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Abstract: Road extraction from Light Detection and Ranging (LiDAR) has become a hot topic
over recent years. Nevertheless, it is still challenging to perform this task in a fully automatic
way. Experiments are often carried out over small datasets with a focus on urban areas and
it is unclear how these methods perform in less urbanized sites. Furthermore, some methods
require the manual input of critical parameters, such as an intensity threshold. Aiming to address
these issues, this paper proposes a method for the automatic extraction of road points suitable for
different landscapes. Road points are identified using pipeline filtering based on a set of constraints
defined on the intensity, curvature, local density, and area. We focus especially on the intensity
constraint, as it is the key factor to distinguish between road and ground points. The optimal intensity
threshold is established automatically by an improved version of the skewness balancing algorithm.
Evaluation was conducted on ten study sites with different degrees of urbanization. Road points
were successfully extracted in all of them with an overall completeness of 93%, a correctness of 83%,
and a quality of 78%. These results are competitive with the state-of-the-art.

Keywords: airborne LiDAR point clouds; road point extraction; bidirectional skewness balancing

1. Introduction

Precise information about the road network is crucial for a wide range of applications such as
city planning, traffic management, or road monitoring. Over the last few decades, remote sensing
techniques have been extensively studied to accomplish these tasks [1]. Road extraction from aerial
and satellite imagery has achieved various extents of success, but it is still a difficult task due to the
limitations of passive sensing. This has led many researchers to explore the advantages of using LIDAR
data [2]. LiDAR is an active sensing technique that uses light pulses to record a point cloud. For each
point, accurate 3D coordinates, among other information, are provided. Elevation information helps
to identify roads from other impervious objects, and reflectance intensity provides good separability
of ground materials with similar elevation [3]. To improve results, some authors have fused aerial
imagery with LiDAR data [4-6]; however, in this work we focus on the road point extraction based
exclusively on LiDAR data. It is interesting to explore and evaluate what can be achieved with LIDAR
data, as using only one data source decreases costs and avoids the complexities of data coregistration.
Moreover, in many cases this is the only input available.

Several authors have presented methods for road point extraction during recent years.
This extraction is often used as input to other characterization steps such as vectorization. In [7]
road points are identified by a hierarchical classification based on height, intensity, and local point
density. The intensity threshold is selected manually. Then, a binary image is produced, and the road is
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further refined using morphological operations and connected component analysis. Two sites, Fairfield
and Yaronga, that are mainly urban with some rural traits were tested. In [8] ground points inside a
manually selected intensity range are kept, and a constrained Delaunay Triangulated Irregular Network
(TIN) is used to group the points and remove small regions. An urban area of the city of Shashi was
tested. In [9] the intensity distribution of ground points is assumed to follow a Gaussian mixture
model, and an expectation maximization algorithm is used to find the maximum likelihood solution
of the model. An intensity image is produced from the ground points and each pixel is classified
according to its posterior probability. A certain K value is required, so that pixels are categorized into
K classes. Moreover, the road class needs to be manually identified from these K classes. Three sites,
Atlanta, Denver, and Oakland, mainly covering downtown and surrounding residential areas were
tested. In [10] ground points inside a manually selected intensity range are kept, and the remaining
noise is removed by a morphological opening operation. An urban area of Niagara was tested. In [11]
ground points are segmented based on local intensity distribution histogram, and filtered by intensity
gradient and area. A region of the city of Vaihingen was tested. In [12] road points are identified
based on intensity, local point density, and region area constraints. A new method for the calculation
of the intensity threshold based on the skewness balancing algorithm [13] is introduced, and it was
tested in four urban sites, including Vaihingen. This method assumes that the distribution of intensity
values always yields a positive skewness. While this is generally true for urban areas, in this work we
demonstrate and consider that this behavior is not guaranteed in mixed or rural areas.

Alternatively, road centerlines can be extracted without a prior extraction of the road points.
In [14,15] road centerlines are obtained by a shift mean clustering with adaptive window size based
on the intensity and surface roughness. The well known sites of Vaihingen and Toronto were used
in the experiments. While these methods yield better results than previous studies, it is unclear how
a mean shift clustering will perform in less urbanized areas. A mean shift clustering is an iterative
procedure that shifts each data point to the average of data points inside a window until a stable
average is reached. The idea is that ground points will converge into scattered points while road points
will converge into the road centerline. This way, road centerlines can be extracted by searching linear
features. However, some concerns remain: The appropriate selection of the window size, the high
computational cost, and the fact that in rural sites it is common to find areas with a homogeneous
intensity and surface roughness similar to road segments that may prevent the ground points to
converge into scattered points. Furthermore, because the road points are not being labelled, extracting
road features, such as roughness or width, is not straightforward after the extraction of the centerlines.

