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Abstract Carbene intermediates have shown versatile applications in modern 
synthetic chemistry. Catalytic ruthenium carbene/alkyne metathesis (CAM) 
with readily available substrates renders an efficient procedure for the in situ 
generation of ruthenium vinyl carbene intermediates. Here, recent advances 
in synthetic applications of ruthenium-catalyzed carbene/alkyne metathesis 
(CAM) are highlighted.      
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1 Introduction 

The complexation of the neutral, divalent, sp2-hybridized, 6e--
carbon atom of carbenes to a metal center entails a significant 
stabilization of the otherwise extremely reactive intermediate. 
In this coordination, the carbene behaves as a neutral 2e- ligand 
generating a formal double bond with the metal. The stability, 
reactivity and bonding properties greatly depend on the nature 
of the metal, the ligands on the metal and the substituents of the 
carbene fragment, whereby the metal carbene complexes have 
been divided into two main groups:1 Fischer-type carbenes 
(Figure 1, left), characterized by the interaction of a singlet 
carbene ligand with a metal fragment in the singlet state which 
leads to a significant carbene to metal σ donation (sp2→d) and a 
weaker metal to carbene π back-donation (d→pz) that renders 
the carbene carbon electrophilic; and Schrock-type carbenes or 
alkylidenes (Figure 1, right), derived from the combination of a 

triplet carbene and a triplet metal fragment leading to a 
“covalent-like” double bond which is polarized towards the 
carbene moiety, making it nucleophilic. 
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Figure 1 Classification of metal carbenes 

Since the synthesis, isolation and characterization of the first 
metal carbene complex, a tungsten carbonyl 
methoxymethylcarbene, by E. O. Fischer and A. Maasböl in 
1964,2 metal carbenes have been used in many catalytic 
processes3 like alkene and enyne metathesis,4 alkyne 
polymerization,5 cyclopropenation,6 etc. In situ generated 
catalytic metal carbenes1a,3,7 have been invoked as 
intermediates for cycloadditions, insertions or skeletal 
rearrangements.8 

Substitution in carbenes has a significant influence on their 
reactivity. When the substituent is a vinyl group, it is governed 
by the combination of three factors: i) the presence of a three 
carbon-four electron π-system; ii) the existence of two 
electrophilic positions (α and γ positions) and iii) the possible 
existence of two coordination modes (η1 or η3 coordination) 
(Figure 2). Such features render metal vinyl carbenes valuable 
intermediates in organometallic chemistry with potential 

Damián Padín 
Jesús A. Varela 
Carlos Saá* 

Centro Singular de Investigación en Química Biolóxica e 
Materiais Moleculares (CiQUS), Departamento de Química 
Orgánica, Universidade de Santiago de Compostela, 15782 
Santiago de Compostela, Spain 

carlos.saa@usc.es 

Click here to insert a dedication. 
R

R

N2CHY

Ru

R

Cp*
Cl

R

Y

Ru-Vinyl Carbenes

CAM reaction

Nonpolar Transformations

Polar Transformations
R

YNu H

R

Y

R

Y

Cp*RuCl(cod)

 

 

mailto:carlos.saa@usc.es


Synlett Account / Synpacts 

Template for SYNLETT © Thieme  Stuttgart · New York 2020-09-30 page 2 of 11 

applications in organic synthesis. In this account, we will 
highlight the main synthetic applications involving catalytic 
processes through ruthenium vinyl carbene intermediates.9 
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Figure 2 Characteristics of metal vinyl carbenes 

2 Ruthenium Vinyl Carbenes Through 
Carbene/Alkyne Metathesis (CAM) 

In a metal mediated carbene/alkyne metathesis (CAM), a 
carbene fragment from a metal complex migrates to an alkyne 
with the concomitant generation of a metal vinyl carbene where 
a new carbon-carbon double bond and a new metal carbene are 
being formed.10 Different mechanisms have been proposed for 
this process depending on the metal complex used and its 
oxidation state (Scheme 1). In the case of low-valent metals, 
such as Co(I)11 or Ir(I),12 the metal carbene undergoes a (2+2) 
cycloaddition with the alkyne to yield a metallacyclobutene 
intermediate which subsequently ring opens through a 
cycloreversion to give the metal vinyl carbene (Scheme 1, route 
A). Originally, this was considered the standard mechanism for 
CAM catalyzed by most transition metals; however, new 
experimental and theoretical data indicate that the mechanisms 
differ from one metal to another. Thus, cyclopropenes, formed 
through a concerted (2+1) cycloaddition between metal 
carbenes and alkynes (Scheme 1, route B),13 or direct concerted 
reaction with alkynes to yield ruthenium vinyl carbenes 
(Scheme 1, route C)14 have been identified or postulated. 
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Scheme 1 Mechanistic proposals for carbene/alkyne metathesis 

