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Abstract 
Polyphosphazenes (PPZs) are a relatively new family of polymers based on a nitrogen-

phosphorous backbone where organic side-groups can be grafted.  The synthetic route to PPZs 

is highly versatile such that it is possible to add many different functionalities that change 

completely the physicochemical and biological properties of the polymers. For instance, PPZs 

can be designed with a variety of organic side groups that render these materials biodegradable 

and highly biocompatible. Based on these positive features, PPZs have been explored for many 

biomedical applications including the design of numerous advanced drug delivery systems. In 

this area, PPZs have been particularly investigated as materials for the formulation of 

biopharmaceuticals of high added value. These include protein- and polynucleotide-based 

medicines, applications where PPZ carriers have obtained very positive results in pre-clinical 

models. A further area of major interest for PPZs has been vaccination, where these materials 

have obtained excellent results in vivo as polymer adjuvants and have advanced to clinical 

evaluation. 
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Part I. Background and fundamental properties of PPZ 

New biodegradable materials are required in many biomedical applications, and polymers 

continue to be critical for this field. In comparison to natural polymers, synthetic biodegradable 

polymers are generally better defined and are easier to modulate regarding their mechanical and 

degradation properties. Polyesters such as polylactide (PLA), poly(lactide-co-glycolide) 

(PLGA), or polycaprolactone (PCL) are some of the most used synthetic polymers, but other 

polymer families such as polyphosphazenes (PPZs) are also of interest since they bring 

advantages of tunable biodegradability, polymer elasticity and chemical versatility. Due to 

these characteristics, polyphosphazenes are being investigated in a range of biomedical 

applications such as controlled drug delivery and tissue engineering1,2.  

Polyphosphazenes (PPZs) are a class of polymers having an inorganic backbone made of 

repeating units of phosphorus and nitrogen in an alternating sequence, and which can be 

configured in cyclic or linear conformations. The repeating unit of PPZs is N=PR1R2 (Figure 

1a), a structure built by phosphorus covalently linked to nitrogen via alternating σ-σ bond and 

σ-π bonds. Each phosphorus atom offers five electrons and each nitrogen provides another five 

electrons, forming sequential saturated and unsaturated bonds on the backbones. Within this 

structure two electrons of the phosphorus are used for side chain conjugation, and two electrons 

of nitrogen remained as a lone-pair (Figure 1b). Although the linear backbone contains 

unsaturated bonds, the dπ(P)−pπ(N) bond is expected to have flexible rotation because several 

3d orbitals of phosphorus can hybridise with the pz orbital of nitrogen once the π bond 

undergoes torsions (Figure 1c) 3,4. As theoretical calculations report, the bond energy of 

inherent torsional barrier in the phosphazene backbone is as low as 100 cal per bond 4,5. 

Nevertheless, the linear PPZ conformation is significantly influenced by their side groups (i.e. 

Cl, OCH2CF3, etc.), since the phosphazene skeleton is easily distorted and lies preferably in a 

cis-trans rather than in a trans-trans planar conformation to minimize internal repulsions 

(Figure 1d) 3,6. Because of the flexible dπ(P)−pπ(N) bond, most PPZ are colorless, have 

insulating properties and lack microcrystallinity. This is more apparent in PPZs having two or 

more different substituting side groups 4.  

The most commonly prepared PPZ is poly(dichlorophosphazene) (PDCP), which is synthesized 

as a precursor for its derivation to a wide range of polymers by nucleophilic substitution 7.  
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Many PDCP derivatives have been synthesized and formulated to various products in 

biomedical applications. For example, amino acid ester PPZs have been widely studied and 

applied to prepare fibers or scaffolds by electrospinning for bone tissue engineering 8,9; 

amphiphilic PPZs have been used for the preparation of nanoscale polymeric carriers in 

controlled drug delivery 10,11. For vaccine delivery the most common prototypes are based on 

PPZs with carboxylic acids side chains, such as poly[di(carboxylatophenoxy)-phosphazene] 

(PCPP). The versatility of PPZ chemistry is also important from scale-up and manufacture 

perspectives 12-14. For many industrial applications, it is desirable to have ‘platform’ materials 

that can be manufactured in bulk and adapted or modified for specific purposes. For 

pharmaceutical applications, a single precursor polymer that can be tailored for different 

therapies would be highly advantageous. In this review we focus on linear PDCP derivatives 

and their bio-applications in gene delivery, vaccine delivery and protein drug delivery. 

