healthspan in nematodes (Leiser et al. 2016).  
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Figure 36: Lifespan analysis 

of wild type, daf-2, phb-2, 

and phb-2;daf-2 subjected 

to gsk-3(RNAi) post 

embryogenesis. Average of 

two independent lifespan 

curves has been 

represented here. 

GSK-3 function is essential during early embryonic development (Maduro et al. 

2001; Nishi and Lin 2005; Shirayama et al. 2006). We noticed a slight 

developmental delay in worms grown on gsk-3(RNAi) from the L1 larval stage. 

In order to avoid deleterious developmental effects and to monitor whether 

GSK-3 functions during ageing, we assayed the effect of GSK-3 depletion from 

adulthood. We observed that mean lifespans wereincreased when worms 

weresubjected to gsk-3(RNAi) from adulthood (Figure 37) in comparison to 

post embryogenesis confirming a role for GSK-3 during development.  
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Figure 37: Lifespan analysis 

of wild type, daf-2, phb-2 

and phb-2; daf-2 mutants 

subjected to gsk-3(RNAi) 

during adulthood. Average 

of two independent 

lifespan curves has been 

represented here. 
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Wild type animals subjected to gsk-3 RNAi exhibited significantly reduced 

lifespan (17%), whereas GSK-3 depletion in IIS daf-2 mutants led to a 

pronounced decrease (34%) in lifespan, confirmingthat GSK-3 is essential for 

the extended longevity of daf-2 mutants. Interestingly, depletion of GSK-3 did 

not affect phb-2 mutants, while the lifespan of phb-2; daf-2 mutants decreased 

by 22 % upon gsk-3(RNAi) (Figure 37 and Table 4).  

Remarkably, we observed that prohibitin deletion conferred a survival benefit 

to GSK-3 depleted animals, both in wild type and daf-2 mutant backgrounds, 

regardless of whether gene knockdown via RNAi treatment was initiated post 

embryogenesis or from adulthood (Figure 36 and 37, Table 4).  

4.1.1 Loss of Wnt components, KIN-19 and BAR-1 elicits a similar lifespan 

phenotype as seen upon gsk-3(RNAi) 

GSK-3 is a component of the destruction complex in canonical Wnt signalling in 

C. elegans, whereit functions along with Axin, the tumor suppressor gene 

product APC, and the casein kinase CK1 to degrade β-catenin and thus, 

suppresses the expression of specific target genes. In worms, the kinase CK1 

and β-catenin are encoded by kin-19 and bar-1. We investigated the role of 

KIN-19 and BAR-1 in lifespan regulation to determine if the GSK-3 phenotypes 

were mediated by Wnt signalling. 

Loss of KIN-19 elicited a similar response as GSK-3 depletion during ageing, as 

inhibiting kin-19 from adulthood by using RNAi led to a lifespan decrease 

across all backgrounds with the exception of phb-2 mutants and being the 

effect stronger in daf-2 mutant backgrounds (Figure 38, upper panel, Table 5). 

Moreover, the beneficial effect in lifespan seen upon loss of GSK-3 in 

mitochondrial mutants was also observed upon loss of KIN-19. Similarly, loss of 

BAR-1 significantly reduced lifespan in IIS mutant backgrounds (Figure 38, 

lower panel), though the observed decreases were much milder than those 

observed upon loss of GSK-3 and KIN-19 (Table 4 and 5).Consistent with the 

role of BAR-1 in vulval cell specification, we observed vulval rupture in worms 

grown on bar-1(RNAi). Loss of KIN-19 also led to vulval ruptures, similar to the 

loss of GSK-3 phenotype. Worms that were lost from the analyses due to this 

reason were censored from the lifespan analyses (see Table 5). 
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Figure 38:  Knockdown of 

components of the Wnt 

signalling pathway, KIN-

19 and BAR-1.  Survival 

curves of mutant animal 

populations subjected to 

kin-19 (RNAi) (upper 

panel) and bar-1(RNAi) 

(lower panel) are shown. 

Average of two 

independent lifespan 

curves has been 

represented here. 

4.2 Knockdown of GSK-3 leads to embryonic lethality in wild type and IIS 
mutants 

It had been noted previously that reducing gsk-3 expression by RNAi causes 

embryonic lethality, though this phenotype has not been quantified (An et al. 

2005). More recently, it has been shown that GSK-3 promotes adult germline 

stem and progenitor cells (GSCs) proliferation in a germline autonomous and 

kinase-dependent manner.  Adult GSCs support gamete production and sustain 

germline development in the worm. Not only do adult gsk-3 mutant germlines 

contain lower GSCs, compared to wild type, it is so from early larval stages 

such as L3 and L4. As this occurs throughout development, it is indicative that 

the germline output would also be reduced (Furuta et al. 2018).  

Post embryonic depletion of GSK-3 by means of RNAi in wild type animals was 

characterised by a reduced brood size and embryonic lethality post day 1 of 

egg-laying. On the other hand, daf-2 mutants upon gsk-3(RNAi) exhibited a 

stronger reduction in brood size and 100% embryonic lethality (Figure 

39).These stronger phenotypes are in accordance with the more severe 

lifespan reduction observed in daf-2 mutants as compared to wild type. Also, 
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daf-2(e1370) mutants produced fewer progeny in comparison to wild type 

animals (Kenyon et al. 1993).  
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Figure 39: Effect of GSK-3 depletion on brood size and embryonic lethality.  A. Comparison of 

total brood size (unhatched eggs and larvae) in wild type and daf-2 (e1370) mutants on 

control(RNAi) and gsk-3(RNAi) (The blue portions of the bars represent unhatched eggs; the red 

portions indicate hatched eggs or larvae, Mean±SD) B. Number of progeny per day in wild type 

and daf-2 mutants upon GSK-3 depletion. One of two independent reproductive brood size 

assays has been represented here (n ≥ 8 worms for all conditions).    

                                                     

4.3 Ubiquitous expression of GSK-3  

 In order to study the expression pattern of gsk-3, we constructed the strain, 

Pgsk-3::GFP::gsk-3,  using the SapTrap methodology for  CRISPR-Cas9 

(Schwartz and Jorgensen 2016) system. The advantage of this technique is that 

it reduces the time for assembling repair templates and sgRNAs and utilizes a 

combined tag and selectable marker that aids in direct identification of 

modified worms. To build a translational reporter of GSK-3, we utilized a tag 

plus marker plasmid (Munoz-Jimenez et al. 2017) that incorporates FLP-

mediated gene knockout. Hence, this reporter strain we generated can be used 

to study tissue-specific inhibition of gene expression by crossing it with 

transgenic strains that express FLP in a tissue specific manner.  

GSK-3 is ubiquitously expressed and showed a tissue dependent sub-cellular 

localisation. GSK-3 was detected in embryos both, in the nucleus and the 

cytoplasm (Figure 40A). At the adult stage, expression was prominent in head 

and tail neurons (Figure 40B,C), intestine (Figure 40D), muscles (Figure 40E) 

and in the P-granules in the germ line (Figure 40G). Apart from these, the 

sperm (Figure 40F) and vulval precursor cells (Figure 40H) also exhibited strong 

expression of GSK-3.  
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Figure 40: Expression pattern of GFP::GSK-3 transgenic worms.  Expression can be observed in A. 

embryos, B.and C.  the nervous system – head and tail neurons respectively, D. the intestine 

(white rectangle) and E.muscles (white arrows).In the germline, GSK-3 is expressed strongly in F. 

sperm (white arrow), G.within P granules (white arrow) in the germline and H. in vulval 

precurcor (refer white arrow) cells. *Images were taken by Dr.F J Garcia. 

We checked if the expression pattern of GSK-3 was altered in IIS defective 

animals or upon phb-1(RNAi). We did not observe obvious changes in the 

expression pattern (Figure 41A), while, quantification of total GSK-3::GFP 

revealed that GSK-3 levels are increased in PHB depleted worms and daf-2  

mutants (Figure 41B). These increased levels of GSK-3 might not be indicative 

of increased activity of GSK-3 as it is a kinase whose activity is regulated by 

phosphorylation.  
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Figure 41: Expression of GSK-3. A.GSK-3 expression in the head, tail and germline of wild type 

and daf-2 mutants transgenic for GFP::gsk-3 on control(RNAi) and phb-1(RNAi).B. Quantification 

of GSK-3 expression levels in insulin daf-2(e1370) and  PHB depleted backgrounds. One of two 

independent experiments is represented. *Images were taken by Dr.F J Garcia. 
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4.4 Metabolic alterations upon GSK-3 depletion 

Studies in both mammals and nematodes have suggested that age related 

modulations in carbohydrate and lipid metabolism can influence the ageing 

process and optimal usage of energy stores is critical for organismal survival 

(Hansen et al. 2013; Watts and Ristow 2017). Moreover, GSK-3 is expressed 

strongly in the intestine, the major metabolic organ in worms. This prompted 

us to investigate whether metabolic changes are associated with the decreased 

longevity phenotype observed under conditions of GSK-3 depletion across wild 

type animals and worms with compromised insulin signalling and 

mitochondrial function. We looked at metabolic stores and key genes involved 

in carbohydrate and triglyceride metabolism.  

4.4.1 Glycogen stores are differentially altered in insulin and mitochondrial 
mutants upon GSK-3 depletion 

GSK-3 is a key regulator of glycogen metabolism (Embi et al. 1980). Briefly, IIS 

signalling inhibits GSK-3, dephosphorylating glycogen synthase responsible for 

glycogen synthesis (Parker et al. 1983; Cross et al. 1995). In Drosophila, it has 

been observed that insulin signalling represses mitochondrial quiescence and 

glycogen accumulation by inhibiting the AKT target gene, GSK3 (Sieber et al. 

2016). In order to analyse glycogen content in worms upon gsk-3(RNAi), we 

utilized iodine vapor staining.  As reported by others, we also observed 

increased glycogen content in daf-2 mutants compared to wild type worms 

(Frazier and Roth 2009; Depuydt et al. 2014).  GSK-3 depletion in wild type 

animals did not alter glycogen content, whereas, in daf-2 mutants, we 

observed a further increase in glycogen content upon GSK-3 depletion (Figure 

42A,B).  

On the contrary, GSK-3 depletion reduces glycogen content in PHB mutant 

backgrounds, both in phb-2 and phb-2;daf-2 double mutants (Figure 42A,B). 

PHB-2 deletion resulted in decreased glycogen content, both in otherwise wild 

type worms and in daf-2 mutants, a likely consequence of a higher reliance on 

glycolytic metabolism due to defective mitochondrial functioning. As the 

reduced glycogen content observed upon GSK-3 depletion occurs specifically 

upon PHB deletion, it is plausible that the benefits of depleting PHB in GSK-3 

deficient worms could be linked to an increased reliance on glycogen for 

energy production. However, reduced glycogen content could also be 
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reflecting impaired glycogen storage.  
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Figure  42: Glycogen storage in C. elegans  viewed using iodine vapor staining A. Representative 

images of glycogen stores across wild type, daf-2, phb-2 and phb-2;daf-2 mutants subjected to 

control and gsk-3(RNAi) B. Scatter plot representing quantification of glycogen stores (Animals 

were imaged at Day1 of adulthood in all conditions, Mean±SD, Unpaired t- test, ns = not 

significant p>0.05, * = p<0.05, ** = p<0.01, *** = p< 0.001,  n ≥ 41 worms for all conditions, 

average of  three independent experiments represented).  

In order to distinguish the latter from the former, we looked at the expression 

of fructose 1, 6 - biphosphatase, encoded by fbp-1 in C. elegans, a non- 

reversible enzyme involved in gluconeogenesis. We observed that upon GSK-3 

depletion, the expression of Pfbp-1::GFP is reduced in both, wild type and PHB 

mutants (Figure 43A). Additionally, PHB depletion was observed to also have 

less expression of FBP-1 in comparison to wild type worms. This low expression 

of the FBP-1 reporter in PHB depleted worms on control and on gsk-3(RNAi), 

thus, indicates less glucose generation in these animals and hence, the low 
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glycogen phenotype observed. Despite the fact that glycogen stores were 

unaltered in wild type animals depleted of GSK-3 (Figure 42), we observed 

reduced expression of fbp-1(Figure 43A). In order to confirm whether gsk-3 

depletion reduces the expression of gluconeogenic genes we looked at the 

mRNA levels of other genes involved in gluconeogenesis, mdh-1 and icl-1, both 

of which appear reduced (Figure  43B).  
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Figure 43: Reduced gluconeogenesis upon GSK-3 knockdown. A. Quantification of expression of 

the transgenic strain, Pfbp-1::GFP , in wild type and PHB depleted wild type animals grown on 

control(RNAi) and gsk-3(RNAi) (Animals were imaged at Day1 of adulthood in all conditions, 

Mean±SD, One way ANOVA, *** = p< 0.001,  n >130 worms for all conditions,  scatter plot 

representative of three independent experiments) B-C. qRT-PCR of gluconeogenic genes, mdh-2 

and icl-1 in B. wild type and C. IIS mutants grown on control(RNAi) and gsk-3(RNAi) (Mean±SEM, 

Unpaired t-test, * = p<0.05,*** = p< 0.001,  graph representative of three independent 

experiments, each with 2-3 technical repeats)  

Additionally, we found that daf-2 mutants grown on gsk-3(RNAi) also exhibit 

low expression of mdh-2 and icl-1 (Figure 43C). As both genes are part of the 

glyoxylate shunt that allows carbohydrate synthesis via gluconeogenesis, this is 

indicative of the shunt in these animals being less active. The further increase 
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in glycogen stores in IIS mutants grown on gsk-3(RNAi) might result from 

increased glycogen synthase activity instead.   

4.4.2 Triglyceride content is reduced upon gsk-3(RNAi), except in daf-2 

(e1370) mutants 

Apart from glycogen/carbohydrates, triglycerides constitute the major energy 

storage in nematodes. Also, they are efficient energy storage molecules due to 

their reduced state (Ashrafi 2007; Watts and Ristow 2017). Using fixative Oil-

Red-O staining, we assessed triglyceride content across all genetic 

backgrounds.  
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Figure 44: Whole body triglyceride levels in wild type, daf-2, phb-2 and phb-2;daf-2 mutants 

subjected to gsk-3(RNAi) A. Representative images of worms subjected to fixative Oil-Red-O 

staining B. Quantification of Oil-Red-O staining (Animals were imaged at Day1 of adulthood in all 

conditions, Mean±SD, One way ANOVA, ns = not significant p>0.05, ** = p<0.01, *** = p< 0.001,  

n ≥ 60 worms for all conditions, average of  two independent experiments represented)  
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As reported earlier, daf-2 (e1370) mutants exhibited increased triglycerides 

(Yen et al. 2010). We observed that phb-2(tm2998) deletion mutants contain 

higher triglyceride levels compared to wildtype and phb-2 deletionfurther 

increases the triglyceride content of daf-2(e1370) mutants. Interestingly, 

depletion of GSK-3 reduced triglycerides in all genetic backgrounds except in 

daf-2(e1370) mutants (Figure 44). The reduced Oil-Red-O staining observed in 

wild type upon loss of GSK-3 is similar to the decreased whole-body 

triglyceride levels in Drosophila upon addition of lithium - a known inhibitor of 

GSK-3 (Castillo-Quan et al. 2016). 

4.4.3 Knockdown of GSK-3 leads to increased lipolysis   

Mobilization of stored fat through β-fatty acid oxidation is dependent on 

liberated fatty acids from triacylglycerides through the activity of lipases. Since, 

we observed decreased ORO staining, we investigated if that indicates 

increased lipid breakdown. We checked for alterations in expression of adipose 

triglyceride lipase, ATGL-1(Zimmermann et al. 2004; Gronke et al. 2005; 

Kershaw et al. 2006), known to localize to lipid droplets (Zhang et al. 2010a; 

Lee et al. 2014). Depletion of GSK-3 results in increased ATGL-1::GFP levels 

(Figure 45A,B)across all genetic backgroundsexcept in PHB depleted otherwise 

wildtype animals, where agtl-1 expression levels are unaltered. PHB depleted 

animals already show increased atgl-1 expression compared to wild type 

worms (Figure 45).  
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Figure 45: GSK-3 deficient animals exhibit increased hydrolysis of lipids. A. Representative 

images of alteration in ATGL-1 protein levels upon loss of GSK-3 across different genetic 

backgrounds. B.Scatter plots represent mean fluorescence of ATGL-1::GFP  as seen in wild type 

(left panel) and IIS depleted animals (right panel)  grown on control(RNAi), gsk-3(RNAi),phb-

1(RNAi) or a combination (Animals were imaged at Day1 of adulthood in all conditions, 

Mean±SD, One way ANOVA, Dunn’s multiple comparison test, ns = not significant p>0.05,  *** = 

p< 0.001,  n ≥ 58 worms for all conditions, one of  two independent experiments represented).  

The increased expression levels of ATGL upon gsk-3(RNAi) is in accordance with 

the reduced Oil -Red-O staining observed earlier. Being an exception daf-2 

mutants that exhibit increased expression of ATGL-1 upon GSK-3 depletion, 

although no alterations in triglyceride content was observed. 

4.4.4 Fatty acid oxidation is reduced upon gsk-3(RNAi) 

In order to get insight on whether GSK-3 depleted worms utilised energy from 

β-fatty acid oxidation from triglycerides, we looked at the expression of certain 

genes involved in fatty acid oxidation (Figure 46A,B). acdh-1 encodes for a 

short-chain acyl-CoA dehydrogenase, a mitochondrial enzyme that catalyzes 

the first step of fatty acid β-oxidation. We looked at the expression of acdh-1 

by utilising a transgenic strain, Pacdh-1::GFP. We found that the GFP 

expression is dramatically reduced upon GSK-3 depletion in wild type (Figure 

46A,B; left panel). Additionally, we crossed the phb-2(tm2998) mutants to the 

metabolic reporter Pacdh-1::GFP, and observed a strong repression in GFP 

signal, which intensified upon gsk-3(RNAi) (Figure 46, left panel). Similarly, in 

conditions of reduced IIS signalling, GSK-3 depletion caused a decrease in 

http://www.wormbase.org/search/gene/acdh-1
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Pacdh-1::GFP expression both, in the presence and absence of PHB (Figure 46, 

A and B, right panel).  
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Figure  46: Reduced fatty acid β-oxidation upon gsk-3(RNAi) A.Expression of Pacdh-1::GFP in 

wildtype and phb-2 mutants upon gsk-3(RNAi) (left panel); and in IIS depleted worms on gsk-3 
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and phb-1;gsk-3 double RNAi (right panel) B. Scatter plot representing quantification of Pacdh-

1::GFP levels from images shown in A. Animals were imaged at Day1 of adulthood in all 

conditions, in A- n≥51  for all conditions, one of  two independent experiments represented; in 

B- n≥85, one of two independent experiments, each having two biological repeats has been 

represented  C. Expression of acdh-1 at day 5 of adulthood. Scatter plots represent  the 

quantification of Pacdh-1::GFP levels in otherwise wild type and PHB depleted worms grown on 

control and gsk-3(RNAi) (left panel) and in daf-2(e1370) mutants upon GSK-3 or PHB depletion or 

when both GSK-3 and PHB-1 are depleted using double RNAi (right panel), n≥23 for all 

conditions, average of two independent experiments (For B, C Mean±SD, One way ANOVA, 

Dunn’s multiple comparison test,  ns = not significant, **=p<0.01, *** = p< 0.001) D. Expression 

of acdh-1,-9, -12; acs-17;  cpt-2 in wild type and IIS mutants grown on gsk-3(RNAi) compared to 

control(RNAi) (Mean ±SEM, Unpaired t-test, *=p<0.05, **=p<0.01, *** = p< 0.001, **** = p< 

0.0001,  graph representative of three independent experiments, each with 2-3 technical 

repeats).           

This experiment was continued until day 5 of adulthood and similar reductions 

were observed (Figure 46C). Thus, nematodes depleted of GSK-3 or PHB might 

be averse to utilising energy derived from breakdown of short chain fatty acids. 

In addition, we observed a downregulation of other genes involved in fatty acid 

oxidation in wild type worms and IIS defective daf-2 mutants upon loss of GSK-

3 (Figure 46D). In particular, expression of acyl-CoA dehydrogenases - acdh-1, -

9, -12; acyl-CoA synthetase - acs-17 and the carintine pamiltoyltransferase cpt-

2 were found to be reduced (Figure 46D, left and right panel).                                                                                              

Thus, despite the increased rate of lipolysis (Figure 45) upon loss of GSK-3, the 

fatty acids are not being utilised in fatty acid oxidation as observed by the 

reduced expression of the genes above. This is of significance as nematodes 

obtain major dietary requirements from bacterial diet and not from de novo 

fatty acid synthesis. Several of the genes involved in fatty acid metabolism are 

expressed in the intestine, epidermis or both. Also, there are multiple family 

members that encode for the genes involved in fat metabolism. Additional 

metabolic genes involved in fatty acid oxidation and in de novo fat synthesis 

were analysed in conditions of loss of GSK-3 or PHB-1, and many were found to 

be differentially regulated (Appendix 3, A3.2,A3.3). We were able to conclude 

that while loss of GSK-3 led to a strong downregulation of short-/medium-/ 

long- chain oxidation of fatty acids in all backgrounds tested, loss of PHB-1 led 

to strong decreases only in genes involved in short chain fatty acid 

degradation, indicating selective utilisation. Moreover, genes involved in de 
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novo fat synthesis were also found to be repressed upon gsk-3(RNAi) 

(Appendix 3, A3.4) which can be a potential cause of reduced lipid storage in 

GSK-3 depleted worms. 

Thus, the extensive modulations in several core genes involved in fatty acid 

metabolism upon gsk-3(RNAi) across genetic backgrounds and specifically in 

wild type animals implicate GSK-3 as having a prominent role in metabolism in 

C. elegans in lipid synthesis and degradation, the latter being essential for 

energy generation.  

4.4.5 Vitellogenesis is reduced when GSK-3 is depleted 

Reproduction has a complex interplay with metabolism and ageing (Hansen et 

al. 2013), as it is an energy consuming process causing alterations in lipid 

metabolism, thus influencing organismal survival. Lipids are mobilised in 

worms during reproduction in a process called vitellogenesis, wherein 

vitellogenins (VIT) transport stored lipids in the form of yolk to the oocytes 

from the intestine. VIT genes are expressed in the intestine in adult 

hermaphrodites (Kimble and Sharrock 1983). Analysis of the long-lived IIS daf-2 

mutants has shown that these animals accumulate substantially less VIT 

(DePina et al. 2011) and their long lifespan is compromised upon over 

expression of VIT (Seah et al. 2016). GSK-3 depletion is characterised by a 

reduction in lifespan, along with defective reproduction leading to embryonic 

lethality (Figure 36,37,39) as well as modulations in fat metabolism (Figure  

44). Hence, we investigated if vitellogenesis was altered upon GSK-3 

knockdown by checking the expression levels of a member of the vitellogenin 

family, VIT-6. The expression of VIT-6 was observed to be decreased upon GSK-

3 depletion across all genetic backgrounds (Figure  47A, B). As shown earlier, 

we observed low vitellogenesis in daf-2(e1370) mutants compared to wild type 

(DePina et al. 2011). Incidentally, the PHB depletion in otherwise wild type 

animals led to decreased VIT-6 expression (Figure  47A), whereas the same in 

IIS depleted worms had no significant effect  (Figure 47B). 