In 2000, Dixneuf and coworkers discovered a new methodology 
for the in situ generation of ruthenium vinyl carbenes by 
combining diazoalkanes and alkynes in the presence of catalytic 
amounts of Cp*RuCl(cod) (Scheme 2).15 Catalytic ruthenium 
vinyl carbene intermediates have been invoked in a variety of 
transformations that will be presented in the next sections. 
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Scheme 2 Generation of ruthenium vinyl carbenes from Cp*RuCl(cod), 
diazocompounds and alkynes 

3 Nonpolar Transformations of Ruthenium Vinyl 
Carbenes 

The reaction products formed via ruthenium vinyl carbene 
intermediates strongly depend on the nature of the alkyne.16 
Thus, non-functionalized alkynes generate 1,3-dienes via 
double diazoalkane carbene addition to the triple bond.15,17 For 
example, reaction of mono- and disubstituted alkynes with two 
equivalents of trimethylsilyldiazometane in the presence of 
Cp*RuCl(cod) afford 1,4-bistrimethylsilylbuta-1,3-dienes 
through initial formation of ruthenium vinyl carbene I which 
interacts directly with a second unit of the diazocompound to 
afford the observed diene either directly or via the cis 
biscarbene II (Scheme 3). 
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Scheme 3 1,3-Dienes by double diazoalkane carbene addition to alkynes 
catalyzed by Cp*RuCl(cod) 

Functionalized 1,3-dienes could also be obtained by 
Rautenstrauch rearrangement of ruthenium vinyl carbenes I, 
generated in situ by reaction of propargylic carboxylates with 
diazoalkanes in the presence of catalytic Cp*RuCl(cod) (Scheme 
4).18  
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Scheme 4 Functionalized 1,3-dienes by Rautenstrauch rearrangement of 
ruthenium vinyl carbenes derived from diazoalkane, propargylic carboxylates 
and catalytic Cp*RuCl(cod) 

Bicyclic [n.1.0] systems can also be achieved by using enynes in 
the presence of catalytic Cp*RuCl(cod) and diazocompounds. 
Alkenyl bicyclo[3.1.0]hexanes and bicyclo[4.1.0]heptanes can 
be ensembled by Cp*RuCl(cod)- catalyzed reaction between C-, 
N- and O-tethered 1,6- and 1,7-enynes and diazocompounds by 
initial formation of the corresponding ruthenium vinyl carbene 
through CAM followed by a concerted [2+1] reaction 
(cyclopropanation) of the carbene into de double bond of the 
alkene (Scheme 5).19 Remarkably, when electron-rich N2CHTMS 
was used the major diastereoisomer obtained had Z geometry, 
while with conjugated diazolkanes such as N2CHCO2Et and 
N2CHPh the major isomer presented E geometry. 
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Scheme 5 Alkenyl bicyclic systems by Cp*RuCl(cod)-catalyzed reaction of 1,6- 
and 1,7-enynes with diazocompounds 

Enynes bearing a substituted triple bond or with a propargylic 
substitution disfavor the tandem CAM process. Thus, 
cyclopropanes A are formed by direct cyclopropanation of the 
alkene moiety when the alkyne bears bulky substituents 
(Scheme 6); α-alkenyl alkylidene cyclopentanes B together with 
the expected alkenyl bicyclo[3.1.0]hexanes C are obtained when 
the enyne possess propargyl α,α-disubstitutions (Scheme 6).19b 
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Scheme 6 Cp*RuCl(cod)-catalyzed reaction of enynes bearing 
propargylic α,α−disubstituted and internal/terminal alkynes with N2CHTMS 

Similarly, alkenyl bicyclo[3.1.0]hexanes and 
bicyclo[4.1.0]heptanes are obtained from 1,6- and 1,7-enynes 
with alkenyl/allylic substituted substrates (Scheme 7).20 
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Scheme 7 Cp*RuCl(cod)-catalyzed reaction of allylic substituted 1,6- and 1,7-
enynes with diazocompounds 

