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Abstract We improve some comparison results for the periodic boundary value
problem related to a first-order differential equation perturbed by a functional term.
The comparison results presented cover many cases as differential equations with
delay, differential equations with maxima and integro-differential equations. The
interesting case of functional perturbation with piecewise constant arguments is also
analyzed.

1 Introduction

The comparison principles are important tools for the study of the properties of
the solution to differential and integral equations. In this sense, we can find many
monographs devoted to the development of estimates for functions satisfying a
certain differential inequality. For instance, see [1, 4, 5, 6, 7, 8]. With the help
of these estimates, different techniques are applied to deduce the positivity of the
solutions to differential, difference or integral equations [2] or iterative techniques
in order to approximate the solutions to nonlinear differential equations [3]. Some
other papers on this topic are, for instance, [12, 13, 14].

The study of comparison results for functional differential equations with piece-
wise constant arguments has received special attention. See [9] for first-order prob-
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lems and [18, 26, 19, 20] for the second-order case. Some results on boundary value
problems with causal operators can be found in [11].

Section 2 is devoted to present a general formulation of the problem and a key
result for this work, which gives conditions to assure the existence of a nonpositive
solution. In Section 3, we analyse some particular cases of the general equation, such
as retarded functional differential equations, equations with minima and integro-
differential equations. In Section 4, we provide an extension of the above-mentioned
result of Section 2, where themain conditions are imposed in subintervals induced by
a partition of the interval where the problem is formulated. In Section 5, by bearing
in mind few remarks based on the previous results, we obtain analogous results to
obtain nonnegative solutions. Finally, in Section 6 we join all the conditions for
nonnegativity and nonpositivity to deduce several uniqueness results.

2 General comparison result

Let I = [0,T], p : L1(I) → L1(I) and consider the problem{
v′(t) + Mv(t) + [p(v)](t) = σ(t), a.e. t ∈ I,

v(0) = v(T ) + λ. (1)

We introduce the following conditions

p(w) ≥ 0 a.e. on I, if w ∈ C(I), w ≥ 0 on I, (2)

and



for all a < b ∈ I and w ∈ C(I) with min
[0,b]

w ≤ 0,

we have
∫ b

a
[p(w)](s) eMs ds ≥ min

s∈[0,b]
(w(s) eMs),

(3)

Theorem 1 If v ∈ W1,1(I) is a solution of problem (1), M > 0, λ ≤ 0, σ ≤ 0 a.e.
on I and p satisfies (2) and (3), then v ≤ 0 a.e. on I.

Proof: If v ≥ 0 on I, then, using (2), we get

v′(t) = σ(t) − Mv(t) − [p(v)](t) ≤ 0

for a.e. t ∈ I and v is monotonic nonincreasing. Then v is a constant function since
v(0) ≤ v(T ). Let v(t) = k with k ≥ 0. Then, by (2),

0 ≤ Mk = σ(t) − [p(v)](t) ≤ 0, a.e. t ∈ I,

and v(t) = k = 0 for all t ∈ I.
This shows that either v ≡ 0 or there exists at least one point t∗ ∈ I with v(t∗) < 0.

If v ≤ 0 on I is not true, then there will exist t0 ∈ I such that v(t0) > 0. Consider
the function
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z(t) = v(t)eMt, t ∈ I .

The signs of v and z are the same.
Then

v′(t)eMt + Mv(t)eMt ≤ −[p(v)](t) eMt, a.e. t ∈ I,

that is,
z′(t) ≤ −[p(v)](t) eMt, a.e. t ∈ I . (4)

For this function z, it is true that z(0) = v(0), z(t∗) < 0 and z(t0) > 0. We will
distinguish two cases:

Case 1: v(0) ≤ 0.
Let t1 ∈ [0, t0) such that

z(t1) = min
[0,t0]

z ≤ 0.

Integrating (4) from t1 to t0 and taking into account the inequality (3), we obtain

−z(t1) < z(t0) − z(t1) ≤ −
∫ t0

t1

[p(v)](s) eMs ds

≤ − min
s∈[0,t0]

(v(s) eMs) = − min
s∈[0,t0]

z(s) = −z(t1),

that is a contradiction.

