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ABSTRACT Light detection and ranging is being a hot topic in the remote sensing field, and the development
of robust point cloud processing methods is essential for the adoption of this technology. In order to
understand, evaluate, and show these methods, it is a key to visualize their outputs. Several visualization
tools exist, although it is usually difficult to find the suited one for a specific application. On the one hand,
proprietary (closed source) projects are not flexible enough because they cannot be modified to adapt them
to particular applications. On the other hand, current open source projects lack an effortless way to create
custom visualizations. For these reasons, we present Olivia, a developer-friendly open source visualization
tool for point clouds. Olivia provides the backbone for any type of point cloud visualization, and it can be
easily extended and tailored to meet the requirements of a specific application. It supports stereoscopic 3-D
view, aiding both the evaluation and presentation of processing methods. In this paper, several cases of study
are presented to demonstrate the usefulness of Olivia along with its computational performance.

INDEX TERMS Data visualization, LiDAR point clouds, open source software, stereoscopic 3D.

I. INTRODUCTION
Light Detection and Ranging (LiDAR) is a remote sens-
ing technique analogous to radar, but it uses light instead
of radio waves. The scanner measures the time for a laser
pulse to travel from the sensor to the target, which is used
to derive the distance. After combining these measurements
with inertial measurement unit (IMU) and GPS data, a set
of three-dimensional points in a georeferenced coordinate
system is obtained. LiDAR has some advantages compared
to traditional techniques such as photogrammetry: short data
acquisition and processing times; relatively high accuracy;
reduced cost; ability to penetrate through the canopy; high
flexibility to atmospheric conditions.

Practically, a point cloud can be seen as an accurate digital
record of space. This is a valuable information for a wide
range of applications, being the most notorious the generation
of Digital Elevation Models (DEMs). The reason for this
is that first, it has been proven to enable the production of

highly accurate and high resolution DEMs [1], and second,
nearly all applications need to perform a ground filtering.
Practical applications include land-cover classification, urban
modeling, hydrologic modeling, coastal monitoring, forest
inventory and archaeological retrieval, among many others.

In recent years, a gradual cost reduction and accuracy
increase of the scanners have been experimented. The sur-
veying methods have also evolved to lower cost approaches,
from the use of Airborne Laser Scanning (ALS) to Unmanned
Laser Scanning (ULS) or Mobile Laser Scanning (MLS).
These factors have lead to a rapid adoption of LiDAR, which
has drew the attention of many researchers.

Point cloud processing methods often consist in multi-step
frameworks with complex algorithms, and the correctness of
each step needs to be evaluated to ensure the overall robust-
ness. To aid the understanding, evaluation and presentation
of these steps, visualization is highly demanded. Several tools
exist to visualize point clouds, but it can be difficult to choose
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the appropriate one for each particular purpose. When devel-
oping processing methods, displaying very specific draw-
ings are frequently needed. Closed source projects do not
offer flexibility because the source code cannot be adapted
to develop specific drawings. Alternatively, in open source
projects, attempting to create such custom visualizations can
be difficult and time consuming because the broad scope of
the projects or the lack of guidance.

To deal with these issues, we introduce a new open source
stereoscopic 3D visualization tool for LiDAR point clouds.
This tool, namedOlivia, can be easily extended and tailored to
the needs of any particular point cloud processing application.
It could also be adapted to other point cloud sensor sources
if needed with some additional effort. The implementation,
architecture and functionalities of the tool are described in
the paper. By performing a visual inspection of the results,
valuable feedback can be gathered to refine the algorithms
used in these use cases.

The rest of the paper is organized as follows: in Section II
several open source visualization tools are described and
compared with our proposal. Section III introduces the Olivia
architecture, while Section IV describes its main functionali-
ties. In Section V, four use cases that take advantage from our
tool are described. In Section VI the performance in terms
of rendering speed and memory usage is analyzed. Finally,
concluding remarks are presented in Section VII.

