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Abstract  

The use of mobile phones has been shown to increase drivers’ reaction times (RTs), but whether 

this results from interference with attention, stimulus identification, or response production 

remains unclear. We recorded RTs and event-related brain potentials (ERPs) reflecting speed of 

stimulus processing, attentional allocation, and preparedness to respond during a visual reaction 

task performed with or without the concomitant use of a mobile phone, in either “hands-free” or 

“phone-in-hand” operating modes. As expected, maintaining a phone conversation increased RTs 

to visual targets, this effect being associated with complex ERP effects. Phone conversations did 

not appear to delay target detection times, as assessed by N2–P3 latencies, but did significantly 

decrease stimulus-induced alerting and attentional allocation (P3 amplitude) and interfered with 

motor preparation processes (readiness potential). P3 amplitude drop was identical whatever the 

mode of phone use, while decrease of readiness potential was progressive from the “hands-free” 

to the “phone-in-hand” condition. These results suggest that two mechanisms contributed to 

degrade performance in this experiment: first, a general decrease of attention to sensory inputs, 

characteristic of “dual-task” situations, probably acting through a delay in sensory-motor transfer 

times. This effect was independent of whether the phone was handled or “hands-free.” 

Conversely, the second factor was specifically sensitive to manipulation of the phone and caused 

a weakening of the readiness to respond with a motor act. 
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Introduction 

Mobile cellular telephones are being increasingly used in developed countries, and a growing 

proportion of phone conversations are conducted during car driving. Several behavioral 

investigations have addressed the question of the effects that mobile telephone use may have on 

traffic safety, as it appears unlikely that a complex situation like car driving may be insensitive to 

the superimposed demands of a concurrent phone conversation. Before the dissemination of car 

telephones, it was suggested that phone usemight led to decrements in both perception and 

decision making during driving (Brown et al., 1969), and other authors later observed negative 

effects of phone use on driving performance, including lateral path deviations (Briem & Hedman, 

1995), increased heart rate and subjective sensation of effort (Brookhuis et al., 1991), and delayed 

reaction times to rare events (Alm & Nilsson, 1995). Using road position, driving speed, and 

collisions as dependent variables, Briem and Hedman (1995) found that the handling of the 

telephone and the maintenance of a difficult conversation had adverse effects on performance, 

while “easy talking” over a hands-free telephone could, in some cases, be seen as facilitatory. 

Along this line, Preece et al. (1999) and Koivisto et al. (2000) recently reported a possible 

facilitation of motor responsiveness (shorter reaction times) in subjects receiving microwave 

radiation at 902–915MHz, similar to that emitted by cellular phones. 

Behavioral studies have introduced important data on performance decrements derived from the 

use of mobile phones, but have not explored the mechanisms underlying such anomalies. This is 

an important issue, as almost identical alterations in overt behavior may result from a variety of 

processing deficits. For instance, increased reaction times (RTs) to environmental targets during 

phone conversations (Alm & Nilsson, 1995) may result either from a deficit in stimulus 

evaluation, a lack of anticipation, preparation and execution of motor responses, or any 

combination of these deficits. 

Event-related brain potentials (ERPs) show variations of electrical brain activity associated with 

the processes of attending to, anticipating, and detecting environmental targets, as well as 

reflecting the preparation to make a motor response. Compared to behavioral measures, one 

theoretical advantage of ERP analyses is therefore the study of processes that are hardly accessible 

to RT measurements. The application of these techniques in combination with behavioral data 

may help understand the respective contributions of attentional, perceptual and 

anticipation/preparation processes to the observed behavioral deficits. We therefore used ERPs to 

investigate the mechanisms underlying changes in RTs to sensory targets during the use of mobile 

phones. To this end, brain responses were recorded during a simple-reaction, visual-detection task 

of targets versus distractors, performed concomitantly to a mobile phone conversation. 

We investigated whether or not the concomitant use of a telephone entailed (a) a delay in stimulus 

identification; (b) a reduction in attention allotted to the task and stimulus- related arousal; and 

(c) a decrease in preparatory processes. Stimulus detection times were estimated using the timing 

of the N2–P3 complex in poststimulus ERPs, which is a common measure of stimulus evaluation 

time (Kutas et al., 1977; Donchin, 1979; Picton, 1992). The amplitude of the P3 wave covaries 

with the amount of attentional resources allotted to a target stimulus (Wickens et al., 1984; Kok, 

1997; García-Larrea et al., 1998), and with stimulus-related arousal (Bahramali et al., 1997; Kok, 