A different approach is to extract road points with machine learning techniques such as
AdaBoost [16], Multiple Classifier Systems (MCS) [17], Support Vector Machines (SVM) [18,19],
Conditional Random Fields (CRF) [20,21], Random Forests (RF) [22,23], or Maximum Likelihood
Classification (MLC) [24]. However, the need for training data introduces important implications. First,
the creation of labelled data is a difficult task with high economical and temporal costs, so that only a
small amount of reference data are often available. In addition, due to the heterogeneous characteristics
of point cloud data, achieving high performance on datasets different from those used for training is
not guaranteed.

Two issues remain to be addressed to perform road extraction successfully. First, methods often
need the manual input of critical parameters, particularly the intensity threshold. Second, it is difficult
to assess whether a specific method is suitable for particular data, given the fact that the datasets used
in most studies are focused on urban areas and experiments are conducted in a very small number of
test sites. To address both issues, in this paper, we propose a new framework for the extraction of road
points that is highly automatic, requiring only a single user non-critical parameter, which introduces
an improved skewness balancing algorithm for the calculation of the intensity threshold, and we use a
meaningful dataset with a variety of both urban and rural landscapes to evaluate its performance.
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The rest of the paper is organized as follows: Section 2 presents the framework for road point
extraction. Section 2.1 describes the improved method to automatically estimate the intensity threshold.
Experiments are presented in Section 3 and discussed in Section 4. Section 5 exposes the conclusions.

2. Method

In a preliminary stage of the road extraction process, the distinction between ground and
non-ground points is required. Different approaches can be considered to accomplish this task. In this
work, we use a two-phase region-growing segmentation followed by a height jump detection algorithm
from a previous work [25]. Points are grouped into clusters based on their 3D coordinates, intensity,
and normal vector. For each cluster, the height differences at the boundaries with its neighboring
clusters are calculated and, in case of high differences, the cluster is labelled as non-ground.

From this input, road points are separated from ground points by a pipeline filtering shown in
Figure 1. In each stage of the pipeline, points are evaluated to verify if they fulfil a given characteristic.
Any road point is assumed to verify the following characteristics: It yields low intensity, it lies on a
plane, it is surrounded mostly by road points, and it is within a set of road points with meaningful
size. Only first return points with these characteristics are identified as road points. Non-first returns,
which generally are present in ground areas below trees, are not considered because their inherent
low intensity produces noticeable false positives in forested areas. A limited amount of road points
may not fulfil all these constraints, e.g., road points within road markings yield high intensity values
and road points under vegetation will be non-first returns, but these points could be recovered in
later stages. Following, the filters to evaluate if each point fulfils these characteristics are introduced
in detail.

Pipeline stages

f Ground points / :> Intensity Filter :> Curvature Filter :> Density Filter :> Area Filter :>/ Road points/

Figure 1. Flowchart of the pipeline filtering.

2.1. Stage I: Intensity filter

The intensity can be defined as the ratio between the received versus the emitted power of the
laser beam. The intensity value depends on the target characteristics (reflectance and roughness),
acquisition geometry, instrumental effects, and environmental effects. It is well known that road
materials, such as asphalt or concrete, have a low reflectance, thus road points generally yield low
intensity values [3]. The challenge resides in selecting an appropriate intensity threshold for every
dataset. Although intensity is one of the key factors to distinguish between ground and road points,
little research has been conducted to investigate automatic thresholding. In [12] a skewness balancing
algorithm to automatically calculate the intensity threshold is proposed. The basic assumption of the
skewness balancing algorithm is that naturally measured samples will lead to a normal distribution
due to the central limit theorem [26]. Originally, it was assumed that elevation values of ground points
follow a normal distribution, which is disturbed by object points, so that by their removal, the normally
distributed ground points are obtained [13]. This concept was adopted in [12] for road extraction. In our
proposal, we extend this algorithm by (i) improving its robustness to intensity outliers, (ii) making it
suitable for non-urban areas, and (iii) standardizing the balancing speed. A flowchart of the proposed
algorithm, which we have called bidirectional skewness balancing, is shown in Figure 2. The main
stages of this method are described in detail in the following subsections.
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Figure 2. Flowchart of the bidirectional skewness balancing.

