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1. Introduction

Sobolev’s spaces are a fundamental tool in real analysis, for instance, in the use of vari-
ational methods to solve boundary value problems in ordinary and partial differential
equations and difference equations. In spite of this, theory for functions defined on an
arbitrary bounded open interval of the real numbers is well known, see [2], and for func-
tions defined on an arbitrary bounded subset of the natural numbers is trivial, as far as
we know, for functions defined on an arbitrary time scale, it has not been studied before.

The aim of this paper is to give an introduction to Sobolev’s spaces of functions defined
on a closed interval [a,b]∩T of an arbitrary time scale T endowed with the Lebesgue Δ-
measure. In Section 2, we gather together the concepts one needs to read this paper, such
as the Lp spaces linked to the Lebesgue Δ-measure and absolutely continuous functions
on an arbitrary closed interval of T. The most important part of this paper is Section 3
where we define the first-order Sobolev’s spaces as the space of L

p
Δ([a,b)∩T) functions

whose generalized Δ-derivative belongs to L
p
Δ([a,b)∩ T), moreover, we study some of

their properties by establishing an equivalence between them and the usual Sobolev’s
spaces defined on an open interval of the real numbers. Section 4 is devoted to the gener-
alization of Sobolev’s spaces to order n≥ 2.

2. Preliminaries

The Lebesgue Δ-measure μΔ was defined in [1, Section 5.7] or in [5, Section 5] as the
Carathéodory extension of a set function and it may be characterized in terms of
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well-known measures as the following result shows; we refer the reader to [6–8] for a
broad introduction to measure and integration theory.

Proposition 2.1. The Lebesgue Δ-measure is defined over the Lebesgue measurable subsets
of T; moreover, it satisfies the following equality:

μΔ =

⎧
⎪⎪⎨

⎪⎪⎩

λ+
∑

i∈I

(
σ
(
ti
)− ti

) · δti +μM , if M ∈ T,

λ+
∑

i∈I

(
σ
(
ti
)− ti

) · δti , if M �∈ T, (2.1)

where {ti}i∈I , I ⊂N, is the set of all right-scattered points of T, M is the supremum of T, λ
is the Lebesgue measure, δti is the Dirac measure concentrate at ti, and μM is a degenerate
measure defined as μM(A)= 0 ifM �∈A and μM(A)= +∞ ifM ∈ A.

Proof. From properties of measure, one can deduce relation (2.1) for the outer measures
linked to these measures which plainly yields to (2.1). �

As a straightforward consequence of equality (2.1), one can deduce the following for-
mula to calculate the Lebesgue Δ-integral; this formula was proved in [4], nevertheless,
we remark that this argument is more simple than that.

Proposition 2.2. Let E ⊂ T be a Δ-measurable set. If f : T→R is Δ- integrable on E, then
∫

E
f (s)Δs=

∫

E
f (s)ds+

∑

i∈IE

(
σ
(
ti
)− ti

) · f (ti
)
+ r( f ,E), (2.2)

where

r( f ,E)=
⎧
⎨

⎩

μM(E) · f (M), ifM ∈ T,
0, ifM �∈ T, (2.3)

IE := {i∈ I : ti ∈ E} and {ti}i∈I , I ⊂N, is the set of all right-scattered points of T.
Definition 2.3. Let A⊂ T. A is called Δ-null set if μΔ(A)= 0. Say that a property P holds
Δ-almost everywhere (Δ-a.e.) on A, or for Δ-almost all (Δ-a.a.) t ∈ A if there is a Δ-null
set E ⊂A such that P holds for all t ∈ A\E.
Definition 2.4. Let E ⊂ T be a Δ-measurable set and let p ∈ R̄≡ [−∞,+∞] be such that
p ≥ 1 and let f : E→ R̄ be a Δ-measurable function. Say that f belongs to L

p
Δ(E) provided

that either
∫

E
| f |p(s) Δs <∞ if p ∈R, (2.4)

or there exists a constant C ∈R such that

| f | ≤ C Δ-a.e. on E if p = +∞. (2.5)

Note that equality (2.2) guarantees that in order for f : T→ R to belong to L
p
Δ(T),

p ∈R, and T bounded from above, it is necessary that f (M)= 0. We will work with the
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L
p
Δ(J

o) spaces, where J = [a,b]∩T, a,b ∈ T, a < b, is an arbitrary closed subinterval of T
and Jo = [a,b)∩T; we state some of their properties whose proofs can be found in [6–8].

