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ABSTRACT: Cp*RuCl-based catalyst enables the expedient access to a variety of benzofused six-membered azaheterocycles from unprotected
o-alkynylanilines and trimethylsilyldiazomethane through an unprecedent tandem carbene/alkyne metathesis/N-H insertion reaction. The
transformation takes place under mild reaction conditions (room temperature, < 15 min) and with excellent functional group tolerance. The

synthetic utility of the final products and a mechanistic rationale are also discussed.

Tandem processes involving catalytic metal carbenes have proved
to be useful strategies for the rapid generation of molecular complex-
ity." In particular, in situ generation of metal vinyl carbenes through
carbene/alkyne metathesis (CAM) represents a versatile route for
alkyne bifunctionalization.” These intermediates are known to react
with olefins to give dienes® (Scheme 1a) or vinyl cyclopropa(e)nes*
(Scheme 1b), with nucleophiles to afford ylide intermediates®
(Scheme 1c) or with C-H bonds to give new C-C bonds® (Scheme
1d). However, as far as we know, a tandem CAM process ending up
in a N-H insertion reaction has never been reported (Scheme le).

Scheme 1. Reactivity pattern of metal vinyl carbenes formed
through CAM.

Previous work:

Rl
M a) Metathesis
< R NFORZ (known)

N, — Rl
1k 2 —_— w b) Cyclopropanation
ROR RISFSRZ (known)
Na | Mcar R®
L | R-Nu N “Nu R! ¢) Ylide formation

R3MR2 (known)

M cam| M R! —
RZ

RR
a b R.'H R! d) C-H insertion
—1 R, —
+ R)\R P (known)
R® R?

R3
This work:
1 . )
L |"| R-NHpy R ¢) N-H insertion
R-NH RINF R2? (unknown)

The development of such a tandem process is challenging. The
coexistence of two metal carbenes (2and b in Scheme 1) in the re-
action media may lead to competitive processes such as

dimerizations or unselective N-H insertions. Besides, current meth-
odologies for intramolecular N-H insertions typically require the
amine to be protected as amide, carbamate or sulfonamide,”* thus
leading to less atom-economic processes.

We now report our efforts in the development of the first tandem
carbene/alkyne metathesis coupled with an intramolecular N-H in-
sertion leading to unprotected benzofused six-membered azaheter-
ocycles,” which are privileged scaffolds present in a myriad of bioac-
tive compounds and natural products (Figure 1).'%"!
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Figure 1. Selected bioactive compounds and natural products

o-Alkynylaniline 1a, an unprotected primary aromatic amine, was
synthesized and subjected to our previously reported conditions for



aliphatic secondary amines (Table 1, entry 1).* Gratifyingly, 3-vi-
nyldihydrobenzoxazine 2a was selectively formed in 77% yield as a
single Zstereoisomer'” in less than 10 min of reaction at room tem-
perature. A direct comparison between the Cp*RuCl(cod) precata-
lyst and traditional Rh(II) catalysis (Rha(OAc)s, entry 2 and
Rha(esp),, entry 3) highlights the virtues of the half-sandwich ruthe-
nium complex in promoting CAM rather than direct N-H insertion.
In fact, the reaction proved to be very sensitive to the electronic na-
ture of the ruthenium precatalyst and the diazo compound as the use
of the cationic analog [Cp*Ru(CH3CN);]PFs (entry 4) or ethyl di-
azoacetate (entry S) gave rise to a mixture of the desilylated product
4a together with minor amounts of the direct N-H insertion product
3a and a complex mixture, respectively. The use of the tetranuclear
complex [Cp*RuCl], afforded a similar result as Cp*RuCl(cod), but
an incomplete consumption of 1a was observed (entry 6), probably
due to a faster deactivation of the catalyst. The nature of the solvent
also proved to be crucial as the employment of more polar (protic
and aprotic) solvents led to low conversions (entry 7) and the for-
mation of side products of type Sa. Pleasingly, we discovered that it
is possible to scale up the reaction up to 2 mmol and diminish the
catalyst loading from 10 mol % to 7.5 mol % by using 1,2-dichloro-
ethane as solvent at reflux (entry 8).

Table 1. Optimization of the reaction conditions.*
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@ Reaction conditions: 1a (0.2 mmol), TMSCHN (1.5 equiv), solvent
(0.15 M) and with the indicated catalyst at rt. ® Isolated yields. ¢ Incom-
plete consumption of 1a was observed. ¢ Slow addition of the diazo com-
pound over 1 h.