Case 2: v(0) > 0.
Here, z(0) > 0 and v(T ) ≥ v(0) > 0, so that z(T ) > 0. Let t2 ∈ (0,T ) with

z(t2) = min
s∈[0,T ]

z(s) < 0.

Integrating (4) on [t2,T] and using (3) again, we get

−z(t2) < z(T ) − z(t2) ≤ −
∫ T

t2

[p(v)](s) eMs ds

≤ − min
s∈[0,T ]

(v(s) eMs) = − min
s∈[0,T ]

z(s) = −z(t2),

which again is a contradiction.
This proves that v ≤ 0 on I.

Note that condition (3) can be expressed in the following equivalent terms.
Let ŵ(t) = w(t)e−Mt




∫ b

a
[p(ŵ)](s) eMs ds ≥ min

[0,b]
w,

for all a < b ∈ I and w ∈ C(I) with min
[0,b]

w ≤ 0.
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3 Particular cases

3.1 Retarded functional differential equations

If
[p(w)](t) = Nw(θ(t)),

with N > 0, θ : I −→ I such that p : L1(I) −→ L1(I) and

θ(t) ≤ t, a.e. t ∈ I,

then p satisfies the hypothesis (2). Indeed, if w ≥ 0 on I, then

[p(w)](t) = Nw(θ(t)) ≥ 0 for t ∈ I .

If the following condition holds

N
∫ T

0
eM (s−θ (s)) ds ≤ 1,

then (3) is satisfied. Indeed,∫ b

a

[p(w)](s) eMs ds =
∫ b

a

Nw(θ(s)) eMs ds

=

∫ b

a

Nw(θ(s)) eMθ (s) eM (s−θ (s)) ds ≥ min
s∈[0,b]

(w(s)eMs) N
∫ b

a

eM (s−θ (s)) ds

≥ min
s∈[0,b]

(w(s)eMs) N
∫ T

0
eM (s−θ (s)) ds ≥ min

s∈[0,b]
(w(s)eMs),

for all a < b ∈ I and w ∈ C(I) with min
[0,b]

w ≤ 0. Here we have used that

w(θ(t)) eMθ (t) ≥ min
s∈[0,b]

(w(s)eMs), a.e. t ∈ [a, b],

that is true since θ(t) ≤ t, a.e. t ∈ I.

Corollary 1 If M > 0, N ≥ 0, θ : I → I, θ(t) ≤ t, a.e. on I and v ∈ W1,1(I) are
such that p : L1(I) → L1(I) and




v′(t) + Mv(t) + Nv(θ(t)) ≤ 0, a.e. t ∈ I,
v(0) ≤ v(T ),

N
∫ T

0 eM (s−θ (s)) ds ≤ 1,

then v ≤ 0 a.e. on I.

This result improves Corollary 2 in [21].
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An important case is θ(t) = [t], where [·] is the floor function. In this case,
p(v) ∈ L1(I), for any v ∈ L1(I), and we obtain the estimate

N
∫ T

0
eM (s−[s]) ds ≤ 1. (5)

If T ≤ 1, then [t] = 0, at least for t ∈ [0,T ) and (5) becomes

N
∫ T

0
eMs ds =

N
M

(eMT − 1) ≤ 1.

Note that this is not a trivial case, since we can find a function v with

v′(t) + Mv(t) + Nv(0) ≤ 0, t ∈ I,

v(0) < v(T )

and v(T ) > 0. Set, for instance, M = 1, N = 5, T = 1
2 and v(t) = t − 1

4 , for t ∈ [0, 1
2 ].

In this case,
N
M

(eMT − 1) = 5(
√

e − 1) > 1.

If T > 1, let k ∈ N, such that k < T ≤ k + 1. Then

N
∫ T

0
eM (s−[s]) ds = N



k∑
i=1

∫ i

i−1
eM (s−i+1) ds +

∫ T

k

eM (s−k) ds


= N


k∑
i=1

1
M

(eM − 1) +
1
M

(eM (T−k) − 1)


=
N
M

[k (eM − 1) + (eM (T−k) − 1)].