Furthermore, allenynes reacted under the same catalytic 
conditions to afford alkylidenebicyclo[3.1.0]hexanes having and 
adjacent bridgehead-substituted (Z)-CH=CHTMS group 
(Scheme 8).21 
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Scheme 8 Cp*RuCl(cod)-catalyzed reaction of allenynes with N2CHTMS 

4 Polar Transformations of Ruthenium Vinyl 
Carbenes  

A decade ago we initiate a program in our group to evaluate the 
reactivity as electrophile of the ruthenium vinyl carbene 
intermediates to be applied in polar transformations. 

4.1 Intramolecular Ruthenium Catalyzed [1,5]- and 
[1,6]-Hydride Transfer/Cyclization 

During the last few years, metal-catalyzed C-H 
activation/functionalization has been positioned as a powerful 
tool for the step-economical construction of C-C and C-
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heteroatom bonds starting from hydrocarbons.22 While 
extensive methodology has been developed for the 
functionalization of Csp2-H bonds, Csp3-H bonds remain more 
challenging due to its high bond dissociation energy. 

A selective activation and direct functionalization of Csp3-H 
bonds towards five- and six-membered carbo- and heterocycles 
has been devised by ruthenium-catalyzed redox, neutral [1,n]-
hydride transfer/cyclization processes.23 Ruthenium vinyl 
carbene intermediates derived from CAM reaction of 
trimethylsilyldiazomethane and alkynylacetals behave as 
hydride acceptors in intramolecular [1,n]-hydride transfers to 
afford functionalized carbo- and spirocycles.24 Tertiary Csp3-H 
of linear and cyclic acetal derivatives undergo [1,5] and [1,6]-
hydride transfer/cyclizations in moderate to good yields 
(Scheme 9). 
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Scheme 9 Ruthenium-catalyzed [1,5]- an [1,6]-hydride transfer/cyclizations 
of tertiary Csp3-H of alkynylacetals 

Even alkynyl tetrahydrofurans and pyrans (X = O, n = 1,2) and 
pyrrolidines (X = N), having less activated tertiary Csp3-H by 
single heteroatoms, underwent [1,5] and [1,6]-hydride 
transfer/cyclization processes to provide the bicyclic oxa- and 
azaspiranes in fairly good yields with high diastereoselectivities 
or as single diastereomer, respectively. Unfortunately, pure 
tertiary Csp3-H of cycloalkanes failed to react (Scheme 10). 
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Scheme 10 Ruthenium-catalyzed [1,5]- and [1,6]-hydride 
transfer/cyclizations of tertiary Csp3-H in alkynyl heterocycles 

Moreover, secondary linear Csp3-H of alkynyl ethers also 
underwent [1,5]-hydride transfer/cyclization processes. Trans 
homoallylic ethers could be obtained from acyclic ethers and 
tetrahydrofurans in moderate to good yields (Scheme 11). 
Interestingly, activation of the secondary Csp3-H of piperidines 
gave a single diastereoisomer of the corresponding bicyclic 
derivative. 
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Scheme 11 Ruthenium-catalyzed [1,5]-hydride transfer/cyclization of 
secondary Csp3-H in alkynyl ethers and heterocycles  

The mechanistic hypothesis for the Ru-catalyzed [1,5]-hydride 
transfer/cyclization processes in cyclic alkynyl acetals is shown 
in Scheme 12. After initial formation of ruthenium carbene I, a 
CAM process arises to generate the vinyl ruthenium carbene II. 
Then, a [1,5]-hydride transfer assisted by the heteroatoms 
affords a transient zwitterionic species which is trapped to give 
the ruthenacycle III.14a A reductive elimination would finally 
afford the spiroacetal with recovery of the Ru(II) catalyst. 
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Scheme 12 Mechanistic hypothesis for the Ru-catalyzed [1,5]-hydride 
transfer/cyclization in cyclic alkynyl acetals 

