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We calculated the phase diagram of a pure one dimensional (1D) system of hard rod bosons
when it is loaded in optical lattices of different depths by means of a Diffusion Monte Carlo (DMC)
technique. The results were compared with those for a Bose-Hubbard model for the same range of
densities and characteristic parameters. Both diagrams were found to be qualitatively similar in the
regime in which a one-band Hubbard model is adequate, being that comparison poorer when this
condition is not fulfilled.
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INTRODUCTION

After the production of the first Bose-Einstein conden-
sates in dilute alkali atom clouds [1–3], one of the most
interesting developments in the field is the confining of
these atoms in what are called optical lattices [4]. These
are an array of potential wells created by making two
coherent lasers interfere to generate an standing wave
whose periodicity in the direction of the beams is λ/2,
being λ the wave length of the chosen light. The trap-
ping of the neutral atoms in these energy minima is due
to the induction of an oscillating dipole moment that al-
lows it to interact with the electrical field of the laser
light [5] and ”feel” the potential well.

The interference of two lasers produce a set of quasi
two dimensional flattened up dilute gas clouds. If an-
other couple of beams is switched on perpendicularly to
the first ones, a series of elongated cigars are produced
[6]. The degree of confinenement in both directions could
be varied experimentally to create something very close
to a 1D system [7, 8]. In Ref. [8] a further degree of atom
constraining was imposed by introducing a third pair of
lasers in the direction of main axis of the cylinder. This
produced an 1D optical lattice, in which the 87Rb atoms
see an array of potential wells whose depth could be ma-
nipulated to change the properties of the system. Our
aim in this work is to describe these kind of elongated
1D arrangements by using a continuous Hamiltonian in-
stead of the discrete approximations that comprise the
majority of the literature. See for instance Ref. 9 and
references therein.

The most general type of these one dimensional Hamil-
tonians can be described by the expression:

H = − h̄2

2m

N
∑

i=1

[

∂2

∂z2
+ Vext(zi)

]

+
∑

i<j

V (zij) (1)

in which we have assumed that the particles are located
along the z axis. zij is then the distance between the
particles i and j, of coordinates zi and zj along that
axis. Vext(zi) is the external potential at each z coordi-
nate. For an optical lattice confining potential in three

dimensions we will have:

Vext(xi, yi, zi) =

3
∑

i=1

V0,1 sin2(k1xi) +

+ V0,2 sin2(k2yi) + V0,3 sin2(k3zi) (2)

where k1,2,3, are the wavenumbers (2π/λ) of the confining
lasers. If the particles are tightly bounded in the two
directions perpendicular to the z axis, the sin(k1xi) and
sin(k2yi) functions can be developed around xi = 0 and
yi = 0 respectively, to obtain:

Vext(xi, yi) = V0,1(k1xi)
2 + V0,2(k2yi)

2 (3)

and if the system is symmetric in the change x↔ y, then,
V0,1 = V0,2 := V0,⊥, k1 = k2 = k⊥ and x2

i + y2

i = r2⊥,
allowing us to write:

Vext(xi, yi, zi) = V0,3 sin2(k3zi) + V0,⊥(k⊥ri⊥)2 (4)

i.e., we end up with the equivalent of a 1D optical lattice
and a perpendicular harmonic confinement. If this con-
finement is such that movement in the radial direction
is greatly impeded, one can safely assume that the neu-
tral atoms are frozen in the ground state of the harmonic
trap, and use that contribution (NV0,⊥k

2

⊥, N , number of
particles in the system), as the zero of the energy scale.
We have then (making V0,3 = V0):

Vext(zi) = V0,3 sin2(k3zi) = V0 sin2(kzi) (5)

To complete the definition of the model, we have to give a
particular form for the interparticle potential V (zi − zj).
A very common approximation [10–17] , and the one we
will use here, is to consider the atoms as hard rods (the
1D counterpart of the hard spheres), i.e., V (zij) = +∞
if |zi − zj | < a, being a the diameter of the hard rod
which corresponds here to the s-wave scattering length.
When no optical lattice potential is present, this model
is exactly solvable [13, 18].

The plan of the paper is as follows. In section II, we
will describe the method we used to solve the equations
that describe the system of bosons. In section III we will
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show the results obtained in several density and interac-
tion regimes, concluding by displaying a phase diagram
for densities less than two atoms per potential well of
the optical lattice. Section IV will be devoted to the
comparison of these results with that of the one-band
Bose-Hubbard model for strictly 1D systems. We will
close with a summary and conclusions.