II. RELATED WORK
The visualization of point clouds can be easily done with sev-
eral existing tools, but displaying application-specific con-
tent may not be straight forward. Many of the tools are not
open source thus they cannot be modified to add additional
functionalities, because of this only open source projects are
considered in this brief summary. We selected three of the
most popular tools, an overview of them and the proposed
tool is shown in Table 1.

TABLE 1. Popular open source visualization tools and olivia.

ParaView [2] is an open-source, multi-platform data
analysis and visualization application. The project started
in 2000 as a collaborative effort between Kitware Inc. and
Los Alamos National Laboratory. Its main strength is the
ability to analyze extremely large datasets using distributed
memory computing resources. It allows to load, display,
filter, query and animate data. Its built-in features include
subsampling, cropping, time-varying data, streaming and
parallel processing, etc. To grant more processing capabil-
ities, the ParaView-PCL Plugin can be installed to provide
access to the algorithms and VTK filters of the Point Cloud
Library (PCL). Other features include Python integration,

batching processing and virtual reality visualization.
A JavaScript library is also provided to support interactive
visualization in a web browser. The use of this tool is
described in detail in the 251-page ParaView Guide (Com-
munity Edition), as the number of functionalities in this tools
is impressive. It is also possible to write custom applications,
although it can be overwhelming to deal with such a big
project.

CloudCompare [3] is a 3D point cloud and triangular
mesh editing and processing software. The project started
in 2003 as a collaboration between Telecom ParisTech and
the R&D division of EDF and it has been released in the
public domain around 2009. It was originally designed to
perform direct comparison between dense 3D point clouds,
making it suitable for change detection and analysis. Its built-
in features include many processing algorithms (registration,
resampling, color/normal vectors/scalar fields management,
statistics computation, etc.) as well as display enhancement
tools (color ramps, color and normal vectors, calibrated pic-
tures, OpenGL shaders...). This tool is oriented to processing
and lacks an easy way of creating custom visualizations.

Point Cloud Library (PCL) [4] is a large scale, open project
for 2D/3D image and point cloud processing. The project
started in 2010 at the robotics research lab Willow Garage
being first officially released inMay 2011. It contains numer-
ous state-of-the art algorithms including filtering, feature esti-
mation, surface reconstruction, registration, model fitting and
segmentation. The library also offers a visualization module
providingmethods for rendering and setting visual properties,
drawing basic 3D shapes, histograms, range images, and
geometry and color handlers, which is handy for analyzing
the algorithms within the library. This tool is also oriented
to processing, but future developments of this visualization
module should be taken into account. Also the C++ language
presents a higher barrier to entry than Java.

Summarizing, these tools have been developed for several
years, and they provide robust and broad functionalities,
although we observe two disadvantages. First, most of them
are oriented to point cloud processing instead of visualization.
Second, the learning curve to use, modify or improve these
tools is high. For these reasons, we have developed an open
source software focusing on the following features:
• Designed for visualization (no processing) purposes.
• Ease to quickly develop customized visualizations.
• High portability across systems.
Olivia does not compete with the tools described above,

in fact, initially, our tool offers less functionalities in compar-
ison. The goal is to build an open source tool which can be
easily adopted by the user with minimum friction in order
to create custom visualizations. All the basic functionali-
ties expected from a visualization tools such as point cloud
rendering, geometry drawing and point/cluster selection are
already provided. Some additional functionalities are imple-
mented as well, such as stereoscopic 3D or neighbors display.
Users can build in a short time frame custom visualiza-
tions and take advantage of these embedded functionalities.
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Also, thanks to its highly portability it can be used in almost
any computer. Our aim is to help researchers and users alike
to understand, evaluate, and show point cloud processing
algorithms in a quick and easy way requiring only basic Java
knowledge.

