
Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2020-09-29 page 1 of 9 

Metal-catalyzed Cyclizations to Pyran and Oxazine Derivatives 

 
Received:  
Accepted:  
Published online:  
DOI:  

Abstract Pyrans are privileged heterocyclic structures found in numerous 
natural compounds with extraordinary biological activities. The synthesis of 
these relevant structures has attracted a great deal of attention over the 
years. Catalytic methodologies based on activation of neutral unsaturated 
functionalities of acyclic compounds that undergo intramolecular 
cyclizations have achieved prominent synthetic relevance. In this short 
review, we discuss the successful construction of dihydropyran and dihydro-
1,4-oxazine derivatives from acyclic precursors by metal-catalyzed 
intramolecular cyclizations through carbon-carbon, carbon-oxygen and 
carbon-nitrogen bond formation. Remarkable synthetic applications are 
highlighted. 
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1 Introduction 

Heterocyclic structures, particularly six-membered oxygenated 
derivatives, i.e. pyrans, are prevalent units found in a wide 
variety of simple and sophisticated bioactive natural products.1 
Over the years a great deal of effort has been devoted to these 
important synthetic challenges and the metal-catalyzed 
intramolecular addition of oxygenated nucleophiles across 
unsaturated carbon-carbon bonds is one of the most 
outstanding methods.2 This short review focuses on recent 
progress in metal-catalyzed intramolecular cyclizations to 3,4- 
and 3,6-dihydropyrans (3,4-DHP and 3,6-DHP). These 
compounds are useful precursors for tetrahydropyrans3 and 
glycals,4 which are typical building blocks for carbohydrate 
chemistry,5 and 3,4-dihydro-1,4-oxazines, which are versatile 
heterocyclic motifs present in many natural products and 
pharmaceuticals6 (Scheme 1). Examples involving the synthesis 

of benzofused derivatives (i.e. chromanes7 and benzoxazines8) 
have also been reported but they are not discussed here. 
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Scheme 1 Structures of 2H-pyran, 3,4-dihydro-2H-pyran, 3,6-dihydro-2H-
pyran and 3,4-dihydro-2H-1,4-oxazine. 

2 3,4-Dihydropyrans 

3,4-Dihydropyran heterocyclic structures are readily available 
from metal-catalyzed intramolecular alkoxylations of terminal 
4-alkyn-1-ol derivatives (M = W, Ru, Rh).9 The cyclization 
involves the formation of the metal vinylidene intermediate 
from the alkynol, an electrophilic species at its α carbene 
carbon, and subsequent trapping with the nucleophilic 
hydroxyl group (Scheme 2). Hence, the cyclization process can 
be considered as an anti-Markovnikov addition of the alcohol 
to the alkyne (endo cyclization). 
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Scheme 2 Formation of 3,4-dihydropyrans by intramolecular addition of 
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alcohols to metal vinylidenes from 4-alkyn-1-ols. 

McDonald and co-workers carried out their seminal work on 
cyclizations of highly functionalized terminal 4-alkyn-1-ol 
derivatives to 3,4-dihydropyrans with catalytic W(CO6) 
complexes under photolytic conditions in the presence of 
tertiary amines (Scheme 3).10 
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Scheme 3 Tungsten-catalyzed formation of 3,4-dihydropyrans from bis-
homopropargylic alcohols. 

Trost and co-workers later reported that similar cyclizations of 
bis-homopropargyl alcohols to 3,4-dihydropyrans can be 
performed in the presence of catalytic amounts of 
CpRuCl(PAr3)2 complexes that bear the electron-withdrawing 
ligand tris(4-fluorophenyl)phosphine (Scheme 4).11 Other 
ruthenium complexes bearing a tetradentate nitrogen-
phosphorus mixed ligand were also effective catalysts for the 
endo cycloisomerization of bis-homopropargyl alcohols.12 
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Scheme 4 Ruthenium-catalyzed formation of 3,4-dihydropyrans from bis-
homopropargyl alcohols. 

These cycloisomerization conditions proved to be 
chemoselective for the O-cyclizations over the N-cyclizations. 
3,4-Dihydropyrans were the only products obtained when 2-
amino-4-alkyn1-ols were exposed to the Ru-catalyzed 
cycloisomerization conditions (Scheme 5).13 
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Scheme 5 Chemoselectivity of the ruthenium-catalyzed formation of 3,4-
dihydropyrans from 2-amino-4-alkyn-1-ols: O- vs N-cyclization. 

