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We present a lattice calculation of the renormalized running coupling constant in symmetric

(MOM) and asymmetric (M̃OM) momentum substraction schemes including u, d, s and c quarks in
the sea. An Operator Product Expansion dominated by the dimension-two 〈A2〉 condensate is used
to fit the running of the coupling. We argue that the agreement in the predicted 〈A2〉 condensate
for both schemes is a strong support for the validity of the OPE approach and the effect of this
non-gauge invariant condensate over the running of the strong coupling.
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I. INTRODUCTION

The running of QCD coupling constant is one of the key ingredient for the confrontation of the experimental results
to the perturbative expressions. The value of αQCD at a given scale or alternatively the parameter ΛQCD, which
controls the perturbative running, can be extracted from experimental results. The running coupling constant can
also be computed from lattice QCD calculations by a large variety of methods (see, for instance, the Particle Data

Group review [1]). Among these methods, we will pay attention to those based on the lattice determination of QCD
Green funtions [2, 3]. All of them need for a coupling to be nonperturbatively defined in a MOM-type scheme by
fixing the QCD propagators (two-point Green functions) and one particular three-point Green-function for a chosen
kinematical configuration to take, after renormalization, their tree-level result at the renormalization scale.
The analysis of the running for a so-defined coupling at intermediate energies, roughly from 3 to 10 GeV, deserves

great interest as it provides with a privileged room for the confrontation of lattice nonperturbative results to pertur-
bation theory, at any order, where the nature and impact of nonperturbative corrections can be studied (see ref. [4]

for a recent review). For instance, the study of the coupling defined from the asymmetric (M̃OM) three-gluon vertex
and estimated from quenched lattice data revealed the main role of nonperturbative power corrections to account for
its running [5]. Then, in a vast series of papers [6–16], some of us have exhaustively proven that Wilson’s Operator
Product Expansion (OPE) provides a general framework to include non-perturbative contributions, and that its appli-
cation to QCD couplings for several renormalization schemes allows a coherent and simple explanation of the running
obtained from the lattice for momenta as low as ∼ 2−3GeV. The leading OPE contribution has been shown to result
from the non-vanishing condensate of the gauge-dependent dimension-two local operator A2 [17], which, in the last
decade, received profuse attention within the context of the so-called refined Gribov-Zwanziger approach [18–20] but
also in many others (see [21–30]).
Among the MOM schemes that have been studied, that defined for the ghost-gluon vertex with zero incoming

ghost momentum (called T-scheme) has been extensively exploited in the last few years, due mainly to a well-known
Taylor’s result [31] whereby the proper ghost-gluon vertex renormalization constant for this scheme is proven to be
exactly one in Landau gauge. Thus, the MOM T-scheme coupling can be computed only from ghost and gluon
propagators, without involving a three-point function. The latter allows for a very precise determination of αs in a
range of momenta which makes possible to get an accurate estimate of ΛQCD that, for realistic unquenched lattice
simulations, succesfully compares to its value from experiments [14, 15, 32].
In any other scheme, the renormalized coupling requires the lattice evaluation of a vertex function, i.e., a three

point correlation function. This is the case for the coupling defined from the three-gluon vertex 1, where one can

1 The three-gluon vertex has been also the object of a recent study [33] grounding a QCD effective charge definition within the framework
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cook out as many different renormalization schemes as there are possible kinematical configurations. As the signal
for a three-point correlation function, suffering from stronger statistical fluctuations, is much harder to be extracted
from lattice simulations than the one for two-point functions, the precision so attained is not comparable with the
one achieved when using the T-scheme coupling. The interest of computing αs in different schemes is therefore not to
obtain a precise value of ΛQCD but, rather, to test the OPE framework and to gain thus some insight into the nature
of the nonperturbative corrections.
In this paper we present the lattice evaluation of the MOM QCD coupling defined through the three gluon vertex

for two different kinematical configurations: the symmetric (three equal momenta) and asymmetric (one vanishing
momentum) ones. The high-statistics ensemble (800 configurations) of lattice gauge fields we exploit takes into account
the dynamical generation of up, down, strange and charm quarks (Nf = 2 + 1 + 1). This leaves us with two main
”aces” for our game: (i) the Wilson coefficients for the leading contribution in the OPE of the two couplings, as
will be seen, differ very much from each other; and (ii) the perturbative running is very reliably known as the same
Nf = 2 + 1 + 1 lattice configurations provides, via the T-scheme coupling determination, with an accurate estimate
of ΛQCD [32], compatible with PDG world average [1], that can be used here. We put ourselves in a near unbeatable
position to check the OPE framework, as the nonperturbative contributions supplementing the perturbative running
to account for the lattice data of both couplings can be properly isolated and compare to each other. One can see
then if they differ as much as OPE predicts.
The structure of the paper is as follows: in section II the renormalization schemes and lattice setup used are

described. In section III a reminder of the OPE results has been included. Finally in section IV our main results are
presented and we concluded in section V.