METHOD

To solve the Hamiltonian given in Eq. (1). we used
a Diffusion Monte Carlo (DMC) algorithm. This well-
known technique give us the exact energy of the ground
state of a system of interacting bosons within some con-
trollable statistical uncertainties [19]. This means that
we are exactly at T =0 K, what is expected to be a good
approximation in this context, given the very low tem-
peratures used in the optical lattice studies. To use this
method, we have to define what it is called a trial func-

tion,i.e., an approximation to the real wave function that
allows us to perform an importance sampling instead of
a completely random exploration of the phase space (see
further details in Ref. 19). The trial function should
be different of zero in the regions in which there can be
particles, and zero otherwise. The function used in this
work was of the form:

Φ(z1, z2, ...., zN ) =
N
∏

i=1

ψ(zi)
N
∏

j<k=1

f(zjk) (6)

Here, ψ(zi) tends to localize the particles in the wells
created by the 1D optical lattice, having as many max-
ima and minima as the number of these potential wells.
It was obtained by numerically solving the Schroedinger
equation corresponding to the Hamiltonian of Eq. (1) but
considering only one particle loaded in the 1D optical lat-
tice. The value of ψ(zi) at its minima decreases when V0

increases.
f(zkj) is a two body form analogous at the Jastrow

expression used widely in condensed matter calculations
[19]. We used for convenience the numerical solution of
a purely 1D system of two hard rods when V0= 0. This
is completely equivalent to use the analytical solution
[13] for this arrangement, since, in absence of the optical
lattice potential, we checked that the different between
the energy obtained and the exact one given by:

E

N
=

h̄2

2m

π2

3

n2a2

1 − n2a2
(7)

was less than a part in a thousand. Here, n is the density
of the hard rods, m its mass, and a its length. N is the
total number of particles.

Experimentally, an important magnitude is the recoil

energy, ER = h̄2k2

2m , that is a natural unit to define the

energy of the system. In this work, we will use that
scale and give our results in units of ER. The other two
remaining parameters to describe the problem are the
length of the hard rods, a, and the wavelength of the
laser, λ, that sets the periodicity of the optical lattice as
λ/2. As defining a as the unit of length, we have only to
define the ratio λ/a. Experimentally, it could vary from
∼ 40 to ∼ 150 (see for instance Refs. 8, 20–22 as exam-
ples of 87Rb and 133Cs atoms trapped in different optical
lattices). In this work, we fixed λ/a = 50. Other ratios
gave the same qualitative results and will be not pre-
sented here. We simulated systems with filling fractions
(number of particles per potential well) between 0 and 2.
To do so, we fixed N = 30, and changed the length of
the simulation cell accordingly (i.e., for a filling fraction
of 0.5, we used a simulation cell with 60 minima, and
length 1500a). The use of cells containing 60 atoms for
the same densities did not change the simulation results.

RESULTS

In Figs. (1) and (2), we show the dependence of the
energy per particle, in units of ER, as a function of the
depth of the potential well, for the V0’s given in the insets.
The exact solution, for V0= 0 (Eq. (7) above), is also dis-
played for comparison. The trend for small confinement
is what one would expect: the energy per particle in-
creases with respect to the homogeneous unconfined gas
in an amount that for low V0 is basically (but not com-
pletely, see below) constant for the density range consid-
ered. This is what we see for V0 =0.32 ER in Fig. (1). On
the other hand, when the external potential is tuned up,
the slope of the energy starts to develop a discontinuity
at a filling fraction of one (nλ/2 = 1). This is true even
for the smallest confinement, as the dashed lines show.
These curves are polynomial fits to the energy results
above and below the density nλ/2 =1, and are intended
as guides-to-the-eye.

The dependence of the energy with the density for large
values of V0 in shown in Fig. (2) and can be understood
in a simple way: when the filling fraction is smaller than
one, each particle remains confined in one well and the
energy per particle does not grow with the addition of
more particles (dashed lines up to nλ/2 = 1 in Fig. (2).
When there is already one particle in each well, each
additional atom adds an energy ǫ + U , where ǫ is the
energy of one particle in one cell, and U the increase of
energy due to the interaction between hard rods. In a
system with N particles and C cells, the total energy
when C < N < 2C shall be:

E = Cǫ+ (N − C)(ǫ+ U) , (8)

i.e., ǫ for every cell and additionally ǫ + U for cells con-
taining two particles. This implies that the energy per
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FIG. 1: (Color online) Energy per particle (in units of ER)
versus the filling fraction for small V0. Lines correspond to a
fit above and below filling fraction one and are meant as mere
guides-to-the-eye.
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FIG. 2: (Color online) Energy per particle (in units of ER)
vs the filling fraction for large values of V0. Lines are a fit to
a phenomenological model described in the text. Simulation
results are displayed as symbols.

particle depends on the density n = N
Cλ/2

as:

E

N
= ǫ+ U

(

1 − 1

nλ/2

)

(9)

for filling fractions between one and two (1 ≤ nλ/2 ≤ 2).

