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Abstract: We consider the nonlinear fractional Langevin equation involving two fractional orders
with initial conditions. Using some basic properties of Prabhakar integral operator, we find an
equivalent Volterra integral equation with two parameter Mittag–Leffler function in the kernel to the
mentioned equation. We used the contraction mapping theorem and Weissinger’s fixed point theorem
to obtain existence and uniqueness of global solution in the spaces of Lebesgue integrable functions.
The new representation formula of the general solution helps us to find the fixed point problem
associated with the fractional Langevin equation which its contractivity constant is independent of
the friction coefficient. Two examples are discussed to illustrate the feasibility of the main theorems.

Keywords: fractional Langevin equation; Mittag–Leffler function; Prabhakar integral operator;
existence; uniqueness

1. Introduction

Dynamical behavior of physical processes are usually represented by differential equations. If the
model of physical system in some ways possesses a memory and hereditary properties, for instance,
viscoelastic deformation [1], anomalous diffusion [2], stock market [3], bacterial chemotaxis [4] and
complex networks [5], relaxation in filled polymer networks [6], relaxation and reaction kinetics
of polymers [7], description of mechanical systems subject to damping [8], Behavior of Biomedical
Materials [9]; the corresponding models can be described by the fractional differential equations.

Langevin equation is a fundamental theory of the Brownian motion to describe the evolution
of physical phenomena in fluctuating environments [10,11]. Fractional Langevin equation as a
generalization of classical one gives a fractional Gaussian process parametrized by two indices,
which is more flexible for modeling fractal processes [12–16].

The virtually simultaneous development of fractional derivatives, various generalizations of the
Langevin equation were proposed and studied by various researchers during recent years. Despite the
widespread use of many of the applications [17–22], the fractional Langevin equation is extensively
studied in literature both from theoretical and numerical points of view. Authors in [23] studied
nonlinear fractional Langevin equation involving two fractional orders in different intervals as a
generalized form of three point third order nonlocal boundary value problem of nonlinear ordinary
differential equations. In [24], the authors have studied fractional Langevin equations with nonlocal
integral boundary conditions. Recently, anti-periodic boundary value problem for Langevin equation
involving two fractional orders has been studied in [25]. Existence and uniqueness results for coupled
and uncoupled systems of fractional Langevin equations of Riemann-Liouville and Hadamard types
has been discussed in [26]. Guo et al. [27] gave an efficient numerical method for solving the fractional
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Langevin equation with or without an external force. Some more recent work on Langevin equation
can be found in [28–37].

In the current paper, we mainly focus on the existence and uniqueness result for the fractional
Langevin equation involving two fractional orders:

Dβ (Dα + λ) x(t) = f (t, x(t)), 0 < t ≤ 1,
x(i)(0) = µi, 0 ≤ i < l,
x(i+α)(0) = νi, 0 ≤ i < n,

(1)

where m− 1 < α ≤ m, n− 1 < β ≤ n, l = max{m, n}, m, n ∈ N, Dα is the Caputo fractional derivative,
x(t) is the particle displacement, x(i+α)(0) equals DiDαx(0), in the sequential sense, λ ∈ R is the
friction coefficient and f : [0, 1]×R→ R is a given function which represents a noise term.

Based on the criteria specified in [38], the problem (1) is a general form of anomalous systems
governed by a generalized Langevin equation with long-range memory. In contrast to the classical
Langevin equation, we use Dβx(t) and DβDαx(t) instead of the ordinary definition of the velocity and
acceleration as the first and second derivatives of the displacement to derive a generalized Langevin
equation involving friction memory kernel. For example, if 0 < β ≤ 1, α = 1, then according to the
standard definition of the Caputo fractional derivatve operator, we have a special case of generalized

Langevin equation involving friction memory kernel equal to
λ

Γ(1− β)
tβ−1. Based on the calculations

in ([39], Section B), in this case, the resulting motion is in fact subdiffusive. Furthermore, it is worth
noting that, if α + β > 2, then we do not have any physical meaning for the main problem. For this
case, it is only a valuable problem in the thory of fractional differential equations as a sequential
fractional differential equation with initial conditions.

