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Path-integral calculation of the two-dimensional 4He phase diagram

M. C. Gordillo and D. M. Ceperley
National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign,

405 N. Mathews Avenue, Urbana, Illinois 61801
~Received 26 February 1998!

Path-integral Monte Carlo simulations have been used to determine the phase diagram of a two-dimensional
4He film in a range of temperatures and coverages where it undergoes solidification, superfluidity, and a
liquid-gas transition (0.25 K<T<1.5 K 0,s,0.094 Å22). We determine the phase-transition densities and
give the coefficients for a functional form of the free energy in the liquid, solid, and gas phases. The phase
diagram is similar to the one determined from experimental measurements of a second layer of helium on
graphite.@S0163-1829~98!04634-7#
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The onset of superfluidity in two-dimensional~2D! films
has been the object of much work both experimentally a
theoretically. In contrast to bulk helium, the superflui
normal fluid transition in 2D4He films is of the Kosterlitz-
Thouless type, with superfluidity appearing below the criti
temperature,Tc ,1 but with Bose condensation appearin
only at T50. Experimental data allows us to delimit th
superfluid region,7–12and to establish the stability boundari
between solid, liquid, and gas 2D phases2–6 on substrates
such as graphite~bare or preplated!.

When the interaction potential between the helium ato
and the absorbing surface is strong~He-graphite, He-H2) he-
lium atoms are adsorbed in well-defined layers.13–15 In
graphite, one can have up to seven of such layers; additi
amounts of4He lead to the formation of a bulk liquid. Ob
viously, the first layer is one the most influenced by t
adsorbate, while the second layer is very well approxima
by a pure 2D film.10

By means of calorimetric measurements2–5 several facts
can be established about the 2D phase diagram of4He.
There have been many experiments with the second and
layers of helium adsorbed on graphite, or first layers of
on a H2 surface. These show a liquid-gas coexistence at
temperature~;0.75–0.9 K and below!. In the case of a sec
ond layer of He on graphite, they also agree in the h
coverage stability limit of the liquid phase (s
;0.07 Å22). A solid layer forms at a higher helium den
sity. This region continues until the beginning of the form
tion of the third layer~s;0.08 Å22). There is also a line of
specific-heat maxima between 0.0425 and 0.07 Å22 at tem-
peratures lower than 1 K.2–4 The origin of that line has no
received a clear interpretation.

The location of the boundary that separates the super
and normal phases has been delineated by torsional osci
experiments.16,7,8,10–12The work of Crowell and Reppy8–10

indicates a superfluid phase in a range of coverages betw
0.05 and 0.07 Å22 at temperatures below 1 K for a second
layer of 4He adsorbed on graphite.

On the other hand, most of the theoretical work on
helium films has been made forT5 0 K. Whitlock, Chester,
and Kalos,17 by means of Green-function Monte Car
~GFMC! calculations, showed that there was a self-bou
liquid at a coverage of approximately 0.04 Å22. For lower
PRB 580163-1829/98/58~10!/6447~8!/$15.00
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densities, there would be a gas-liquid coexistence. The in
section between the curves of the energy versus tempera
of the solid and liquid phases gives a lower stability boun
ary for a 2D solid of about 0.067 Å22. The results given by
Giorgini et al.,18 with a slightly different potential and ob
tained by a diffusion Monte Carlo~DMC!, confirm the above
conclusions. The same can be said of the hypernetted-c
calculations of Umet al.19 There are also calculations with
3D model atT50 K ~Refs. 20,21! ~substrate1two frozen
helium layers!, but they produce phase limits very similar
pure 2D calculations. The path-integral Monte Carlo~PIMC!
calculations of Ceperley and Pollock1 take into account the
thermal excitations. They show that ats 5 0.0432 Å22 and
for zero pressure, the superfluid-normal fluid transitions
curs at T50.7260.02 K. A recent article22 describes the
results of path-integral Monte Carlo calculations on a sec
layer of 4He adsorbed on a flat structure modeling graph
The authors model the first layer of helium atoms as a fro
hexagonal-packed structure. They show the boundarie
the phase diagram at low temperatures, indicating the ph
transitions in the solid region, but neglecting the descript
of how the phase diagram evolves as the temperature
creases.