2.1.1. Outliers Removal

The skewness is a measure of the degree of asymmetry of a distribution. It can be used to
detect whether a distribution is concentrated on the left or on the right side. This information is used
to determine the direction of the skewness balancing (as explained in Section 2.1.4). Nevertheless,
the skewness is very sensitive to the presence of outliers. In particular, very high intensity values lead
the skewness to be positive. A significant number of outliers can even artificially change the skewness
value from negative to positive. This, coupled with the fact that the presence of intensity outliers
across datasets is common in practice, makes the removal of outliers a mandatory task prior to any
processing. To this end, we use the Interquartile Range (IQR) which is defined as:

IQR = Q3 = @

where Q3 and Q) are the third and first quartiles of the distribution, respectively. Then, the maximum
value of the box-and-whisker plot is calculated, which is set as the maximum intensity allowed, that is:

Lnax = Q3 +1.5-10R )

All points yielding an intensity I > I, are considered outliers and are filtered.

A clear example of the need for the removal of outliers is shown in Figure 3. Please note that
the presence of some points yielding a very high intensity leads to a highly positive skewness (see
Figure 3a). A positive skewness value will initiate a backward balancing which will fail to obtain an
accurate intensity threshold. By removing the outliers, the actual nature of the distribution is clearly
exposed, which yields a negative skewness (see Figure 3b). In our proposal, a negative skewness value
initiates a forward balancing to calculate the appropriate intensity threshold.
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Figure 3. Normalized histogram (HST) of Truro (see Section 3.1) (a) before and (b) after outlier removal.
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2.1.2. Right Tail Removal

Even after the removal of outliers, the Gaussian in the histogram formed by ground points
generally presents a notable right tail (see Figure 4a). This produces a negative impact on the algorithm
and needs to be addressed. The skewness balancing stops when reaching symmetry, i.e., zero skewness.
This means that in the presence of a significant right tail, an equivalent significant left tail will be
preserved. This situation can be observed in Figure 4b, where the forward balancing stops when
reaching the left tail instead of advancing until the base of the Gaussian. Consequently, the calculated
intensity threshold is systematically low. This effect is mitigated if the right tail is removed. This is
performed by filtering the points with an intensity beyond a certain percentile (see Figure 4c). This way,
the forward balancing continues until reaching the base of the Gaussian (see Figure 4d), resulting in a
better estimation of the intensity threshold.

We have determined experimentally that the 95th percentile provides consistent results in all
cases. To calculate the intensity corresponding to a certain percentile, the intensity values are sorted in
ascending order, and its index within the list is calculated using the nearest rank method:

"= [%N] 3)

where 7 is the index, also known as ordinal rank, P is the considered percentile, and N is the list size.
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Figure 4. Cont.
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Figure 4. Effects of the tail filtering for the Carola data. The histogram is shown (a) after removing

outliers, (b) after removing values lower than the threshold obtained by the forward skewness balancing
without tail removal, (c) after removing the right tail, and (d) after removing values lower than the
threshold obtained by the forward skewness balancing with tail removal.

Figure 5 shows how the estimation of the intensity threshold improves when the right tail is
removed. Points are colored by their intensity values mapped into a heat map. Please note that by
applying this filter, previously missing road segments are now detected. The new road points are the
ones yielding the highest intensity (red and orange color). Some false positives are also added, but it is
crucial to detect all road points in this stage and they can be removed in next stages.

(a) (b)
Figure 5. Results of the intensity filtering for Carola data (a) before and (b) after the removal of the

right tail. Points are colored by a cold-to-hot gradient of their intensity values. Some road segments
enclosed in the highlighted white areas are recovered.

2.1.3. Intensity Scaling

In [12] the skewness balancing is performed by subtracting 1 to the intensity threshold iteratively.
Nevertheless, intensity ranges can vary greatly as the intensity can be scaled into different ranges,
commonly between 8 and 16 bits [27]. This means that using an absolute step size of 1 will result
in different relative step sizes for point clouds with different intensity ranges. In other words,
the balancing speed will not be the same across point clouds. For example, in the Vaihingen data,
intensity values are scaled to a 8 bit range so that the relative step size is then 1/255, whereas, in the St
Arnaud data, intensity values scaled to a 16 bit range so that the step size would be 1/65,535, which
increases the number of iterations reducing the computational performance significantly. There are also
cases in which the intensity range after removing the outliers can be smaller than the initial bit range.
In the Toronto data, the intensity values are scaled to a 8 bit range, but after removing the outliers,
the remaining values are in the [0, 58] range, so the step size would be 1/58. Such large relative step
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size may lead to obtain an intensity threshold that is not optimal, as the skewness balancing would
have been stopped earlier if using a smaller step size. In order to enforce an equal relative step size,
the remaining intensity values of each point cloud are scaled into the [0, 255] range and the absolute
step size is always kept as 1. This assures a relative step size of 1/255 independently of the intensity
range.

