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Path-integral calculation of the two-dimensional “He phase diagram
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Path-integral Monte Carlo simulations have been used to determine the phase diagram of a two-dimensional
“He film in a range of temperatures and coverages where it undergoes solidification, superfluidity, and a
liquid-gas transition (0.25 KT<1.5K 0<0<0.094 A 2). We determine the phase-transition densities and
give the coefficients for a functional form of the free energy in the liquid, solid, and gas phases. The phase
diagram is similar to the one determined from experimental measurements of a second layer of helium on
graphite.[S0163-182(08)04634-7

The onset of superfluidity in two-dimension@D) films  densities, there would be a gas-liquid coexistence. The inter-
has been the object of much work both experimentally angection between the curves of the energy versus temperature
theoretically. In contrast to bulk helium, the superfluid- of the solid and liquid phases gives a lower stability bound-
normal fluid transition in 2D*He films is of the Kosterlitz- ary for a 2D solid of about 0.067 A2. The results given by
Thouless type, with superfluidity appearing below the criticalGiorgini et al.*® with a slightly different potential and ob-
temperature,T.,! but with Bose condensation appearing tained by a diffusion Monte Carl@®MC), confirm the above
only at T=0. Experimental data allows us to delimit the conclusions. The same can be said of the hypernetted-chain
superfluid regiorf; *2and to establish the stability boundaries calculations of Unret al'® There are also calculations with a
between solid, liquid, and gas 2D phaséson substrates 3D model atT=0 K (Refs. 20,21 (substrate-two frozen
such as graphitébare or preplated helium layerg, but they produce phase limits very similar to

When the interaction potential between the helium atomgure 2D calculations. The path-integral Monte CdRéMC)
and the absorbing surface is straftte-graphite, He-k) he-  calculations of Ceperley and Polldckake into account the
lium atoms are adsorbed in well-defined layE¥s?® In  thermal excitations. They show thatat= 0.0432 A2 and
graphite, one can have up to seven of such layers; additionfbr zero pressure, the superfluid-normal fluid transitions oc-
amounts of*He lead to the formation of a bulk liquid. Ob- curs atT=0.72+0.02 K. A recent artici& describes the
viously, the first layer is one the most influenced by theresults of path-integral Monte Carlo calculations on a second
adsorbate, while the second layer is very well approximatedayer of “He adsorbed on a flat structure modeling graphite.
by a pure 2D filmt° The authors model the first layer of helium atoms as a frozen

By means of calorimetric measureméntsseveral facts hexagonal-packed structure. They show the boundaries of
can be established about the 2D phase diagranfH#. the phase diagram at low temperatures, indicating the phase
There have been many experiments with the second and thitdansitions in the solid region, but neglecting the description
layers of helium adsorbed on graphite, or first layers of Heof how the phase diagram evolves as the temperature in-
on a H, surface. These show a liquid-gas coexistence at lovereases.
temperaturé~0.75-0.9 K and beloy In the case of a sec- Here, we present a set of PIMC calculationgat1.5 K
ond layer of He on graphite, they also agree in the highand 0<0.094 A2, to determine the equilibrium regions of
coverage stability limit of the liquid phase o( the 2D solid, liquid, and gas and their coexistence regions.
~0.07 A ?). A solid layer forms at a higher helium den-
sity. This region continues until the beginning of the forma-
tion of the third layero~0.08 A"2). There is also a line of
specific-heat maxima between 0.0425 and 0.07 At tem-
peratures lower than 1 K:* The origin of that line has not
received a clear interpretation.