4.2 Heterocyclizations of Alkynals and Alkynones 

Electrophilic vinyl ruthenium carbenes derived from 
Cp*RuCl(cod)-catalyzed CAM reaction between 
alkynals/alkynones and trimethylsilyldiazomethane could be 
catched with O-nucleophiles from the carbonyl functionalities to 
give five- and six-membered oxaheterocycles.25 2-Vinyl-3,4-
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dihydropyrans were obtained in good yields and high 
diastereoselectivities starting from 3,3- and 3,3,4-substituted 
alkynals (Scheme 13).26 
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Scheme 13 Ruthenium-catalyzed heterocyclization of di- and trisubstituted 
alkynals to 2-vinyl-3,4-dihydropyrans 

With a glimpse to future applications to the synthesis of 
bioactive tetrahydropyrans, we undertook the reevaluation of 
the diastereoselectivity of the reaction with 3-monosubstituted 
alkynals. Alkynals bearing ester and ether functionalities 
afforded, to our delight, the corresponding 2-vinyl-3,4-
dihydropyrans as single cis diastereomers (Scheme 14). 
However, although alkynals bearing bulkier 3-silyloxy 
substituents were very well tolerated in terms of reactivity, they 
showed lower diastereoselectivities. 
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Scheme 14 Ruthenium-catalyzed heterocyclization of 3-alkynals to 2-vinyl-
3,4-dihydropyrans 

Similarly, alkynones were also capable to undergo ruthenium 
catalyzed heterocyclizations to 6-substituted 2-vinyl-3,4-
dihydropyrans (Scheme 15). As before, 3-monosubstituted 
alkynones showed complete diastereoselectivity to give the cis 
2,4,6-trisubstituted dihydropyrans, and also to the 
enantiomerically pure dihydropyrans if the starting alkynone 
was (R) 3-(tert-butylsilyloxy)alkynones (Scheme 15). 
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Scheme 15 Diastereo- and enantiomerically ruthenium-catalyzed 

heterocyclization of alkynones to 6-substituted 2-vinyl-3,4-dihydropyrans 

Optically active 2,3-dihydrofurans, which are synthetically 
relevant structures for a plethora of natural and bioactive 
products,27 can be easily accessed via Ru-catalyzed 
heterocyclization of (2S,3R)-1,4-alkynones derived from 
enantioselective propargylic alkylation of acyclic ketone 
enamines (Scheme 16).28 
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Scheme 16 Ruthenium-catalyzed heterocyclization of (2S,3R)-1,4-alkynones 
to active 2,3-dihydrofurans 

The tentative mechanism for the Ru-catalyzed heterocyclization 
of alkynals and alkynones to give 2-vinyl-3,4-dihydropyrans is 
shown in Scheme 17. After initial generation of the electrophilic 
vinyl ruthenium carbene II through CAM reaction, a nucleophilic 
attack of the carbonyl would afford the zwitterionic 
intermediate III. The diastereoselectivity seems to be controlled 
on the nucleophilic attack of the carbonyl through the more 
stable chair-like conformer of carbene IIa with all the equatorial 
substituents. Final deprotonation and reductive elimination 
would give rise to the observed dihydropyran with regeneration 
of the active ruthenium species for the next catalytic cycle. 
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Scheme 17 Mechanistic hypothesis for the ruthenium-catalyzed 
heterocyclization of alkynal and alkynones 

Likewise, N-tethered alkynals (aza-alkynals) and alkynones also 
underwent heterocyclizations to give the corresponding 2-
vinyl-3,4-dihydro-2H-1,4-oxazines in moderate to good yields 
(Scheme 18). 
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Scheme 18 Ruthenium-catalyzed heterocyclizations of N-tethered alkynals 
and alkynones to 2-vinyl oxazine derivatives 

Remarkably, 2,2-disubstituted aza-alkynals undergo a divergent 
cyclization reaction leading to vinyl epoxypyrrolidines (n = 0) 
and epoxypiperidines (n = 1), valuable building blocks for the 
synthesis of bioactive compounds (Scheme 19).29 
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Scheme 19 Cp*Ru(cod)-catalyzed cyclization of α,α’-disubstituted aza-
alkynals and trimethylsilyldiazomethane to epoxypyrrolidines and 
epoxypiperidines 

When conjugated diazoalkanes were used, the reaction also 
occurred but, interestingly, the geometry of the vinyl 
substituent changed to E instead of the Z observed when 
TMSCHN2 was used (Scheme 20). 
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Scheme 20 Cp*Ru(cod)-catalyzed cyclizations of α,α’-disubstituted aza-
alkynals and diazoalkanes to vinyl epoxypyrrolidines.  