2.1.4. Bidirectional Balancing

Once the intensities have been scaled, the skewness is calculated and a forward or backward
balancing is initiated depending if its value is negative or positive, respectively. Let us analyze the
reasons to consider both directions. In [12] only backward balancing is used, because it is assumed
that intensity values of road points follow a normal distribution, which is disturbed by non-road
points, so that by their removal, the normally distributed road points are obtained. However, this is
only true for urban areas. In such scenarios, there is a predominance of road points over non-road
points, meaning that the distribution is left-concentrated and its skewness is positive as shown in the
example of Figure 6a. In contrast, in less urbanized or rural areas the situation is just the opposite,
there is a predominance of non-road points, so the distribution is right-concentrated and its skewness
is negative as shown in the example of Figure 6b. In other words, the disturbance to remove is the
non-predominant class, road or non-road, which changes among study sites. Considering this, we
reformulate the assumptions of the skewness balancing as follows:

1. Intensity values of both road and non-road points are normally distributed (skewness = 0).
2. A predominance of road points leads to a left-concentrated distribution (skewness > 0).
3. A predominance of ground points leads to a right-concentrated distribution (skewness < 0).

While the original algorithm only works properly in cases under assumptions 1 and 2, we propose
to generalize the core principle of the algorithm in order to make it also suitable for cases under
assumption 3.

0.014

0.014 T T

— HST (sk =0.433) — HST (sk =-0.705)
0.012 B 0.012 -
0.010 4 0.010 |-
0.008 B 0.008 -
= 2
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Figure 6. Comparison of the intensity values distribution between (a) the urban site of Vaihingen and
(b) the rural site of Alcoy. The dominant point class, road or non-road, determines if the distribution is
left-concentrated or right-concentrated, respectively.

The idea of the algorithm is to filter points iteratively until reaching a zero skewness, in other
words, until only the points in the Gaussian-shaped peak remain. For a distribution with positive
skewness this filtering is done backwards (right-to-left), as the peak is located on the left side. For a
distribution with negative skewness, we propose to perform the filtering forwards (left-to-right) as the
peak is located on the right side. A flowchart of the forward balancing is shown in Figure 7. Therefore,
the direction of the balancing is dictated by the skewness value.
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Figure 7. Flowchart of the forward skewness balancing.

Because of the intensity scaling described in the previous subsection, the obtained intensity
threshold in the skewness balancing will be scaled. This can be reverted into its raw intensity value by:

It = It - Inax /255 (4)

where It is the raw intensity threshold, I is the scaled intensity threshold, and I;;4y is the maximum
raw intensity after the removal of the right tail. All points with intensity I > It are filtered out. Also,
points with I = 0 are also filtered, as we found that they typically correspond to water surfaces.

2.2. Stage 1I: Curvature Filter

After filtering the points by intensity, their curvature is considered in the next stage of the
pipeline. In order to analyze the curvature of a point, its neighborhood must be identified. A common
neighborhood model is a sphere with radius r. The length of r is selected based on two factors: the
average point spacing (APS) and the minimum road width (MRW). On the one hand, it is necessary to
consider a significant amount of neighboring points, an appropriate value could be r = 2 - APS. On the
other hand, if the length of r is large with respect to the road width, there will be a high percentage of
non-road points inside the neighborhood influencing the curvature calculation. Ideally, a point in the
centerline of the road will have only road points as neighbors, while road points near the edges will
have a lower number of road points as neighbors. Considering this fact, r must not be higher than the
half of the road width. The proposed value of r is:

r = min(2 - APS, MRW /2) @)

Please note that for the neighbors search, only points in the same flight strip are considered, as
points between overlapping strips can yield a high curvature due to issues in the geometric adjustment.

Then the 3 x 3 covariance matrix of the neighborhood is obtained. Their eigenvalues {A1, A2, A3}
can be obtained by Principal Component Analysis (PCA), so that A; > Ay > A3 > 0, because it is a
symmetric positive-definite matrix. These eigenvalues describe the local geometry structure of the
point set, from which the surface variation [28], also known as change in curvature [29], is:

A3

Ch=——""—
A A+ A+ A3

(6)
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C, is zero for points lying on a plane, which is expected for road points. Nevertheless, because
LiDAR data have inherent noise, a zero value is not expected, therefore, a threshold needs to be set.
We found experimentally that the value 0.005, used by other authors [30,31], is suited for the whole
dataset. So only points with C, < 0.005 are considered planar and are kept for the next filtering stage.

