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eLaboratoire de l’Accélérateur Linéaire – IN2P3/CNRS, Centre Scientifique d’Orsay, Bâtiment 200 – BP 34, 91898 Orsay Cedex, France
fDpto. Fı́sica Aplicada, Fac. Ciencias Experimentales; Universidad de Huelva, 21071 Huelva; Spain

Abstract

We report on an estimate of αs, renormalised in the MS scheme at the τ and Z0 mass scales, by means of lattice
QCD. Our major improvement compared to previous lattice calculations is that, for the first time, no perturbative
treatment at the charm threshold has been required since we have used statistical samples of gluon fields built by
incorporating the vacuum polarisation effects of u/d, s and c sea quarks. Extracting αs in the Taylor scheme from the
lattice measurement of the ghost-ghost-gluon vertex, we obtain αMS

s (m2
Z) = 0.1200(14) and αMS

s (m2
τ) = 0.339(13).

1. Introduction

The recent announcement by ATLAS and CMS of their
observation at 5 σ significance of a new particle with
a mass around 125 GeV [1], interpreted as the Brout-
Englert-Higgs (BEH) boson, makes even more crucial
than before a satisfying control on theoretical inputs of
analytical expression of the Higgs decay channels. In-
deed, the era of precise Higgs physics (measurement of
the couplings, ...) will certainly open soon: assessing
the sensitivity of forthcoming detectors will be a key
ingredient. There are different modes of Higgs boson
production: however the gluon-gluon fusion is by far
the dominant process, as shown in Fig. 1. Over the
uncertainty ∆σth

gg→H→X of 20 - 25 % claimed at LHC
(
√

s = 7 TeV), about 4 % come from the uncertainty
δαs on αs(m2

Z0 ) [2]. A complementary approach of the
αs measurement from the analysis of Deep Inelastic
Scattering data, physics of jets, τ decay and e+e− →
hadrons [3] is its computation by numerical simulations.
In the following section we will report on the work per-
formed by the ETM Collaboration to measure αs from
Nf = 2 + 1 + 1 gauge configurations [4].
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Figure 1: Prediction of the Standard Model BEH boson production in function
of its mass for different production channels at LHC

2. αs from numerical simulations

In the past years tremendous progresses have been made
by the lattice community to perform simulations that are
closer to the physical point. It means including more
and more quark species in the sea, u/d quarks (Nf =

2), then the strange (Nf = 2 + 1) and even the charm
(Nf = 2 + 1 + 1) since a couple of years. Pion masses
∼ 250 MeV are now common and several collaborations
are even able to simulate a real pion, either in a small
volume (PACS-CS Collaboration) [5] or using a quark
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regularisation with a rather aggressive cut-off of the UV
regime (BMW Collaboration) [6]. Discretisation errors
are kept under control by considering lattice spacings
a smaller than 0.1 fm and lattice extensions L are such
that Lmπ & 3.5 to get rid of finite size effects. We have
collected in Fig. 2 the simulation points performed by
the lattice community using different quark and gluon
regularisations.
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Figure 2: Simulation points obtained by the lattice community in the plane (a,
mπ)
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Figure 3: Raw and cured data of the ghost propagator dressing function

The more vacuum polarisation effects are incorporated
in the Monte-Carlo sample, the more reliable any result
on αs is. Several methods are proposed in the litera-
ture to extract it: for instance analysing the static quark
potential V(r) at short distance [7], comparing the mo-
ments of charmonium 2-pt correlation function with a
perturbative formula after an extrapolation to the con-
tinuum limit [8], integrating the β function at discrete
points in a finite volume renormalisation scheme, for in-
stance in the Schrödinger Functional scheme [9] or fit-
ting 3-gluons amputated Green functions in the frame-
work of Operator Product Expansion (OPE) [10]. A last
and particularly elegant approach consists in applying
the OPE formulae to the ghost-ghost-gluon amputated

Green function [11], that we will discuss in more de-
tails.
The starting point is to consider the bare gluon and ghost
propagators in Landau gauge:

(
G(2)

)ab

µν
(p2,Λ) =

G(p2,Λ)
p2 δab

(
δµν −

pµpν
p2

)
,

(
F(2)

)ab
(p2,Λ) = −δab

F(p2,Λ)
p2 .

