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Lack of Adipocyte-Fndc5/Irisin 
Expression and Secretion Reduces 
Thermogenesis and Enhances 
Adipogenesis
D. Pérez-Sotelo1, A. Roca-Rivada1, I. Baamonde2, J. Baltar2, A. I. Castro3,6, E. Domínguez4,  
M. Collado5, F. F. Casanueva3,6 & M. Pardo   1,3

Irisin is a browning-stimulating molecule secreted from the fibronectin type III domain containing 
5 precursor (FNDC5) by muscle tissue upon exercise stimulation. Despite its beneficial role, there is 
an unmet and clamorous need to discern many essential aspects of this protein and its mechanism 
of action not only as a myokine but also as an adipokine. Here we contribute to address this topic 
by revealing the nature and role of FNDC5/irisin in adipose tissue. First, we show that FNDC5/irisin 
expression and secretion are induced by adipocyte differentiation and confirm its over-secretion by 
human obese visceral (VAT) and subcutaneous (SAT) adipose tissues. Second, we show how secreted 
factors from human obese VAT and SAT decrease PGC1α, FNDC5 and UCP1 gene expression on 
differentiating adipocytes; this effect over UCP1 is blunted by blocking irisin in obese secretomes. 
Finally, by stable gene silencing FNDC5 we reveal that FNDC5-KO adipocytes show reduced UCP1 
expression and enhanced adipogenesis.

Recent developments on pursuing the molecular mechanisms implicated in physical activity-induced health 
benefits, have revealed the discovery of irisin as a muscle-derived factor presumably secreted after the scission 
of the extracellular portion of the type I membrane protein fibronectin type III domain containing protein 5 
(Fndc5)1. The significance of this finding is built on the beneficial effects recognized to this myokine. Hence, it 
was described that upon exercise stimulation, and through the transcriptional co-activator PGC1α, the expres-
sion of FNDC5 is increased in muscle and irisin secreted, inducing the stimulation of thermogenesis genes in 
certain adipocytes1,2. Accordingly, irisin may behave as a muscle-derived energy-expenditure signal that directly 
communicates with adipose tissue inducing browning. This role attributed to irisin would be responsible for a 
white adipose tissue (WAT) metabolic profile improvement, raising whole-body energy expenditure. Moreover, 
a number of evidences suggest that irisin improves glucose homeostasis, and that it’s circulating levels show an 
inverse association with liver fat content3–5. Thus, irisin was revealed as a potential new target for the treatment 
of metabolic diseases.

In contrast with the above, other investigations are questioning the primary beneficial role of irisin or even 
its existence generating a great debate in the literature6–8. First, there is disagreement regarding the regulation 
of FNDC5/irisin by exercise9,10; and surprisingly, it was described that circulating irisin levels in humans are 
positively correlated with parameters of adiposity, finding the highest levels in obese individuals9,11,12. Further 
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evidences showed an association of irisin circulating levels with markers of glucose and lipid homeostasis distur-
bance in obesity and with metabolic syndrome13–16.

We latterly discovered that FNDC5/irisin is also an adipokine expressed and secreted by visceral and espe-
cially by subcutaneous adipose tissue in rats under ad libitum conditions17. In this study, we observed that the 
secretion of FNDC5/irisin by both adipose depots was increased by short-term exercise and reduced by fasting. 
Interestingly, and contrary to expected, we observed that obese adipose tissue over-secreted this protein com-
pared to equivalent tissue from lean individuals. Paralleling the pre-clinical results, we further described that 
adipose tissue of human origin and to a greater extent from obese subjects, could also express and contribute to 
circulating FNDC5/irisin11,12. Besides, we found an association between the reduction of plasma irisin levels and 
the depletion of lipid metabolism biomarkers in patients with metabolic syndrome under an energy-restricted 
dietary program14, and a possible role of circulating irisin as a predictor of the insulin resistance onset in associ-
ation with weight regain in obese individuals13. On the whole, the mentioned data supports the hypothesis that 
increased circulating irisin, probably secreted by adipose tissue, may be an adaptive response to counterbalance 
decreased insulin sensitivity and other metabolism disorders associated with obesity3,9. We suggest a physiolog-
ical feedback that is increased in unfavorable metabolic situations generating a compensatory mechanism that 
may recede once the altered metabolic state is restored as it occurs after weight loss11.

In the present paper we go a step forward by revealing the increasing expression and secretion of FNDC5/irisin 
during adipocyte differentiation, elucidating FNDC5/irisin secreted isoforms in adipocytes, demonstrating the 
elevated secretion of this adipokine by human obese adipose VAT and SAT explants, revealing the negative effect 
of obese adipose secreted factors on FNDC5 expression on normal adipocytes, and more importantly, achieving 
a FNDC5-KO murine adipocyte cell line that shows decreased UCP1 expression and enhanced adipogenesis.

Results
Differentiated C3H10T1/2 cells express and secrete FNDC5/irisin.  To characterize FNDC5/irisin 
on adipose tissue, a first analysis was performed in C3H10T1/2 cells by studying the expression of FNDC5 from a 
non-differentiated state throughout adipogenesis. FNDC5 gene and protein expression was only detected in dif-
ferentiated cells with increasing expression from day 2 to 10 paralleling the expression of PPARγ, GLUT4, UCP1, 
adiponectin and PGC1α (Fig. 1A,B). Further, FNDC5 protein detection by immunohistochemistry was observed 
exclusively in differentiated C3H10T1/2 cells (Fig. 1C).

Immunoblotting analysis of C3H10T1/2 intracellular and secreted fractions using a monoclonal antibody 
against FNDC5 (aa 50–150) showed different bands at diverse molecular weights (Fig. 1D). Thus, antibody incu-
bation with a specific blocking peptide showed unspecific binding at the high molecular weight area (Fig. 1E). 
Interestingly, a band compatible with the described secreted portion of FNDC5, known as irisin, was detected 
at 12 KDa in secretomes of differentiated cells (Fig. 1D). The presence of this form follows the gene expression 
profile, being absent in pre-adipocytes secretomes with increasing presence from differentiation day 2 (Fig. 1D). 
A faint band at 25 kDa was also detected in the cell culture medium of differentiated cells. At intracellular level, 
bands at 25, 20 and 12 kDa were assumed as specific paralleling previously described irisin glycosylated iso-
forms, irisin dimmers and/or complete FNDC5 protein (Fig. 1D). FNDC5 immunoprecipitation in C3H10T1/2 
cells secretomes followed by two-dimensional (2-DE) western blotting confirmed the previous immunoblots by 
detecting an exclusive spot in differentiated adipocytes with the expected molecular weight and isoelectric point 
for 12 kDa-secreted non-glycosylated irisin (Fig. 1F, marked with an arrow). 2-DE western blot showed specific 
spots at 12 kDa that disappear using blocked antibody also in cell lysates (Fig. 1G, marked with an arrow).