 

 

Figure 1. General structures of PPZ (a), electron arrangement in the phosphazene bond (b) and 

its orbital hybridization (c), in which phosphorus provides dxz to hybrid with pz of nitrogen. (d) 

Cis-trans planar conformation of repeating phosphazene backbones.  
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Synthesis of polyphosphazene and functional additions 

The first synthesis of PPZ was reported by Stokes as early as 1897 in a high-temperature 

polymerization reaction that led into an insoluble elastomer known as inorganic rubber. The 

first stable synthesis of PPZ was reported by Allcock and co-workers 15, a work that resulted in 

increased interest for these kind of materials for biomedical and other applications. The scheme 

developed by Allcock is still the basis of the most general procedure for linear PPZ synthesis: 

the precursor poly(dichlorophosphazene) (PDCP) is prepared in the first step, and then the final 

polymer is formed by nucleophilic substitution of the desired side chains 1,16,17.  

Based on the raw monomers used to prepare linear PDCP, synthetic methods can generally be 

classified based on those starting from cyclic trimers (i.e. hexachlorocyclotriphosphazene, 

(NPCl2)3) 15,18, and those starting from non-cyclic monomers (i.e. dichlorophosphinoyl-

iminotrichloro phosphorene, Cl3P=N-P(O)Cl2, or trichloro(trimethylsilyl)phosphoranimine, 

Cl3P=NSiMe3) 19-22. In the former case, the polymerization is typically thermo-initiated and the 

ring-opening reaction propagates towards linear PDCP (Figure 2a). Many aspects of this 

general PDCP synthesis procedure have been improved, including catalyzed polymerization 
23,24 and solvent-mediated stabilization25. Although the mechanism of this ring-opening 

polymerization is still open to debate, the most broadly accepted mechanism is that one 

phosphorus-chloride bond of the cyclic trimer is cleaved by heating above 250 - 260 ºC, 

triggering the opening of the next cyclotriphosphazene and starting the chain propagation 

reaction. In the terminal step, the reactive head of the PPZ chain (~N=PCl2+) can recapture the 

chloride anion as the reaction temperature decreases. This reaction is extremely sensitive to 

contamination by water and other nucleophiles, which can cause unwanted cross-linking, and 

precipitation of an insoluble material (i.e. Stokes’ “inorganic rubber”) as well as limiting the 

reproducibility of the synthesis. For avoiding water contamination, a solvent-free melt 

polymerization reaction can be used, but this reaction is difficult to control and forms ultra-high 

molecular weight PDCP.  

The use of efficient catalysts is a critical factor to achieve high-yield, controllable 

polymerization of PDCP and to obtain a product with sufficient purity to proceed for side 

change substitution reactions without further purification 23,24. Boron trichloride (BCl3) and 

aluminum chloride (AlCl3) are strong Lewis acids that facilitate the extraction of the chloride 
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on the trimers and act as catalysts for cyclic trimer activation. BCl3 has the additional 

advantage of reducing the possibility of crosslinking by eliminating trace amounts of water in 

the polymerization by forming B(OH)3 23. Sohn et al. also reported that AlCl3 can be used as a 

catalyst in PPZ polymerization to yield PDCP with a mass average molecular weight (Mw) 

range between 10kDa and 100k Da 24, which is preferred for many biomedical applications, 

especially drug delivery and tissue engineering 26,27.  