As VIT proteins mediate transport of lipids from the intestine to the gonad, the 

reduction in vitellogenesis is consistent with the low lipid content seen using 

ORO staining upon loss of GSK-3. The reduced vitellogenesis in wildtype and IIS 

mutants on gsk-3(RNAi) is also in accordance with GSK-3 depleted animals 

exhibiting a low brood size.  Despite the fact that they are sterile, the 
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mitochondrial PHB mutants do not exhibit significant changes in expression of 

vit-6. 
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Figure  47 : Decreased vitellogenesis upon GSK-3 depletion. A. The transgenic strain Pvit-6::GFP 

and B. daf-2(e1370);Pvit-6::GFP were utilized to check for alterations in vit-6 expression upon 

GSK-3 knockdown in worms grown on control and phb-1(RNAi). The scatter plot to the right of A. 

and B.  represents the quantification of GFP intensity (Animals were imaged at Day1 of 

adulthood in all conditions, Mean±SD, One way ANOVA - Dunn’s multiple comparison test, *** = 

p< 0.001. In A. n ≥ 78 worms for all conditions, one of three independent experiments. In B. n ≥ 

98 worms for all conditions, one of two independent experiments)  

 

4.5 GSK-3 depletion compromises mitochondrial respiration 

Depletion of GSK-3 leads to alterations in energy stores and decreased fatty 

acid oxidation. We decided to directly measure mitochondrial metabolic 

activity in whole worms by utilizing the Seahorse XFp Analyzer (Luz et al. 2015; 

Koopman et al. 2016; Fong et al. 2017). This provides real-time measures of the 
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oxygen consumption rate (OCR) of worms, the result of mitochondrial 

respiration through oxidative phosphorylation.  

Key mitochondrial parameters, basal and maximal respiration were 

determined by means of OCR measurements. To interpret the data and 

compare strains or RNAi treatments, the OCR per well was converted to OCR 

per worm (by directly counting the number of worms after the assay). In our 

case, the mitochondrial mutants and the gsk-3(RNAi) treated worms were 

smaller than their controls at the YA stage and at Day 5. As worm size was 

significantly different among the studied genetic backgrounds both at YA and 

at day 5 (Figure 48 A, B), we corrected OCR per worms for worm area.  

We observed that compared to wild type nematodes, daf-2 mutants exhibited 

less basal respiration at the YA stage (Figure 48C), while phb-2 deletion did not 

affect basal respiration neither in wild type nor in daf-2 mutants. However, the 

phb-2 mutants exhibit increased OCR compared to the phb-2; daf-2 double 

mutants. No alterations were detected in basal respiration upon GSK-3 

depletion across the different genetic backgrounds except a decrease in phb-2; 

daf-2mutants (Figure 48C). 

Respiration changes significantly during development and ageing. We observed 

that at day 5, basal respiration decreased in the wild type (Figure 48D) 

(Braeckman et al. 2002a; Braeckman et al. 2002b), but not in IIS defective daf-2 

mutants, which at day 5 respired at par with wild type. phb-2 mutants 

exhibited increased OCR compared to wild type animals probably a result of 

accumulating faulty mitochondria through ageing, whereas the IIS defective 

mutants depleted of PHB exhibit decreased OCR compared to daf-2  mutants. 

GSK-3 depletion, however, reduced respiration during ageing as observed at 

day 5 exclusively in daf-2 mutants (Figure 48D).  

We also examined maximal respiratory capacity by addition of the 

mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) 

phenylhydrazone (FCCP)(Figure 48E,F). FCCP is added to fully uncouple 

mitochondrial respiration, i.e., it dissipates the proton gradient in the 

mitochondrial membrane and hence, in an attempt to re-establish the proton 

gradient, the worm increases oxygen consumption. This is a reflection of 

mitochondrial-specific respiration at maximum capacity. We observed that 
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maximal respiration is significantly higher than basal respiration in all genetic 

backgrounds at the YA stage and at Day 5 (Appendix 4, Figure A4.1). 
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Figure 48: Alterations in mitochondrial metabolism upon depletion of GSK-3. A-B Comparison of 
worm area in wild type, daf-2, phb-2 and phb-2;daf-2 during ageing, A. Young adult, B. Day 5, 
grown on control(RNAi) and gsk-3(RNAi) (1 way ANOVA, Dunn’s multiple comparison test, ns = 
not significant p>0.05,  *** = p< 0.001, Mean± SD, n > 190 worms at YA stage and n >18 worms 
at day 5 for all conditions represented). C-F Variations in consumption rate (OCR) across all four 
genetic backgrounds grown on control(RNAi) and gsk-3(RNAi). Basal respiration at young adult 
(YA) stage(C.)  and during ageing, at day 5 of adulthood (D.) and maximal oxygen consumption 
rate (OCR) as observed by treatment using FCCP at YA stage  (E)and at day 5 (F). Data has been 
depicted  normalised to worm area in all cases (Unpaired t-test, ns=not significant p>0.05, * = 
p<0.05, ** = p<0.01, *** = p< 0.001, mean±SD, n = at least 3 independent experiments 
consisting of 3-4 wells each of control(RNAi) and gsk-3(RNAi) for each genetic background 
tested).  

The deletion of PHB in otherwise wild type animals had no significant effect on 

maximal respiration, while the same in IIS defective mutants led to a decrease 

already at YA stage (Figure 48E). daf-2 mutants, despite their low basal rate of 
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respiration (Figure 48C), respired at par with wild type indicating they are 

capable of responding to external stress (Figure 48E). GSK-3 depletion caused 

an increase in maximal OCR in phb-2 mutants and a strong decrease in daf-2 

mutants not affecting wild type animals or phb-2;daf-2 mutants (Figure 48E). 

During ageing PHB depletion modulates OCR differentially in wild type and IIS 

defective mutants, increasing and decreasing respectively, similar to basal 

respiration at day 5 (Figure 48F), while no significant differences were 

observed for daf-2 mutants compared to wild type. Mitochondrial mutants on 

gsk-3(RNAi) were unaffected upon FCCP addition, although a tendency to 

increase maximal OCR is observed. Maximal respiration upon GSK-3 depletion 

wasstrongly reduced again in daf-2 mutants at day 5, just like at the YA stage 

(Figure 48F). Loss of GSK-3 also compromised maximal respiration in wild type 

animals at day 5.   
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Figure 49: Change in rate of respiration of all genetic 
backgrounds grown in control(RNAi)and gsk-3(RNAi), 
through ageing, from young adult to day 5 of 
adulthood, A.basal and B. maximal. (The ***, **, *, ns 
indicate significant changes from YA to day 5 n each 
genetic background. Unpaired t-test, ns=not significant 
p>0.05, * = p<0.05, ** = p<0.01, *** = p< 0.001)   
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To summarise, IIS mutants tend to not change their basal or maximal rate of 

respiration from young adult to day 5, unlike wild type that exhibit a reduction 

(Figure 49A,B). While the phb-2 mutants also show unaltered respiration 

patterns during ageing, the respiration of the double mutant phb-2;daf-2 is 
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slightly decreased. Loss of GSK-3, prominently reduced basal and maximal 

respiration in wild type and IIS mutants, while having no effect on 

mitochondrial phb-2 mutants. Interestingly, the basal and maximal OCR of IIS 

mutants on gsk-3(RNAi) are quite similar through the course of ageing (Figure  

A4.1). Upon addition of FCCP, only phb-2 mutants on gsk-3(RNAi) show a 

strong increase in OCR during ageing. An increased capacity to respond to 

external stress might be of importance as these are the only mutants that are 

unaffected in terms of survival (Figure 36,37) upon GSK-3 depletion.  

4.6 Selective induction of the mitochondrial unfolded protein response 

(UPRmt) upon gsk-3(RNAi)  

The observed altered mitochondrial bioenergetics upon gsk-3 depletion might 

be associated with additional signs of mitochondrial stress. Mitochondrial 

dysfunction is detected by a surveillance pathway specific to the mitochondria, 

the UPRmt, that involves induction of mitochondrial chaperone genes such 

as hsp-6 or hsp-60. Prohibitins have a prominent role in maintenance of 

mitochondrial structure and function, and prohibitin depletion strongly induces 

the UPRmt. This is accompanied by increased mitochondrial content in wildtype 

animals on phb-1(RNAi), whereas the same is suppressed in PHB depleted IIS 

daf-2 mutants (Artal-Sanz and Tavernarakis 2009b; Gatsi et al. 2014). 

We assayed the expression of Phsp-6::GFP reporter in wildtype, daf-2 mutants 

on control and gsk-3(RNAi) and upon PHB depletion. As observed earlier with 

phb-1(RNAi) (Gatsi et al. 2014) and phb-2(RNAi) (Schleit et al. 2013), phb-2 

deletion strongly induced the UPRmt (Hernando-Rodriguez et al. 2018), while 

the UPRmtwas suppressed in the double mutant phb-2;daf-2 (Figure 50B). 

Depletion of GSK-3 strongly induces the UPRmt in wildtype (Figure 50A) worms, 

while metabolically compromised daf-2 mutants were unaffected upon GSK-3 

depletion. The phb-2 mutants do not further induce the UPRmt upon GSK-3 loss 

(Figure 50B), while daf-2 mutants depleted of PHB show a slight, albeit 

significant induction of the UPRmt upon GSK-3 depletion. 
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Figure 50: Induction of UPR

mt
reporter, Phsp-6::GFP. Fluorescent microscopy images of transgenic 

animals grown on control(RNAi) and gsk-3(RNAi) A. Phsp-6::GFP and daf-2(e1370);Phsp-6::GFP 
(left panel), quantification of hsp-6::GFP  expression (right panel)  and B. phb-2(tm2998);Phsp-
6::GFP and phb-2(tm2998);daf-2(e1370);Phsp-6::GFP (left panel) and quantification of hsp-6::GFP  
expression (right panel) (Mean ± SD; n > 135 in all conditions, 1 way ANOVA, Dunn’s multiple 
comparison test, ns = not significant p>0.05,  *** = p< 0.001. Average of two independent 
experiments has been shown) 

4.7 GSK-3 is essential for ER homeostasis and mitochondrial membrane lipid 
composition  

Like the mitochondria, the endoplasmic reticulum also synthesizes, folds and 

secretes proteins. The unfolded protein response of the endoplasmic reticulum 

(UPRER), is a stress response specific to the ER, allowing it to adapt to 

proteostatic imbalances. Moreover, the ER is also a site of lipid synthesis, in 

particular phospholipids and sterols. We wondered whether GSK-3 might also 

be essential in maintaining ER stabililty. In metazoans, activation of the IRE-1 

branch of the UPRER results in increased splicing of the mRNA encoding the 

transcription factor X-box binding protein 1 (XBP1), which activates UPRER 
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target genes such as the ER-specific chaperone and heat-shock protein hsp-

4/BiP (Ron and Walter 2007). We found that loss of GSK-3 via RNAi resulted in 

activation of UPRER, as indicated by an increase in Phsp-4::GFP expression levels 

(Figure 51).  
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Figure 51: Induction of UPR
ER 

reporter, Phsp-4::GFP. Representative images of Phsp-4::GFP 

transgenic strain on control(RNAi) and gsk-3(RNAi) (left panel).  Scatterplot represents the GFP 

quantification (right panel) (Mean ± SD; n > 190 in both conditions, Unpaired t-test, *** = p< 

0.001. Average of three independent experiments has been shown) 

This activation of the UPRER, while an indication of imbalance in proteostasis, 

might also be a reflection of perturbations in membrane lipid composition. 

Mitochondria synthesize some lipids on their own, particularly, 

phosphatidylglycerol (PG), cardiolipin (CL), phosphatidylethanolamine (PE), and 

phosphatidic acid (PA). They depend also on the transfer and assembly of lipids 

mainly formed in the endoplasmic reticulum (ER) like phosphatidylinositol (PI), 

phosphatidylserine (PS) and phosphatidylcholine (PC), sterols and sphingolipids 

and hence, a continuous supply and exchange of lipids is required for 

maintaining mitochondrial membrane integrity and overall cellular function 

(Horvath and Daum 2013).   

In light of this, we found alterations in the amount and composition of 

membrane lipids, especially the most abundant phospholipids – PE, PC, PS, 

when GSK-3 was depleted both, in wild type and in daf-2 mutants (Figure 52). 

phb-2 mutants displayed increased levels of phospholipids compared to wild 

type, whereas in the double mutant phb-2;daf-2 some phospholipid species 

were decreased in comparison to daf-2 mutants. Interestingly, we also 

detected alterations in cardiolipin levels, a unique phospholipid exclusively 

located in the inner mitochondrial membrane (Paradies et al. 2014). Cardiolipin 

is involved in mitochondrial dynamics and biogenesis, cristae organization, 
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apoptosis and mitophagy. Loss of GSK-3 tends to increase CL levels particularly 

in wild type and daf-2 mutants (Figure 52). Similarly, sphingolipids such as 

ceramides were also upregulated upon loss of GSK-3 in wild type animalsand 

daf-2 mutants, with milder increases in the other backgrounds. 

  
Figure   52: Altered membrane lipid compostitions across genetic backgrounds. Worms were 
grown in control(RNAi) and gsk-3(RNAi) or a combination of both at the young adult stage. PS -
phosphatidylserine; PE -phosphatidylethanolamine; PC -phosphatidylcholine; CL - cardiolipin; 
CER- Ceramide (Phospholipids are designated as phospholipid(AB-CD), where AB-CD denotes 
the total number of carbon atoms in the fatty acyl chains, n = at least 3-4 independent 
samples were collected for each condition, data analysed by Dr. Lourenco)                                      
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These membrane perturbations are despite the fact that mitotracker analysis 

revealed no significant alterations in mitochondrial content when GSK-3 is 

depleted across these genetic backgrounds (Appendix 4, Figure A4.3).  

 4.8 Intestinal GSK-3 is essential for the longevity daf-2(e1370) mutants 

The C. elegans intestine is a central metabolic organ in the nematode, mainly 

responsible for digestion of food, nutrient uptake and synthesis and storage of 

macromolecules. There are several evidences that implicate the intestine as 

having a major role in healthy ageing and lifespan regulation (Rera et al. 2013). 

The intestine is a major site of fat storage and modulations in the same have 

been observed in mutants of the IIS signalling pathway. For example, 

reestablishment of DAF-16 expression only in the intestine ofdaf-2;daf-

16 mutants, extends lifespan (Libina et al. 2003).Dietary restriction increases 

lifespan in C. elegans as in other organisms and autophagy in the intestine has 

been shown to have a role in ensuring this lifespan extension in the 

worm(Gelino et al. 2016). 

Based on the expression pattern of GSK-3 and the observable expression in the 

intestine, an intestine specific RNAi system was used to knockdownGSK-3 

solely in the intestine. For this, we used an RNAi DEfective, rde-1 mutant strain, 

whererde-1has been rescued only in the intestine. Hence, these animals are 

refractory to RNAi in all tissues expect the intestine (Espelt et al. 2005).  

We observed that depletion of GSK-3 in the gut alone was sufficient to cause a 

significant reduction in lifespan across all backgrounds (Figure 53 A-D). We 

observed that there was an average decrease in mean lifespan of 7% for wild 

type, 58% for daf-2, 22% for phb-2and 20% for phb-2;daf-2 (Table 4) upon gsk-

3(RNAi). The IIS mutant lifespan was reduced below that of wild type on GSK-3 

attenuation (Figure 53A, B; also Refer Table 4), indicating that active GSK-3 in 

the intestine was absolutely essential to the long lived phenotype of daf-2 

(e1370) mutants.  
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Figure 53: Intestine-specific GSK-3 depletion accelerates ageing in A. wild type B. daf-2(e1370) C. 

phb-2(tm2998) and D. phb-2(tm2998);daf-2(tm2998) mutants. Lifespan analysis carried out 

using an intestine specific RNAi system, rde-1(ne219);kbIs7. Average of at least two independent 

lifespan curves has been represented here.  

The intestine of the worm is also a major site for responses to stress. The 

transcription factor SKN-1, is known to regulate intestinal genes that are 

involved in detoxifications and protect against ROS.  

4.9 SKN-1 activity measured via expression of Pgst-4::GFP 

The C. elegans SKN-1 (ortholog of the mammalian Nuclear factor E2-related 

factor (Nrf) protein family) is a key transcription factor involved in the 

protection against oxidative and xenobiotic stresses (Blackwell et al. 2015). It 

has been proposed that under normal conditions, GSK-3 inhibits SKN-1 

localization and subsequent target gene induction, whereas, in response to 

oxidative stress, SKN-1 is phosphorylated by PMK-1/p38 MAPK in the 

cytoplasm, after which it goes to the nucleus and induces the expression of a 

wide range of antioxidant and detoxifying enzymes such as gst-4 (encoding for 

the drug-metabolizing enzyme glutathione S-transferase 4). The SKN-1 

transcriptional response to oxidative stress is well-conserved between species 

(An et al. 2005).  
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The transcriptional activity of SKN-1 can be indirectly assayed via a 

transcriptional reporter of the gst-4 promoter which shows increased GFP 

levels when transcription is activated in vivo.  We examined expression of GST-

4 when GSK-3 was inhibited across otherwise wildtype and PHB depleted 

worms. Additionally, we crossed the Pgst-4::GFP reporter strain to daf-2 

mutants.We observed induction of Pgst-4::GFP upon gsk-3(RNAi)in wildtype 

and PHB depleted animals. On the contrary,GSK-3 attenuation reduces GST-4 

expression in daf-2 and daf-2;phb-2mutants (Figure 54A, B). The induction of 

gst-4 in wildtype animals upon GSK-3 depletion is in accordance with earlier 

reports (An et al. 2005), and hence, an indication that SKN-1 is active.  While it 

is known that SKN-1responsive genes, such as gst-4 are upregulated in daf-2 L4 

larvae (Tullet et al. 2008), we refrain from commenting on this as wild type and 

IIS mutants were not compared in the same experiment, and we looked at 

Day1 animals. The mitochondrial PHB mutants, phb-2 and phb2;daf-2 exhibited 

a mild reduction to no effect respectively in terms of GST-4::GFP expression.  

The suppression of Pgst-4::GFP upon gsk-3(RNAi) in daf-2mutant backgrounds 

(Figure 54B), might indicate regulation of GST-4 or SKN-1  from other inputs.  
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Figure 54: Pgst-4::GFP expression(mean GFP intensity) in A.Wild type and B. daf-2(e1370) 

mutants upon PHB and GSK-3 depletion (Animals imaged at Day 1 of adulthood, Mean±SD, One 

way ANOVA, Dunn’s multiple comparison test,  ns =not significant, *=p<0.05,*** = p< 0.001 , for 

A. n≥80, average of two independent experiments and for B. n≥85, one of two independent 

experiments has been represented) 

Nonetheless,  recent studies have revealed that the use of GST-4 as a sole 

readout for SKN-1 activation and subsequent interpretation of results should 

be done with caution as gst-4 can also be transcriptionally activated by EOR-1, 

a transcription factor mediating effects of the epidermal growth factor (EGF) 

pathway (Detienne et al. 2016).  
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Although this result cannot contribute to an explanation of the differential 

ageing phenotype observed upon depletion of GSK-3, utilizing the SKN-1::GFP 

transgenic strain in the future might help confirm whether SKN-1 is actually 

localized to intestinal nuclei across PHB-1 and/or IIS depleted animals on gsk-3 

(RNAi). This might better indicate any potential modulation of oxidative stress 

responses.   
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DISCUSSION 
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Automated image acquisition and analysis for essential genes 

Caenorhabditis elegans is an exceptional genetically tractable organism that is 

easy to maintain and has a short, well defined life cycle. More importantly, the 

worm genome shares high homology with that of humans. These features 

make it an amenable platform for high-throughput and high-content screens 

(Boutros and Ahringer 2008; O'Rourke et al. 2009a; O'Reilly et al. 2016). 

Despite these significant advantages, large-scale studies in C. elegans with 

respect to investigation of essential genes are still not well developed. Though 

there exist temperature-sensitive alleles that allow the temporal suppression 

of gene function; very few essential genes have a ts allele (Housden et al. 2017; 

Mok et al. 2017). A way out, is the  use of chromosome balancers, which 

already cover 85% of the genome, with additional efforts aimed at having 

fluorescently labelled balancers for all C. elegans essential genes via CRISPR 

(Iwata et al. 2016). 

The conserved mitochondrial prohibitin (PHB) complex composed of two 

subunits, PHB-1 and PHB-2, is located in the inner mitochondrial membrane 

and both subunits are interdependent for the formation of the complex. 

Phenotypes observed upon either phb-1 or phb-2 via RNAi are similar. Also, 

both subunits of the PHB complex have been confirmed as absent in both phb-

1(tm2571) and phb-2(tm2998) mutants (Hernando-Rodriguez et al. 2018). 

Prohibitin proteins are essential for embryonic development in C. elegans 

(Artal-Sanz et al. 2003) and homozygous phb-1 and phb-2 deletion mutants are 

sterile due to maternal contribution. Therefore, deletion mutants need to be 

maintained as balanced heterozygous. 

As the task of distinguishing the homozygous phb-2 worms from the 

heterozygous wild type is difficult, these mutants are not suitable for large 

scale experiments, such as for the purpose of RNAi screenings. Hence, we 

developed and present here a successful strategy in this regard, for automated 

whole animal image-based RNAi screening that can be applied to essential 

genes when carrying a fluorescently labelled balancer. Developing this 

automated pipeline involved two major steps. First, sorting non GFP 

homozygous mutant animals from a GFP-marked balanced population at the 

first larval stage (L1) in order to identify genes acting during early larval 

development, and second, developing a robust automated imaging and 
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segmentation protocol using a microscopy platform not previously utilized for 

C. elegans. COPAS is a convenient approach for high-throughput analysis 

involving balanced strains, as it facilitates a task that manually would be 

impracticable. In the past, GFP balanced strains have been sorted at older 

larval stages such as L3,L4 (Latorre et al. 2015; Ruegger et al. 2015); but not for 

the purposes of screening. 

Previously, high-throughput imaging strategies specific to C. elegans have been 

designed using various microscopy platforms (Moy et al. 2009; Gosai et al. 

2010; Wahlby et al. 2012; Maia et al. 2015). Similar to others, the IN Cell 

Analyzer (GE Healthcare) used in this thesis utilizes a combination of 

brightfield- and fluorescence-based imaging. Image acquisition has been 

optimised to include an entire well of a 96-well plate in a single image, 

ensuring even brightfield illumination by sealing the plate with a transparent 

seal. The optimised autofocus and scanning times of the IN Cell Analyzer 

enable image acquisition of an entire 96-well plate in three channels in less 

than 15 min. We have designed an automated segmentation protocol for 

balanced strains in C. elegans. This user-defined, user-friendly protocol was 

built using the Developer Toolbox (GE Healthcare) software that allows 

intensity based measurements apart from other measures defined by the user 

like area, length, curvature, etc. It can be used for any strain without the need 

of transgenesis, as segmentation is done in the brightfield image. A novelty of 

this segmentation protocol is the measurement of the background surrounding 

each target. By dilating the targeted worm, we can easily measure and subtract 

the intensity of the immediate background. This is very appropriate in the 

cases of dyes, such as Nile Red in this thesis, that stain plastic and can cause 

different background intensities depending on the area of the well. Another 

feature of the improved image analysis protocol is the successful identification 

of worms carrying a pharyngeal GFP element. When COPAS sorting is not 100% 

efficient, heterozygous worms will develop into fertile adults and lay progeny 

in the wells; hence, the need of distinguishing worms carrying the GFP balancer 

from homozygous mutants.  

As mentioned, segmentation of worms is done in the brightfield and the 

protocol can be adapted for any strain. These protocols are not restricted to 

only RNAi screenings and can also be utilised for regular imaging experiments 
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involving dyes or transgenic GFP strains as image acquisition and analysis is 

faster and surpasses the traditional time consuming manner of mounting 

worms on slides and of manually segmenting worms. This thesis has also 

utilised the segmentation protocols built using the Developer toolbox for 

image analyses in additional experiments.   

Though COPAS can serve as an alternative to microscopy based measurements, 

as it can measure length, optical density and fluorescence emission of single 

worms (Squiban et al. 2012; Zugasti et al. 2016), image-based microscopy 

platforms are far more advantageous. They are faster and images are stored, 

making them accessible for re-analysis. Also, a much smaller number of 

animals can be used for image based assays as compared to the COPAS, 

allowing exploration of a large number of different treatments in parallel, such 

as RNAi or drug screens. Image-based screens also ensure that multiple 

outputs can be examined from the image, e.g. fluorescent intensities in 

different channels, size and shape measurements. This could also be used to 

detect other phenotypes such as sterility by classifying the small worms as 

progeny based on worm length measurement, or to distinguish between thin 

and fat worms based on worm width measurement. We have translated the 

image analysis protocol for Cell-Profiler (Carpenter et al. 2006), a free and 

open source image analysis software, making the protocol available to the 

scientific community. In doing so, we broaden the features of the CellProfiler 

“WormToolbox” for high-throughput screening of image-based C. elegans 

phenotypes (Wahlby et al. 2012; Wahlby et al. 2014). We provide validation 

that both protocols produce comparable results. Although the segmentation 

output is not exactly the same in terms of number of worms being segmented, 

the level of stringency in the segmentation criteria can be modulated with ease 

for both protocols. 