As we have seen in the papers cited above about analysis of fractional Langevin equation,
using various classical fixed point theorems is a common and useful technique for obtaining the
existence and uniqueness results for fractional Langevin equation involving different initial or
boundary conditions. In the mentioned papers, the contractivity constant of the fixed point problem
associated with the fractional Langevin equation depended on the friction coefficient λ. For example,
in the obtained existence and unique results in [33,34], the contractivity constants R1, R2 satisfy the
following conditions

R1 = sup
0≤t≤1

(∫ t

0

(t− s)α+β−1

Γ(α + β)
a(s) ds +

|λ|
Γ(α + 1)

)
< 1, (2)

and

R2 = k
( ‖a‖p

Γ(α + β)
ds +

|λ|
Γ(α)

)
< 1, (3)

where k =
(

1
1−q(1−α)

) 1
q and p−1 + q−1 = 1, respectively. As stated in relations (2) and (3),

the contractivity constants R1, R2 depend on the friction constant λ. Therefore, from (2), we can
not discuss the problems involving the friction constant |λ| ≥ Γ(α + 1). Similarly, from (3), we can
not study the problems involving the friction constant |λ| ≥ Γ(α). Note that 0 < 1− q(1− α) < 1.
Therefore, we cannot discuss the existence and uniqueness of solutions for the problems involving
large friction coefficient λ. In this paper, we strive to overcome this major limitation. First we propose
a new construction of the general solution for the Equation (1) using two parameter Mittag–Leffler
functions and some of the basic properties of Prabhakar operator. This is done in Section 2. Then we
obtain a new existence and uniqueness results under some weak conditions by using contractive
mapping theorem and Weissinger’s fixed point theorem. This is content of Section 3. Two examples
are given in Section 4 to illustrate our results.
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2. Preliminaries and Auxiliary Results

In the following section, we apply some technical calculations related to fractional calculus to
build a new general solution corresponding to initial value problem (1) which provides an extremely
powerful tool for the proof of the main result. Furthermore, we present some preliminaries and
notations regarding fractional calculus for the reader’s convenience. For details, see [40–46].

Definition 1. The Riemann-Liouville fractional integral of order α > 0 for the function x : [0, 1] → R,
x ∈ L1[0, 1] is defined as

Iαx(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds.

Definition 2. The Caputo fractional derivative of order α > 0 of a function x : [0, 1]→ R is defined as

Dαx(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1x(n)(s)ds,

where n− 1 < α ≤ n and n ∈ N, provided that the right-hand-side integral exists and is finite.

Definition 3 ([46]). Let α, β > 0, λ ∈ R and x ∈ L1[0, 1]. The Prabhakar integral can be written as

E[α, β, λ]x(t) =
∫ t

0
(t− s)β−1Eα,β (λ(t− s)α) x(s)ds,

where Eα,β(·) is the so-called two parameter Mittag-Leffler function, defined by

Eα,β(z) =
∞

∑
n=0

zn

Γ(nα + β)
,

and Eα(·) = Eα,1(·). Like the Mittag–Leffler function Eα(z), Eα,β(z) is an entire function of order 1
α .

Lemma 1 ([46]). Let α, β, γ ≥ 0 and x ∈ L1[0, 1]. Then

IγE[α, β, λ]x(t) = E[α, β, λ]Iγx(t) = E[α, β + γ, λ]x(t),

holds almost everywhere on [0, 1]. Furthermore, E[α, β, λ]tγ = Γ(γ + 1)tγ+βEα,β (λtα).

Lemma 2. The general solution of (1) is given by

x(t) =
m−1

∑
j=0

µjtjEα+j (−λtα) +
n−1

∑
i=0

νitα+iEα,α(−λtα) +
n−1

∑
i=0

µiti
(

1
Γ(i + 1)

− Eα(−λtα)

)
+
∫ t

0
(t− s)α+β−1Eα,α+β (−λ(t− s)α) f (s, x(s)) ds.

(4)

Proof. Let x(t) be a solution of the problem (1), we have

(Dα + λ) x(t) =
n−1

∑
i=0

aiti +
∫ t

0

(t− s)β−1

Γ(β)
f (s, x(s))ds.
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By using the initial conditions for the initial problem (1), we find that ai =
νi+λµi
Γ(i+1) , i = 0, 1, · · · , n− 1.