Besides these methods relying on ring-opening polymerization starting from 

hexachlorocyclotriphosphazene, PDCP can also be synthesized through phosphorus 

pentachloride (PCl5) initiated polymerization starting from non-cyclic monomers, such as 

trichloro(trimethylsilyl)phosphoranimine, Cl3P=N-Si(CH3)3 (Figure 2b) 19,20,22. This method 

has several advantages such as room-temperature synthesis and controllable molecular weights 

with narrow polydispersity. Most interestingly, this polymerization method can be used to 

prepare further block copolymers, such as PLA-co-PDCP, PEO-co-PDCP and polystyrene-co-

PDCP 28-30. The first section of polymer with terminal primary amines can conjugate with 

(CF3CH2O)2BrP=NSiMe3 by nucleophilic substitution and then react with PCl5 to initiate the 

polymerization of the PDCP block. In light of this, PCl5-induced living cationic polymerization 

provides broader possibilities for PPZ platforms, such as the preparation of amphiphilic 

polymers or multi-arm branch polymers, which could be used in medical applications.  
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Figure 2. Potential mechanisms for PPZ polymerization. (a) Ring-opening polymerization of 

cyclotriphosphazene and (b) living cationic polymerization of 

trichloro(trimethylsilyl)phosphoranimine to yield linear poly(dichlorophosphazene)s (PDCP).  

 

Despite all the work on improving its synthesis, PDCP has few applications itself, but rather 

acts as a  precursor polymer that, to date, has been modified into over 700 different derivatives 
4,7. Indeed, PDCP provides an easy-coupling platform for conjugation with side-chain 

candidates, in which nucleophile terminals can substitute the chlorines of this polymer, 

effectively conjugating to the PPZ backbone. Despite the flexibility of this reaction, the 

nucleophilic substitution is limited to functional groups having only one nucleophilic center. If 
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groups having more than one nucleophilic center are used, a crosslinking reaction and the 

precipitation of the polymer intermediate will result. Therefore, many functional groups of 

biological interest (amines, acids, or saccharide molecules etc.) need to go through 

protection/deprotection procedures for their nucleophilic substitution on PDCP. Fortunately, an 

extensive library of PPZs has been developed, including derivatives substituted with alkene, 

alkyne, or vinyl groups, for example, allylamine 14,31, 2-aminoethyl methacrylate 32, allyl 

glycinate 33, methacrylic acid 34,35 and propargylamine 36 derivatives. These PPZs with alkene 

and alkyne side chains can be used as secondary precursors for free radical polymerization 
32,33,35,37. Furthermore, recent works have shown the possibility to use these groups in thiol-ene, 

thiol-yne and azide/alkyne click reactions as simple pathways for PPZ derivatization with 

biomolecules 14,36,38,39. These reactions have also been applied as simple schemes to add ionic 

side chains on the PPZ backbone for the design of gene therapy polymers 40. Overall, free-

radical polymerization and click reactions bring additional versatility to PPZs and allow for the 

introduction of potential biomolecules or therapeutic compounds as side chains. 

 

Biocompatibility and Biodegradability of polyphosphazenes 

Poly(organophosphazenes) is a term for PPZs having organic side groups. These polymers 

cover a broad range of materials with tunable cytocompatibility and biodegradability 7,41, and 

thus the following discussion is centered on these PPZs. A considerable number of organic side 

chains have been introduced in PPZs, including amino acid esters 7,42-44, peptides 33,42,45, 

saccharides 14,36,46, arylcarboxylates 47, ethylene oxide/PEG 11,27,48, and other biomolecules 

(purine and pyrimidine bases, vitamins, etc.) 49,50. For biomedical applications, the safety of 

these materials is a key consideration. As with other properties of polyphosphazenes, the 

cytocompatibility of the final materials is dictated by the side groups used. For instance, 

polyphosphazenes substituted with tertiary amines can exert certain toxicity even at moderate 

concentrations 51. On the other hand, other polyphosphazenes used in bone tissue engineering 

show excellent safety profiles 9. For instance, poly[(ethyl glycinato) phosphazene] has been 

compared to PLGA in a cytocompatibility test performed in primary rat osteoblasts, where this 

PPZ showed no negative effect on cell proliferation 52. This study also inspired further tests of 

alanine-based PPZs regarding osteocompatibility. This material showed low toxicity and good 
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capacity to support cell adhesion, proliferation, and maintenance of cellular phenotype 53,54. 

Other types of PEGylated PPZs also show excellent biosafety profiles that combine with their 

antifouling properties 55-57. The biocompatibility of the PPZ backbone has also been supported 

by the FDA-approval of Cobra PzF stents (CeloNova Biosciences Inc.) in 2017, which are 

coronary stents coated with nanostructured PPZs for thrombo-resistant properties 58. 