Similar chemoselective cyclizations of 2-amino-4-alkyn-1-ols to 
3,4-dihydropyrans were also achieved via rhodium vinylidene 
intermediates. Wilkinson’s catalysts with modified electron-

poor phosphines as ligands were able to form rhodium 
vinylidene intermediates, which were subsequently trapped by 
the alcohol (Scheme 6).14 
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Scheme 6 Rhodium-catalyzed formation of 3,4-dihydropyrans from bis-
homopropargyl alcohols. 

Furthermore, the reactivity of the arylpalladium intermediates 
obtained by oxidative addition of aryl halides to a Pd(0) 
catalyst can be tuned in order to control the catalytic arylative 
5-exo and 6-endo cyclization of bis-homopropargyl alcohols.15 
For instance, substrates bearing an ynamide moiety in the 
presence of Pd(0) catalyst and Xantphos as ligands mainly 
afforded 5,6-disubstituted-3,4-dihydropyrans, i.e., the product 
of 6-endo cyclization (Scheme 7). 
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Scheme 7 Palladium-catalyzed 6-endo arylative cyclization of bis-
homopropargyl alcohols to 5,6-disubstituted-3,4-dihydropyrans. 

In contrast, conjugated enynoates with a hydroxyl tether 
undergo intramolecular 6-endo-dig cyclizations to give 3,4-
dihydropyrans in moderate to good yields (Scheme 8).16 
Addition of the hydroxyl group to the metal-coordinated alkyne 
followed by protonolysis is the accepted mechanistic pathway 
for the cyclization process. Interestingly, substituted 3,4-
dihydropyrans can be synthesized in one-pot by a tandem Pd-
catalyzed intermolecular-intramolecular process that involves 
an alkynoate/alkyne coupling to give a conjugated enynoate 
followed by cyclization in the presence of catalytic Pd(OAc)2 
and TDMPP [tris-(2,6-dimethoxyphenyl)phosphine]. 
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Scheme 8 Palladium-catalyzed formation of 3,4-dihydropyrans by 
alkyne/alkynoate coupling followed by cyclization. 
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A novel Pd(II)-catalyzed oxy-carbopalladation (Wacker–Heck) 
process with β-hydroxy ynones also provided access to highly 
functionalized 2,3-dihydropyran-4-ones featuring an 
interesting dienic system (Scheme 9).17  
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Scheme 9 Palladium-catalyzed formation of dihydropyranones by a cascade 
Wacker–Heck process. 

Alternatively, 2,3-dihydropyran-4-ones can be prepared in 
moderate to good yields by an intramolecular palladium(II)-
mediated oxidative cyclization of β-hydroxyenones (Scheme 
10).18 
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Scheme 10 Palladium(II)-mediated oxidative cyclization of β-hydroxyenones 
to 2,3-dihydropyran-4-ones. 

A novel cyclization of alkynals and alkynones to 2-vinyl-3,4-
dihydropyrans has recently been described.19 The mild process 
probably takes place by trapping of the electrophilic vinyl 
ruthenium carbene [generated in situ by treatment of catalytic 
amounts of Cp*RuCl(cod) with alkynals/alkynones and 
(trimethylsilyl)diazomethane] with O-nucleophiles from the 
carbonyl functionalities (Scheme 11). 
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Scheme 11 Ruthenium-catalyzed heterocyclization of alkynals to 2-vinyl-3,4-
dihydropyrans. 

The diastereoselectivity of the reaction was further evaluated 
by using 3-monosubstituted alkynals as starting materials. 
Alkynals bearing methoxycarbonyl, benzyloxymethyl and 
acetoxymethyl substituents gave rise to the corresponding 2-
vinyl-3,4-dihydropyrans as single cis diastereomers (Scheme 
12). However, alkynals bearing bulkier 3-silyloxy substituents 
gave lower diastereoselectivity during the heterocyclization 
process. 
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Scheme 12 Diastereoselectivity of the ruthenium-catalyzed 
heterocyclization of 3-monosubstituted alkynals to 2-vinyl-3,4-
dihydropyrans. 

6-Substituted 2-vinyl-3,4-dihydropyrans could be obtained by 
ruthenium-catalyzed heterocyclization of alkynones (Scheme 
13). The heterocyclization of 3-monosubstituted alkynones 
showed complete diastereoselectivity to give the cis 2,4,6-
trisubstituted 2-vinyl-3,4-dihydropyrans. Enantiomerically 
pure dihydropyrans could be obtained by starting from (R) 3-
(tert-butylsilyloxy)alkynones (Scheme 13). 
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Scheme 13 Ruthenium-catalyzed heterocyclization of alkynones to 6-
substituted 2-vinyl-3,4-dihydropyrans and studies of diastereoselectivity. 