Theorem 2.5. Let p ∈ R̄ be such that p ≥ 1. Then, the set L
p
Δ(J

o) is a Banach space together
with the norm defined for every f ∈ L

p
Δ(J

o) as

‖ f ‖Lp
Δ
:=

⎧
⎪⎪⎨

⎪⎪⎩

[∫

Jo
| f |p(s)Δs

]1/p

, if p ∈R,
inf
{
C ∈R : | f | ≤ C Δ-a.e. on Jo

}
, if p = +∞.

(2.6)

Moreover, L2Δ(J
o) is a Hilbert space together with the inner product given for every ( f ,g)∈

L2Δ(J
o)×L2Δ(J

o) by

( f ,g)L2Δ :=
∫

Jo
f (s) · g(s)Δs. (2.7)

Proposition 2.6. Suppose p ∈ R̄ and p ≥ 1. Let p′ ∈ R̄ be such that 1/p+1/p′ = 1.

Then, if f ∈ L
p
Δ(J

o) and g ∈ L
p′
Δ (J

o), then f · g ∈ L1Δ(J
o) and

‖ f · g‖L1Δ ≤ ‖ f ‖Lp
Δ
· ‖g‖

L
p′
Δ
. (2.8)

This expression is called Hölder’s inequality and Cauchy-Schwarz’s inequality whenever
p = 2.

Proposition 2.7. If p ∈R and p ≥ 1, then, the set Cc(Jo) of all continuous functions on Jo

with compact support in Jo is dense in L
p
Δ(J

o).

As a consequence of Proposition 2.2, one can establish the following equivalence be-
tween the L

p
Δ(J

o) spaces and the usual Lp([a,b]) spaces linked to the Lebesgue measure.

Corollary 2.8. Let p ∈ R̄ with p ≥ 1, let f : J → R̄, and let f̃ : [a,b]→ R̄ be the extension
of f to [a,b] defined as

f̃ (t) :=
⎧
⎨

⎩

f (t), if t ∈ J ,

f (ti), if t ∈ (ti,σ
(
ti
))
, for some i∈ IJ ,

(2.9)

with IJ := {i∈ I : ti ∈ J} and {ti}i∈I , I ⊂N, is the set of all right-scattered points of T.
Then, f ∈ L

p
Δ(J

o) if and only if f̃ ∈ Lp([a,b]). In this case,

‖ f ‖Lp
Δ
= ‖ f̃ ‖Lp . (2.10)

As we know from general theory of Sobolev’s spaces, another important class of func-
tions is just the absolutely continuous functions.

Definition 2.9. A function f : J →R is said to be absolutely continuous on J , f ∈ AC(J),
if for every ε > 0, there exists a δ > 0 such that if {[ak,bk)∩ T}nk=1, with ak,bk ∈ J , is
a finite pairwise disjoint family of subintervals of J satisfying

∑n
k=1(bk − ak) < δ, then

∑n
k=1 | f (bk)− f (ak)| < ε.
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These functions are precisely that for which the fundamental theorem of Calculus
holds.

Theorem 2.10 [3, Theorem 4.1]. A function f : J →R is absolutely continuous on J if and
only if f is Δ-differentiable Δ-a.e. on Jo, f Δ ∈ L1Δ(J

o) and

f (t)= f (a) +
∫

[a,t)∩T
f Δ(s)Δs, ∀t ∈ J. (2.11)

Absolutely continuous functions on T verify the integration by parts formula.

Theorem 2.11. If f ,g : J →R are absolutely continuous functions on J , then f · g is abso-
lutely continuous on J and the following equality is valid:

∫

Jo

(
f Δg + f σgΔ

)
(s)Δs= f (b)g(b)− f (a)g(a)=

∫

Jo

(
f gΔ + f Δgσ

)
(s)Δs. (2.12)

They are linked to the class of absolutely continuous functions on [a,b] as the follow-
ing property shows.