A critical characteristic of poly(organophosphazenes) is their capacity to biodegrade, which is 

beneficial in many medical applications. The mechanism for hydrolysis of these PPZs is still 

controversial and three possible mechanisms have been suggested 41,59,60. In mechanisms 1 and 

2 (see Figure 3), the side groups can react with the phosphazene backbone and accelerate 

polymer hydrolysis. In the other mechanism, the side chains of PPZs may be eliminated from 

their backbone first, and finally the backbone can be hydrolyzed. In all cases, the result of the 

hydrolysis is the formation of degradation products from the side groups and a self-neutralizing 

buffer of ammonium phosphate derived from the backbone 7,43. The neutrality of these 

degradation products is another advantage over other biodegradable polymers that form acid 

residues that can harm delicate biomolecules 61,62. 

The degradation rate of PPZs is also dependent on the substituting side groups and their ratios 

when there is more than one type 63. Within this regard, important characteristics of the side 

groups are: hydrophobicity, steric hindrance, and the degree of crosslinking of the side chains. 

The lack of systematic studies has made it difficult to compare a broad range of side chains 

under standardized conditions 7. However, some amino-acid ester PPZs have been studied in 

detail by the group of Allcock, where they calculated their degradation half-life (T1/2) in PBS 

37 ºC as follows: ethyl glycinate (T1/2 ~3 months) < alanine (T1/2 ~6 months) < valine (T1/2 ~ 1 

year) ≦ phenylalanine ethyl ester (T1/2 ~1 year) 43,44,64. Moreover, when analyzing two water-

soluble PPZs with the same terminal functional side group (i.e. a tertiary amine), but linked to 

the PPZ backbone by a different nucleophile group, –N=P(–OCH2CH2N(CH3)2)2 vs. –N=P(–

NHCH2CH2N(CH3)2)2, the authors found that the alkoxide-substituted PPZ degraded faster 

(T1/2 ~7 days) than the amine-substituted PPZ (T1/2 ~24 days) 51.  

In conclusion, the good cytocompatibility profile of poly(organophosphazene)s together with 

their biodegradation kinetics that can be tuned by selecting appropriate side groups is another 
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positive characteristics that indicates the interest of these materials for tissue engineering and 

drug delivery 9,41,65,66.  

 

Figure 3. The three common hypotheses of poly(amino-acid ester)phosphazenes for 

degradation mechanisms. [Adapted from Allcock, H. R. et al. 2012, Polymer Chemistry 7, with 

permission]. 
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Part II. Use of PPZs for the delivery of biomacromolecules 

Macromolecular drugs (polysaccharides, protein, nucleotide, etc.) are increasingly important in 

the clinical arsenal and are likely to be the main class of therapeutics in many future disease 

treatments.  However, most biomacromolecules have low stability in the body and lack the 

capacity to cross biological barriers. New carriers to improve the delivery of macromolecules 

are thus urgently needed. PPZ-based platforms combine chemical flexibility, biodegradability 

and biocompatibility, suitable characteristics that suggest their use for macromolecule carrier 

design. Here we review the use of PPZ platforms for gene and protein delivery; afterwards, we 

cover specifically the use of PPZs for protein and gene delivery in vaccination, since this 

application has particular technical requirements. 

 

Gene delivery 

Gene therapies are some of the most promising advanced treatments under investigation today, 

and they have already resulted in some new medicines translated to the clinic.  The major 

bottleneck towards the successful use of DNA and RNA is their delivery to the target tissues as 

well as to their target cell compartments. This delivery problem results in poor efficacy/toxicity 

ratios and has slowed the development of gene therapy for decades 67-69. In polymer-mediated 

gene delivery, the most widely-investigated material is polyethylenimine (PEI), whose 

positively charged amine groups can condense polynucleotides leading to the formation of 

nanocomplexes. PEI-nucleotide polyelectrolyte complexes can be taken up by cells and the 

buffering capacity of the PEI backbone amines can facilitate their escape from endosomal 

compartments, effectively improving the intracellular delivery of the gene medicines 70. 