III. OLIVIA ARCHITECTURE
A. IMPLEMENTATION
Olivia is written in the Java programming language for two
main reasons. First, Java is one of the most -if not the most-
popular programming language. It has a higher popularity
rank than many other languages (see TIOBE [5], RedMonk
[6] and IEE Spectrum [7] ratings) and clearly higher rank than
C++, the language used in the aforementioned tools. Second,
Java is well known for its great portability, the source code is
compiled to byte code that can be executed in any platform
with the use of the Java Virtual Machine (JVM).

This software uses the Open Graphics Library (OpenGL),
the industry’s most widely used, supported and best doc-
umented API for rendering 2D and 3D graphics. To be
able to use OpenGL from Java, the wrapper library Java
OpenGL (JOGL) [8] is used, which implements Java bind-
ings for OpenGL providing full access to the API, as well
as almost all vendor extensions (OpenCL, OpenMAX and
OpenAL) through the use of the Java Native Interface (JNI).
JOGL integrates with the Java own windowing system,
the Abstract Window Toolkit (AWT), Swing and SWT wid-
get sets, and with custom windowing toolkits using the
NativeWindow API, as well as providing its own Native
Windowing Toolkit (NEWT). The points are stored into Ver-
tex Buffer Objects (VBOs), which allows vertex array data
to be stored in video device memory for faster rendering.
An interleaved vertex format is used to improve memory
locality for each vertex.

Furthermore, the wrapper library JavaCV [9] is also used to
access to some functionalities provided by the OpenCV [10]
and FFmpeg [11] libraries. Finally, Substance [12] is used for
the look and feel of the graphical user interface.

FIGURE 1. Package structure of Olivia.

B. PACKAGE STRUCTURE
Olivia is split into three main packages: core, extended
and visualization as shown in Figure 1. The core pack-
age implements all the basic functionalities, the extended
package implements functionalities that are shared across

visualizations, and the visualization package implements all
the visualization-specific functionalities. In order to create
a custom visualization, it is necessary to implement an own
visualization package.

• Core: This package is the backbone of the application
and implements the main functionalities that are com-
mon to any type of visualization. It acts as a layer of
abstraction providing data structures and methods, from
which users can benefit making little to none modifica-
tions. The package stores the main class of the appli-
cation, which parses the arguments and manages the
creation of visualizations. This package is split into the
following subpackages.

– Data: Specifies the characteristics of the data. There
are three structures available: point, point array and
cluster. A point is understood as a 3D point. These
points are encapsulated in a point array, which is
a structure that provides access to the rendering
methods. This point array can be encapsulated into
a cluster, a structure with an identifier and some
additional information such as the sum of the coor-
dinates of the points.

– GUI: Defines the graphical user interface, this is
the graphical components and its controls. One
of these components is reserved for the visualiza-
tions, which can be modified by the visualization
package.

– Render: Provides all the methods related to the
rendering. This package also manages the plotting
of OpenGL primitives (e.g. lines, triangles, quads,
etc.), the movement of the camera and the screen
capture (image or video). Particularly two features
are controlled by this package:

∗ Colors: Manages the colors of the points.
∗ HI: Manages the human interaction through the

mouse and keyboard. The selection of points is
handled using a Ray-Casting technique.

• Visualization: This package contains the visualization-
specific logic. A visualization needs to implement three
main tasks: reading the data, displaying the data and
creating the visualization panel. These methods are easy
to implement by extending the methods inherited from
the core package. Three visualization types are incor-
porated to serve as guidance for developing tailored
visualizations: basic, segmenter and classifier.

• Extended: This package holds structures that are com-
mon to some visualizations, but are not common to all,
thus they are not included in the core package. In this
manner the duplication of code is minimized.

C. GRAPHICAL USER INTERFACE
An overview of the interface is illustrated in Figure 2. The
layout of the tool is composed by amenu bar holding themain
options and three panels. The control panel, labeled 1 in the
figure, holds some quick options (camera speed, point size,
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FIGURE 2. Screen capture of a segmentation visualization showing the panel composition: control panel (1), render panel (2) and visualization
panel (3).

line width, center at point), the information about the selected
point and cluster, and the console output. This console gives
feedback about the execution of the tool, for displaying errors
and aiding troubleshooting. The render panel, labeled 2 in
the figure, is where the rendering is shown. Several visualiza-
tions can be displayed in the render panel, which are resized
automatically. The visualization panel, labeled 3 in the figure,
is set free for visualization-specific controls.