This leads to the condition

N
M

[k (eM − 1) + eM (T−k) − 1] ≤ 1.

If k = 0, it coincides with the case T ≤ 1. However, this estimate can be improved,
as we will show below.

3.2 Minimum case

If p satisfies the three following conditions considered in Theorem 5 of [21],

p(w) ∈ L∞(I), for every w ∈ C(I), (6)
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ess inf
t∈[0,τ]

[p(w)](t) ≥ N min
[0,τ]

w, for τ ∈ I and w ∈ C(I), (7)

N
M

(eMT − 1) < 1,

for a certain N ≥ 0, then p satisfies (2) and (3).
Indeed, let w ∈ C(I), w ≥ 0 on I, then

[p(w)](t) ≥ ess inf
s∈[0,t]

[p(w)](s) ≥ N min
[0,t]

w ≥ 0, a.e. t ∈ I,

and (2) holds.
Now, let a < b ∈ I and w ∈ C(I) with min

[0,b]
w ≤ 0, then

[p(w)](t) ≥ ess inf
s∈[0,t]

[p(w)](s) ≥ N min
[0,t]

w, for a.e. t ∈ [a, b].

We have ∫ b

a

[p(w)](s) eMs ds ≥
∫ b

a

N
(
min
[0,s]

w

)
eMs ds

=

∫ b

a

N
(

min
t∈[0,s]

w(t) eMte−Mt

)
eMs ds

≥

∫ b

a

N
(

min
t∈[0,s]

( min
t∈[0,b]

w(t) eMt )e−Mt

)
eMs ds

=

∫ b

a

N ( min
t∈[0,b]

w(t) eMt )( max
t∈[0,s]

e−Mt ) eMs ds

= N min
t∈[0,b]

(w(t) eMt )
∫ b

a

eMs ds

= N min
t∈[0,b]

(w(t) eMt )
1
M

(eMb − eMa).

Also, eMb − eMa ≤ eMT − 1 and taking into account that min
[0,b]

w ≤ 0, then

∫ b

a

[p(w)](s) eMs ds ≥
N
M

(eMT − 1) min
t∈[0,b]

w(t) eMt ≥ min
t∈[0,b]

w(t) eMt

and (3) is valid, even when N
M (eMT − 1) = 1.

Thus, we have proved the following

Corollary 2 If M > 0, N ≥ 0 and v ∈ W1,1(I) are such that




v′(t) + Mv(t) + N[p(v)](t) ≤ 0, a.e. t ∈ I,
v(0) ≤ v(T ),

N
M (eMT − 1) ≤ 1,
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where p : L1(I) → L1(I) satisfies (6) and (7), then v ≤ 0 a.e. on I.

This result improves Theorem 5 of [21].

Note that the new result applies to functions p : L1(I) −→ L1(I), such that

[p(w)](t) ≥ N min
[0,t]

w, a.e. t ∈ I,

for w ∈ C(I) and
N
M

(eMT − 1) ≤ 1.

3.3 Integral case

Corollary 3 Let M > 0, N ≥ 0 and suppose that p : L1(I) −→ L1(I) satisfies that

[p(w)](t) ≥ N
∫ t

0
w(s) ds, a.e. t ∈ I, for w ∈ C(I). (8)

If v ∈ W1,1(I) is such that




v′(t) + Mv(t) + N[p(v)](t) ≤ 0, a.e. t ∈ I,
v(0) ≤ v(T ),

N
M2 (eMT − MT − 1) ≤ 1,

then v ≤ 0 a.e. on I.

Proof: If w ∈ C(I), w ≥ 0, then [p(w)] ≥ 0 a.e. on I, so that (2) is valid. We will
prove that (3) holds under the estimate

N
M2 (eMT − MT − 1) ≤ 1.