Having established the optimal reaction conditions for the tan-
dem CAM/N-H insertion reaction, we decided to explore the scope
and limitations of our methodology. First, O-tethered o-alkynylani-
lines were tested (Scheme 2). The cascade reaction tolerates any
substitution pattern on the aromatic ring, affording the correspond-
ing 1,4-benzoxazines 2a-d from moderate to good yields. Substitu-
tion at the propargylic position was also tolerated, albeit benzoxazine
2e was obtained as a 1:1 mixture of diastereomers in 54% yield."” Re-
markably, the reaction proceeded with excellent chemoselectivity in
the presence of a wide range of functional groups such as halides (2g
and 2h), ethers (2i), unprotected anilines (2j), esters (2k), internal
alkynes (21) or terminal olefins (2m). Considering the slight excess
of TMSCHN: used for this transformation, one might expect further
evolution of the final products 2 through N-H insertion of the result-
ing secondary aniline, unselective N-H insertion with the primary
aniline 2j, CAM with the internal alkyne 21 or metathesis/cyclopro-
panation with the terminal olefin 2m, however, none of these side
reactions were detected in the analysis of the crude mixtures.

Scheme 2. Scope and functional group tolerance for the tandem
CAM/N-H insertion of O-tethered o-alkynylanilines.*
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* Conditions: Method A: 1 (0.2 mmol), TMSCHN (1.5 equiv), CH.Cl
(0.15 M) and Cp*RuCl(cod) (10 mol %) at rt for 10 — 15 min. Method
B: The same conditions as method A but using 7.5 mol % of
Cp*RuCl(cod) and DCE as solvent at reflux for 15 min.

The extension of the tandem CAM/N-H insertion to the synthe-
sis of other kind of six-membered heterocycles was subsequently an-
alyzed (Scheme 3). To our delight, the cyclization reaction allowed
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the access to a variety of functionalized tetrahydroquinoxalines (2n-
2p) and indoloquinoxalines (2q), dihydrobenzothiazines (2r) or
tetrahydroquinolines (2s) from moderate to good yields. These re-
sults further exemplify the excellent functional group tolerance to-
wards carbamates, sulfonamides, heteroaromatic systems, thi-
oethers or silylethers. Curiously, these results are in striking contrast
to our previous experience with secondary benzylamines in the tan-
dem CAM/ylide rearrangement, where N-, S- or C-tethered o-al-
kynylamines were not tolerated.

Scheme 3. Scope and functional group tolerance for the tandem
CAM/N-H insertion of carbon- and heteroatom-tethered o-al-
kynylanilines.*
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* Conditions: Method A: 1 (0.2 mmol), TMSCHN (1.5 equiv), CH2Cl
(0.15 M) and Cp*RuCl(cod) (10 mol %) at rt for 10 — 15 min. Method
B: The same conditions as method A but using 7.5 mol % of
Cp*RuCl(cod) and DCE as solvent at reflux for 15 min. * No full con-
version of o-alkynylaniline 1q was observed.

According to precedent literature and the experimental observa-
tions, a tentative mechanism was proposed (Scheme 4). The
Cp*RuCl(cod) precatalyst would react with the diazo compound to
generate a ruthenium carbene that readily coordinates to the o-al-
kynylaniline 1 (I). A chemo- and stereoselective CAM process
would generate vinyl carbene II that then react with the aniline
through two alternative routes. In route A, a concerted N-H inser-
tion process would directly give rise to the observed product 2. In
route B, the mild electrophilic ruthenium vinyl carbene would in-
duce a nucleophilic attack by the aniline to give an ylide intermediate
III, which after a regioselective proton transfer would release 2. At
this stage of our investigations, we were not able to unequivocally
determine whether the N-H insertion step occurs in a concerted or

stepwise manner.'*"

Scheme 4. Mechanistic hypothesis.
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The presence of a versatile unprotected allylaniline functionality
in the cyclized products 2 led us to explore some manipulations to
prove their synthetic utility as potential building blocks for organic
synthesis (Scheme S). First, the mild conditions required for the cy-
clization enabled the one-pot/base free allylation of the secondary
aniline 2a to afford the corresponding bis-allylaniline 6a and 6b in
good overall yields. On the other hand, desilylation of 2a could be
performed to render the terminal olefin 4a in 70% yield.

Scheme S. Derivatization of benzoxazine 2a.?*
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* Conditions: i) 1a (0.2 mmol), TMSCHN (1.5 equiv), Cp*RuCl(cod)
(10 mol %) in CH2Cl (0.15 M) at rt for 10 min, then, the corresponding
allyl bromide (RCH=CH-CH,Br) was added (1.5 equiv) and stirred for
6 - 12 h. i) 2a (1 mmol), TBAF (1.5 equiv) in THF (0.5 M) at reflux
for 15 h.

To conclude, we have developed the first tandem CAM/N-H in-
sertion reaction to afford unprotected and functionalized ben-
zofused six-membered azaheterocycles. The reaction proceeded un-
der very mild conditions and high chemoselectivity thanks to a fast
CAM process catalyzed by a half-sandwich ruthenium complex.
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