IV. USAGE
A. FUNCTIONALITIES
Currently, Olivia main functionalities are the following.
• Point selection: Points can be selected using the left
mouse click showing information about the point in the
control panel. Additional information can be displayed
in the visualization panel.

• Cluster selection: Clusters can be selected using the
mouse wheel click showing information about the clus-
ter in the control panel. When the cluster is selected only
that cluster will be shown to give a clear view of it.
This is particularly useful for analyzing segmented point
clouds, when isolating a specific cluster makes the task
easier. Note that this functionality is related to clustering
methods.

• Neighbors visualization: The neighbors of each point
can be displayed on any visualization if a neighbors
file is available. Currently Olivia supports the format
used in the Fast Library for Approximate Nearest Neigh-
bors (FLANN) [13]. Almost every point cloud process-
ing method needs to compute the neighborhood of the
points, so its evaluation is a key issue. If this option is

activated, the neighborhood of the selected point will
be shown, displaying a connection from that point to its
neighboring points as well as the distance or weight in
each connection.

• Drawing of OpenGL primitives: Different represen-
tation of the point streams can be plotted. This allows
to draw primitives such as lines, triangles and quads on
top of the point cloud. This is useful for displaying the
output of different algorithms. For example, the hull of
a set of points or the normal vector of each point can be
rendered overlaying the point cloud.

• Camera state: It is possible to save and load the camera
state, namely, its position and rotations. This facilitates
the comparison of point clouds across different execu-
tions of the algorithm under analysis.

• Camera mirroring: The camera of the visualizations
can be synchronized, meaning that all visualization will
move simultaneously. This is helpful for comparing the
same point cloud in different visualizations. For exam-
ple, the user can run two different segmentation algo-
rithms for the same point cloud, load each segmentation
in one visualization panel, and then activate the camera
mirroring. This way the position of the point clouds will
be the same regardless the point cloud which is being
moved, making the visual comparison much easier.

• Stereoscopic 3D view: It is possible to render the
scene twice, producing one image for the left eye and
other image for the right eye of the viewer. These
images are combined when using 3D glasses to give
the perception of depth. This feature is extremely useful
for both in-depth analysis of the point cloud and for
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FIGURE 3. Demonstrating classification results using the 3D stereoscopic
mode in the Airborne LiDAR Solutions stand. II Edition of Inside the Lab,
a Technological Demonstration Day at CiTIUS.

demonstration purposes as shown in Figure 3. Note that
because the scene is rendered twice, the computational
cost doubles, which can be a performance issue for less
powerful computers.

• Screen capture: Both image and video can be captured.
Only the render screen is captured, hiding the other
panels and taking into account the current resolution.
If the stereoscopic 3D is enabled, two videos (left and
right) are recorded in order to build the 3D video later.

B. GETTING THE TOOL
Both the source code and the executable are available in the
official repository: https://github.com/citiususc/olivia. The
application can be automatically built using the project man-
agement and build automation tool Apache Maven [14].
Installation and use instructions are provided in the reposi-
tory. Because of the open nature of the project, developers
can contribute to its development. We hope to bring the
community together to improve Olivia.

C. CREATING CUSTOM VISUALIZATIONS
The main advantage of Olivia is its simplicity to add new
tailored visualizations. Developers only need to be familiar-
ized with the Java programming language, although some
OpenGL knowledge may be required for more complex visu-
alizations. Adding a new visualization is performed by adding
a new package extending the default visualization package.
Then, three simple elements must be implemented: 1) read
the data, 2) display the data and 3) create the visualiza-
tion panel. These elements are easy to implement by using
inherited functionalities provided by the tool. Displaying the
point cloud can be performed by simply calling the drawing
method of the point array structure holding the points. Source
code for three different visualizations are included to provide
examples on how to add custom visualizations, and make the
development easier. If there is the need of drawing function-
alities not supported by Olivia, these should be implemented
in Java classes within the custom visualization package. Only
if these functionalities benefit all types of visualization will
be added in the core package.