However, PEI has important limitations regarding its medical use: it is non-biodegradable and 

has detrimental effects related to mitochondrial dysfunction 71-73, thus better alternative 

polymers are sought as gene delivery carriers. 

The first PPZ employed for the purpose of gene delivery was reported by Hennink's group 51, 

who compared the degradation ratios of two terminal tertiary amines as PPZ side chains, 2-

dimethylaminoethanol (DMAE) and 2-dimethylaminoethylamine (DMAEA). The 
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corresponding cationic polymers were used to complex plasmid DNA for gene delivery 

(Figure 4). The studies indicated that DMAEA-PPZ complexing DNA has higher gene transfer 

efficiency than DMAE-PPZ in the COS-7 cell-line, especially at low N/P ratios ≤ 10 (the molar 

ratio of pronated amine group to negative phosphate of nucleotide). However, DMAEA-PPZ 

has higher toxicity than DMAE-PPZ at high N/P ratios (≥ 20), likely due to the short half-life 

of DMEA-PPZ. Besides, these authors also investigated the effect of DMAEA-PPZs molecular 

weight on DNA delivery efficiency. The lower molecular-weight polymers (Mw range of 130-

950k Da) resulted in acceptable toxicity both in vitro and in vivo 74.  Further improvements in 

these early prototypes were achieved by introducing imidazole groups in DMAEA-PPZs as 

added functionalities to improve endosomal escape and enhance transfection efficiency 75,76. 

Other chemical modifications of PPZ included grafting with galactose 77 and PEG 78 to improve 

biocompatibility and stability of the drug carriers.  

These initial designs were mostly limited to grafting PPZs with groups having only one 

nucleophilic center due to synthetic limitations related to uncontrolled polymer crosslinking 

that could only be avoided by cumbersome protection/de-protection procedures 79-81. For 

addressing this issue, Hsu et al. used a click-addition extension starting from a PPZ backbone 

(Figure 4) and applied this synthetic strategy to the design of a small library of materials for 

gene delivery that included previously unexplored primary amine PPZs and carboxylic acid 

PPZs of medium/low molecular weight ranges (10 kDa to 50 kDa) 40. Primary amine PPZs 

were found to be more efficient for gene delivery than tertiary amine PPZs due to their higher 

binding capacity for DNA. Additionally, the authors identified a carboxylic acid functional 

grafting group that could be added to the gene nanocarriers as a delivery enhancer. This 

material not only reduced the toxicity on the nanocarriers, but improved gene transfection in 

several 2D and 3D cell models, as well as in vivo. In perspective, cationic PPZ-based gene 

complexes show comparable gene delivery efficacy to commercial standards (PEI or 

Lipofectamine), but they tend to show lower cytotoxicity and have the additional advantage of 

being biodegradable 40,57,76,78,82.  

Standard polyelectrolyte complexes are not the only type of structures that have been tested for 

gene delivery. For instance, thermosensitive, injectable PPZ gels have been used for the 

controlled release of chitosan-graft PEI/DNA complexes or PEI-grafted PPZ/DNA complexes 
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83. This type of system can be used for local administration to achieve sustained release of the 

polymer/gene complexes 84,85. Other types of structures of interest are polymersomes and 

polymeric micelles. Qiu’s group developed PEG-PPZ block copolymers where PPZs were 

substituted with hydrophobic N,N-diisopropylethylenediamine (DPA) groups. The copolymers 

were amphiphilic and could be formulated as polymersomes. When these polymersomes were 

loaded with microRNA (miR-200c), the nanomedicine was capable of inhibiting tumor 

progression in xenografted mice with a drug-resistant lung cancer model 57. Polymersomes 

were also used to deliver plasmids coding for recombinant IL-12, a protein that can activate 

cytotoxic T lymphocytes and natural killer cells in antitumor immunotherapy, but which can 

also present severe side effects via standard intravenous administration 86,87. The polymersome 

was able to deliver the plasmid to CT-26 tumors in mice upon intravenous administration. This 

delivery system prolonged the half-life of IL-12 in the tumor region and in serum, while they 

minimized the therapy adverse effects 88. After the polymersome treatment, immune effector 

cells (CD8+ T cells, NK cells and NKT cells) were recruited in the tumor environment, and 

increased concentrations of IFN-γ shortly after the treatment. 