Interestingly, α-monosubstituted aza-alkynals reacted chemo- 
and diastereoselectively to give the corresponding 
epoxypyrrolidines in moderate yields (Scheme 21).  
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Scheme 21 Chemo- and diastereoselective formation of epoxypyrrolidines by 
Cp*Ru(cod)-catalyzed cyclization of α-monosubstituted alkynals and 
trimethylsilyldiazomethane 

The mechanistic hypothesis for the Cp*RuCl(cod)-catalyzed 
epoxyannulation is shown in Scheme 22. The initially formed 

alkynal-carbene complex I would evolve through CAM to the 
electrophilic vinyl ruthenium carbene intermediate II. A 
subsequent nucleophilic attack by the carbonyl group gives rise 
to the oxonium species III, which finally ends up in the observed 
epoxypyrrolidine. In this particular case, the lack of hydrogens 
(or sterically hindered) at α position preclude or highly hamper 
the deprotonation/reprotonation step blocking the formation of 
dihydrooxazine. Evolution of the vinyl carbene II via a formal 
[2+2] cycloaddition to the oxaruthenacycle III’ and final 
reductive elimination cannot be excluded. 
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Scheme 22 Mechanistic hypothesis for the Cp*RuCl(cod)-catalyzed 
epoxyannulation of alkynals with trimethylsilyldiazomethane 

4.3 Heterocyclizations of ortho-
(Alkynyloxy)benzylamines 

Electrophilic ruthenium vinyl carbenes from Cp*RuCl(cod)-
catalyzed CAM reaction between ω-alkynyl benzylamines and 
trimethylsilyldiazomethane could also be catch by N-
nucleophiles of benzylamine derivatives.30 Thus, ruthenium-
catalyzed heterocyclization of o-(alkynyloxy)benzylamines 
afforded 2,2-disubstituted dihydro-1,3-benzoxazines, 
presumably by a nucleophilic attack of the amine to the 
ruthenium vinyl carbene followed by a sequential ring 
opening/ring closure rearrangement (Scheme 23).31 
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Scheme 23 Ruthenium-catalyzed reactions of C- and O-tethered o-
alkynylbenzylamines 
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Substitution on the aromatic ring of benzylamines is well 
tolerated for these processes (Scheme 24). Both electron-rich 
and electron-poor aromatic rings are reactive enough to give the 
corresponding 1,3-benzoxazines in relatively good yields, a bit 
better for the electron-poor rings. Halo-1,3-benzoxazines are 
easily accessible except the sterically hindered ortho-bromo 1,3-
benzoxazine, which might outlook future manipulations of these 
substrates. 
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Scheme 24 Substituted  1,3-benzoxazines 

Alkynyl substituted substrates also cyclized to give the 
corresponding 1,3-benzoxazines in moderate to good yields, 
although longer times and heating conditions are needed 
(Scheme 25, eq 1). On the other hand, primary and secondary 
benzylamines are also accepted affording the corresponding 
1,3-benzoxazines in good yields. Polar interactions seem to 
control the reactivity of the carbene intermediate since N-allyl 
substituent on benzylamine remains intact during the reaction 
(Scheme 25, eq 2). Propargyl substituted alkynylamines are also 
well tolerated. Methyl monosubstituted and methyl 
disubstituted propargylic benzylamines gave rise to the 
rearranged 2-ethyl and 2-isopropyl substituted 1,3-
benzoxazines in low to moderate yields. (Scheme 25, eq 3). 
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Scheme 25 Ruthenium-catalyzed heterocyclizations of internal alkynes, N-
substituted and propargyl substituted ortho-(alkynyloxy)benzylamines to 1,3-
benzoxazines 

The proposed mechanism involves an initial formation of the 
alkynylamine-carbene complex I that would evolve through 
CAM to the electrophilic vinyl ruthenium carbene intermediate 
II. Saturation of ruthenium to give the 18 e- complex by nitrogen 
coordination might be occurring. Then, a subsequent 
nucleophilic attack to the carbene would afford the zwitterionic 
species III that ring opens to a transient enamine IV. The acidic 
phenol would promote the final ring closing to afford the 2,2-
disubstituted 1,3-benzoxazine (Scheme 26). 
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Scheme 26 Mechanistic hypothesis for the ruthenium-catalyzed 
heterocyclization of ortho-(alkynyloxy)benzylamines to 1,3-benzoxazines 