V. EVALUATION AND RESULTS
In this section the usefulness of the tool in four use cases is
shown, ranging from common point cloud processing scenar-
ios to specific applications.

A. VISUALIZING NEIGHBORS
The most common step for point cloud processing is the cal-
culation of neighbors. Several neighborhoods can be chosen
for this task: kth Nearest Neighbors (kNN), spatial neigh-
bors (voxel, sphere, cylinder...), feature neighbors, etc. The
output of these methods is used as input to nearly every
subsequent processing step, thus the neighbors calculation
is a critical task of any framework and it must be evaluated
carefully. In this example the calculation using a voxelized
neighborhood is inspected. For this, first an octree is created
to speed up the search. The vertices of the octree nodes are
saved in a file and then loaded as quads primitives, as shown
in the left image of Figure 4. With a quick glance we can
have some awareness about the depth of the octree and how
it is partitioned. This can also be done for only the nodes
containing points as shown in the right image of the figure.
In this example, the stopping criteria is related to the number
of points: a node will continue splitting until the number of
points inside is lower than a certain threshold. This overview
of the leaf nodes can help to select the appropriate threshold.

FIGURE 4. Octree nodes showed in green: All (left), only leafs (right).

Afterwards the result of the computed neighborhood is
examined. For this, we provide the capability of displaying
the neighbors of each point. In Figure 5 the neighbors of a
conflictive building point (in blue) are shown, using three
different neighborhoods. This point at the boundary of the
building shares neighbors with both the building itself (right)
and a nearby tree (left). This situation can cause problems
for further processing, e. g. estimating the normal vector of
the point. Visualizing the neighbors can help to verify that
the selected neighborhood model is appropriate. The feature
of displaying the neighbors of a selected point is inherited
by any type of visualization whenever a file describing the
neighbors is available.

B. VISUALIZING SEGMENTATIONS
Other common step in point cloud processing is the segmen-
tation. In this section our procedure to evaluate the segmen-
tation proposed in [15] is described. In summary, this method
performs two region-growing iterations: the first one using
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FIGURE 5. Roof point (in blue) and its neighbors (in green) for different methods: Triangular Irregular Network (left), sphere (center) and
orientated cylinder (right).

the normal vector to extract only planar patches and a second
one without it in the oversegmented clusters. There are some
stages in this method which must be evaluated. First, the hull
of the point cloud is calculated in order to estimate the density
of the point cloud. To visualize this, the points of the hull
have to be stored in a file. Then, the resultant hull could be
plotted to visually verify that the calculation is correct. Once
the point density is estimated, the size of the neighborhood
needed to compute normal vectors is chosen accordingly.
We can also perform a visual inspection of the normal vectors.
As mentioned before, the value of the normal vectors needs
to be stored in a file in order to visualize them afterwards.
In Figure 6, the visualization of the normal vectors is shown.
For the end user, it is important to see that sometimes the
computation produces tricky situations, such as in boundaries
among objects and areas with irregular point density.

FIGURE 6. Normal vectors (white lines). Points colored by cluster.

After verifying that the previous steps are correct, the seg-
mentation result itself is analyzed. Both points and clusters
can be selected with the mouse to provide information such as
identifier, coordinates, intensity, etc. Furthermore, if a cluster

is selected only points of that specific cluster are displayed.
This provides a clean overview of the cluster, allowing to
quickly recognize its shape and boundaries. Some road seg-
ments can easily be identified in this particular segmentation,
thus giving the idea that the algorithm is well suited for
road classification. If the road clusters are selected, it can
be quickly identified that they also include some asphalt of
entries to houses nearby. This can be a problem depending on
the application. Hints like this can be easily highlighted using
the cluster selection feature.