Human visceral and subcutaneous adipose tissues express and secrete FNDC5/irisin especially 
in obesity.  Human visceral (VAT) and subcutaneous (SAT) adipose tissues from healthy and obese individ-
uals were analyzed for FNDC5/irisin protein expression and secretion. Firstly, circulating irisin levels of these 
patients were tested finding, as we previously described in different cohorts of patients11–13, elevated circulating 
irisin levels in obese patients compared to their lean counterparts (Fig. 2A). Although tissue protein content 
studies by immunohistochemistry showed a positive staining in both VAT and SAT depots, there were no appar-
ent differences between healthy and obese adipose tissues (Fig. 2B). Further, irisin quantification in human VAT 
and SAT at intracellular level by ELISA confirmed no statistical differences (Fig. 2C). Interestingly, a clear and 
significant over-secretion was observed in VAT and SAT secretomes from obese subjects compared to those from 
lean individuals (Fig. 2D).

Considering the uncertain specificity of commercially available ELISA kits against irisin, immunoblot anal-
ysis were additionally performed. Thus, FNDC5/irisin detection in VAT and SAT lysates and secretomes from 
obese individuals confirmed the presence of FNDC5/irisin in human adipose samples and a similar band pattern 
to that of C3H10T1/2 cells (mouse and human irisin are 96.698% identical-Supplementary Figure 1). Loading 
C3H10T1/2 murine samples and human VAT and SAT together in the same blot, showed no differences on the 
12 kDa-irisin band that migrated at the same molecular weight as irisin commercial peptide (Fig. 2E). Thus, 
unspecific antibody binding was detected in the high molecular weight area, and a prominent band at 12 kDa, that 
disappears or diminish its intensity by blocking the detection antibody, was observed (Fig. 2F). This 12 kDa band 
was not detected in the stromal vascular fraction (SVF) of human VAT and SAT (Supplementary Figure 2). Other 
bands at 15 and 25 kDa were also detected in VAT and SAT lysates and secretomes (Fig. 2F). Interestingly, the 
25 kDa band observed in both VAT and SAT lysates and secretomes shifted to approximately 20 kDa after PNGase 
treatment confirming N-linked glycosylation (Fig. 2G). Isolation of SAT mature adipocytes and their secretome 
allowed us to characterize human FNDC5/irisin isoforms by two-dimensional western blot using an irisin com-
mercial peptide as a reference (Fig. 2H). In the former analysis, a spot at 12 kDa and an isoelectric point of 5 was 
found common to SAT lysate, secretome and commercial peptide samples (marked with an arrow in Fig. 2H).
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Figure 1.  Only differentiated C3H10T1/2 murine mesenchimal stem cells express and secrete FNDC5/irisin. 
(A,B) mRNA expression and representative protein immunoblots of differentiation markers throughout 
differentiation of C3H10T1/2 cells. 2E(-∆∆Ct) and error values and representative immunoblot film 
images from where figures where cropped are shown in Supplementary Figure 5; (C) representative images 
of pre-adipocytes and mature C3H10T1/2 cells stained with oil red or analyzed for FNDC5 detection by 
immunocitochemistry (DAB) and immunofluorescence (Cy3) with and without blocked antibody; (D) 
representative immunoblot against FNDC5/irisin in differentiated and non-differentiated cells showing all the 
detected bands along differentiation at secreted and intracellular level; (E) FNDC5 immunoblot of secretomes 
and cellular lysates from pre-adipocytes and mature differentiated cells at day 6 with and without blocked 
FNDC5 antibody; (F) 2-DE immunoblot of immunoprecipitated FNDC5 from pre-adipocytes and mature 
differentiated cells secretomes showing a 12 kDa spot only present in adipocytes (pointed with and arrow). 
Note that representative immunoblot images have been cropped from the film in Supplementary Figure 6A; 
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Further band quantification of the secreted FNDC5/irisin specific isoforms at 25, 15 and 12 kDa showed a 
prevalent elevation of the three isoforms in VAT and SAT secretomes from obese patients that become significant 
in 15 kDa obese VAT and in 12 kDa obese SAT compared to their respective healthy adipose tissue (Fig. 2I).

Obese VAT and SAT secreted factors reduce FNDC5 and UCP1 gene expression of healthy adipocytes.  
To test the effect of obese adipose tissue secreted factors on FNDC5 gene expression, C3H10T1/2 cells were 
committed to differentiation and incubated from day 2 in the presence of obese VAT and SAT conditioned 
medium with or without blocking FNDC5/irisin protein with a blocking antibody. The incubation with obese 
SAT and VAT secretomes reduced FNDC5 gene expression (Fig. 3A); however, only VAT and irisin-depleted VAT 
secretome conditioned medium achieved a significant reduction (**p < 0.01). Further gene expression analysis 
showed a significant inhibition of UCP1 gene expression by both obese VAT (**p < 0.01) and SAT (*p < 0.05) 
secretomes. This UCP1 gene expression inhibition by obese VAT and SAT secretomes was reversed by blocking 
irisin in both cases (Fig. 3B).

PGC1α gene expression was also tested in the same experimental setting showing a significant reduction in 
the presence of obese SAT secretome independently of irisin (**p < 0.01) (Fig. 3C). No effect was observed in 
GLUT4, PPARγ and adiponectin gene expression (Fig. 3D,F). Adipocyte differentiation in the presence of plasma 
from the same obese patients, showed a significant reduction of UCP1 (**p < 0.01), GLUT4 (***p < 0.001), 
PPARγ (*p < 0.05) and adiponectin (**p < 0.01) gene expression compared to control cells (Fig. 3A–F).

The same experiment performed with VAT and SAT secretomes from healthy lean donors showed no signifi-
cant effect on the same genes expression (Supplementary Figure 3).

Finally, to test the effect of obese secreted factors on FNDC5 once adipocytes are totally differentiated, the 
expression of FNDC5 together with UCP-1 was assayed by exposing adipocytes at day 10 of differentiation to 
obese VAT and SAT secretomes during 24 hours. Under this situation, only obese VAT secreted factors could 
reduce significantly FNDC5 (**p < 0.01) and UCP-1 gene expression (* p < 0.05) (Fig. 4).