Corollary 2.12 [3, Corollary 3.1]. Assume that f : J →R and define f̄ : [a,b]→R as

f̄ (t) :=

⎧
⎪⎪⎨

⎪⎪⎩

f (t), if t ∈ J ,

f
(
ti
)
+

f
(
σ
(
ti
))− f

(
ti
)

σ
(
ti
)− ti

(
t− ti

)
, if t ∈ (ti,σ

(
ti
))
, for some i∈ IJ ,

(2.13)

with IJ := {i∈ I : ti ∈ J} and {ti}i∈I , I ⊂N, is the set of all right-scattered points of T.
Then, f is absolutely continuous on J if and only if f̄ is absolutely continuous on [a,b].

Moreover, for every n∈N, n≥ 1, we will denote as

ACn(J) := {x ∈AC(J) : xΔ
j ∈AC

(
Jκ

j)∀ j ∈ {1, . . . ,n}}, (2.14)

where for every j ∈N, j ≥ 1, Jκ
j = [a,ρj(b)]∩T.

3. First-order Sobolev’s spaces

The aim of this section is to study the first-order Sobolev’s spaces on J equipped with the
Lebesgue Δ-measure.

Definition 3.1. Let p ∈ R̄ be such that p ≥ 1 and u : J → R̄. Say that u belongs toW
1,p
Δ (J)

if and only if u∈ L
p
Δ(J

o) and there exists g : Jκ→ R̄ such that g ∈ L
p
Δ(J

o) and
∫

Jo

(
u ·ϕΔ

)
(s)Δs=−

∫

Jo

(
g ·ϕσ

)
(s)Δs ∀ϕ∈ C1

0,rd

(
Jκ
)

(3.1)

with

C1
0,rd

(
Jκ
)
:= { f : J −→R : f ∈ C1

rd

(
Jκ
)
, f (a)= 0= f (b)

}
(3.2)

and C1
rd(J

κ) is the set of all continuous functions on J such that they are Δ-differentiable
on Jκ and their Δ-derivatives are rd-continuous on Jκ.
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The integration by parts formula for absolutely continuous functions on J establishes
that the relation

V
1,p
Δ (J) := {x ∈AC(J) : xΔ ∈ L

p
Δ

(
Jo
)}⊂W

1,p
Δ (J) (3.3)

is true for every p ∈ R̄ with p ≥ 1. We will show that both sets are, as class of functions,
equivalent; for this purpose, we need the following lemmas.

Lemma 3.2. Let f ∈ L1Δ(J
o) be such that the following equality is true:
∫

Jo
( f ·u)(s)Δs= 0, ∀u∈ Cc

(
Jo
)
, (3.4)

then

f ≡ 0 Δ-a.e. on Jo. (3.5)

Proof. Fix ε > 0, the density of Cc(Jo) in L1Δ(J
o) guarantees the existence of f1 ∈ Cc(Jo)

such that ‖ f − f1‖L1Δ < ε, and so, by (3.4), we deduce that for every u ∈ Cc(Jo), it is true
that

∣
∣
∣
∣

∫

Jo

(
f1 ·u

)
(s)Δs

∣
∣
∣
∣≤ ‖u‖C(Jo) ·

∥
∥ f − f1

∥
∥
L1Δ
< ε ‖u‖C(Jo). (3.6)

Because the sets

A1 :=
{
s∈ Jo : f1(s)≥ ε

}
, A2 :=

{
s∈ Jo : f1(s)≤−ε

}
(3.7)

are compact and disjoint subsets of Jo, Urysohn’s lemma allows to construct a function
u0 : Jo→R which belongs to Cc(Jo) and it verifies

u0 ≡
⎧
⎨

⎩

1; on A1,

−1; on A2,

∣
∣u0

∣
∣≤ 1 on Jo; (3.8)

so that, by defining A := A1∪A2, we have that
∫

Jo

∣
∣ f1
∣
∣(s)Δs=

∫

Jo

(
f1 ·u0

)
(s)Δs−

∫

Jo\A

(
f1 ·u0

)
(s)Δs

+
∫

Jo\A

∣
∣ f1
∣
∣(s)Δs≤ ε+2ε(b− a).

