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RESUMEN

El objetivo de este trabajo es la evaluacion y optimizacion del andlisis bioinformatico de los
datos generados por secuenciacion masiva (NGS) aplicada al diagndstico de enfermedades raras
(EERR).

Las enfermedades raras (aquellas con un ratio de incidencia inferior a 1 de cada 2.000
personas), suponen, en su conjunto, un problema de primera magnitud para los sistemas
sanitarios de todo el mundo, puesto que su prevalencia combinada es similar a la de algunas
enfermedades mas comunes como la diabetes (se estima que 1 de cada 7 personas desarrollaran
una enfermedad rara a lo largo de su vida). El hecho de que el espectro fenotipico de estas
enfermedades sea enormemente amplio, sumado a que los cuadros clinicos (en el caso por
ejemplo de las enfermedades con afectacion neurologica) son altamente solapantes, hace que
su diagnoéstico sea especialmente complicado y se retrase en el tiempo durante afios. Esto
conlleva mucho sufrimiento para pacientes y familias, una sobrecarga del sistema de salud y la
incapacidad de proporcionar un diagndstico genético adecuado en tiempo y forma. Cuando no
existia la tecnologia NGS, el analisis genético era el tltimo paso en el proceso diagndstico de
este tipo de enfermedades. Durante este proceso, que habitualmente duraba afios, se sometia al
paciente a numerosas pruebas funcionales, bioquimicas, de imagen, anatomo-patoldgicas, etc.
En base a los sintomas clinicos y los hallazgos en estas pruebas se interrogaban uno o varios
genes consecutivamente sin alcanzar, en la mayor parte de los casos, un diagnostico etioldgico
definitivo.

La aparicién de la NGS con su enorme potencia tiene la capacidad de modificar los
protocolos diagnosticos. Esta herramienta permite el analisis simultdneo de miles de genes,
incluso de todo el genoma, en un corto periodo de tiempo, y a un precio razonable, convirtiendo
asi al analisis genético en un test apto para ser considerado prueba de primera linea en el estudio
de las enfermedades sospechosas de tener una base genética. Sin embargo, esta potencia tiene
una contrapartida: la ingente cantidad de datos generados por la NGS supone un importante
reto a la hora de filtrar y analizar los resultados. Este proceso, junto con la falta de personal
entrenado y preparado para abordar estos complejos problemas, constituye en la actualidad el
cuello de botella a la hora de aplicar estas nuevas tecnologias al campo de la clinica.

En la NGS, el genoma es fragmentado de manera aleatoria en pequefios trozos que son
amplificados y secuenciados (leidos) en paralelo por las plataformas de secuenciacion. Esto da
lugar a millones de lecturas que tienen que ser posteriormente alineadas contra el genoma de
referencia (alineamiento). Ademas de ser capaces de procesar esta inmensa cantidad de datos
de manera 6ptima, los programas de alineamiento deben enfrentarse a dos grandes retos: (1) las
posibles diferencias entre la secuencia leida en el paciente y la region del genoma de referencia
(diferencias que pueden ser producidas por la propia variabilidad interindividual o por la
existencia de variantes poblacionales, o incluso por los errores intrinsecos propios de cada
plataforma), y (2) la presencia de secuencias repetitivas a lo largo del genoma. Estas regiones
repetitivas (que suponen cerca de la mitad del ADN humano) pueden producir ambigiiedad en
el alineamiento, haciendo que los programas no puedan identificar con claridad el origen de la
lectura. Asi, los alineadores tienen que conseguir un equilibrio entre ser lo suficientemente
permisivos como para poder alinear lecturas con pequefias variaciones respecto del genoma de
referencia, y lo suficientemente estrictos como para poder asignar univocamente cada lectura a
su posicion original.
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Una vez las lecturas se encuentran alineadas, se procede a la deteccion de variantes, es
decir, identificar las diferencias que existen entre el genoma del paciente secuenciado y el
genoma de referencia. En este trabajo, las agrupamos en tres grandes grupos, segun su efecto
sobre el genoma y la forma de detectarlas: (1) las variantes puntuales (SNVs por sus siglas en
inglés single nucleotide variants) y las pequeias deleciones e inserciones (INDELSs), (2) las
variantes en el nimero de copias (CNVs copy number variants), y (3) las variantes de
reordenamiento (inversiones, translocaciones, y grandes inserciones de novo).

Existen tres grandes aproximaciones actualmente basadas en la tecnologia NGS: los
llamados “paneles génicos”, en los que se secuencian en paralelo las zonas codificantes
(exones) de una lista de genes (generalmente agrupados en funcion del fenotipo con el que estén
relacionados); la secuenciacion del exoma completo (WES), en el que se secuencian todas las
regiones codificantes conocidas presentes en el genoma humano; y, por ultimo, la secuenciacion
del genoma completo (WGS). A pesar de que el anélisis WGS es mucho més completo (permite
identificar variantes no detectables con las otras dos aproximaciones, como las variantes de
reordenamiento o las variantes que no se encuentran en regiones codificantes), y los resultados
obtenidos son generalmente mas homogéneos (la distribucion de las lecturas es mucho mas
uniforme), las dos primeras técnicas, englobadas bajo el término de secuenciacion dirigida, son
las mas habituales en la practica clinica, dado que suponen un menor coste que la WGS, y los
datos obtenidos son mucho mas manejables y faciles de interpretar. Dado que el objetivo del
presente estudio es la aplicacion de la NGS al diagnodstico de EERR, nos hemos centrado en el
analisis de datos procedentes de secuenciacion dirigida. Las variantes detectables mediante
secuenciacion dirigida son las SNVs e INDELSs, y los CNVs situados en regiones codificantes
(aquellos que contienen 1 0 mas exones de un gen o varios genes).

Las SNVs son las variantes mas sencillas de detectar (se trata simplemente de la
substitucion de un nucledtido por otro), y existen numerosas herramientas para su
identificacion. Por su parte, la deteccion de INDELSs es mas compleja, dado que su presencia
supone una dificultad afadida para los programas de alineamiento (faltan o sobran nucleotidos
de la secuencia de referencia). Sin embargo, el mayor reto que suponen ambos tipos de variantes
es determinar su posible implicacion con la enfermedad. Este proceso se conoce comiinmente
como priorizacién de variantes y consiste en identificar, de toda la larga lista de variantes
detectadas en el genoma de un paciente, las que mas probablemente puedan estar implicadas en
el fenotipo clinico a estudio. El primer paso en la priorizacion de variantes es filtrar las variantes
comunes (con una frecuencia en bases de datos publicas superior al 1%, o incluso al 0,5%),
puesto que esas frecuencias son incompatibles con la incidencia de las EERR. El siguiente paso
es evaluar el impacto que pueden llegar a tener segun el tipo de variante (missense, nonsense,
splicing, frameshift, etc.) y la posicion gendmica en la que se encuentran. Para ello existen
numerosas herramientas bioinformaticas que permiten la evaluacion in silico de su impacto
funcional. Estas pautas son una practica comin en el andlisis de datos NGS, pero un paso
imprescindible y no tan comtin en la priorizaciéon de variantes es la evaluacion de la tolerancia
de cada gen a las variantes missense (la tolerancia mutacional). Nuestra experiencia a lo largo
de estos afios en la aplicacion de la NGS al diagnodstico de EERR es que algunos genes admiten
una o incluso varias variantes missense raras sin que ello de lugar a ningun tipo de patologia,
mientras que en otros la presencia de una unica variante puede ser catastrofica y determina un
fenotipo clinico enormemente grave. Esto quiere decir que la seleccion purificadora negativa
es mucho mas fuerte para unos genes que para otros. Una forma de valorar la sensibilidad de
cada gen a la variacion es observando su numero de variantes missense poblacionales frente a
la suma de variantes totales (sinébnimas + missense) de dicho gen. El ratio missense /
missense+tsinonimas nos da una idea de lo conservado que debe estar ese gen para que sea
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funcional y de la seleccion negativa a la que esta sometido. Cuando el ratio es muy alto implica
que no existe una gran fuerza conservadora actuando para que la secuencia aminoacidica de la
proteina permanezca inalterable. Cuanto mas bajo es el ratio indica que la fuerza que actia para
conservar la secuencia original es mas fuerte en ese gen, e implica que cualquier cambio puede
afectar seriamente a la funcionalidad de la proteina codificada. Para evaluar dicha tolerancia
mutacional, hemos aplicado el método propuesto por Petrovski y colaboradores (Petrovski et
al. 2013) a las variantes comunes de 659 muestras de individuos con ascendencia europea
extraidas del Proyecto 1000 Genomas presentes en 1.670 genes relacionados con EERR
neuroldgicas y metabdlicas. Para cada gen, hemos obtenido un z-score definido como el residuo
estudentizado obtenido a partir de la regresion del numero total de variantes missense comunes
(con frecuencia >0.5%) contra el niimero total de variantes missense y sindnimas comunes
presentes en cada gen. Un z-score en torno a cero indica que el gen tiene el nimero esperado
de variantes missense dado su tasa mutacional. Los genes con un z-score negativo son aquellos
que tienen menos variantes missense de las esperadas, es decir, son genes muy conservados en
los que la evolucion elimina cualquier variante porque afecta a la funcionalidad de la proteina
codificada por el gen, y por lo tanto menos tolerantes a la presencia de estas variantes. Por su
parte, los valores positivos de z-score pertenecen a los genes mas tolerantes a las variaciones
missense, es decir, a los menos conservados. Asi, este parametro permite identificar los genes
en los que la presencia de variantes missense tienen una mayor probabilidad de resultar
deletéreas. Sin embargo, la probabilidad de detectar variantes raras missense en un gen también
depende de su tamafio, dado que a mayor nimero de bases nucleotidicas de un fragmento mayor
es la probabilidad de que se produzca una mutaciéon de manera aleatoria. Por lo tanto, ademas
del parametro de tolerancia mutacional, también es importante estimar la probabilidad de
deteccion de variantes raras en el gen utilizando muestras control. Para ello, utilizando las
mismas muestras que para el calculo del z-score, calculamos la probabilidad de detectar una
(en el caso de genes con herencia dominante o ligados al cromosoma X) o dos (en el caso de
genes con herencia recesiva) variantes raras en cada gen segun una distribucion de Poisson de
parametro A igual a la frecuencia de una/dos variantes raras (<0.5%) en dicho gen. Asi, vemos
que, en genes bien conservados, la probabilidad de contener variantes raras puede encontrarse
en el mismo rango que en genes poco conservados debido al gran tamafio de dichos genes. Por
lo tanto, es fundamental tener en cuenta estos dos parametros a la hora de priorizar variantes.
La conservacion especifica del nucledtido donde se produce el cambio también es de vital
importancia, dado que, si una variante missense con un alto impacto funcional teodrico se
encuentra situada en una region muy poco conservada dentro del gen, es muy posible que dicha
variante no sea patogénica. Hay programas especificos para determinar la conservacion de un
nucledtido a lo largo de la evolucion (GERP, SIFT...). Otro aspecto crucial es tener en cuenta
la arquitectura mutacional del gen en el que se encuentran las variantes. Para algunos genes la
presencia de incluso varias variantes missense no supone un problema, ya que solamente las
variantes de truncamiento pueden afectar a la funcionalidad del mismo, como por ejemplo en
el caso del gen TTN o de SYNE!. En otros casos, sin embargo, las variantes de truncamiento
son menos deletéreas que las missense; por ejemplo, en el gen KCNQ?2 las variantes de
truncamiento dan lugar a fenotipos mucho menos severos que las variantes missense. Existen
genes (como SETPBI o LMNA) en los que la posicion relativa de la variante dentro del gen, asi
como el tipo de variante (truncamiento vs missense), pueden dar lugar a fenotipos diferentes.
Una vez evaluadas todas estas caracteristicas, y priorizadas las variantes mas
probablemente relacionadas con el fenotipo del paciente, el ultimo paso en el estudio de
enfermedades de herencia dominante o ligada al X es determinar si las variantes son de novo.
Dado que estas variantes no han estado sujetas a seleccion negativa, son las mas probablemente
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patogénicas. Por supuesto, en el caso de enfermedades recesivas es imprescindible si
encontramos dos variantes determinar que estan en cromosomas opuestos. Por ello, el estudio
familiar de las variantes priorizadas en los pacientes es esencial para una correcta interpretacion
de los resultados de un analisis NGS.