Indeed, for a < b ∈ I and w ∈ C(I) with min
[0,b]

w ≤ 0, it can be proved that

∫ s

0
w(r) dr ≥

∫ s

0
( min
r ∈[0,b]

w(r)eMr )e−Mr dr

= ( min
r ∈[0,b]

w(r)eMr )
∫ s

0
e−Mr dr = ( min

r ∈[0,b]
w(r)eMr )

1 − e−Ms

M
,

for s ∈ [a, b] and, therefore,
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a

[p(w)](s) eMs ds ≥
∫ b

a

N
∫ s

0
w(r) dr eMs ds

≥

∫ b

a

N ( min
r ∈[0,b]

w(r)eMr )
1 − e−Ms

M
eMs ds

=
N
M

( min
r ∈[0,b]

w(r)eMr )
∫ b

a

(eMs − 1) ds

≥
N
M

( min
r ∈[0,b]

w(r)eMr )
∫ T

0
(eMs − 1) ds

=
N
M

( min
r ∈[0,b]

w(r)eMr )
eMT − MT − 1

M

= ( min
r ∈[0,b]

w(r)eMr )
N

M2 (eMT − MT − 1) ≥ min
s∈[0,b]

(w(s)eMs).

This means that (3) is valid.

The estimate
N

M2 (eMT − MT − 1) ≤ 1

is better than the following (that can be obtained analogously to Proposition 2 [25])

NT
M

(eMT − 1) ≤ 1,

since
N

M2 (eMT − MT − 1) <
NT
M

(eMT − 1).

Indeed, this is equivalent to

eMT − MT − 1 < MT (eMT − 1),

or
eMT − 1 − MTeMT < 0,

but the function
ϕ(x) = ex − 1 − xex

satisfies that ϕ(0) = 0 and ϕ′(x) = −xex < 0, for x > 0, so that ϕ is nonincreasing
and negative for x > 0. Therefore, the assertion is true.

4 Generalization of Theorem 1

Occasionally, the equation
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v′(t) + Mv(t) + [p(v)](t) = σ(t) a.e. t ∈ I,

can be split into several equations

v′(t) + Mv(t) + [p(v)](t) = σ(t), a.e. t ∈ [αi, αi+1],

where i = 0, 1, . . . , k and {0 = α0 < α1 < · · · < αk < αk+1 = T } is a partition
of [0,T]. This is possible, for instance, when [p(v)](t) only takes into account the
values of v in [αi, t], for t ∈ [αi, αi+1] and i = 0, 1, . . . , k. Precisely, this was the case
for the delayed equation

v′(t) + Mv(t) + Nv([t]) ≤ 0, t ∈ I,

studied in last section. Here, if T > 1 and k < T ≤ k + 1, we can take αi = i,
for i = 0, 1, . . . , k, αk+1 = T and [p(v)](t) = Nv([t]) = Nv(i), for t ∈ [i, i + 1),
i = 0, 1, . . . , k − 1, [p(v)](t) = Nv(k), for t ∈ [k,T].

In this formulation we include also the case of delayed equations with delay
function θ satisfying

θ(t) ∈ [αi, t], for a.e. t ∈ [αi, αi+1], i = 0, 1, . . . , k .

Now, we will prove a result in the spirit of Theorem 1 but adapted to the property
of p cited above.

Theorem 2 Let v ∈ W1,1(I) be a solution of (1), M > 0, λ ≤ 0, σ ≤ 0 a.e. on I and
p : L1(I) → L1(I) such that (2) holds. Suppose that there exists {0 = α0 < α1 <
· · · < αk < αk+1 = T } a partition of [0,T] such that [p(v)](t) only depends on the
values of v in [αi, t], for a.e. t ∈ [αi, αi+1], i = 0, 1, . . . , k and that




∫ b

a
[p(w)](s) eMs ds ≥ min

s∈[αi,b]
(w(s) eMs), ∀i = 0, 1, . . . , k,

αi ≤ a < b ≤ αi+1 and w ∈ C([αi, αi+1]) with min
[αi,b]

w ≤ 0.
(9)

Then v ≤ 0 a.e. on I.

Proof:We have that

v′(t) + Mv(t) + [p(v)](t) ≤ 0, a.e. t ∈ [αi, αi+1), i = 0, 1, . . . , k .