(3.9)

As a consequence of the arbitrary choice of ε > 0, we achieve (3.5). �

Lemma 3.3. Let f ∈ L1Δ(J
o). Then, a necessary and sufficient condition for the validity of the

equality
∫

Jo

(
f ·ϕΔ

)
(s)Δs= 0, for every ϕ∈ C1

0,rd

(
Jκ
)
, (3.10)

is the existence of a constant c ∈R such that

f ≡ c Δ-a.e. on Jo. (3.11)
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Proof. The necessary condition is consequence of the fundamental theorem of Calculus.
Conversely, fix u∈ Cc(Jo) arbitrary; by defining h,ϕ : J →R as

h(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t)−
∫

Jo u(r)Δr

b− a
, if t ∈ Jo,

−
∫

Jo u(r)Δr

b− a
, if t = b,

ϕ(t) :=
∫

[a,t)∩T
h(s)Δs, ∀t ∈ J ,

(3.12)

the fundamental theorem of Calculus establishes that ϕ∈ C1
0,rd(J

κ) and so, equality (3.10)
yields to

0=
∫

Jo

[

f ·
(

u−
∫

Jo u(r)Δr

b− a

)]

(s)Δs

=
∫

Jo

[(

f −
∫

Jo f (r)Δr

b− a

)

·u
]

(s)Δs.

(3.13)

Therefore, Lemma 3.2 allows to deduce (3.11) with c = ∫Jo f (r)Δr/(b− a). �

Now, we are able to prove the characterization of functions in W
1,p
Δ (J) in terms of

functions in V
1,p
Δ (J).

Theorem 3.4. Suppose that u ∈W
1,p
Δ (J) for some p ∈ R̄ with p ≥ 1 and that (3.1) holds

for g ∈ L
p
Δ(J

o). Then, there exists a unique function x ∈V
1,p
Δ (J) such that the equalities

x = u, xΔ = g Δ-a.e. on Jo (3.14)

are satisfied.
Moreover, if g ∈ Crd(Jκ), then there exists a unique function x ∈ C1

rd(J
κ) such that

x = u Δ-a.e. on Jo, xΔ = g on Jκ. (3.15)

Proof. Define v : J →R as

v(t) :=
∫

[a,t)∩T
g(s)Δs, ∀t ∈ J ; (3.16)

the fundamental theorem of Calculus guarantees that v ∈ V
1,p
Δ (J) and by the integration

by parts formula, we have that for every ϕ∈ C1
0,rd(J

κ),

∫

Jo

[
(v−u) ·ϕΔ

]
(s)Δs=−

∫

Jo

[(
vΔ− g

) ·ϕσ
]
(s)Δs= 0; (3.17)

so that, Lemma 3.3 ensures the existence of a constant c ∈R such that v−u≡ c Δ-almost
everywhere on Jo. As a consequence of the fundamental theorem of Calculus we conclude
that function x : J → R defined as x(t) := v(t)− c for all t ∈ J is the unique function in

V
1,p
Δ (J) for which (3.14) is valid.
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Furthermore, if g ∈ Crd(Jκ), then the fundamental theorem of Calculus establishes
that x ∈ C1

rd(J
κ) and xΔ = g on Jκ. �

By identifying every function inW
1,p
Δ (J) with its absolutely continuous representative

in V
1,p
Δ (J) for which (3.14) holds, the set W

1,p
Δ (J) can be endowed with the structure of

Banach space.

Theorem 3.5. Assume p ∈ R̄ and p ≥ 1. The set W
1,p
Δ (J) is a Banach space together with

the norm defined for every x ∈W
1,p
Δ (J) as

‖x‖W1,p
Δ

:= ‖x‖Lp
Δ
+
∥
∥xΔ

∥
∥
L
p
Δ
. (3.18)

Moreover, the set H1
Δ(J) :=W1,2

Δ (J) is a Hilbert space together with the inner product
given for every (x, y)∈H1

Δ(J)×H1
Δ(J) by

(x, y)H1
Δ
:= (x, y)L2Δ +

(
xΔ, yΔ

)

L2Δ
. (3.19)