 

Figure 4. The common techniques to introduce cationic side chains on polyphosphazene (PPZ) 

backbone for gene delivery application. 

 



14 
 

Protein drug delivery 

The possibility of generating materials with tailored degradation kinetics and their amenability 

to easily integrate other functionalities make poly(organophosphazene)s an attractive choice for 

protein delivery. Based on their general structure, we highlight two main strategies that have 

been followed in PPZ-based protein formulation: (i) nanoparticles and (ii) injectable gels. 

Nanoparticles can be designed to provide protein stabilization and improved intracellular 

trafficking. For instance, the group of Andrianov presented an ionic polyphosphazene for 

“smart” protein delivery 89. In this work, poly(carboxylatoethylphenoxy)-co-(3-(2-oxo-1-

pyrrolidinyl)-propylamino)phosphazene, PPA was designed with degradable/pH-sensitive 

functions. The optimized composition of PPA can induce hemolysis at endosomal pH, 

facilitating endosomal escape after internalization in cancer cells. Carboxylatoethylphenoxy 

(CEP) side chains are well-known for their use in complexation with proteins, but they are also 

sensitive to changes in pH within the physiological range. Complexation of L-Asparaginase 

with both negatively-charged CEP-grafted and positively-charged tertiary amine-grafted PEG-

PPZ derivatives can form non-covalent PEGylated nanoassemblies for protein delivery; these 

nanocarriers promoted the stability of this enzyme and reduced their undesirable antigenicity 55.   

Since the short in vivo half-life of proteins is one of their most frequent shortcomings, 

injectable controlled release formulations are in great need. Non-ionic, thermosensitive PPZ 

polymers that gel at body temperature and provide sustained delivery of proteins are very 

promising in this regard. For instance, this type of hydrogel can be generated with PPZs grafted 

with three side chains corresponding to different functions: the hydrophobic L-isoleucine ethyl 

ester (IleOEt), the hydrophilic α-amino-ω-methoxy-poly(ethylene glycol) (AMPEG), and the 

hydrolysis-sensitive ethyl-2-(O-glycyl)lactate (GlyLacOEt). In this design, the ratio between 

IleOEt and AMPEG side groups define the lower critical solution temperature behavior (LCST), 

and thus the body temperature where the polymer will gel. GlyLacOEt moieties facilitate acid-

catalyzed degradation and controlled protein drug release 27,90. A composition of this polymer 

family capable of gelling at body temperature upon injection was used to formulate human 

growth hormone (hGH). This formulation formed a depot with sustained release properties that 

could address clinical issues associated with hGH treatments, such as renal toxicity and short 
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half-life, which otherwise require multiple-injections leading to poor patient compliance 91. 

Unfortunately, direct loading of hGH in this PPZ hydrogel still results in a large burst and fast 

release rates, which result in total cargo release in 1 week or less 92,93. To improve this result, 

hGH was complexed with poly-L-arginine, and these biodegradable nanocomplexes then were 

loaded in the thermosensitive PPZ hydrogel. This multi-stage formulation could significantly 

prolong the release phase for several weeks. In another work, PPZs were designed to have dual 

interactions with proteins in order to generate more stable release profiles. The PPZs were 

grafted with hydrophilic PEG, hydrophobic isoleucine ethyl ester (IleOEt) and carboxylic acid 

moieties that could complex BMP-2 and form stable nanocomplexes.  Compared to non-

anionic amphiphilic PPZs complexes, anionic BMP-2 nanocarriers were able to duplicate the 

duration of BMP-2 release and avoid the burst effect. This formulation achieved continuous 

BMP-2 stimulation in vivo and resulted in osteocalcin secretion even two weeks after a single-

dose injection of this nanocomplex. The treatment demonstrated new bone generation on 

mouse ectopic and orthotopic sites after 8 weeks 94. 

 

Vaccine delivery 

Vaccination is currently the most cost-effective method for protection against infectious 

diseases. Generally, vaccines are derived from either live attenuated pathogens, killed antigens 

or their sub-units 95. Vaccines based on whole pathogens are usually highly immunogenic but 

present safety concerns which often limit their use in high-risk populations (eg. pregnant 

women, elderly etc.). Recently developed vaccine (i.e. subunits, recombinant antigens, 

nucleotide, surface saccharides, etc.) are safer but typically generate weak immune responses. 