Los CNVs son variantes que han sido implicadas en multitud de EERR y en las
enfermedades del neurodesarrollo en particular (epilepsia, autismo, esquizofrenia, discapacidad
intelectual, ...). Sin embargo, este tipo de variantes han sido (y contintan siendo) infra-
detectadas, especialmente las de menor tamafio, debido a que en el pasado la secuenciaciéon
clasica era insensible a ellas y las tecnologias utilizadas para su deteccion a gran escala (la
hibridacion genémica comparativa o CGH array, y los arrays de SNPs) nicamente permitian
identificar CNVs de un tamafio superior a 30kb. Asi, los CNVs de entre 1-30kb, que parecen
estar asociados a numerosas patologias y enfermedades, han sido infra-detectados de forma
sistematica a menos que se buscasen especificamente en un gen concreto con metodologias
como el MLPA o PCR en tiempo real.

La aparicion de la NGS trajo consigo la capacidad de detectar CNVs de menor tamaiio,
pero no existian herramientas bioinformaticas adecuadas para su deteccion, y su uso requeria
de expertos en bioinformatica que no estan presentes en muchos centros de diagnostico
molecular.

Los métodos para la deteccion de CNVs a partir de datos NGS varian seglin se estén
analizando datos de secuenciacion dirigida o del genoma completo. Mientras para la deteccion
de CNVs en WGS existen multiples herramientas, el nimero de ellas desarrolladas para
secuenciacion dirigida es mucho menor (aunque ha aumentado considerablemente en los
ultimos afios). La mayor parte de estas herramientas se basan en la comparacion de los patrones
de profundidad de cobertura entre la muestra a estudiar y un conjunto de muestras control. La
principal diferencia entre los distintos métodos radica en la modelizacion estadistica en la que
se basan (modelos ocultos de Markov, de Poisson, binomial negativa, etc.), y en el proceso de
filtrado que aplican para reducir el nimero de falsos positivos. Cuando nos planteamos elegir
una de estas herramientas para la gestion de nuestros datos nos encontramos con que el mayor
handicap para poder evaluar dichas herramientas era conseguir el suficiente nimero de muestras
para utilizar como controles positivos de CNVs. Por ello, nos planteamos crear una amplia base
de datos de muestras generadas artificialmente con CNVs de diferente tamaiio y en diferentes
posiciones. A la hora de elegir los programas para la simulacién de datos artificiales, tuvimos
en cuenta varias cosas. En primer lugar, la mayor parte de las herramientas de simulacion
existentes fueron creadas para imitar datos de WGS, y no son validas para generar datos
artificiales que simulen datos de secuenciacion dirigida. Otro aspecto importante es que, en
general, estas herramientas se dividen entre las que generan lecturas artificiales y las que
permiten introducir variantes en dichas lecturas. Ademas, como los principales problemas
asociados a la deteccion de estas variantes son los sesgos generados por el contenido GC, la
presencia de secuencias repetitivas, el tipo de secuenciador utilizado, etc., es importante elegir
un simulador de datos NGS que pueda reproducir esta variabilidad. Teniendo en cuenta estas
limitaciones, concluimos que la aproximacion dptima era utilizar Wessim (S. Kim, Jeong, and
Bafna 2013) para la generacion de lecturas simuladas que imiten las generadas en secuenciacion
dirigida, y RSVSim (Bartenhagen and Dugas 2013) para la introduccién de CNVs en dichas
lecturas. Con la combinacién de ambas herramientas generamos 320 muestras simuladas con
CNVs introducidos artificialmente (ademas de 20 muestras sin CNVs para ser utilizadas como
controles negativos), a dos profundidades medias de cobertura diferentes (50X y 300X).
Introdujimos duplicaciones y deleciones (tanto en heterocigosis como en homocigosis) de
diferentes tamafios y en diferentes combinaciones. Con esta amplia base de datos NGS generada
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artificialmente, comparamos el rendimiento de 12 programas desarrollados para trabajar con
datos de secuenciacion dirigida: ExomeCNV (Sathirapongsasuti et al. 2011), ExomeCopy
(Love etal. 2011), CONTRA (J. Li et al. 2012), ExomeDepth (Plagnol et al. 2012), CONIFER
(Krumm et al. 2012), CANOES (Backenroth et al. 2014), CODEX (Jiang et al. 2015),
CLAMMS (Packer et al. 2016), CONVaDING (Johansson et al. 2016), DECoN (Fowler et al.
2016), CNVkit (Talevich et al. 2016), y SeqCNV (Chen et al. 2017). De los resultados
obtenidos, sacamos las siguientes conclusiones: la primera fue que todas las herramientas
mostraban un mejor rendimiento con mayores profundidades de cobertura media, lo que era de
esperar, dado que una menor cobertura media implica un mayor niimero de zonas con poca
profundidad de cobertura en las que la pérdida o ganancia de cobertura producida por deleciones
o duplicaciones es similar a la variacion generada por el ruido de fondo. La segunda conclusion
fue que, en general, las deleciones son mas sencillas de detectar que las duplicaciones, lo que
también era de esperar de forma intuitiva, dado que la diferencia de coberturas es mas sutil en
las duplicaciones que en las deleciones. Otra conclusion fue que los CNVs que contienen un
mayor nimero de exones son, en general, mas faciles de detectar que los de tamafio mas
reducido. Esto también era esperable, dado que cuanto mayor sea un CNV mas dificil es que la
diferencia en la profundidad de cobertura se pueda confundir con ruido de fondo. Encontramos
que las herramientas que mejores resultados obtuvieron fueron DECoN, ExomeDepth,
ExomeCNV, CANOES y CoNVaDING. Sin embargo, dado que ninguna de ellas consiguié un
100% de sensibilidad, quisimos identificar cudl seria la combinacion optima para conseguir
eliminar los falsos negativos. Nuestra aproximacion fue la de clasificar una region como CNV
si al menos tres herramientas diferentes la categorizaban como tal. Los resultados obtenidos
fueron bastante decepcionantes: para conseguir detectar todos los CNVs de las muestras
simuladas, fue necesario combinar los resultados de al menos 9 herramientas diferentes, lo que
supone un incremento considerable del tiempo y del coste computacional del analisis. Cabe
resaltar que las muestras artificiales no pueden reproducir al 100% la complejidad de las
muestras reales, por lo que estos resultados no son directamente extrapolables al analisis real,
para lo que sirven es para identificar las tendencias generales (qué herramientas detectan mejor
qué tipo de CNV, cudles tienen menor numero de falsos positivos, etc.).

A la vista de las carencias que tenian las herramientas existentes para la deteccion de estas
variantes, decidimos desarrollar un programa de deteccion de CNVs enfocado en analizar datos
de paneles génicos, y que fuese especialmente sensible a los CNVs de menor tamaiio (aquellos
que contengan un unico exén). Para ello, realizamos primero un analisis exhaustivo de las
posibles causas de variabilidad en los patrones de cobertura entre las muestras generadas en los
analisis de secuenciacion dirigida. Los resultados confirmaban algunos de los ya publicados: el
contenido GC, la variabilidad técnica en la preparacion de librerias y la secuenciacion, las
modificaciones en el disefio de paneles génicos, la integridad inicial del ADN etc., son factores
que implican importantes cambios en la homogeneidad del perfil de cobertura entre muestras.
Por lo tanto, a la hora de obtener resultados fiables con los programas basados en la
comparacion de patrones de cobertura, es crucial maximizar la homogeneidad entre las
muestras. Esto se puede conseguir procesando las muestras en paralelo y de la misma forma, y
maximizando la profundidad de cobertura media para aumentar la cobertura de las zonas con
alto contenido GC.

El algoritmo de deteccion que desarrollamos (PattRec) aplica una normalizacion diferente
dependiendo de si se estan analizando exones o genes completos. En el caso de exones, el
método utilizado es el siguiente: para cada nucle6tido, la profundidad de cobertura se divide
por la cobertura maxima del gen que lo contiene. Para evitar seleccionar erroneamente una
duplicacién como valor maximo, desarrollamos una subrutina para cada gen combinando la
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prueba de Chi-cuadrado para la deteccion de valores atipicos y el algoritmo de agrupamiento
de las k-means. Una vez calculado el méaximo, se calcula para cada nucleoétido su log-ratio:

normdocy (test) )

logratio, = log (normdock(cont)

donde: normdocy (test) y normdoc; (cont) representan las coberturas normalizadas del test
y del control (o de la media de los controles en el caso de que haya mas de uno) en el nucleotido
k, respectivamente. Estos log-ratios siguen una distribucion normal N (Uexon, 0¢), donde Ueyon
es la media de todos los log-ratios del exdn, y o;; es la desviacion tipica de todos los log-ratios
del gen. Los CNVs adyacentes del mismo tipo con un p-valor inferior a 0,05 y un porcentaje de
subida/bajada similar se concatenan en una tUnica region. El p-valor resultante es una
modificaciéon del método de Fisher para la combinacién de probabilidades (corregido para
pruebas dependientes, como estd implementado en el paquete de R 'poolR'). Para reducir el
numero de falsos positivos, hacemos la regresion lineal de la cobertura media del test sobre la
cobertura media normalizada del control para exon, y cada p-valor es penalizado en funcién de
su distancia a los valores ajustados. Por tltimo, aplicamos la correccién de Benjamini-Hochberg
o la de Bonferroni en funciéon del numero de resultados obtenidos. En el archivo de salida se
reportan los CNVs que tengan un p-valor <0,05 y un porcentaje de subida/bajada superior al
35% para deleciones y al 30% para duplicaciones (parametros ajustables por el usuario). Para
el analisis de genes completos se aplica el mismo método (a excepcion de la penalizacion
mediante la regresion), utilizando en este caso la siguiente normalizacion: si la muestra es de
sexo femenino, la cobertura de cada nucledtido del gen se divide por la cobertura media global
de la muestra. Si es de sexo masculino, los genes autosémicos se dividen por la cobertura media
global de dichos genes, y los genes del cromosoma X se dividen por la media de dicho
cromosoma.

Una vez optimizado PattRec, comparamos su rendimiento con el de 8 herramientas de
deteccion de CNVs (ExomeDepth, ExomeCopy, ExomeCNV, CONTRA, CODEX, CLAMMS,
SeqCNV y CNVkit), utilizando tanto datos de muestras con CNVs cedidas por otros
laboratorios y secuenciadas de manera Optima (maximizando profundidad de cobertura,
secuenciando al mismo tiempo test y controles, etc.), como datos de muestras de acceso libre
(del Proyecto 1000 Genomas). En el caso de las muestras con CNVs reales secuenciadas en
nuestro laboratorio, las herramientas con mayor sensibilidad fueron PattRec y ExomeCNV,
seguidas de ExomeDepth y CNVKkit, mientras que las muestras con mayor especificidad fueron
PattRec, ExomeDepth y CONTRA, en ese orden. Los resultados obtenidos con las muestras del
Proyecto 1000 Genomas fueron mucho peores (tanto en términos de sensibilidad como de
especificidad), seguramente debido a la poca uniformidad existente entre los patrones de
cobertura de las muestras (la media de correlacion entre las profundidades de cobertura globales
era inferior a 0,5), lo que resalta la importancia de minimizar la variabilidad en los patrones de
cobertura entre la muestra a estudiar y los controles utilizados.