Therefore, we have

(Dα + λ) x(t) =
n−1

∑
i=0

νi + λµi
Γ(i + 1)

ti +
∫ t

0

(t− s)β−1

Γ(β)
f (s, x(s))ds. (5)

Now, using the approach of Kilbas et al. ([40], Section 3.1), the solution of the Equation (5) is
given by the following expression

x(t) =
m−1

∑
j=0

µjtjEα,j+1 (−λtα) +
∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α)

(
n−1

∑
i=0

νi + λµi
Γ(i + 1)

si + Iβ f (·, x(·))(s)
)

ds. (6)

Note Eα,α(z) = αE′α(z) and so (t− s)α−1Eα,α (−λ(t− s)α) = d
ds

(
1
λ Eα (−λ(t− s)α)

)
. This yields that∫ t

0 (t− s)α−1Eα,α (−λ(t− s)α) ds = 1
λ (1− Eα (−λtα)). On the other hand, an integration by parts reveals

∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α) sids =

1
λ

(
siEα(−λ(t− s)α)

∣∣∣t
0
− i

∫ t

0
Eα(−λ(t− s)α)si−1ds

)
, (7)

for each i ∈ N. Applying Lemma 1 to the second term in the right-hand side of (7), we conclude

∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α) sids =

1
λ

(
ti − Γ(i + 1)tiEα(−λtα)

)
,

for each i ∈ N. Therefore

x(t) =
m−1

∑
j=0

µjtjEα,j+1 (−λtα) +
n−1

∑
i=0

νi

Γ(i + 1)

∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α) si ds

+
n−1

∑
i=0

λµi

Γ(i + 1)

∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α) si ds +

∫ t

0
(t− s)α−1Eα,α (−λ(t− s)α)

(
Iβ f (·, x(·))(s)

)
ds

=
m−1

∑
j=0

µjtjEα,j+1 (−λtα) +
n−1

∑
i=0

νitα+iEα,α(−λtα) +
n−1

∑
i=0

λµi

Γ(i + 1)

(
1
λ

(
ti − Γ(i + 1)tiEα(−λtα)

))

+
∫ t

0
(t− s)α+β−1Eα,α+β (−λ(t− s)α) f (s, x(s)) ds

=
m−1

∑
j=0

µjtjEα,j+1 (−λtα) +
n−1

∑
i=0

νitα+iEα,α(−λtα) +
n−1

∑
i=0

µiti
(

1
Γ(i + 1)

− Eα(−λtα)

)

+
∫ t

0
(t− s)α+β−1Eα,α+β (−λ(t− s)α) f (s, x(s)) ds,

which is the desired result.

Now, we state Weissinger’s fixed point theorem ([41], Theorem D.7) as a generalization of the
so-called contraction mapping theorem which is needed to prove Theorem 3.

Theorem 1. Let X to be a Banach space and let θn ≥ 0 for every n ∈ N ∪ {0} such that ∑∞
n=0 θn converges.

Furthermore, assume T : X → X is a nonlinear mapping which satisfies the inequality ‖Tnx − Tny‖ ≤
θn‖x− y‖ for every n ∈ N and every x, y ∈ X. Then, T has a unique fixed point x∗. Moreover, the sequence
{Tnx0}∞

n=0 converges to this fixed point x∗, for any x0 ∈ X.

3. Existence and Uniqueness

Our aim in the following section is to deeply investigate the existence and uniqueness results for
the main problem (1) in the Lebesgue space.

Theorem 2. Let max{1, 1
α+β} ≤ p ≤ ∞, p−1 + q−1 = 1 and the following hypotheses 1–3 hold:
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Hypothesis 1. f (t, 0) ∈ Lq[0, 1].

Hypothesis 2. There exists nonnegative a ∈ Lp[0, 1] such that | f (t, x2)− f (t, x1)| ≤ a(t)|x2 − x1|, for each
t ∈ [0, 1] and x1, x2 ∈ R.

Hypothesis 3. R := M1‖a‖p

(1−q+q(α+β))
1
q
< 1 where M1 = supt∈[0,1]

∣∣Eα,α+β(−λtα)
∣∣.

Then the integral Equation (4) has a unique solution in Lq[0, 1].