In light of this, such antigens generally require the use of  adjuvants, which could improve both 

the delivery of the antigen and its immunostimulatory properties 96. This concept of immune 

adjuvants was originally proposed by Gaston Ramon 97, as “substances used in combination 

with a specific antigen that produce a more robust immune response than the antigen alone.” 

The most common adjuvants are aluminum-based mineral salts (“alum”) which have been 

FDA-approved for several decades 98. Over the last decades, a few lipid-based adjuvants have 

been approved by regulatory agencies for seasonal and pandemic flu vaccines.  Highly-
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functional polymeric adjuvants are also being investigated and this is an area of application 

where PPZs have shown particular promise.  

Already in 1998, a polyanionic PPZ derivative, poly[di(carboxylatophenoxy)-phosphazene] 

(PCPP), was identified as a promising adjuvant for commercial influenza vaccines since it 

could significantly improve the immunogenic responses in mice around ten-fold in comparison 

with the antigen alone 99. It was found that the molecular weight of PCPP was also an important 

factor for boosting the immunogenic response. The longer PPZ (Mw 1500 kDa), when used as 

adjuvant for triple influenza vaccine, had 5 times higher hemagglutination inhibition antibodies 

than the same formulation prepared with the shorter PPZ (Mw 58 kDa). 

The mechanism behind the immunostimulatory properties of PCPP is still unclear, but several 

explanations have been suggested 100. First, PCPP does not seem to form a “depot” like alum 99, 

but rather moves out of the injection site as dispersed hydrophilic complexes carrying the 

antigen. Second, PCPP forms non-covalent complexes with antigens, and the resulting 

nanoparticle structure seems to promote protein stability and more efficient antigen 

presentation to immune cells. This molecular complex formation process is likely affected by 

the molecular weight of PCPP, since larger polymers result in larger nanocomplexes and those 

induce higher amount of serum IgG titers in mice 99. In addition, the carboxylic acid grafted 

groups on the PPZ backbone have inherent immunostimulatory activity, which could be 

mediated by TLRs and Mannose Receptors 101,102.  
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Figure 5. The chemical structure of PCPP and PCEP, two PPZ-based adjuvant materials, and 

the different types of vaccine formulations derived from them. 

 

The use of PPZs as adjuvants is not only restricted to PCPP. Another PPZ with similar structure, 

poly[di(sodium carboxylatoethylphenoxy)phosphazene] (PCEP), can also boost immune 

responses in vaccination 103,104. PCEP has been tested as adjuvant with different antigens: BSA, 

X-31 influenza, and hepatitis B surface antigen (HBsAg). When compared to PCPP, it was 

observed that PCEP trigger higher total IgG titers in vivo after several weeks. More specifically, 

PCEP used as adjuvant with relative low doses of X-31 stimulated high IgG titers and induced 

higher interferon-γ production than alum or PCPP 104. Either alum or PCPP mixing with X31 

has a relatively high IgG1/IgG2a ratio of 1.3, indicating a predominantly Th2 type immune 

response in mice. In contrast, PCEP-adjuvant X31 has a, IgG1/IgG2a ratio of 0.9, presenting a 

balanced Th1/Th2 response with more Th1 isotype IgG2a. The reason behind this effect seems 

to be related to the different immunomodulatory effects of these adjuvants. While PCEP can 

contribute to stimulate both Type 1 T helper (Th1) and Type 2 T helper (Th2) responses, alum 

is mostly associated to Th2 responses. In fact, one of the main limitations of alum is its poor 

capacity to elicit Th1 responses, which is a main immune defense against intracellular 

pathogens.   
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Besides vaccine delivery by direct complexation with antigens, other PZZ systems have also 

been prepared, including nanocarriers (particles, liposomes) 105, microparticles 106-110, hydrogels 
111, and microneedle arrays 112 (Figure 5). A particularly promising approach is the use of 

viscous PCPP-coated microneedle arrays that can penetrate the skin and degrade once in the 

body, releasing the antigen and the adjuvant. Andrianov and co-workers developed a single 

dose vaccine of HBsAg based on PCPP-coated microneedles to be used via transdermal 

delivery. In studies performed in pigs, this delivery system produced around 10 times higher 

IgG titers than the same formulation administered by intramuscular injection 112. In summary, 

this study showed synergistic effects between the physical delivery exerted by the small 

needles and PPZs and demonstrated the potential of these material for minimally-invasive 

transdermal vaccination strategies. 