Here, we present a set of PIMC calculations atT<1.5 K
and s,0.094 Å22, to determine the equilibrium regions o
the 2D solid, liquid, and gas and their coexistence region

METHOD

The PIMC method is a method which can calculate qu
tum properties by mapping the quantum system onto
equivalent classical model. The basic idea is to expand
density matrix

r~R,R8;b!5^Ruexp~2bH !uR8& ~1!

into a path integral

r~R,R8;b!5E r~R,R1 ;t!r~R1 ,R2 ;t! . . . r~RN21 ,R8;t!

3dRdR1dR2dRN21dR8, ~2!
6447 © 1998 The American Physical Society
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TABLE I. Energy versus coverage and temperature in the fluid phase. All calculations were done in a square periodic cell conta
atoms.

s (Å 22) T50.25 K T50.5 K T50.75 K T51 K T51.25 K T51.5 K

0.0761 1.00960.010 1.00360.008 1.01560.008 1.03860.008 1.07460.013 1.07760.010
0.0677 0.08960.012 0.12660.014 0.14360.016 0.18760.026 0.28760.031 0.43360.014
0.0592 20.57760.012 20.55960.014 20.55260.016 20.41460.026 20.23460.031 20.00460.014
0.0508 20.85360.009 20.85960.016 20.80660.017 20.66860.027 20.37960.021 20.08460.012
0.0423 20.91960.010 20.88760.010 20.78960.019 20.54160.022 20.23560.021 0.04360.011
0.0338 20.81660.013 20.75260.011 20.55460.022 20.33060.022 20.03060.015 0.26860.010
0.0254 20.61160.015 20.52260.013 20.27260.016 20.06060.012 0.21760.012 0.52960.010
0.0169 20.47560.011 20.36060.014 20.04660.013 0.23360.010 0.48660.009 0.77160.009
0.0085 20.28760.025 20.08860.025 0.22560.016 0.53960.015 0.83960.018 1.13460.009
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where several complete sets of 2D coordinates (R1, . . . ,
RN21) have been introduced. Each of theseR8s represent the
positions of all the particles in the system, in such a man
that each particle is described byN11 coordinates forming a
path. The additional degree of freedom takes into acco
the quantum fluctuations. In Eqs.~1! and~2!, b is the inverse
temperature (b51/kBT), while t5b/N. N is the number of
additional coordinates introduced~also calledtime slices!
and H is the system hamiltonian. The Bose statistics
accounted for by symmetrization of the density matrix:

rBose~R,R8;b!5
1

M !(P
r~R,PR;b!. ~3!

M is the number of atoms, andP is a permutation of particle
labels 1,2. . . ,M . The average of any observableO, defined
by

O5^RuO exp~2bH !uR8& , ~4!

can be found by expanding in a similar way. Additional d
tails about the method are given elsewhere.24

Our aim in the present work is to calculate the bounda
and coexistence regions of the different phases of a pure
4He film: solid, normal liquid, superfluid, and gas.~We do
not allow for the possibility of a hexatic phase, and can
distinguish between commensurate and incommensurate
ids, because we do not include a substrate.! We employed
the canonical ensemble, i.e., in each simulation we kept fi
the temperatureT, the number of particlesM , and the di-
mensions of the simulation cell. The temperature was
between 0.25 and 1.5 K, with calculations every 0.25
~with an additional set of points at 0.87 K!, and the densities
were taken in the interval 0,s,0.094 Å22. Most simula-
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tions contained 30 atoms. The coverage was varied
changing the cell size. Two types of cell were used: a squ
simulation cell, and a rectangular cell corresponding to
triangular solid at intermediate and high coveragess
.0.05 Å22). The time stept was fixed for all simulations a
0.025 K21, tests showing that this is sufficient for the ran
of densities considered. We used the Aziz25 potential for the
interaction between the helium atoms. To determine
finite-size effects in our calculations, we made two sets
simulations atT51.0 and 0.87 K with 100 atoms and dens
ties around the critical point, finding very small differenc
with the results for fewer atoms.