Adipose FNDC5 gene silencing show specific irisin signal.  To reveal the functional role of FNDC5/
irisin in adipose tissue, C3H10T1/2 cells were knocked down for FNDC5 expression by shRNA with lentiviral 
infection. From five different shRNAs, FNDC5 sh29 was selected as with the highest gene expression inhibition 
without affecting the intrinsic capacity to be differentiated into mature adipocytes (Fig. 5A). Immunodetection 
of FNDC5 in silenced cells after complete differentiation showed a strong nuclear positive staining with no cyto-
plasmic or cell membrane signal compared to control cells that showed both nuclear and cytoplasmic staining 
(Fig. 5B). 2-DE immunoblot analysis of silenced cell lysates shows that the monoclonal FNDC5 antibody binds 
to proteins other than FNDC5/irisin (spots a and b Fig. 5C). The spot with the FNDC5 expected isoelectric point 
and molecular weight tagged with an arrow (mouse FNDC5 predicted at Uniprot: 20.3 kDa and 5.7 pI) disappears 
after FNDC5 gene silencing (Fig. 5C). Moreover, the 2-DE immunoblot of FNDC5-KO cells secretome shows that 
the signal of the spot tagged with an arrow, that corresponds with the expected secreted irisin peptide (mouse 
irisin predicted at Uniprot: 12.6 kDa and 4.99 pI), diminishes significantly its signal from the blot, while no varia-
tion was shown in a more basic spot also detected with the irisin antibody (Fig. 5D, labeled as c). Accordingly, this 
same spot is present in the 2-DE immunoblot of commercial irisin shown in Fig. 2H.

Adipocytes lacking FNDC5 gene expression show reduced UCP1 expression and increased adi-
pogenesis.  Further analysis of FNDC5-KO (C3H10sh29) cells by real time monitoring showed a decreased 
cell index compared to control cells during proliferation and differentiation (Fig. 5E,F). Thus, a two days advan-
tage on adipocyte differentiation was observed in FNDC5-KO cells. Gene expression analysis of these cells 
showed a gradual UCP1 gene expression reduction throughout differentiation, and a high adiponectin expression 
from day 2 (Fig. 5G). A comparative gene expression analysis during differentiation showed that FNDC5-KO 
cells have a gradual decreased expression level of UCP1 compared to control cells (Fig. 5H). On the other hand, 
cells lacking FNDC5 showed elevated levels of adiponectin and a slight elevation of GLUT4 compared to wild 
type adipocytes at differentiation day 8 (Fig. 5I). Interestingly, differentiation of FNDC5-KO cells in the pres-
ence of irisin-containing control cells secretome restored UCP1 diminution by significantly increasing its expres-
sion (*p < 0.05); this effect was reverted by blocking irisin present in the secretome with a monoclonal antibody 
(Fig. 5J). Relevantly, we observed that FNDC5-KO cells accumulate noticeable more lipids than control cells 
during differentiation becoming significant from day 6 (Fig. 6A,B).

FNDC5-KO adipocytes show changes in phospho-Akt pathway.  To get a deeper insight into the 
functional role of FNDC5/irisin in adipose tissue, further analyses were performed to assess the glucose metabo-
lism of FNDC5-KO cells. Thus, insulin sensitivity was tested finding a 5 minutes delay to reach the highest signal 
assayed by p-Akt detection compared to control cells (Fig. 6C). Induction of insulin resistance by treating cells 
with a combination of high glucose and high insulin (HGHI) showed that cells lacking FNDC5 are not more 
resistant to insulin than control cells after 10 minutes insulin stimulation (Fig. 6D).

The assessment of phospho-Akt pathway activation after 10 minutes insulin treatment confirms a significant 
increase of Akt (Ser473) in FNDC5-KO cells compared to control cells. Further, a decrease in RAS40 (P-Thr246) 
and an augmentation of PTEN (P-Ser380), P53 (P-ser15), RSK2 (P-Ser386) and BAD (Ser112) was found (Fig. 6E).

(G) image showing irisin spot disappearance pointed with and arrow after using a blocked antibody. Note 
that representative immunoblot images have been cropped from the film in Supplementary Figure 6B. DAB, 
diaminobenzidine; Pept: commercial irisin peptide.
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FNDC5-KO adipocytes are not sensitive to obese adipose secretome.  Contrary to normal cells in 
Fig. 3, FNDC5-KO adipocytes showed no changes on UCP1 expression in the presence of obese VAT and SAT 
human secretomes, neither with healthy lean secretome samples (Supplementary Figure 4A,B). Additionally, 
no changes were found in PPARγ and adiponectin gene expression (Supplementary Figure 4E–H). Only 
PGC1α and GLUT4 gene expression changes were observed. PGC1α expression was significantly reduced by 

Figure 2.  FNDC5/irisin is expressed and secreted by human adipose tissue. (A) Comparative irisin circulating 
levels between healthy and obese individuals selected for FNDC5/irisin tissue analysis [healthy (n = 6) vs. obese 
(n = 17) p = 0.0007] Mann-Whitney U test; (B) Detection of FNDC5/irisin in representative images of human 
obese and healthy VAT and SAT sections. (C) FNDC5/irisin protein content quantification by ELISA in human 
obese (n = 17) and healthy (n = 4) VAT and SAT lysates [p = ns; Mann-Whitney U test]; (D) FNDC5/irisin in 
vitro direct protein secretion quantified by ELISA from human obese (n = 35) and healthy (n = 4) VAT and 
SAT explants cultured in vitro [HVAT vs OBVAT p = 0.028; HSAT vs OBSAT p = 0.0045]; Mann-Whitney U 
test; (E) Representative immunoblot showing FNDC5/irisin band pattern of murine cells and human samples 
lysates and secretomes; (F) Representative image of FNDC5/irisin detection in human VAT and SAT lysates 
and the signal using a blocked antibody; (G) FNDC5/irisin band shift detection of human SAT and VAT 
lysates and secretomes treated with PNGase; (H) 2-DE FNDC5 immunoblots of human obese mature SAT 
adipocytes lysate, their secretome, and 2-DE detection pattern of irisin commercial peptide; (I) Representative 
immunoblots of the most prominent FNDC5/irisin bands detected in human VAT and SAT explants 
secretomes. Note that representative immunoblot images have been cropped from the film in Supplementary 
Figure 7. Band quantification of at least 4 independent patients is represented in histograms [15 kDa HVAT vs 
OBVAT p = 0.0364; 12 kDa HSAT vs OBSAT p = 0.0341] Mann-Whitney U test. pI: isoelectric point.
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Figure 3.  Human obese VAT and SAT secreted factors alters normal adipose cells gene expression during 
differentiation. (A) FNDC5; (B) UCP1; (C) PGC1α; (D) GLUT4; (E) PPARγ; and (F) Adiponectin gene 
expression in murine C3H10T1/2 pre-adipocytes (day 2) differentiated in the presence of obese VAT and SAT 
secreted factors with or without blocking soluble FNDC5/irisin during 24 hours (n = 4 independent human 
obese secretomes). The effect of plasma from the same obese patients is also shown for each analyzed gene. 
Histograms show the quantitative expression levels towards control non-treated cells for data normalization 
[One way ANOVA Kruskal-Wallis test followed by Dunn’s multiple comparison]. *p < 0.05, **P < 0.01, and 
***p < 0.001 versus control non-treated cells. CONT: cells without treatment; VAT and SAT SEC: cells treated 
with 10% obese SAT or VAT secretome; VAT and SAT BLOCK: cells treated with obese VAT and SAT secretome 
with antibody blocked-irisin; PLASMA: cells treated with 10% obese plasma.
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differentiating the cells in the presence of healthy VAT secretome, and by treating them with healthy SAT con-
taining blocked-irisin (HSAT BLOCK) (Supplementary Figure 4C); moreover, a significant reduction of GLUT4 
expression was detected after treating FNDC5-KO cells with lean and obese VAT and SAT secretomes inde-
pendently of irisin (Supplementary Figure 4I,J).