In addition, enantiomerically enriched 3,4-dihydropyrans are 
readily available by the molybdenum-catalyzed ring-closing 
metathesis of enol ethers.20 The chiral Mo-alkylidene 
complexes efficiently undergo the dissymmetrical process in 
achiral enol ethers by asymmetric ring-closing metathesis to 
give 3,4-dihydropyrans with up to 94% ee (Scheme 14). 
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Scheme 14 Enantioselective formation of 3,4-dihydropyrans by the 
molybdenum-catalyzed ring-closing metathesis of enol ethers. 

The diastereoselective synthesis of multifunctional 3,4-
dihydropyran derivatives was accomplished by a novel 
convergent radical cyclization of an aldehyde with two alkenes 
catalyzed by FeCl3.21 Iron-catalyzed redox radical 
recombinations are the processes proposed for the formation 
of the 3,4-dihydropyran skeleton (Scheme 15). 
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Scheme 15 Iron-catalyzed redox radical diastereoselective formation of 
polyfunctionalized 3,4-dihydropyrans. 

3 3,4-Dihydro-1,4-oxazines 

2-Vinyl-3,4-dihydro-2H-1,4-oxazines are pivotal structures to 
access therapeutic agents.22 These compounds can be 
synthesized by Ru-catalyzed heterocyclization of N-tethered 
alkynals and alkynones under the same catalytic conditions 
used for 2-vinyl-3,4-dihydropyrans (Scheme 11) but in this 
case in diethyl ether (Scheme 16).19 
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Scheme 16 Ruthenium-catalyzed heterocyclization of N-tethered alkynals 
and alkynones to 2-vinyl-3,4-dihydro-1,4-oxazines. 

Similarly, 2-exo-methylene 3,4-dihydro-1,4-oxazines can be 
accessed by a cooperative Rh(II)/Brønsted acid and Au(I)-
catalyzed ‘formal’ [3+3] annulation of enal diazo ketones with 
N-propargyl anilines (Scheme 17).23 The reaction probably 
takes place through a 6-exo heterocyclization of a gold-
activated N-tethered alkynone generated in situ by the Rh-
catalyzed reaction of enal diazo ketones with N-propargyl 
anilines (Scheme 17).  
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Scheme 17 3,4-Dihydro-1,4-oxazines by the cooperative Rh(II)/Brønsted 
acid and Au(I)-catalyzed [3+3] annulation of enal diazo ketones with N-
propargyl anilines. 

Rh-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles and 
epoxides gives rise to 3,4-dihydro-1,4-oxazines in a 
regioselective manner (Scheme 18).24 The mechanism 
probably involves the initial generation of an α-imino 
rhodium(II) carbene species from the triazole followed by a 
‘formal’ [3+3] cycloaddition with the epoxide. 
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Scheme 18 Rh-catalyzed transannulation of N-sulfonyl-1,2,3-triazoles and 
epoxides to 3,4-dihydro-1,4-oxazines. 

Alternatively, 3,4-dihydro-1,4-oxazines can be obtained 
directly by intramolecular hydroamination of alkynes. When 
oxygen-tethered non-activated alkynamines were reacted in 
the presence of the zinc-based catalyst [N-isopropyl-2-
(isopropylamino)troponiminato]methylzinc [(iPr)2ATI]-ZnMe, 
a smooth heterocyclization occurred to give the corresponding 
3,4-dihydro-1,4-oxazines by an intramolecular hydroamination 
(Scheme 19).25 
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Scheme 19 Zn-catalyzed intramolecular hydroamination of alkynylamines to 
3,4-dihydro-1,4-oxazines. 

4 3,6-Dihydropyrans 

Catalytic asymmetric Wacker-type cyclization of alkenyl 
alcohols promoted by the Pd-SPRIX catalyst afforded 3,6-
dihydropyrans through a 6-endo nucleophilic attack of the 
hydroxyl group to the metal-activated olefin. The use of a 
trisubstituted double bond ensured the exclusive formation of 
the 3,6-dihydropyran isomer by β-hydride elimination of the 
Pd complex intermediate (Scheme 20).26 
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Scheme 20 Palladium-catalyzed asymmetric Wacker-type cyclization of 
alkenyl alcohols to 3,6-dihydropyrans. 