The location of the boundary that separates the superfluia
and normal phases has been delineated by torsional oscillat
experiments®7819-12The work of Crowell and Repfy'°

METHOD

The PIMC method is a method which can calculate quan-
tum properties by mapping the quantum system onto an
quivalent classical model. The basic idea is to expand the
pnsity matrix

indicates a superfluid phase in a range of coverages between p(R,R’; B)=(Rlexp(— BH)|R’) Q)
0.05 and 0.07 A? at temperatures belo1 K for a second .
layer of “He adsorbed on graphite. into a path integral

On the other hand, most of the theoretical work on 2D
helium films has been made for= 0 K. Whitlock, Chester,
and Kalost’ by means of Green-function Monte Carlo P(R,R';ﬁ)ZJ p(R,R1;7)p(Ry,Ry;7) ... p(Ry-1,R";7)
(GFMCQ) calculations, showed that there was a self-bound
liquid at a coverage of approximately 0.04 A For lower XdRARAR,dRy_dR’, 2
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TABLE I. Energy versus coverage and temperature in the fluid phase. All calculations were done in a square periodic cell containing 30

atoms.
o (A7? T=0.25 K T=0.5K T=0.75 K T=1K T=1.25K T=1.5K
0.0761 1.0090.010 1.0030.008 1.015:0.008 1.03&0.008 1.0740.013 1.07%0.010
0.0677 0.0890.012 0.126:0.014 0.143%0.016 0.18%0.026 0.28%0.031 0.43%30.014
0.0592 —0.577£0.012 —0.559+0.014 —0.552+0.016 —0.414+0.026 —0.234+0.031 —0.004£0.014
0.0508 —0.853+0.009 —0.859+0.016 —0.806£0.017 —0.668+0.027 —0.379£0.021 —0.084£0.012
0.0423 —0.919+0.010 —0.887£0.010 —0.789+0.019 —0.541+£0.022 —0.235£0.021 0.0430.011
0.0338 —0.816£0.013 —0.752£0.011 —0.554+0.022 —0.330£0.022 —0.030+0.015 0.26&0.010
0.0254 —0.611+0.015 —0.522+0.013 —0.272+0.016 —0.060£0.012 0.21#0.012 0.52%0.010
0.0169 —-0.475:0.011 —0.360+0.014 —0.046+0.013 0.23%0.010 0.486:0.009 0.7710.009
0.0085 —0.287£0.025 —0.088+0.025 0.2250.016 0.5390.015 0.83%0.018 1.1340.009

where several complete sets of 2D coordinatBs, (.., tions contained 30 atoms. The coverage was varied by

Rn- 1) have been introduced. Each of thé¥e represent the changing the cell size. Two types of cell were used: a square
positions of all the particles in the system, in such a mannesimulation cell, and a rectangular cell corresponding to a
that each particle is described Byt 1 coordinates forming a triangular solid at intermediate and high coverages (
path. The additional degree of freedom takes into account>0.05 A~ 2). The time stepr was fixed for all simulations at
the quantum fluctuations. In Eq4) and(2), B is the inverse  0.025 K 1, tests showing that this is sufficient for the range
temperature §=1/kgT), while 7= B/N. N is the number of  of densities considered. We used the AZjotential for the
additional coordinates introduce@lso calledtime slice$ interaction between the helium atoms. To determine the
and H is the system hamiltonian. The Bose statistics ardinite-size effects in our calculations, we made two sets of
accounted for by symmetrization of the density matrix: simulations aff=1.0 and 0.87 K with 100 atoms and densi-

M

labels 1,2. .. ,M. The average of any observalie defined

by

ties around the critical point, finding very small differences

1 with the results for fewer atoms.
Prosd RR':8)= 72 p(RPRf). 3

is the number of atoms, arilis a permutation of particle RESULTS

In Tables | and Il we show the calculated energies. Table
| indicates some results for the total energy and their depen-
_ _ , dence on the temperature and density when we use a square
O0=(R|O ex H)|R"), 4 0 S
(R (- BH)IR') @ cell (“liquid” ), while in Table Il we can see the same, but

can be found by expanding in a similar way. Additional de-for a rectangular cel(“solid” ). The energy per atom and
tails about the method are given elsewHére. pressure were used to determine the free energy and thereby