A kinase RNAi screen reveals potential mediators of the effect of PHB 

depletion on metabolism and longevity.  

We performed an RNAi screen utilising a kinase RNAi library looking for PHB 

genetic interactors. We used vital Nile Red staining as a read out for the RNAi 

screen, as a strong metabolic feature exhibited by PHB deletion both, in wild 

type and IIS mutants, is low Nile Red accumulation (Figure 24). Using this 

technique, we obtained 26 RNAi clones (Figure 34) that suppressed the 
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reduced NR staining phenotype of the mitochondrial PHB mutants, but did not 

encounter any that further enhanced the low NR phenotype.  

With respect to the NR staining method used as a readout for the RNAi screen, 

the status of this vital stain as to whether it stains true fat reserves or infact 

lysosomal related organelles (LROs) has been debated. Vital NR, when fed to 

nematodes was believed to indicating fat stores (Ashrafi et al. 2003), though 

now it has been shown that the compartments within the worm being stained 

by NR are different from netrual lipid stores in C. elegans (O'Rourke et al. 

2009b; Yen et al. 2010; Klapper et al. 2011). Infact, staining with Oil-Red-O 

revealed that depletion of PHB resulted in increased accumulation of 

triglycerides in both wild type and IIS defective daf-2 mutants (Figure 25). As 

mitochondria are involved in fat oxidation, mitochondrial dysfunction may lead 

to accumulation of lipids. The ORO staining is in accordance with data from 

metabolomic studies (unpublished data, Lourenço et.al). Previously, Sudan 

Black staining for triglycerides in aged worms devoid of PHB has revealed 

decreased staining (Artal-Sanz and Tavernarakis 2009b), but as the Oil-Red-O 

staining is done in younger worms, it is probable that the differences are a 

result of age based changes in fat accumulation.  

NR co-localises with autofluorescent intestinal granules, thus it is believed that 

LRO are the site of age pigment/lipofuscin accumulation (Hermann et al. 2005; 

Schroeder et al. 2007). High levels of lipofuscin might indicate a physiologically 

aged state (it is not yet clear whether high levels cause ageing or are a 

symptom of ageing), as seen from many mutants with altered LRO biology that 

have altered lifespan. Example, short-lived strains such as daf-16, rict-1, kat-1 

have increased LRO autofluorescence and NR, and long-lived strains such as 

daf-2, daf-7, eat-2 tend to have lower levels of both (O'Rourke et al. 2009b; 

Soukas et al. 2009). But, this is not the case for all long-lived or short lived 

mutants, and hence, cannot be taken as a co-relation (Samuelson et al. 2007). 

But if lysosomal function is impacted due to increased age pigment buildup, it 

might lead to alterations in vesicular trafficking and autophagy, both of which 

can contribute to accelerated ageing. However, other reports suggest that 

rather than lipofuscin (Brunk and Terman 2002; Gerstbrein et al. 2005), the 

autofluorescent substance in C.elegans LROs is anthranilate, a breakdown 

product of tryptophan (Coburn et al. 2013). It has also been suggested that NR 
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stained LRO’s are sites of zinc or cholesterol storage (Roh et al. 2012; Wang et 

al. 2014). Alterations in zinc have been linked to lifespan (Kumar et al. 2016), 

and stored zinc can aid in detoxification and be a source of zinc during dietary 

deficiency (Roh et al. 2012). However, regardless of the stain status, vital NR 

staining is reproducible and sensitive to genetic manipulations that are 

expected to alter staining and thus, provides a useful tool to screen for genetic 

interactors. Previously, vital Nile Red has been utilized in different model 

systems to identify genes that alter fat and to identify pathways involved in fat 

regulation (Greenspan et al. 1985; Ashrafi et al. 2003; McKay et al. 2003; Van 

Gilst et al. 2005a; Jones et al. 2008; Lemieux et al. 2011). 

Amongst the identified kinases in the screening, a majority are involved in 

phosphorylation (except dhs-31, osm-11, inos-1, ceh-20, unc-60) and in 

organism development, signal transduction, reproduction, Wnt signalling, lipid 

storage, locomotion, etc (Figure 35). Though we did not encounter any GO 

terms relate to ageing, ire-1, akt-1, rsks-1, osm-11, ceh-20, unc-60, gsk-3, sgk-1 

(Hertweck et al. 2004; Hamilton et al. 2005; Hansen et al. 2007; Samuelson et 

al. 2007; McColl et al. 2008; Henis-Korenblit et al. 2010; Walter et al. 2011; 

Dresen et al. 2015) are genes that have been shown previously to influence 

worm lifespan.  In addition to finding genes previously shown to be involved in 

metabolism such as vps-15, kin-1, ire-1, inos-1, akt-1, sgk-1, we also found 

genes that have been previously described to interact with PHBs in the past 

such as rsks-1, sgk-1, mtk-1 and gsk-3. While both SGK-1 and RSKS-1 have been 

shown to interact with PHBs to regulate lifespan (Schleit et al. 2013; Gatsi et al. 

2014),  we show here that depletion of MTK-1 leads to an opposing longevity 

phenotype in  phb-2 and phb-2;daf-2 mutants (Figure A1.2). Thus, the presence 

of these known genes previously implicated in metabolism and longevity 

regulation and/or showing an interaction with PHB validates the screening. 

Further study of these PHB interacting genes found in this study will yield 

additional insight into the diverse functions of the mitochondrial prohibitins. 

GSK-3 deficiency causes differential shortening of lifespan and defective 

reproduction 

The focus of this thesis is GSK-3, a kinase that when knocked down produces 

an increase in the NR staining phenotype of phb-2 and phb-2;daf-2 mutants. As 

we used the Nile Red phenotype only as a visual readout for screeing purposes 
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to point us towards potential interactors of PHBs, probing if and why GSK-3 is 

involved in regulating LRO biology is beyond the scope of this thesis. However, 

we did observe from transciptomic analyses done in the lab (data not shown), 

that the expression of kat-1, a mitochondrial ketothiolase, a key gene involved 

in the regulation of LRO biology (Soukas et al. 2013) was downregulated upon 

gsk-3(RNAi) in the mitochondrial PHB mutants. Interestingly, KAT-1 is a highly 

conserved enzyme in the mitochondrial fatty acid β-oxidation pathway and is 

known to act in the intestine (Mak et al. 2006).  

This multifunctional serine threonine kinase is highly conserved in evolution 

and has been described to regulate several signalling cascades. Besides its 

prominent role in glycogen metabolism, GSK-3 has been implicated in diseases 

such as diabetes, Alzheimer’s disease, bipolar disorder and cancer, making it a 

tempting therapeutic target. Importantly, GSK-3 is regulated in response to 

PHB deficiency in Phb2KO mice, where GSK-3β was inactivated by 

phosphorylation at Ser position 9 in hippocampal tissue lysates (Merkwirth et 

al. 2012). While the function of GSK-3 in C. elegans has been studied majorly 

during early development, it has not been well elaborated in C. elegans with 

emphasis on ageing and metabolism. Herein, we investigated how gsk-3(RNAi) 

impacts ageing and metabolism under conditions of reduced IIS signalling and 

in mitochondrial prohibitin mutants. 

We present evidence that loss of GSK-3 accerelates ageing differentially 

depending on the metabolic status of the animal. Published studies in the past 

have established that loss of the conserved GSK-3 shortens lifespan in 

maternally rescued gsk-3 null C. elegans (McColl et al. 2008) and in mice (Zhou 

et al. 2013). In accordance, we observed that gsk-3(RNAi) reduces wild type 

lifespan significantly; however, the same does not impact phb-2 mutant 

survival. GSK-3 function is essential for the long lived IIS daf-2 and phb-2; daf-2 

double mutants (Figure 36). Particularly, the impact of decrease upon gsk-

3(RNAi) is striking for daf-2 mutant, implying that GSK-3 is essential for the 

extended longevity of IIS mutants. The shortening of the phb-2;daf-2 mutants 

on loss of GSK-3 can be attributed to DAF-2,as PHB-2 is unaffected. What was 

intriguing about the effect of gsk-3(RNAi) was that its effect on shortening 

survival of wildtype worms was  significantly higher than its effect on 

shortening survival of phb-2 mutants and similarly amongst daf-2 and phb-2; 
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daf-2 mutants. As GSK-3 is implicated in metabolism in other systems, it is 

quite possible that the ageing phenotype seen in worms is subject to metabolic 

perturbations.  

GSK-3 loss results in embryonic lethality and reduced brood size in wild type 

worms, (Figure 39) indicating reduced fitness, in line with reports of lethality 

and developmental defects in mice, Drososphila (Bourouis et al. 1990; Hoeflich 

et al. 2000) and in worms upon GSK-3 disruption. In worms, lethality is 

attributed to abnormal C blastomere differentiation and Wnt signalling (An et 

al. 2005; Gleason et al. 2006). Worms devoid of the GSK-3 and the Wnt 

component, APR-1 also exhibit distorted gonads (Cabello et al. 2010). GSK-3 is 

required for OMA-1 degradation, a regulator of oocyte to embryo transition 

(Nishi and Lin 2005) and the phenotype oma-1(zu405) mutant embryos are 

similar to that of GSK-3 depleted embryos (Schlesinger et al. 1999; Maduro et 

al. 2001; Lin 2003). Thus, embryonic defects upon loss of GSK-3 could be due to 

failure of timely degradation of OMA-1. Also, adult gsk-3 mutant germlines 

have lower GSCs essential for germline development (Furuta et al. 2018), 

further implicating GSK-3 in early development. A more drastic lethal 

phenotype is exhibited by daf-2(e1370) mutants upon depletion of GSK-3 

(Figure 39). Based on IIS signalling inhibition of GSK-3, daf-2 mutants are likely 

to have active GSK-3, and hence, an active GSK-3 is required for normal 

reproduction in these worms. In Drosophila, late stage oocytes (conditions 

when IIS signalling is lost) subjected to gsk-3(RNAi), were inviable (Sieber et al. 

2016), similar to the effect seen by us in daf-2(e1370) mutants, implying the 

importance of GSK-3 in conditions of low IIS signalling. Additionally, a 

developmental role for GSK-3 across all genetic backgrounds is also confirmed 

by the fact the mean lifespans are increased when worms are exposed to gsk-

3(RNAi) from adulthood (Figure 37) rather than from embryos.  

In addition to the described dynamics of GSK-3, we observe expression of GSK-

3 in the sperm. The worm embryo has distinct embryonic anteroposterior (AP) 

asymmetries.  The sperm, probably via its associated centrosome, establishes 

the AP axis through the control of cytoplasmic rearrangement and final 

polarization of the zygote requires basic elements of the cytoskeleton 

(Goldstein and Hird 1996). Additionally, Wnt signalling is involved in inducing 

polar changes in cellular morphology via remodelling of the cytoskeleton. 
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Hence, there might be a link with sperm expression of GSK-3 to the observed 

embryonic defects. 

A major role for GSK-3 is as a key negative regulator of Wnt signalling, as a 

member of the destruction complex. Other components of the destruction 

complex include kin-19 and pry-1. Loss of KIN-19 elicits a similar accerelation of 

ageing across all backgrounds, as observed upon gsk-3(RNAi) (Figure 38A).  

Incidently, pry-1 mutants have a low brood size much like GSK-3 depleted 

worms and are short-lived (Ranawade et.al, bioRxiv, pre-print). Interestingly, 

we found that decreasing Wnt signalling via loss of BAR-1, also elicits the same 

lifespan phenotype (Figure 38B) as observed upon gsk-3(RNAi) and kin-19 

(RNAi) (Table 4,5). It has been shown previously that upon loss of BAR-1, the 

Wnt-signalling pathway is activated implying a compensation mechanism (van 

der Bent et al. 2014). Additionally, experiments in the lab showed that bar-1 

(RNAi) downregulates GSK-3. This could indicate why loss of Wnt components 

leads to a similar reduced longevity phenotype across the four genetic 

backgrounds.  

GSK-3 is a well-documented target of lithium (Stambolic et al. 1996; Ryves and 

Harwood 2001; De Sarno et al. 2002) and the effects of lithium on ageing have 

been studied in yeast and C. elegans, with lithium extending lifespan (McColl et 

al. 2008; Zarse et al. 2011; Sofola-Adesakin et al. 2014; Tam et al. 2014). 

Though effects of lithium on Drosophila ageing were previously inconclusive 

(Matsagas et al. 2009; Zhu et al. 2015), now there is evidence of lifespan 

extension (Castillo-Quan et al. 2016). Lithium concentration in the drinking 

water of a large Japanese population has been associated with reduced overall 

mortality (Zarse et al. 2011), suggesting that lithium may be a bona fide anti-

ageing drug. Lithium is a popular drug used to treat mood affect disorders, but 

has a narrow therapeutic range beyond which there is risk of tissue damage 

(Malhi and Tanious 2011). Evidence from work in flies and worms suggest the 

same is true for lifespan extension; lower doses extend lifespan, whereas 

higher concentrations are detrimental (McColl et al. 2008; Zhu et al. 2015; 

Castillo-Quan et al. 2016). We used a concentration of lithium previously 

shown to extend lifespan in both worms and flies with contradictory results 

(Figure A2.2). Importantly, in our experiments done at 20 °C,  lithium addition 

to wild type and conditions of compromised IIS signalling strongly shortens 
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lifespan against the previous observation where lithium extended wild type 

and daf-2(e1368) median lifespan by 36 % and 19%  respectively (McColl et al. 

2008). The authors had concluded that the effect of lithium on lifespan was not 

due to reduced IIS signalling, as daf-16(mu86) mutants show a 50% extension 

in lifespan upon LiCl addition. In this work, we used the daf-2(e1370) strain, 

and temperature is different, so results are not comparable. Though, our 

reduced longevity upon lithium addition is in accordance with our results using 

gsk-3(RNAi). Therefore, our results call for caution regarding the use of lithium 

as an anti-ageing agent, more so as lithium is the only GSK-3 inhibitor approved 

for human use (Williams and Harwood 2000; Meijer et al. 2004; Martinez et al. 

2011). Incidentally, in studies wherein the authors performed lithium 

experiments at 20 °C but exposed worms to a lower concentration of LiCl - wild 

type worms exhibit only a mild increase in survival (Zarse et al. 2011); and 

there was downregulation of metabolic genes including fasn-1, acs-17, acdh-8, 

ech-9 and vitellogenin genes including vit-5, vit-6 (Inokuchi et al. 2015), the 

latter being similar to our metabolic observations upon gsk-3(RNAi) in wild 

type animals, and points to lithium targeting GSK-3. Ofcourse, we will need 

further evidence to back our preliminary claim and explore the possibility of 

lithium having an additional target apart from GSK-3.   

Altered carbohydrate metabolism upon loss of GSK-3  

In order to understand the differential effect of GSK-3 on lifespan regulation 

we looked at energy stores and metabolism. Reduced GSK-3 activity results in 

increased activity of glycogen synthase, leading to increase in glycogen (Embi 

et al. 1980; Parker et al. 1983; Woodgett and Cohen 1984; Cross et al. 1995), 

hence, in order to ascertain whether loss of GSK-3 alters glycogen stores, we 

measured glycogen stores using iodine vapor staining. While this technique is 

easier than biochemical assays as it allows detection of whole body glycogen in 

vivo, it involves simultaneous exposure of worms of interest to the iodine 

vapors (Frazier and Roth 2009; LaMacchia et al. 2015; Gusarov et al. 2017; Seo 

et al. 2018). This method can stain more than one population of animals at a 

time and one can control the time of exposure. The glycogen content revealed 

by iodine vapor staining correlates well with biochemical methods as reported 

by others. Iodine vapor staining is better than vital staining via carminic acid as 
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it only stains glycogen in the gut (Hanover et al. 2005; Forsythe et al. 2006; 

LaRue and Padilla 2011).  

 Here, we noted that lack of GSK-3 does not affect the whole body glycogen 

content in wild type contrary to the expected increase on the basis of the role 

established for GSK-3 (active insulin signalling inhibits GSK-3 and activates 

glycogen synthase). Inhibiting GSK-3 via lithium addition in flies also resulted in 

unaltered levels of glycogen (Castillo-Quan et al. 2016). However, daf-2 

mutants have increased glycogen stores (Figure 42) as observed by us and 

others (Depuydt et al. 2014)  and GSK-3 loss led to a further increase of 

glycogen.  daf-2 mutants are metabolically different to wild type and have 

many metabolic pathways like glycolysis and gluconeogenesis upregulated 

(Depuydt et al. 2014). Glycogen synthesis impairment via glycogen synthase - 1 

(gsy-1) RNAi suppresses the enhanced survival of daf-2 mutants in a 

hypoosmotic-anoxic environment, while RNAi against glycogen phosphorylase 

(pyg-1 or T22F3.3) does not affect their survival (LaMacchia et al. 2015). Also, 

gsy-1(RNAi) reduces longevity in daf-2  mutants (Gusarov et al. 2017), while 

pyg-1(RNAi) leading to increased glycogen mildly extends daf-2 longevity. 

However, lifespan of wild type animals is mildly increased upon RNAi against 

both gsy-1 and pyg-1. These reports imply that alterations in glycogen 

synthesis and storage are more vital in case of reduced daf-2 signalling than 

glycogen breakdown, unlike wild type worms. If glycogen synthesis and storage 

upon low insulin signalling is controlled by GSK-3, probably via inhibition of 

glycogen synthase, which upon GSK-3 depletion becomes activated, then a 

further increase in glycogen than what is required by daf-2 mutants might also 

be detrimental.   

Interestingly, in wild type animals, GSK-3 loss downregulates gluconeogenesis 

as per low expression of fbp-1 (Figure 43A), and this is supported by RNA-seq 

analysis as fbp-1 and additionally, pck-1 were also downregulated upon gsk-3 

(RNAi). However, despite this, glycogen stores are not affected in these 

animals. Also, glyoxylate shunt genes, icl-1 and mdh-2 upon gsk-3(RNAi) in wild 

type and daf-2 mutants are decreased, implying decreased metabolism of fatty 

acids to promote gluconeogenesis.  

On the other hand, PHB depletion led to decreased glycogen in otherwise wild 

type and IIS mutants, and gsk-3(RNAi) further reduced glycogen in these 



DDiissccuussssiioonn    

 

 

114 

worms. Analysis from RNA-seq data in our lab has revealed that upon phb-1 

(RNAi), there is an upregulation of glycolytic pathways, and hence, the reduced 

glycogen is likely a reflection of increased glycolytic metabolism as 

mitochondria in these animals is impaired.  Moreover, we also observed that 

expression levels of fbp-1, a gluconeogenic enzyme was downregulated in 

worms grown on phb-1(RNAi) and phb-1;gsk-3(RNAi) (Figure 43A). As less 

glucose is generated, the result is less glycogen. This is supported by RNA-seq 

analysis that revealed that upon gsk-3(RNAi), there is significant decrease of 

key gluconeogenic genes including fbp-1 in phb-2 and phb-2;daf-2 mutants.  

A major effector of glycogen in several organisms is AMPK and it has a complex 

regulation. Acute activation of AMPK inhibits glycogen synthase (GS) to 

suppress glycogen biosynthesis (Carling and Hardie 1989; Wojtaszewski et al. 

2002; Jorgensen et al. 2004; Miyamoto et al. 2007), while chronic activation of 

AMPK results in glycogen accumulation (Luptak et al. 2007; Hunter et al. 2011). 

However, glycogen does not shorten lifespan on a normal diet, as seen in daf-2 

mutants that store more glycogen, have an active AMPK and live longer (Apfeld 

et al. 2004). Our efforts to check whether AMPK is active upon gsk-3(RNAi) 

were unsuccessful owing to variability amongst experiments (Appendix 5). Wild 

type, daf-2 and the mitochondrial PHB mutants on control and gsk-3(RNAi) 

were analysed with an antibody that recognizes the phosphorylated T172 on 

AMPK, an important response to cellular metabolic stress (Hardie 2004; Hardie 

et al. 2012). The general trend was that AMPK was active in all genetic 

backgrounds except wild type upon gsk-3(RNAi). Previously, AMPK has been 

shown to be activated in phb-2 mutants (Zubovych et al. 2010).  

gsk-3(RNAi) strongly downregulates fat degradation  

Additonally, we observed reductions in whole body triglycerides (Figure 44) 

upon depletion of GSK-3 except in daf-2 mutants. Accordingly, reducing GSK-3 

activity via lithium addition has been observed to decrease whole body 

triglycerides, the main lipid storage in flies, in a dose-dependent manner 

(Castillo-Quan et al. 2016). Low triglyceride content could be due to either 

decreased lipogenesis or increased fatty acid oxidation. Using the atgl-1p::atgl-

1::gfp translational reporter, we found that gsk-3(RNAi) increased ATGL-1::GFP 

levels, across all genetic backgrounds suggesting increased hydrolysis of lipids. 
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Despite the availability of fatty acids as inferred by increased ATGL-1 levels, 

expression of several acyl CoA synthases, acs-19 and acs-13 and 

dehydrogenases acdh-1/-2/-7, also the mitochondrial cpt-2 involved in transfer 

of medium- /long- chain fatty acids from cytosol to mitochondria, (Figure 46, 

A3.2, A3.3, A3.3) were downregulated upon gsk-3(RNAi). Acyl CoA synthases 

and dehydrogenases are amongst the most abundant proteins identified in 

purified lipid droplets (Zhang et al. 2012), indicating a physical association 

between organelles of fat storage and mobilization. Specifically, the 

mitochondrial acdh-1 exhibited a decrease across all genetic backgrounds upon 

GSK-3 loss (Figure 46). The decreases in β-oxidation genes upon loss of GSK-3 

found in our study are also reflected at the transcript level.  

Previously, PHB loss in wild type animals has been shown to have increased 

content of short chain and saturated fatty acids, with a decrease of long chain 

and unsaturated fatty acids (Lourenco et al. 2015). In line with this, we 

observed that PHB depleted nematodes only showed strong decrease of short 

chain fatty acid oxidation, acdh-1 and -2 and acs-19; whereas, genes involved 

in medium-/long- chain fat oxidation, acdh-7, acs-13 were unaffected. Also 

unaffected was the expression of cpt-2, suggesting  no issues with regard to 

import of medium-/long- chain fatty acids into the mitochondria (Figure 46, 

A3.2, A3.3, A3.3). This implies that there is a preference for the β-oxidation of 

medium and long chain fatty acids for energy production rather than short 

chain fatty acids when PHB is depleted.  

Fatty acid oxidation occurs in the mitochondria and peroxisomes, the major 

metabolic organelles, and is a conserved mechanism of energy generation. 

While at the moment we lack information about oxidation processes in the 

peroxisomes upon gsk-3(RNAi), the consequences of the reduced levels of the 

different genes tested indicate reduced fat breakdown upon loss of GSK-3 and 

such a deregulation in fat oxidation could cause energetic deficits. However, 

these observations do not explain the reduced ORO staining. 

ACDH-1 is involved in β-oxidation of short chain fatty acids (human homolog, 

SCAD) (Van Gilst et al. 2005b) and also in branched chain amino acid (BCAA) 

breakdown (human homolog, ACADSB) (Murphy et al. 2003). Based on 

sequence comparison, ACDH-1 more closely resembles the latter (Watson et al. 
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2013). The transgenic strain, Pacdh-1::GFP, used in this thesis has strong 

expression in the intestine and hypodermis  (Arda et al. 2010; MacNeil et al. 