1997), and was used accordingly to assess these variables. Finally, slow negative potentials 

preceding the target stimulus were also recorded. Such slow potentials correspond to 
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anticipation/orienting processes (CNV; Walter et al., 1964), to motor preparation (readiness 

potential or RP; Kornhuber et al., 1965) or to a combination of the two. In this study we used 

rapid sequences of target and nontarget stimuli requiring simple motor reactions; in these 

conditions there is evidence that the major portion of the prestimulus negativity consists of a 

readiness potential (see Barrett et al., 1987), which disappears if a motor response is replaced by 

a mental count (Starr et al., 1995). This potential, probably sharing properties with the “late” 

component of the contingent negative variation (McCallum, 1988), served as a marker of 

prestimulus activation and preparation processes to respond with a motor act.  

In order to dissociate the specific effect of manipulating the telephone from the effects due to the 

conversation itself, both “hands-free” and “phone-in-hand” conditions were used in the 

experiments. Also, to avoid contamination by possible spurious effects in the EEG or ERPs linked 

to the electromagnetic radiation (Eulitz et al., 1998; Freude et al., 2000), all recordings were 

conducted with telephones switched off. 

Subjects & Methods 

Participants 

Ten healthy subjects (7 women, 3 men) aged 24 to 42 years (32.6 ± 7.2) participated in the study. 

Participants were free of neurological impairment, and had normal or corrected-to-normal vision 

and hearing. Each of them gave informed consent to participate in the experimental sessions. Two 

visual stimuli consisting respectively of a yellow sun (target) and a red circle (distractor), each 

subtending 1 degree of angle, were presented on the center of a computer screen against a black 

background, in random sequences. The duration of each stimulus was 200ms and the interstimulus 

interval (ISI) was 1200ms. Red circles appeared with a probability of 0.8 and were randomly 

replaced by the yellow sun (target stimulus) with a probability of 0.2. Subjects had to respond to 

the appearance of the target stimulus by pressing a mouse button with the dominant hand. Speed 

and accuracy were equally emphasized before each recording run. Atotal of 100 to 120 stimuli 

were presented in each trial. 

Experimental Procedure 

The task described above was presented to each subject in three experimental conditions. In 

condition 1 (“nophone”) target detection was performed without any concomitant task. In 

condition 2 (“hands-free”) the subjects maintained a “hands-free” mobile phone conversation 

while performing the target detection task; in this condition they could speak freely and hear 

through a loudspeaker the person they were speaking to. In condition 3 (“phone-in-hand”), 

subjects kept a phone conversation by holding a mobile phone in their nondominant hand while 

executing the reaction task. Two different standardized conversations were used for every subject. 

One was a business conversation including questions about job, studies, and hobbies, and the 

other consisted of questions about the experimental situation itself. Thus, to answer the questions 

in the first conversation the subject needed to access items relatively stabilized in long-term 

memory, the access to which was considered to be easy and almost automatic (e. g., favorite 

hobbies). The second conversation incorporated questions relevant to the ongoing experiment 

(type of setting, characteristics of stimuli, etc.), the response to which could not rely on previous 

knowledge and resulted in slightly higher subjective difficulty. In order to standardize the 

experimental situations, both conversations were previously recorded on tape and presented 

through an inserted earphone (“phone-in-hand” condition), or an external loudspeaker (“hands-
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free” condition). Thus, every subject perceived the voice as if it came through the mobile phone, 

and each heard exactly the same voice and answered to the same questions as the others. This 

procedure also allowed us to discard any possible electromagnetic contamination from an active 

cellular phone, which has been shown to induce changes in both EEG and cognitive-evoked 

potentials (Eulitz et al., 1998). The order of conditions was counterbalanced across subjects, and 

the two conversations were also counterbalanced between the phone conditions. Subjects started 

the target detection task 5 to 10 seconds before receiving the phone call. In the “phone-in-hand” 

condition, they were instructed to take the phone in their nondominant hand, put it to the ear, and 

follow the conversation. In the “handsfree” condition, they had to push a button situated beside 

the phone, which automatically started the loudspeaker conversation. 