Discussion
In this work, we significantly contribute to many of the unsolved concerns about FNDC5/irisin by success-
fully revealing the nature and role of this protein in adipose tissue. We continue with our previous discovery 
describing FNDC5/irisin as an adipokine over-secreted by obese adipose tissue, which lead us to hypothesise 
that adipose-derived FNDC5/irisin might participate on the elevated irisin levels detected on obese individ-
uals5,10–14,16. Firstly, we describe for the first time the progressively expression and secretion of FNDC5/irisin 
throughout pre-adipocyte differentiation getting to the highest levels upon reaching the mature differentiated 
state. By direct irisin quantification on secretomes from human adipose tissue explants we confirm that obese 
visceral (VAT) and subcutaneous (SAT) adipose tissues secrete more irisin than healthy adipose tissues. The 
immunoblot analysis of adipose tissue lysates and secretomes, using to our experience the best antibody available, 
shows three predominant bands at 25, 15 and 12 kDa, being the 12 kDa band the most abundant in secretomes. 
All three isoforms were found elevated in secretomes from human obese VAT and SAT without significant differ-
ences among tissue depots. Secondly, we show how autocrine secreted factors from human obese VAT and SAT 
depots decrease PGC1α, FNDC5 and UCP1 gene expression on murine differentiating adipocytes; this negative 
effect over UCP1 expression is blunted by blocking irisin in obese VAT and SAT secretomes. Finally, we are the 
first to achieve the stable silencing of FNDC5 gene on cultured pre-adipocytes. This ultimate approach, besides 
allowing the identification of the authentic FNDC5/irisin protein signal that confirms the unspecific binding 
of commercial antibodies, reveals an important role for FNDC5 in adipogenesis. Hence, cells lacking FNDC5 
expression show reduced UCP1 expression and increased adipogenesis confirmed by significantly higher lipid 
accumulation during differentiation. Interestingly, cells lacking FNDC5/irisin although show a delayed response 
to insulin stimulus compared to control cells, they do not evidence a clear insulin resistance.

Despite the great excitement originated by the discovery of FNDC5/irisin as a browning-stimulating myok-
ine secreted by muscle tissue upon exercise stimulation; there are still many unknown and essential aspects of 
this protein and its mechanism of action not only as a muscle secreted factor but also as an adipokine. At this 
moment, with an exponential number of published papers in this topic, there is an urgent need to discern the 
regulation and nature of irisin secretion, the functional role of its post-translational modifications, its secretion 
profile and actions under healthy and pathological situations, and the discovery of the pathways stimulated upon 
binding to its still unknown receptor. Under this context, there is a crucial topic concerning the specificity of the 
anti-FNDC5/irisin commercially available antibodies that has generated uncertainty in regard to many of the 
published results5,7.

In the present manuscript, we demonstrate the expression and secretion of FNDC5/irisin by adipose cells 
and tissues revealing an expression and secretion profile that parallels other adipogenic factors. Likewise, the 
lack of expression of FNDC5 in non differentiated adipocytes suggests a role of FNDC5/irisin on adipogen-
esis. It is important to highlight the detection of a 12 kDa irisin band and spot, with the expected isoelectric 
point and molecular weight, in both murine and human adipose samples. To our knowledge, this is the first 
time that this band/spot representing the non-glycosylated/non-dimerized form of irisin is shown in human 