II. RENORMALIZATION SCHEMES.

The starting point for this calculation shall be the gauge configurations produced by the European Twisted Mass
collaboration (ETMC) for 2+1+1 dynamical quark flavors that provide a realistic description of the QCD dynamics
including heavy flavours. These gauge field configurations, after fixing Landau gauge, allow to compute the renormal-
ized running coupling in momentum substraction schemes. In particular we will focus on the coupling defined from
three-gluon vertices.
The three-gluon vertex (Fig. 1) can be computed from the lattice for any momenta p1, p2 and p3 satisfying p1+p2+

p3 = 0. In particular, we will concentrate on the symmetric three gluon vertex (p21 = p22 = p23) and the asymmetric one
(p3 = 0 and therefore p2 = −p1). The renormalized coupling can be straightrowardly defined from gluon propagators
and vertices (a detailed description of the procedure can be found in [3]). The renormalized coupling is defined by:

gR(µ
2) =

Z
3/2
3 (µ2)G(3)(p21, p

2
2, p

2
3)(

G(2)(p21)G
(2)(p22)G

(2)(p23)
)1/2 (1)

where µ2 is the renormalization scale, to be fixed for each renormalization scheme, G2(p2) is the bare gluon propagator
extracted from the lattice:

G(2)(p2) =
δabg

µν

3(N2
C − 1)

〈Ãa
µ(p)Ã

b
ν(−p)〉 , (2)

Z3(µ
2) = µ2G(2)(µ2) is the gluon field renormalization constant, and G(3)(p21, p

2
2, p

2
3) is the scalar function extracted

from three gluon vertex G(3)abc

µνρ(p1, p2, p3) = 〈Ãa
µ(p1)Ã

b
ν(p2)Ã

c
ρ(p3)〉 This scalar function is defined as the coefficient

of the tree level tensor and is obtained after projecting the vertex onto the adequate tensor as described in [3].

This procedure allows to compute the running coupling α(µ2) =
g2

R
(µ2)
4π in momentum substraction schemes both

from the symmetric three gluon vertex (MOM) and from the asymmetric one (M̃OM).
The symmetric vertex requires the three momenta p1, p2 and p3 to satisfy the constrain p1 + p2 + p3 = 0 simulta-

neously with p21 = p22 = p23 which is rather rare in the lattice. It means that there are rather few momenta where the
vertex can be evaluated. For the asymmetric one, the constrain is less restrictive and the vertex can be evaluated at
any lattice momenta p.
As mentioned above, the two and three-point gluon Green functions will be computed from lattice gauge field

configurations simulated at Nf=2+1+1 by the ETM collaboration [36, 37]. The details of the computation can be

of the background field method and the pinching technique [34, 35].
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FIG. 1: Three gluon vertex. MOM renormalization prescription implies that full three point function behaves as a renormalized
coupling (grey circle) times the three outgoing renormalized propagators.

found in [14] and references therein. We have exploited here a set of 800 configurations for a lattice volume 483x96
and β = 2.10, where the lattice parameters κc = 01563570, µl = 0.002, µσ = 0.120, µc = 0.385, are fixed so that light
quark mass is set to ∼ 20MeV and the strange and charm are set to ∼ 95MeV and 1.5GeV respectively (see [14] and
references therfein for the details of the simulations). According to Ref. [32], the lattice spacing corresponding to this
set-up is a(2.10) = 0.0583(11)fm.
Contrarily to the continuum ones, the lattice scalar functions do not depend only on the momentum squared p2,

due to the lattice discretization. Indeed, the lattice discretization breaks the O(4)-symmetry introducing an spurious
dependence on the invariants of the group H(4). These O(4)-breaking lattice artefacts can be efficiently removed by
using the so-called H(4)-extrapolation procedure [38–40]. This method works efficiently for gluon propagator and
asymmetric vertex, where there is a high number of momenta at which the Green function can be evaluated. The
correction of lattice artifacts for the symmetric vertex is not so efficient due to the lower number of lattice momenta
and the fact that it depends on three momenta instead of one. This introduces a limitation for the larger momenta

that can be used in the schema MOM that, in practice, implies a smaller fitting window than in M̃OM scheme. As
will be seen in next section, we take momenta below a(2.10)p ≃ 1.6 (around 5.5 GeV, in physical units) for the fit

in the M̃OM case, while the fitting window is restricted only to momenta below a(2.10)p ≃ 1.3 (around 4.5 GeV) for
the fit in MOM, to avoid the noise induced by the non-properly-cured lattice artefacts.