Our aim in the present work is to calculate the boundarieshe phase lines as we discuss below.

and coexistence regions of the different phases of a pure 2D Figure 1 is a summary of how the phase depends on tem-
“He film: solid, normal liquid, superfluid, and gadVe do  perature and coverage. In general terms, we can say that
not allow for the possibility of a hexatic phase, and cannothere exists a liquid-gas coexistence for densities between 0
distinguish between commensurate and incommensurate salnd 0.044 A ? for temperatures below 0.87 K. The location
ids, because we do not include a substjatée employed of the boundaries is very similar to the experimental ones,
the canonical ensemble, i.e., in each simulation we kept fixedlthough there are several noticeable differerises below.

the temperaturd, the number of particle®1, and the di- For this coverage range and at higher temperatures the stable
mensions of the simulation cell. The temperature was sgbhase is the normal 2D fluid. For greater densitie944
between 0.25 and 1.5 K, with calculations every 0.25 KA~? <¢<0.068 A ?) the ground state is a superfluid, with
(with an additional set of points at 0.87) Kand the densities the transition to a normal fluid located in the temperature
were taken in the interval0o<0.094 A2, Most simula- range from 0.72 to 0.90 K. Above the critical temperature,

TABLE Il. Energy versus coverage and temperature for the triangular solid. All calculations were done
with 30 atoms in a rectangular cell consistent with the solid symmetry.

c(A"? T=025K T=0.5K T=0.75K T=1K T=1.25K T=1.5K

0.0931 4.86:0.04 4.88-0.03 4.94:0.05 5.06-0.04 4.95-0.04 4.95-0.05
0.0846 2.45:0.05 2.470.03 2.50-0.05 2.48-0.03 2.45-0.03 2.506-0.03
0.0761 0.980.03 1.0x0.04 1.06-0.03 1.010.03 1.02:0.03 1.02-0.02
0.0677 0.080.03 0.13:0.02 0.1G:0.03 0.18£0.03 0.270.03 0.46£0.02
0.0592 —0.33t0.02 -0.33+0.03 -0.22+0.02 -0.14+0.02 -0.06=0.02 0.05£0.02

0.0508 —0.62£0.02 —-0.56+0.02 -0.46x0.02 -0.32£0.02 -0.16-0.02 —0.04+0.02
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1.5 TABLE lll. Coefficients of the least-squares fit of the total en-
ergy per He atom and pressure.
125 | .
Square Rectangular Gas
@ Lr 1 Number of points 22 24 8
g Xl 1.24 1.61 0.33
g 03¢ S boo ~1.65 —1.82x10"
£ bos 6.49 2.62x 10"
=03 T bos 4.61 ~3.51x 10"
bos -7.94 1.81x 10
0.25 1 b1o 9.35x 10"  8.35x107  1.74x10°
by —8.36X10°
0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 b2 1.59x10°
5 A2 b3 -3.81x10? —1.13x10° -—1.48x1c¢°
by —1.33x107 1.61x10° 6.93x10°
FIG. 1. Phase diagram for 2fHe as a function of coverage and bis 3.87x107 —7.96X10% —-1.27x10°
temperature. The upper dotted line marks the loci of the maxima in b0 ~3.11X10° —1.37x10* —2.05x10°
the specific heat. The lower dashed line shows the spinodal line of by, 9.82x 10
the liquid-gas transition. The different phases are indicated by text by, —1.86x10°
or symbols [+ G, liquid+gas coexistence zone; SF, superfiuid by 6.94% 10° 1.61x 10° 1.75% 108
\V/
T., we see a line of maxima in the specific h¢liie at T EZ“ _é'iii 1833 _iizi 18: _?'égi 187
~1.15-1.30 K inFig. 1) as predicted by the Kosterlitz- 25 ' ' '
Thouless theory. bao 3.10x10% 8.03x 10
If the helium coverage is greater thar0.068 A2 (de- b33 —4.07x100 —7.22x10°
pending on the temperatyreve observe a narrow coexist- Baa ~7.51x10° 1.11x10°
ence zone region between the liquid and the triangular solid ~ Pss -3.99x10°  -5.31x10*