En nuestro primer manuscrito explicamos cémo siguiendo estas pautas, la lista de variantes
raras detectadas puede restringirse de forma mucho mas Optima a las que tienen mads
probabilidades de estar implicado en el fenotipo clinico del paciente, evitando en algunos casos
la necesidad de realizar estudios funcionales que implican mucho tiempo y coste. En nuestro
segundo manuscrito describimos una forma de generar datos NGS artificiales e introducir
CNVs en ellos que permite evaluar el rendimiento de las herramientas existentes para la
deteccion de CNVs. Con ellos comparamos 12 herramientas de deteccion de CNVs, evaluando
los puntos fuertes y débiles de cada una. En el Gltimo manuscrito, presentamos un programa
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para la deteccion de CNVs, disefiado especificamente para trabajar con datos de paneles
génicos, de facil uso para laboratorios sin gran experiencia en bioinformatica y especialmente
sensible a los pequefios CNVs, y hemos comparado su rendimiento con el de otros programas
existentes.

En resumen, con estos tres trabajos hemos pretendido optimizar al maximo el diagnéstico
de las EERR mediante el uso de secuenciacion dirigida. Somos conscientes de que quedan
muchas lagunas que cubrir en el diagndstico de EERR, como la deteccién fiable de
mosaicismos, la deteccion de variantes fuera de regiones codificantes, el andlisis de
enfermedades atendiendo a su posible origen oligogénico, o las variantes de reordenamiento.
Estos problemas seran abordados en el futuro inmediato, mediante la aplicacion de la WGS al
analisis de EERR.
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ABSTRACT

The main goal of this thesis was to evaluate and optimize the bioinformatic analysis of data
generated by next generation sequencing (NGS) technologies to facilitate the diagnosis of rare
diseases (RDs).

RDs (diseases that affect fewer than 1 in 2,000 people) constitute a major problem for
health systems around the world, with a combined prevalence comparable to that of more
common diseases such as diabetes. Indeed, it is estimated that 1 in 7 people will develop a RD
throughout their lives. The very broad phenotypic spectrum of these diseases, together with the
significant overlap in clinical presentations (e.g., diseases with neurological involvement) make
diagnosis especially complex and time-consuming. The inability to provide patients with a
timely genetic diagnosis results in protracted suffering for them and their families, as well as
overload of health systems. Before the emergence of NGS technologies genetic analysis was
considered the final step in the diagnostic process in RD patients. During this process, which
usually lasted years, patients would undergo multiple tests (functional, biochemical, imaging,
anatomic-pathological, etc.). Based on the results obtained and the patient’s clinical signs,
individuals with suspected genetic disorders were referred for analysis of a candidate gene by
classical sequencing. In most cases this approach failed to establish a definitive etiological
diagnosis.

NGS has important implications for the future of RD diagnosis. This tool allows rapid, cost
effective, simultaneous analysis of thousands of genes, or even the entire genome, and has the
potential to make genetic analysis a first-line test in the study of diseases with a suspected
genetic component. However, users of NGS are faced with a new challenge: the huge amount
of data generated poses major difficulties in when filtering and analyzing the results. This
drawback, together with the lack of adequately trained personnel required to address these
complex problems, has led to a bottleneck limiting the clinical application of these new
technologies.

In NGS the genome is randomly fragmented into small pieces that are amplified and
sequenced (read) in parallel by sequencing platforms. This results in millions of reads that must
be subsequently aligned against a reference genome. Alignment programs must be capable of
optimally processing huge amounts of data and addressing two key challenges: (1) possible
differences that arise between the patient’s sequence and the corresponding region in the
reference genome (due to inter-individual variability, the existence of population variants, or
error intrinsic to a given platform); and (2) the presence of repetitive sequences throughout the
genome. These repetitive regions (which account for approximately half of all human DNA)
can lead to ambiguities in the alignment data, hindering clear identification of the origin of the
read. Sequence alignment tools must therefore strike a balance between being sufficiently
permissive to ensure alignment of reads with small variations with respect to the reference
genome, and being strict enough to be able to uniquely assign each read to its original position.

Once reads are aligned, the next step is variant detection, i.e., identification of differences
between the patient’s sequenced genome and the reference genome. Variants can be clustered
into three main types according to their effect on the genome and the manner in which they are
detected: (1) single nucleotide variants (SNVs) and small deletions and insertions (INDELs);
(2) copy number variants (CNVs); and (3) rearrangement variants (inversions, translocations,
and large de novo insertions).



IRTIA ROCA OTERO

Three major NGS-based approaches are currently used: so-called “gene panels”, in which
the coding areas (exons) of a list of genes are sequenced in parallel (usually grouped according
to the phenotype with which they are related); whole-exome sequencing (WES), in which all
known coding regions present in the human genome are sequenced; and whole-genome
sequencing (WGS). WGS enables the most complete analysis, allowing identification of
variants that cannot be detected using the other two approaches (e.g., rearrangement variants
and variants located outside of coding regions) and the results obtained are generally more
homogeneous (read distribution is much more uniform). Nonetheless, the first two techniques,
encompassed under the term “targeted sequencing”, are the most common in clinical practice:
they are less costly than WGS and the data obtained is much more manageable and easier to
interpret. Since the objective of this study was to apply NGS to the diagnosis of RDs, we have
focused on the analysis of data produced by targeted sequencing approaches. The variants
detectable by targeted sequencing are SNVs and INDELs, and CNVs located in coding regions
(those that contain 1 or more exons of a gene or several genes).

SNVs are the result of the substitution of one nucleotide for another. They are therefore the
simplest type of variant to detect, and there are a range of tools available that do so effectively.
By contrast, the detection of INDELSs is more complex: their presence results in an excess or
deficit of nucleotides with respect to the reference sequence, creating added difficulties for
alignment programs. However, for both SNVs and INDELs the greatest challenge is
determining their possible involvement in the patient’s disease. This process is commonly
known as variant prioritization and consists of identifying, from the entire list of variants
detected in the patient’s genome, those most likely implicated in the clinical phenotype under
study. The first step in prioritizing variants is to filter common variants (those with a frequency
>1% in public databases, or even >0.5%): these frequencies are incompatible with the incidence
of RD. The next step is to evaluate the impact according to the type of variant (missense,
nonsense, splicing, frameshift, etc.) and its genomic position. There are numerous
bioinformatics tools that enable in silico evaluation of a variant’s functional impact. While these
are basic steps in the analysis of NGS data, another essential but less commonly performed task
is to prioritize variants according to the tolerance of the gene to missense variants (mutational
tolerance). In our experience over several years of applying NGS to RD diagnosis, some genes
can tolerate one or even several rare missense variants with no pathological consequences,
while in others the presence of a single variant can be catastrophic and give rise to a very severe
clinical phenotype. This implies that the negative purifying selection is much stronger for some
genes than for others. One way of assessing a gene’s sensitivity to variation is to compare the
number of population missense variants for each gene with the sum of all variants (synonymous
+ missense) in that gene. The missense / missense + synonymous ratio provides an indication
of how conserved a gene must be in order to remain functional and the level of negative
selection to which it is subjected. A high ratio implies that the gene is not subjected to a high
level of conservative force, and therefore the amino acid sequence of the encoded protein
remains unchanged. A lower ratio indicates that the gene is subjected to strong forces acting to
conserve its original sequence, and implies that any change can seriously affect the functionality
of the encoded protein. To evaluate mutational tolerance, we applied the method proposed by
Petrovski et al. (Petrovski et al. 2013) to common variants in 1,670 genes implicated in rare
neurological and metabolic diseases in 659 individuals with European ancestry. These data
were extracted from the 1000 Genomes Project. For each gene, we calculated a z-score, defined
as the studentized residual obtained by regression of the total number of common missense
variants (frequency> 0.5%) against the total number of common missense and common
synonymous variants present in each gene. A z-score value close to zero indicates that the gene
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harbors the expected number of missense variants given its mutational rate. Genes with a
negative z-score are those with fewer than expected missense variants. These are highly
conserved genes that are less tolerant of the presence of these variants: evolution eliminates any
variant owing to its effect on the functionality of the encoded protein. Conversely, a positive z-
score indicates a less conserved gene, which is tolerant of missense variations. This parameter
allows identification of genes in which the presence of missense variants is more likely to be
deleterious. However, the probability of detecting rare missense variants in a gene also depends
on its size: the greater the number of nucleotide bases in a fragment, the greater the probability
that a mutation will randomly occur. Therefore, in addition to evaluating mutational tolerance
it is also important to estimate the probability of detecting rare variants in the gene using control
samples. To do this, using the same samples as for z-score calculation, we determined the
probability of detecting 1 (in the case of dominantly inherited or X-linked genes) or 2 (in the
case of recessively inherited genes) rare variants in each gene according to a Poisson
distribution of parameter A equal to the frequency of 1 or 2 rare variants (<0.5%) in that gene.
We found that after accounting for gene size the probability of the presence of a rare variant
can be similar in highly conserved and poorly conserved genes, underscoring the importance of
taking these two parameters into account when prioritizing variants.

Another parameter that must be considered is the specific conservation of the nucleotide in
which a given change occurs. If a missense variant with a theoretically high functional impact
is located in a very poorly conserved region within the gene, it is very possible that it will have
no pathogenic repercussions. Specific programs can evaluate the conservation of a nucleotide
throughout evolution (GERP, SIFT, etc.). Another crucial parameter to consider is the
mutational architecture of the gene in which a variant is located. In some genes (e.g., TTN,
SYNEI) the presence of even several missense variants may have no deleterious effect, and
gene functionality is only affected by truncating variants. In other cases, truncating variants are
less deleterious than missense variants. For example, in KCNQ?2 truncating variants give rise to
much less severe phenotypes than missense variants. In other genes (e.g., SETPB1, LMNA) the
resulting phenotype is determined by both the type of variant (truncating or missense) and its
relative position within the gene.

Once all these characteristics have been evaluated, and the variants most likely to be
implicated in the patient’s phenotype are prioritized, the last stage in the study of dominantly
inherited or X-linked diseases is to determine whether the variants have arisen de novo. Because
de novo variants have not been subjected to negative selection, they are most likely to be
pathogenic. Of course, in the case of recessive diseases if two variants are detected it is essential
to determine whether they are located on opposite chromosomes. A family study of the
prioritized variants is thus essential for correct interpretation of the results of NGS analyses.

CNVs have been implicated in many RDs, and in neurodevelopmental diseases in
particular (epilepsy, autism, schizophrenia, intellectual disability). However, because these
variants cannot be detected using classical sequencing techniques, and because the technologies
used for large-scale detection (comparative genomic hybridization [CGH] and single nucleotide
polymorphism [SNP] arrays) can only identify CNVs >30 kb, these types of variants have been
(and continue to be) under-detected. In particular, CNVs of 1-30 kb, which appear to be
implicated in numerous diseases, have been systematically under-detected unless specifically
searched for in a particular gene using specific methodologies such as multiplex ligation-
dependent probe amplification (MLPA) or real-time polymerase chain reaction (PCR).