Data Recording and Analysis 

Motor reaction times (RTs) to target stimuli, as well as number of errors (omissions and false 

alarms) were recorded for each subject and condition. The electroencephalogram (EEG) was 

recorded continuously from tin electrodes (Fz, Cz, Pz) mounted on an elastic helmet 

(ElectroCap®) and referenced to the nose. The EEG was amplified 20,000 times with a bandpass 

of 0.1–30 Hz (–3 dB) and sampled at 500 Hz with a Synamps® acquisition system. The electro-

oculogram (EOG) was also monitored by a tin electrode attached to the supero-lateral margin of 

the left superciliary arch, referenced to the nose. An electrode placed between Fz and Fpz served 

as ground. Skin impedances were kept below 5 KΩ. The recording settings of the experiments 

were based on those described by Starr et al. (1995). The raw EEG trace was segmented into 

epochs of 2 seconds centered on stimulus presentation, thus allowing simultaneously recording 

of ERPs preceding and following the stimulus, including prestimulus slow negativities (RP) and 

poststimulus N2 and P3 responses (Starr et al., 1995). Segmented epochs were then averaged for 

each subject and condition according to the type of stimulus (target or distractor). Prior to 

averaging, EEG epochs were inspected visually to detect and eliminate any segment contaminated 

by EOG artifacts. After EOG correction, single epochs with amplitudes exceeding ± 70 μV were 

excluded from the average. Only ERPs to target stimuli are presented in this report. 

The following were analyzed for each electrode: 

– the peak latencies of the N2 & P3 components; 

– the P3 offset latency (point where the P3 ascending (negative-going) limb crossed the baseline); 

– the P3 amplitude to baseline; 

– the area under the slow negative shift preceding the stimulus. 

For all latency measures the reference point was the onset of the target stimulus. The area under 

the prestimulus negativity was measured within an interval starting 600ms prestimulus and 

extending until 50 ms poststimulus. 

The amplitude of poststimulus ERPs was measured after applying a high-pass digital filter with 

cutoff at 1 Hz (6 dB down, –24 dB/oct) to eliminate the baseline drift due to slow prestimulus 

potentials (Starr et al., 1995); then, ERP amplitudes were measured relative to a 400ms 

prestimulus baseline (Figure 1, right panel). Latency windows for N2 and P3 analyses were 

determined from the grand-averaged waveforms across all subjects in the control condition, and 

were 200–300 ms and 300–500ms poststimulus respectively for N2 and P3. In case of multiple 

peaks on one component, latency was calculated as the intersection between the ascending and 
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descending branches (Goodin et al., 1994). The “offset latency” of the P3 component was 

calculated as the point at which the ascending (negative-going) branches of the potential 

intersected with the baseline, after applying the high-pass filter described above. Behavioral and 

ERP latency data were subjected to repeated measures ANOVAs, with condition (3 levels) and 

electrode (3 levels) as within-subject factors for ERP data, and condition only for behavioral data. 

The Greenhouse- Geisser (G–G) ε estimate was used to correct the degrees of freedom when 

appropriate. Significant factor effects (P = 0.05 after G–G correction) were followed by post-hoc 

Student paired t-tests. 

Results 

Behavioral Data 

Reaction times to targets increased from 348 ± 80ms in the control (“no-phone”) situation, to 409 

± 110 ms in “hands-free” mobile use, and 418 ± 110ms in the “phone-in-hand” situation, the 

difference being highly significant (F(2,9) = 12.79, ε = .9, P < .001). Motor reactions were slower 

in both phone conditions than in the control situation (paired t(9), respectively –4.48, P = 0.001 

and –3.98, P = 0.003), but the difference between the two phone conditions (409ms vs 418 ms) 

did not reach significance. False alarms and omissions were less than 1% in all conditions and did 

not differed among them. 

Electrophysiological Data 

The experimental condition had a significant effect on the slow negativity which preceded 

stimulus presentation (F(2,9) = 4.01, ε = 0.93, P < .04), the mean area of which progressively 

decreased from maximal values in the “no-phone” situation, to intermediate in the “handsfree” 

condition, and minimal during the “phone-inhand” context, where the prestimulus negativity was 

virtually absent (Figure 1, left panel). Attenuation of prestimulus 

negativity did not reach significance in the “hands-free” condition relative to the control 

experiment (t(9) = –1.78, n.s.) but became highly significant when the phone was held in the hand 

(t(9) = –3.13, P < .01). 

The amplitude of the P3 component to targets was also significantly modified by phone use 

(F(2,9) = 11.09, ε = .79, P = .003). Amplitude decreased from 17.1 ± 5 μV in the “no-phone” 

condition to 10.2 ± 5.2 μV in the “handsfree” situation, and then remained relatively stable (9.1 

± 3.4 μV) with the phone-in-hand (Figure 1, right panel). Post-hoc t-tests disclosed significant 

amplitude decrease in both phone situations, relative to the control condition (respectively t(9) = 

3.36, P = .008 and t(9) = 4.01, P = .003), with no significant differences between “handsfree” and 

“phone-in-hand” (t(9) = –1.03, P = .33 n.s). Amplitudes of N2 followed the same trend as those 

of P3, with amplitude decrease from the “no-phone” condition to both the “hands-free” and 

“phone-in-hand” situations (Figure 1, right panel), but the differences did not reach significance. 