2013). As Pacdh-1::GFP levels  were very low upon both GSK-3 and/or PHB-1 

depletion in both wild type and daf-2 backgrounds, we were concerned 

whether this strain can reflect changes in oxidation of short chain fatty acids. 

Hence, additionally we show that acdh-2 (homologous to acdh-1) (MacNeil et 

al. 2013), also exhibits a reduction in expression levels similar to acdh-1 when 

worms are subjected to gsk-3 or phb-1(RNAi) (Figure A3.2). In addition, Pacdh-

1::GFP levels are increased in animals with low glycogen stores indicating a 

change in response. Though we will need to further verify whether this 

increased Pacdh-1::GFP  expression in worms grown on gsy-1(RNAi) indicates 

increased short chain fatty acid oxidation (Figure A3.1,A).  

Indeed, the transgenic strain Pacdh-1::GFP is an established reporter of dietary 

vitamin B12 status, as GFP is highly expressed when vitamin B12 is low (such as 

in E. coli OP50 and HT115) and is repressed when vitamin B12 is high (such as 

in Comamonas DA1877)(MacNeil et al. 2013; Watson et al. 2013; Watson et al. 

2014; Watson et al. 2016). acdh-1 is at the top of the alternate propionate 

shunt that includes ech-6, hach-1, hphd-1 and alh-8. This shunt is 

transcriptionally activated when vitamin B12 is in low supply (Watson et al. 

2016). An active propionate shunt prevents toxic build up of propionate, a 

byproduct of fat and protein breakdown and enables survival on a vitamin B12 

deficient diet. Based on this, we can speculate that the very low expression of 

Pacdh-1::GFP upon loss of GSK-3 and/or PHB-1, indicates a compromised 

propionate shunt. This is backed with evidence from RNA-seq analyses in our 

lab that all the genes involved in the propionate shunt are significantly 

downregulated in wildtype and mitochondrial PHB mutants upon gsk-3(RNAi). 

Incidentally, some genes involved in vitamin B12 dependent propionyl CoA 

breakdown, pcca-1, pccb-1, mce-1, mmcm-1 were also downregulated upon 

GSK-3 loss. As these worms are grown on HT115 bacteria lacking vitamin B12, it 

is possible that active ACDH-1 indicates breakdown of fat or proteins as seen in 

wild type and IIS mutants. However, in worms devoid of GSK-3, there is 

compromised fat or protein breakdown as indicated by a low acdh-1 

expression. Previously, PHB depleted worms have been observed to show 

alteration in amino acid metabolism (Lourenco et al. 2015), hence, altered 

acdh-1 upon PHB depletion could be indicating that as well. 
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Intriguingly, knockdown of acdh-1 in wild type animals does not affect lifespan. 

(Yuan et al. 2012) and there is evidence that daf-2 mutant has increased levels 

of propionate and exhibit significantly increased abundance of the propionate 

catabolic enzymes MCE-1, MMCM-1, PCCA-1 and PCCB-1(Depuydt et al. 2014). 

Hence, an activation of this breakdown pathway indicates increased catabolism 

of fatty acids or branched chain amino acids in the daf-2 mutant.  

Interestingly, the human homolog of acdh-1, ACADSB was found amongst 

metabolic proteins that associate specifically with GSK3β1. Hence, it could be a 

potential mediator in the atypical functions of GSK3β1 (Gao et al. 2013). 

Fat synthesis is a key requirement of growth and GSK-3 depletion reduces de 

novo fat synthesis in wild type as seen from the expression levels of the 

transgenic strain Ppod-2:GFP (Figure A3.5), but not in PHB depleted animals. 

This behavior might be linked to the ageing phenotype but we miss 

information about daf-2 and phb-2;daf-2 mutants. However, RNA seq analyses 

done in the lab indicate that pod-2 is unaffected in phb-2;daf-2 mutants on  

gsk-3(RNAi).  In wild type and IIS defective daf-2 mutants, upon gsk-3(RNAi) 

expression levels of fasn-1 and fat-7 were downregulated respectively. Thus, 

the reduction in whole body ORO staining upon loss of GSK-3 could be a result 

of decrease in expression of de novo fat synthesis genes.  

As proper breakdown of fats is required for the mitochondria to utilize in 

energy production, a deregulation of lipid breakdown as seen upon GSK-3 loss 

could  fail to meet to the energy demands of these worms. Additionally, worms 

depleted of GSK-3 are less active phenotypically from control animals, 

especially daf-2 mutants. While the consequences of GSK-3 depletion on 

mitochondrial function are not evident across genetic backgrounds while 

worms are young, on day 5 in aged worms, wild type and IIS mutants exhibit 

strong decreases in respiration, while PHB depleted animals modulate 

respiration differentially. Moreover, the accumulation of fatty acids as a result 

of irregular lipid breakdown during ageing could lead to lipotoxicity, often 

associated with age-related disorders and metabolic syndromes. 

Similar to the altered fat metabolism seen in wild type worms on gsk-3(RNAi), 

pry-1 mutants (component of Wnt destruction complex) also exhibit drastically 

reduced lipid levels and downregulation of genes involved in de novo synthesis 
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such as the desaturases, fasn-1, fat-5, and -6 and elongases, elo-3 and -6; and 

also those involved in fatty acid oxidation such as  acdh-1, -6, -11, -23;  acs-2, -

11, -17; cpt-1, -4, and ech-9 (Ranawade et.al, bioRxiv, pre-print). The authors 

also recorded that yolk lipoprotein vitellogenins (VITs), vit-1, -2, -3, -4, -5, and -

6, important for lipid distribution were also differentially regulated. In line with 

this we also observed that loss of GSK-3 led to decreased expression of VIT-6 

across all genetic backgrounds (Figure 47). Additional investigation of the other 

VITs and their alterations during ageing might yield more information on 

whether deregualtion of these contributes to the metabolic defects seen upon 

gsk-3(RNAi). These observations indicate a possible mediation by Wnt 

signalling in lipid metabolism. 

Lack of GSK-3 perturbs mitochondrial lipid composition  

In yeast cells deficient of PHB, survival depends on lipid composition of 

mitochondrial membranes, especially alterations in CL and PE (Osman et al. 

2009). Also, reduction in fat-7 expression limits monounsaturated fatty acid 

synthesis that maintains fatty acid levels and could potentially alter cellular and 

membrane lipid composition, particularly, that of the mitochondria (Osman et 

al. 2011). In accordance with this, GSK-3 depletion leads to alterations in 

mitochondrial membrane lipids, i.e. strong increases in PLs in wild type and 

daf-2 mutants (Figure 52). It has been described that increased accumulation 

of PLs in the mitochondria depends on lipid transport between the ER and 

mitochondria.  Additionally this could  involve  intramitochondrial lipid 

trafficking  (Osman et al. 2011). Mitochondrial phospholipid composition varies 

little among different cells, indicating that major changes might not be 

tolerated. Altered phospholipid levels and phospholipid damage have been 

linked to a variety of human disease states (Chicco and Sparagna, 2007; Joshi 

et al., 2009). In yeast, GSK-3 positively regulates Elo2 phosphorylation, a fatty 

acid elongase protein. Phophorylation of Elo2 is important for very long chain 

fatty acid (VLCFA) synthesis that in turn is essential for ceramide synthesis 

(Zimmermann et al. 2013). 

With respect to the alterations in membrane lipids, of particular interest are 

two classes, Phosphatidylcholine (PC) and cardiolipins (CL). Regarding the 

former, PC are increased strongly across genetic backgrounds upon gsk-3 

(RNAi). PC synthesis requires the major methyl donor, S-adenosylmethionine, 
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SAM (encoded as sams-1 in nematodes). In line with the increased PC levels, 

RNA seq analyses revealed that sams-1 is upregulated in wild type, phb-2 and 

phb-2;daf-2 mutants upon loss of GSK-3. Moreover, SAMS-1 has been 

implicated in a conserved regulation involving the transcription factor SREBP-

1/SBP-1 in lipogenesis, such that under conditions of low SAM or decreased PC, 

lipogenesis is promoted by nuclear accumulation of SBP-1(Walker et al. 2011; 

Ding et al. 2015). Also, knocking down sams-1 extends longevity (Hansen et al. 

2005). In our case, an increased sams-1 and increase in the phospholipid PC, 

could potentially inhibit SBP-1 and block lipogenesis, as seen from the 

reduction in fat stores upon gsk-3(RNAi). 

Cardiolipins have an important role in mitochondrial bioenergetic processes. 

Also, they have been shown to interact with a number of proteins, including 

the respiratory chain complexes, generation of the inner membrane potential 

and are essential for mitochondrial structure and integrity (Paradies et al. 

2014). gsk-3(RNAi) alters CL composition more in wild type and in conditions of 

low IIS signalling in comparison to the PHB mutants. CL is required for 

mitochondrial fusion and fission, a key step in separating mitochondria that are 

not functional for mitophagy - selective degradation of mitochondria by 

autophagy. Incidentally, other PLs derived from the mitochondria like 

phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) are also vital for 

the autophagy (Shatz et al. 2016; Hsu and Shi 2017). Thus, changes in PL 

compositions could be linked to autophagy dysregulation.  

In agreement, gsk-3(RNAi) leads to an increase in autophagy (Lehmann et al. 

2013) via observation of accumulation of the autophagic vesicle marker LGG-1. 

Autophagy is a conserved cellular homeostasis and stress response mechanism 

to degrade long-lived proteins, molecules and organelles. It is a multistep 

process that involves vesicular transport events leading to tethering and fusion 

of autophagic vesicles with several intracellular compartments (Megalou and 

Tavernarakis 2009; Amaya et al. 2015). Interestingly, we have evidence from 

RNAseq data that lack of GSK-3 upregulates processes related to membrane 

vesicle trafficking across all genetic backgrounds.  In C. elegans, autophagy is 

involved in many processes through embryonic and larval development and 

also in stress responses. In long lived strains like daf-2, studies have shown that 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/vesicular-transport-protein
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/vesicle-biology-and-chemistry
https://www.sciencedirect.com/topics/medicine-and-dentistry/cellular-compartment
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ageing and longevity are dependent on autophagy (Melendez et al. 2003; 

Melendez and Levine 2009; Chen et al. 2017).  

 Altered mitochondrial membrane lipid composition has also been implicated 

in ageing in other systems. Broadly, alterations could be due to disturbance of 

enzymes involved in phospholipid remodeling, as well as changes in the dietary 

fatty acids and this can have bioenergetic costs, by affecting mitochondrial 

capacity and function (Schenkel and Bakovic 2014; Valencak and Azzu 2014; 

Medkour et al. 2017) . 

Mitochondrial bioenergetics during ageing upon GSK-3 depletion  

To investigate if GSK-3 affects mitochondrial function during ageing, we 

measured basal and maximal oxygen consumption rate (OCR). For assessing 

mitochondrial function, some time consuming methods are in use - 

biochemical analysis of extracts (Krijgsveld et al. 2003), in vivo ATP level 

analysis via transgenic reporter (Lagido et al. 2008), in vivo mitochondrial 

membrane potential analysis (Gaskova et al. 2007) and analysis of basal oxygen 

consumption (Braeckman et al. 2002a); but these measure one specific aspect 

of mitochondrial function and might not give a clear picture of overall 

mitochondrial health. Seahorse Extracellular Flux Analyzers (Luz et al. 2015; 

Koopman et al. 2016) offer real-time oxygen consumption measures and also 

of other parameters like maximal respiratory capacity, spare respiratory 

capacity, ATP coupled respiration and proton leak in whole worms in multi-well 

formats without the need for lysing cells or isolating mitochondria.  

Our OCR data normalized by worm number and corrected for worm area show 

that it is under low daf-2 signalling that GSK-3 loss strongly impairs basal 

respiration during ageing (Figure 48). Exposure to FCCP, a mitochondrial 

uncoupler revealed that maximal respiratory capacities in wild type and daf-2 

mutants were strongly compromised upon gsk-3(RNAi) (Figure 48), indicating 

that GSK-3 function is also important for mitochondrial function in wild type 

animals. Additionally, mRNA levels of ucp-4, an uncoupling protein was 

downregulated in IIS mutants grown on gsk-3(RNAi) (Figure A4.4), signifying a 

prospect that mitochondria might be compromised. Strong alterations in 

maximal OCR were only observed in phb-2 mutants that exhibited an increase 

on gsk-3(RNAi) that could be linked to the ability to better modulate energetic 
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responses to GSK-3 loss. The long lived phb-2;daf-2 mutants do not show 

changes in respiraton upon GSK-3 depletion except a significant decrease at YA 

stage, but oxygen consumption reduces during ageing slightly. Though, overall 

they always exhibit a low oxygen consumption rate.  

We additionally normalised OCR data only to number of worms and observed 

that it changes result interpretation substantially owing to the size differences 

among the different genetic backgrounds (Annexure 4, Figure A4.2). Loss of 

GSK-3 in wild type and IIS mutants elicits similar effects with respect to basal 

and maximal OCR irrespective of normalisation as they do not exhibit 

significant changes in size. However, the decreased basal OCR in the 

mitochondrial mutants, phb-2 and phb-2;daf-2 with respect to wildtype and 

daf-2 mutants at the YA stage (Annexure 4, Figure A4.2) might be attributed to  

faulty mitochondria but its more likely a result of the small size of these 

mutants as these are not observed when the data is corrected for worm area 

(Figure 48). Also, during ageing at day 5, the increased basal and maximal 

respiration of the short lived phb-2 compared to wild type is missed when not 

corrected for area. The long lived double mutants phb-2;daf-2  respire lower 

than the IIS depleted mutants irrespective of method of normalisation. phb-2 

and phb-2;daf-2 mutants on gsk-3(RNAi) tend to respire less,  without 

corrections for size differences (Annexure 4, Figure A4.2), implying that their 

low OCR is not because they have potentially faulty mitochondria upon GSK-3 

loss but that in fact their respiration is unaffected. Similarly, GSK-3 depletion 

does not affect the maximal respiration of phb-2  mutants, and decreases the 

same during ageing (Annexure 4, Figure A4.2) but area normalisation reveals 

that in fact these worms respire much more when younger and are unaffected 

at day 5.  

These data present important points towards the fact that careful review is 

required with respect to results gathered from such metabolic analyses as they 

depend on the manner of normalisation, as shown here. Normalizing to size is 

essential for cases wherein the experimental backgrounds being tested show 

obvious and significant differences - such as ours (Figure 48). Nematode 

respiratory rates have been normalized by several ways, such as worm 

number, worm volume, worm length, total protein and mitochondrial copy 

number.  For cases where mutants or RNAi treated worms are smaller than the 
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respective age-matched controls, correcting for protein levels provides extra 

information. Although it has been reported that mitochondrial dysfunction via 

RNAi led to reduced respiration with both worm number and protein 

normalization (Wu et al. 2014) and hence, one can normalize to mitochondrial 

DNA content to account for differences in mitochondrial activity (Weimer et al. 

2014). Though our mitotracker staining at the YA stage (A4.3) reveals that the 

dysfunctional mitochondrial mutants, phb-2 and phb-2;daf-2 with respect to 

wildtype and daf-2 mutants have less mitochondrial content and this is 

reflected at the basal OCR at YA stage irrespective of normalization. However, 

mitotracker staining is not indicative of mitochondrial activity and hence, it is 

better to use mitochondrial DNA copy number to normalize.   

Reductions in size and alterations in oxygen consumption are potential 

consequences of mitochondrial stress. While we have been unable to check 

ATP levels in these backgrounds, we did observe that depletion of GSK-3 

activates UPRmt selectively (Figure 50). Loss of GSK-3, induces hsp-6 expression 

in wild type animals while daf-2 mutants are unaffected.  The mitochondrial 

PHB mutants induce the UPRmt, but loss of GSK-3 further induces hsp-6 

expression only in the phb-2; daf-2 double mutants. Activation of UPRmt is also 

known to cause metabolic restructuring, such as activating glycolytic genes and 

repressing those of oxidative phosphorylation (Nargund et al. 2012; Nargund et 

al. 2015). As we have evidence in the lab that atleast in phb-2 and phb-2;daf-2 

mutants, glycolytic pathways are upregulated, cases where UPRmt is active; one 

can contemplate that it is likely that GSK-3 depleted animals that are capable 

of inducing hsp-6 expression could also potentially rely on glycolysis.  

Tissue specific analysis of GSK-3 with a focus on ageing 

Though GSK-3 has ubiquitous expression (Figure 40), in line with its impact on 

metabolism, depleting GSK-3 solely in the intestine leads to reduction in 

lifespan across all genetic backgrounds and strongly so in the daf-2 mutants 

(Figure 53). This implies an important intestinal role for GSK-3, the major 

metabolic organ in worms. We also noted that loss of gsk-3  in the intestine did 

not recapitulate the embryonic lethality observed in wild type animals 

subjected to whole animal gsk-3(RNAi), but the same worsened the lethal 

phenotype ofdaf-2 mutants as they barely laid eggs (observation not 

quantified). This again indicates a strong role for GSK-3 in development, both 
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whole body and in the intestine, when IIS signalling is low.The genomic tagging 

of GSK-3 via CRIPSR-Cas9 utilising the SapTrap protocol (Schwartz and 

Jorgensen 2016) incorporates a compatible GFP KO cassette (Munoz-Jimenez 

et al. 2017). This has been further developed in the lab to generate tissue 

specific GSK-3 KO strains to observe the lifespan phenotype when this kinase is 

knocked out in three tissues, namely, intestine, muscles and neurons. We 

confirmed that wild type and PHB depleted animals exhibit decreased 

longevity only when GSK-3 is inactivated in the intestine, and are unaffected 

upon neuronal and muscle GSK-3 loss. IIS defective daf-2 mutants exhibit a 

decrease when GSK-3 is knocked out in intestine andmuscles, whereas, daf-2 

mutants devoid of PHB exhibit a reduced lifespan upon GSK-3 KO in all tested 

tissues, intestine, neurons and muscles. These differential alterations in 

lifespanupon tissue specific GSK-3 KO across different genetic backgrounds 

imply relevance of GSK-3 function in specific tissues.  

Recently, it was shown in dissected ovaries of Drosophila that during late 

oogenesis when IIS activity is reduced, GSK3 promotes mitochondrial 

quiescence and glycogen accumulation (Sieber et al. 2016). This is different 

from studies in whole Drosophila wherein no alterations in glycogen were seen 

when GSK-3 was inhibited via Lithium (Castillo-Quan et al. 2016). Previous data 

using in vitro experiments does indicate that not only there might be distinct 

roles for GSK-3α and GSK-3β, but also tissue-specific phenotypes associated 

with each of these isoforms (Ciaraldi et al. 2006; Patel et al. 2008). Hence, 

these tissue specific C. elegans GSK-3 KO strains can be utilised as new genetic 

tools in the future to further analyse tissue-specific roles of GSK-3 in regulation 

of development, ageing and lipid and carbohydrate metabolism. 

Limitations of this study  

GSK-3 is a kinase that is inactivated upon phosphorylation at Ser9 in GSK-3β in 

vertebrates (Sutherland et al. 1993; Cross et al. 1995; Frame et al. 2001; 

Afanas'ev 2010). This thesis is unable to demonstrate whether the acivity of 

GSK-3 is subject to a similar regulation in vivo, due to lack of a good antibody; 

and whether or not Ser9 is conserved in C. elegans. The status of 

phophorylation is of importance as it has been seen that PI3 kinase-resistant 

GSK3 (gsk3KI) mice with enhanced adiponectin production are protected 

against the development of metabolic syndrome as compared to gsk3WT mice 
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(Chen et al. 2016). Also, a recent paper established that active GSK-3 inhibits 

AMPK function, a key regulator of cellular homeostasis. Interestingly the 

authors showed that insulin signalling a conserved inhibitory pathway for GSK-

3 promotes GSK3-dependent AMPK phosphorylation and inhibition (Suzuki et 

al. 2013),that leads to metabolic fluctuations resulting in catabolism of fatty 

acids in vitro. These reports highlight the importance of this unusual kinase, 

GSK-3 and its physiological relevance.  

An area of research wherein GSK-3 has a role is tauopathies, including 

Alzheimer’s disease (AD), Down syndrome, Parkinson’s amongst others. Tau 

are microtubule-associated proteins (MAP) found in neuronal axons. Tau 

protein binds to microtubules (MTs) and stimulates MT polymerization and 

promotes stabilization. In diseased states, tau is hyperphosphorylated and 

dissociates from MTs and tau forms filaments that aggregate in neurons. In a 

genome wide screen carried out by Kraemer et. al, to identify potential 

modifiers of tau-induced pathologic phenotype, gsk-3(RNAi) was found to 

further enhance the tau-induced Unc phenotype (Kraemer et al. 2006). GSK-3 

is a component of the canonical Wnt signalling pathway and is known to 

regulate MT stability, and hence, it is possible that certain functions are 

mediated through Wnt as well. While the role of kinases in tauopathies has 

been done using transgenic animal models, not all the results obtained were 

consistent. In mice, there are conflicting studies wherein conditional 

overexpression of GSK-3β has been detrimental or protective. On the other 

hand, in Drosophila, results were consistent with GSK-3β promoting tau-

induced neurodegeneration and lack of GSK-3β or use of GSK-3β inhibitors 

supressing the tau phentoypes (Gotz et al. 2010). In the work done in C. 

elegans, RNAi of GSK-3 enhances tau-induced phenotypes, implying that at 

least in this system, GSK-3 is protective (Kraemer et al. 2006).  

Incidentally, loss of PHB2 in the forebrain of mice leads to neurodegeneration 

and tau hyperphosphorylation, while GSK-3β was found to be inactivated by 

phosphorylation at Ser9, accompanied by the activation of the upstream 

kinase, AKT. This implied that GSK-3 might not be the cause for the increased 

tau pathology in Phb2NKO mice (Merkwirth et al. 2012). It will be interesting to 

check whether loss of GSK-3 in worms under conditions of reduced IIS function 

or upon PHB depletion, induces taupathies or leads to an alleviation.  
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Future directions 

As the semi-automated screening strategy used by us was successful, the same 

can applied at a larger scale to an OrthoList RNAi library that has been built in 

the lab (Hernando-Rodriguez et al. 2018) utilising the automated data analysis 

platform. This can be of considerable advantage in the future for researchers 

to streamline RNAi screens by focusing on genes with translational potential to 

human health and provide insights into the mechanisms on biological 

processes in humans. 

Given the stong reduction in lifespan and drastic embryonic lethality when 

GSK-3 is depleted in the intestine, especially in daf-2 mutants, it would be 

worth to see if an intestine specific expression of GSK-3 could rescue these 

phenotypes. It would also help establish the intestine as a key site of GSK-3 

function under impaired insulin signalling. 

There are serveral lines of evidence linking GSK-3 to metabolism and ageing. 

However, in worms, the most known downstream effector of GSK-3 is SKN-1 

(An et al. 2005). Identification of other downstream effectors of GSK-3 would 

be crucial for better understanding the hypometabolic phenotype and 

accerelated ageing observed upon GSK-3 loss. Another thing to investigate 

would be if there are possible mediations in these by components of Wnt 

signalling. 

An observation that requires further exploration is the potential role of GSK-3 

in LRO biology by checking the same in wild type and IIS deficient backgrounds. 

The fact that we observe downregulation of kat-1 in PHB deletion mutants 

could be related to the premature ageing phenotype of GSK-3 depleted worms. 

Lack of kat-1 shortens lifespan but was found dispensable for the long lived 

daf-2(e1370) mutants. Also, KAT-1 loss leads to increase in accumulation of 

lipofuscin pigment and also encodes for ketoacyl thiolase, a conserved 

metabolic enzyme that catalyzes the last step of fatty acid oxidation 

(Berdichevsky et al. 2010). The accerelation in ageing observed upon GSK-3 

loss, could be a result of decreased fat oxidation, but one cannot rule out the 

the other possibility, such as due to increased accumulation of lipofuscin. 