If v ≥ 0 on I, then, by (2),

v′(t) ≤ −Mv(t) − [p(v)](t) ≤ 0

for a.e. t ∈ [αi, αi+1), i = 0, 1, . . . , k and v is nonincreasing on [αi, αi+1), for
i = 0, 1, . . . , k. But v is continuous, so that v is nonincreasing on I and v is a constant
function since v(0) ≤ v(T ). Then v(t) = k with k ≥ 0 and

0 ≤ Mk ≤ −[p(v)](t) ≤ 0, a.e. t ∈ I,



10 Sebastián Buedo-Fernández, Daniel Cao Labora, Rosana Rodríguez-López

therefore, v(t) = k = 0, for all t ∈ I.
Now, suppose that v(t?) < 0 for t? ∈ [αp, αp+1) and some p ∈ {0, 1, . . . , k}, or

v(T ) < 0.
Consider the function

z(t) = v(t)eMt, t ∈ I .

Then
z′(t) ≤ −[p(v)](t) eMt, a.e. t ∈ [αi, αi+1), i = 0, 1, . . . , k . (10)

If v(t?) < 0, with t? ∈ [αp, αp+1) and p ∈ {0, 1, . . . , k}, then we will prove
that v(T ) ≤ 0. If z(αp+1) > 0 then there exists t0 ∈ [αp, αp+1) such that z(t0) =

min
[αp,αp+1]

z < 0 and integrating (10) between t0 and αp+1 we obtain that

−z(t0) < z(αp+1) − z(t0)

≤ −

∫ αp+1

t0

[p(v)](s) eMs ds ≤ − min
s∈[αp,αp+1]

(v(s) eMs) = −z(t0),

that is absurd. Therefore, z(αp+1) ≤ 0.

Now, if p = k, then v(T ) ≤ 0. If p < k, we will prove that z(αp+2) ≤ 0. If
z(αp+2) > 0, then t1 ∈ [αp+1, αp+2] is such that z(t1) = min

[αp+1,αp+2]
z ≤ 0 and

integrating (10) between t1 and αp+2 we get another contradiction. If p + 1 = k,
we achieve v(T ) ≤ 0 and if p + 1 < k we repeat this process until we have that
p + j = k + 1, z(αp+j ) = z(T ) ≤ 0 and also v(T ) ≤ 0.

In both cases, we have that v(T ) ≤ 0. Then z(0) = v(0) ≤ v(T ) ≤ 0. If there
exists t2 ∈ (0, α1) such that z(t2) > 0, then min

[0,t2]
z = z(t3) ≤ 0. Integrating (10) for

i = 0 in [t3, t2], we get that

−z(t3) < z(t2) − z(t3) ≤ −
∫ t2

t3

[p(v)](s) eMs ds ≤ − min
s∈[0,t2]

(v(s) eMs) = −z(t3),

that is a contradiction. This implies that z ≤ 0 on [0, α1) and z(α1) ≤ 0, since z is
continuous. Following an analogous procedure in the interval [α1, α2], we get that
z ≤ 0 on that interval, and so on, until the interval [αk,T], we will prove that z ≤ 0
on I and, therefore, v ≤ 0 on I.

Thus, Theorem 1 is a particular case of Theorem 2, where the partition of [0,T]
is trivial

0 = α0 < α1 = T .

Let us see how Theorem 2 improves the result obtained for the delayed differential
inequality with delay function θ(t) = [t], t ∈ I, that is
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v′(t) + Mv(t) + Nv([t]) ≤ 0, a.e. t ∈ I,

v(0) ≤ v(T ).