Figure 4.  Human obese VAT and SAT secreted factors alters differentiated adipose cells gene expression. 
(A) FNDC5, and (B) UCP1 gene expression in murine C3H10T1/2 differentiated adipocytes at day 10 
after treatment with obese VAT and SAT secreted factors during 24 hours (n = 4 independent human obese 
secretomes). Histograms show the quantitative expression levels towards control non-treated cells for data 
normalization [One way ANOVA Kruskal-Wallis test followed by Dunn’s multiple comparison]. *p < 0.05 
and **P < 0.01 versus control non-treated cells. CONT: differentiated cells without treatment; OB VAT/SAT: 
differentiated cells treated during 24 hours with obese VAT and SAT secretomes.
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Figure 5.  FNDC5 silencing in C3H10T1/2 adipocytes. (A) FNDC5 gene expression inhibition compared 
to control cells; (B) Representative images of FNDC5 immunofluorescent staining in control and FDNC5 
silenced cells (FNDC5 in green; nuclear staining by DAPI in blue); (C) 2-DE immunodetection of FNDC5/
irisin in control and FNDC5-KO cell lysates. Note that representative immunoblot images have been cropped 
from the film in Supplementary Figure 8A and B; (D) 2-DE immunodetection of FNDC5/irisin in control and 
FNDC5-KO cells secretomes. Note that representative immunoblot images have been cropped from the film 
in Supplementary Figure 8C and D; (E) Real time proliferation measurement of control vs. FNDC5-KO cells 
during 6 days; (F) Real time differentiation monitoring of control vs. FNDC5-KO cells from non differentiated 
state to differentiation day 4; (G) mRNA expression of differentiation markers throughout differentiation of 
FNDC5-KO C3H10T1/2 cells; (H) Differentiation markers expression fold change of FNDC5-KO cells over 
wild type; (I) Gene expression fold change at day 8; (J) UCP1 gene expression of control and FNDC5-KO 
cells differentiated in the presence of intact wild type secretome or blocked with anti-FNDC5 antibody (n = 4 
independent experiments; p = 0.174) One way ANOVA Kruskal-Wallis test followed by Dunn’s multiple 
comparison.
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Figure 6.  Functional analysis of FNDC5-KO adipocytes. (A) Oil red quantification of lipid accumulation 
along differentiation of control vs. FNDC5-KO adipocytes (n = 3 independent differentiation experiments) 
Two-way ANOVA followed by Bonferroni post hoc; (B) Representative images of control and FNDC5-KO cells 
stained with oil red until differentiation day 8; (C) Insulin sensitivity of control and FNDC5-KO cells assayed 
by P-Akt levels immunodetection after insulin time course stimulation; (D) Insulin resistance assay after high 
glucose/high insulin treatment. Representative immunoblots of control and FNDC5-KO cells stimulated 
during 10 minutes with insulin. Data is represented towards basal P-Akt levels (time 0) and corrected towards 
total Akt (n = 3 independent experiments) One way ANOVA Kruskal-Wallis test followed by Dunn’s multiple 
comparison. (E) Protein phosphorylation array analysis showing the activation of 18 proteins under Akt 
pathway, after 10 min insulin (100 mM) stimulation (n = 4 independent experiments) Mann-Whitney U test 
[p-RAS40 p = 0.0265; p-PTEN p = 0.0294; p-Akt p = 0.286; p-P53 p = 0.0286; p-RSK2C p = 0.0286; p-BAD 
p = 0.286]. Statistical significance is represented as *p < 0.05, **P < 0.01, and ***p < 0.001.
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samples by western blotting. Its predominant signal in cell and tissues secretomes suggests a functional role for 
the non-glycosilated irisin accordingly to the experimental work published elsewhere showing that recombinant 
12 kDa irisin exerts biological activity18–20. Thus, our data confirms the results by Jedrychowski and collaborators 
showing the identification by mass spectrometry of a 12 kDa peptide sequenced as irisin in human plasma sam-
ples21. The former and our study confirm the expression and secretion of FNDC5/irisin in humans; proving that 
although irisin is mainly translated in humans by a non-canonical start codon22, it still reaches significant levels of 
expression and secretion. We believe that the presence of other bands at 15 and 25 kDa may be explained by mod-
ifications such as glycosilation or even dimerization23. Under this context, we are the first to accurately demon-
strate the unspecific binding of anti-FNDC5/irisin commercial antibodies by creating a FNDC5-KO cell line. Two 
spots at 20 and 12 kDa, with the FNDC5/irisin predicted isoelectric point and molecular weight, disappear after 
silencing FNDC5 gene in C3H10T1/2 cells; we suggest that the spots at the same or similar molecular weight rec-
ognized by the anti-FNDC5 antibody after silencing might be the explained by the unspecific binding to FNDC4, 
and probably to its excised soluble form24. The use of basic local alignment search tool finds a 53.5% local similar-
ity between FNDC5 and FNDC4 in both human and mouse (Uniprot blast). Accordingly, immunocitochemistry 
analysis showed a typical nuclear signal in non-differentiated control cells and in FNDC5-KO adipocytes; only 
differentiated control adipocytes showed cytoplasmic and cell membrane staining which may correspond with 
the expected FNDC5/irisin. This statement reveals that studies performed with commercial FNDC5 antibodies 
including ELISA assays should be taken cautiously as previously reiterated5,7,8. Standard western blot allows dis-
cerning different isoforms but we definitively reveal that at this moment the only way to detect the real FNDC5/
irisin is by 2-DE western blotting or directly by mass spectrometry as formerly described21.

Accordingly to our results, it is reasonable to suggest that adipose tissue may attempt to tackle obese dereg-
ulated metabolism by over-secreting beneficial irisin. The clue in this pathological state resides in the tissue 
sensitivity to irisin or in the identification of other factors that may negatively regulate irisin effects. It is inter-
esting to emphasize in this respect that our data show that secreted factors from obese adipose tissues decrease 
PGC1α expression and inhibit FNDC5 gene expression of healthy adipose differentiating cells. Because blocking 
obese-irisin on the same obese secretomes do not revert FNDC5 and PGC1α gene expression inhibition, we 
suggest other obese secreted factors as responsible of this effect. Paralleling the inhibition of FNDC5 by obese 
adipose tissue secreted factors, a significant diminution of UCP1 browning marker was observed in healthy dif-
ferentiating cells in the presence of obese VAT and SAT. Interestingly, in this occasion, this inhibition was restored 
by blocking obese-irisin in the obese secretomes. In consequence, UCP1 gene expression was found to be down-
regulated compared to control cells in FNDC5 silenced adipocytes. Further incubation of FNDC5-KO cells with 
control cell secretomes, containing healthy irisin, restored UCP1 gene expression in these cells. This at first sight 
contradictory effect of irisin on UCP1 expression can be explained by a recent report showing that irisin inhibits 
UCP1 gene expression during adipocyte differentiation, and only after formation of mature adipocytes is able to 
exert this browning effect25. All together, these findings are coherent with a positive regulation of thermogenesis 
initially attributed to irisin1,26 which may be challenged in the occurrence of obesity probably due to other inter-
fering factors27. Thus, we observed that circulating factors present in the plasma of obese individuals reduce the 
expression of FNDC5, UCP1, GLUT4, PPARγ and adiponectin in cultured healthy murine adipocytes.