phase. The slope of the boundaries changes with tempera=

ture; when the boundary is with the superfluid phase, the m n

slope is slightly negative, being positive in the zone of the . . i

normal fluid. This is because the superfluid has fewer exci- p(U’T)_Z‘l JZO ibjjor i @)

tations and hence lower entropy than the solid. At the highest

temperature of this studl.5 K), we observe a 2D solid for We use our simulation data to Btmultaneouslythe val-

coverages greater than 0.073 A Next we will discuss in  ues of the total energy and the press(obtained from the

detail the features of the calculated phase diagram and hovirial relation) to obtain theb;; coefficients. Using both con-

the results were obtained. straints the fit is much better. The excitation spectra implies
In order to obtain the coexistence, we fit the calculatedthat at low temperatur& —E,<T3; thus we setb;;=b;,

energy and pressure to polynomials. For this purpose we=0 for all i. We used the same values wf andn in the

partitioned our runs into gas, liquid, and solid and chose‘solid” and “liquid” cases: m=3 andn=5 as was done at

appropriate forms for each phase. previous zero-temperatufe’® calculations. That allows rea-
We consider as “solid” all the structures calculated by sonable values of? for both series of fits, as can be seen in

using the rectangular lattice and whose structure factorstable Ill. For the purposes of calculating the specific heat,

S(k), are greater than 4. This means a coverage range 0.06%e also fit the energies below 2.5 K to a similar expression

<0=0.0931 A2 Conversely, we defined as “liquid” the to that of Ref. 1, i.e., &5,4) Padewith a low-temperature

structures obtained with the square simulation cell withlimit as above.

S(k)<2 and whose densities are in the limit or outside the In the gas phasécoverages lower than 0.010 &) we

L+ G coexistence region, i.e., coverages in the intervalssumed a virial form for the free energy, expanding in pow-

0.0423<0=<0.0592 A2, We obtained the free energies in ers of coverage and inverse temperature:

both “phases” by fitting the energieand pressures to a

polynomial in both coverage and temperature. The assumed

expression for the free energy is F(o,T)=TIn

2ahlo

Myl e

2 n
+ 2 bijO'iTl_j, (8)
i=1j=1

I - with n’ =5 andmy,, the mass of théHe atom. The first term
F(UvT):._EO ZO bijo' T, ) of the right-hand side is the free energy for a 2D idealJas.
T The fitting coefficients are shown in Table IlI.
Then, we can write the energy per He atom and the pressure
as Liquid-gas coexistence zone

Figure 2 shows the pressure versus coverage for the seven

m n
E(o,T)=— i—1)bioi Tl 6 temperatures for which we carried out simulatig@25—1.5
(021 Zﬁ ,2’0 =Dy © K). In this density range we verified that we do not have a
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.FIG' 2._Coverage d_ependen(_:e (.)f the presar&/A %) in the FIG. 4. Radial distribution functions for the same coverages
fluid density range. Diamonds indicate the results for 1.5 K, and A P ) . o .

. shown in Fig. 3. Solid line, gas; dashed line, liquid; dotted line,

from there on, the symbols display at the data for all temperaturessOIiOI
ending at 0.25 K(starg. The line shows the results of Giorgini '

et al. using a DMC at zero temperatu(Ref. 17. . . -, .
¢ P ( ? are in the two-phase region zone or above the critical point,

. _ .we have a mixture of the features of the pure liquid and gas
solid phase by examining the structure factors as shown Qe cture factors P q 9

Fig. 3. A structure factor corresponding to a solid has one or The same information can be obtained by looking at the