5 DFT Studies on the Stereoselectivity of the 
CAM Reaction 

In all the nonpolar and the majority of polar transformations, 
the geometry of the double bond (stereoselectivity) of the 
ruthenium vinyl carbene intermediates through CAM reactions 
between trimethylsilyldiazomethane and alkynes and also in the 
final product is Z except for the polar [1,n]-hydride 
transfer/cyclization which was found E. Nevertheless, with 
conjugated diazoalkanes such as N2CHCO2Me or N2CHPh, the 
geometry of the final product is E regardless of the type of 
transformation. A first premise to explain the stereoselectivity 
derives from the assumption of the vinyl ruthenium carbene 
formation during the electrocyclic opening of 
ruthenacyclobutene (Scheme 27), in which the Cp* and R groups 
should be anti to minimize detrimental steric interactions. If R = 
SiMe3, intense attractive interactions should be operative 
between SiMe3 and Cl groups compelling a favourable Z 
configuration after ring-opening. Conversely, if R ≠ SiMe3 steric 
hindrance should be the boost for the torquoselectivity 
delivering favourable E-configuration of the double bond 
(Scheme 27) 15 
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Scheme 27 Early hypothesis for the formation of Z- and E-vinyl ruthenium 
carbenes by ring-opening of ruthenacyclobutenes 

To explain the appearance of the E geometry and to clarify 
properly these early premises for the formation of ruthenium 
vinyl carbenes, DFT calculations were performed for the [1,n]-
hydride transfer/cyclization (Scheme 28).14a Three conformers 
in equilibria for the initial ruthenium carbene coordinated to the 
alkyne were observed: a) the conformer A, with the hydrogen 
pointing to the Cp*ring, being the more stable and b) the 
conformers B and C, with the TMS group pointing to the Cp* ring 
backwards and forward, respectively, being less stable. 
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Scheme 28 Calculated potential free energy curve for the conformational equilibrium of alkyne coordinated Cp*RuCl carbene and its transformation into Z and E vinyl 
ruthenium carbenes D and E 

Evolution either to the Z- or E- ruthenium vinyl carbenes D and 
E is favored to the Z isomer D since the transition state is lower 
by 2.8 Kcal mol-1. The most favorable pathway involved the 
initial isomerization of Z isomer D to the E isomer E through 
ruthenacyclobutene intermediate F, which could justify the E 
geometry of the vinyl substituents found in the final products. 

In the case of the other polar transformations, the most 
favorable pathway would start from intermediates of type D 
without isomerization, which would explain the appearance of 
the final products with Z geometry. 

To explain the observed E stereoselectivity when conjugated 
diazoalkanes were used, DFT calculations for the 
transformation from alkyne-carbene complexes A’ to Z- and E-
ruthenium vinyl carbenes D’ and E’, respectively, were 
performed (Scheme 29).29 
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Scheme 29 Calculated potential free energy curve for the generation of Z- 
and E- vinyl ruthenium carbenes by CAM reaction of several Cp*RuCl 
carbenes 

From the results, trimethylsilyldiazomethane favor the 
formation of Z-vinyl ruthenium D’ carbenes by 3.1 Kcal mol-1, 
while conjugated diazoalkanes favor the formation of E-vinyl 
ruthenium carbenes E’ (from 1.9 Kcal mol-1 for the CO2Me to 3.4 
Kcal mol-1 for the PO(OMe)2). This stereochemical divergence 
might be attributed to the strong steric repulsion between the 
Cp* ligand and the bulky TMS group. 

6 Conclusions 

Recent advances in Ru-catalyzed synthetic applications 
involving carbene/alkyne metathesis (CAM) processes have 
been compiled. From the model schemes of this account, we can 
see the significant progress that has been accomplished in 
recent years. With the easy availability of ruthenium catalysts 
and the mild conditions needed, the use of CAM reactions for the 
development of new synthetic approaches is highly appealing. 
New challenges may focus on the preparation of structurally 
well-defined ruthenium vinyl carbenes as catalysts for the 
development of selective reactions, and also in the isolation and 
characterization of reactive Ru intermediates for a complete 
elucidation of reaction mechanism, which may provide insight 
for the design of new organic transformations. The development 
of chiral Ru vinyl carbene complexes for enantioselective 
transformations could be another interesting future task. 
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