While the emergence of NGS has facilitated the detection of smaller CNVs, there remains
a dearth of adequate bioinformatics tools for their detection, and their use requires expertise in
bioinformatics not typically found in molecular diagnostics centers.
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The methods used for CNV detection from NGS data vary depending on whether the data
are derived from targeted sequencing or WGS approaches. While there are multiple tools
available for the detection of CNVs from WGS data, fewer have been designed for use with
targeted sequencing data (although the number of these tools has increased considerably in
recent years). Most of these tools are based on the comparison of depth-of-coverage patterns
between the study sample and a set of control samples. The main difference between the
methods lies in the type of statistical modeling on which they are based (hidden Markov models,
Poisson, negative binomial models, etc.), and the filtering process applied to reduce the number
of false positives. When evaluating the utility of each of these tools for the management of our
data, we found that the most challenging aspect of the evaluation process was obtaining enough
samples to use as positive CNV controls. Therefore, we set about creating a large database of
artificially generated samples containing CNVs of varying sizes and positions. When selecting
programs to generate simulated data we took several factors into account. First, most existing
simulation tools have been developed to mimic WGS data and are not valid for generating
artificial reads that simulate targeted sequencing data. Second, in general these tools can be
divided into those that generate artificial reads and those that allow the introduction of variants
into artificial reads. Third, because one of the key problems associated with the detection of
these variants is the generation of biases caused by GC content, the presence of repetitive
sequences, and the type of platform used, among other factors, it is important to choose an NGS
data simulator that can reproduce this variability. Taking into account these limitations, we
concluded that the optimal approach was to use Wessim (S. Kim, Jeong, and Bafna 2013) to
generate simulated reads that mimic those generated in targeted sequencing, and RSVSim
(Bartenhagen and Dugas 2013) to introduce CNVs into those reads. Using this combination of
tools, we generated 320 simulated samples with artificially introduced CNVs (plus 20 samples
without CNVs that served as negative controls) at two different mean depths of coverage (50X
and 300X). We introduced duplications and deletions (both heterozygous and homozygous) of
different sizes and in different combinations. Using this large, artificially generated NGS
database we compared the performance of 12 programs designed to work with targeted
sequencing data: ExomeCNV (Sathirapongsasuti et al. 2011), ExomeCopy (Love et al. 2011),
CONTRA (J. Li et al. 2012), ExomeDepth (Plagnol et al. 2012), CONIFER (Krumm et al.
2012), CANOES (Backenroth et al. 2014), CODEX (Jiang et al. 2015), CLAMMS (Packer et
al. 2016), CoNVaDING (Johansson et al. 2016), DECoN (Fowler et al. 2016), CNVkit
(Talevich et al. 2016), and SeqCNV (Chen et al. 2017). Based on the results obtained, we can
draw several conclusions. First, all tools performed better with greater mean depth-of-coverage.
This finding was unsurprising: lower mean depth-of-coverage implies a greater number of areas
poorly covered in which the loss or gain of coverage caused by deletions or duplications is
difficult to distinguish from the variation generated by background noise. Second, in general
deletions are easier to detect than duplications. This finding was also expected, since the
difference in coverage is more subtle in the case of duplications than deletions. Third, CNVs
containing greater numbers of exons are, in general, easier to detect than those of smaller size.
This was also expected, given that the larger the CNV the less likely the difference in depth-of-
coverage is confused with background noise. We found that the tools that produced the best
results were DECoN, ExomeDepth, ExomeCNV, CANOES, and CoNVaDING. However,
given that none achieved 100% sensitivity, we sought to identify the optimal combination of
tools to eliminate false negatives. To this end, we classified a region as a CNV if it was
categorized as such by at least three different tools. The results obtained were disappointing: in
order to detect all CN'Vs in the simulated samples it was necessary to combine the results of at
least 9 different tools, which entailed a considerable increase in computational time and cost. It
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should be noted that artificial samples cannot completely reproduce the complexity of real
samples, and therefore these results should not be directly extrapolated to real analyses.
However, they do allow us to identify general trends (e.g., which tools best detect which type
of CNV, which tools produce the fewest false positives, etc).

In view of the deficiencies of existing tools for the detection of these variants, we developed
a CNV detection program for the analysis of gene panel data, with particular sensitivity for
small (single-exon) CNVs. First, we performed an exhaustive analysis of the possible causes of
variability in the coverage patterns between the samples obtained by targeted sequencing
analysis. The factors identified were in good agreement with those previously described in the
literature: GC content, technical variability in the preparation of libraries and sequencing,
modifications in the design of gene panels, and initial integrity of the DNA are all factors that
result in significant changes in the homogeneity of coverage profiles across samples. In order
to obtain reliable results with programs based on the comparison of coverage patterns it is
therefore crucial to maximize homogeneity across samples. This can be achieved by processing
the samples in parallel and in the same conditions, and by maximizing the mean depth-of-
coverage to increase coverage in areas with high GC content.

The detection algorithm we have developed (PattRec) applies a different normalization
algorithm depending on whether exons or whole genes are being analyzed. In the case of exon
analysis, for each nucleotide the depth-of-coverage is divided by the maximum coverage of the
gene in which it is located. To avoid erroneous selection of a duplication as a maximum value,
we developed a subroutine for each gene by combining the Chi-squared test for the detection
of outliers and the k-means clustering algorithm. Once the maximum is calculated, its log-ratio
is calculated for each nucleotide as follows:
normdocy (test) >

logratioy = log <n0rmd0ck (cont)
where normdocy (test) and normdocy (cont) represent the normalized coverage of the test
and control samples (or of the mean of the controls if there are more than one) in nucleotide £,
respectively. These log-ratios follow a normal distribution N (Uexon, O¢), Where Hexon 1S the
mean of all exon log-ratios, and o;; is the standard deviation of all the log-ratios of the gene.
Adjacent CNVs of the same type with a p-value <0.05 and a similar percentage of coverage's
increase/decrease are concatenated in a single region. The resulting p-value is a modification
of Fisher’s method for the combination of probabilities (corrected for non-independent tests, as
implemented in the R ‘poolR’ package). To reduce the number of false positives, we perform
linear regression of the mean coverage of the test against the normalized mean coverage of the
control, and each p-value is penalized based on its distance from the adjusted values. Finally,
we apply a Benjamini-Hochberg or Bonferroni correction depending on the number of results
obtained. The output file reports CNVs with a p-value of <0.05 and a percentage of
increase/decrease >35% for deletions and >30% for duplications (user adjustable parameters).
For the analysis of whole genes, the same method is applied (except for the regression penalty),
in this case using the following normalization: for female samples the coverage of each
nucleotide is divided by the global mean coverage of the sample; for male samples, the coverage
of autosomal genes is divided by the overall mean coverage of the corresponding genes, and
the coverage of X chromosome genes is divided by the mean coverage of the corresponding
chromosome.

Once PattRec was optimized, we compared its performance with that of 8 CNV detection
tools (ExomeDepth, ExomeCopy, ExomeCNV, CONTRA, CODEX, CLAMMS, SeqCNV and
CNVkit), using CNV-containing samples provided by other laboratories and sequenced
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optimally (by maximizing depth-of-coverage and processing samples at the same time, in the
same laboratory, using the same sequencing kit), as well as samples obtained from public
databases (the 1000 Genomes Project). In the analysis of real samples sequenced in our
laboratory the most sensitive tools were PattRec and ExomeCNV, followed by ExomeDepth
and CNVkit, while the most specific tool was PattRec, followed by ExomeDepth and
CONTRA. The results obtained with the 1000 Genome Project samples were much poorer (in
terms of both sensitivity and specificity), probably due to the heterogeneity of coverage patterns
across samples (the mean correlation between overall depths-of-coverage was <0.5),
highlighting the importance of minimizing the variability in coverage patterns between the
study sample and the controls used.

In our first article we explain how, following the aforementioned guidelines, lists of rare
variants detected can be more optimally created to include only those most likely to be involved
in the patient’s clinical phenotype, thereby reducing the need to perform costly and time-
consuming functional studies. Our second article describes a method to generate artificial
targeted NGS data into which CNVs can then be introduced, allowing us to evaluate the
performance of existing CNV detection tools. We used this method to compare 12 CNV
detection tools, evaluating the strengths and weaknesses of each. In our third article we present
a CNV-detection program that is specifically designed to work with gene panel data, can be
easily used in laboratories without the need for extensive bioinformatics experience, and is
especially sensitive to small CNVs, and we compare its performance with that of other existing
programs.

In summary, the goal of each of the three articles presented here is to optimize the diagnosis
of RD through the use of targeted sequencing data. There remain many shortcomings in the
diagnosis of RDs, including the need for reliable methods to detect mosaic variants, variants
located outside coding regions, diseases with a possible oligogenic origin, or rearrangement
variants. These problems will be addressed in the near future with the application of WGS to
the analysis of RDs.
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1. INTRODUCTION

1.1 THESIS LAYOUT

This doctoral thesis is presented as a compendium of three papers published in peer-reviewed
scientific journals (Chapter 3), each with its own abstract, main text, and references. A brief
summary of each is presented below.

The article Prioritization of variants detected by next generation sequencing according
to the mutation tolerance and mutational architecture of the corresponding genes
(https://doi.org/10.3390/ijms19061584), which was published in the International Journal of
Molecular Sciences (2018 JCR Impact Factor, 4.183) is presented in Section 3.1. This paper
discusses several key concepts relating to variant prioritization in the diagnosis of rare diseases.
The first concerns the “mutational tolerance” of genes in which variants are located (i.e., the
susceptibility of a given gene to any missense variation). This depends on the strength of the
purifying selection acting against the variant. The second concept is the “mutational
architecture” of each gene. This is the type and location of previously identified mutations in
the gene and their association with different phenotypes or degrees of severity. The third
concept concerns the type of inheritance (inherited vs. de novo) of the variants detected. Using
real data, we show that genes, as opposed to variants, can be prioritized by calculating a specific
mutational tolerance parameter for a given gene. The influence of mutational architecture on
variant prioritization is also illustrated using five paradigmatic examples. Finally, the
importance of the analysis of variants in the patient's family as an essential step in variant
prioritization is also discussed.

The article Free-access copy-number variant detection tools for targeted next-generation
sequencing data (https://doi.org/10.1016/j.mrrev.2019.02.005), published in Mutation
Research-Reviews in Mutation Research (2018 JCR IF, 6.081), is presented in Section 3.2. This
article describes a method to generate artificial targeted next-generation sequencing (NGS) data
that simulate the data produced by sequencing platforms. Specifically, we focus on tools that
allow us to reproduce the biases and variability in coverage patterns found in real samples.
Furthermore, we review methods for the detection of copy number variants (CNVs) based on
depth-of-coverage described in the current literature, and evaluate their effectiveness using the
simulated data we have generated. We discuss the strengths and weaknesses of these detection
methods when integrated into the daily workflow of a genetic diagnostic laboratory.

The article PattRec: An easy-to-use CNV detection tool optimized for targeted NGS
assays with diagnostic purposes (https://doi.org/10.1016/j.ygeno.2019.07.011), which was
published in Genomics (2018 JCR IF, 3.16) is presented in Section 3.3. This article presents a
new CNV detection tool called PattRec, which is optimized for targeted NGS data and based
on the comparison of coverage patterns between samples. The utility of this tool is evaluated
using real data, including publicly available data (from the 1000 Genomes project) and data
provided by other laboratories, and its performance is compared with that of existing CNV
detection tools. The parameters that influence the reproducibility of coverage patterns between
samples, including GC content, biases caused by differences in sample processing, and the use
of different gene panel designs, are also evaluated.
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1.2 THE DIAGNOSIS OF RARE DISEASES

Rare and ultra-rare diseases are defined as those with incidence rates of less than 1 in 2,000 and
1 in 100,000 people, respectively. Despite their low incidence, the large number of rare diseases
(over 7,000 are described, and this number is continually growing) means that their combined
prevalence is significant. According to EURORDIS (the European Organization of Rare
Diseases) 6—8% of the European population will develop a rare disease throughout their lives.
These prevalence rates are similar to those reported for common diseases such as diabetes and
asthma. Rare diseases therefore constitute a major problem for doctors and have significant
economic implications for health systems worldwide due to the difficulty in establishing a
specific etiological diagnosis. Health services are generally unprepared to deal with diseases
with such low incidences and variable phenotypic expression. Many of the clinical
manifestations of these diseases overlap with those of more common diseases, and symptoms
can appear late, even in adulthood. Approximately half of these diseases appear during
childhood. Early diagnosis is therefore essential. However, months and even years can pass
between the appearance of the first clinical signs and diagnosis. According to the Spanish
Federation of Rare Diseases (FEDER) the mean time required to establish a diagnosis is 5 years
(“Las Enfermedades Raras en cifras” n.d.).