:s%everalr:solated peal;s Wlﬁftk)t>4i In the lipper ?%r;gflz'g' d radial distribution functionsgy(r)’s, but in a less quantitative
, We show oné such resutt at a temperature ot v. an \?Iay. In Fig. 4, we can observe that a gas radial distribution

. 2 . . . .
density Of 0'27611’&| ' I\ge" g‘s'de trr:e S‘:I'd retgr:on, ?s v;/e function (solid line) shows only a maximum, and that, quite
;:ant See t”'gh 9. L. tn 9. twe 'T‘hOV\(Ij' W0 0 _erF_s rulc .urg’freasonably, the number of maxima and their height increases
actors at the same temperature. the diagram in F1g. 1 Indl, .o liquidg(r) (dashed lingand, over all, in the solid one

cates that this temperature is the only one in our study i dotted curvé However, there is not a clear difference

Whl!gh ;Ne :.a\r/]e t?ree dlffterent ;t)rr]lase§: 2Dt ge:j;, tl_|qut|_d, in mong the radial distribution functions for the three cases, as
solid. For higher temperatures, there is not a distinction beg, . is for the structure factors.

itnweennvanlilqu]J;Id ?TS a 8ars, andv\f/or IO\r/]vegonrevs, t?r?kignas dr;f?srie\n The behavior of the pressure isotherms can be divided
conveniently low coverage. Ve can observe s 9 dierhi0 three groups. Fof>1 K the pressure is a monotoni-

ences in theS(k)'s: ms'gead of a sharp. peak, a 2D liquid cally increasing function of the coverage. However, the iso-
presents a round maximum for a reciprocal vector COM€4herm atT= 0.87 K is different; there is a flat zone between
sponding approximately to the first-neighbor distance. Ther?he densities 0 0338 and 0 0169% That means that there
is also a difference between a liquidlike and a gaslike struci-S a region (r~'0 02-0 03' A?) in which the second de-
gﬁsigﬁttc}g “Lr;i ?&a_sl V{Zﬁ dhf;]\;?st('gmg r?wii?wm?:a?éﬁﬂgi”% rivative of the pressure with respect to coveradép({do?)

the liquid case. If inétead of a pure liquid (?r gas phase Wis zero. This implies thal=0.87 K is the critical tempera-

' » W&ure for the liquid-gas phase transition. In accordance with
that, for T<0.87 K, (0.75, 0.5, and 0.25 X the pressure
isotherms show instability zonesvhere dp/do<0), that
8t ® . correspond to a two-phase coexistence region, and whose

range ino increases as the temperature decreases.

10 T T T T

= To determine the limits of the liquid-gas coexistence
& at i zone, we matched the chemical potential of the liquid and
gas phases. For constant number of particles and tempera-
Zr . 1 ture, this implies
_EF% Jnu'ﬂtml
0 ‘_-_m_m_mﬂn—n__
AL o —p

_ 2L, § pdA= — do=0, (9)
% AG og O

TN AP+
1+ e W o
M * whereog and o are the equilibrium coverages of the gas

4wt

e n and liquid phases, respectivelA§ and A, stand for the
corresponding areaandp is the pressure. To carry out the
necessary integrations, we fit the isotherms to three different

FIG. 3. Structure factorss(k) of three different phases at 0.75 Polynomials(one for each temperature below 0.8Y. Kising
K. Squares represent the structure factor for a stie0.0761  the fits, we calculate the equilibrium densitieg and o .
A~2). Crosses show the values for a liqigk) (¢=0.0508 A ?) We also used them to obtain the spinodal curve defined by
and diamonds are the data for a gas pHase0.0085 A~?). (dp/do)=0. This is the limit of metastability of the given

0 0.5 1 1.5 2 2.5
k(A
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TABLE IV. Coexistence and spinodal coverages for three tem-
peratures below the critical temperature for the liquid-gas phase
transition. All values are in A2 and the uncertainty for all of them
is 0.002 A"2. G andL stand for gas and liquid phases asgland
s, for the low and high coverages of the spinodal curve. Also
shown is the equilibrium pressurén K/A?, its error bars are
+0.0001K/A).