RESULTS

In Tables I and II we show the calculated energies. Ta
I indicates some results for the total energy and their dep
dence on the temperature and density when we use a sq
cell ~‘‘liquid’’ !, while in Table II we can see the same, b
for a rectangular cell~‘‘solid’’ !. The energy per atom an
pressure were used to determine the free energy and the
the phase lines as we discuss below.

Figure 1 is a summary of how the phase depends on t
perature and coverage. In general terms, we can say
there exists a liquid-gas coexistence for densities betwee
and 0.044 Å22 for temperatures below 0.87 K. The locatio
of the boundaries is very similar to the experimental on
although there are several noticeable differences~see below!.
For this coverage range and at higher temperatures the s
phase is the normal 2D fluid. For greater densities~0.044
Å22 ,s,0.068 Å22) the ground state is a superfluid, wit
the transition to a normal fluid located in the temperatu
range from 0.72 to 0.90 K. Above the critical temperatu
done
TABLE II. Energy versus coverage and temperature for the triangular solid. All calculations were
with 30 atoms in a rectangular cell consistent with the solid symmetry.

s (Å 22) T50.25 K T50.5 K T50.75 K T51 K T51.25 K T51.5 K

0.0931 4.8660.04 4.8860.03 4.9460.05 5.0060.04 4.9560.04 4.9560.05
0.0846 2.4560.05 2.4760.03 2.5060.05 2.4860.03 2.4560.03 2.5060.03
0.0761 0.9860.03 1.0160.04 1.0060.03 1.0160.03 1.0260.03 1.0260.02
0.0677 0.0860.03 0.1360.02 0.1060.03 0.1860.03 0.2760.03 0.4660.02
0.0592 20.3360.02 20.3360.03 20.2260.02 20.1460.02 20.0660.02 0.0560.02
0.0508 20.6260.02 20.5660.02 20.4660.02 20.3260.02 20.1660.02 20.0460.02
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Tc , we see a line of maxima in the specific heat~line at T
;1.15 – 1.30 K inFig. 1! as predicted by the Kosterlitz
Thouless theory.

If the helium coverage is greater than;0.068 Å22 ~de-
pending on the temperature!, we observe a narrow coexis
ence zone region between the liquid and the triangular s
phase. The slope of the boundaries changes with temp
ture; when the boundary is with the superfluid phase,
slope is slightly negative, being positive in the zone of t
normal fluid. This is because the superfluid has fewer e
tations and hence lower entropy than the solid. At the high
temperature of this study~1.5 K!, we observe a 2D solid fo
coverages greater than 0.073 Å22. Next we will discuss in
detail the features of the calculated phase diagram and
the results were obtained.

In order to obtain the coexistence, we fit the calcula
energy and pressure to polynomials. For this purpose
partitioned our runs into gas, liquid, and solid and cho
appropriate forms for each phase.

We consider as ‘‘solid’’ all the structures calculated
using the rectangular lattice and whose structure fact
S(k), are greater than 4. This means a coverage range 0.
<s<0.0931 Å22. Conversely, we defined as ‘‘liquid’’ the
structures obtained with the square simulation cell w
S(k),2 and whose densities are in the limit or outside
L1G coexistence region, i.e., coverages in the inter
0.0423<s<0.0592 Å22. We obtained the free energies
both ‘‘phases’’ by fitting the energiesand pressures to a
polynomial in both coverage and temperature. The assu
expression for the free energy is

F~s,T!5(
i 50

m

(
j 50

n

bi j s
iTj . ~5!

Then, we can write the energy per He atom and the pres
as

E~s,T!52(
i 50

m

(
j 50

n

~ j 21!bi j s
iTj , ~6!

FIG. 1. Phase diagram for 2D4He as a function of coverage an
temperature. The upper dotted line marks the loci of the maxim
the specific heat. The lower dashed line shows the spinodal lin
the liquid-gas transition. The different phases are indicated by
or symbols (L1G, liquid1gas coexistence zone; SF, superfluid!.
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p~s,T!5(
i 51

m

(
j 50

n

ibi j s
i 11Tj . ~7!