Proof. We define the operator T as follows:

Tx(t) =
∫ t

0
(t− s)α+β−1Eα,α+β (−λ(t− s)α) f (s, x(s))ds + φ(t), (8)

where

φ(t) =
m−1

∑
j=0

µjtjEα,j+1 (−λtα) +
n−1

∑
i=0

νitα+iEα,α(−λtα) +
n−1

∑
i=0

µiti
(

1
Γ(i + 1)

− Eα(−λtα)

)
. (9)

Let M(t) = tα+β−1Eα,α+β(−λtα), M1 = supt∈[0,1]

∣∣Eα,α+β(−λtα)
∣∣ and M2 = supt∈[0,1] |φ(t)|.

Note that the generalized Mittag–Leffler functions are entire functions [43,44]. For each x ∈ Lq[0, 1],
we have

|Tx(t)| ≤
∣∣∣∣∫ t

0
M(t− s) f (s, x(s))ds

∣∣∣∣+ M2

≤
∫ t

0
|M(t− s)| | f (s, 0)|+ |M(t− s)| | f (s, x(s))− f (s, 0)| ds + M2

≤
∫ t

0
|M(t− s)|

1
q | f (s, 0)| |M(t− s)|

1
p ds +

∫ t

0
|M(t− s)| |x(s)| |a(s)| ds + M2

≤
(∫ t

0
|M(t− s)| | f (s, 0)|q ds

) 1
q
(∫ t

0
|M(t− s)| ds

) 1
p

+M1

(∫ t

0

|x(s)|q

(t− s)q−q(α+β)
ds
) 1

q
(∫ t

0
|a(s)|p ds

) 1
p
+ M2

≤ M
1
q
1

(∫ t

0

| f (s, 0)|q

(t− s)1−α+β
ds
) 1

q

·
M

1
p
1

(α + β)
1
p
+ M1‖a‖p

(∫ t

0

|x(s)|q

(t− s)q−q(α+β)
ds
) 1

q

+ M2

=
M1

(α + β)
1
p

(∫ t

0

| f (s, 0)|q

(t− s)1−α+β
ds
) 1

q

+ M1‖a‖p

(∫ t

0

|x(s)|q

(t− s)q−q(α+β)
ds
) 1

q

+ M2.

Therefore, we have

‖Tx‖q ≤ M1

(α + β)
1
p

(∫ 1

0

∫ t

0

| f (s, 0)|q

(t− s)1−α+β
dsdt

) 1
q

+ M1‖a‖p

(∫ 1

0

∫ t

0

|x(s)|q

(t− s)q−q(α+β)
dsdt

) 1
q

+ M2

=
M1

(α + β)
1
p

(∫ 1

0

∫ 1

s

| f (s, 0)|q

(t− s)1−α+β
dtds

) 1
q

+ M1‖a‖p

(∫ 1

0

∫ 1

s

|x(s)|q

(t− s)q−q(α+β)
dtds

) 1
q

+ M2

=
M1

α + β
‖ f (s, 0)‖q +

M1

(1− q + q(α + β))
1
q
‖a‖p‖x‖q + M2,
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which yields T : Lq[0, 1]→ Lq[0, 1]. Now, for x, y ∈ Lq[0, 1], we obtain

|Tx(t)− Ty(t)| ≤
∫ t

0
|M(t− s)| | f (s, x(s))− f (s, y(s))| ds

≤
∫ t

0
|M(t− s)| |x(s)− y(s)| |a(s)| ds

≤ M1

(∫ t

0

|x(s)− y(s)|q

(t− s)q−q(α+β)
ds
) 1

q
(∫ t

0
|a(s)|p ds

) 1
p

= M1‖a‖p

(∫ t

0

|x(s)− y(s)|q

(t− s)q−q(α+β)
ds
) 1

q

,

which implies that

‖Tx− Ty‖q = M1‖a‖p

(∫ 1

0

∫ t

0

|x(s)− y(s)|q

(t− s)q−q(α+β)
dsdt

) 1
q

= M1‖a‖p

(∫ 1

0

∫ 1

s

|x(s)− y(s)|q

(t− s)q−q(α+β)
dtds

) 1
q

= M1‖a‖p

(∫ 1

0

(1− s)1−q+q(α+β)

1− q + q(α + β)
|x(s)− y(s)|q ds

) 1
q

≤
M1‖a‖p

(1− q + q(α + β))
1
q
‖x− y‖q,

= R‖x− y‖q.