S =N W e YN
— T T T T

Free energy per He atom (K)

T (K) oG oL OsG TsL P

0.25 0.0 0.044 0.010 0.035 0.0001

0.50 0.0 0.044 0.011 0.037 0.0001 a1tk =

0.75 0.009 0.043 0.015 0.038 0.0040 2t .

10 12 14 16 18 20
phase. The equilibrium and spinodal coverages are given in 1/ (A2)
Table IV and displayed in Fig. 1. i
If we compare those results with the experimental data FIG. 5. Free energy versus the atomic area at 1 K. Symbols

: : : ; display the results of the total energy obtained in the simulations
given in Refs. 2 and 4 for a second layer of helium in graph-" . ) . : .
ite, we can say that our coverage limits for the quuid-gas(d'amonds’ solid values; crosses, flui@he solid and dashed lines

. . re least- res fi he experimental . Th hed-
coexistence zone are very similar to the measurements at lofS east-squares fits to the experimental data e dashed-dotted

o line represents the common tangent line of the Maxwell construc-

temperatures. However, the calculated critical temperatur on
(T~0.87 K) is different from the experimental oneT ( '
~0.75 K). On the other hand, the data 6He on top of
molecular hydrogehfinds a critical temperature identical to
that obtained in our simulationsT¢-0.87 K). In addition,
Ref. 10 reports a slightly greatdr, for a third layer of he-
lium adsorbed on graphite. Our results are strictly correc
only for a mathematically two-dimension&He film. This is
a good model for some but not all real substrates.

Figure 2 also displays the isothermTat0 K obtained in
the DMC calculations by Giorgingt al!® We observe that
their data is very similar to the results for our lower tempera- Normal fluid-superfluid

ture isotherm T=0.25 K), even if the potential is slightly 1o gensity range between the fluid-gas and solid-liquid
different. Moreover, if we compare the energies at the m'n"two-phase regions is the stability range of the liquid. For

mum of the energy curves in both models, we obtain COM-_4 72_0.90 K.depending on the coverage. we found a
parable values—0.919 K versus—0.89706 of Ref. 18, a : ' -0ep g ge.

) superfluid, while for higher temperatures and densities lower
discrepancy of about 2%. than 0.06 A 2, we have a normal liquid. We define a super-
fluid phase by a nonzero superfluid fractigrot by momen-
Solid-liquid coexistence tum condensation, since that only exists in 2D in the ground
To calculate the solid-liquid phase line, we estimated theState) The 'fraction of helium atoms in the sgpgrfluid phase

: ' " tan be estimated from the mean squared winding nuffber.
free energies per He atom and performed the “double tan

gent construction” between the two phases. The slope of thé-gsnvg:]rglr;%: (;Ji?obnesr ;S]Z ';22 fsl?é(uﬂ;ﬁg;hieimund the periodic

tangent is the equilibrium pressure. In Fig. 5, we display both However, size effects smear out the transition between the

the free energy and the tangent line for a temperature of 1 Iﬁormal fluid and the superfluigee Fig. 6. To determine the

(lines). Th.e symbols represent the values of the tOtal.energ}fritical temperature, we used the following relations from the
per atom in the rectangulésolid, diamondsand squarélig- Kosterlitz-Thouless theor}f!

uid, pluse$ simulation cells. As we can see, &&= 1 K, the
total energy is slightly higher than the free energy because of . g .
the entropy. That difference increases with temperature, in |~ BLE V. Coexistence coverages for solid-liquig-() transi-
tion in A~2. The error bars are 0.0010 &. Also shown is the
such a manner that 8t=0.25 K, free and total energy are I
. . . . . equilibrium pressure.
nearly identical, being appreciably differentat 1.5 K.

of a solid phase at high coverages at least of a solid-liquid
coexistencg®* for third and successive layers there is no
such evidencé® The likely explanation is that one cannot
jgnore movement in the perpendicular direction for those

igher layers. That limits the existence of the solid to the first
few layers, unless the substrate has an unusually strong bind-
ing energy.