III. OPE NONPERTURBATIVE PREDICTIONS.

The running of the strong coupling constant with momentum, obtained from QCD perturbation theory corrected
by a nonperturbative leading OPE power contribution, can rather generally read [12, 14]

αR(µ
2) = αpert

R (µ2)


1 +

cR
µ2

(
αpert
R (µ2)

αpert
R (q20)

)1−γA
2

0
/β0

R
(
αpert
R (µ2), αpert

R (q20)
) g2R(q20)〈A2〉R,q2

0

4(N2
C − 1)

+ o

(
1

µ2

)

 , (3)

where the subindex R specifies any particular renormalization scheme and αpert gives the running behaviour pertur-
batively obtained from the integration of the QCD beta function at that R scheme,

d

d lnµ2
hR = −

(
β0h

2
R + β1h

3
R + βR

2 h
4
R + . . .

)
(4)

with hR = αR(µ
2)/(4π) and β0 = 11− 2/3Nf , β1 = 102− 38/3Nf , being scheme-independent coefficients. The result

for αpert from the integration of Eq. (4) and its conventional perturbative inversion, in terms of momenta and the
QCD scale ΛR, can be found in [1]. Within the bracket, cR is given by the tree-level Wilson coefficient contribution,

γA2

0 is the first coefficient for the local operator A2 anomalous dimension, determining the Wilson-coefficient leading-
logarithm contribution,

1− γA2

0 /β0 =
27

132− 8Nf
, (5)

which is found to be scheme-independent; and R(α, α0) encodes the higher-order logarithmic corrections for the
leading Wilson coefficient [16]. In refs. [12, 15, 32], Eq. (3) particularized to the MOM T-scheme accounted very
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accurately for the running of the corresponding lattice data with momenta. This allowed for a precise determination
of ΛT , and hence ΛMS pretty in agreement with the PDG [1] ”world average”.

Hereupon, we will mainly concentrate on the running coupling renormalized in both MOM and M̃OM schemes, for
which the three-loop beta coefficients are known 2. For Nf = 4, one is left with

βM̃OM
2 = 814.56 , βMOM

2 = 641.16 ; (6)

and with the following ratios

ΛMS

Λ
M̃OM

= 0.443 ,
ΛMS

ΛMOM
= 0.463 , (7)

that can be exactly obtained from the first non-trivial coefficient for the expansion of MOM and M̃OM couplings
in terms of the MS one. The tree-level Wilson coefficients for the strong coupling in both schemes have been also
studied [7, 8] and their computation gives

c
M̃OM

= 3 , cMOM = 9 . (8)

It is worthwhile to recall that, in the M̃OM case, as a consequence of the soft gluon field in the three-gluon Green
function defining the vertex, Eq. (3) only results after the factorization of a leading higher-dimension condensate 3

in the OPE, induced by a vacuum insertion approximation [8] (the same vacuum insertion approximation have been
proven to work for the OPE expansion of the ghost-ghost-gluon Green function [41]). The function R(α, α0) is related
to the A2 anomalous dimension but also depends on the scheme we used to define the coupling [16]. For the MOM
T-scheme [11], as the coupling can be directly related to gluon and ghost propagators involving no three-point Green
function, it has been computed at the O(α4)-order [12, 16]. Its computation is nevertheless cumbersome when dealing
with three-gluon Green function is needed. Thus, in the following, we will take R(α, α0) = 1 and will work at the
leading-logarithm approximation.