It is of special interest the functional studies of irisin on adipose cells by stable silencing FNDC5 expres-
sion. To our knowledge, this is the first time that FNDC5 expression is silenced in adipocytes. This experimental 
approach responds to experts in the field, including the authors first describing the FNDC5/irisin browning 
effect, demanding loss-of-function models as relevant to understand irisin biology28. FNDC5 silencing defini-
tively permitted to discern the unspecific commercial available antibody binding; and moreover, the deep analysis 
of FNDC5-KO cells allowed revealing its role in adipose tissue. Indeed, the most relevant finding was the discov-
ery that lack of FNDC5 expression on C3H10T1/2 pre-adipocytes not only permitted their differentiation but 
also significantly increased adipogenesis. We observed that FNDC5 non-expressing cells displayed accelerated 
differentiation showing 2 days of advantage compared to control cells which could be followed by increased lipid 
accumulation and adiponectin gene expression. This advantage cannot be explained by increased proliferation 
rate in FNDC5-KO cells as shown. Therefore, lack of FNDC5 expression drives adipocytes fatter. This result is 
of relevance since it may suggest that decreased FNDC5 expression/secretion, blockage of its function through 
post-traslational modifications/binding inhibiting factors, or abnormal function of its receptor may participate 
in the development of obesity. Therefore, we postulate in one hand an “irisin-resistance” state of mature adipo-
cytes in the occurrence of obesity impeding its beneficial effects. This resistance would be responsible of irisin 
over-secretion from mature adipocytes in an attempt to counterbalance the altered metabolic status. Therefore, 
the positive autoregulation of irisin described by us in healthy adipocyte cells and previously by others25,29 rein-
forces this hypothesis. On the other hand, we introduce a new paradigm on FNDC5/irisin regulation implicat-
ing other obese adipose secreted factors as negative regulators of FNDC5/irisin expression on differentiating 
pre-adipocytes enhancing adipogenesis. It was recently described that the abundance of beige adipocytes in white 
adipose tissue correlates positively with the response to irisin25; thus, theoretically, a low amount of beige adi-
pocytes within obese white adipose tissue may explain irisin’s lack of action. Additionally, accordingly to our 
results, it was previously shown that FNDC5 over-expression in mice induces lipolysis and reduces the size of 
SAT adipocytes30; and more recently Zhang and collaborators have described that recombinant irisin treatment 
decreases adiponectin expression and adipogenesis of human white subcutaneous adipocytes25. It will be now 
necessary to discern if reduced thermogenesis and increased adipogenesis in C3H10-KO cells is an intrinsic or 
secretion-dependent effect. Since differentiation of C3H10-KO cells in the presence of C3H10-WT secretome, 
which contains intact healthy irisin, upregulates UCP-1 expression, we suggest a positive feedback of secreted 
irisin exerting a paracrine effect that is blunted by blocking irisin in the same WT secretomes. However, we do not 
know if this also applies to increased adipogenesis; therefore, this will deserve further research.
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In relation to glucose metabolism, although it was shown that irisin is able to ameliorate general glucose 
metabolism, we did not observe any change on insulin sensitivity when performing an insulin resistance experi-
ment (High glucose/high insulin) with FNDC5-KO adipocytes. However, certain alterations on the insulin/Akt 
pathway were observed in cells lacking FNDC5 expression after 10 minutes insulin stimulation such as an ele-
vation of p-Ser473Akt, corroborating the insulin stimulation time course assayed by immunoblot in the present 
paper; the elevation of p-Ser380PTEN, p-Ser15P53, p-Ser386RSK2 and p-Ser112BAD, and the diminution of 
phospho-Thr246 proline-rich akt substrate of 40 kda (p-Thr246PRAS40).

Considering the results discussed above, it is our aim now to analyze the effect of in vitro FNDC5 gene silenc-
ing on human cultured adipocytes and to investigate about the presence of the excised 12 kDa irisin at intracel-
lular level in adipocytes. In this regard, it has to be considered the first work describing FNDC5, named PeP, as 
a peroxisomal protein whose mRNA accumulation is induced after myoblast differentiation in vitro31. Taking 
into account the increase of peroxisomes during adipogenesis, its association with adipose lipid droplets, and 
their ability to carry out fatty acid oxidation and lipid synthesis (ether lipids) it is reasonable to find increased 
FNDC5 expression during adipocyte differentiation and to find the 12 kDa excised form also at intracellular 
level32. Finally, it is indeed of interest whatsoever, to check FNDC5 silencing on muscle cells.

In conclusion, we reveal for the first time the immunoblot identification of intracellular and secreted irisin 
protein by knocking down FNDC5 gene in a murine model of adipocyte differentiation. Therefore, we demon-
strate the unspecific binding to FNDC5/irisin of commercial antibodies, including ELISA kits, explaining the 
contradictory results about this subject on the bibliography and fulfilling the experts demands about this sub-
ject28. However, the most relevant finding comprises the decreased browning capacity and increased adipogenesis 
of differentiating adipocytes caused directly or indirectly by blocking adipose endogenous expression of FNDC5. 
Therefore, the reduction of FNDC5, PGC1α and UCP1 expression on differentiating normal adipocytes incu-
bated with obese WAT secreted factors suggest the capacity of obese secretome to exacerbate the pathological 
situation. Thus, adipocyte FNDC5 intrinsic role may be of relevance during the course of pre-adipocyte differen-
tiation impeding lipid hypertrophy.

Overall, we postulate the following hypothesis (Fig. 7): in the course of obesity, secreted factors liberated by 
obese adipose tissue inhibit FNDC5 and UCP1 expression of differentiating pre-adipocytes promoting enhanced 
adipogenesis and increasing lipid accumulation. Once pre-adipocytes reach the mature state, they increase irisin 
expression and secretion in an attempt to counterbalance the altered metabolic status without success probably 
due to irisin resistance.

Materials and Methods
C3H10T1/2 cell culture and differentiation.  The murine MSC (mesenchimal stem cell line) C3H10T1/2 
cells were cultured at 37 °C under 5% CO2 in Dulbecco’s modified Eagle’s medium (Life Technologies, CA, USA) 
containing 10% fetal bovine serum (SIGMA-ALDRICH, MO, USA), 100 U/ml of penicillin and 100 μg/ml of 
streptomycin until differentiation to adipocytes as previously described33. In brief, after confluence differentiation 
was induced with induction medium (basic medium supplemented with 1 µM dexamethasone, 0.5 mM isobut-
ylmethylxanthine, 1 µM rosiglitazone and 5 µg/mL insulin). Two days after induction, the medium was changed 
to basic medium with insulin. Accumulation of cytoplasmatic triglyceride in these cells was detected by staining 
with Oil Red O (SIGMA-ALDRICH, MO, USA).