2.3. Stage 1II: Density Filter

Roads are connected objects thus road points must also be connected. Therefore, it is expected
for a road point to be surrounded by other road points. We adopt the constraint of local point density
presented in [7], which is the percentage of road points within the neighborhood of a given point.
The assumption is that a road point will have a different local point density depending on its position
within the road, but always over a certain minimum. A point in the middle of the road is expected to
have a local point density of 100% (Figure 8a), while a point in the edge of the road would have a local
point density near 50% (Figure 8b). In an extreme case, where the point is in a corner with a sharp
bend of 90°, it will still maintain a local point density of 25% (Figure 8c). Therefore, points yielding a
local point density lower than 25% are filtered out. To define the neighborhood, a sphere with a radius
of d is used. According to the previous reasoning, d must not be larger than the half minimum road
width (MRW). In our case we use d = MRW /2.

(@) (b) (0)
Figure 8. Visualization of a circular neighborhood with radius r for different points in the road: (a) a
point in the centerline, (b) a point in the road edge and (c) a point in a sharp bend of 90 degrees.

2.4. Stage IV: Area Filter

Some isolated points eventually fulfil all constraints described in the previous stages. In order
to retain only meaningful points and remove this kind of noise, the points are grouped into clusters,
and only clusters with a substantial area are kept after this filter. This clustering is achieved by a
simple region-growing procedure, in which the seed is the first currently non-clustered point, and the
inclusion criteria is to add all neighbors inside a sphere with radius 1 m of the current point, until no
more nearby points can be found. A minimum area A, =2 - MRW? is set, which can be seen as the
minimum road rectangle: A rectangle with a width equal to the MRW and a length of twice the width.

3. Results

3.1. Data and Parameters

A dataset of ten point clouds is used for our experiments. This dataset has been carefully selected
to consider a wide variety of scenarios. This is, to the best of our knowledge, the most complete dataset
for road extraction used in the literature in the field. Regarding the acquisition of the point clouds,
they were obtained from five different sources, acquired with eight different sensors, and yield point
densities ranging from 2 to 20 p/m?. The selected sites along with relevant information are shown in
Table 1. While data from Babcock International [32] and LaboraTe [33] are not publicly accessible, data
from the ISPRS Benchmark [34], OpenTopography [35], and PNOA (Spanish National Plan for Aerial
Orthophotography) [36], are openly available.
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Table 1. Point clouds included the dataset.

Site Urbanization Date Sensor Points (M) Density (p/m?) Source
Alcoy Medium NA/2013 Leica ALS60 19.14 8.65 Babcock Int.
Arzaa Low 03/2018 Riegl VQ-480i 40.70 20.35 Babcock Int.
Carola Medium 07/2010 Optech Gemini 44.87 10.28 OpenTopo. [37]

Logrofio Medium 09/2016 Leica ALS80 63.80 2.00 PNOA
St Arnaud Low 12/2017  Riegl LMS-Q1560 28.83 9.54 OpenTopo. [38]
Toronto High 02/2009  Optech Orion M 13.86 6.00 ISPRS
Trabada Low 11/2004 Optech 2033 29.39 4.00 LaboraTe
Truro Medium 07/2010 Optech Gemini 25.93 4.35 OpenTopo. [39]
Vaihingen High 08/2008 Leica ALS50 18.56 4.00 ISPRS
Victor Harbor Medium 09/2011 Optech Gemini 43.48 2.81 OpenTopo. [40]

Regarding the urbanization level, the point clouds range from highly urbanized areas with a
predominance of road over ground, such as city cores, to low urbanized areas with a dominance of
ground over road, also including moderately urbanized areas, with a more balanced ratio between
road and ground. The degree of urbanization is quantified as the percentage of road points within the
ground points. As mentioned in Section 2.1.4, there is a relation between the degree of urbanization and
the skewness of the intensity values (see Figure 9). Because of the lack of ground-truth for this purpose,
we have taken the percentage of road points extracted by our method as the degree of urbanization.
A trend can be recognized: The higher the urbanization the higher the skewness. The skewness value
used in the figure is the one obtained after the removal of intensity outliers (see Section 2.1.1).

2.0

C11-] AR e b S b R R ]

® Alcoy 1
Arzua

® Carola

® Logrono
St Arnaud

® Toronto 1
Trabada
Truro
Vaihingen

: ® Victor Harbor

Il Il Il Il T T

0 10 20 30 40 50 60 70 80 90 100

Road percentage

Skewness

20 N

Figure 9. Skewness vs. level of urbanization. The red line is the 1D polynomial fitted line. Please note
that the adjustment is far from perfect, but it is just shown to help to visualize the trend.