Finally, different segmentation results can be compared.
Although extensive research has been done in the quan-
titative evaluation of segmentation methods, it is still dif-
ficult to assess whether one result is more accurate than
other [16], [17], thus visual inspection is still important
to accomplish this task. The comparison can be performed
among different segmentation methods or within the same
method among different parameters. In this example we
address the later. First, two segmentations are loaded, each
one in one window, and the camera mirroring option is
activated. This will facilitate the task by synchronizing the
camera movement among the segmentations. Furthermore,
the selection can also be synchronized, greatly simplifying
the comparison of single clusters between segmentations. For
example, in Figure 7 the effects of modifying the intensity
threshold parameter can be observed. The default value is
set to 7.5% of the intensity range (right). If the threshold is
changed to 15% (left), we see that the cluster is able to include
also points from the top road segment, but also includes more
points near the boundaries of the road which belong to the
ground. Olivia helps the user to identify and evaluate this kind
of trade-offs.

C. VISUALIZING CLASSIFICATIONS AND BEYOND
As other visualization tools, the results of classification can
be displayed. Each class has its own color, and it is possible
to enable or disable the drawing or each class. For example,
all classes could be disabled except the ground class, to have
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FIGURE 7. Usage of both selection and camera mirroring. Comparing the same cluster changing the intensity threshold in the segmentation
process.

a clear view of the terrain. The classification labels must be
the same as the defined in the LAS Specification [18].

The classification of the point cloud is the first stage for a
broad number of applications. One of them, is the estimation
of building footprints. Different algorithms can be used to
compute the hull of the buildings. In a previous comparative
of these methods [19] we used Olivia in order to visualize
how they behave in different scenarios. To this end, both the
calculated hulls and areas for each algorithm can be plotted,
as shown in Figure 8. This allows us to quickly identify the
shortcomings of the algorithms for different building shapes.

FIGURE 8. Computed hulls and areas using different algorithms; from
left-to-right to top-to-bottom: convex, concave, exterior, voronoi.

D. VISUALIZING SPECIFIC APPLICATIONS: ADAPTATION
TO A LANDING SITE DETECTION
More specific applications will also benefit from the func-
tionalities provided by Olivia. In this section we present
how the tool is used to analyze a Landing Site Detection
Algorithm (LSDA) previously developed in [20]. In short,
the algorithm classifies the suitability of the points for an
helicopter to land. This classification takes into account the

features for both the terrain (planarity, slope, etc.) and the
helicopter (skid size, rotor size. . . ). There are several classi-
fication labels, which are color coded for visualization, from
worse to better: unsuitable (red and light red), risky (blue),
suitable (yellow, light green, green, and white).

FIGURE 9. Result of the LSDA, the suitability for landing is represented in
different colors. The approximation cone is shown for the selected point.

The result of executing the algorithm in a particular case
is shown Figure 9. While in the white areas, the helicopter
can perform an approximation from any angle, in the rest of
suitable areas, obstacles may invalidate some approximation
angles. Thus it is necessary to plot from where the helicopter
can come in those cases. For this, the approximation cone
calculated by the algorithm is stored in a file, and then,
OpenGL methods are used to plot our customized approxi-
mation cone (see Figure 10). The cone shows in green the
angles from where the helicopter can approximate, and in red
the angles discarded for the presence of obstacles. Its drawing
is triggered by the selection of a point. Olivia allows us to
short the time and effort needed to evaluate the results.