The first clinical trial on a PPZ-based adjuvant used PCPP co-administered with influenza 

antigens of three stains (A/Johannesburg/33/94 (H3N2)) in young adults and elderly 113. This 

phase I study confirmed no serious adverse effects for this formulation and achieved better 

immune responses in young subjects, although elderly subjects still benefited from higher 

seroconversion rate in the PCPP-adjuvant group than in the standard vaccine group.  

In addition to influenza, PCPP could be combined with HIV antigens to form macromolecular 

complexes. In vivo, PCPP-HIV Gag complexes activate more efficiently human dendritic cells 

(DCs) from adults and newborns and generate further cytokine production than the same 

antigen formulated with alum 114. PCPP complexed with HIV vaccine formulations (ALVAC-

HIV (vCP1521) primed with oligomeric gp160 (92TH023/LAI-DID) or Bivalent gp120 

(CM235/SF2) boost) were evaluated for immune responses and safety in clinical studies. The 

results of these studies indicated the safety of the vaccines and their capacity to induce cell-

mediated immunity 115,116. However, the protective effect of ALVAC-HIV (vCP1521) 

formulation was found to decay over time in these studies 117. Another prime-boost Phase I 

study reported the combinations of ALVAC-HIV (vCP205) with oligomeric glycoprotein 160 

(ogp160) and either PCPP or alum as adjuvants 118. The ogp160 subjects receiving the PCPP 

adjuvant had higher endpoint responses, including geometric mean antibody titers and T-Cell 

lympho-proliferation, than the subjects receiving the alum adjuvant (ClinicalTrials.gov 

Identifier NCT00004579).  
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In summary, for the moment the clinical evaluation has indicated that PPZ adjuvants are safe 

and immunostimulatory in humans, and that they can be translated to a variety of platforms 

including complexes, microparticles, gels, microneedles, etc. Further clinical studies are 

required to validate their utility for both influenza and HIV vaccination, particularly in 

comparison with other better-known adjuvant systems.  
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Conclusion 

Compared to other polymer families, stable PPZs have been synthesized relatively recently, and 

because of this and their anomalous inorganic backbone, they have not been explored as much 

as other biomaterials. Still, their many advantages have spurred increasing interest particularly 

concentrated in some areas like tissue engineering, gene delivery, protein delivery and 

vaccination. Particularly critical to this interest, is the biodegradability of most 

poly(organophosphazenes) and the chemical flexibility of these materials. Although other types 

of polymers can also be chemically diverse, engineers find appealing the special synthesis 

pathway of PPZs where a precursor is modified to tailor the material’s structure and meet the 

requirements of specific applications. Such synthesis route simplifies adapting existing 

technologies to new areas of interest. 

A pending challenge for the use of PPZs in pharmaceutics and medical devices is the 

optimization of this synthetic route to make it more cost-effective and eco-friendlier. Indeed, 

current synthetic pathways either rely on costly monomers and/or the use of high temperatures, 

organic solvents, and organic reactions proceeding under strict conditions. Cost considerations 

might be acceptable if the PPZ is integrated in large added-value systems where low amounts 

of material are needed (e.g. gene delivery systems) but can block further development in other 

applications.  

Regulatory considerations have also been a concern for the development of PPZ-based systems 

since these materials do not have a long history of medical record comparable to other 

polymers. In this regard, good biocompatibility data observed in several animal models 

suggests that many PPZs can be considered for clinical translation. This good biocompatibility 

profile has been confirmed by the first clinical trials conducted with 

poly[di(carboxylatophenoxy)-phosphazene]. It is expected that all this new data on safety and 

bioactivity will encourage new laboratories to consider PPZ as important materials for the 

future design of advanced drug delivery systems. 
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