Given their diagnostic complexity, together with the fact that over 80% of rare diseases
have an identified genetic component, these diseases stand to benefit greatly from recent
advances in the field of DNA sequencing. Until just a few years ago genetic analysis was
considered the final stage of the diagnostic process in patients with rare diseases. After a process
that typically lasted years and involved the documentation of clinical manifestations and
successive biochemical, pathological, functional, and imaging tests, patients with suspected
genetic disorders were referred for analysis of a candidate gene by classical sequencing. In most
cases this would produce a negative result, and another candidate gene would be sequenced.
This cycle would continue, increasing the time to diagnosis and in most cases ending without
establishing a definitive diagnosis. The rate of diagnosis using this methodology was very low,
except for certain diseases with well-defined clinical, biochemical, or pathognomonic
characteristics and with low genetic heterogeneity (e.g., phenylketonuria). The emergence of
next generation sequencing technology (NGS) represented a turning point in our understanding
of rare diseases, and in their diagnosis and treatment (Bacchelli and Williams 2016; Danielsson
et al. 2014). The emergence of NGS approximately 15 years ago heralded the potential to
radically change the diagnostic process by providing a fast, powerful, and low-cost alternative
for the simultaneous genetic analysis of many genes early in the diagnostic process. Within a
few weeks, NGS-based tools can close in on one or a small number of candidate genes and can
help establish a rapid diagnosis in a considerable percentage of cases. This new diagnostic
process can dramatically reduce waiting times and shorten the often endless search that many
patients and their families had to endure before the advent of this technology. It is therefore
unsurprising that the world’s best healthcare systems have incorporated these powerful tools
into their routine diagnostic processes.

NGS has also given rise to a new phenomenon in medicine known as reverse phenotyping.
In some cases, the combined use of NGS and segregation analysis can identify a pathogenic
mutation in a gene that is known to cause disease but was previously linked to a different
phenotype. In such cases, retrospective clinical investigation of the patient and family members
may reveal additional, previously unrecognized characteristics. In a review of more than 300
studies in which rare diseases had been investigated using whole-exome sequencing (WES),
Boycott et al. found that approximately 25% of the genetic mutations related to a specific
disorder were associated with a phenotype that was actually observed following clinical
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reevaluation of the patient after a genetic finding (Boycott et al. 2013). The recent literature
includes many examples of reverse phenotyping. For example, Arif and colleagues identified a
variant in OPA3 (implicated in optic atrophy syndrome) in two affected members of a family
in which no ophthalmological studies had previously been conducted, leading clinicians to
reassess the phenotype of the patients and to ultimately establish a correct diagnosis (Arif et al.
2013). Graziano et al. identified a variant in DDC (which causes aromatic amino acid
decarboxylase deficiency [AADC]) in three consanguineous patients with syndromic
intellectual disability, thus expanding the AADC phenotype (Graziano et al. 2015). In their
study, Zhang and coworkers detected two variants in heterozygosis in SPG7 (which is
implicated in hereditary spastic paraparesis) in a patient with slowly progressing and apparently
sporadic ataxia whose symptoms included “emotional disconnection”, thereby adding
neurobehavioral disorders to the phenotype of this disease (L. Zhang et al. 2017). These
findings show that in rare diseases the sequence in which clinical signs appear, as well as their
intensity, vary greatly from one patient to another. This helps explain why it can be so difficult
to establish diagnosis. Just a few years ago, doctors had no choice but to observe and wait for
further clinical signs to appear over time. However, NGS now provides doctors with powerful
molecular tools that can uncover important clues early in the disease process and allow them to
begin investigating manifestations that are not yet fully expressed or have not yet appeared.
Many rare diseases can be caused by mutations in tens or hundreds of different genes. For
example, the Bonne and Rivier team annually updates a list of genes associated with
myopathies, the most recent version of which contains 535 genes (Bonne, Rivier, and Hamroun
2018). Wang and colleagues proposed an exhaustive list of 693 epilepsy-related genes, and
another 284 genes potentially involved in this disease (Wang et al. 2017). The ability to
sequence hundreds or thousands of genes in parallel allows analysis of genes that are implicated
in the disease suspected to underlie the patient's phenotype, as well as genes associated with
other diseases with overlapping phenotypes, without substantially increasing the cost of the test.
This translates into an increase in the rate of diagnosis of diseases in which the complete clinical
picture is difficult to identify or emerges slowly over time. Thanks to NGS, the number of genes
associated with newly identified diseases has grown exponentially in all fields of medicine. The
increase over the last 20 years in the number of phenotype entries in the Online Mendelian
Inheritance in Man (OMIM) database for which the molecular basis of a particular phenotype
is known is shown in Figure 1. This explosion of knowledge is a consequence to the use of
NGS to rapidly sequence any region of the human genome, ranging from several genes to the
entire genome, with a high degree of sensitivity.

Three main NGS-based tests are used in the study of rare diseases. These tests can be
ordered according to cost, ease of analysis, and scope, and include (1) parallel sequencing of
coding sequences (exons) of gene groups in which mutations result in similar or overlapping
phenotypes (gene panels); (2) whole-exome sequencing (WES), in which all known coding
regions of the human genome are sequenced; and (3) whole-genome sequencing (WGS), which
analyzes the entire human genome. In current clinical practice the most commonly used analysis
is targeted sequencing, using either gene panels or WES (Lindy et al. 2018; Likar et al. 2018;
Ortega-Moreno et al. 2017; Savarese et al. 2018). In recent years WES has predominated in
studies of the genetic basis of rare diseases. This type of analysis covers only 1% (~30 Mb) of
the human genome, and its main drawback is its inability to detect certain types of variants,
such as those located in intronic or intergenic regions. Moreover, targeted sequencing offers
much less uniform read distribution as a consequence of the enrichment of the areas to be
studied, resulting in lower coverage in certain areas, especially those with high GC content
(Meienberg et al. 2016). However, this type of analysis is very widely used thanks to the
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following features: compared with WGS, (1) the cost is much lower and (2) the amount of data
generated is much more manageable, reducing both the time required for analysis and the
complexity of the data obtained. Compared with WES, gene panels offer much faster response
times, and fewer incidental findings (variants associated with a greater likelihood of developing
a disease other than that being studied). Unfortunately, gene panels are unable to identify new
disease-causing genes.

Total number of OMIM entries per year
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Figure 1. Total number of OMIM entries per year for the past 20 years. * data collected up to August 31,
2019.

1.3 THE CHALLENGE OF GENOMIC DATA ANALYSIS: BIOINFORMATICS

The application of NGS to the study of diseases of genetic origin represents a tremendous step
forward, but also presents a new challenge: the difficulty in filtering and interpreting the data
produced. While the output of classical sequencing approaches is a single DNA sequence (with
a well-defined genomic position), NGS data consists of millions of “pieces” of DNA sequence,
the original position of which is not easily identifiable because all sequences from all the studied
genes are mixed together. It is therefore necessary to develop specific bioinformatics programs
to order the results obtained from sequencing platforms. The process of detecting variants
(modifications in the nucleotide sequence with respect to the reference genome) is also less
immediate than with classical sequencing. In fact, because NGS can produce errors and false
positives, classical sequencing remains the reference method to confirm the presence of certain
types of variants, especially in areas poorly covered by NGS.

1.3.1 Sequencing and alignment

NGS technologies randomly fragment the genome into small pieces that are amplified by
PCR and subsequently “read” or sequenced in parallel. This sequencing consists of the reading
of a certain number of bases of the fragment (the number of bases read usually ranges from 50
bp to 400 bp or more, depending on the platform used). In single-end sequencing, the fragment
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is read in only one direction, while in paired-end sequencing each fragment is read in both
directions.

Among the most common sequencing methods (Salipante et al. 2014; Liu et al. 2012) are
sequencing by synthesis (used by Illumina) (“Illumina | Sequencing and Array-Based Solutions
for Genetic Research” n.d.), ligation sequencing (Thermofisher SOLiD) (“Life Technologies -
ES” n.d.), semiconductor ion sequencing (Ion Torrent Systems Inc.) (“lon Torrent - ES” n.d.),
and pyrosequencing (created by Roche / 454 Life Sciences) (“Roche Life Science | Welcome”
n.d.), although pyrosequencing has been obsolete since 2013 (“Bio-IT World” n.d.). Each of
these processes produces millions of reads of 50-700 bp, which must then be aligned against
the human reference genome to identify their genomic position. This alignment process is far
from trivial: in addition to the difficulty in working with the massive amounts of data generated
by the platform, each platform has its own intrinsic sequencing errors (error rates vary from
0.1-1%, depending on the platform) (Canzar and Salzberg 2017). In Illumina sequencing, the
most frequent errors are single-nucleotide substitutions, in Ion Torrent and 454 the most
common errors are small deletions, and SOLiD produces A-T biases (Fox and Reid-Bayliss
2014; Goodwin, McPherson, and McCombie 2016). Furthermore, the alignment process can be
further complicated by the presence of variants (common or rare) in the sequenced sample that
may cause reads in a given region to differ from the reference genome. However, the most
challenging aspect of the alignment process is the presence of repetitive sequences in the
reference genome, i.e., pieces of DNA that are repeated (the exact same sequence or small
variations thereof), even hundreds of times, at different locations within the genome. These
sequences account for approximately half of all human DNA (Batzer and Deininger 2002) and
pose a great challenge for aligners, particularly sequences that share a high degree of similarity.
Alignment algorithms seek the best possible match between the reads and the reference genome,
and generally achieve up to 80% unique alignments, since most of the repetitive sequences
present in the genome differ sufficiently from one other so as not to pose a problem. However,
those that share a higher percentage of similarity can result in ambiguities in the alignment data.
Moreover, the potential presence of population variants in these regions further complicates the
process. Aligners must therefore choose whether to discard reads that fall in these repetitive
regions, prioritize better aligned reads, or report all possible alignments (assigning a penalty
according to the number of mismatched bases) (Treangen and Salzberg 2011).

The algorithms used must therefore be strict enough to uniquely assign each read to its
corresponding genomic position (taking into account the presence of repetitive sequences in the
genome), but sufficiently permissive to be able to align reads with discrepancies relative to the
reference genome. The two most used methods for alignment are (1) seed and associative matrix
(seed / hash) methods, which search for matches in sub-sequences (seeds) assuming that at least
one will match perfectly with the reference (hash); and (2) methods based on the Burrows-
Wheeler transformation (Burrows and Wheeler, n.d.), which index the reference genome so that
the search for matches is computationally much less expensive (Flicek and Birney 2009; Heng
Li and Homer 2010). The best known algorithms that use the Burrows-Wheeler transformation
are BWA (H. Li and Durbin 2009) and Bowtie (Langmead et al. 2009). BWA-mem (Li, Heng
2013) applies the seed / hash method to find matches between the seeds and the reference, and
assigns each an alignment “suitability” value using the Smith-Waterman method (Smith and
Waterman 1981). Burrows-Wheeler transformation-based methods are generally faster but less
sensitive than seed / hash methods, and are more suitable for shorter read lengths (<70 bp) than
seed / hash methods (which are recommended for read lengths >70 bp) (“Burrows-Wheeler
Aligner” n.d.).
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1.3.2 Variant detection

Once the millions of reads generated by the platform are aligned, the next step is to detect
the variations in the sample with respect to the reference genome. While most of these variations
are inherited from the parents, they can also occur de novo in the germ cells of the parents or at
some point during embryonic development. Specific detection methodologies are used for
different variant types, each of them has unique features that make them more or less easy to
detect. Furthermore, not all variants are detectable using all types of sequencing.

Variants can be classified into three main groups according to the type of modification they
produce in the genome and how they are detected: single-nucleotide variants and small
insertions/deletions; copy number variations; and genomic rearrangements (Figure 2).

INDELs
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Figure 2. Types of variants according to the modification produced into the genome.