IV. RESULTS.

Then, Eq. (3) can be fitted to the lattice data, with g2〈A2〉 as a free parameter, for both MOM and M̃OM
couplings, with their perturbative predictions obtained by the integration of the beta function with the coefficients
given in Eq. (6) and the ratios of Λ’s in Eq. (7). We will take ΛMS = 314 MeV, as an input from ref. [32]4 where, as
above mentioned, the MOM T-scheme coupling is computed from the lattice and confronted with Eq. (3), properly
particularized (ref. [32] upgrades the previous results of refs. [14, 15]).
Figs. 2 shows the lattice results for the running coupling constant and the best fits with Eq. (3) and g2〈A2〉

from Tab. I, in the MOM and M̃OM schemes. Within the framework of OPE and SVZ sum-rules approach, the gluon
condensate needs to take similar values in the OPE for the two couplings. The agreement in the values of the extracted
condensates is therefore a strong indication of the validity of this approach, at least for a window of momenta not
lying in the deep IR domain. As the nature of the OPE condensates is the object of a recent controversy [43, 44], It
is worth to point out that our check is validating the sum-rules factorization but does not tell necessarily anything
about the nature of the condensates.

MOM M̃OM T-scheme

g2〈A2〉 (GeV2) 5.5 ± 0.8 6.0 ± 1.3 5.5 ± 1.0

χ2/d.o.f 0.76 0.89

TABLE I: Condensate g2〈A2〉R,µ0
renormalized at µ0 = 10GeV extracted from the best fit of the lattice running couplings

αMOM(µ) and α
M̃OM

(µ). For comparison, the MOM T-scheme result, estimated from ref. [32] data as explained in the text, is

also included.

2 The four-loop beta coefficient appears also to be known in the M̃OM case
3 The anomalous dimension first coefficient for the lower dimension operator in the M̃OM-case OPE expansion have been proven to differ
from that of A2 only in a negligible way [8].

4 It should be noted that [32] applied now a very recent result for the lattice scale setting [42], which slightly differs from that applied in
refs. [14, 15], shifting down all the dimensionful quantities.
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FIG. 2: (Color online) Lattice data for αMOM(µ) [left] and α
M̃OM

(µ) [right] vs the momenta µ in GeV. The full line shows,

in both cases, the non-perturbative fit discussed in the text while the dashed line stands for the corresponding perturbative
running.

The values of the condensates obtained in this paper are sizably larger than the ones reported in [14, 15, 32] for the
Taylor scheme. It is however important to note that, in the Taylor scheme analysis of those papers, the beta function
is expanded at the four-loop level for its integration and that the Wilson coefficient has been computed up to the

O(α4)-order. Here, in our analysis of MOM and M̃OM couplings, we have only used a three-loop beta function and
Wilson coefficient at the leading order. Indeed, the effect of including higher orders in either the perturbative part of
Eq. (3) or the Wilson coefficient is well known to reduce the value of the condensate [11, 45]. Alternatively, for the
sake of a consistent comparison, we repeated the analysis of Ref. [32] under the same approximation level (the best
which can be here coherently attained) applied for the current one: the perturbative coupling expanded only up to
three-loops and the Wilson coefficient kept at the leading-logarithm approximation. One then obtains

g2〈A2〉 = 5.5(1.0) GeV2 , (9)

always at the renormalization point µ = 10 GeV. This last result happens to be exactly the same as the one for MOM

and to lie in the same ballpark as that for M̃OM, as can be seen in Tab. I. Indeed, one can also apply both ΛMS from
[32] and g2〈A2〉 from Eq. (9) to Eq. (3) and, without free parameters to be fitted, account for the lattice data for

MOM and M̃OM couplings with χ2/d.o.f. that would be then 1.37 for the former and 0.76 for the latter.
It is worthwhile to emphasize that refs. [14, 15, 32] exploited the same (800) lattice configurations for the gauge

fields at a bare coupling, β = 2.1, here analysed, but also configurations at β = 1.90 for three different light-quark
twisted masses (500 each) and at β = 1.95 (150). The latter gives us the grounded conviction that lattice artefacts
are properly under control in obtaining ΛMS and g2〈A2〉 from the Taylor coupling, as done in Eq. (9). Therefore, that

Eq. (3) successfully describes the MOM and M̃OM coupling data for a given momentum window, with the same ΛMS
and g2〈A2〉, strongly indicates that lattice artefacts appear to be negligible also for them, after H(4)-extrapolation,
within such a window.
That the condensates obtained from both MOM and M̃OM takes the same value is a demanding result, as the

Wilson coefficient is three times larger for the former than for the latter. This implies that deviations from the
perturbative behaviour should be very different in both cases, being consistent with the ratio of 3 given by Eq. (8).
This can be seen in Fig. 3.a and, otherwise presented, as follows:
Eq. (3), in the leading logarithm approximation, and Eq. (8) left us with:

αMOM(µ2)

αpert
MOM(µ2)

− 1

α
M̃OM

(µ2)