Peak latencies of the N2 and P3 components did not vary significantly among the three conditions 

(respectively F(2,9) = 1.79, n.s., and F(2,9) = .54, n.s.). A significant effect of condition was 

observed on the P3 offset latency (F(2,9) = 10.3, ε = .99, P < .001), which increased during the 

two phone situations as compared with the control condition (P < .05), indicating longer P3 

duration during phone use. Again, no difference was observed between the two phone conditions. 

Discussion 
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Motor reaction times to target stimuli are a complex function of a number of variables, including 

at least: 

a) anticipation and motor preparation processes, which accelerate reaction times by allowing 

faster accessibility to motor programs (Brunia, 1993); 

b) stimulus-induced arousal, which increases response speed probably by acting on feature 

extraction & response selection stages (Hackley & Valle-Inclán, 1998); 

c) stimulus evaluation speed, since response programs cannot be launched before the stimulus has 

been minimally evaluated. 

Data from our study suggest that the use of a mobile phone concomitant with a visuo-motor task 

affected significantly at least two of these three variables. Electrophysiological recordings showed 

two main effects: attenuation of the slow negative shift preceding the stimulus, and attenuation of 

the N2–P3 response following target presentation. These two effects likely contributed to the 

degraded performances (delayed RTs) that were also observed, but had different dynamics (Figure 

2) and were presumed to act through different mechanisms. 

Slow negative potentials preceding an imperative, motor-demanding stimulus may correspond to 

anticipation/ orienting processes (CNV), to motor preparation (RP) or to a combination of these. 

The paradigm used in this study used relatively rapid sequences of target and nontarget stimuli 

requiring a simple motor reaction in response to the former. Barrett et al. (1987) observed that 

under these conditions the N2 and P3 components were more negative in the case of an imperative 

motor response than during mental counting, and inferred that a readiness potential was probably 

recorded in such target detection tasks.More recently, Starr et al. (1995) presented sequences of 

auditory stimuli requiring a simple target detection (20% probability), and provided evidence that 

the major portion of the prestimulus negativity disappeared when the motor response was replaced 

by a mental count. They concluded, therefore, that, under these conditions, the prestimulus 

negativity mainly consisted of a readiness potential (RP) reflecting preparations to make a motor 

response. This potential, as with that recorded in this study, started about 500ms before stimulus 

presentation, and probably shares properties with the “late” component of the contingent negative 

variation (McCallum, 1988). Attenuation of this RP in conditions 2 and 3 of our study suggests 

that motor preparedness to respond was significantly degraded by the concomitant use of the 

phone. Furthermore, the decrease of motor readiness potentials was different in the two phone 

conditions: only moderate in the “hands-free” situation and much more important when the phone 

had to be handled and manipulated – a situation where virtually no RP could be identified, as 

illustrated by the left panel of Figure 1. This extreme sensitivity of motor readiness potentials to 

the manipulation of the phone suggests that “hands-free” systems may be useful to preserve, at 

least in part, motor control mechanisms during phone conversations while executing other 

operations. 

The second effect of mobile phone use was a decrease of P3 amplitude to visual targets. This is a 

classically observed effect of “dual-task” experiments, where the P3 evoked by one class of 

stimuli decreases when the load of the other task increases (Isreal et al., 1980; Wickens et al., 

1984; Ragazzoni et al., 1996; Schubert et al., 1998; García-Larrea et al., 1998). Dual-task 

paradigms have stressed the value of P3 amplitude as an index of the capacity to process task-

relevant stimuli (Wickens et al., 1984; Picton, 1992; Kok, 1997). Since P3 amplitude is also 

positively related to phasic, stimulus-induced arousal (Bahramali et al., 1997; Bastuji & García-
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Larrea, 1999), P3 amplitude decrease in dual-task contexts may be viewed as the reflection of a 

decrease in target-induced arousal when attention is distributed among several sources of 

demands. Our results support the hypothesis that both attentional allocation to sensory stimuli, 

and phasic arousal to them were decreased during phone use. In addition, the fact that a similar 

P3 decrease was obtained whether the phone was held in the hand or not indicates that the main 

factor responsible for this effect was the conversation itself, rather than the manipulation of the 

phone. Thus, a decrease of the capacity to process external events appears as a direct consequence 

of the attentional load imposed by the phone conversation, whatever the mode of phone use, and 

is not likely to be ameliorated by the use of “hands-free” systems. Similar conclusions were 

reached in a recent field study, where reaction times to braking and/or collision were affected to 

a similar extent by a task involving phone manipulation and by a nonvisual attentional task, both 

performed concurrently to driving (Lamble et al., 1999). 