1.3.2.1 Single-nucleotide variants and small insertions/deletions

Single-nucleotide variants (SNVs) are variations in a single nucleotide in the DNA
chain, while small insertions and deletions (INDELSs) are defined as losses or gains of a small
number of nucleotides (<50 bp). These variants are the most common in the genome (99.9% of
all variants are SNVs or INDELSs) (1000 Genomes Project Consortium et al. 2015; Katsonis et
al. 2014). They can be categorized as genic (those that occur within a gene) or non-genic (those
located in intergenic regions). Genic variants can be subgrouped as follows:

1. Coding variants: variants that occur in coding regions of the gene (exons).

a. SNVs: depending on the nucleotide change produced and the position within the amino
acid, these variants can be classified as follows:

32



INTRODUCTION

i. Synonymous: the resulting amino acid remains the same (e.g., the change
TGC—TGT still produces a cysteine).

ii. Missense: the nucleotide change produces a different amino acid (e.g., the
change TGC—TGG produces a tryptophan instead of a cysteine).

iii. Nonsense: the nucleotide change produces a stop codon (e.g., the change
TGC—TGA produces a stop codon instead of a cysteine).

b. INDELSs: these are divided into two subgroups, depending on whether the number of
nucleotides inserted or deleted is a multiple of three:

i. Non-frameshift: if the number of inserted or deleted bases is three or a multiple
of three, one or more new amino acids are generated (or deleted) but the rest of
the sequence is unaffected.

ii. Frameshift: if the number of bases is not a multiple of three, the reading frame
of the gene is altered beginning at the location of the variant. In most cases this
results in the appearance of a premature stop codon in which the mRNA is
subject to a process known as nonsense-mediated mRNA decay (NMD),
resulting in its elimination (Lin et al. 2017). In other cases, a premature stop
codon is not produced and the INDEL causes a change in the amino acid
sequence, resulting in a protein longer than the original encoded protein (the
stop codon emerges downstream of the original codon).

2. Noncoding variants: these occur in introns (intronic variants) or in cis-regulatory regions (5
'UTR and 3' UTR).

3. Splice-site variants: these variants affect the consensus regions necessary for correct splicing
of exons. Different types of consensus sequences are involved in the splicing process. The
most conserved are those found on the border between an exon and an intron (splice acceptor
and/or donor sites), while less conserved ones can be located both in intronic regions (branch
site) or within exons: splicing enhancers (ESE) and splicing silencers (ESS) (Anna and
Monika 2018).

Of these variants, those that typically most affect gene functionality are nonsense, frameshift,
and splice-site variants. These usually result in premature termination of transcription, and are
thus known as truncation variants (Ng et al. 2008). Variants that result in substitution of one
amino acid for another (missense) can be totally harmless (common polymorphisms with no
effect on the protein) or can lead to gain or loss of function of the encoded protein, with potential
pathological repercussions. The latter have low frequencies and are often studied as potential
causative mutations in rare diseases.

Many tools are used to detect SNVs (the most easily detected variant type). Two main
approaches are used, depending on the type of variant sought: (1) those designed to detect
germline variants (i.e., which are inherited from parents or arise de novo in the parents’ germ
cells); and (2) those designed to detect mosaic variants (i.e., which appear at some point during
embryonic development and are therefore not present in all tissues) or somatic variants (which
arise after birth in a specific tissue). To detect germline variants, variant callers usually apply a
Bayesian approach based on the expected number of reads of the variants (50% for
heterozygous variants, 100% for homozygous variants). Thus, all variants with an allelic
frequency outside the ranges permitted by each tool are discarded as false positives. The most
widely used tools that apply this Bayesian approach are SAMtools (Heng Li 2011), FreeBayes
(Garrison and Marth 2012) and GATK (McKenna et al. 2010). Detection of somatic and mosaic
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variants is more complex, as they can have different allelic frequencies. The most common
detection methods are based either on comparison of affected with healthy tissue (the approach
most often used in cancer studies, in which tumor tissue can be compared with blood), or on
the use of a set of samples from control individuals (i.e., healthy individuals) to filter out
common germline variants. The algorithms applied can be Bayesian-based (e.g., SomaticSniper
(Larson et al. 2012) and Strelka (Saunders et al. 2012)), or heuristic (e.g., VarScan2 (Koboldt
et al. 2012)).

The most important factors that can affect SNV detection include intrinsic errors in
sequencing platforms (which can lead to false positives), the type of sample sequenced (e.g.,
formalin-fixed paraffin embedded (FFPE) samples are usually quite degraded, and this
increases the probability of false positives and even false negatives), and, above all, a lack of
sufficient coverage in the region studied (Spencer, Zhang, and Pfeifer 2015).

Detection of INDELSs is challenging for several reasons. First, correct alignment of the
sequence reads to the reference genome is more difficult when there are either more or fewer
nucleotides with respect of the reference sequence. Second, even when the reads are correctly
placed, alignment at the nucleotide level is usually incorrect due to repetitive local structures,
partial overlapping, or insufficient high-quality sequence flanking the INDEL. Third, while
Illumina's short sequence reads have a low overall INDEL error rate, systematic INDEL errors
can occur, particularly in homopolymers (Albers et al. 2011; Montgomery et al. 2013).
Repetitions of all kinds complicate the mapping process, as they introduce ambiguity as regards
the true position of a read, potentially reducing the sensitivity with which we can detect INDELSs
or other mutations. If not analyzed correctly, repetitions can also introduce false positives by
suggesting the presence of artificial INDELs between repetitive elements and decreasing the
specificity of variant calling. In particular, simple tandem repeats (STRs) are especially difficult
genomic sequences to sequence and analyze: they have a sequencing error rate substantially
higher than that of other sequences and are prone to polymerase slippage, which can artificially
extend or contract the length of the repetitive element (Narzisi and Schatz 2015).

1.3.2.2 Copy number variants

In general humans carry two copies of each genomic region (one inherited from each
parent). A CNV is the result of an alteration in this number, caused by losses or gains of genetic
material (resulting in no copies, one copy, or three or more copies). These variants can arise as
a consequence of several different mechanisms, one of which is homologous recombination
during meiosis between repeated sequences of low copy numbers (LCRs), specific to the region.
The type of DNA rearrangement resulting from these events is a function of the orientation of
repeated sequences that serve as substrates for homologous recombination. Recombination
between direct repetitions can lead to elimination and/or duplication of the genetic material
located between the repetitions, while recombination between inverted repetitions results in
inversion of the intermediate genomic sequence (J. R. Lupski 1998). CNVs present in the
human genome cover a greater number of nucleotides and arise de novo more frequently than
SNVs (Stankiewicz and Lupski 2010). They exert a greater influence than SNVs on human
evolution and genetic diversity among individuals, and have been implicated in susceptibility
to several rare diseases, including autism and schizophrenia. Locus-specific mutation rates for
CNVs are in the range 104107 (i.e., 1000~10000 times greater than the corresponding rate for

SNVs) (James R. Lupski 2007).
To date, two main tools have been used to detect CNVs: comparative genomic
hybridization (CGH array) and single-nucleotide polymorphism (SNP) array. These allow
detection of CNVs of a minimum size of 30 kb, which are not detectable by chromosomal
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banding. Because the aforementioned tools cannot detect smaller CNVs (1-30 kb), their rates
are likely underestimated (Redon et al. 2006). Crucially, it is very likely that CNVs within this
size range play key roles in the development of certain rare diseases. For example, Poultney et
al. reported that up to 7% of autism cases harbor exon deletions of 1-30 kb that potentially
contribute to their disease (Poultney et al. 2013). Detection of CNVs by NGS is therefore of
utmost importance, as it is the only methodology capable of detecting small CNVs.
Furthermore, the ability of NGS to detect CNVs means that CNV identification can be
incorporated into routine gene panels and WES analyses, which can increase the diagnostic rate
up to 6% without increasing the cost of the analysis (Pfundt et al. 2017).

The methods applied to detect CNVs differ depending on whether we are working with
WGS or targeted sequencing data. Four main approaches can be distinguished: (1) paired-end
mapping; (2) split read mapping; (3) depth-of-coverage; and (4) de novo local assembly. In
paired-end sequencing the DNA fragments are read at both ends, with a fixed separation
between reads (known as insert size). When these reads fall near the breakpoint (i.e., the
beginning or end) of a deleted area of the genome, the size of the insert is larger than stipulated,
while in cases of duplications both reads have a much smaller distance, and can even overlap.
Methods based on this approach therefore look for reads with an insert size distinct from that
expected for the detection of CNVs (Korbel et al. 2007). Split-read methods also use paired-
end reads, but are based on a different principle: the objective of this approach is to detect
breakpoints by looking for reads with partners that are not mapped, or only partially mapped,
against the reference genome (Z. D. Zhang et al. 2011). Algorithms based on depth-of-coverage
are based on the premise that the number of reads in a genomic region is proportional to the
original number of copies in that region. Therefore, coverage in deleted areas is lower (reduced
by approximately half if one copy of the alleles is missing and near zero when two copies are
missing) than for the rest of the genome, and is higher in duplicate areas (approximately 1.5
times higher if one allele is duplicated). These three methodologies start with the reads already
aligned or mapped against the reference genome. By contrast, in de novo assembly methods
DNA fragments are reconstructed from the reads generated by the platform by assembling the
reads that overlap one another. Subsequently, these assembled fragments are compared with
the reference genome to identify regions with CNVs (Alkan, Coe, and Eichler 2011).

Not all detection methods used in WGS are applicable to targeted sequencing. Because
CNVs usually contain both coding and noncoding regions, breakpoints generally fall outside
the areas sequenced in these analyses, and therefore paired-end, split read, and de novo
assembly methodologies are not valid. In such cases the only appropriate methodologies are
those based on depth-of-coverage. However, unlike WGS the coverage is not uniformly
distributed throughout the sequenced regions. Additional measures are therefore required to
overcome this problem, the most common of which is to compare coverage patterns between
the sample and a set of control samples sequenced under the same conditions.

1.3.2.3 Rearrangement variants

Rearrangement variants are those in which the amount of genetic material remains
constant but is relocated throughout the genome. This category includes inversions
(chromosomal rearrangements in which the orientation of a segment is altered), translocations
(chromosomal segments that move from one genomic position to another, either within the
same chromosome or in another), and large de novo insertions (>50 bp). The later can be
subclassified as follows, depending on the type of sequence inserted: mobile element insertions
(MEISs); nuclear mitochondrial DNA insertions (NUMTSs); viral element insertions (VEIs); and
insertions of unspecified sequence (Kosugi et al. 2019).
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Detection of these variants is based on identification of their breakpoints using techniques
such as paired-end mapping, split-read mapping, and de novo assembly. Most of these variants
are not detectable by targeted sequencing, as the breakpoints tend to lie in noncoding areas of
the genome. Moreover, the rearrangement variants can be present in the form of complex
rearrangements, which are composed of several of these 'canonical' variants, making their
detection and identification even more difficult (Sanchis-Juan et al. 2018).

1.3.3 Variant priorization

Once the variants have been detected, the next step is to identify those most likely related
to the patient's phenotype. Most of the variants detected in the human genome are not directly
implicated in any disease, at least in the context of the study of rare diseases. The vast majority
of variants are common (i.e., are found at high frequencies in the general population): only 1—
4% of genome variants are rare (i.e., have a frequency in the population of less than 0.5%)
(1000 Genomes Project Consortium et al. 2015). This applies not only to single-nucleotide
variants and small insertions and deletions. For example, NEB contains a region of 8 exons
(exons 82-89, 90-97, and 98-105) that is triplicated in the general population (i.e., the normal
copy number of such region is six) (Kiiski et al. 2016). In fact, Conrad and colleagues estimated
that there are 3,797 CNVs with frequencies >5% (size >450 bp) in the European population
(Redon et al. 2006). Therefore, the first step when performing variant analysis is usually to filter
the common variants using multiple existing public databases, such as the 1000 Genomes
Project (“1000 Genomes | A Deep Catalog of Human Genetic Variation” n.d.), the Exome
Aggregation Consortium (“ExAC Browser” n.d.), or the Genome Aggregation Database
(“GnomAD” n.d.).