Additionally, also investigate the Wnt components, KIN-19, BAR-1 in this 

regard. 
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As per downregulation of acdh-1, which could be indicating irregular BCAA 

breakdown, it would be worth to check level of protein aggregation in GSK-3 

depleted conditions. Previously, a kinome screen has implicated GSK-3 being 

essential in proteostasis (Lehmann et al. 2013). The same authors also implied 

that lack of GSK-3 leads to accumulaton of autophagic vesicles. As autophagy 

involves lysosomes, we could potentially also utilize Electron Microscopy (EM) 

for a more reliable observation of the different autophagic structures such as 

autophagosomes or autolysosomes.  

We observe strong alterations in mitochondrial lipid components and in 

respiration, despite the fact that mitochondrial content is not impacted upon 

loss of GSK-3. However, we might gain more information from studying 

mitochondrial structure. More so, as previously, PHB deficient worms have 

been shown to have abnormal mitochondrial morphology (Artal-Sanz et al. 

2003)and GSK-3 was identified as required for normal maintenance of 

mitochondrial network structure in adult muscle (Lehmann et al. 2013). 

Lithium addition elicits a response similar to gsk-3(RNAi) in our hands. 

Incidentally, in vitro studies indicate that lithium treatment results in nuclear 

translocation of β-catenin and hence, Wnt activation (Sinha et al. 2005). It is 

quite probable that Wnt components that elicit the same longevity phenotype 

could also be targets of lithium in worms as well. 

Based on the indications that loss of GSK-3 could activate glycolysis, additional 

data can be gained by investigating in vitro enzymatic activities of genes 

involved in glycolysis/ gluconeogenesis to verify if indeed they are affected 

upon gsk-3(RNAi). 
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1.  Mitochondrial prohibitin (PHB) deletion mutants, phb-2(tm2998) and phb-2 

(tm2998);daf-2(e1370) show an opposing longevity phenotype and low in vivo 

Nile Red staining. These mutants are developmentally delayed with reduced 

pharyngeal pumping and increased fat stores. 

2. Customized imaging and segmentation protocols were created for the 

balanced prohibitin mutants for high throughput screening. These can be 

potentially exploited for any strain or dye as the segmentation is done in the 

brightfield channel. 

3. A semi-automated kinase RNAi screen was performed using a kinase sub-

library in phb-2 and phb-2;daf-2 mutants. This resulted in identification of 26 

kinases that suppressed the low Nile Red staining phenotype of PHB mutants in 

either one or both backgrounds.  

4. Amongst the candidates, we provide evidence for the function of GSK-3, 

whose loss causes a differential accerelation in ageing. GSK-3 is essential for 

the long lifespan of IIS defective daf-2 and phb-2;daf-2 mutants, while its 

depletion does not affect the lifespan of phb-2 mutants and only mildly 

shortens wild type lifespan. 

5. Depletion of KIN-19 and BAR-1, members of the Wnt signalling pathway 

elicits a similar differential ageing phenotype as seen upon loss of GSK-3. 

6. GSK-3 depletion further increases the glycogen stores in the long-lived 

insulin signalling mutants, and further depletes glycogen in mitochondrial PHB 

mutants. Glycogen stores in wild type animals were not affected.   

7. With respect to carbohydrate metabolism, GSK-3 loss downregulates 

gluconeogenesis in wild type and PHB-1 depleted worms. 

8. GSK-3 loss reduces the main lipid storage - triglycerides across all genetic 

backgrounds except in IIS daf-2 mutants. 

9. GSK-3 influences lipid synthesis and breakdown pathways in C. elegans.  Loss 

of GSK-3 reduced short chain fatty acid oxidation across all genetic 

backgrounds. Also, oxidation of medium-/long- chain fatty acids was decreased 

across wild type, daf-2 and phb-2 mutants devoid of GSK-3. phb-2 mutants 

regulate fat oxidation differentially with a strong suppression specifically in 
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short chain fatty acid oxidation, while oxidation of medium-/long- chain fatty 

acids was unaffected. 

10. Fat synthesis is reduced in wild type and daf-2 mutants upon loss of GSK-3. 

However, PHB depleted worms were unaffected. 

11. GSK-3 strongly decreases vitellogenesis across all genetic backgrounds. 

12. GSK-3 loss impacts mitochondrial health through ageing. It deteriorates 

strongly in IIS daf-2 mutants and wild type worms, whereas PHB depleted 

worms, show an increased capacity to respire upon GSK-3 depletion. phb-2; 

daf-2 are unaffected by GSK-3 loss, keeping extremely low respiration levels.  

13. Mitochondrial membrane lipid composition was altered upon loss of GSK-3 

in a background specific manner, with significant alterations in wild type and 

IIS defective mutants.   

14. Mitochondrial UPR is induced in a background specific manner upon GSK-3 

loss. While it was strongly induced in wild type animals, daf-2 mutants were 

unresponsive. The already active mitochondrial UPR in phb-2 was unaffected 

and phb-2;daf-2 mutants further induced UPRmt on gsk-3(RNAi). 

15. Intestinal function of GSK-3 is required for normal lifespan across wild type 

and PHB deletion mutants but is indispensable for daf-2(e1370) lifespan, as 

intestinal depletion of GSK-3 fully suppresses the long lifespan of daf-2 

mutants. 

16. GSK-3 is ubiquitously expressed in C. elegans. Strong expression is seen in 

the embryos, intestine, muscles and the nervous system. It is also seen in the 

germline, particularly, in sperm and vulval precursor cells 

 

 



  

 

 

130 

MATERIALS & METHODS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MMaatteerriiaallss  &&  mmeetthhooddss  

 

 

131 

1. C. elegans maintainence  

All nematode strains were maintained and cultured at 20°C on Nematode 

Growth Medium (NGM) plates seeded with Escherichia coli strain OP50, under 

standard conditions (Brenner 1974). E. coli OP50 is a uracil auxotroph whose 

growth is limited on NGM plates. This property allows worms to be visualized 

easily on the plates. The frequency with which various C. elegans strains should 

be transferred and maintained depends on their genotype, and also at the 

temperature at which they are being maintained. It is best to maintain them 

without starvation/ contamination of the OP50 bacteria.  

Commonly used maintenance methods are picking and chunking. These can be 

carried out with ease under a stereomicroscope. Picking involves transferring 

worms with a worm picker. A worm picker/pick is a flame sterilized platinum 

wire looped into a Pasteur pipette. Chunking involves usage of a sterilized 

spatula to remove a chunk of agar from an old plate to a fresh plate with 

bacteria. The worms will crawl out of the old piece of agar (chunk) and onto 

the bacterial lawn of the new plate. Chunking works well for the transfer of 

homozygous populations but is not advisable for heterozygous stocks 

(Stiernagle 2006). 

2. Strains used  

The following strains were used in this study:  

 

STRAIN 

 

MRS 

NUMBER 

 

GENOTYPE 

 

SOURCE 

Bristol N2 MRS1 N2( wild-type Bristol isolate) CGC 

CB1370 MRS 88 daf-2(e1370) III CGC 

BR6115 MRS 122 phb-1(tm2571)I/hT2[bli-4(e937) qIs48] (I;III) NBRP, 10 times 

outcrossed before 

introducing the 

hT2 balancer 

BR6108 MRS 56 phb-2(tm2998); mln1[mls14 dpy-10 (e128)]II NBRP, 10 times 

outcrossed before 

introducing the 

mIn1 balancer 

BR6206 MRS 49 phb-2(tm2998);mln1[mls14 dpy-10(e128)]II; 

daf-2(e1370)III 

NBRP 
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VL749 MRS348 wwIs24[acdh-1p::GFP + unc-119(+)] CGC 

 MRS415 daf-2(e1370) III; wwIs24[acdh-1p ::GFP + unc-

119(+)] 

This study 

 MRS444 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

wwIs24[acdh-1p::GFP + unc-119(+)] 

This study 

 MRS458 fpIs107(acdh-2p::GFP) Jarriault Lab 

CL2166 MRS179 dvIs19 [(pAF15)gst-4p::GFP::NLS] III CGC 

 MRS482 daf-2(e1370); dvIs19 [(pAF15)gst-4p::GFP: : 

NLS] III 

This study 

SJ4005 MRS85 zcIs4[hsp-4::GFP] V CGC 

PE255 MRS 186 feIs5[sur-5::luc+::gfp; rol-6(su1006)]V Dr. C.Lagido 

 MRS 210 daf-2(e1370)III ;feIs5[sur-5::luc+::gfp; rol-6 

(su1006)]X 

Dr. M.Olmedo 

 MRS 229 phb-2(tm2998);mln1[mls14 dpy-10 

(e128)]II;feIs5[sur-5::luc+::gfp; rol-6(su1006)]X 

This study 

 MRS 230 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

daf-2(e1370)III;feIs5[sur-5::luc+::gfp; rol-

6(su1006)]X 

This study 

SJ4100 MRS 57 zcls13[Phsp-6::GFP]V CGC 

BR6296 MRS 64 daf-2(e1370)III, zcls13[Phsp-6::GFP]V Dr. Artal-Sanz 

 MRS106 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

zcls13[Phsp-6::GFP]V 

Dr. Artal-Sanz 

 MRS60 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

daf-2(e1370)III; zcls13[Phsp-6::GFP]V 

Dr. Artal-Sanz 

VP303 MRS198 rde-1(ne219)V;kbIs7 CGC 

 MRS419 daf-2(e1370)III; rde-1(ne219)V;kbIs7 This study 

 MRS418 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

rde-1(ne219)V;kbIs7 

This study 

 MRS447 phb-2(tm2998);mln1[mls14 dpy-10 (e128)]II; 

daf-2(e1370)III; rde-1(ne219)V;kbIs7 

This study 

BC13916 MRS 452 sEx13916 [rCesW09B6.1::GFP + pCeh361] - 

pod-2::GFP 

CGC 

BC11281 MRS 453 sEx11281 [rCes R07H5.2::GFP + pCeh361] - 

cpt-2::GFP 

CGC 

BC12611 MRS 456 sIs11096 [rCes T25G12.5::GFP + pCeh361] -

acdh-7::GFP 

CGC 

BC10604 MRS 450 sIs10325 [rCesC36A4.9::GFP + pCeh361]  - acs-

19::GFP 

CGC 

BC10191 MRS451 sEx10191[rCesY65B4BL.5::GFP + pCeh361] -

acs-13::GFP 

CGC 

BC11264 MRS 455 sIs11264 [rCesK07A3.1::GFP + pCeh361] - fbp-

1::GFP 

CGC 
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 MRS 481 Pgsk-3::GFP::gsk-3 This study 

 MRS 500 daf-2(e1370); Pgsk-3::GFP::gsk-3 This study 

VS20 MRS 218 hjls67[atgl-1p::atgl-1::GFP+mec-7::RFP] CGC 

 MRS 270 daf2(e1370); hjls67[atgl-1p::atgl-1::GFP+mec-

7::RFP] 

Dr. Lourenço 

BC12843 MRS 401 sIs11286[rCesK07H8.6::GFP+pCeh361] -  

vit6::GFP 

CGC 

 MRS 402 daf-2(e1370); sIs11286 [rCesK07H8.6:: GFP+ 

pCeh361] - daf-2(e1370);vit6::GFP 

Dr. Lourenço 

* From Caenorhabditis Genetics Center (CGC) and National BioResource Project (NBRP)  

3. Worm synchronization by alkaline hypochlorite treatment (Bleaching) 

Alkaline hypochlorite solution, commonly called as bleach solution was made 

as follows - 6.5 ml H2O, 0.5ml 5M KOH and 3ml 5% Bleach (This recipe is for 10 

ml). The hypochlorite solution kills all worms not protected by the egg shell. A 

worm population with enough gravid adults was washed off using  M9 buffer 

(3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 ml 1 M MgSO4, H2O to 1 litre. Sterilize by 

autoclaving) into a 15ml tube. They were washed by centrifuging for 1min at 

1300g and 5 ml bleach solution was added to the worm pellet. This was 

incubated for 2mins with vigorous vortexing/shaking. The pellet was 

centrifuged for 1 min at 1300g, supernatant removed and re-suspended in 5ml 

of M9 buffer. Next, the supernatant was removed and the worm pellet was 

incubated in 1ml M9 buffer plus 4ml bleach solution for 40-60 secs with 

periodic vortexing/shaking till only embryos remained. 

Caution: Check the bleached worms under the stereoscope at this stage, if no 

worm cuticles are left, the sample should be centrifuged immediately. 

The pellet with embryos was washed four times in 5ml of M9 buffer (1min, 

1300g) to remove bleach, and finally re-suspended in M9. The eggs were taken 

and laid onto NGM or RNAi NGM plates, or left to hatch overnight at 20° C in 

M9 buffer (shaking incubator) to obtain synchronized L1 larvae.  

4. Growing C. elegans in liquid medium 

Large quantities of C. elegans can be grown on S Medium (20ml NaCl 5M, 50 

ml Potassium phosphate 1M pH 6, 10 ml 1M potassium citrate pH 6, 10 ml 

trace metals solution, 3 ml 1M CaCl2, 3 ml 1M MgSO4. Components were added 

using sterile technique; this should not be autoclaved) using concentrated E. 

https://cgc.umn.edu/strain/BC12843
http://www.nbrp.jp/localeAction.do?lang=en
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coli OP50 as a food source (Stiernagle 2006). E. coli OP50 was inoculated in 1L 

of LB (500ml each in 2L flasks) and grown overnight at 37°C. The bacteria was 

pelleted down and concentrated by centrifuging at 3200 ×g for 20mins. The 

supernatant was discarded. The concentrated bacterial pellet was re-

suspended in S Medium (30g/L) supplemented with cholesterol (1ml/L). This 

OP50 suspension in S Medium can be stored at 4°C for upto 4 weeks.                                                                                                           

Concentrated E. coli OP50 can be prepared in advance and stored such that 

bacteria can be added as per requirement.   

To start a liquid culture of worms, worms from 1-2 large plates were washed 

out in M9 buffer / S Medium. The worm pellet was washed 2x times to clean 

out the bacteria from the plate. The clean worm pellet was now added to 50-

100ml of S Medium OP50. The worm culture was monitored, and additional E. 

coli OP50 was added as required.  

Cultures can be monitored by checking a drop of the culture under the 

microscope. If the food supply is depleted (the culture solution would no 

longer be visibly cloudy), one should add more concentrated E. coli OP50 

suspended in S Medium. When many gravid adult animals are spotted in each 

drop, the culture is ready to be bleached.  

Note: The amount of food needed will depend on the starting inoculum of 

worms and the genotype, and the length of time for which the worms are 

grown (2-3 generations).  

5. RNAi assays  

For RNAi assays on plate (Lifespan and imaging experiments), worms were 

placed on NGM plates seeded with HT115 (DE3) bacteria, either the pL4440 

empty vector or the required RNAi construct. The RNAi bacterial cultures of 

interest supplemented with tetracycline (15 µg/ml) and ampicillin (100 µg/ml) 

were grown overnight at 37°C, 180 rpm in a shaking incubator. Next day, 

diluted cultures supplemented with only ampicillin (100 µl/ml) or carbenicillin 

(25 µg/ml) were grown at 37°C, 180 rpm for 3 hours. 2 mM IPTG was added to 

the cultures to induce expression of dsRNA. Plates were seeded with the 

bacterial cultures and left overnight at room temperature. 

For mitochondrial fractions, the pre-inoculum and day culture was done as 

described above and then bacteria were induced in culture at 37°C, 180 rpm 
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for 2 hours. This was then pelleted down by centrifugation at 3200 ×g at 4 °C 

for 20 min. Pellets were re-suspended in S Basal (5.85 g NaCl, 1g K2HPO4, 6g 

KH2PO4 , H2O to 1 litre. Sterilized by autoclaving) at 4 °C. Re-suspended pellets 

were centrifuged again at 3200×g for 20 min at 4°C. Bacterial stocks were 

prepared by re-suspending the pellets (30 g/L) in S Medium containing 

carbenicillin (25 µg/ml), IPTG (1 mM) and cholesterol (5 µg/ml). This can be 

stored 4 °C.  

For the kinase RNAi screen, frozen bacteria containing the RNAi clones from 

the ORFeome kinase sub-library (96-well plate) was left to thaw at room 

temperature briefly and replicated onto LB agar supplemented with ampicillin 

(100 µg/ml) and tetracycline (15µg/ml) using  a pin-replicator. Bacteria was 

grown overnight at 37°C. Growing the bacteria in solid media enables ease of 

visualization and identification of the clones where the bacteria did not grow. 

Bacteria was inoculated into 1ml of LB (100 µl/ml Amp; 15 µg/ml Tet) in deep 

well 96-well plates, grown overnight and next day induced using 2mM IPTG for 

2 hrs at 37°C, 180 rpm. The induced culture was pelleted down at 4000rpm for 

8mins. The bacterial pellet in each well, i.e., each RNAi clone was re-suspended 

in 250µl of S Medium with 2mM IPTG, 100nM Nile Red. 

6. Selection of homozygous phb-2 mutants using the COPAS worm sorter 

Gravid adult worms were bleached from a liquid culture. Embryos were left to 

hatch into L1 larvae overnight in S Medium (shaking incubator at 20°C, 120 

rpm). The COPAS was switched on left to stabilize and cleaned with MQ water 

and 70% EtOH before sorting. The L1 larvae were checked and filtered through 

40 μm nylon cell strainer to exclude debris like unbroken corpses/clumped 

unhatched eggs that might remain in the sample from the bleaching. A clean L1 

preparation aids in ease of sorting. Also, 0.01% Triton X-100 was added to 

avoid worms sticking within the tubes or the sample cup of the COPAS. The 

concentration of animals per milliliter was adjusted using a microscope. 

(Ideally 1worm/µL by diluting the sample). Sheath flow rate of 9.5 ml/min and 

worm concentration of 15–20 events per second was maintained during 

sorting. At the start of each experiment, a small sample was sorted and visually 

verified to confirm a correct sorting.  
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Approximately 40 sorted homozygous phb-2 mutants per well were 

supplemented with 100µl RNAi bacteria plus Nile Red and incubated at 20°C 

(shaking) at 120 rpm till the desired imaging stage. Worms were imaged at the 

young adult (YA). Depending on the genotypes worms were grown on the RNAi 

plates for following times:                                                                                      

Wild type worms   - approximately 48 hrs                                                                                

daf-2(e1370) mutants   - approximately 72 hrs                                                                         

phb-2(tm2998) mutants  -approximately 96 hrs                                                                                        

phb-2(tm2998); daf-2(e1370) - approximately 144 hrs  

7. Oil Red O staining 

Quick ORO (qORO) was performed as described in Wahlby, C. et.al (Wahlby et 

al. 2014). Approximately 50 worms were seeded on NGM RNAi plates. Worms 

were washed off at the desired developmental stage by washing the plates 

twice with 200µl of S-basal using glass Pasteur pipettes to minimize loss of 

worms that might stick to the surface of plastic tips. Worms were transferred 

to 1.5mL tubes. After the worms settled to the bottom of the tubes, the 

supernatant (approx 175µl) was aspirated as much as possible without 

disturbing the worm pellet. The fixative was immediately added. 

For fixation, 200µl of high-quality 60% isopropanol was added to worms in the 

1.5mL tubes. After the worms settled to the bottom of the tubes, the 

supernatant was aspirated. 200µl of freshly filtered ORO working solution 

(60%ORO) was added. Worms were stained at 25°C in a wet chamber (wet 

paper towels in a parafilm-wrapped plastic box) for over 6 hrs. Then the 

supernatant was washed out and 250µl of 0.01% Triton X-100 in S-basal was 

added. Stained worms can be kept in this solution at 4°C for at least a month 

without altering quantities or distribution of fat. 

Long ORO staining was conducted as described previously in Soukas, A. et.al 

(Soukas et al. 2009) by washing synchronized 200–300 day 1 adult animals 

from plates. The worms were resuspended and washed twice with PBS and 

then suspended in 120 μL of PBS to which an equal volume of 2× MRWB buffer 

containing 2% paraformaldehyde was added (composition: 160 mM KCl, 40 

mM NaCl, 14 mM Na2EGTA, 1 mM Spermidine HCl, 0.4 mM Spermine, 30 mM 

Na PIPES at pH 7.4, 0.2% BME). The worms were taken through three freeze–
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thaw cycles between dry-ice/ethanol and warm running tap water, followed by 

spinning at 14,000g, washing once in PBS to remove PFA, resuspension in 60% 

isopropanol to dehydrate, and addition of 60% Oil-Red-O stain (Oil-Red-O was 

prepared as follows: from 0.5 g/100 mL isopropanol stock solution equilibrated 

for several days, freshly diluted with 40% water, 60% stock, and allowed to sit 

10 min and filtered using 0.2 to 0.4 μm).  

8. Nile Red staining on plate 

Nile Red was dissolved in DMSO at 5 mg/ml and diluted in M9 to a final 

concentration of  0.02 µg/ml. This was spread on top of nematode growth 

media (NGM) plates seeded with HT115 (DE3) E. coli bacteria containing the 

appropriate RNAi plasmids. Synchronized eggs obtained by bleaching were 

allowed to develop to the desired stage at 20°C. Worms were grown 

continuously on Nile Red-containing plates (Artal-Sanz and Tavernarakis 

2009b). Nematodes were cultured at 20°C until the young adult /day 

5/10/20/25. 

9. Mitotracker staining  

Mitotracker Deep Red was dissolved in DMSO to make a stock solution of 1 

mM, which was diluted in water to a final concentration of 100 nM and spread 

on top of nematode growth media (NGM) plates seeded with HT115 (DE3) E. 

coli bacteria containing the appropriate RNAi plasmids. Synchronized animals 

were transferred to Mitotracker plates and stained overnight 20°C (Artal-Sanz 

and Tavernarakis 2009b) and imaged at YA stage. 

10. Iodine Staining  

Synchronized day 1 adult animals were transferred to 3% agarose pads and 

inverted over the opening in a 100g bottle of iodine crystals (Sigma) for 30-60 

secs. Worms were stained simultaneously and manipulated on the pad before 

imaging. This was done without a coverslip (LaMacchia et al. 2015; LaMacchia 

and Roth 2015; Possik et al. 2015).  

11. Worm imaging 

For the RNAi screen, on the day of imaging, worms were anesthetized using 

10mM (Tetramisole hydrochloride (Levamisole) and bacteria was washed off 

using the EL406 washer dispenser, BioTek using customised protocols. In order 
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to acquire clear images, plates were subjected to sequential flushes of water, 

shaking to disaggregate the bacteria, sedimentation of the worms and 

aspiration of the supernatant. Each well was filled to the brim and sealed with 

transparent SealPlate (Sigma-Aldrich) to ensure the horizontal meniscus 

required to give uniform brightfield illumination across each well. The imaging 

was done using the INCA Analyser 2000 (GE Healthcare). We took images by 

utilizing the 2x objective, in three different channels – bright field, FITC/GFP 

and Cy3/Nile Red at identical settings and exposure times (see below). 

Exposure settings for imaging PHB mutant RNAi screens stained with Nile Red. 

Channel Exposure Offset Magnification 

Brightfield 0.015 40 2x 

FITC (GFP) 0.500 40 2x 

Cy3 (Nile Red) 1.300 -20 2x 

Segmenation of worms was done using the protocol mentioned in the results 

section 2.2.1, of this thesis. 

Analysis of worms expressing GFP (metabolic and stress reporters) was done 

using the INCA Analyser 2000 (GE Healthcare) as mentioned in Hernando-

Rodriguez. et.al.  (Hernando-Rodriguez et al. 2018). We took images utilizing 

the 2x objective, in two different channels – bright field, FITC/GFP at identical 

settings and exposure times (see below).  

Exposure settings for imaging transgenic worms expressing GFP 

Channel Exposure Offset Magnification 

Brightfield 0.015 50 2x 

FITC (GFP) 0.800 100 2x 

 

For worms stained using Mitotracker Red, images were obtained using the 2x 

objective with the INCA Analyser 2000 (GE Healthcare), in three different 

channels – bright field, FITC/GFP and Cy5/Red at identical settings and 

exposure times (see below). Segmenation of worms was done using the 

protocol mentioned in the results section 2.2.1, of this thesis. 

Exposure settings for imaging PHB mutant RNAi screens stained with 

Mitotracker Red. 