As we have pointed out, if k ∈ N, k < T ≤ k + 1, we consider the partition given
by αi = i, i = 0, . . . , k, αk+1 = T . Let i ∈ {0, . . . , k}, αi = i ≤ a < b ≤ αi+1 and
w ∈ C([αi, αi+1]) with min

[αi,b]
w ≤ 0. Then

∫ b

a

Nw([s]) eMs ds =

= N
∫ b

a

w([s])eM[s] e−M[s] eMs ds ≥ N min
s∈[i,b]

(w(s)eMs)
∫ b

a

e−M[s] eMs ds

= N min
s∈[i,b]

(w(s)eMs)
∫ b

a

eM (s−i) ds ≥ N min
s∈[i,b]

(w(s)eMs)
∫ i+1

i

eM (s−i) ds

= N min
s∈[i,b]

(w(s)eMs)
1
M

(eM − 1) =
N
M

(eM − 1) min
s∈[i,b]

(w(s)eMs).

If the following condition holds

N
∫ i+1

i

eM (s−θ (s)) ds ≤ 1

or, equivalently,
N
M

(eM − 1) ≤ 1,

then ∫ b

a

Nw([s]) eMs ds ≥ min
s∈[i,b]

(w(s)eMs),

for αi ≤ a < b < αi+1, i ∈ {0, 1, . . . , k} and (9) is valid.
We have proved the following result:

Corollary 4 If M > 0, N ≥ 0, T > 1 and v ∈ W1,1(I) are such that




v′(t) + Mv(t) + Nv([t]) ≤ 0, a.e. t ∈ I,
v(0) ≤ v(T ),

N
M (eM − 1) ≤ 1,

then v ≤ 0 a.e. on I.

Compare this result with Theorem 1 [22].
In the case T ≤ 1, the estimate N

M (eMT − 1) ≤ 1 was obtained in Section 2.

Corollary 5 Let {α0 = 0 < α1 < α2 < . . . < αk < αk+1 = T } a partition of [0,T]
and

θi (t) : [αi, αi+1) → [αi, αi+1), θi (t) ≤ t, for a.e. t ∈ [αi, αi+1).

If p : L1(I) → L1(I) is such that
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[p(v)](t) = Nv(θi (t)), for t ∈ [αi, αi+1), i = 0, 1, . . . , k − 1,

[p(v)](t) = Nv(θk (t)), for t ∈ [αk, αk+1]

and
N

∫ αi+1

αi

eM (s−θi (s)) ds ≤ 1,

for a certain N ≥ 0, then (9) is valid. As a consequence, if v ∈ W1,1(I) is a solution
of problem (1) with M > 0, λ ≤ 0 and σ ≤ 0 a.e. on I, then v ≤ 0 a.e. on I.

Proof:Let i ∈ {0, . . . , k} αi ≤ a < b ≤ αi+1 andw ∈ C([αi, αi+1]) with min
[αi,b]

w ≤ 0.
Then, using the properties of θi , we get∫ b

a

Nw(θi (s)) eMs ds = N
∫ b

a

w(θi (s))eMθi (s) e−Mθi (s) eMs ds

≥ N min
s∈[αi,b]

(w(s)eMs)
∫ b

a

eM (s−θi (s)) ds

≥ N min
s∈[αi,b]

(w(s)eMs)
∫ αi+1

αi

eM (s−θi (s)) ds ≥ min
s∈[αi,b]

(w(s)eMs).

If αi = i, i = 0, . . . , k, αk+1 = T and θi (t) = [t] = i, for t ∈ [αi, αi+1), then we
obtain the result given in Corollary 4.

If the delay is a piecewise constant function, θi (t) = αi , for a.e. t ∈ [αi, αi+1),
where

{0 = α0 < α1 < . . . < αk < αk+1 = T },

then
N

∫ αi+1

αi

eM (t−αi ) dt =
N
M

(eM (αi+1−αi ) − 1) ≤
N
M

(eMτ − 1)

and we obtain the following estimate on the constants in order to guarantee the
validity of (9):

N
M

(eMτ − 1) ≤ 1,

where τ = max{αi+1 − αi : i = 0, . . . , k}.

Corollary 6 If p : L1(I) → L1(I) and {0 = α0 < α1 < . . . < αk < αk+1 = T } are
such that

[p(w)](t) ≥ N min
[αi,t]

w, a.e. t ∈ [αi, αi+1),

for i = 0, 1, . . . , k, w ∈ C([αi, αi+1]) and the estimate
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N
M

(eMτ − 1) ≤ 1

where τ = max{αi+1 − αi : i = 0, . . . , k} holds, then any solution v ∈ W1,1(I) of
(1) with M > 0, λ ≤ 0, σ ≤ 0 a.e. on I, satisfies that v ≤ 0 a.e. on I.