Even if we focus solely on rare variants, their pathogenicity cannot be ensured, since many
of them may have no impact, or no harmful impact, on gene expression. The results of the
1000G, gnomAD, and ExAC projects provide many examples of these types of scenarios. For
example, of the 60,706 exomes analyzed in EXAC, 54% of the variants detected were singletons
(i.e., variants that appear only once in the entire database) (Lek et al. 2016). The variants with
the greatest functional impact, in addition to CNVs and rearrangement variants, are those that
modify the reading pattern of the gene and/or the amino acids it encodes. However, both
synonymous variants and those located in noncoding areas may be related to the patient's
phenotype. A growing number of studies associate these variants with clinical phenotypes
(Sauna and Kimchi-Sarfaty 2013; Dixit, Kumar, and Mohapatra 2019; J. E. Miller et al. 2018;
Sharma et al. 2019). While synonymous variants do not result in amino acid modifications, they
are found in the coding areas of the gene and can lead to the appearance or disappearance of
consensus sequences involved in mRNA splicing, the stability of which is consequently altered
(Sauna and Kimchi-Sarfaty 2011). The same applies to noncoding gene variants: until recently
intergenic DNA was known as junk DNA, but we now know that it contains sequences essential
for the differential regulation of space-time gene expression (Barrett, Fletcher, and Wilton
2012).

The chromosomal position of a variant within the gene is also important. For example, 25%
of cases of idiopathic dilated cardiomyopathy are caused by truncation variants in 77N, and yet
truncation variants in this gene have also been found in about 3% of healthy individuals. The
difference between deleterious and nondeleterious truncation variants is their location: the
former are mainly located in the A-band of the gene, while the latter are located outside of that
band (Ehsan et al. 2017). There are a variety of tools used to predict the impact of variants on
gene expression, according to their position and the type of change they cause. Most of these
tools are designed for missense variants (CONDEL (Gonzalez-Pérez and Lopez-Bigas 2011),
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MutationTaster2 (Schwarz et al. 2014), PoliPhen-2 (Adzhubei, Jordan, and Sunyaev 2013),
FATHMM (Shihab et al. 2013)); splice-site variants (GeneSplicing (Pertea, Lin, and Salzberg
2001), Human Splicing Finder (Desmet et al. 2009)), and INDELs (PROVEAN (Choi and Chan
2015)).

There is general consensus regarding the classification of variants according to their
potential pathogenicity. The American College of Medical Genetics (ACMG) classifies variants
into five groups according to their relationship with a specific disease: pathogenic, likely
pathogenic, benign, likely benign, and of uncertain significance (Richards et al. 2015). In
general, in order to classify a variant as pathogenic it must be a protein-truncating variant
(nonsense, frameshift, CNV, or other type of splicing variant) or a missense variant that
produces an amino acid change previously associated with the disease, with a very low
frequency in databases, not inherited from healthy parents, and located in a gene for which a
relationship with the disease is well documented. Although there are some specific guidelines
for CNV classification (Kearney et al. 2011), the majority of existing guides for variant
classification are oriented towards SNVs and INDELSs, as these are the most widely studied
variants.

On the other hand, several studies have linked the presence of CNVs with changes in the
expression of genes located within or near the CNV (Henrichsen, Chaignat, and Reymond
2009). CNVs are implicated in numerous rare diseases, including autism spectrum disorder
(Kushima et al. 2018; Yingjun et al. 2017; Pinto et al. 2014), schizophrenia (Marshall et al.
2017; Sriretnakumar et al. 2019; Avramopoulos 2018), intellectual disability (Cooper et al.
2011; Gilissen et al. 2014), and several neurodevelopment diseases (Thygesen et al. 2018;
Hehir-Kwa et al. 2011; Takumi and Tamada 2018). Pfundt and collaborators performed CNV
analyses on 2,603 samples from patients with various diseases of genetic origin
(neurodevelopmental, movement, metabolic disorders, etc.), and detected clinically relevant
CNVs in 123 samples (Pfundt et al. 2017). An estimated 15% to 20% of cases of
neurodevelopmental disorders, including intellectual disability and autism spectrum disorder,
can be attributed to CNVs (D. T. Miller et al. 2010). In fact, analysis of CNVs by chromosomal
microarray (MCA) is considered a first-line test for the clinical diagnosis of patients with
intellectual disability of unknown cause (Moeschler, Shevell, and Genetics 2014). However, a
growing number of studies indicate that WES and WGS are of greater diagnostic utility than
CMA: a meta-analysis conducted by Clark et al. reported that the probability of establishing
diagnosis using WES or WGS is up to 8.3 times higher than that with CMA, suggesting that
these approaches should be considered first-line tests for the diagnosis of diseases of genetic
origin (Clark et al. 2018). It should be noted that the presence of CNVs is not always associated
with disease. In the genomes of healthy individuals Zarrei et al. identified 107 coding genes
from which at least 85% of exons were deleted in homozygosis, suggesting that removal of
these genes has no phenotypic consequences (Zarrei et al. 2015). This highlights another
problem encountered in such analyses: although a variant may have a significant impact on the
gene, not all genes are equally sensitive to variation. Certain genes can tolerate large variations
in their structure with no pathological consequences, while in others much smaller changes can
lead to disease.

So far, we have focused primarily on Mendelian diseases, in which variants in a single gene
give rise to disease (also known as monogenic diseases). However, not all diseases are caused
by variations in a single gene: some arise from combinations of variants in different genes
(oligogenic diseases). The simplest forms of oligogenic disease are digenic diseases, of which
several types are described: classic, pseudo-digenic, or combinations of two different
Mendelian diseases (Deltas 2018). Classic digenic diseases are those in which the disease only
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manifests when the patient carries two variants in two distinct genes. Tang and colleagues
described one such scenario in their study of a family of Chinese origin, two members of which
had early-onset Parkinson's disease. The affected family members each carried two variants,
one in DJ-1 (also known as PARK?7) and another in PINK1, while other family members who
carried only one of the variants were unaffected (Tang et al. 2006). Pseudo-digenic diseases are
those in which a variant in one gene produces the disease, while a variant in another gene
modifies the phenotype. For example, in cystic fibrosis patients who are homozygous for the
Phe508del variant in CFTR, the presence of a variant in TGF 1 modifies the disease phenotype,
increasing the risk of developing severe lung disease (Drumm et al. 2005). Finally,
combinations of two different Mendelian diseases caused by variants in distinct genes can also
be considered digenic. In a retrospective study of 7,374 patients, Posey and coworkers reported
97 cases of combinations of two distinct diseases caused by variants in different genes. These
diseases can have very different phenotypes. One such example concerned a patient carrying
variants in ARIDIB and G6PD, which cause two diseases with very different clinical
characteristics: Coffin-Siris syndrome 1 and hemolytic anemia, respectively. Alternatively, the
phenotypes of the two diseases can overlap, as observed in another case in which a patient
carried variants in KCNQ2 and SCN84, which respectively gave rise to two types of epileptic
encephalopathy: epileptic encephalopathy, early infantile, 7; and epileptic encephalopathy,
early infantile, 13 (Posey et al. 2017).

Kim and collaborators have proposed a method to detect diseases with oligogenic
inheritance (A. Kim et al. 2019), and have used this approach to identify genes involved in
holoprosencephaly, demonstrating that the appearance of this disease is a consequence of the
combined effects of multiple variants. First, the authors did not prioritize variants according to
existing guidelines for the identification of pathogenic or likely pathogenic variants, as these
are oriented towards Mendelian diseases and generally rule out all variants that cannot alone
give rise to the disease. Secondly, they focused their analysis on all genes potentially (even
remotely) related to a phenotype similar to that of disease under study, or those with expression
patterns that resemble that of the disease of interest. Finally, using a large cohort of both patients
and healthy controls, they looked for sets of two or more rare variants in the prioritized genes
in patients (either variants inherited from each parent, or de novo variants) that did not appear
in the same combination in the controls.
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2. OBJECTIVES

2.1 MAIN OBJECTIVE

The main goal of this thesis is the development of specific tools for the analysis of data produced
by targeted NGS technologies. These tools would facilitate genetic diagnosis of rare diseases,
optimize the detection and prioritization of SNVs, INDELs, and CNVs, and minimize the
occurrence of false negatives and false positives.

2.2 SPECIFIC OBJECTIVES
To achieve this main objective, the following specific goals were defined:

a. Identify genes with the highest and lowest tolerance to SNVs and INDELs, and implement
a methodology for the prioritization of these variants based on their potential pathogenicity

3.1).

b. Evaluate currently existing algorithms and tools for CNV detection that are applicable to
targeted NGS data (3.2).

c. Identify the possible causes of variability in the coverage patterns between the samples
obtained by targeted sequencing analysis, and develop of a method for CNV detection based
on the comparison of such coverage patterns between samples (3.3).
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3.1 ARTICLE1

Iria Roca, Ana Fernandez-Marmiesse, Sofia Gouveia, Marta Segovia, and Maria L. Couce.
2018. "Prioritization of Variants Detected by Next Generation Sequencing According to the
Mutation Tolerance and Mutational Architecture of the Corresponding Genes". International
Journal of Molecular Sciences 19(6): E1584.

DOTI: http://dx.doi.org/10.3390/ijms19061584



IRTIA ROCA OTERO

3.2 ARTICLE 2

Iria Roca, Lorena Gonzalez-Castro, Helena Fernandez, M* Luz Couce, and Ana Fernandez-
Marmiesse. 2019. "Free-access copy-number variant detection tools for targeted next-
generation sequencing data". Mutation Research-Reviews in Mutation Research 779: 114-125.
DOI: https://doi.org/10.1016/j.mrrev.2019.02.005

68



RESULTS

3.3 ARTICLE 3

Iria Roca, Lorena Gonzalez-Castro, Joan Maynou, Lourdes Palacios, Helena Fernandez, M?*
Luz Couce, and Ana Fernandez-Marmiesse. 2019. "PattRec: An easy-to-use CNV detection
tool optimized for targeted NGS assays with diagnostic purposes". Genomics.

DOTI: https://doi.org/10.1016/j.ygeno0.2019.07.011

81






4. GENERAL DISCUSSION

The analysis of NGS output data is not trivial: for each type of variant there are different
limitations in terms of detection and prioritization. The easiest variants to identify are SNVs
and INDELSs, but prioritization of these variants remains problematic. To determine the possible
pathogenicity of the variants detected, it is essential to evaluate their potential functional
impact, taking into account the type of variant in question and their genomic position. This type
of evaluation is common practice in the analysis of SNVs and INDELSs, as evidenced by the
large number of available tools for their evaluation in silico (CONDEL, Human Splicing Finder,
MutationTaster2, PoliPhen-2, FATHMM, GeneSplicer, PROVEAN, etc.). Evaluation of the
mutational tolerance of each gene is equally important but much less common. Not all genes
are equally tolerant. In some the presence of a variant can be the sole cause of a disease, while
in others the presence of one or more variants has no pathological consequences. In our article
Prioritization of Variants Detected by Next Generation Sequencing According to the Mutation
Tolerance and Mutational Architecture of the Corresponding Genes (3.1), we presented an
approach for the evaluation of mutational tolerance based on the ratio of missense variants to
the total number of missense and synonymous variants detected in each gene. In principle,
missense variants have a greater impact on the gene than synonymous variants. Therefore, in
genes with lower mutational tolerance the proportion of the former is expected to be smaller,
since negative selection acts on these genes to restrict the perpetuation of variants with a greater
functional impact. Similarly, genes with greater mutational tolerance will contain a larger
proportion of missense than synonymous variants, since the presence of the former does not
affect gene functionality and therefore negative selection does not occur. While knowledge of
mutational tolerance is highly valuable for variant prioritization, it should be borne in mind that
gene size affects the probability of randomly detecting a rare variant. Thus, although two genes
may be equally tolerant of mutations, there will be a greater probability of encountering rare
missense variants in the larger gene. Therefore, to analyze variants in each gene we must take
into account the probability of detecting rare variants in the gene in question (based on their
frequency in a control population) as well as the gene’s tolerance to the presence of missense
variants. Conservation of the nucleotide in which the variant is found is, in turn, of vital
importance in determining its possible pathogenicity. The presence of missense variants located
in very poorly conserved regions of genes should be interpreted with caution, as it is possible
that their presence has no pathogenic consequences. Conversely, variants that theoretically have
no deleterious effects (e.g., synonymous variants) but are located in highly conserved regions
should be studied in greater detail, as they may impair correct expression of the gene. Another
important factor when prioritizing the variants detected is the mutational architecture of the
gene in which they are found. Not all genes are equally sensitive to all types of mutations.
Certain genes (e.g., TTN, SYNEI) can tolerate multiple rare missense variants, but undergo
alterations in functionality in the presence of only one or two truncation (frameshift, nonsense)
variants. In other genes (e.g., KCNQ?2) truncation variants are not especially deleterious, yet the
presence of a theoretically less harmful variant (e.g., a missense variant) can give rise to a very
severe phenotype. In some genes (e.g., TCF4) different types of variants can produce different
phenotypes, ranging from mild to severe. Therefore, in-depth knowledge of the genes being
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analyzed, their tolerance to different types of variants, and the relationship between the genomic
position of variants and the different resulting phenotypes is crucial when prioritizing and
interpreting the results obtained from NGS assays. After prioritization of the variants that are
most likely implicated in the patient’s phenotype, it is necessary to determine whether they are
inherited or have arisen de novo (in the case of dominant or X-linked inheritance genes). De
novo variants have not been subject to negative selection, and are the most likely to contribute
to the patient’s phenotype, particularly dominantly inherited genes. Therefore, a family study
of the prioritized variants (analysis of the parents and, where possible, the siblings of the index
case) is essential for correct interpretation of the results obtained. In cases in which there is a
previous family medical history it is essential to evaluate cosegregation of the variant with the
phenotype under study.