Channel Exposure Offset Magnification 

Brightfield 0.015 40 2x 

FITC (GFP) 0.500 40 2x 

Cy5  1.300 -35 2x 
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For worms fixed with Quick Oil-Red-O, images were acquired using an Olympus 

Stereoscope equipped with a color camera using identical settings utilizing the 

bright field (1.6x objective and 2.5 zoom). For those fixed with with long Oil-

Red-O, images were acquired at 10x using a Zeiss microscope equipped with a 

color camera using identical settings utilizing the bright field.  Images were 

saved in .tif format. For image analysis Image J was utilized. The saved .tif 

images were opened and split into its RGB components. The green channel was 

selected and inverted, and worms were segmented and measured. The 

background was also segmented and measured, in order to subtract the 

intensity of the worm from that of the background.  

For worms subjected to Nile Red and grown on plates, worms were mounted in 

2-3μl of 10mM Levamisole (anesthetic) on 2% agarose pads, covered with a 

coverslip and images were acquired at 5x using an AxioCam MRm camera on a 

Zeiss ApoTome Microscope. The following exposure settings were used – 

bright field: 1m/s, Texas Red (Nile Red): 197m/s, and GFP: 81m/s. More than 

20 worms were sampled per condition. Image analysis was performed by 

quantifying the average pixel intensity using the ImageJ software.  

For nematodes subjected to iodine staining, animals were rapidly imaged using 

identical settings on an Olympus stereoscope (colour camera) utilizing the 

bright field (1.6x objective and 2.5 zoom). Intensity of staining over the whole 

body was quantified using ImageJ software. 

12. Lifespan assays                                                                                                                                             

All lifespans were done at 20°C. Synchronized eggs were obtained by 

hypochlorite treatment of adult hermaphrodites grown on OP50 plates and 

placed on NGM plates containing OP50 E. coli or seeded with HT115 (DE3) 

bacteria, either the pL4440 empty vector or the required RNAi construct. 

During the course of the lifespan, adult animals were transferred every day 

during their reproductive period and afterwards every alternate day. In case of 

balanced strains, homozygous mutants were selected at the L3 stage and 

transferred every alternate day. Worms were scored as dead when they 

stopped responding to prodding, while censored worms included exploded 

animals, those exhibiting bagging (internal hatching), protruding gonad or 

worms that dried out on the edge of the plates/crawled off the plate. Prism 
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(GraphPad Software) was used to plot survival curves and significant increases 

or decreases in lifespan were determined by using the log-rank (Mantel–Cox) 

test. 

For lifespans that required addition of FUdR, a synchronized embryo 

population was allowed to grow up to young adult stage in the absence of 

FUdR and then transferred on NGM/RNAi plates containing 50 µM FUdR. 

For lifespans done on Lithium, wild type and daf2(e1370) mutants were 

cultured at 20°C until the L4 larval stage. L4 worms were then moved to NGM 

plates with or without 10mM LiCl (Sigma) and scored at 20 °C. For Lithium 

experiments at 25 °C, wild type and daf2(e1370) mutants were cultured at 20 

°C until the L4 larval stage. L4 worms were then moved to NGM plates with or 

without 10mM LiCl (Sigma) and scored at 25 °C (McColl et al. 2008). 

13. Egg laying/ fertility assay 

Wild-type and daf-2 (e1370) worms at L4 stage were placed on individual 

plates containing either control or gsk-3 RNAi (10 worms per condition) at 

20°C. The worms were transferred to new plates every day for 5-7 days while 

undergoing reproduction. Bagged or ruptured worms were censored. The 

progeny were left to develop for 48 hrs before counting.  

14. Luciferase assay 

The reporter strains PE255 (MRS186), MRS 210, MRS229 and MRS230 were 

utilised to measure larval developmental timing. In order to ensure all animals 

start development at the same time, arrested L1s were first manually pipetted 

to a well of a white 96-well plate (1 worm per well) containing 100 µl of S-basal 

with 100 µM D-Luciferin. Development was resumed by addition of 100 µl of S-

basal with 20 g/L E. coli OP50 and 100 µM D-Luciferin.Plates were sealed with a 

gas-permeable cover (Breathe Easier, Diversified Biotech). Luminescence was 

measured in a Berthold Centro LB960 XS3 for 1 sec, at 5-min intervals. 

Experiments were done inside temperature-controlled incubators (Panasonic 

MIR-154). The raw data from the luminometer was analyzed as described in 

Olmedo, M. et.al. (Olmedo et al. 2015). Briefly, the raw data was trend- 

corrected and used to generate heat maps. The trend corrected data was 

thresholded using 75% of the moving average to produce a binarized output in 

order to determine onset and offset of the molt. The data was evaluated for 
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onset and offset of molting by detecting the transitions in the binarized data. 

To assess statistics, one way ANOVA was performed using GraphPad Prism 

software. Note- for synchronization of L1s, the bleached eggs were left 

overnight without food at a concentration of 20worms/µl. 

15. Seahorse Measurements 

Respiratory rates were analysed in live nematodes using the Seahorse XFp 

Analyzer (8 well plates). The evening before the actual experiment, the 

seahorse instrument was switched on. It is necessary to hydrate the probes 

prior to the experiment. For this, an unused utility plate was taken, the lid and 

the green sensor cartridge was removed and placed upside down so as not to 

scrape the probe surface. 200µl of seahorse bioscience XF calibrant (pH7.4) 

was added into the wells of the utility plate. 400µl of the same on the sides of 

the wells in the plate. The sensor cartridge was placed back into the utility 

plate so probes dip into the wells. The lid was placed back and the cartridge 

was incubated overnight at 20°C.  

The next day, C. elegans growing on the respective NGM RNAi plates were 

transferred to plates without food (2x) to remove bacteria. In the meantime, 

25μM oligomycin, 50μM FCCP and 40 μM sodium azide were pipetted into the 

appropriate injection ports of the hydrated utility plate with the sensor 

cartridge and calibrated on the seahorse instrument (Port A - 20μl of 250μM 

Oligomycin, Port B - 22μl of 500μM FCCP, Port C- 25μl of 400μM Sodium 

Azide). EPA water (Luz et al. 2015)(60mg MgSO4, 7H2O, 60mg CaSO4 .2H2O, 4mg 

KCl, ddH2O to 1L. Filtered in sterile conditions) was added to the seahorse cell 

culture microplate – 180µl within the wells and 400µl on the sides. Next, 

nematodes were picked to unbuffered EPA into an 8 well Seahorse microplate. 

8 oxygen consumption measurements were taken for determination of basal 

OCR. After this, drugs were injected - 9, 8 and 4 cycles of measurements were 

taken after addition of oligomycin, FCCP and sodium azide. Each cycle is – 3min 

mix - wait for 30 secs -measured for 3 min.   

All experiments were performed with synchronized YA animals and day 5 old 

adult animals.  Animals in control or gsk-3 RNAi were mounted side by side in 

the plate and on the same day. All drug stocks (10mM FCCP, 5mM Oligomycin) 

were made in EtOH. 1M sodium azide was in distilled water. 
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16. Pharyngeal pumping 

Synchronized worms were placed on nematode growth media plates without 

food for 15 mins or so prior to counting pharyngeal pumping. Pumps per 

minute (ppm) were recorded for 1min under a regular stereomicroscope. At 

least 10 worms per condition were analyzed. Worms were analyzed for day 1 

and day 5 of adulthood. 

17. Mitochondrial Fractionation  

L1 larvae were obtained by hypochlorite treatment from liquid cultures of 

worms of desired genotype fed with HT115 (DE3) E. coli bacteria with the 

appropriate RNAi plasmid constructs. These were grown in the respective RNAi 

conditions on RNAi NGM plates (600µl bacteria/plate). Approximately 40,000 

(1000L1s/plate) worms were harvested at young adult (YA) stage. Worms were 

washed six times (3x with S Basal, 2x with double distilled water and 1x with 

MS-grade water, pelleted after each washing step by centrifugation at 800 ×g 

for 1 min at 20 °C and the final worm pellet was snap-frozen in liquid nitrogen 

and stored in the −80 °C freezer until further use.  

Mitochondrial fractionation was carried out as per (Grad et al. 2007) by Dr. A B 

Lourenço.  Instead of a Bead-Beater, a Polytron was used. The worms (in worm 

lysis buffer with protease inhibitor cocktail) were added to the chamber, and 

the chamber was filled to the top with cold worm lysis buffer. The rotor 

assembly was lowered into the chamber, displacing a small amount of liquid. 

All air should be excluded during the operation of the Polytron. The assembled 

chamber was surrounded with ice. Grinding/sonication was done at three 

pulses of 1 min each interspersed with 1-min intervals to allow for heat 

dissipation. A small aliquot of the supernatant was examined to assess the 

extent of breakage. The supernatant was recovered and homogenized by hand 

in a glass-Teflon homogenizer for 30 secs. Recovery was increased by rinsing 

the glass beads in worm lysis buffer and pooling the supernatants. The lysate 

was centrifuged at 2500g for 10 min at 4°C to pellet debris. The supernatant 

was centrifuged at 15,000g for 10 min at 4°C. The pellet was re-suspended in 

cold worm lysis buffer and centrifuged again at 15,000g for 30 min at 4°C. The 

pellet was re-suspended in a small volume of worm lysis buffer and 

homogenized briefly in a glass-Teflon homogenizer. The crude mitochondria 
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were aliquoted into micro centrifuge tubes, frozen in liquid N2, and stored at -

80°C. 

18. CRISPR-Cas9 tagging of GSK-3, Sap Trap cloning  

For endogenous tagging of GSK-3, we utilised the CRISPR-Cas9 SapTrap 

technique by Schwartz et.al (Schwartz and Jorgensen 2016).  

Oligo Design for SapTrap Vectors 

First, an insertion site was identified (For N terminal tags, the tag should be 

inserted immediately after the start codon) (Figure 55A).  60 bases were 

acquired on each side of the DNA sequence flanking insertion site, and 

genomic sequence of the sgRNA binding site was checked to ensure that it 

does not contain a SapI recognition site.  

Next, candidate sgRNA binding sites were identified. The selected sgRNA 

binding site should cut within 25 bases of the desired insertion site and it 

should be ensured that the repair template cannot be targeted by the selected 

sgRNA. Ideally, an sgRNA binding site should be selected that straddles the 

insertion site. sgRNA specificity was evaluated and selected using the Zhang 

lab’s sgRNA design tool at http://crispr.mit.edu/.  

To design Oligos (Figure 55),  

a) Necessary mutations were introduced to the genomic sequence file, 

including PAM site or sgRNA binding site mutations required to immunize the 

repair template against the sgRNA. For gsk-3, we disrupted the PAM sequence 

with a silent G to C mutation to avoid re-cutting after repair (Figure 55B).                                                                                      

b) To design 5’ homology arm oligos, 57 bases immediately preceding the 

insertion site were selected. The “top” oligo is “TGG” followed by this 57 base 

sequence. The “bottom” oligo is “CAT” (N-terminal tag) followed by the 

reverse complement of the 57 base homology arm sequence.                                                      

c) To design 3’ homology arm oligos, 57 bases immediately following the 

insertion site were selected. The “top” oligo is “ACG” (N‐terminal tag) followed 

by this 57 base sequence. The “bottom” oligo is “TAC” followed by the reverse 

complement of the 57 base homology arm sequence.                                                                    

d) sgRNA oligos were designed by copying the 20 bases immediately preceding 

the “NGG” PAM sequence. The “top” oligo is “TTG” followed by this 20 base 

http://crispr.mit.edu/
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sequence. The “bottom” oligo is “AAC” followed by the reverse complement of 

the 20 base sequence. The PAM sequence was not included in the sgRNA 

construct. 

Verifying  the oligo sequences. It should be ensured that the oligo pairs will 

anneal to produce a product of 57 base‐pairs flanked by the correct 3-base 5’-

overhangs on each end (Figure 55B). Oligos will assemble with connector 

segments and tag segments from the SapTrap donor plasmid library to 

generate the desired repair templates (Figure  55C).  

List of oligos for N-terminal tagging 

MRS215 

N TER sg RNA 

Top 5´-3 TTG –aatcaaatcaatcagtagtg 

MRS216 

N TER sg RNA 

Bottom 5´-3 AAC – cactactgattgatttgatt 

MRS217 

N TER 5´HA 

Top 5´-3 TGG-agagctcatatatacacacacacacacaagaatcaaatcaatcagtagtgtcgtgtg 

MRS218 

N TER 5´HA 

Bottom 5´-3 CAT –acacgacactactgattgatttgattcttgtgtgtgtgtgtgtatatatgagctct 

MRS219 

N TER 3´HA 

Top 5´-3 

ACG- 

AATAAGCAGTTACTATCGTGCTCGCTGAAAAGCGGAAAACAAGTGACGA

TGGTCGTC 

MRS220 

N TER 3´HA 

Bottom 5´-3 

TAC- 

GACGACCATCGTCACTTGTTTTCCGCTTTTCAGCGAGCACGATAGTAACT

GCTTATT 

 

Buffers and Reagents  

10x Oligo Annealing Buffer (OAB)  -  200 mM Tris-Cl pH 7.5, 500 mM NaCl,10 

mM MgCl2                                                                                                                                        

SapTrap Donor and Destination Plasmids - all plasmid preps were diluted to 50 

nM                                                                                                                                                     

SapTrap Enzyme Mix - prepared in advance and stored at -80°C in 2 µl aliquots.                 

Restriction enzymes for counter-selection of unreacted destination vector 
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Figure 55:  Oligo Design for SapTrap Vectors  A. gsk-3 N-terminal insertion site. The native 
genomic sequence is shown for the desired insertion site flanked by 65 bases on each side. B. 
Oligo design. The same genomic region depicted in A is shown with theaddition of a PAM- site 
disrupting mutation for the selected sgRNA. The sequences used to generate the homology arm 
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and sgRNA oligos are marked. C. Sequence of the repair template generated from the oligos 
depicted in B.  

Anneal oligos 

Oligo stocks were resuspended to 100μM in water. Complementary oligo pairs 

were mixed to a final concentration of 10 μM each in 100 µl of 1x OAB. Oligo 

mixtures were heated to >95°C in a heat block and incubated for 2.5 mins. The 

heat block was turned off and the block was allowed to cool slowly to room 

temperature. The 10 µM annealed oligo stocks can be stored at ‐20°C for 

future use or diluted and used immediately. The annealed oligos were diluted 

in water to 150 nM. All 3 annealed oligo pairs for a given reaction were diluted 

in a single aliquot of water such that the final solution contained 150 nM of 

each of the 3 annealed oligo species. 

SapTrap Assembly 

The following were combined and mixed thoroughly by pipetting: 

1 µl of 50nM Destination Vector  -pMLS256 (Dr.Askjaer’s Lab 1491)                                            

1 µl of 50nM connector vector                -pMLS288 (Dr.Askjaer’s Lab 1511)                                            

1 µl of 50nM tag and marker plasmid  - pBN312   (Dr.Askjaer’s Lab 1519)                                                                                                                                                         

1 µl of annealed, diluted oligo mixture (150nM each oligo species)                                             

1 µl of dH2O 

A 2 µl aliquot of SapTrap Enzyme Mix (10x Cutsmart buffer, H2O, 10 mM ATP, 1 

M DTT, 400U/ µl T4DNA ligase, 10U/ µl T4 polynucleotide kinase, 10 U/ µl SapI) 

was thawed. To this, 0.5 µl of the above DNA mix was added and mixed 

thoroughly by pipetting up and down using a 2 µl pipette. The reaction was 

incubated at 25°C overnight. The following day, the T4 DNA ligase was heat 

inactivated by incubation at 65°C for 30 mins. 

A solution of 1x Cutsmart buffer +1–2U/ µl of BamHI restriction enzyme was 

prepared ( BamHI is an appropriate counter-selection restriction enzyme, as 

this does not cut the desired final product). 2.5 µl of the 1x Cutsmart + enzyme 

solution was added to the 2.5 µl SapTrap reaction and mixed. This was 

incubated at 37°C for 1 hr.  

Transformation was performed using DH5α cells. To 50 µl of DH5α cells, 2 µl of 

the above Saptrap reaction solution was added. This was incubated for 20 mins 

on ice, and then at 42°C for 1 min. 250 µl of LB was added to the 52 µl reaction 
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mix and incubated at 37°C (shaking) for 30 mins. Approximately 150 µl of the 

solution was plated onto an LB plate supplemented with Ampicillin and grown 

at 37°C overnight. The next day, individual colonies were selected and 

inoculated. Plasmids were mini-prepped and sent for sequencing with M13F, 

M13R and oMLS471.  

M13F (MRS 94): 5’ –TGTAAAACGACGGCCAGT 

M13R (MRS 95): 5’ –CAGGAAACAGCTATGACCATG 

oMLS471 (Dr.Askjaer’s Lab 975)   :5’–TCCAAGAACTCGTACAAAAATGCTC 

Injection and Isolation 

unc-119(ed3) worms were cultured at 15°C on OP50 bacteria. L4 worms were 

picked the night prior to the injections and transferred to a fresh OP50 NGM 

plate. 30-40 animals were injected with the following injection mix (see table), 

animals were kept on individual plates and incubated at 25°C for 7-10 days. 

Plates were screened post 7 days to identify motile (unc-119(+)) animals that 

lacked the co-injection markers. 

Insertion injection mix recipe 

Component Concentration Comments 

Combined repair 

template and sgRNA 

Expression vector 

 

65ng/ µl 

Nter5- confirmed through sequencing 

Cas 9 Expression 

vector 

25ng/ µl Dr.Askjaer’s Lab 

Fluorescent 

co‐injection 

markers  

17.5ng/ µl 868 - pGH8- Plmn-1::mCherry::his-58 (neuronal 

red fluorescence )(10ng/ µl) 

885 - pCFJ104 – Pmyo-3::mCherry (body wall 

muscle red fluorescence) (5 ng/ µl ) 

879 - pCJ90 - Pmyo-2::mCherry (pharyngeal  

muscle red fluorescence) (2.5ng/ µl)  

Total  107.5 ng/ µl   -  

 

Removing the Cbr-unc-119 marker   

Worms selected from the above step have successful incorporation of the 

repair template containing the homology arms flanking the cleavage site and a 

genetic tag with a removable Cbr-unc-119 marker gene embedded in the 

intron. Insertions are selected by rescue of the Unc phenotype. The Cbr-unc-
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119 can be excised by Cre recombinase- mediated site specific recombination, 

leaving a single LoxP site. For this purpose, homozygous young adult animals 

were injected with the following injection mix (see table). Array(+) F1 animals 

were selected.  5-10 array (+) worms were placed on up to 4 OP50 NGM plates. 

The F2 was screened and unc-119(-) animals were selected. The resultant 

strain was out crossed against the wild type to remove the ed3 allele (This 

portion as done by Dr. FJ Garcia). 

Removal of the Cbr-unc-119 marker - injection mix recipe 

Component Concentration Comments 

Cre expression plasmid  

 

 

50ng/ µl 

Dr.Askjaer’s Lab -1493- pMLS328 

Stuffer DNA 32.5 ng/ µl Dr.Askjaer’s Lab – 1478-pBN287 

Fluorescent 

co‐injection 

markers 

17.5ng/ µl 868 - pGH8- Plmn-1::mCherry::his-58 

(neuronal red fluorescence )(10ng/ µl)  

 885 - pCFJ104 – Pmyo-3::mCherry (body wall 

muscle red fluorescence) (5 ng/ µl) 

879 - pCJ90 - Pmyo-2::mCherry (pharyngeal  

muscle red fluorescence) (2.5ng/ µl)                                                        

Total  100 ng/ µl  -  

 

19. Quantitative RT-PCR 

Total RNA was isolated from approximately 1500 synchronized wild type and 

daf-2 (e1370) mutants at the young adult stage grown on control and gsk-3 

RNAi. After harvest, the animals were flash frozen in liquid nitrogen. RNA was 

extracted based on a protocol modified from “easy RNA isolation from C. 

elegans : A TRIZOL based method” (Worm Breeder’s Gazette 14:10).  cDNA was 

prepared using INVITROGEN DNAse KIT reagents. Reverse transcription (1 µg 

per sample) was performed using Multiscribe reverse transcriptase and 

random 9-mer primers (Applied Biosystems). Quantitative PCR was performed 

using SYBR Green (Applied Biosystems) Master Mix in a CFX Connect Real Time 

System, Biorad at an annealing temperature of 60°C and 40 cycles. Relative 

gene expression, normalized to pmp-3 and cdc-42, was determined between 

worms treated with control RNAi and gsk-3 RNAi. Primers of target genes can 

be found in Table 7. Statistical difference was calculated with Student’s t-test 

(Excel). 
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20. Western Blots 

A synchronised population of worms was grown at 20°C until they reached the 

young adult stage. Worms were transferred to NGM plates without food and 

allowed to crawl for half an hour in order to remove excess of bacteria. 60 

worms were collected in 10µl of M9 and flash frozen in liquid N2 and stored at 

-80°C. We added the same volume of sample buffer containing Ditiotreitol 

(DTT) and 2x LB (100mM Tris-HClph 6.8, 4% SDS, 0.005% Bromophenol Blue, 

20% Glycerol), vortexed, heated the sample for 3 min and vortexed again. All 

samples were centrifuged before loading. 16 l of each sample was run in a 4-

20% pre-cast gradient gel (Mini-protean TGX Stain Free Precast gel, Biorad). 

Following electrophoresis, proteins were transferred to a PVDF membrane 

(Trans Blot turbo mini PVDF transfer pack Biorad) using a wet Trans-Blot 

system (Bio-Rad). The immunoblots were visualized by chemiluminescent 

detection (Molecular imager ChemiDoc XRS+ with image lab software Biorad). 

Independent assays repeated three times. The chemiluminescent signals were 

quantified using the software ImageLab (Bio-Rad) and normalized to actin 

signal levels. We incubated western blots with phospho-AMPKα Thr 172 (Santa 

Cruz Biotevhnology), diluted 1:300 (McQuary et al. 2016) and anti-actin (ICN, 

clone C4) diluted 1:1000. The data are represented as relative values 

normalized to the respective control.  
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Appendix 1 

A1.1 Effect of FUdR on lifespan of wild type, IIS and mitochondrial mutants 

As we were working with four different genetic backgrounds, we reasoned we 

could reduce the laborious task of transferring worms during the course of 

their egg laying period during lifespan assays by addition of FUdR (5-Fluoro-2′-

deoxyuridine).FUdR supplementation helps to limit production and 

development of progeny by inhibiting DNA synthesis.  It would also help to 

reduce the number of worms lost during egg laying due to internal hatching. 

While addition of FUdR to wild type animals has not been shown to affect their 

lifespan, there have been conflicting reports that FUdR has no effect on 

lifespan or can extend lifespan in certain mutants (Aitlhadj and Sturzenbaum 

2010; Van Raamsdonk and Hekimi 2011; Rooney et al. 2014). Moreover, it can 

alter metabolic profiles in worms (Davies et al. 2012).  

We observed a significant shift in the mean lifespans of wild type , daf-2 and 

mitochondrial PHB mutants - a decrease in daf-2 and phb-2;daf-2 mutants and 

a increase in wild type and phb-2 mutants (Figure A1.1, Table 6). The opposing 

phenotype of PHB depletion was still retained on FUdR, i.e, phb-2(tm2998) is 

short-lived and phb-2(tm2998);daf-2(e1370) mutants exhibited increased 

lifespan.  
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Figure A1.1: Lifespan analysis 

with and without FUdR. Wild 

type, daf-2, phb-2 and phb-2; 

daf-2 mutants were grown on 

HT115 (DE3) bacteria 

containing the empty vector 

pL4440. Curves represent one 

lifespan assay.  