Proof. Let {xn}n∈N be a Cauchy sequence in W
1,p
Δ (J); Theorem 2.5 guarantees the exis-

tence of u,g ∈ L
p
Δ(J

o) such that {xn}n∈N and {xΔn }n∈N converge strongly in L
p
Δ(J

o) to u and
g, respectively, and so, by taking limits in the equality

∫

Jo

(
xn ·ϕΔ

)
(s)Δs=−

∫

Jo

(
xΔn ·ϕσ

)
(s)Δs, ϕ∈ C1

0,rd(J
κ), (3.20)

we conclude that u ∈W
1,p
Δ (J). Thereby, it follows from Theorem 3.4, that there exists

x ∈W
1,p
Δ (J) such that {xn}n∈N converges strongly inW

1,p
Δ (J) to x. �

3.1. Some properties. We will derive some properties of the Banach space W
1,p
Δ (J); the

first one asserts thatW
1,p
Δ (J) is continuously inmersed intoC(J) equipped with the supre-

mum norm ‖ · ‖C(J).
Proposition 3.6. Assume p ∈ R̄ with p ≥ 1, then there exists a constant K > 0, only de-
pendent on b− a, such that the inequality

‖x‖C(J) ≤ K · ‖x‖W1,p
Δ

(3.21)

holds for all x ∈W
1,p
Δ (J) and hence, the immersionW

1,p
Δ (J)↩C(J) is continuous.

Proof. Fix x ∈W
1,p
Δ (J). Let t,T ∈ J be such that |x(t)| := mins∈T |x(s)| and |x(T)| :=

maxs∈T |x(s)|; there is no harm in assuming t ≤ T . The fundamental theorem of Calculus
and Hölder’s inequality lead to

‖x‖C(J) ≤ |x(t)|+
∫

[t,T)∩T
|xΔ|(s)Δs≤ K · ‖x‖W1,p

Δ
, (3.22)

for some K > 0, only dependent on b− a. �

The strong compactness criterion in C(J) and Proposition 3.6 allow to prove the fol-
lowing compactness property in C(J).
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Proposition 3.7. Let p ∈ R̄ be such that p ≥ 1. Then, the following statements are true.

(1) If p > 1, then the immersionW
1,p
Δ (J)↩C(J) is compact.

(2) If p = 1, then the immersionW
1,p
Δ (J)↩C(J) is compact if and only if every point of

J is isolated.

Proof. Denote by �p the closed unit ball inW
1,p
Δ (J); we know from Theorem 3.4 that �p

is closed and bounded in C(J).
If p > 1, then the fundamental theorem of Calculus and Hölder’s inequality ensure

that �p is equicontinuous.
On the other hand, if p = 1, then it is clear that �p is equicontinuous whenever every

point of J is isolated, while if there exists t0 ∈ T such that t0 is not isolated, then we will
prove that �p is not equicontinuous.

Let S := 1/(b− a+1), let δ > 0 be arbitrary and let sδ ∈ (t0− δ, t0 + δ)∩T be such that
sδ �= t0; it is not a loss of generality assuming sδ < t0.

Define fδ : J →R as

fδ :=
⎧
⎪⎨

⎪⎩

S

t0− sδ
, if t ∈ ([sδ , t0

)∩ J
)
,

0, if t �∈ ([sδ , t0
)∩ J

)
;

(3.23)

the fundamental theorem of Calculus asserts that Fδ : J →R given by

Fδ(t) :=
∫

[a,t)∩T
fδ(s)Δs, t ∈ J , (3.24)

belongs to �p; so that, as

Fδ
(
t0
)−Fδ

(
sδ
)=

∫

[sδ ,t0)∩T
fδ(s)Δs= S, (3.25)

we conclude that �p is not equicontinuous.
Therefore, Arzelà-Ascoli theorem establishes our claims. �

As a consequence of Proposition 3.6, we achieve the following sufficient condition for
strong convergence in C(J).

Corollary 3.8. Let p ∈ R̄ be such that p > 1, let {xm}m∈N ⊂W
1,p
Δ (J), and let x ∈W

1,p
Δ (J).

If {xm}m∈N converges weakly in W
1,p
Δ (J) to x, then {xm}m∈N converges strongly in C(J)

to x.

Proof. Suppose {xm}m∈N converges weakly in W
1,p
Δ (J) to x; Proposition 3.6 establishes

that {xm}m∈N converges weakly in C(J) to x and so, as {xm}m∈N is equicontinuous,
{xm}m∈N converges strongly in C(J) to x. �

Moreover, Proposition 3.6 allows to deduce the following equivalence between the

Sobolev’s spaces on J ,W
1,p
Δ (J), and the usual Sobolev’s spaces on (a,b),W1,p((a,b)).