Proof: It is easy to check that (9) is true if N
M (eMτ − 1) ≤ 1 holds.

Corollary 7 Suppose that p : L1(I) −→ L1(I) and

{0 = α0 < α1 < . . . < αk < αk+1 = T }

are such that
[p(w)](t) ≥ N

∫ t

αi

w(s) ds, a.e. t ∈ [αi, αi+1),

for i = 0, 1, . . . , k, w ∈ C([αi, αi+1]) and

N
M2 (eMτ − Mτ − 1) ≤ 1,

where τ = max{αi+1 − αi : i = 0, . . . , k}. If v ∈ W1,1(I) is a solution of (1), where
M > 0, λ ≤ 0, σ ≤ 0 a.e. on I, then v ≤ 0 a.e. on I.

Proof: It can be proved that (9) holds if

N
M2 [eM (αi+1−αi ) − M (αi+1 − αi) − 1] ≤ 1,

for all i = 0, 1, . . . , k.
However, the function φ(y) = ey − y − 1 is nondecreasing for y > 0, so that

φ(M (αi+1 − αi)) ≤ φ(Mτ),

for i = 0, 1, . . . , k and

N
M2 [eM (αi+1−αi ) − M (αi+1 − αi) − 1] ≤

N
M2 (eMτ − Mτ − 1),

for all i = 0, 1, . . . , k where the equality is valid for at least one index i.

5 Nonnegativity of solutions

Let I = [0,T], p : L1(I) → L1(I) and consider the problem (1) again, that is,
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v′(t) + Mv(t) + [p(v)](t) = σ(t), a.e. t ∈ I,

v(0) = v(T ) + λ.

Consider the following conditions

p(w) ≤ 0 a.e. on I, if w ∈ C(I), w ≤ 0 on I (11)

and



for all a < b ∈ I and w ∈ C(I) with max
[0,b]

w ≥ 0,

we have
∫ b

a
[p(w)](s) eMs ds ≤ max

s∈[0,b]
(w(s) eMs),

(12)

Remark 1 The former conditions can be included in the framework of Section 2 by
considering q(v) = −p(−v). Then, the results of this section are a direct consequence
of the ones in the past sections.

Theorem 3 If v ∈ W1,1(I) is a solution of problem (1), M > 0, λ ≥ 0, σ ≥ 0 a.e.
on I and p satisfies (11) and (12), then v ≥ 0 a.e. on I.

Note that condition (12) can be expressed in the following way, as well.
Let ŵ(t) = w(t)e−Mt




∫ b

a
[p(ŵ)](s) eMs ds ≤ max

[0,b]
w,

for all a < b ∈ I and w ∈ C(I) with max
[0,b]

w ≥ 0.

Next, we see some particular cases of the general framework.

5.1 Retarded functional differential equations

Corollary 8 Let M > 0, N ≥ 0, θ : I → I, θ(t) ≤ t, a.e. on I,

[p(w)](t) = Nw(θ(t)),

such that p : L1(I) −→ L1(I). If v ∈ W1,1(I) is a solution of (1), where λ ≥ 0,
σ ≥ 0 a.e. on I, then v ≥ 0 a.e. on I.

What we have proved is that if M > 0, N ≥ 0, θ : I → I, θ(t) ≤ t a.e. on I and
v ∈ W1,1(I) are such that p : L1 → L1 and




v′(t) + Mv(t) + Nv(θ(t)) ≥ 0, a.e. t ∈ I,
v(0) ≥ v(T ),

N
∫ T

0 eM (s−θ (s)) ds ≤ 1,

then v ≥ 0 a.e. on I.
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In the case where θ(t) = [t], t ∈ [0,T], where [·] is the greatest integer function,
we obtain the estimate

N
M

(eMT − 1) ≤ 1, if T ≤ 1

and

N
M

[k (eM − 1) + eM (T−k) − 1] ≤ 1, if T > 1 and k ∈ N such that k < T ≤ k + 1.