A1.2 mtk-1 (MTK-1/ MEKK-4 homolog) 

While depletion of MTK-1 has been observed to induce the UPRmt and Pgst-4 

::GFP  in the mitochondrial PHB mutants (data not shown), we observed that 

Nile Red staining is increased in the same upon mtk-1(RNAi). mtk-1 shares 

homology with yeast SSK2, a member of the MAP kinase kinase kinase family 
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of the HOG1 mitogen-activated signalling pathway known to regulate glycerol 

synthesis, osmoregulation and stress response genes (Gustin et al. 1998). 
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Figure A1.2: Lifespan 

analysis of wild type, daf-2, 

phb-2 and phb-2; daf-2 

mutants subjected to mtk-1 

(RNAi). Average of two 

independent lifespan 

curves has been 

represented here. 

mtk-1(RNAi) increased lifespan of the phb-2 (tm2998) mutants while it 

shortened the lifespan of the phb-2(tm2998);daf-2(e1370) mutants (Figure 

A1.2, Table 6). Wild type and daf-2(e1370) mutants were not affected upon 

loss of MTK-1. In order to further investigate this opposing effect upon mtk-

1(RNAi), we have performed a lipidomics study focussed on mitochondrial lipid 

alterations. Mitochondria are essential for organismal metabolism and 

physiology and it has been shown that composition of mitochondrial 

membrane lipids can influence the ageing process in yeast and in nematodes 

(Hulbert 2010; Valencak and Azzu 2014; Medkour et al. 2017; Nielson and 

Rutter 2018). Incidentally, mtk-1(RNAi) also induces UPRmt in both phb-2 and 

phb-2;daf-2 mutants. A recent worm paper observed that mitochondrial UPR 

might delay ageing in worms via global remodeling of lipid metabolism that 

includes increase in cardiolipins and fatty acids (Kim et al. 2016). 

A1.3 S6 kinase/RSKS-1 

Inhibition of RSKS-1(S6K), a key molecule in the target of rapamycin (TOR) 

pathway is known to extend lifespan in multiple species, including the worm  

(Laplante and Sabatini 2012). daf-2(e1370);rsks-1 (ok1255)double mutants also 

exhibit increased lifespan which requires DAF-16 (Chen et al. 2013). Also, the 

deficiency of PHB-2 in an rsks-1(ok1255) mutant leads to an extension in 

longevity (Schleit et al. 2013). Hence, we wanted to examine the effect of 

RSKS-1 depletion in phb-2;daf-2 mutants.  
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We were only able to recapitulate the increase in longevity in phb-2 mutants 

upon depletion of RSKS-1(Figure A1.3, A). Though we noticed a mild increase 

when daf-2 mutants were subjected to rsks-1(RNAi), but did not observe an 

increase in wild type animals when RSKS-1 is depleted, in stark contrast to the 

published extension (Chen et al. 2013; Schleit et al. 2013). We were unable to 

conclude the behaviour of phb-2;daf-2  mutants upon rsks-1(RNAi) due to low 

“n”numbers, although a tendency to decrease was observed .  
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Figure A1.3: RSKS-1 

depletion leads to increased 

longevity in phb-2 mutants. 

Lifespan analysis of wild 

type, daf-2, phb-2, phb-2; 

daf-2 subjected to rsks-1 

(RNAi) A. without FUdR 

B.Upon addition of FUdR. 

Curves representative of 

one lifespan assay 

The published extension of lifespan upon loss of RSKS-1 in wild type, IIS and 

PHB defective backgrounds was carried out in the presence of FUdR. 

Therefore, we assayed the effect of rsks-1(RNAi) in all genetic backgrounds in 

the presence of FUdR (Figure A1.3, B). While we were able to again 

recapitulate the extension seen upon PHB depletion, wild type worms 

remained unaffected. IIS mutants showed a mild decrease upon depletion of 

RSKS-1 in the presence of FUdR going against earlier published data using daf-2 

(e1370);rsks-1(ok1255) double mutants (Chen et al. 2013). The mitochondrial 
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mutants, phb-2 (tm2998); daf-2(e1370) were observed to have an increase in 

lifespan upon rsks-1(RNAi).  

A1.4 KIN-1 

kin-1 encodes multiple isoforms of a serine/threonine protein kinase that is 

orthologous to cAMP-dependent protein kinase (protein kinase A or PKA) 

catalytic subunits. They are involvedin several processes including lipid 

metabolism (Lee et al. 2014; Lee et al. 2016). Absence of kin-1 has been shown 

to increase Oil-red-O staining, implying high triglycerides (Lee et al. 2014). The 

PKA pathway is well conserved and suppression of PKA in worms results in 

deleterious phenotypes - short lifespan, decreased egg laying, and reduced 

locomotion. kin-1 is highly expressed in muscles, head and gonads (Lee et al. 

2016). PKA signalling is important for oocyte maturation (Kim et al. 2012). 

We found that despite starting the RNAi treatment at the L3/L4 stage, all 

genetic backgrounds depleted of kin-1 exhibited strong vulval rupturing leading 

to a premature death of almost the whole experimental population, especially 

in the case of wild type and daf-2(e1370) mutants (Table 6). The phb-2 mutants 

salvaged after the vulval bursting phenotype in kin-1 RNAi lived an even more 

reduced lifespan (Figure A1.4), whereas, the long lived phb-2;daf-2 mutants 

showed a sharp decline in lifespan. 
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Figure A1.4:  Lifespan 

analysis of PHB mutants, 

phb-2 and phb-2; daf-2, 

subjected to kin-1(RNAi). 

Curves represent one 

lifespan assay.  

 

Recently, a role has been established for PKA pathway as a contributor to 

innate immunity in worms by signalling from the nervous system to periphery 

tissues to protect the host against pathogens (Xiao et al. 2017). This is of 

interest as exposure to the pathogen Pseudomonas aeruginosa causes 

mitochondrial dysfunction and activation of the UPRmt  detects these 

http://www.wormbase.org/search/gene/kin-1
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pathogens and initiates a protective innate immune response (Pellegrino et al. 

2014). 

A1.5 Y50D7A.3 

Y50D7A.3 is orthologous to the human Phosphorylase Kinase Gamma-2 

(PHKG2). Human PHKG2 phosphorylates and activates glycogen phosphorylase, 

which leads to the breakdown of glycogen. Mutations in PHKG2 are linked to 

cirrhosis and Glycogen storage disease. Not much is known about this gene in 

the nematode. Enzymes such as trehalose-6-phosphate synthase genes, 

related to carbohydrate metabolism have been known to modulate lifespan 

(Honda et al. 2010) in C. elegans, and we observed earlier that the kinase,  

GSK-3 known to phosphorylate and inhibit glycogen synthase also regulates 

lifespan. Hence, we investigated whether loss of this kinase could alter 

lifespan. However, we found that depletion of this kinase did not cause an 

alteration in lifespan (Figure A1.5, Table 6) in any of the genetic backgrounds. 
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Figure A1.5:  Lifespan 

analysis of wild type, daf-2 

and phb-2, phb-2; daf-2 

subjected to Y50D7A.3 

(RNAi).One of two 

independent experiments 

is shown.  
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Appendix 2  

A2.1 Wild type, daf-2(e1370) and mitochondrial mutants – phb-2(tm2998) and 

phb-2(tm2998);daf-2(e1370) subjected to gsk-3(RNAi) in presence of 5-Fluoro-

2′-deoxyuridine (FUdR)  

We observed that the reduction in lifespans across wild type, daf-2(e1370) and 

the mitochondrial PHB mutants upon GSK-3 depletion was unchanged upon 

FUdR addition (Figure A2.1, Table 4).  
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Figure A2.1: Survival curves of 

GSK-3 depleted worms in the 

presence of FUdR.  

A2.2 Inhibition of GSK-3 using Lithium 

Previously, it has been established that Lithium affects diverse biological 

processes, ranging from developmental effects to metabolic alterations. A 

known molecular target of lithium is GSK-3, and it has been suggested that 

lithium acts through inhibition of GSK-3 (Ryves and Harwood 2001; De Sarno et 

al. 2002). Hence, we investigated whether inhibiting GSK-3 through lithium 

addition in worms would reduce lifespans in a similar manner as gsk-3(RNAi) 

(Figure A2.2,A, Table 4). In accordance with our experiments with gsk-3(RNAi), 

we observed reduced lifespan in wild type and IIS defective daf-2(e1370) 

mutants upon addition of Lithium Chloride.  

However, previous work showed that exposure to lithium increased lifespan in 

worms, flies and humans (McColl et al. 2008; Zarse et al. 2011; Castillo-Quan et 

al. 2016). In particular, wild type and daf-2(e1368) mutants have been shown 

to have an increased lifespan in presence of LiCl (McColl et al. 2008). A key 

difference in how these experiments were performed is with respect to the 

temperature.  McColl et al, performed experiments by moving L4 worms grown 

at 20°C on to NGM plates with LiCl and assayed at 25°C, as opposed to us that 

kept worms constantly at 20°C. However, further experiments would be 
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required to ascertain if indeed increased temperature is the cause for these 

differences, though we did see a tendency to increase lifespan at 25°C in wild 

type worms subjected to LiCl (Figure A2.2, B). 
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Figure A2.2:  Effect of LiCl on the lifespan of wild type and daf-2(e1370) mutants. Survival curves 
of nematode populations at A. 20°C and at B. 25°C, exposed to 10 mM LiCl. 
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Appendix 3 - Analysis of additional metabolic genes upon depletion of GSK-3  

A3.1 Increased expression of Pacdh-1::GFP in worms with low glycogen stores.  

In order to ascertain whether the Pacdh-1::GFP reporter is capable of reflecting 

changes in fatty acid oxidation, we subjected wild type and daf-2 mutants to 

gsy-1(RNAi). Knockdown of glycogen synthase (gsy-1) reduces glycogen 

content in C. elegans (Frazier and Roth 2009; LaMacchia et al. 2015) , both in 

wild type and daf-2 mutants (Figure A3.1,A). Knockdown of GSY-1 led to a 

strong induction of Pacdh-1::GFP in both wild type and IIS mutants (Figure 

A3.1,B) 
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Figure A3.1: Worms with lower reserves of glycogen stores show increased short chain fatty acid 

oxidation A.Scatter plot representing quantification of glycogen stores in wild type and daf-2 

mutants depleted of GSY-1 viewed using iodine vapor staining (Mean±SD, Unpaired t- test, * = 

p<0.05,*** = p< 0.001,  n ≥ 9 worms for all conditions) B.Expression of Pacdh-1::GFP in wild type 
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and daf-2 mutants upon gsy-1(RNAi) (top  panel) and scatter plot representing quantification of 

Pacdh-1::GFP levels of the respective images (bottom panel) (Mean±SD, One way ANOVA, 

Dunn’s multiple comparison test,* = p<0.05) (Animals were imaged at Day1 of adulthood in all 

conditions in both A and B) 

A3.2 Short- and medium- chain dehydrogenases  

We assessed expression of an additional mitochondrial short chain acyl-CoA 

dehydrogenase, acdh-2, also predicted to catalyse the first step of β-fatty acid 

oxidation (MacNeil et al. 2013). We observed a repression in Pacdh-2::GFP 

(similar to Pacdh-1::GFP (Figure 46,A-B)), upon gsk-3(RNAi) and  PHB depletion 

in wild type animals (Figure A3.2,A). 
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Figure A3.2: Reduced expression of acdh-2 and acdh-7 upon gsk-3(RNAi). A. Pacdh-2::GFP gene 

expression in otherwise wild type and PHB depleted worms grown on gsk-3(RNAi) versus control 

(RNAi) (left panel). Scatter plot (right panel) represents the quantification (Animals imaged at 

Day1 in all conditions, Mean±SD, One way ANOVA, Dunn’s multiple comparison test, **=p<0.01, 

*** = p< 0.001, n≥86, one of two independent experiments represented).B. Scatter plots 

depicting the expression of Pacdh-7::GFP on Day 1 (left panel, n≥64, one of two independent 

experiments) and Day 5 (right panel, n≥25) of adulthood upon loss of GSK-3 in otherwise wild 
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type and PHB depleted animals (Mean±SD, One way ANOVA, Dunn’s multiple comparison test,  

ns = not significant, *=p<0.05, *** = p< 0.001)  

Additionally, acdh-7, the nematode homolog of medium-chain acyl-CoA 

dehydrogenase as observed by Pacdh-7::GFP (Figure A3.2, left panel) was also 

reduced in both wild type and PHB depleted worms grown on gsk-3(RNAi). 

Interestingly, PHB depleted animals showed a mild increase in expression. 

During ageing (Figure 3.2, right panel), expression of acdh-7 increased in wild 

type animals with no significant alterations in PHB depleted worms, but 

remained repressed in wild type and PHB depleted worms grown on gsk-

3(RNAi).   

A3.3 Short- and long- chain acyl CoA synthetases  

Lipid metabolism involves lipases that breakdown triglycerides to free fatty 

acids. These are then activated by acyl-CoA synthetases to their acyl-CoA 

derivates which are then oxidised in the mitochondria by acyl CoA 

dehydrogenases or the peroxisomes by acyl CoA oxidases (Watkins and Ellis 

2012; Watts and Ristow 2017). As we observed reduction in expression of the 

acyl CoA dehydrogenases, acdh-1/-2/-7, we investigated whether acyl CoA 

synthatases are also downregulated. Consistent with our observation of 

decreased expression of short chain dehydrogenases, acdh-1 and -2 in PHB 

depleted worms and also upon gsk-3 depletion, we observed that these worms 

also exhibited low expression of ACS-19 (an ortholog of human ACSS2 (acyl-

CoA synthetase short-chain family member 2) (Figure A3.3, A-B, further 

indicating reduced fatty acid oxidation.  

Similarly, Pacs-13::GFP expression analysis (Figure A3.3, C) revealed that lackof 

GSK-3, both in wildtype and PHB depleted worms, results in low expression of 

the reporter. acs-13 encodes an ortholog of human ACSL5 (acyl-CoA 

synthetase long-chain family member 5).Interestingly, PHB depleted animals 

were unaffected. These results indicate that while GSK-3 depletion reduces 

expression of both short and long-chain acyl CoA synthethases (Figure 46, A3.2, 

A3.3), PHB depletion only affects short chain acyl CoA synthethases and 

dehydrogenases.  
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Figure A3.3: Expression of acyl CoA synthatases, acs-19 and acs-13. A. Representative images of 

acs-19 gene expression upon PHB and GSK-3 depletion (left panel) and quantification (right 

panel) at Day1 of adulthood (Mean±SD, One way ANOVA, Bonferroni’s multiple comparison test, 

*** = p< 0.001, n≥35, one of three independent experiments represented). B – C. Scatter plot of 

Pacs-19 ::GFP expression on Day 5 (n≥16) and Pacs-13::GFP expression on Day1 upon PHB and 

GSK-3 depletion (n≥30, one of two independent experiments represented) (Mean±SD, One way 

ANOVA,  Dunn’s multiple comparison test, ns = not significant, *** = p< 0.001)  

A3.4 Carnitine palmitoyltransferase, cpt-2  

Short-chain fatty acids are able to freely translocate between the cytosol and 

mitochondria, whereas medium- or long- chain fatty acids require the function 

of carnitine palmitoyltransferases, such as CPT-2 (Watts 2009; Yuan et al. 

2012). Consistent with our observation of decreased medium-chain fatty acid 

degradation upon GSK-3 depletion, we observed decreased Pcpt-2::GFP 

expression (Figure A3.4), implying low import of medium-/long-chain fatty 

acids into the mitochondria. However, PHB depleted worms do not exhibit any 

changes in Pcpt-2::GFP expression compared to wild type. This is consistent 



AAppppeennddiicceess  

 

 

162 

with the fact that medium chain dehydrogenase acdh-7 and long chain acyl 

CoA synthethase, acs-13, are not affected upon PHB depletion (Figure A3.2,B 

and A3.3,C) 
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Figure A3.4: Expression of the carnitine palmitoyltransferase reporter, Pcpt-2::GFP.  

Representative images are shown for wild type worms upon GSK-3 and PHB depletion (left 

panel) and the scatter plot (right panel) represents GFP quantification (Worms  were imaged at 

Day1 of adulthood, Mean±SD, One way ANOVA, Dunn’s multiple comparison test, *** = p< 

0.001, ns=not significant,n≥61, one of two independent experiments has been represented). 

A3.5 de novo fat synthesis 

About 7–20% of C. elegans fatty acids are synthesized de novo from acetyl-

CoA, with the exception of the monomethyl fatty acids, which are synthesized 

when worms feed on E. coli OP50 (Perez and Van Gilst 2008). The remaining 

are incorporated or modified from diet. The de novo synthesis of fatty acyl 

chains using the two carbon subunit acetyl-CoA is achieved by the activity of 

fatty acid synthase (FAS), encoded by fasn-1. The rate-limiting step of de novo 

fatty acid synthesis is the generation of malonyl-CoA by acetyl-CoA carboxylase 

(ACC),encoded by the pod-2 gene in C. elegans (Watts and Ristow 2017). In 

addition to POD-2 and  FASN-1 we looked at FAT-7 (an essential delta-9 fatty 

acid desaturase required for synthesis of monostaurated fatty acids, along with 

FAT-6, responsible for producing oleic acid, 18C:1n-9).  

De novo fat synthesis based on the expression levels of Ppod-2::GFP was 

downregulated only upon GSK-3 depletion, whereas PHB depleted animals, 

which show reduced pod-2 expresssion (Figure A3.5,A) were not further 

affected by loss of GSK-3. Additionally, expression of fasn-1 and fat-7 was also 

repressed (Figure A3.5, B-C) when GSK-3 is depleted in wild type and daf-
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2(e1370) mutants respectively. In particular, fat-7 downregulation indicates 

lower levels of oleic acid, a known precursor for the synthesis of 

polyunsaturated fatty acids and triacylglycerides.  
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Figure A3.5: Altered de novo fatty acid metabolism upon gsk-3(RNAi). A. pod-2 gene expression 

in otherwise wild type and upon PHB depletion grown on gsk-3(RNAi) compared to control(RNAi) 

(left panel).The scatter plot (right panel) represents the respective GFP quantification (Animals 

were imaged at Day1 of adulthood in all conditions, Mean±SD, One way ANOVA, Dunn’s multiple 

comparison test, *** = p< 0.001, ns=not significant , n≥87, one of two independent experiments 

has been represented) B-C. Expression of fasn-1 and fat-7 in wild type (B) and IIS mutants (C) 

grown on gsk-3(RNAi) compared to control(RNAi) (Mean ±SEM, Unpaired t-test, **=p<0.01, 

graph representative of three independent experiments, each with 2-3 technical repeats).  
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Appendix 4 - Assessing metabolic activity using Seahorse XFp Analyzer 
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Figure A4.1: FCCP treatment caused an increase in OCR across all conditions tested A. at young 

adult stage,  B. day 5 of ageing (Unpaired t-test, * = p<0.05, ** = p<0.01, *** = p< 0.001, bars 

represent ± SD, n = at least 3 independent experiments consisting of 3-4 wells each of 

control(RNAi) and gsk-3(RNAi) for each genetic background tested) 
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Figure A4.2: Basal and maximal oxygen consumption rates normalised to number of worms (A-D) 

across wild type, daf-2 (e1370) and the mitochondrial mutants – phb-2(tm2998) and phb-

2(tm2998);daf-2(e1370)grown on control(RNAi) and gsk-3(RNAi) at young adult(YA) stage and 

during ageing, at day 5 of adulthood. A-B. Basal respiration at YA and at Day 5 respectively; basal 

respiration reduces during ageing in wild type C-D. Maximal respiration as observed by 

treatment using FCCP, at young adult stage and at day 5 of adulthood (Unpaired t-test, ns = not 

significant p>0.05, * = p<0.05, ** = p<0.01, *** = p< 0.001, bars represent ± SD, n = at least 3 

independent experiments consisting of 3-4 wells each of control(RNAi) and gsk-3(RNAi) for each 

genetic background tested). 
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Figure A4.3: Mitochondrial content in 

animals devoid of GSK-3 (Animals were 

imaged at young adult stage in all 

conditions, Mean±SD, One way ANOVA, 

Dunn’s multiple comparison test, ns=not 

significant , n≥50, one of two independent 

experiments has been represented)  
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Figure A4.4: Expression of ucp-4 in IIS mutants 

grown on gsk-3(RNAi) compared to control 

(RNAi) (Mean ±SEM, Unpaired t-test, 

**=p<0.01, graph representative of three 

independent experiments, each with 2-3 

technical repeats). 
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Appendix 5 – AMPK status  
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Figure A5.1: Levels of P-AMPK. Western blot analysis showing P-AMPK and actin protein levels in 

the different genetic backgrounds, in control and gsk-3(RNAi) (representative blot , top panel). 

Graphical representation of quantified P-AMPK intensity normalized to actin for the respective 

genetic backgrounds (atleast 3 independent experiments, lower panel).  
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Table 1:  Pathways that regulate ageing 

Pathway Description 

Nutrient sensing pathways 

An intervention to 

interrupt ageing is the 

process of dietary 

restriction (DR), a means 

of restricting food intake 

without malnutrition. DR 

has been shown to extend 

lifespan in various species. 

Longevity responses to 

dietary restriction are 

regulated by several 

conserved signalling 

pathways. 

 

 

 

TOR signalling: TOR is a mechanistic or mammalian target of 

rapamycin responsible for regulation of cell growth, 

proliferation, motility and survival, protein synthesis, autophagy 

and transcription. This serine threonine  kinase is a major amino 

acid and nutrient sensor that supports growth and blocks 

autophagy when food is present in abundance (Wullschleger et al. 

2006). Inhibition of this pathway increases lifespan in yeast, flies, 

mice and in worms where it is mediated by the transcription 

factor PHA-4/FOXA. PHA-4 also regulates autophagy, a process 

that has a role in lifespan regulation (Sheaffer et al. 2008). 

Lifespan in worms is extended upto 150% upon inhibition of TOR 

(Vellai et al. 2003; Hansen et al. 2007). Additionally, the mutation 

of raptor, DAF-15 (regulatory associated protein of mTOR), leads to 

lifespan extension in worms. This is regulated by FOXO/DAF- 16, 

thus, there is cross-talk between IIS and TOR pathways (Jia et al. 

2004). Apart from this, TOR regulates translation by activating 

p70S6K (ribosomal subunit S6 kinase, RSKS-1) and inhibiting the 

translation repressor eIF4EBP. Inhibition of translational regulators 

or p70S6K (RSKS-1) in C. elegans extends worm lifespan (Hansen et 

al. 2007).  

AMP-activated protein kinase (AMPK): It is a conserved  nutrient 

and energy sensor that will activate catabolic pathways and 

repress anabolic pathways in an attempt to restore homeostasis 

(Hardie and Hawley 2001). Upon over expression of AMP kinase, 

lifespan is extended in C. elegans. AMP kinase is required for 

insulin/IGF-1 mutations to be able to extend worm lifespan (Apfeld 

et al. 2004). Also, the anti-diabetic drug metformin that activates 

AMP kinase can increase lifespan in mice(Onken and Driscoll 

2010).  Lately, neuronal AMPK activation was shown to regulate 

lifespan via catecholamine signalling in C. elegans (Burkewitz et 

al. 2015) It can also extend lifespan in a response to dietary 

restriction but is dispensable for chronic dietary restriction (eat-2 

mutants) (Greer et al. 2007a). AMPK acts partly via FOXO 

transcription factors to extend lifespan in worms (Greer et al. 

2007a)  

Sirtuins: These are nicotinamide adenine dinucleotide (NAD) - 

dependent protein deacetylases, and are directly linked to cellular 

nutrient signalling through NAD
+
(Imai et al. 2000). In worms, 
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over expression of the sirtuin gene sir-2.1 increases lifespan 

(Tissenbaum and Guarente 2001) in a DAF-16/FOXO-dependent 

manner (Berdichevsky et al. 2006). Lifespan extension was also 

seen in flies (Rogina and Helfand 2004), indicating evolutionary 

conservation of sirtuins.  However, on re-examining the effects of 

sirtuin overexpression on the lifespan in worms and flies abolished 

the pro-longevity observed earlier. The extension in lifespan was 

attributed to a background mutation in the transgenic animals 

used in these experiments (Burnett et al. 2011)  

Signals from the 

reproductive system 

The germline of C. elegans also influences ageing. When the worm 

germline is removed or through genetic manipulation, extension of 

lifespan is seen by 60% which requires DAF-16 activity, however, 

this effect is abolished when the somatic gonad is removed, 

suggesting that opposing signalling pathways might exist (Hsin and 

Kenyon 1999; Arantes-Oliveira et al. 2002). The extended lifespan 

upon germline removal is a result of signalling from the 

reproductive system to the intestine as DAF-16 accumulates within 

intestinal nuclei and functions in the intestine to increase life span 

when the germline is removed (Berman and Kenyon 2006). Signals 

from the reproductive system have been shown to mediate 

lifespan in flies and mice as well (Kenyon 2010a).  