Figure 7.  Results summary. The results and hypothesis about the role of adipose-derived FNDC5/irisin are 
shown in a schematic representation of healthy and obese adipose tissues. In the obese condition adipose tissue 
would overexpress and oversecrete FNDC5/irisin in an attempt to counterbalance the metabolic deregulation; 
however adipose and other peripheral tissues may suffer from FNDC5/irisin resistance. On the other hand, 
obese adipose tissue, and specifically obese VAT secreted factors are able to decrease FNDC5 and UCP1 
expression on differentiating adipocytes promoting lipid accumulation and adipogenesis; we hypothesize 
that obese differentiated adipocytes are not sensitive to this inhibitory effect. Note that some cells in this 
representation were taken and/or modified from the Powerpoint image bank freely available at http://www.
servier.com/Powerpoint-image-bank under the copy right of https://creativecommons.org/licenses/by/3.0/.

http://www.servier.com/Powerpoint-image-bank
http://www.servier.com/Powerpoint-image-bank
https://creativecommons.org/licenses/by/3.0/
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FNDC5 silencing of C3H10T1/2 cells.  pLKO.1 lentiviral expression plasmids containing short hairpin 
RNAs against FNDC5 was purchased from Sigma (Mission shRNA, SIGMA-ALDRICH, MI, USA). Stable FNDC5  
knockdown C3H10T1/2 cell lines were generated by transducing lentiviral particles carrying various target FNDC5 
shRNAs. The viral particles were packaged by transfecting FNDC5 shRNAs together with lentiviral packaging mix  
(SIGMA-ALDRICH, MO, USA) in HEK 293 cells according to the manufacturer’s instructions. The target 
sequences for hairpins directed against human FNDC5 (NM_027402) were: TRCN0000098525:CCGGCCCT
CTGTGAACATCATCAAACTCGAGTTTGATGATGTTCACAGAGGGTTTTTG;TRCN0000098526:CCGG
CGAGCCCAATAACAACAAGGACTCGAGTCCTTGTTGTTATTGGGCTCGTTTTTG;TRCN0000098527:
CCGGGACACAGAATATATCGTCCATCTCGAGATGGACGATATATTCTGTGTCTTTTTG;TRCN00000
98528:CCGGGCTCTCTTCTGCCGCCAGTATCTCGAGATACTGGCGGCAGAAGAGAGCTTTTTG;TRCN
0000098529:CCGGGTGCGGATGCTCCGGTTCATTCTCGAGAATGAACCGGAGCATCCGCACTTTTTG. 
GFP shRNAs (SIGMA-ALDRICH, MO, USA) was used as control to prove the correct viral packaged particles 
introduction into the cells.

Human serum and adipose tissue acquisition.  The human blood and adipose tissue specimens were 
obtained with written informed consent approved for this particular study (Ref.2013/425) by the Comité Ético 
de Investigación Clínica de Galicia - CEIC de Galicia, (Spain) according to the Declaration of Helsinki. Adipose 
tissue was obtained from healthy normal weight volunteers (body mass index <35) who underwent cholecys-
tectomy surgery and from obese patients (body mass index >35) who underwent laparoscopic gastrectomy or 
bypass surgery. The visceral fat was located in the hypogastric region around the internal organs, and the subcuta-
neous fat was located in the mesogastric region. The tissues were transported from the operating room to the lab-
oratory in sterile PBS buffer with penicillin (100 U/ml) and streptomycin (100 μg/ml). Secretome and tissues were 
collected and processed for immunodetection and functional studies as previously described17,34. Briefly, tissues 
were processed to eliminate any contaminant and washed thoroughly in PBS under sterile conditions in a flow 
laminar hood. Next, fat pieces were centrifuged in a 25 ml tube with 20 ml of PBS for 5 min at room temperature 
to remove blood cells and cell debris. Fat pieces of 2 g were incubated in 6 well cell culture dishes (Iwaki, Tokyo, 
Japan) in 4 ml of serum free medium that was changed twice every two hours and again after 16 h. Fresh serum/
phenol red free DMEM medium was added and incubated for 24 h to obtain final secretomes.

Human SVF and mature adipocytes isolation was performed by digesting adipose tissue (1 g minced in little 
pieces) with 0.2% collagenase type I (Sigma-Aldrich; St Louis, MO). The digested sample was centrifuged at 400 g 
during 5 minutes to separate floating mature adipocytes from SVF that are compacted at the bottom of the tube.

RNA isolation and quantitative real-time PCR.  Total RNA was isolated from C3H10T1/2 cells using 
GeneJET RNA Purification kit (Thermo Scientific, MA, USA) according to the manufacturer’s recommendations. 
Quantitative real-time PCR was performed using a Real Time PCR Systems Step One Plus (Applied Biosystems/
Thermo Fisher Scientific, MA, USA) with specific Taqman qRT-PCR primers as shown in Table 1. The levels of 
gene expression were normalized using β-actin in C3H10T1/2 cells as housekeeping gene, and were expressed 
with respect to the average value in the control group.

Immunochemistry.  Differentiated and non-differentiated C3H10T1/2 cells were cultured in glass slides 
inside sterile Petri dishes. Cells were fixed in 96% ethanol during 30 minutes before epitope retrieval in EnVision 
FLEX target solution (pH 9) for 20 min in a microwave oven. Then, the slides were cooled to room temperature 
for 10 minutes and submerged in Dako wash buffer for 5 min. The immunostaining protocol included the follow-
ing steps: (1) Incubation in EnVision FLEX peroxidase-blocking reagent (Dako) for 10 min; (2) incubation with 
anti- FNDC5 rabbit monoclonal (RabMab Abcam (Cambridge, UK) at a dilution of 1/100 in EnVision FLEX 
Antibody Diluent overnight at 36 °C; (3) secondary goat anti-rabbit IgG-HRP (Santa Cruz Biotechnology) during 
30 minutes; (4) incubation in substrate working solution (mix) (3,3′-diaminobenzidine tetrahydrochloridechro-
mogen solution) (Dako) for 10 min; (5) EnVision FLEX hematoxylin (Dako) for 9 min. For immunofluorescence 
a secondary antibody Alexa Fluor® 488 in 1% BSA/PBST was used (1 h, RT), and DAPI to counterstain the cell 
nuclei (Invitrogen). Digital images of cells were acquired with a Zeiss Axio Vert.A1 fluorescence microscope (Carl 
Zeiss AG, Oberkochen, Germany).

For human adipose samples tissues were fixed in 10% formalin and analyzed using the same protocol as 
described for cell line but using a linker to improve the signal due to the high lipid fraction contained in human 
adipocytes.