VI. PERFORMANCE ANALYSIS
Rendering speed and memory footprint are analyzed in order
to measure the performance of Olivia and give an idea of
the hardware requirements for a particular case of study.
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FIGURE 10. A detailed view of the approximation cone: landing position (blue bars), valid approximation angles (in green) and invalid
approximation angles (in red)

These measurements should be taken as lower limits, as fur-
ther developments could improve performance considerably.
A MLS point cloud of a street from Narón (Spain) is selected
for the benchmark given its high density. The point cloud
is split into five samples of different sizes ranging from
1 to 75 million points. Benchmarking was carried out in a
Linux (Ubuntu 14.04.5 LTS) desktop computer with an Intel
Core i7-4790 processor and 16 GB of RAM memory. Each
sample is inspected using the basic visualization mode.

FIGURE 11. Rendering speed of Olivia for different graphic devices.

The average frames per second (FPS) is used as metric to
measure rendering speed. This value is provided by a built-
in method within the JOGL library. Three graphic devices
were used to represent different ranges: an integrated Intel
HD4600 for low-range, a Nvidia GTX 1050 Ti for mid-range
and a Nvidia GTX 1080 Ti for high-range. Results are shown
in Figure 11.While the integrated graphic struggles to achieve
a smooth rendering (30 FPS) with 10 million points, both
dedicated graphics achieve fluid renderings until 50 million
points. For higher amounts of points only the high-range
graphic card still offers a smooth rendering.

The memory footprint is gathered for host (RAM) and
device (VRAM) memory. Furthermore, for the host mem-
ory, both allocated and actually used memory are measured.

The host stores the full point data and Java-related objects,
while the device only stores the coordinates and colors of
the points. We use the NetBeans [21] Java profiling tool and
the Nvidia X Server to measure host and device memory,
respectively. Results are shown in Figure 12. The memory
consumption for both host and device scales linearly. Note
that for the host memory, Java allocates an excess of memory
if plenty of memory still available, which can mislead the real
memory usage.

FIGURE 12. Memory usage of Olivia for host and device memory.

As expected, the hardware requirements directly depend
on the number of points to be displayed, hence they will vary
from one user to another. Nevertheless, because is common
to work with points clouds of a few tens of millions of points,
we recommend a system with at least 8 GB of RAMmemory
and a dedicated graphic device with 2 GB of VRAMmemory.

VII. CONCLUSION
LiDARpoint cloud processing is a hot topic, and visualization
is important to understand, evaluate and present this related
research results. Given the broad number of possible applica-
tions, it is difficult to find a visualization tool that meets the
requirements of a specific application. Only an open source
tool can be flexible enough. Most of the current available
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tools are not open source, and those which are open source
may require a noticeable learning curve giving its wide scope.
Because of this, we present a tool that provides the backbone
for any type of visualization, that can be easily extended
and tailored to allow the creation of custom visualizations,
quickly andwithminimum effort. Researchers and users alike
will benefit for such tool.

The proposed tool, named Olivia, is written in Java, one of
the most common languages, which allows high portability
and a clear package design. To perform the rendering it uses
OpenGL, the most well-known API for 3D graphics. The
tool offers out of the box several functionalities such as point
cloud rendering, point/cluster selection, OpenGL primitives
drawing or 3D stereoscopic view. Building custom visualiza-
tions becomes an easy task thanks to the packaging structure
and the inherited functionalities of Olivia. Users can extend
and modify the tool to fit their needs, giving high flexibility.
We want to highlight the utility of the 3D stereoscopic view,
not only it is a very engaging way to demonstrate results to
the public, but also is very well suited for error identification.

Through this paper we show how to use the tool in different
processing scenarios: neighborhood calculation, segmenta-
tion, classification, and landing site detection. Using Olivia,
the results can be inspected and valuable information can
be obtained to validate and refine them. A brief benchmark
shows that Olivia does not need high hardware requirements
and a regular desktop computer is suitable to visualize tens of
millions of points.

In the near future, we pretend to improve the control over
the OpenGL primitives that can be drawn overlaying the point
cloud, by adding the functionality to perform translations,
rotations and animations. We also want to add the capability
of using heat maps and colors gradients. Other future work
may be to add more visualization modules, adapt Olivia to
virtual reality environments or improve the performance by
implementing advanced rendering techniques.
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