The method was tested on every point cloud of the dataset setting the minimum road width
to 2 m. The selection of this parameter is not critical, and prior knowledge of the road width is not
actually needed. A detailed explanation is given in Section 4.2.

3.2. Qualitative Evaluation

A ground-truth for each point cloud was generated by a stratified random sampling with a
sample size of 100 points per class, following the recommendations in [41]. These points were then
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manually labelled, interpreting both the point cloud and aerial images. We use three quality metrics,
namely correctness, completeness, and quality, introduced in [42], to quantitatively assess the method
capability to extract road points. Their mathematically definitions are shown in Equations (7)-(9),

T,
Completeness = 4 7
P T @
Correct Ty (8)
orrectness =
Ty + Fp
Quality = —— 2 )
uality = T, +F +F

where T}, is the number of correctly labelled road points, F, is the number of wrongly labelled road
points, and F; is the number of missed road points. The values of the metrics are shown in Table 2.

Table 2. Results of the quantitative evaluation. Average values are highlighted.

Site Completeness Correctness Quality
Alcoy 0.97 0.77 0.75
Arzaa 0.81 0.82 0.69
Logrofio 0.99 0.80 0.79
St Arnaud 0.99 0.88 0.87
Toronto 0.80 0.93 0.76
Trabada 0.97 0.69 0.68
Truro 0.97 0.97 0.94
Vaihingen 0.95 0.80 0.77
Victor Harbor 0.96 0.73 0.71
Min. 0.80 0.69 0.68
Avg. 0.93 0.83 0.78
Max. 0.99 0.97 0.94

To determine the suitability of the method, we refer to [43], where a minimum value of 0.60 and
0.75 for completeness and correctness, respectively, was defined for the result to become practically
useful. Our method satisfies this minimum for the whole dataset. Furthermore, the authors stated
that to be of real practical importance, a method probably should yield completeness and correctness
values around 0.70 and 0.85, respectively. With an average completeness and correctness values of 0.93
and 0.83, respectively, our method also meets this quality standard.

Please note that the Carola site has not been evaluated quantitatively. This is because the points
yield an abnormal high curvature (see Figure 10), which makes infeasible the task of generating
ground-truth. Also, the curvature filter cannot be applied in these conditions, as it will filter most of the
points. Nevertheless, we tested the pipeline filtering without this filter. Visual inspection demonstrates
that the pipeline can still be effective even without the curvature filter stage (see Figure 11f).
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(b)
Figure 10. Triangulated Irregular Network (TIN) of a spot in the (a) Vaihingen and (b) Carola sites.
In Carola, the high curvature of the points in flat surfaces such as roofs and ground is clearly visible.

3.3. Qualitative Evaluation

The road points extracted by our method along with aerial images of the sites are shown in
Figure 11. Visual inspection shows that road points have been extracted in all point clouds. Relevant
information about the filtering process is shown in Table 3. Execution times of the pipeline filtering
were measured in a desktop computer with an Intel Core i7-4790 CPU and 16 GB of RAM memory.
Execution times mainly depend on the point cloud size and on the percentage of road points, as this
means that more candidate road points will be processed in the stages of the pipeline filter.

To identify the limitations of the method, we analyzed the two sites yielding quality values lower
than 0.70, namely Arztia and Trabada. In the case of Arzia, the road surface yields significantly higher
intensity than in the other point clouds. This behavior reduces the intensity difference between road
and ground points hindering their distinction greatly. This is the reason why, although the main road
has been extracted, some road segments inside the city core and the eastern road segment are missing.
Furthermore, a few adjacent strips show noticeably different intensity values. Because of this, there is
a noticeable gap in the southwestern road segment (see Figure 12). The two aforementioned issues
lead the Arzua site to yield the second smallest completeness value. Overall, a higher quality could
be achieved by improving the intensity correction and normalization. In the case of Trabada, there
is a noticeable number of false negatives, most of them corresponding to tilled areas. These areas
yield a lower intensity than the surrounding ground, and, if planar enough, they can be very hard
to distinguish from road surfaces such as parking lots. Although it would be reasonable to expect
tilled areas to be significantly less planar than the road surface, particularly in Trabada, this is not the
case. We tried to deal with this issue by reducing the curvature threshold, but this change removes
both tilled areas and road surfaces (see Figure 13). In this particular data, both classes yield similar
curvature, and this feature cannot be used to distinguish them. Nevertheless, note that this dataset
was acquired 15 years ago, and we do not expect this behavior to occur in more recent data.
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(g) Logrono’s aerial image (h) Logrono’s extracted road points

Figure 11. Cont.