GENE MOUSE PRIMERS

β-actin Mm00607939_s1

FNDC5 Mm01151543_m1

ADIPOQ Mm00456425_m1

PPARγ Mm00440940_m1

PGC1α Mm01208835_m1

UCP1 Mm01244861_m1

SIc2a4 (GLUT4) Mm00436615_m1

Table 1.   Taqman qRT-primers commercial reference for each analysed gene.
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Immunoblotting.  Protein extracts from whole tissue samples and secretomes were processed as previously 
described17,34. For 1-D western blotting, 50 μg of adipose tissue/C3H10T1/2 cells secreted proteins, and 30 μg 
of whole tissue/cell extracts from at least four independent experiments were separated in SDS-PAGE gels and 
electroblotted onto PVDF membranes. Equal loading was confirmed by membrane staining with Ponceau S 
(Sigma-Aldrich; St Louis, MO) in the case of secretome protein extracts, or by measuring the amount of GAPDH 
in whole tissue protein extracts. For 2-D western blotting, 50 μg of protein were taken into a final volume of 
120 μl in 2-DE sample buffer containing 5 M urea, 2 M thiourea, 2 mM tributylphosphine, 65 mM DTT, 65 mM 
CHAPS and 0.15 M NDSB-256. Ampholytes were added to the sample at 0.1% servalyte 3–10, 0.05% servalyte 
2–4 and 9–11 (SERVA, Heidelberg, Germany). 3–10 NL 7 cm IPG strips (BioRad, CA) were actively rehydrated 
in the sample and IEF was carried out in a Protean IEF cell following the manufacturer protocol (BioRad, CA). 
Following focusing, the IPG strips were immediately equilibrated for 20 min in 4 M urea, 2 mM thiourea, 12 mM 
DTT, 50 mM Tris pH 6.8, 2% SDS, and 30% glycerol. The IPG strips were placed on top of the second dimension 
gels (15% SDS-PAGE) and embedded with 1% melted agarose. Electrophoresis and immunodetection was con-
ducted as for 1-D western blot.

Primary anti- FNDC5 Rabbit monoclonal (ab174833, aa 50–150) and anti-UCP-1 (ab10983) were purchased 
from Abcam (Cambridge, UK); anti-PPARγ, anti-Akt and anti-p-Akt (Ser473) from Cell Signaling Technology 
(MA, USA); anti-PGC1α, FABP3 and adiponectin from Santa Cruz Biotechnology Inc. (CA, USA); and 
anti-GAPDH was purchased from Life Technologies Ltd (Paisley, UK).

To asses FNDC5 antibody specificity, the immunizing/blocking peptide (FNDC5 peptide ab204133) was 
purchased from the same manufacturer as the antibody (Abcam, Cambridge, UK). Antibody blocking was per-
formed by adding 2 ug of peptide for 30 minutes at room temperature.

For FNDC5 immunoprecipitation, 800 ug of total protein was incubated with 2 µg of anti-FNDC5 mon-
oclonal antibody (Abcam, Cambridge, UK) overnight at 4 °C, followed by the addition of 60 µL of 50% pro-
tein A/G-agarose beads (Santa Cruz Biotechnology) for 2 h at 4 °C. After incubation, beads were washed three 
times with RIPA buffer. The pelleted beads were resuspended in Laemmli sample buffer and boiled at 95 °C for 
immunoblotting.

To perform the AKT pathway phosphorylation array for semi-quantitative detection of 18 phosphorylated 
proteins cells were deprived 2 hours in low glucose (1 g/L) cell culture medium followed by 10 minutes stimulation 
with 100 nM insulin following the manufacturer instructions (RayBio Biotech, Inc GA, USA).

Measurement of FNDC5/irisin by ELISA.  The quantitative measurement of irisin in blood plasma, cell 
lysates and secretomes was performed using a commercial competitive enzyme-linked immunosorbent assay 
(ELISA) AG-45A-0046YEK-KI01 (Adipogen, Switzerland) with a sensitivity of 1ng/ml and a detection range 
of 0.001–5 µg/mL according to manufacturer’s instructions. The absorbance from each sample was measured in 
duplicate using a spectrophotometric microplate reader at wavelength of 450 nm (Versamax Microplate Reader; 
Associates of Cape Cod Incorporated, East Falmouth, MA).

ExCelligence proliferation and differentiation analysis.  Cell proliferation and differentiation analy-
sis was assessed by using the label-free and real-time monitoring xCELLigence system (ACEA Biosciences, San 
Diego, CA). Under this platform, Cell index (CI) was the parameter used to represent cell status based on the 
measured electrical impedance35 Briefly, 3000 cells/well were seeded (E-plates 16 wells) and incubated for six days 
to observe differences in the proliferation pattern. In the case of the differentiation analysis, cells were allowed to 
reach a confluence of about 90% before adding the differentiation cocktail as described above.

Functional studies with conditioned secretomes.  Cells were seeded to confluence and differenti-
ated with the standard adipogenic cocktail for two days. After this induction, cells were treated with medium 
containing 10% serum-free conditioned secretome for 24 hours with or without previous blockage of FNDC5/
irisin. FNDC5/irisin blocking was performed by incubating obese secretomes with 2 µg of FNDC5 antibody 
(Anti-FNDC5 rabbit monoclonal Abcam) during 30 minutes at room temperature. Conditioned secretome 
treatments were performed in three experimental settings: (a) control and FNDC5-KO C3H10T1/2 cells with 
human VAT and SAT obese secretome; (b) control and FNDC5-KO C3H10T1/2 cells with human VAT and SAT 
healthy secretome; and (c) FNDC5-KO C3H10T1/2 cells with C3H10T1/2 control cell secretomes. Treatments 
with plasma were performed by using the plasma from the corresponding secretome patient at 10% in serum-free 
medium following the same protocol as for secretomes. Functional experiments of Fig. 4 performed on totally 
differentiated cells (day 10) were done as the above by treating cells with 10% obese VAT and SAT secretomes for 
24 hours.

Insulin resistance model.  High glucose and high insulin (HGHI) model was performed as previously 
described36. Briefly, cells were differentiated until day 10, washed three times with PBS and incubated during 
2 hours in low glucose (1 g/L) cell culture medium. Cells were then cultured in high glucose (4.5 g/L) and high 
insulin (100 nM) serum-free medium for 24 hours. After three PBS washing steps, cells were stimulated with 
insulin at 100 nM for 10 minutes.

Statistical analysis.  Results are presented as mean ± SE of at least three independent experiments, and 
each experiment was conducted at least in triplicate. Statistical significance among multiple groups was analyzed 
by one-way Anova-Kruskall Wallis test followed by Dunn’s multiple comparison test or two-way ANOVA with 
post hoc Bonferroni correction for multiple comparisons, and Mann-Whitney U test for comparison of results 
between two groups using GraphPad Prism 5 software. P ≤ 0.05 was considered statistical significant.
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