Note that 1− q + q(α + β) ≥ 0 because of p ≥ 1
α+β . Therefore, T is a contraction since R < 1.

By the Banach contraction principle, T has a unique fixed point, which is the unique solution of the
initial problem (1).

Remark 1. We recall from [43,44] that Eα,β(−z) is completely monotonic function for 0 < α ≤ 1 and β ≥ α,
that is, Eα,β(−z) possesses derivatives dn

dzn

(
Eα,β(−z)

)
for all n = 0, 1, 2, · · · and (−1)n dn

dzn

(
Eα,β(−z)

)
≥ 0

for all z > 0. Therefore, Eα,α+β(−λtα) ≤ Eα,α+β(0) = 1
Γ(α+β)

for λ ≥ 0, 0 < α ≤ 1 and 0 ≤ t ≤ 1.

Theorem 3. Let 1 ≤ q ≤ ∞ and the following hypotheses 4 and 5 hold:

Hypothesis 4. f (t, 0) ∈ Lq[0, 1].

Hypothesis 5. There exists L > 0 such that | f (t, x2)− f (t, x1)| ≤ L|x2 − x1|, for almost every t ∈ [0, 1]
and x1, x2 ∈ R.

Then the integral Equation (4) has a unique solution in Lq[0, 1].

Proof. With notations as in the proof of Theroem 2, and using the same arguments, we obtain

|Tx(t)| ≤ M1

(α + β)
1
p

(∫ t

0

| f (s, 0)|q

(t− s)1−α−β
ds
) 1

q

+
M1L

(α + β)
1
p

(∫ t

0

|x(s)|q

(t− s)1−α−β
ds
) 1

q

+ M2,
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and therefore,

‖Tx‖q ≤ M1

(α + β)
1
p

(∫ 1

0

∫ t

0

| f (s, 0)|q

(t− s)1−α−β
dsdt

) 1
q

+
M1L

(α + β)
1
p

(∫ 1

0

∫ t

0

|x(s)|q

(t− s)1−α−β
dsdt

) 1
q

+ M2

=
M1

(α + β)
1
p

(∫ 1

0

∫ 1

s

| f (s, 0)|q

(t− s)1−α−β
dtds

) 1
q

+
M1L

(α + β)
1
p

(∫ 1

0

∫ 1

s

|x(s)|q

(t− s)1−α−β
dtds

) 1
q

+ M2

≤ M1

α + β

(
‖ f (0, s)‖q + L‖x‖q

)
+ M2,

which yields T : Lq[0, 1]→ Lq[0, 1]. On the other hand, for every n ∈ N and for each t ∈ [0, 1], we have

|Tnx(t)− Tny(t)| ≤
∫ t

0
|M(t− s1)|

∣∣∣ f (s1, Tn−1x(s1))− f (s1, Tn−1y(s1))
∣∣∣ ds1

≤ M1L
∫ t

0
(t− s1)

α+β−1
∣∣∣Tn−1x(s1)− Tn−1y(s1)

∣∣∣ ds1

≤ (M1L)2
∫ t

0
(t− s1)

α+β−1
(∫ s1

0
(s1 − s2)

α+β−1
∣∣∣Tn−2x(s2)− Tn−2y(s2)

∣∣∣ ds2

)
ds1

= (M1L)2
∫ t

0

∫ t

s2
(t− s1)

α+β−1(s1 − s2)
α+β−1

∣∣∣Tn−2x(s2)− Tn−2y(s2)
∣∣∣ ds1 ds2

= (M1L)2
∫ t

0

(∫ t

s2
(t− s1)

α+β−1(s1 − s2)
α+β−1ds1

) ∣∣∣Tn−2x(s2)− Tn−2y(s2)
∣∣∣ ds2

=
(Γ(α + β)M1L)2

Γ(2α + 2β)

∫ t

0
(t− s2)

2α+2β−1
∣∣∣Tn−2x(s2)− Tn−2y(s2)

∣∣∣ ds2

...