The limits of Fhe sphd-llqwd coeX|_stence zone _for alltem- (K) oL s b (KIA2)
peratures are given in Table {@nd displayed in Fig.)L As
we can see, the two-phase zone is rather narrow, which 0.25 0.0680 0.0711 0.466
means there is a solid phase in a range of coverages greater0.50 0.0675 0.0708 0.449
than~0.07 A~2. That limit would be low enough to allow 0.75 0.0667 0.0702 0.418
the existence of a stable solid before the completion of the 1.00 0.0663 0.0693 0.406
second and third layers of helium on graph{@08 and 1.25 0.0668 0.0698 0.431
0.076 A 2, respectively. However, while for the second 1.50 0.0717 0.0735 0.615

layer there are experimental data that support the existence
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0

02}
04 |

Energy per He atom (K)
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Temperature (K)

FIG. 7. Temperature dependence of the energy for the same

= 0.0508 A~2. The diamonds are the simulation results, while thecoverage shown in Fig. 6. Diamonds are simulation results, and the

solid line is the result of a least-squares fitting procedsee texk

The dotted line is the result of the application of the Kosterlitz-
Thouless theory to a system with the same parameters, in the Iim{t

of infinite area.

-1

TR AU (10
[
yc(j—|)=[2—7TK(l)]y(l), (11
where
B hoy
K(l)= mikgT (12

line represents a least-squares fit.

ure dependence of the,/o ratio for 0=0.0508 A 2. The
solid line corresponds to the least-squares fit, and the dotted
one indicates the limit fok — (T.=0.86+0.02 K).

In the Kosterlitz-Thouless transition there is also a maxi-
mum in the specific heat at temperatures ab®dye To de-
termine the locus of those peaks shown in Fig. 1, we took the
derivative @E/dT) and took note of the temperature at
which a maximum exists. The temperature dependence of the
energy is shown in Fig. 7 for a coverage=0.0508 A2, In
Fig. 8, we display the data for the specific heat for the same
coverage. The solid line is the heat capacity determined by
differentiating the(5,4) Padewe fit to the energy at this

coverage. The dashed line are the results of Grefjwah a

coverage of 0.1700 A? (full monolayer of He on graphite
52g +0,=0.05 A~2 on the second laygrThe maximum of the
mkaT (13)  experimental specific heat is located at a temperature slightly

lower than the one obtained in our simulations. That prob-
(14) ably could be attributed to the movement of the atoms in the

with initial conditions

K(1=0)=

y(I=0)=exp(— BE,).

The integration limits are froml equal to zero tol

1.6

=In[L/2d], with L being the size of the simulation cell. The
two free parameterskE. (“vortex core energy’) and d 14+
(“vortex core diameter’) are obtained by a least-squares fit 12 L
to the simulation results We performed two sets of fits for
coveragesr=0.0508 A 2 ando=0.0592 A 2. The third 5 b
point displayed in Fig. 1 was taken from Ref. 1. Thgand T 08
d’s values obtained for the three coverages are given in é 06 -
Table VI. The critical temperature is then the temperature at &
which o4=0 whenL—. In Fig. 6 we show the tempera- 04+
TABLE VI. Equilibrium parameter&, andd for the Kosterlitz- 02
Thouless theory as obtained from a least-squares fit to the superfluid 0
fraction. The critical temperature for superfluid phase transition is 02 ' s ' s
shown in the last column. 0 0.5 1 1.5 2 2.5
Temperature (K)
o (A7?) Ec(K) d (A) Te
FIG. 8. Specific heat versus temperature §6+0.0508 A 2,
0.0432 2.20.2 3.7+0.4 0.72£0.02 The symbols correspond to the numerical derivative of the simula-
0.0508 2.50.2 3.7%0.7 0.86:0.02 tion data given in Fig. 7, and the line is the derivative of (6}
0.0592 2.40.1 4.6+0.3 0.90+0.03 Padeused as a fit. The dashed line shows the experimental results