This dependence is indeed found in the numerical DMC
calculations. In Fig. (2), the energies obtained numeri-
cally have been plotted vs n for different values of V0/ER.
The dependence predicted by expression in Eq. (9) is
shown by the dashed lines, and reproduce accurately the
dependence of the energy with n for nλ/2 > 1.

From the data of Figs. (1) and (2) above, we can obtain
the chemical potential of the system as a function of the
density, n. At zero temperature and in units of ER:

µ

ER
=
∂ E

ER

∂N
= n

∂ E
NER

∂n
+

E

NER
(10)

where E is the total energy of the system and N is the
number of particles. At exactly nλ/2 = 1, we observe
a discontinuity in µ/ER, since the chemical potential
is different when we approached that point from big-
ger or smaller densities. This corresponds to the change
in the energy slope at nλ/2 = 1 in Figs. (1) and (2).
This change is similar to the obtained in the numerical
treatment of the one-dimensional Bose-Hubbard model
in Refs. 9, 23, 24. Following exactly the same procedure
used in those works, we defined the boundaries of the
Mott insulator phase as the values of the chemical po-
tential at the edges of the plateaus of the corresponding
density vs. chemical potential curves. A representative
example of those curves is shown in Fig. (3). In our case,
the gap in the chemical potential when the filling fraction
equals one depends on the magnitude of the confining po-
tential V0 of the particular optical lattice considered. If
we plot these upper and lower values of µ/ER as a func-
tion of V0/ER, we have the phase diagram of Fig. (4).
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FIG. 3: Filling fraction as a function of the chemical potential
for an optical lattice with V0/ER= 3.2 .
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FIG. 4: (Color online) Mott insulating phase diagram for a
1D optical lattice. Black circles correspond to the chemical po-
tential obtained numerically below and above nλ/2 = 1. Lines
are mere guides-the-eye. An onset shows with more detail the
cases of small V0.

There, the shadowed region corresponds to the MI
phase, being the unshadowed one a gas. In Fig. (4) we
display only the part of the diagram corresponding to
densities lower than two atoms per potential well. One
would expect another MI region to appear for the val-
ues of µ/ER and V0/ER compatible with a filling frac-
tion of two. This is what usually is displayed in a Bose-
Hubbard model description of the system [25]. A great
advantage of this continuous model with respect to that
Bose-Hubbard one is that depends on magnitudes that
are directly comparable to experiment, as V0 and ER in-
stead of more convoluted parameters as J and U (see be-
low). For instance, from Fig. (4), one is able to say that,
in a pure 1D system, there is not a MI phase for V0/ER

values less that ∼ 0.5. This is the point at which the two
µ/ER values around nλ/2=1 are compatible within their
respective error bars.

COMPARISON WITH A BOSE-HUBBARD

MODEL

There is a huge literature on the Bose-Hubbard model
applied to optical lattices in general and to a 1D optical
lattices in particular (see for instance, Refs. [6, 9] and
all the references therein). This is a discrete model, that
can be derived from a continuous Hamiltonian after a
series of simplifications. The first one is that the atoms
can be only at the minima of the potential wells of the

optical lattice, being that minima the sites of the Bose-
Hubbard model lattice. In addition, we suppose that the
wave function of the system can be written as a product
functions that depend only of the coordinates of a single
particle, i.e.:

Φ(z1, z2, ...., zN ) =

N
∏

i=1

ψ(zi) (11)

where each ψ(zi) could be developed in a basis of Wannier
functions. This equation is a particular case of Eq. (6)
when f(zjk) = 1 for all pairs kj. If we keep only the
functions corresponding to the lowest vibrational states
of the particle in each well, we have:

ψ(z) =
∑

i

wi(z − zi)bi (12)

where bi is the second quantization operator that annihi-
lates a particle localized at lattice site i. Under this set
of approximations, the Hamiltonian in Eq. (1) turns into
[26]:

H = −J
∑

〈ij〉

b†i bj +
U

2

∑

i

ni(ni − 1) +
∑

i

ǫini (13)

where 〈· · ·〉 stands for the closest neighbors and b†i (bi)
are the creation (annihilation) operators for a boson at
lattice site i. The parameters J , U and ǫi depend on
the interaction terms of the primitive Hamiltonian. In
particular:

Jij = −
∫

dz w∗
i (z)

[

− h̄2

2m

∂2

∂z2
+ Vext(z)

]

wj(z) (14)

This means that the parameter J = J〈ij〉 can be calcu-
lated by obtaining numerically the exact Wannier func-
tions without any further approximation [27] . The de-
pendence of the parameter J obtained in this way with
the potential depth V0 is represented in Fig. (5) as a
solid line. If instead of the exact Wannier functions we
use Gaussians centered at potential minima, we have this
analytical expression [6]:

J

ER
=

4√
π
ER

(

V0

ER

)3/4

exp

[

−2

(

V0

ER

)1/2
]

(15)

which has been plotted in Fig. (5) (dashed line) for com-
parison. As expected, the approximate value given by
Eq. (15) coincides with the exact one for large values of
V0 but differs significatively for small values of V0. The
parameter ǫi is simply Jii and represents the characteris-
tic energy of a particle confined in a potential well. In an
inhomogeneous unconfined system, each well could have
a different in-site energy, in that case ǫi would be differ-
ent for each i, instead of the usual case in which for all
sites we can define a common ǫ = ǫi.
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FIG. 5: (Color online) Parameter J vs the external poten-
tial depth V0 in units of the recoil energy ER, calculated by
numerical evaluation of Eq. (14) –solid line– and analytical
result given by Eq. (15) –dashed line–.

In the Bose-Hubbard Hamiltonian, the term that takes
into account the interaction between particles in the same
lattice site is U . With the same approximations than
before:

U = −
∫

dzdz′ w∗
i (z)w∗

j (z′)Vext(z−z′)wk(z)wl(z) (16)

that goes to infinity wherever z − z′ is smaller than the
hard rod length. This means that one cannot in truth use
a Bose-Hubbard model to describe a purely 1D system
of hard rods. A way out of this predicament could be to
use the approach of Olshanii [28] that considers a quasi
one dimensional system of three dimensional spheres and
produces an expression for U than depends on ω⊥, the
transverse harmonic confining frequency [6]. However,
that is not a pure 1D system directly comparable with
our calculations here.

Since we want to compare our results to the ones for
pure 1D Bose-Hubbard models in the literature [9, 25] we
have to devise a practical method to compute U in our
system of hard rods. In the Bose-Hubbard Hamiltonian,
U is the additional energy we have when we added a
particle to a site that it is already populated. If in Eq.
(13), we had only one lattice site and two particles on it,
the total energy would be E2 = 2ǫ + U . On the other
hand, if we had only one particle in this same site, the
total energy will be only ǫ. This means that we can
estimate U as:

U = E2 − 2ǫ (17)

This is what we made, computing ǫ and E2 as the cor-
responding energies of one and two hard rods in a 1D
optical lattice with only one potential minimum. The
results are given in Fig. (6) for different values of V0.
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FIG. 6: (Color online) Estimation of the value of the parame-
ter U in the Bose-Hubbard model for a system of hard bosons
vs the external potential depth, V0, both of them in units of
the recoil energy .

With the parameters J and U so obtained, we can
translate our phase diagram in Fig. (4) to the language
used for the Bose-Hubbard model. For each value of V0,
we have the two µ values that limit the MI phase in
Fig. (4). With the help of Figs. (5) and (6) we obtain
the J and U values corresponding to that V0, and dis-
play µ/U as a function of J/U in Fig. (7). The shadowed
zone is the transposition of its counterpart in Fig. (4),
and the dashed lines are the limits of the MI phase for a
pure 1D Bose-Hubbard model as calculated numerically
and presented in Ref. 9 and references therein. We can
see that the differences between the results derived form
this work and the values in the literature are bigger in
the case of high J/U values, i.e. for the case of small V0’s
(from Figs. (5) and (6) is easy to deduce that when V0 →
0, J is bigger and U smaller). It is exactly for these
small values of V0 that one expects the Bose-Hubbard
model to perform worst, since when the potential wells
of the optical lattices are shallow, the approximation of
using only the Wannier functions corresponding to the
first band gets poorer. On the other hand, in the limit
J/U → 0 (for big V0’s), the agreement is good, in con-
cordance with the soundness of using the approximations
involved in the derivation of the Bose Hubbard model for
these cases.
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FIG. 7: (Color online) Phase diagram of the optical lattice
expressed in terms of the parameters J and U of a 1D Bose-
Hubbard model.

CONCLUSIONS

We presented DMC calculations for the energy and the
Mott-insulator phase diagram of a 1D system of hard
rods loaded in optical lattices of different depths, repre-
sented by the V0 parameter. We found that for high V0’s
the energy of the system could be described by a simple
expression relative to the number of wells occupied by one
and two atoms. We can see also that there is sizeable dis-
continuity in µ/ER for a filling fraction of one, even for
small values of V0. However, if V0 < 0.5 the discontinuity
is smoothed out and the gas does not change to a Mott
insulator at nλ/2 = 1. We also compared our Mott insu-
lator phase diagram with the one obtained for a pure 1D
Bose-Hubbard model. We found that both descriptions
are similar to each other when the approximations used
to derive the discrete Hamiltonian are reasonable, i.e. for
deep potential wells. In other cases, both phase diagrams
are noticeably different.
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