Remote Sens. 2020, 12, 2025 14 of 21

(k) Toronto’s aerial image (I) Toronto’s extracted road points

(m) Trabada’s aerial image (n) Trabada’s extracted road points

(o) Truro’s aerial image (p) Truro’s extracted road points

Figure 11. Cont.
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(s) Victor Harbor’s aerial image
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Figure 11. Aerial images of the tested data (left) and extracted road points (right).

Table 3. Skewness balancing insights and results of the road extraction. Skin;: initial skewness;
Skigr: skewness after outlier removal; Skpct: skewness after tail removal; Bgj,: balancing direction; It
obtained intensity threshold; (It¢ |9, 255)) I normalized into [0, 255] range.

Site Skinit Skigr  Skpct Bpir It It¢ [0,255] Road % Exec. Time (s)
Alcoy —0.705 —0.749 —0.947 Forward 103 108 18.24 117.1
Arzaa —0.937 —-1.174 —1.570 Forward 790 135 4.15 464.4
Carola 81.564 —0.379 —0.593 Forward 25 82 15.47 186.1
Logrofio —0.867 —0997 —1.224 Forward 17,760 119 16.80 844.8
St Arnaud —1542 —1564 —1.682 Forward 26,609 109 2.89 101.4
Toronto 3.327 0.971 1.013 Backward 9 38 41.00 88.8
Trabada —0.647 —0.647 —0.873 Forward 103 103 19.35 186.6
Truro 1.470 —0.135 —0.530 Forward 154 72 17.32 85.2
Vaihingen 0.434 0.398 0.183 Backward 71 71 71.10 238.8
Victor Harbor  10.327 —0470 —0.627 Forward 12 91 14.62 712.2
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Figure 12. Intensity correction issues in Arzda. The change in intensity is clearly visible at the overlap
of the flight strips (highlighted with red arrows). The road segment inside this high-intensity strip
cannot be identified by our method because of its high intensity compared with other road segments.

T
F
4

(a) (b) (0) (d)
Figure 13. Planar (black) and non-planar (red) points using different thresholds in the curvature filter:
(a) 0.005, (b) 0.004, (c) 0.003, (d) 0.002. The scene corresponds to an area of east Trabada with tilled
areas with nearby road segments.

4. Discussion

4.1. Intensity Threshold

It is worth mentioning some insights about the intensity threshold calculation (see Table 3).
On the one hand, it is important to highlight the importance of removing the intensity outliers before
calculating the skewness. The balancing direction depends on the sign of the skewness, thus its
calculation is crucial. Take as examples the Carola, Truro, and Victor Harbor sites. The initial skewness
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is positive but, after removing the outliers, it changes to negative, which also changes the balancing
direction. Without this correction it would not be possible to calculate the optimal intensity threshold.
On the other hand, the calculated intensity threshold varies greatly across point clouds. By normalizing
each threshold to provide comparable values, we can observe that road points are expected to yield an
intensity lower than half of the intensity range, after removing the outliers. This can be considered to
be a rule of thumb. However, the optimal intensity threshold can be significantly lower, and its value
is unique for each data. Therefore, a fully automatic method, as the one proposed, is needed.

4.2. Road Width Parameter

An important matter is the selection of the minimum road width (MRW) parameter. To illustrate
its influence, we measure the quality obtained using different values for the Vaihingen and Truro sites
(see Figure 14). The road width is subject to government regulations with typical values ranging from
2 m to 6 m, but for the sake of analysis, we also used larger values. Using typical values produced
similar qualities, only when using large values the quality decreases significantly, especially in Truro,
because the road width is typically smaller in less urbanized landscapes. Also, note that this parameter
is not a constraint for the road width itself, but rather a reference for three stages of the pipeline
filtering, so roads with both smaller and larger widths will also be extracted.

100
95
90 |- =
85

80 | =

75 |- /\.—‘\’\0—0/'—'\0 o

70 - =

65 |- =

60 1 —e— Vaihingen |

55| —e— Truro

7 J Y o S S B
2 3 4 5 6 7 8 9 10 11 12

Minimum road width (m)

Quality (%)

Figure 14. Influence of MRW parameter in the quality of the results for Vaihingen and Truro sites.