In contrast to the above results, the time needed for identification and controlled classification of 

the visual targets, as indexed by N2 and P3 latencies, was not significantly altered by the 

concomitant use of the phone (although delay of P3 offset suggested increased variability in target 

processing during phone use). While P3, and especially N2, latencies represent a measure of 

stimulus processing time (Kutas et al., 1977; Ritter et al., 1979; Picton, 1992), RTs provide a 

complex estimate of both stimulus and response processing, including sensorimotor transfer 

(Donchin, 1979; Hackley & Valle-Inclán, 1998). Our results suggest that delayed RTs while using 

the phone, although linked to decreased attention, were not principally due to a delay in stimulus 

classification and identification of the target. Divided attention settings may prolong RTs by 

affecting the cognitive-tomotor transfer (i. e., the stage whereby the output of sensory 

discrimination is used to launch a motor program) without necessarily delaying target evaluation 

time. Interestingly, conservation of target detection times appears to be common in dual-task 

situations, where a dissociation between preserved N2 and P3 latencies, yet delayed RTs, has 

often been documented (e. g., Sirevaag et al., 1989; Ragazzoni et al., 1996; García-Larrea & 

Cézanne-Bert, 1998; Schubert et al., 1998). This and our present results suggest that stimulus 

evaluation times might be more resistant to dual-task contamination than cognitive-motor transfer 

times – at least in situations where stimulus detection is very simple. Stimulus detection delays 

might however become affected in the case of more complex attentional demands from one or 

both concurrent tasks, and this is being currently investigated in our laboratory. 

The P3 “offset latency” was delayed during the two phone conditions (Figure 1). This did not 

appear to reflect a desynchronization (“jitter”) of the P3 wave across trials, since only the 

ascending (negative going) slope of the late positive complex (LPC) was responsible for this 

effect, whereas the descending P3 branch was not affected. 

Offset latency delay was therefore due to dissociation of late subcomponents of the LPC from the 

main P3 body, in a very similar way to that described in the context of other dual-task paradigms 

(García-Larrea & Cézanne-Bert, 1998). Such late components have often been considered to 

reflect response selection stages (Falkenstein et al., 1994; Perchet & García-Larrea, 2000). 

We do not have enough evidence to attribute a definite functional value to these late components 

in the present study; however, in the context of theories that consider such late responses as 

response-related activities (Verleger, 1997)wemight assume that their delay may reflect a 

dissociation between stimulus-related processing (N2 and the first part of P3) and response-

oriented (premotor) activities. Within this framework, the delay of P3 offset would further support 
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the hypothesis suggesting selective alteration of the “cognitive-to-motor” transfer by the 

concomitant use of the phone. 

Interestingly, at least two recent reports have suggested a possible “facilitatory” effect of mobile 

phone use on reaction times and responsiveness to targets (Preece et al., 1999; Koivisto et al., 

2000). These possible beneficial effects of mobile phones on cognition, which stand in 

disagreement with the present data and with previous behavioral reports (Alm & Nilsson, 1995; 

Briem & Hedman, 1995; Lamble et al., 1999), have been described while subjects received phone-

like (902–915MHz) radiation to the lateral aspect of the head. More important, these experiments 

were conducted in the absence of phone manipulation and without the need to maintain any 

conversation through the phone, thus eliminating the most important factors of interference, i. e., 

the “divided- attention” setting and the manual task. The possible “beneficial” effect of 

electromagnetic radiation from a real cellular phone (manipulated and used to keep a 

conversation) in a dual-task context like driving has not, to our knowledge, been demonstrated. 

Possible interactions between electromagnetic radiation and “dual-task” effects are clearly 

beyond the scope of the present study, which on the contrary underscores the fact that both 

attentional and preparatory mechanisms in sensorimotor reaction tasks are negatively affected by 

concurrent mobile phone use. 

Conclusion 

We propose that at least two psychophysiological mechanisms may contribute to degrade 

performance when simple reaction tasks are executed concomitantly to cellular phone 

conversations. One is a general decrease of attention to sensory inputs, which has as a likely 

corollary a decrease in stimulus-induced arousal. This effect is characteristic of “dual-task” 

situations, appears related to the cognitive burden of adding a conversation to the reaction task, 

and is largely independent of the modality of phone use (hands-free or phone-in-hand). The 

second factor is a weakening of preparedness to respond with a motor act. Unlike the first factor, 

this effect was specifically sensitive to manipulation of the phone. 
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