Choosing a MOM scheme, the renormalised dressing
functions GR and FR, defined by

GR(p2, µ2) = lim
Λ→∞

Z−1
3 (µ2,Λ) G(p2,Λ) ,

FR(p2, µ2) = lim
Λ→∞

Z̃−1
3 (µ2,Λ) F(p2,Λ) ,

read GR(µ2, µ2) = FR(µ2, µ2) = 1. The amputated ghost-
gluon vertex is given by

Γ̃abc
ν (−q, k; q− k) =

k q

q-k

= ig0 f abc [qνH1(q, k)
+(q− k)νH2(q, k)

]
.

The renormalised vertex is Γ̃R = Z̃1Γ; with a MOM pre-
scription it reads

lim
Λ→∞

Z̃1(µ2,Λ) (H1(q, k;Λ) + H2(q, k;Λ))|q2=µ2 = 1.

The renormalised strong coupling constant is given by
gR(µ2) = limΛ→∞ g0(Λ) Z1/2

3 (µ2,Λ)Z̃3(µ2,Λ)
Z̃1(µ2,Λ)

. In the case
of a zero incoming ghost momentum k = 0, we are
in a kinematical configuration where the non renormal-
isation theorem by Taylor [12] applies: H1(q, 0;Λ) +
H2(q, 0;Λ) = 1 and then Z̃1(µ2,Λ) = 1. The renor-
malised coupling in the Taylor scheme reads finally

αT (µ2) ≡
g2

T(µ2)
4π

= lim
Λ→∞

g2
0(Λ)
4π

G(µ2,Λ)F2(µ2,Λ).

The main advantage of the MOM Taylor scheme is that
there is no need to compute any 3-pt correlation func-
tion: it is enough to extract the dressing functions of
gluon and ghost propagators.
We have analysed the Nf = 2+1+1 ensembles produced
by the ETM Collaboration [13], with bare couplings
β = 2.1, 1.95 and 1.9 that correspond to aβ=2.1 ∼ 0.06
fm, aβ=1.95 ∼ 0.08 fm and aβ=1.9 ∼ 0.09 fm, respec-
tively. Pion masses are in the rang [250-325] MeV. Lan-
dau gauge is obtained by standard methods to minimise
AµAµ [14] while the ghost propagator is computed by
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inverting the discretised Faddeev-Popov operator. How-
ever, as the O(4) symmetry is broken on the lattice to the
H(4) group, getting αT from the dressing functions G
and F is not straightforward: O(a2p2) and H(4) invari-
ants artifacts, the so-called hypercubic artifacts, have to
be properly taken into account [15]:

αLatt
T

(
a2 p2, a2 p[4]

p2 , . . .

)
= α̂T (a2p2)

+
∂αLatt

T

∂
(
a2 p[4]

p2

)

∣∣∣∣∣∣∣∣
a2 p[4]

p2 =0

a2 p[4]

p2 + . . . ,

p[4] =
∑

i p4
i . We have shown in Fig. 3 that a ”fish-

bone” structure, that are those hypercubic artifacts, is
clearly present in F but curable, as also seen on the
plot. The remaining cut-off effects are removed by

α̂T(p2)

Figure 4: Strong coupling constant obtained after the elimination of the domi-
nant hypercubic artifacts

Figure 5: Raw data of αT (p2) compared to a purely perturbative running and
OPE with power corrections

fitting α̂T (p2) according to the formula α̂T (a2p2) =

αT(p2) + ca2p2 a2 p2 + O(a4). Fig. 4 illustrates the
benefit, in term of statistical error on αT , to do the cal-
culation in Taylor scheme, as we pointed earlier in the

Figure 6: Subtraction of αT (p2) from the perturbative running
compared to generic power corrections.
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Figure 7: Comparison of αs(mτ) measured on the lattice with estimates
based on phenomenological analyses of τ decay data [18], [17].

text.
We then use the OPE formalism so that we can relate
αT(p2) to αpert

T (p2) [16], including power corrections:

αT(p2) = α
pert
T (p2)