We use our simulation data to fitsimultaneouslythe val-
ues of the total energy and the pressure~obtained from the
virial relation! to obtain thebi j coefficients. Using both con
straints the fit is much better. The excitation spectra imp
that at low temperatureE2E0}T3; thus we setbi15bi2
50 for all i . We used the same values ofm and n in the
‘‘solid’’ and ‘‘liquid’’ cases: m53 andn55 as was done a
previous zero-temperature17,18 calculations. That allows rea
sonable values ofx2 for both series of fits, as can be seen
Table III. For the purposes of calculating the specific he
we also fit the energies below 2.5 K to a similar express
to that of Ref. 1, i.e., a~5,4! Padéwith a low-temperature
limit as above.

In the gas phase~coverages lower than 0.010 Å22) we
assumed a virial form for the free energy, expanding in po
ers of coverage and inverse temperature:

F~s,T!5TlnF2p\2s

mHeTeG1(
i 51

2

(
j 51

n8

bi j s
iT12 j , ~8!

with n855 andmHe the mass of the4He atom. The first term
of the right-hand side is the free energy for a 2D ideal ga23

The fitting coefficients are shown in Table III.

Liquid-gas coexistence zone

Figure 2 shows the pressure versus coverage for the s
temperatures for which we carried out simulations~0.25–1.5
K!. In this density range we verified that we do not have

in
of
xt

TABLE III. Coefficients of the least-squares fit of the total e
ergy per He atom and pressure.

Square Rectangular Gas

Number of points 22 24 8
x2/n 1.24 1.61 0.33
b00 21.65 21.823101

b03 6.49 2.623101

b04 4.61 23.513101

b05 27.94 1.813101

b10 9.353101 8.353102 1.743105

b11 28.363105

b12 1.593106

b13 23.813102 21.133103 21.483106

b14 21.333102 1.613103 6.933105

b15 3.873102 27.963102 21.273105

b20 23.113103 21.373104 22.053107

b21 9.823107

b22 21.863108

b23 6.943103 1.613103 1.753108

b24 1.543103 22.373104 28.153107

b25 26.713103 1.143104 1.503107

b30 3.103104 8.033104

b33 24.073104 27.223104

b34 27.513103 1.113105

b35 23.993104 25.313104
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solid phase by examining the structure factors as show
Fig. 3. A structure factor corresponding to a solid has one
several isolated peaks withS(k).4. In the upper part of Fig
3, we show one such result at a temperature of 0.75 K an
density of 0.0761 Å22, well inside the solid region, as w
can see in Fig. 1. In Fig. 3 we show two other structu
factors at the same temperature. The diagram in Fig. 1 i
cates that this temperature is the only one in our study
which we have three different phases: 2D gas, liquid, a
solid. For higher temperatures, there is not a distinction
tween a liquid and a gas, and for lower ones, the gas ha
inconveniently low coverage. We can observe striking diff
ences in theS(k)’s: instead of a sharp peak, a 2D liqu
presents a round maximum for a reciprocal vector co
sponding approximately to the first-neighbor distance. Th
is also a difference between a liquidlike and a gaslike str
ture factor. In a gas, we have thatS(k) becomes practically
constant fork.1 Å21, and thatS(0) is much greater than in
the liquid case. If instead of a pure liquid or gas phase,

FIG. 2. Coverage dependence of the pressure~in K/Å 22) in the
fluid density range. Diamonds indicate the results for 1.5 K, a
from there on, the symbols display at the data for all temperatu
ending at 0.25 K~stars!. The line shows the results of Giorgin
et al. using a DMC at zero temperature~Ref. 17!.

FIG. 3. Structure factors,S(k) of three different phases at 0.7
K. Squares represent the structure factor for a solid~s50.0761
Å 22). Crosses show the values for a liquidS(k) ~s50.0508 Å22)
and diamonds are the data for a gas phase~s50.0085 Å22).
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are in the two-phase region zone or above the critical po
we have a mixture of the features of the pure liquid and
structure factors.

The same information can be obtained by looking at
radial distribution functions,g(r )’s, but in a less quantitative
way. In Fig. 4, we can observe that a gas radial distribut
function ~solid line! shows only a maximum, and that, qui
reasonably, the number of maxima and their height increa
in the liquidg(r ) ~dashed line! and, over all, in the solid one
~dotted curve!. However, there is not a clear differenc
among the radial distribution functions for the three cases
there is for the structure factors.