Corollary 3.9. Suppose that p ∈ R̄ and p ≥ 1, x : J → R and x̄ : [a,b]→ R is the exten-

sion of x to [a,b] defined in (2.13). Then, x belongs to W
1,p
Δ (J) if and only if x̄ belongs to

W1,p((a,b)).
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Moreover, there exist two constants K1,K2 > 0 which only depend on (b− a) such that the
inequalities

K1 · ‖x̄‖W1,p ≤ ‖x‖W1,p
Δ
≤ K2 · ‖x̄‖W1,p (3.26)

are satisfied for every x ∈W
1,p
Δ (J) and p ∈ R̄ with p ≥ 1.

Proof. Let x̄, x̃Δ : [a,b]→ R be the extensions of x and xΔ to [a,b] defined in (2.13) and
(2.9), respectively; it is not difficult to deduce the following equality:

x̃Δ = x̄′ a.e. on [a,b]. (3.27)

Therefore, Corollaries 2.8 and 2.12 and Proposition 3.6 yield to the result. �

As an application of the previous result, we will prove that some properties known

for W1,p((a,b)) are directly transferred to W
1,p
Δ (J); in order to do this, we will use the

following result.

Proposition 3.10. If y : [a,b]→ R belongs to W1,p((a,b)) for some p ∈ R̄ with p ≥ 1,

then y|J belongs to W
1,p
Δ (J). Moreover, there exists a constant T > 0 which only depends on

(b− a) such that

‖y|J‖W1,p
Δ
≤ T · ‖y‖W1,p , ∀y ∈W1,p((a,b)

)
, p ∈ R̄, p ≥ 1. (3.28)

Proof. Let R= {ti}i∈I , I ⊂N, be the set of all right-scattered points of T, let IJo = {i∈ I ,
ti ∈ Jo} and suppose y ∈W1,p((a,b)) for some p ∈ R̄ with p ≥ 1. The classical funda-
mental theorem of Calculus allows to assert that

(
y|J
)Δ(

ti
)=

∫

[ti,σ(ti)] y
′(s)ds

σ
(
ti
)− ti

, for every i∈ IJo ,

(
y|J
)Δ = y′ a.e. on Jo∩ (T\R).

(3.29)

Therefore, if p = +∞, then it is clear that y|J ∈W
1,p
Δ (J) and (3.28) holds while if p ∈ R,

then, by (2.2), we have that

∥
∥
(
y|J
)Δ∥∥

p

L
p
Δ
≤
∫

Jo∩(T\R)

∣
∣y′
∣
∣p(s)ds+

∑

i∈IJo

∫

[ti,σ(ti)]

∣
∣y′
∣
∣p(s)ds≤ ‖y‖pW1,p , (3.30)

moreover, as we know that

∥
∥y|J

∥
∥
L
p
Δ
≤ (b− a)1/p · ‖y‖C([a,b]) ≤ C · (b− a)1/p · ‖y‖W1,p , (3.31)

for some C > 0, it turns out that y|J ∈W
1,p
Δ (J) and (3.28) is true. �

Next, we deduce some properties inW
1,p
Δ (J) from the analogous ones inW1,p((a,b)).

Corollary 3.11. Let p ∈ R̄ be such that p ≥ 1. Then, for every q ∈ [1,+∞), the inmersion

W
1,p
Δ (J)↩L

q
Δ(J

o) is compact.
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Proof. Fix q ∈ [1,+∞); as a consequence of Proposition 3.7 and the fact that the inmer-
sion C(J)↩ L

q
Δ(J

o) is continuous, it only remains to prove that �1 is compact in L
q
Δ(J

o)
whenever J has at least one not isolated point.

Assume the existence of a not isolated point t0 ∈ J and let {xn}n∈N be a sequence
in �1. Corollary 3.9 ensures that {xn}n∈N, defined in (2.13), is a bounded sequence in
W1,1((a,b)) and hence, there exist {xnk}k∈N and y ∈ Lq([a,b]) such that {xnk}k∈N con-
verges strongly in Lq([a,b]) to y. By defining x := y|J , it is not difficult to prove that
{xnk}k∈N converges strongly in L

q
Δ(J

o) to x. �

Corollary 3.12. The Banach spaceW
1,p
Δ (J) is reflexive for every p ∈ (1,+∞) and separable

for all p ∈ [1,+∞).