Epigenetic mechanisms Epigenetic mechanisms like DNA methylation, histone 

modification and noncoding RNAs also regulate ageing. Histone-

modifying enzymes such as the SET domain proteins, SET-9 and 

SET-15 accelerate ageing (Hamilton et al. 2005; Greer et al. 

2010), while inhibition of  members of the histone H3K4 

methylation complex, ASH-2, WDR-5 and SET-2 and 

overexpression of RBR-2 (enzyme that mediates H3K4 

demethylation) are known to extend lifespan (Greer et al. 2010). 

Depletion of the histone demethylase, UTX-1 increases longevity 

by genetically interacting with the IIS pathway (Jin et al. 2011; 

Maures et al. 2011). Also, microRNA (miRNA), a class of 

noncoding RNA molecules also function in lifespan regulation, 

example, miRNA lin-4 and its target LIN-14. This was mediated 

by the IIS pathway in C. elegans  (Boehm and Slack 2005).  
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Table 2: Methods for evaluating C. elegans  fat stores. Adapted from (Elle et 

al. 2010; Lemieux and Ashrafi 2015) 

 

Method 

 

Subtype 

 

Mechanism 

 

Description 

Vital dyes 
 

 

 

Nile Red 

 

BODIPY- FA 

Nile Red Dye partitions to 
live tissue depots 

 

 

Benefits: Simple, fast, cheap; 
hence, ideal for screening 
experiments; uses standard 
microscopy techniques; allows 
live imaging.                                                                
Drawbacks:  fluorescence 
emission is sensitive to lipid 
composition; high variability; it 
stains gut granules that are not 
lipid droplets. 

BODIPY-labelled 
fatty acids 
(BODIPY - FA ) 

  

                        

Dye partitions to 
live tissue depots 

Benefits: Simple, fast, cheap; 
stains hypodermal and 
intestinal lipid stores; allows 
live imaging.                                                            
Drawbacks: gut granules stain 
strongest in the intestine; 
requires confocal microscopy. 

 Fixed staining 

 

Sudan Black 

 

Oil Red O 

Colorimetric                      
(Sudan black, Oil 
Red O) 

Dye partitions to 
hydrophobic 
depots 

Benefits: cheap, standard light 
microscopy.                                                   
Drawbacks: requires fixation; 
time consuming; large 
variability; poor sensitivity; 
different fat depots not 
distinguishable. 

Flourimetric (Nile 
Red, BODIPY, 
LipidTOX) 

 

Dye partitions to 
hydrophobic 
depots 

Benefits: cheap, standard light 
microscopy; improved 
sensitivity; better range than 
colorimetric stains               
Drawbacks: requires fixation 
and time consuming; large 
variability; different fat depots 
not distinguishable.  

Electron 
Microscopy 

 

Osmium 
tetraoxide 

 

- 

Benefits: high resolution of cell 
structures         Drawbacks: 
requires fixation with harmful 
substances like glutaraldehyde 
and/or paraformaldehyde; 
time consuming; advanced 
equipment required. 

Analytical Thin layer Solvent based Benefits: Direct quantification 
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Chemistry 

(Watts and 
Browse 2006; 
Srinivasan et al. 
2008). 

chromatography  
(TLC) 

extraction and 
chromatography  

of total TAG, Phospholipids, 
free fatty acids etc.      
Drawbacks: Reductive; is 
inconsiderate of cell biological 
complexities; large population 
based averages; low 
throughput method. 

Gas 
chromatography/ 
mass spectroscopy 
(GC/MS) 

Solvent based 
extraction, high 
resolution 
chromatography 
and mass 
spectroscopy 

Benefits: Can quantify the 
abundance of individual fatty 
acid chains.                                      
Drawbacks: Reductive; is 
inconsiderate of cell biological 
complexities; large population 
based averages; low 
throughput method. 

Raman 
microscopy 

 

CARS 

(Hellerer et al. 
2007; Le et al. 
2010; Folick et al. 
2011; Wang et al. 
2011) 

Coherent Anti-
Stoke Raman 
Spectroscopy 
(CARS) 

 

Raman-stimulated 
vibrational 
emission 

Benefits: non invasive live 
animal staining, high 
resolution; microscopic 
detection of live tissue lipid 
depots; can be used to 
monitor the ratio of saturated 
to unsaturated fatty acids 
Drawbacks: Complex  
technique; is expensive ; more 
time consuming than 
fluorescence measurements; 
quantitation made difficult by 
non-resonant background and 
non-linear dependence of 
signal on underlying tissue; 
CARS signals arise from all 
lipid-rich structures  (including 
cell membrane, cellular 
organelles, free lipids, yolk 
lipids, lipid droplets) 

Stimulated Raman 
Scattering (SRS) 

Raman-stimulated 
vibrational 
emission 

Benefits: Significant 
improvements over CARS in 
background signal and linear 
relationship between 
underlying sample and signal 
received.                                           
Drawbacks: Complex 
technique; is expensive; 
technically a more demanding 
optical setup than CARS; not 
easily available to researchers. 
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Transgenic 

strains 

 

(Mak 2012; Mak 

2013; Liu et al. 

2014)  

Lipid droplet 
markers  

 

 

 

 

Worms are 

genetically 

modified to 

express a GFP 

labeled, lipid 

droplet-associating 

protein 

 

Benefits: live animal imaging; 
can be used to characterise 
lipid droplet size and number           
Drawbacks: requires confocal 
microscopy; may perturb the 
natural properties of lipid 
stores;  not every lipid droplet 
expresses the same lipid 
droplet proteins  

Dark field 

microscopy 

(Fouad et al. 

2017) 

- Dark field images 

taken with 

ordinary light 

microscope are 

used to estimate 

fat levels in 

worms. This is 

done by defining a 

metric based on 

the amount of 

light scattered per 

area. 

Benefits: no dyes or fixation. 

The light scattering metric is 

strongly correlated with worm 

fat levels as measured by ORO 

staining. 

 

 

Table 3: Summary of lifespan data of PHB deletion mutants, on E.coli OP50. 

* Maximum lifespan is the average of the longest-lived 10% of the animals assayed.                                             

† Confirmed death events, divided by the total number of animals included in lifespan assays. 

Total equals the number of animals that died plus the number of animals that were censored. 

The number of independent lifespan assays for each strain is shown in parentheses.                                          

‡ Compared to wild type animals. 

Strains Mean ± SEM Maximum* ± SEM Deaths/Total† P-value‡ 

Wild type 18±0 29.45±1.45 137/326(2) 

 phb-1(tm2571) 17±1 23.45±0.05 215/227(2) < 0.0001 

phb-2(tm2998) 14.5±0.5 25.30±1.307 302/313(2) < 0.0001 

daf-2(e1370) 30.5±2.5 57.31±1.312 134/333(2) < 0.0001 

phb-2(tm2998); 

daf-2(e1370) 55.5±0.5 85.41±8.41 110/162(2) < 0.0001 
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Table 4: Summary of lifespan data upon depletion of GSK-3 

# compared to respective genetic background versus gsk-3(RNAi)                                                          

§ phb-2(tm2998) and daf-2(e1370) mutants compared to wild type                                                                          

ǂ phb-2(tm2998);daf-2(e1370) mutants compared to daf-2(e1370) mutants                                                              

‡ phb-2(tm2998);gsk-3(RNAi) versus wild type; gsk-3(RNAi)                                                                                      

‖ phb-2(tm2998);daf-2(e1370);gsk-3(RNAi) versus daf-2(e1370);gsk-3(RNAi)                                                       

ns no significant difference (P>0.05) 

Strain 

Median 

±SEM 

(days) 

 

Maximum* 

±SEM 

(days) 

 

Deaths/ 

Total† 

% 

decrease 

upon loss 

of GSK-3 

per trial 

Vulval 

bursting 
P value 

RNAi from eggs 

Wild type, N2 18±1 25.23±0.45 300/369(2) - - - 

gsk-3(RNAi) 

11.5±0.5 

 

16.66±0.33 

 
86/578(2) 

35.29 % 
491 

< 0.0001# 

 36.84 % 

phb-2(tm2998) 16.5±0.5 20.45±0.19 365/388(2) - - < 0.0001§ 

phb-2(tm2998); 

gsk-3(RNAi) 

14±1 

 
18.75±0.06 294/396(2) 

11.76 % 
75 0.0015#   

< 0.0001‡ 18.75 % 

daf-2(e1370) 37.5±4.5 51.80±4.19 209/411(2)  - < 0.0001§ 

daf-2(e1370); 

gsk-3(RNAi) 

19±2 

 
31.80±0.54 382/489(2) 

36.36 % 
92 < 0.0001# 

59.52 % 

phb-2(tm2998); 

daf-2(e1370) 
50.5±1.5 71.24±0.35 189/332(2)  - < 0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

gsk-3(RNAi) 

27.5±3.5 

 
40.25±7.25 117/278(2) 

53.84 % 

87 < 0.0001# 

< 0.0001‖ 36.73 % 

RNAi from eggs (on FUdR) 

Wild type, N2 21 28.7 172/181(1) - - - 

gsk-3(RNAi) 16 21.8 53/206(1) 23.8 % 152 < 0.0001# 

phb-2(tm2998) 21 26.6 159/178(1) - - 0.0377§ 

phb-2(tm2998); 

gsk-3(RNAi) 
18 23.2 125/135(1) 14.2 % - <0.0001# 

< 0.0001‡ 

daf-2(e1370) 37 43.9 159/179(1) - - < 0.0001§ 
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daf-2(e1370); 

gsk-3(RNAi) 
25 38.2 172/177(1) 32.4 % - < 0.0001# 

phb-2(tm2998); 

daf-2(e1370) 
46 57.7 141/167(1) - - < 0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

gsk-3(RNAi) 

25 42.6 30/80(1) 45.6 % - < 0.0001# 

0.0244‖ 

RNAi from Adulthood (Young Adult stage) 

Wild type, N2 17±0 26.90±0.97 317/372(2) - - - 

gsk-3(RNAi) 

14±0 

 
19.57±0.12 271/503(2) 

17.64 % 
220 

< 0.0001# 

 17.64 % 

phb-2(tm2998) 17±0 23.70±0.63 230/279(2) -  0.0093§ 

phb-2(tm2998); 

gsk-3(RNAi) 
17±0 22.82±0.17 290/378(2) 

No change 
18 ns #          

< 0.0001‡ No change 

daf-2(e1370) 39.5±1.5 57.58±0.70 151/385(2) - - < 0.0001§ 

daf-2(e1370); 

gsk-3(RNAi) 

26±1 

 
41.37±0.50 318/384(2) 

34.14 % 
6 < 0.0001# 

34.21 % 

phb-2(tm2998); 

daf-2(e1370) 
58±2 80.66±1.46 180/281(2) - - < 0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

gsk-3(RNAi) 

44±3 

 
60.25±1.75 156/277(2) 

31.66 % 
42 

< 0.0001# 

< 0.0001‖ 16.07 % 

Intestine specific RNAi system - rde-1(ne219);kbIs7 

rde-1(ne219); 

kbIs7 
14.5±0.5 21.23±0.68 233/298(2)  -  

rde-1(ne219); 

kbIs7;   

gsk-3(RNAi) 

13.5±0.5 

 
18.3±0.69 238/298(2) 

13.33 % 
13 < 0.0001# 

No change 

phb-2(tm2998); 

rde-1(ne219); 

kbIs7 

16±1 25.37±0.29 213/307(2)  -  

phb-2(tm2998); 

rde-1(ne219); 

kbIs7 ; 

gsk-3(RNAi) 

12.5±0.5 

 
18.38±1.72 214/286(2) 

13.33 % 

7 < 0.0001# 
29.41 % 

daf-2(e1370); 

rde-1(ne219); 

kbIs7 

34.7±1.1 44.7±2.39 363/615(4)  -  
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daf-2(e1370); 

rde-1(ne219); 

kbIs7; 

gsk-3(RNAi) 

14.5±2.2 25.8±1.74 230/716(4) 

68.57 % 

465 < 0.0001# 
68.42 % 

57.57 % 

36.36 % 

phb-2(tm2998); 

daf-2(e1370); 

rde-1(ne219); 

kbIs7 

37±5 60.1±3.87 60/133(2)  -  

phb-2(tm2998); 

daf-2(e1370); 

rde-1(ne219); 

kbIs7; 

 gsk-3(RNAi) 

37±5 60.1±3.87 60/133(2) 

16.66 % 

- < 0.0001# 

25 % 

Inhibition of GSK-3 by addition of Lithium Chloride, 20°C 

Wild type; LiCl- 16 28.7 94/147(1) - -  

Wild type; LiCl+ 13 27.23 127/150(1) 18.75 % - < 0.0001# 

daf-2(e1370); 

LiCl - 
39 51.62 83/139(1) - -  

daf-2(e1370); 

LiCl + 
26 45.7 96/150(1) 33.33 % - < 0.0001# 

Inhibition of GSK-3 by addition of Lithium Chloride, 25°C 

Wild type; LiCl- 8 15.5 75/150(1) - -  

Wild type; LiCl+ 8 16.54 106/152(1) - - ns# 
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Table 5: Summary of lifespan data upon depletion of Wnt components 

# compared to respective genetic background versus test(RNAi)                                                            

§ phb-2(tm2998)  and daf-2(e1370) mutants compared to wild type                                                                          

ǂ phb-2(tm2998);daf-2(e1370) mutants compared to daf-2(e1370) mutants                                                              

‡ phb-2(tm2998);test(RNAi) versus wild type; test(RNAi)                                                                                      

‖ phb-2(tm2998); daf-2(e1370); test(RNAi) versus daf-2(e1370);test( RNAi)                                                       

ns no significant difference (P>0.05) 

Strain 

Median 

±SEM 

(days) 

Maximum* 

±SEM 

(days) 

Deaths/ 

Total† 

% 

Change in 

lifespan 

Vulval 

bursting 
P value 

Depletion of kin-19 and bar-1 (RNAi from Adulthood) 

Wild type, N2 17±0 26.9±0.97 317/372(2) - - - 

kin-19(RNAi) 14±0 19.7±1.09 355/411(2) -17.64% 32 < 0.0001# 

bar-1(RNAi) 17±0 23.4±0.1 384/493(2) No change 38 < 0.0001# 

phb-2(tm2998) 17±0 23.7±0.63 230/279(2)  - < 0.0001§ 

phb-2(tm2998); 

kin-19(RNAi) 

17±0 

 
22.9±0.36 271/342(2) No change 8 

ns#              

< 0.0001‡ 

phb-2(tm2998); 

bar-1(RNAi) 
17±0 23.56±0.1 350/397(2) No change 10 

ns#           

ns‡ 

daf-2(e1370) 39.5±1.5 57.58±0.7 151/385(2)  - < 0.0001§ 

daf-2(e1370); 

kin-19(RNAi) 
23±1 36.3±1.91 338/380(2) -41.77% - < 0.0001# 

daf-2(e1370); 

bar-1(RNAi) 
33±5 51.61±2.0 179/423(2) -16.45% - < 0.0001# 

phb-2(tm2998); 

daf-2(e1370) 
58±2 80.66±1.4 180/281(2)  - < 0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

kin-19(RNAi) 

36±2 

 
50.47±6.1 159/213(2) -37.93% 15 

< 0.0001# 

< 0.0001‖ 

phb-2(tm2998); 

daf-2(e1370); 

bar-1(RNAi) 

44.5±6.5 69.41±1.9 154/213(2) -23.27% 40 
< 0.0001#  

< 0.0001‖ 
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Table 6: Summary of lifespan data of additional screen candidates 

# compared to respective genetic background versus test(RNAi)                                                            

§ phb-2(tm2998)  and daf-2(e1370) mutants compared to wild type                                                                          

ǂ phb-2(tm2998);daf-2(e1370) mutants compared to daf-2(e1370) mutants                                                              

‡ phb-2(tm2998); test(RNAi) versus wild type; test(RNAi)                                                                                      

‖ phb-2(tm2998); daf-2(e1370); test(RNAi) versus daf-2(e1370);test( RNAi)                                                       

ns no significant difference (P>0.05) 

Strain 

Median 

±SEM 

(days) 

 

Maximum* 

±SEM 

(days) 

Deaths/ 

Total† 

% 

Change in 

lifespan 

Vulval 

bursting 
P value 

Depletion of mtk-1 (RNAi from eggs) 

Wild type, N2 18.6±0.3 26.4±0.7 494/529(3) - - - 

mtk-1(RNAi) 19.3±0.8 26.4±1.0 479/498(3) - - ns# 

phb-2(tm2998) 18±0.5 24.8±0.6 405/464(3) - - 0.0018§ 

phb-2(tm2998); 

mtk-1(RNAi) 
22.3±1.8 33.8±0.2 269/465(3) +23.88% - <0.0001# 

< 0.0001‡ 

daf-2(e1370) 38±8 57.7±1.5 174/360(2) - - < 0.0001§ 

daf-2(e1370); 

mtk-1(RNAi) 
40.5±5.5 58.7±2.9 179/349(2) - - ns# 

phb-2(tm2998); 

daf-2(e1370) 
58±4 78.1±1.95 146/233(2) - - < 0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

mtk-1(RNAi) 

51.5±0.5 73.8±6.3 106/205(2) -11.20% - 0.0037# 

< 0.0001‖ 

Depletion of rsks-1 (RNAi from eggs) 

Wild type, N2 19 25.3 131/179(1) - -  

rsks-1(RNAi) 17 25 130/180(1) -10.52% - 0.0040# 

phb-2(tm2998) 17 24.3 105/128(1) - - 0.0078§ 

phb-2(tm2998); 

rsks-1(RNAi) 
21 32.3 94/149(1) +23.52% - <0.0001# 

daf-2(e1370) 40 57.8 60/210(1) - - <0.0001§ 

daf-2(e1370); 

rsks-1(RNAi) 
45 65.25 38/210(1) +11.11% - 0.0204# 

phb-2(tm2998); 

daf-2(e1370) 
63 93.5 22/111(1) - - <0.0001ǂ 
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phb-2(tm2998); 

daf-2(e1370); 

rsks-1(RNAi) 

54 77.5 24/163(1) -14.28% - 0.0675# 

Depletion of rsks-1 (RNAi from eggs, LS on FUdR) 

Wild type, N2 21 28.7 172/181(1) - -  

rsks-1(RNAi) 21 28.55 178/180(1) No effect - ns# 

phb-2(tm2998) 21 26.62 159/178(1) - - 0.0377§ 

phb-2(tm2998); 

rsks-1(RNAi) 
23 29.66 61/78(1) +8.69% - 0.0003# 

daf-2(e1370) 37 43.93 159/179(1) - - <0.0001§ 

daf-2(e1370); 

rsks-1(RNAi) 
28 48.7 165/184(1) -24.32% - 0.0233# 

phb-2(tm2998); 

daf-2(e1370) 
46 57.71 141/167(1) - - <0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

rsks-1(RNAi) 

57 71.12 83/100 (1) +23.9% - <0.0001# 

Depletion of Y50D7A.3 (RNAi from eggs) 

Wild type, N2 19±0 26.5±0.6 443/508(3) - - - 

Y50D7A.3 (RNAi) 17.6±0.6 26.1±0.8 469/510(3) -7.36% - 0.0240# 

phb-2(tm2998) 17.6±0.6 25±0.4 428/489(3) - - <0.0001§ 

phb-2(tm2998); 

Y50D7A.3 (RNAi) 
18.3±0.6 26.5±1.0 400/536(3) +3.97% - <0.0001# 

daf-2(e1370) 43±3 58.5±0.6 119/377(2) - - <0.0001§ 

daf-2(e1370); 

Y50D7A.3 (RNAi) 
39.5±1.5 58±0.7 174/359(2) -8.13 - ns# 

phb-2(tm2998); 

daf-2(e1370) 
62.5±0.5 86.8±6.7 69/178(2) - - <0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

Y50D7A.3 (RNAi) 

67.5±5.5 86.4±4.0 55/191(2) +8% - ns# 

Depletion of kin-1 (RNAi from L3/L4) 

Wild type, N2 18 24.9 182/200(1) - - - 

kin-1(RNAi) population lost due to vulval bursting 

phb-2(tm2998) 18 23.6 82/103(1) - - ns§ 

phb-2(tm2998); 

kin-1(RNAi) 
13 18 24/136(1) -27.77% 110 <0.0001# 

daf-2(e1370) 30 56.16 115/193(1) - - <0.0001§ 
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daf-2(e1370); 

kin-1 (RNAi) 
population lost due to vulval bursting 

phb-2(tm2998); 

daf-2(e1370) 
54 76.1 99/166(1) - - <0.0001ǂ 

phb-2(tm2998); 

daf-2(e1370); 

kin-1 (RNAi) 

30 54.3 31/158(1) -44.44% 75 <0.0001# 

Supplementation of FUdR 

Wild type, N2 19 27.5 138/149(1) - - - 

Wild type, N2; 

FUdR 
24 30 144/151(1) +26.31% - <0.0001# 

phb-2(tm2998) 17 25.8 147/151(1) - - - 

phb-2(tm2998); 

FUdR 
19 25.7 141/150(1) +11.76% - <0.0001# 

daf-2(e1370) 46 51.66 59/167(1) - - - 

daf-2(e1370); 

FUdR 
39 49 162/180(1) -15.21% - <0.0001# 

phb-2(tm2998); 

daf-2(e1370) 
62 80 47/67(1) - - - 

phb-2(tm2998); 

daf-2(e1370); 

FUdR 

48 56 49/63(1) -22.58% - <0.0001# 
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Table 7: Primer information for genes listed in this thesis  

Gene MRS code Sequences (5’-3’) 

cpt-2 173 

174 

Forward - GCAAGATGGATTCGGTATTGG 

Reverse - TCACGTTTCGACTTATTGCTC 

fat-7 181 

182 

Forward - GCTCTCTATGTGTTCTCAGG 

Reverse - CAATGATGTCGTTTTGAAGAGC 

fasn-1 183 

184 

Forward - GGATAATACTGGAGAAGGATCG 

Reverse - ATGTTGTCCGAAGACTGAG 

mdh-2 195 

196 

Forward - TTCCGAGCTTAAGGGACATGAC 

Reverse - GAGAATTTGGTGGATGGTTTGAC 

icl-1 197 

198 

Forward - GCTGTCAGTCGTGCGGTTAC 

Reverse - GCGGTGAGCGAAAGGATTT 

acdh-1 177 

178 

Forward - GCAAATGCAGATCCTAGCC 

Reverse - GTTTGTCTTTCCTCCTTATCTACAG 

acdh-9 179 

180 

Forward - GGCAGACTTCCAGTATAACC 

Reverse - GCGTTTCTAACGATTAGTCTG 

acdh-12 163 

164 

Forward - CCGATGTTTTCACTGTGTTTGC 

Reverse - CAAACGCTCTTTCGACAATGAAT 

ucp-4 165 

166 

Forward - CGAACTTAAAGATAATTGGCTAACTCA 

Reverse - CGACATCTGATGGAAGTGATACAA 

acs-17 161 

162 

Forward - GGAGACTATCACTGGAGAAGCTATG 

Reverse - GAACTGCTTCGTCTCCAAGAGTAG 

cdc-42 Askjaer Lab Forward -  CTTTGAGCAATGATGCGAAA  

Reverse -  TCATTCGAGAATGTCCGAGA 

pmp-3 Askjaer Lab Forward -  TGGCCGGATGATGGTGTCGC 

Reverse -  ACGAACAATGCCAAAGGCCAGC 
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