The behavior of the pressure isotherms can be divi
into three groups. ForT.1 K the pressure is a monoton
cally increasing function of the coverage. However, the i
therm atT5 0.87 K is different; there is a flat zone betwee
the densities 0.0338 and 0.0169 Å22. That means that there
is a region (s;0.02 – 0.03 Å22) in which the second de
rivative of the pressure with respect to coverage (d2p/ds2)
is zero. This implies thatT50.87 K is the critical tempera-
ture for the liquid-gas phase transition. In accordance w
that, for T,0.87 K, ~0.75, 0.5, and 0.25 K!, the pressure
isotherms show instability zones~where dp/ds,0), that
correspond to a two-phase coexistence region, and wh
range ins increases as the temperature decreases.

To determine the limits of the liquid-gas coexisten
zone, we matched the chemical potential of the liquid a
gas phases. For constant number of particles and temp
ture, this implies

E
AG

AL
pdA5E

sG

sL 2p

s2
ds50, ~9!

wheresG and sL are the equilibrium coverages of the g
and liquid phases, respectively (AG and AL stand for the
corresponding areas! andp is the pressure. To carry out th
necessary integrations, we fit the isotherms to three diffe
polynomials~one for each temperature below 0.87 K!. Using
the fits, we calculate the equilibrium densitiessG and sL .
We also used them to obtain the spinodal curve defined
(dp/ds)50. This is the limit of metastability of the given

d
s,

FIG. 4. Radial distribution functions for the same coverag
shown in Fig. 3. Solid line, gas; dashed line, liquid; dotted lin
solid.
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phase. The equilibrium and spinodal coverages are give
Table IV and displayed in Fig. 1.

If we compare those results with the experimental d
given in Refs. 2 and 4 for a second layer of helium in grap
ite, we can say that our coverage limits for the liquid-g
coexistence zone are very similar to the measurements a
temperatures. However, the calculated critical tempera
(T;0.87 K! is different from the experimental one (T
;0.75 K!. On the other hand, the data of4He on top of
molecular hydrogen5 finds a critical temperature identical t
that obtained in our simulations (T;0.87 K!. In addition,
Ref. 10 reports a slightly greaterTc for a third layer of he-
lium adsorbed on graphite. Our results are strictly corr
only for a mathematically two-dimensional4He film. This is
a good model for some but not all real substrates.

Figure 2 also displays the isotherm atT50 K obtained in
the DMC calculations by Giorginiet al.18 We observe that
their data is very similar to the results for our lower tempe
ture isotherm (T50.25 K!, even if the potential is slightly
different. Moreover, if we compare the energies at the m
mum of the energy curves in both models, we obtain co
parable values;20.919 K versus20.89706 of Ref. 18, a
discrepancy of about 2%.

Solid-liquid coexistence

To calculate the solid-liquid phase line, we estimated
free energies per He atom and performed the ‘‘double t
gent construction’’ between the two phases. The slope of
tangent is the equilibrium pressure. In Fig. 5, we display b
the free energy and the tangent line for a temperature of
~lines!. The symbols represent the values of the total ene
per atom in the rectangular~solid, diamonds! and square~liq-
uid, pluses! simulation cells. As we can see, atT51 K, the
total energy is slightly higher than the free energy becaus
the entropy. That difference increases with temperature
such a manner that atT50.25 K, free and total energy ar
nearly identical, being appreciably different atT51.5 K.

The limits of the solid-liquid coexistence zone for all tem
peratures are given in Table V~and displayed in Fig. 1!. As
we can see, the two-phase zone is rather narrow, w
means there is a solid phase in a range of coverages gr
than;0.07 Å22. That limit would be low enough to allow
the existence of a stable solid before the completion of
second and third layers of helium on graphite~0.08 and
0.076 Å22, respectively!. However, while for the second
layer there are experimental data that support the existe

TABLE IV. Coexistence and spinodal coverages for three te
peratures below the critical temperature for the liquid-gas ph
transition. All values are in Å22 and the uncertainty for all of them
is 0.002 Å22. G andL stand for gas and liquid phases andsG and
sL for the low and high coverages of the spinodal curve. A
shown is the equilibrium pressure~in K/Å 2, its error bars are
60.0001K/Å2).