4.3. Point Density

Selecting the target point density is an important task when planning the LiIDAR survey. Generally,
acquiring denser point clouds leads to obtain more accurate LiDAR-derived products, at the expense of
an increased cost (e.g., higher grade sensor, more flight hours ...). Therefore, is critical to know the point
density requirements of the LIDAR applications. For this road extraction method, our experiments
show that point density does not affect the result significantly, as long as it is above a lower limit. We
believe that 2 p/m? is the lower limit for point density that achieves satisfactory results. We consider
this limit to be reasonable, as most point clouds acquired over recent years surpass this point density,
and furthermore, acquisition techniques are on constant development and future trends point towards
the acquisition of denser point clouds. Nevertheless, note that the higher the point density the more
accurate will be the extracted road with respect to the real-world road. In other words, decreasing the
point density increases the uncertainty of the road model.
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4.4. Challenging Conditions

The road extraction may struggle in the presence of water and wetland, where the intensity values
can be as low as in the road surface. For instance, in Victor Harbor site, a water area in the south-east
part of the site is wrongly labelled as road surface (see Figure 11t). Deep water normally does not reflect
the laser beam, but LiDAR points can be recorded near the coast or in the presence of floating sediment.
The topic of detecting water is out of the scope of this work, so in cases of coastal areas, a water
extraction procedure should be applied beforehand. A more challenging situation is the existence
of wetland. In the St Arnaud site, the surrounding ground of a narrow river is wrongly labelled as
road surface (see Figure 11j). While for this particular site the amount of wetland is relatively small,
sites with large wetland areas could be an issue, although it is reasonable to expect roads to exhibit
higher linear features than wetland areas. Finally, we have observed that some paved areas attached to
the road (e.g., garage entrances) are generally identified as road. These might have to be filtered out
depending on the definition of road for the given end-user application.

4.5. Comparison with Other Methods

The completeness (Cp), correctness (Cr) and quality (Q) that recent studies have achieved are
summarized in Table 4. Note, however, that it is difficult to compare the methods, as authors use
different datasets. Furthermore, in some studies, LiDAR-derived features such as elevation and
intensity are rasterized, so that processing and evaluation is carried out at pixel-level instead of
point-level, which leads to a loss of information. Our method yields the highest completeness and it is
the third in terms of correctness and quality, only surpassed by CRF methods [20,21]. Nonetheless, our
method offers clear advantages, first, it does not need training as CRF methods do, and second, it has
been tested in a wide range of scenarios, while CRF methods have been tested only in three small
regions of the urban site of Vaihingen. Notice that the lack of test sites is a prevailing issue among
studies, and experiments are often carried out in one study site only, typically urban.

Table 4. Comparison of quality metrics with existing methods. Highest values are highlighted.

Author Cp (%) Cr(%) Q (%) No Rasterization Study Sites
Clode et al. (2007) [7] 83.50 7350  63.50 X 2 (Fairfield and Yeronga)
Samadzadegan et al. (2009) [17] 53.94 56.64 53.10 X 1 (Castrop-Rauxel)
Jiangui and Guang (2011) [8] 60.35 66.81 NA v 1 (Shashi)
Azizi et al. (2014) [18] 75.07 63.02 5211 X 1 (Golestan)

Matkan et al. (2014) [19] 85.34 71.54 63.56 v 1 (Rheine, 3 areas)
Niemeyer et al. (2014) [20] 87.08 93.04 81.75 v 1 (Vaihingen, 3 areas)
Niemeyer et al. (2015) [21] 90.40 87.30 79.90 v 1 (Vaihingen, 3 areas)

Li et al. (2015) [11] 92.94 75.50 71.41 v 1 (Vaihingen)
Proposed method 93.00 83.00 78.00 v 10 (see Table 1)

5. Conclusions

In this work, a method for the automatic extraction of road points is proposed. The only parameter
required to the user is a rough estimation of the minimum road width. Road points are identified
by a pipeline filtering based on intensity, curvature, local density, and area constraints. We showed
the relevance of the intensity feature, and we presented an improved algorithm for its automatic
thresholding. Experiments conducted in a dataset with ten study sites showed that the method is
suitable regardless of the landscape characteristics and the acquisition procedure. Road points were
extracted even for sites with little presence of roads. Some limitations were also exposed, in particular,
low intensity areas such as tilled areas, wetland, and water can introduce false positives. Also, we
showed that the selection of the minimum road width parameter is not critical, with little effect in
the quality of the results as long the value is within a typical range. Overall, tests demonstrate the
suitability of our approach as a general method for road point extraction. As the main difficulty when
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extracting the road model is to first extract the road points, our contribution offers a competitive result
in this confrontation.
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