Allenols are also useful starting materials for the synthesis of 
simple and chiral 3,6-dihydropyrans. Electrophilic activation of 
the allene by Au(I) or Au(III) catalysts in chiral 3-allenols 

afforded 3,6-dihydropyrans through a 6-endo 
cycloisomerization with axis-to-center chirality transfer 
(Scheme 21, eq 1).27 Similarly, 3-hydroxy-1,5-allenynes were 
chemoselectively transformed into the corresponding 2-
ethynyl-3,6-dihydropyrans by the preferential Au(I)-catalyzed 
activation of the allene over the alkyne functionality (Scheme 
21, eq 2). Interestingly, reverse chemoselectivity can be 
achieved using a platinum catalyst.28 
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Scheme 21 Gold-catalyzed 6-endo cyclization of 3-allenols to 3,6-
dihydropyrans. 

Enantiopure 3,6-dihydropyrans could also be prepared by 
chemo-, regio-, and stereocontrolled Au(III)-, Pt(II)- or Pd(II)-
catalyzed 6-endo cyclization of β-allenols and β,γ-allenediols 
derived from D-glyceraldehyde.29 In all cases the metal-
catalyzed 6-endo cycloisomerization is initiated by chemo- and 
regiospecific attack of the secondary hydroxyl group at the 
terminal allene carbon atom of β,γ-allenediols to give the 
corresponding 3,6-dihydropyran (Scheme 22). Moreover, 
tandem Pd- and Pt-catalyzed cyclization/coupling reactions of 
3-allenols with allyl bromide and ylides gave rise to 
enantiopure functionalized tri- and tetrasubstituted 3,6-
dihydropyrans (Scheme 22).29b 

 

 



Synthesis Review / Short Review 

Template for SYNTHESIS © Thieme  Stuttgart · New York 2020-09-29 page 6 of 9 

HO · R

OCOPMPHO

O

OCOPMP

R

O

OCOPMP

R

OH

PMP = 4-MeOC6H4

HO

R = Me, 75%
R = Ph, 55%

O

OCOPMP

Me

MeO2C

O

OHC OCOPMP

Me

62%

54%
R = Me, 59%
R = Ph, 78%

[{PtCl2(CH2=CH2)}2] (5 mol%)
TDMPP (10 mol%)

CH2Cl2, rt
AuCl3 (5 mol%)

CH2Cl2, rt

PdCl2
 
(5 mol%)

allylbromide
DMF, rt

[{PtCl2(CH2=CH2)}2] (5 mol%)
TDMPP (10 mol%)
Ph3P=CHCO2Me

CH2Cl2, rt

 
Scheme 22 Chemo-, regio-, and stereocontrolled metal-catalyzed formation of enantiopure 3,6-dihydropyrans from β,γ-allenediols. 

Bicyclic 3,6-dihydropyrans (4,6-dihydro-furo-[3,4-c]-pyrans) 
can be accessed from substituted dipropargyl ethers by means 
of two consecutive carbopalladations initiated by a ‘formal’ 
anti-carbopalladation of a non-activated alkyne. The second 
carbopalladation step involves the formation of the 
dihydropyran ring (Scheme 23).30 Mechanistically, when 
tertiary propargylic alcohols were mixed with aryl iodides in 
the presence of Pd(II) catalysts, the syn-carbopalladation 
occurred and the Pd was placed α to the oxygen. If no other 
reaction pathways are available (e.g., β-hydrogens are not 
present), the cis-trans isomerization of the transient vinyl Pd 
complex will occur to give the second carbopalladation on the 
remaining alkyne. 

When substituted propargyl allyl ethers are used as substrates 
(tertiary propargylic ω-enynols), the cyclization process that 
leads to 3,6-dihydropyrans would involve a ‘formal’ anti-
carbopalladation followed by a Mizoroki–Heck reaction 
(Scheme 24). Interestingly, the geometry of the double bond in 

the final product is dependent on the geometry of the starting 
substrate, which would exclude carbocationic intermediates as 
these would lead to E/Z mixtures. 
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Scheme 24 3-Exo-benzylidene 3,6-dihydropyrans by tandem ‘formal’ anti-
carbopalladation followed by Mizoroki–Heck reactions. 
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Scheme 23 Proposed mechanism for the formation of 3,6-dihydropyrans by two consecutive carbopalladations from substituted dipropargyl ethers. 
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5 Synthetic Applications 