T ~K! sG sL ssG ssL P

0.25 0.0 0.044 0.010 0.035 0.0001
0.50 0.0 0.044 0.011 0.037 0.0001
0.75 0.009 0.043 0.015 0.038 0.0040
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of a solid phase at high coverages~or at least of a solid-liquid
coexistence!,2,4 for third and successive layers there is
such evidence.10 The likely explanation is that one canno
ignore movement in the perpendicular direction for tho
higher layers. That limits the existence of the solid to the fi
few layers, unless the substrate has an unusually strong b
ing energy.

Normal fluid-superfluid

The density range between the fluid-gas and solid-liq
two-phase regions is the stability range of the liquid. ForT
;0.72 – 0.90 K,depending on the coverage, we found
superfluid, while for higher temperatures and densities low
than 0.06 Å22, we have a normal liquid. We define a supe
fluid phase by a nonzero superfluid fraction~not by momen-
tum condensation, since that only exists in 2D in the grou
state.! The fraction of helium atoms in the superfluid pha
can be estimated from the mean squared winding numb24

The winding number is the flux of paths around the perio
boundary conditions of the simulation cell.

However, size effects smear out the transition between
normal fluid and the superfluid~see Fig. 6!. To determine the
critical temperature, we used the following relations from t
Kosterlitz-Thouless theory:16,1

-
e

FIG. 5. Free energy versus the atomic area at 1 K. Symb
display the results of the total energy obtained in the simulati
~diamonds, solid values; crosses, fluid!. The solid and dashed line
are least-squares fits to the experimental data. The dashed-d
line represents the common tangent line of the Maxwell constr
tion.

TABLE V. Coexistence coverages for solid-liquid (S-L) transi-
tion in Å22. The error bars are 0.0010 Å22. Also shown is the
equilibrium pressure.

T ~K! sL sS p ~K/Å 2)

0.25 0.0680 0.0711 0.466
0.50 0.0675 0.0708 0.449
0.75 0.0667 0.0702 0.418
1.00 0.0663 0.0693 0.406
1.25 0.0668 0.0698 0.431
1.50 0.0717 0.0735 0.615
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dK21

dl
54p3y2~ l !, ~10!

y~ l !

dl
5@22pK~ l !#y~ l !, ~11!

where

K~ l !5
\2ss

mkBT
~12!

with initial conditions

K~ l 50!5
\2s

mkBT
~13!

y~ l 50!5exp~2bEc!. ~14!

The integration limits are froml equal to zero to l
5 ln@L/2d#, with L being the size of the simulation cell. Th
two free parameters,Ec ~‘‘vortex core energy’’! and d
~‘‘vortex core diameter’’! are obtained by a least-squares
to the simulation results.1 We performed two sets of fits fo
coveragess50.0508 Å22 ands50.0592 Å22. The third
point displayed in Fig. 1 was taken from Ref. 1. TheEc and
d’s values obtained for the three coverages are given
Table VI. The critical temperature is then the temperature
which ss50 whenL→`. In Fig. 6 we show the tempera

TABLE VI. Equilibrium parametersEc andd for the Kosterlitz-
Thouless theory as obtained from a least-squares fit to the supe
fraction. The critical temperature for superfluid phase transition
shown in the last column.

s (Å 22) Ec(K) d ~Å! Tc

0.0432 2.760.2 3.760.4 0.7260.02
0.0508 2.560.2 3.760.7 0.8660.02
0.0592 2.460.1 4.660.3 0.9060.03

FIG. 6. Superfluid fraction versus temperature for a coverags
5 0.0508 Å22. The diamonds are the simulation results, while t
solid line is the result of a least-squares fitting procedure~see text!.
The dotted line is the result of the application of the Kosterli
Thouless theory to a system with the same parameters, in the
of infinite area.
in
at

ture dependence of thess /s ratio for s50.0508 Å22. The
solid line corresponds to the least-squares fit, and the do
one indicates the limit forL→` (Tc50.8660.02 K!.