of Greywall (Ref. 4 at a second layer coverage of 0.05%A
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z direction!*2! not taken into account here, since the contri- 0.7 ' ' ' '
bution due to the first layer has been subtrattmdt.
The line of maxima was extended to join the critical point 06 1
(T~0.87 K). This line, together with the lower coverage 05 |
L+ G coexistence zone, produces a boundary with a shape o ’
very similar to that in experimental phase diagrams obtained E 04 |
by heat-capacity experimerfté.However, our results indi- ;
cate that part of that boundary is not a coexistence zone, but 2 03
the stability zone of a superfluid. Thus, the experimental line &
can be interpreted as the signature of the Kosterlitz-Thouless 02r
transition.
Once again, those results are compatible with the experi- oLy
mental data of Crowell and Reppy° By means of torsional 0 . (e o x
oscillator experiments they found that for a second layer 025 05 075 1 125 L5
of helium on graphite, the coverage interval for a superfluid Temperature (K)

was between~0.05 and 0.07 A? (for temperatures lower _ _

than 0.75 K. The upper limit is very similar to the lower FIG. 9. Phase diagram as a function of pressure and tf_er_npera-
boundary of the solid-liquid coexistence region as it appeargfre' The crosses mark the locus of Fhe maxima in the spe.cmc heat
in our data. However, between the coverage at which oufVe" in Fig. 1,(they are not phase lingsThe black square is the
simulations(and those of Refs. 17,1®redict a self-bound critical point.

fluid (0.044 A~2) and the lower limit given above there is a
discrepancy worth mentioning. That difference was attrib-
uted to the existence of “patches” of liquid due to the sub-
strate inhomogeneit}’?® One can see that to get a superfluid
it is necessary to have a network of connecting patches,

which may not be possible until greater coverages than 0.044 SUMMARY

A~2. On the other hand, for the third layer, they found su- : .
L S L . We have calculated with path-integral Monte Carlo the
perfluidity near the beginning of layer completion. This mayenergy of a 2D%He film for temperatures lower than 1.5 K

be due to multilayer effects not considered here, or to perco- . 5
lation between superfluid “patches.” and coverages in the range<@<0.094 A 2. Our results

are similar to those obtained with=0 method®2:17 18yt
take into account the influence of thermal excitations over a
range of helium densities. We use this information to deter-

In Fig. 9 we display the same phase diagram in Fig. 1, bumine the region of stability of the gas, normal fluid, super-
this time in the pressure versus temperature plane. The syrfluid, and solid. By comparison with the available experi-
bols represent the simulation results, while the lines arenental data, we can say that tlsecondlayer of “He
guides-to-the-eye. The three crosses located in the lowexrdsorbed on graphite is well described by a 2D model. For
right part of the figure indicate the location of the maxima ofan accurate description of the third and successive layers, the
the specific heat given in Fig. 1, and therefore, they do notnotion of the atoms in the direction is important.
signal a phase change. The solid square indicates the position
of the critical point.

We observe that as in the butkHe, there is no triple
point between the solid, liquid, and gas phases. There are, We used the computational facilities at the NCSA. This
however, two other triple points. One of them is among theresearch was supported by NSF DMR 94-224-96 and the
gas, normal fluid, and superfluid phases at around 0.72 KDepartment of Physics at the University of lllinois. M.C.G.
and the other between the two fluids and the solid regionthanks the Spanish Ministry of Education and Culture for
The shape of the boundary of the stability zone of the solidinancial support.

permits, in some region of pressures, to liquefy a solid by
reducing the temperature. In this, the behavior of the 2D
phase diagram is similar to its 3D counterpart.

p-T representation of the phase diagram
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