In the last case, this is not the best estimate we can obtain.

5.2 Maximum case

Corollary 9 Let M > 0, λ ≥ 0, σ ≥ 0 a.e. on I and p : L1(I) −→ L1(I) such that

p(w) ∈ L∞(I), for every w ∈ C(I), (13)

There exists N ≥ 0 such that
ess supt∈[0,τ][p(w)](t) ≤ N max[0,τ] w, for τ ∈ I and w ∈ C(I) (14)

and
N
M

(eMT − 1) ≤ 1.

Then, if v ∈ W1,1(I) is a solution of (1), v ≥ 0 a.e. on I.

5.3 Integral case

Corollary 10 Let M > 0, N ≥ 0 and suppose that p : L1(I) −→ L1(I) satisfies that

[p(w)](t) ≤ N
∫ t

0
w(s) ds, a.e. t ∈ I, for w ∈ C(I). (15)

If v ∈ W1,1(I) is a solution of (1), where λ ≥ 0, σ ≥ 0 a.e. on I and the estimate

N
M2 (eMT − MT − 1) ≤ 1

holds, then v ≥ 0 a.e. on I.
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6 Uniqueness of solution

The above results provide several uniqueness results for periodic boundary problems.

Corollary 11 Let M > 0 and v ∈ W1,1(I) a solution to the problem{
v′(t) + Mv(t) + [p(v)](t) = 0, a.e. t ∈ I,

v(0) = v(T ), (16)

where p : L1(I) → L1(I) is such that

p(w) ≥ 0 a.e. on I, if w ∈ C(I), w ≥ 0 on I, (17)

p(w) ≤ 0 a.e. on I, if w ∈ C(I), w ≤ 0 on I, (18)




for all a < b ∈ I and w ∈ C(I) with min
[0,b]

w ≤ 0,

we have
∫ b

a
[p(w)](s) eMs ds ≥ min

s∈[0,b]
(w(s) eMs),

(19)

and



for all a < b ∈ I and w ∈ C(I) with max
[0,b]

w ≥ 0,

we have
∫ b

a
[p(w)](s) eMs ds ≤ max

s∈[0,b]
(w(s) eMs),

(20)

(that is, the conditions (2), (11), (3) and (12) are valid).
Then, v ≡ 0 a.e. on I.

Now, consider some particular cases.

Corollary 12 If M > 0, N ≥ 0, θ : I → I, θ(t) ≤ t, a.e. on I and v ∈ W1,1(I) are
such that




v′(t) + Mv(t) + Nv(θ(t)) = 0, a.e. t ∈ I,
v(0) = v(T ),

N
∫ T

0 eM (s−θ (s)) ds ≤ 1,

where the operator [p(w)](t) = Nw(θ(t)) satisfies that p : L1(I) −→ L1(I), then
v ≡ 0 a.e. on I.

Corollary 13 Let M > 0 and v ∈ W1,1(I) a solution to the problem{
v′(t) + Mv(t) + [p(v)](t) = 0, a.e. t ∈ I,

v(0) = v(T ), (21)

where p : L1(I) → L1(I) satisfies the three following conditions:

a) p(w) ∈ L∞(I), for w ∈ C(I),
b) there exists N ≥ 0, such that, for τ ∈ I and w ∈ C(I)




ess inf
t∈[0,τ]

[p(w)](t) ≥ N min
[0,τ]

w,

ess sup
t∈[0,τ]

[p(w)](t) ≤ N max
[0,τ]

w,
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c) N
M (eMT − 1) ≤ 1.

Then, v ≡ 0 a.e. on I.

Corollary 14 Let M > 0, N ≥ 0 and v ∈ W1,1(I) such that{
v′(t) + Mv(t) + N

∫ t

0 w(s) ds = 0, a.e. t ∈ I,
v(0) = v(T ),

(22)

and
N

M2 (eMT − MT − 1) ≤ 1,

then v ≡ 0 a.e. on I.
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