In the Kosterlitz-Thouless transition there is also a ma
mum in the specific heat at temperatures aboveTc . To de-
termine the locus of those peaks shown in Fig. 1, we took
derivative (dE/dT) and took note of the temperature
which a maximum exists. The temperature dependence o
energy is shown in Fig. 7 for a coverages50.0508 Å22. In
Fig. 8, we display the data for the specific heat for the sa
coverage. The solid line is the heat capacity determined
differentiating the~5,4! Padéwe fit to the energy at this
coverage. The dashed line are the results of Greywall4 with a
coverage of 0.1700 Å22 ~full monolayer of He on graphite
1s250.05 Å22 on the second layer!. The maximum of the
experimental specific heat is located at a temperature slig
lower than the one obtained in our simulations. That pro
ably could be attributed to the movement of the atoms in

FIG. 7. Temperature dependence of the energy for the s
coverage shown in Fig. 6. Diamonds are simulation results, and
line represents a least-squares fit.

uid
s

-
it

FIG. 8. Specific heat versus temperature fors50.0508 Å22.
The symbols correspond to the numerical derivative of the sim
tion data given in Fig. 7, and the line is the derivative of the~5,4!
Padéused as a fit. The dashed line shows the experimental re
of Greywall ~Ref. 4! at a second layer coverage of 0.05 Å22.
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z direction,14,21 not taken into account here, since the con
bution due to the first layer has been subtracted4 out.

The line of maxima was extended to join the critical po
(T;0.87 K!. This line, together with the lower coverag
L1G coexistence zone, produces a boundary with a sh
very similar to that in experimental phase diagrams obtai
by heat-capacity experiments.4,2 However, our results indi-
cate that part of that boundary is not a coexistence zone
the stability zone of a superfluid. Thus, the experimental l
can be interpreted as the signature of the Kosterlitz-Thou
transition.

Once again, those results are compatible with the exp
mental data of Crowell and Reppy.8,10 By means of torsiona
oscillator experiments they found that for a second la
of helium on graphite, the coverage interval for a superfl
was between;0.05 and 0.07 Å22 ~for temperatures lowe
than 0.75 K!. The upper limit is very similar to the lowe
boundary of the solid-liquid coexistence region as it appe
in our data. However, between the coverage at which
simulations~and those of Refs. 17,18! predict a self-bound
fluid ~0.044 Å22) and the lower limit given above there is
discrepancy worth mentioning. That difference was attr
uted to the existence of ‘‘patches’’ of liquid due to the su
strate inhomogeneity.10,26One can see that to get a superflu
it is necessary to have a network of connecting patch
which may not be possible until greater coverages than 0.
Å 22. On the other hand, for the third layer, they found s
perfluidity near the beginning of layer completion. This m
be due to multilayer effects not considered here, or to pe
lation between superfluid ‘‘patches.’’

p-T representation of the phase diagram

In Fig. 9 we display the same phase diagram in Fig. 1,
this time in the pressure versus temperature plane. The s
bols represent the simulation results, while the lines
guides-to-the-eye. The three crosses located in the lo
right part of the figure indicate the location of the maxima
the specific heat given in Fig. 1, and therefore, they do
signal a phase change. The solid square indicates the pos
of the critical point.

We observe that as in the bulk4He, there is no triple
point between the solid, liquid, and gas phases. There
however, two other triple points. One of them is among
gas, normal fluid, and superfluid phases at around 0.72
and the other between the two fluids and the solid reg
The shape of the boundary of the stability zone of the so
mp
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permits, in some region of pressures, to liquefy a solid
reducing the temperature. In this, the behavior of the
phase diagram is similar to its 3D counterpart.

SUMMARY

We have calculated with path-integral Monte Carlo t
energy of a 2D4He film for temperatures lower than 1.5 K
and coverages in the range 0,s,0.094 Å22. Our results
are similar to those obtained withT50 methods,20,21,17,18but
take into account the influence of thermal excitations ove
range of helium densities. We use this information to det
mine the region of stability of the gas, normal fluid, supe
fluid, and solid. By comparison with the available expe
mental data, we can say that thesecond layer of 4He
adsorbed on graphite is well described by a 2D model.
an accurate description of the third and successive layers
motion of the atoms in thez direction is important.
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FIG. 9. Phase diagram as a function of pressure and temp
ture. The crosses mark the locus of the maxima in the specific
given in Fig. 1,~they are not phase lines!. The black square is the
critical point.
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