αpert

M̃OM
(µ2)

− 1

=
cMOM

c
M̃OM

+O

(
α,

1

µ2

)
= 3 +O

(
α,

1

µ2

)
, (10)

which provides with a very demanding consistency check for the OPE and SVZ sum-rules approach, which is totally
equivalent to the compatibility of condensates in Tab. I. To perform this check, we need to compute Eq. (10)’s l.h.s.
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FIG. 3: [Color online] (a) For the sake of comparison, the perturbative (dashed) and OPE nonperturbative MOM (red) and

M̃OM (blue) predictions are displayed together. (b) Ratio α/αPert − 1 for the MOM (left) and M̃OM (right) schemes vs the
momenta µ in GeV. The lines show the non-perturbative fit according to Eq. (11) discussed in the text.

from the lattice data for the M̃OM and MOM three-gluon coupling and their perturbative predictions obtained again
by the integration of the beta function with the coefficients given in Eq. (6), the ratios of Λ’s in Eq. (7) and ΛMS = 314

MeV from ref. [32]. However, as the lattice momenta for M̃OM and MOM differ, and aiming at employing as large a
statistics as possible, Eq. (10)’s l.h.s. will be indirectly computed by fitting both numerator and denominator, within
as large as possible a momentum domain for each, to

αR(µ
2)

αpert
R (µ2)

− 1 = aR

(
αpert
R (µ2)

)0.27

µ2
, (11)

as suggested by Eq. (3), with aR as the only free parameter to be fitted. This can be seen in the plots of Fig. 3.b,
where it clearly appears that, as the running given by Eq. (11)’s r.h.s. is near the same for both schemes, aMOM is to
be rather larger than a

M̃OM
. Thus, once both parameters are fitted, they can be applied to compute Eq. (10)’s l.h.s.,

αMOM(µ2)

αpert
MOM(µ2)

− 1

α
M̃OM

(µ2)

αpert

M̃OM
(µ2)

− 1

≃
aMOM

a
M̃OM

=
2.28(34) GeV2

0.83(19) GeV2 = 2.7(8) , (12)

that compares remarkably well with Eq. (10)’s r.h.s. evaluated through the OPE results given by Eq. (8). It should be
noticed that, in Eq. (12), αMOM/α

M̃OM
= 1+O(α) has been applied, as corresponds to our approximation level (see

Eq. (10)). We performed the fit in a momentum window p ∈ (2.8, 4.5)GeV in the MOM case and p ∈ (2.8, 5.5)GeV

in M̃OM. The errors for the fitted parameters, aR, have been computed by applying the jackknife procedure, and
propagated then into the final result for the ratio.

V. SUMMARY AND CONCLUSIONS

We used lattice gauge field configurations, generated with four twisted-mass dynamical quark flavours (two light
degenerate and two heavy) within the framework of ETM collaboration, to compute the running of the QCD coupling
constant, αs, defined from the symmetric and asymmetric three-gluon vertices. This leads us to two different MOM-
type renormalization schemes for the coupling, where their running with momenta, roughly from 3 to 6 GeV, has
been described only after supplementing the well-known perturbative prediction with a non-perturbative correction
dominated by a non-vanishing dimension-two gluon condensate in Landau gauge, 〈A2〉.
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As can be seen in Fig. 3.a, the perturbative estimate for the coupling in M̃OM scheme is larger than the one in
MOM. This is a direct consequence from the way their three-loop β coefficients in Eq. (6) and the ratios in Eq. (7)
compare to each other. Contrarily, the OPE nonperturbative leading correction for MOM is predicted to be three

times larger than for M̃OM, irrespectively with the value of 〈A2〉. Being so that altogether, for a sufficiently large
condensate, the relative strength between the two nonperturbative couplings will result reversed with respect to the

perturbative case. We indeed found the lattice data for the M̃OM and MOM coupling to follow this reversed pattern.
We also measured the ratio between their nonperturbative corrections and found it to be 2.7(8), strongly supporting
the OPE approach to account for the nonperturbative contributions. It is worth to recall that the prediction for this
ratio is only relying on the Shifman-Vainshtein-Zakharov technology [46, 47] to compute the OPE Wilson coefficients
and the universality of the involved condensate.
Finally, the value of the condensate is also found to be consistent with that resulting from the analysis of the

running of the coupling in the MOM T-scheme, in ref. [32], after restricting the calculation there to the same order
than here. This provides thus with additional support for the very accurate estimate of ΛMS obtained therein.
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