1 +
C(p,q0 )g2

T (q2
0)〈A2〉R

q2
0

p2 + d
p6 + · · ·

,
with q0 fixed to 10 GeV and C a combination of a Wil-
son coefficient and a running of the gluonic operator
〈A2〉. Eventually αpert

T is expressed at N3LO in function

of ΛT with ΛMS
ΛT
≡ exp

(
−

507 − 40Nf

792 − 48Nf

)
. The parame-

ters to be fitted are thus aΛMS, g2
T〈A2〉, d and the ratios

of lattice spacings aβ/a1.9 obtained by imposing that the
various curves of αT merge onto a universal one. We
have shown in Fig.5 that the purely perturbative running
formula does not match with the αT (p2) data, adding
the 1/p2 fits nicely with them down to p = 3.5 GeV
while including the 1/p6 term improves our ability to
describe them further down to the τ mass scale. One
could expect a 1/p4 power correction but Fig.6 indi-
cates that the fit is meaningless: still we do not exclude
that the corresponding Wilson coefficient would mimic
an additional 1/p2 factor. Collecting in Tab. 1 ΛMS,
g2〈A2〉 and the d coefficient, with the lattice spacing
a1.9 = 0.08612(42) fm [13], we can run αMS

s up to the Z0

mass scale or at the τmass scale. For the latter we obtain
αMS

s (m2
τ) = 0.337(8) and αMS

s (m2
τ) = 0.342(10) with our
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2 estimates of ΛMS; combining both of them and adding
in quadrature the errors we get αMS

s (m2
τ) = 0.339(13).

It is in very good agreement with τ decay data anal-
ysed with dispersion relations [17], [18], as plotted in
Fig.7. Running αs up to the MS scheme b quark mass
mb, by using the β function and the ΛNf=4

MS
parameter we

have measured, we can match with the Nf = 5 theory:
α

Nf=5
MS

(m2
b) = αNf=4

MS
(m2

b)
(
1 +

∑
n cn0(αNf=4

MS
(mb))n

)
. Then

a second running is applied up to the Z0 mass scale.
We obtain αMS

s (m2
Z0 ) = 0.1198(9) and αMS

s (m2
Z0 ) =

0.1203(11) with, again, our 2 estimates of ΛMS; com-
bining both results and adding in quadrature the errors
we get αMS

s (m2
Z0 ) = 0.1200(14). We have shown in Fig.8

a comparison between lattice results [8], [19] and [4],
DIS data [20], the world average quoted by the Parti-
cle Data Group [21] (WA ’12) and a world average re-
alised by replacing the Nf = 2 + 1 lattice results by the
Nf = 2 + 1 + 1 one (WA’ ’12), theoretically more reli-
able. In [3] one can find an almost exhaustive collection
of results. A single, very precise, lattice value domi-
nates strongly the weighted world average of αMS

s (m2
Z0 );

removing it enlarges its uncertainty. Our estimates is
in the same ballpark as other approaches and is using a
complementary framework.

Table 1: Fit parameters of αT (p2) analysed by means of OPE.

Λ
Nf =4

MS
(MeV) g2(q2

0)〈A2〉R
q2

0
(GeV2) d1/6 (GeV) α(mZ)

316(13) 4.5(4) 0.1198(9)
324(17) 3.8(1.0) 1.72(3) 0.1203(11)

3. Conclusions

We have reported on the first measurement of αs from
lattice simulations taking into account the vacuum
polarisation effects by charm quark in the so-called
Nf = 2 + 1 + 1 theory. The main benefit of our
set-up is that there is no perturbative treatment at the
charm threshold. We have used the OPE formalism
to analyse gluon and ghost propagators to extract the
strong coupling in the MOM Taylor scheme. We have
taken care of the hypercubic artifacts and included
power corrections in the OPE, that cannot be neglected.
An on-going project is to study whether other Green
functions (3-gluon vertex, quark propagator,...) present
the same feature: our extraction of ΛMS presented here
will help us to reduce the uncertainty on the fits of those
Green functions.

K. Petrov acknowledges the support of ”P2IO”
Laboratory of Excellence.
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Figure 8: Collection of results on αs(mZ).
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