≤ (Γ(α + β)M1L)n

Γ(nα + nβ)

∫ t

0
(t− sn)

nα+nβ−1 |x(sn)− y(sn)| dsn

=
(Γ(α + β)M1L)n

Γ(nα + nβ)

∫ t

0
(t− sn)

nα+nβ−1
q |x(sn)− y(sn)| (t− sn)

nα+nβ−1
p dsn

≤ (Γ(α + β)M1L)n

Γ(nα + nβ)

(∫ t

0
(t− sn)

nα+nβ−1 |x(sn)− y(sn)|q dsn

) 1
q
(∫ t

0
(t− sn)

nα+nβ−1dsn

) 1
p

≤ (Γ(α + β)M1L)n

(nα + nβ)
1
p Γ(nα + nβ)

(∫ t

0
(t− sn)

nα+nβ−1 |x(sn)− y(sn)|q dsn

) 1
q

.

Therefore, we conclude

‖Tnx− Tny‖q ≤
(Γ(α + β)M1L)n

Γ(n(α + β) + 1)
‖x− y‖q,

for every n ∈ N and all x, y ∈ Lq[0, 1]. Now let θn = (Γ(α+β)M1L)n

Γ(n(α+β)+1) . From the definition of the
generalized Mittag–Leffler functions, we have ∑∞

n=0 θn = Eα+β (Γ(α + β)M1L) and hence the series
∑∞

n=0 θn converges. Therefore, the existence of the unique fixed point of T follows from Weissinger’s
fixed point Theorem.

4. Illustrative Examples

In this section, some examples are provided to show the applicability of the analytical
achievements of the paper.

Example 1. Consider the initial value problem D
4
5

(
D

1
2 + λ

)
x(t) = 1 + t2 +

sin t + arctan x(t)
2et 3
√

t
0 < t ≤ 1,

x(0) = 1, D
1
2 x(0) = 1.

(10)
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Here f (t, x) = 1 + t2 + sin t+arctan x
2et 3√t

, α = 1
2 , β = 4

5 and the friction constant λ ≥ 0.

Let p = q = 2. Clearly, f (t, 0) = 1 + t2 + sin t
2et 3√t

and f (t, 0) ∈ L2[0, 1]. In fact, it is easily seen

that ‖ f (t, 0)‖2 ≤ 1 +
(

1
5

) 1
2
+ 1

2

(
Γ( 1

3 )
3√2

) 1
2
. On the other hand, | f (t, x) − f (t, y)| ≤ 1

2et 3√t
|x − y| with

a(t) = 1
2et 3√t

. Similarly, we see that a ∈ L2[0, 1] and ‖a‖2 ≤ 1
2

(
Γ( 1

3 )
3√2

) 1
2
. Further, from Remark 1 it follows

that M1 = supt∈[0,1]

∣∣∣E 1
2 , 13

10
(−λt

1
2 )
∣∣∣ ≤ 1

Γ( 13
10 )

. Therefore,

R =
M1‖a‖p

(1− q + q(α + β))
1
q
<

1
2

√
Γ( 1

3 )
3√2

√
1.6Γ

(
13
10

) = 0.64226 < 1.

Note that the contraction constant R is independent of friction constant λ. Thus, by Theorem 2, the initial
value problem (10) has a unique solution in L2[0, 1].

Example 2. Consider the initial value problem D
1
3

(
D

5
4 + λ

)
x(t) = g(t)

|x(t)|
1 + |x(t)| 0 < t ≤ 1,

x(0) = 1, x′(0) = −1, D
5
4 x(0) = 1,

(11)

where g ∈ L∞[0, 1] and the friction constant λ ∈ R.
Observe that f (t, 0) = 0 and | f (t, x)− f (t, y)| ≤ L|x− y| for almost every t ∈ [0, 1] with L = ‖g‖∞.

Thus, by Theorem 3, the initial value problem (11) has a unique solution in L∞[0, 1].

5. Conclusions

In this article, we have considered initial value problem of nonlinear fractional Langevin equation
involving two fractional orders. As a first step, by applying the tools of fractional calculus and
using some basic properties of Prabhakar integral operator, we build a general structure of solutions
associated with our proposed model. Once the fixed point operator equation is available, the existence
results are established by means of contraction mapping theorem and Weissinger’s fixed point theorem.
Finally, two examples were presented to support the result.
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