Targeted NGS enables the detection of CNVs, in addition to SNVs and INDELs. While
SNVs and INDELs are relatively easy to detect (especially SNVs), CNV detection is more
complex. Multiple tools have been developed to detect this type of variant. Most are WGS-
based. Those specially designed to work with targeted NGS data typically compare coverage
patterns between samples to detect areas in which genetic material has been lost or gained. The
main difference between the various methods lies in the methodology used to make these
comparisons, and the process used to filter the results and rule out false positives. Consequently,
not all CNV detection tools are equally sensitive for all variant types. Some detect deletions
better than duplications, while others are more sensitive to larger variants (in terms of the
number of exons covered and the number of base pairs). It is essential to identify the strengths
and weaknesses of each tool in order to select the most appropriate tool for the specific analysis
to be performed. Obtaining a sufficient number of samples with clearly identified CNVs in
order to test a given tool poses a significant challenge. In our article Free-access copy-number
variant detection tools for targeted next-generation sequencing data (3.2) we presented a
methodology for the generation of simulated CNV-containing samples, which we then used to
evaluate the most commonly used CNV detection tools. A notable problem that arises when
attempting to detect variants by comparing coverage patterns is the presence of biases in
coverage patterns (e.g., biases generated by GC content, the presence of repetitive sequences,
or the type of sequencer used). It is therefore important to choose a simulator that can reproduce
this variability. However, it is impossible to fully reproduce the complexity of real samples,
and therefore results obtained with artificial samples should be considered a best-case scenario
(CNV detection methods will generally produce poorer results with real samples than with
simulated samples). This does not mean that the results obtained with artificial samples cannot
be extrapolated. These data can be used to deduce general trends. If a tool detects deletions
much better than duplications, or has problems detecting small CNVs, the same effect can be
expected with real samples. What cannot be assumed is that the sensitivity and specificity are
comparable in both scenarios. Based on the results obtained with the simulated samples that we
generated, we can reach several global conclusions. First, the best results are obtained with
greater mean depth-of-coverage. This is unsurprising: the lower the coverage the greater the
likelihood that the area containing the CNV is poorly covered (increasing the likelihood of false
negatives). Poorly covered areas can also produce false positives. Second, in general CNVs that
are larger (in terms of exon number) are easier to detect than smaller CNVs. This may be due
to the fact that the lower the number of exons contained in a CNV, the greater the likelihood
that they will not be detected due to background noise and high variability, among other factors.
Another potential explanation is that most tools prioritize larger CNVs to reduce the likelihood
of false positives, most of which are single-exon variants. Another conclusion we can draw
from these comparisons is that most tools detect deletions better than duplications. Because
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CNV detection is based on differences in coverage it is unsurprising that duplications (which
generally consist of 3 instead of 2 copies, resulting in a ratio between the duplicated area and
the normal of around 1.5) are more difficult to detect than deletions (in which there is 1 copy
instead of 2, and thus the ratio between deleted and normal zone is 0.5), as the differences are
more subtle. Finally, the presence of more than one CNV in the same sample (duplications
and/or deletions in different genes) has varying effects depending on the tool used: in general
“compound” CNVs (multiple CNVs in the same sample) are easier (or equally easy) to detect
than “simple” CNVs (one CNV per sample). It should be noted that combinations of several
factors can bias the results obtained. Both compound and simple CNVs can include small-and
large-sized CNVs, duplications, and deletions, and therefore the results obtained may be
influenced by parameters other than CNV type (compound or simple). Because none of the
tools analyzed can detect all the variants in the simulated samples, and in order to increase
detection sensitivity, we combined several tools in an attempt to reduce the number of false
negatives obtained. To this end, we considered a region to be positive if it was detected by at
least three distinct tools. The results obtained were not very encouraging: we found that to
achieve maximum sensitivity it was necessary to combine at least 9 different tools, significantly
increasing the computational cost of the analysis.

To address the multiple shortcomings of existing tools for CNV detection (difficulty
detecting small CNVs and duplications, high numbers of false positives, etc.), we have
developed a program for CNV detection based on the comparison of coverage patterns between
samples. This tool is described in the article PattRec: An easy-to-use CNV detection tool
optimized for targeted NGS assays with diagnostic purposes (3.3). PattRec is specifically
designed to analyze data obtained from gene panel sequencing, and its main objective is to
detect CN'Vs that have either arisen de novo or have low frequencies in the population. PattRec
offers several advantages over existing tools: it is not necessary to separate samples from female
and male patients when analyzing genes located on the X chromosome (due to the normalization
process used); users can opt to exclude from the analysis regions containing known
polymorphic CNVs; the program generates a database in which the results of the different
analyses performed are stored (allowing rapid identification of regions that contain large
numbers of positives and are therefore likely regions with high variability, as well as
polymorphic CNVs in the population); the false positive rate is reduced by performing the same
analysis on several copies of the test and control samples at slightly less than mean coverage
(although this considerably increases the computational time); the default output file is in xlsx
format with a color code to facilitate interpretation (although users can choose plain text files
if they wish to use the data as input for another program); and the program features an intuitive,
user-friendly graphical user interface (GUI), which allows pre-analysis adjustment of various
parameters (e.g., minimum coverage required for control samples in each region, percentage
required to define a duplication or a deletion). To compare the performance of PattRec with
existing tools we analyzed samples from public repositories (the 1000 Genomes project) as well
as those provided by other laboratories in which CNVs had been identified using other methods.
PattRec showed slightly greater sensitivity than other tools, and more effectively detected small
(single-exon) CNVs. In analyses run using publicly available samples, all the tools performed
poorly. This is because the “internal” samples and their respective controls were sequenced in
the best possible conditions to reduce inter-sample variability (i.e., were processed at the same
time, in the same laboratory, using the same sequencing kit), which is not possible in the case
of samples from public repositories. This highlights the importance of minimizing factors that
can generate bias and variability between samples, since all CNV detection programs based on
the comparison of coverage patterns require a high degree of similarity between samples in
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order to produce optimal results. Although the results obtained in analyses of samples
sequenced under optimal conditions are very promising, the results should always be
corroborated using orthogonal methods (e.g., qPCR), since false positives due to intrinsic
sequencing-related issues cannot be ruled out, especially in cases of single-exon CNVs. The
greatest limitation of the PattRec method is that it was not created for use with large gene panels,
and therefore it cannot be recommended for use with WES data. Because the main objective
when creating the program was to achieve the highest sensitivity possible (especially for small
CNVs, even single-exon variants), its application to WES data results in many false positives,
since WES does not offer the same degree of stability (in terms of coverage patterns) as gene
panels.

In summary, the goal of each of the three articles presented here was to optimize the
diagnosis of rare diseases through the use of targeted sequencing data, providing a global
methodology for the analysis of these kind of data.
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5. CONCLUSIONS AND FUTURE RESEARCH

5.1 CONCLUSIONS

This thesis presents a global methodology for the analysis of NGS data to facilitate diagnosis
of rare diseases. Given that gene panels are the most commonly used analytical approach for
diagnostic studies of rare diseases, the main objective was to optimize the identification and
filtering of all variants that can be identified using this type of sequencing. Because there are
already a variety of tools designed for the detection of SNVs and INDELSs that produce good
results, we chose to work with existing tools and focused on optimizing the filtering process, in
terms of both the variant and the gene in which it is located. Currently available tools for the
detection of the other variant type found in these analyses, CNVs, are less well optimized for
targeted NGS data. These tools are relatively new and, as discussed above, have various
shortcomings that make them inappropriate for use in clinical diagnosis. To address this need,
we have created a specific tool for the detection of CNVs in the context of gene panel analysis.
This tool offers greater sensitivity, especially for the detection of small CNVs, which are more
likely implicated in the development of rare diseases.

5.2 FUTURE RESEARCH
The main drawback of the methodology presented here is the applicability to clinical practice
of the results obtained. Because gene panels are the most commonly used analytical tool for the
study of rare diseases, the results presented here focus on variants that can be detected using
gene panels. However, WES is increasingly used in routine practice in centers that study these
types of diseases, and although far from widespread a growing number of centers perform
WGS, which allows the identification of variants not detectable using other types of analysis.
The following are the next steps required to optimize the genetic diagnosis of rare diseases:

1. Identification of non-Mendelian (oligogenic) inheritance

Although this is theoretically possible using gene panel analysis, we believe that for correct
identification of these genes it is essential to work with data produced by WES (or ideally
WGS). This would enable analysis of the possible roles in rare diseases of all genes, not just
those previously linked to a disease in the literature. Because very large sample sizes are
required to perform this type of study the diseases that can be studied are limited. The first
objective is the study of epilepsy, for which large sample sizes can be attained relatively easily.
Moreover, evidence suggests a digenic or oligogenic origin for many forms of epilepsy
(Hempelmann et al. 2006; Marini et al. 2004).

2. Role of mosaicism in the development of rare diseases

The studies presented here do not address the analysis of mosaic variants, owing to the
difficulty detecting and subsequently confirming the presence of these variants. The presence
of mosaic variants has been linked to several rare diseases in recent studies. Stosser et al.
detected mosaic pathogenic variants with a frequency of 3.5% in 9 epilepsy-associated genes
(Stosser et al. 2018). In their study, Cao and coworkers estimated that 1.5% of diagnoses
established for approximately 12,000 samples could be attributed to mosaic variants (Cao et al.
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2019). Confirmation of the presence of these variants requires analysis of affected tissue.
Therefore, one of our future objectives is to optimize detection of this type of variant and to
perform the necessary analyses only in cases of patients in which the presence of mosaic
variants is strongly suspected.

3. Rearrangement variants and variants located in noncoding areas of the genome.

Many variants are only detectable by WGS analysis (noncoding regulatory variants and
rearrangement variants). The two main problems with the application of WGS to clinical
practice are its cost and difficulties associated with data analysis. The growing number of
laboratories and companies employing this technique, together with the gradually decreasing
cost of analysis, leaves no doubt that its use will be widespread in the not too distant future. It
is therefore important to optimize the analysis of data produced using this methodology to
enable simultaneous identification of SNVs, INDELs, CNVs, and rearrangement variants.
Studies of neurodevelopmental disorders (Soden et al. 2014), or in early infantile epileptic
encephalopathy (Ostrander et al. 2018) , among other diseases, have already reported increases
in the percentage of cases diagnosed through the use of WGS. However, this increase in
diagnostic rate is limited by difficulties in determining the pathogenicity of rearrangement and
intronic variants (Alfares et al. 2018). It is therefore essential that we broaden our knowledge
through the study of these variants. This will require the analysis of as many patients as possible,
and creation of a solid pipeline for the detection of these variants.
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