As stated in the Introduction, pyran structures and, more 
specifically, 3,4- and 3,6-dihydropyrans are relevant units found 
in many bioactive natural products. In this section, remarkable 
synthetic approaches are briefly mentioned to highlight the 
synthetic method used. For the assembly of ring A of Miyakolide, 
a macrolide isolated from a sponge of the genus 
Polyfibrospongia, a Pd-catalyzed tandem alkynoate/alkyne 
coupling followed by 6-endo cyclization was selected to obtain 
the exo-methylene 3,4-dihydropyran precursor (Scheme 25).16 
The bioassay results for the macrolide showed potent in vitro 
and in vivo antitumor activity against A-549 human lung 
carcinoma and B-16 melanoma, respectively.31  
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Scheme 25 Retrosynthetic plan for the formation or ring A of Miyakolide.  

The same methodology was used to assemble ring C in the 
synthetic approach to Bryostatins, a family of structurally 
complicated macrolides that exhibit an exceptional range of 
biological activities (Scheme 26).32 

[Pd]

O O

O

Me

O

MeO2C

CO2Me

OH

O

O

O

R1

Me
Me

Me Me
HO

X

AB

C

HO

MeO2C

R2

R3

Me
Me

+
O R2

CO2Me

R3

Me
Me

C

Bryostatins

 
Scheme 26 Retrosynthetic plan for the formation of ring C of Bryostatins. 

For the synthesis of ring E of several indole alkaloids such as 
(+)-6-oxoalstophylline, (–)-alstophylline and (–)-alstonerine, a 
modified Pd-catalyzed Wacker sequence was applied to 
generate rapidly the cis-fused 3,4-dihydropyranyl enone 
(Scheme 27).33 For more details of the oxidative Wacker 
cyclization see the comments and details in Scheme 9. 
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Scheme 27 Formation of the cis-fused 3,4-dihydropyranyl ring of indole 
alkaloids by palladium oxidative cyclization. 

Bejarol metabolites are terpenoids that are found in plants of S. 
oblongifolia and they contain a substituted 3,6-dihydropyran 
ring with three stereocenters. The first diastereo- and 
enantiolesective total synthesis of (3R,5R,9R)-bejarol and its 
(3R,5S,9R)-isomer was accomplished using the Au-catalyzed 6-
endo cyclization of an enantiomerically pure β-allenol as the key 
step (Scheme 28).34 
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Scheme 28 Synthesis of (3R,5R,9R)- and (3R,5S,9R)-bejarols by Au-catalyzed 
6-endo cyclization of β-allenols. 

6 Summary 

Partially hydrogenated pyran derivatives, 3,4- and 3,6-
dihydropyrans, and 3,4-dihydro-1,4-oxazines are key synthetic 
precursors for scaffolds present in numerous natural products 
with relevant biological activities. Metal-catalyzed 
intramolecular cyclizations are highly effective for the synthesis 

of these heterocyclic systems. In the examples discussed, the 
formation of an electrophilic species by activation of the alkyne 
functionality (vinylidenes, vinyl carbenes, etc.) of bis-
homopropargyl alcohol and derivatives with metals (W, Rh, Ru, 
Pd) followed by trapping with oxygen nucleophiles 
(heterocyclizations) has been the main approach to obtain the 
3,4-dihydropyran nucleus. Neutral processes (ring-closing 
metathesis) and redox radical cyclizations with carbon-carbon 
and carbon-oxygen bond formation, respectively, represent 
attractive synthetic approaches to achieve the stereoselective 
formation of 3,4-dihydropyrans. Analogously, the 3,4-dihydro-
1,4-oxazine nucleus can be obtained by electrophilic activation 
of alkynes in N-tethered alkynals or oxygen-tethered 
alkynamines followed by trapping with oxygen or nitrogen 
(hydroamination) nucleophiles, respectively. Similarly, 
electrophilic activation of alkenyl alcohols and allenols followed 
by intramolecular nucleophilic trapping allows the 
stereoselective formation of 3,6-dihydropyrans. Substituted 
mono- and bicyclic 3-benzylidene 3,6-dihydropyrans could be 
assembled by two consecutive carbopalladations (carbon-
carbon bond formation). Remarkable applications in the 
synthesis of natural products are highlighted. We believe that 
further novel protocols will be developed in the future and that 
these will enable the synthesis of structurally challenging and 
bioactive natural products. 
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