Proof. Let p ∈ R̄ be such that p ≥ 1. We know, from Corollary 3.9, that the operator Tp :

W
1,p
Δ (J)→W1,p((a,b)) given for every x ∈W

1,p
Δ (J) by Tp(x) := x̄, defined in (2.13), is lin-

ear and continuous. It follows from Corollary 3.9 and Proposition 3.10 that Tp(W
1,p
Δ (J))

is a closed subspace of W1,p((a,b)). Therefore, since W1,p((a,b)) is reflexive whenever

p ∈ (1,+∞) and separable whenever p ∈ [1,+∞), Tp(W
1,p
Δ (J)) satisfies the same proper-

ties. �

Corollary 3.13. If x ∈W
1,p
Δ (J) for some p ∈ [1,+∞), then there exists a sequence of in-

finitely differentiable functions with compact support in R, {yn}n∈N such that {yn|J}n∈N
converges strongly inW

1,p
Δ (J) to x.

Proof. Corollary 3.9 asserts that x̄ : [a,b]→R, defined in (2.13), belongs toW1,p((a,b));
so that, there exists a sequence {yn}n∈N of infinitely differentiable functions with compact
support in R such that {yn|[a,b]}n∈N converges to x̄ in W1,p((a,b)). Hence, our claim
follows from equality x̄|J = x and Proposition 3.10. �

3.2. The spaces W
1,p
0,Δ(J). Corollary 3.13 guarantees the density of the set C1

rd(J
κ) in

W
1,p
Δ (J) for every p ∈ [1,+∞); however, for an arbitrary bounded time scale it is not true

that the set of test functions defined in (3.2), C1
0,rd(J

κ), is dense inW
1,p
Δ (J); this section is

devoted to prove some properties concerning the closure of C1
0,rd(J

κ) inW
1,p
Δ (J).

Definition 3.14. Let p ∈R be such that p ≥ 1, define the setW
1,p
0,Δ(J) as the closure of the

set C1
0,rd(J

κ) inW
1,p
Δ (J). Denote as H1

0,Δ(J) :=W1,2
0,Δ(J).

The spaces W
1,p
0,Δ(J) and H1

0,Δ(J) are endowed with the norm induced by ‖ · ‖W1,p
Δ
, de-

fined in (3.18), and the inner product induced by (·,·)H1
Δ
, defined in (3.19), respectively.

SinceW
1,p
0,Δ(J) is closed inW

1,p
Δ (J), Theorem 3.5 and Corollary 3.12 ensure thatW

1,p
0,Δ(J) is

a separable Banach space and reflexive whenever p > 1 and H1
0,Δ(J) is a separable Hilbert

space. The spaceW
1,p
0,Δ(J) is characterized in the following result.

Proposition 3.15. Assume x ∈W
1,p
Δ (J). Then, x ∈W

1,p
0,Δ(J) if and only if x(a)= 0= x(b).
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Proof. Firstly, suppose that x ∈W
1,p
0,Δ(J), so that there exists a sequence {xn}n∈N⊂C1

0,rd(J
κ)

such that {xn}n∈N converges strongly inW
1,p
Δ (J) to x. Therefore, inequality (3.21) allows

to assert that x(a)= 0= x(b).
Conversely, assume that x(a)= 0= x(b). We know from Corollary 3.9 that x̄ : [a,b]→

R, defined in (2.13), belongs to W
1,p
0 ((a,b)) and so, there exists a sequence {yn}n∈N ⊂

C1
c ((a,b)) which converges strongly in W1,p((a,b)) to x̄. By defining xn := yn|J , n ∈ N,

one can deduce that xn ∈ C1
0,rd(J

κ) for every n ∈ N and {xn}n∈N converges strongly in

W
1,p
Δ (J) to x. �

As a straightforward consequence of the previous result, Corollary 3.9, and the char-

acterization ofW
1,p
0 ((a,b)) we obtain the following criterion for belonging toW

1,p
0,Δ(T).

Corollary 3.16. Let p ∈ R be such that p ≥ 1, let x : J → R, and let x̄ : [a,b]→ R be the

extension of x to [a,b] defined in (2.13). Then, x ∈W
1,p
0,Δ(J) if and only if x̄ ∈W

1,p
0 ((a,b)).

By using Proposition 3.15, we are able to prove the validity of Poincaré’s inequality.

Proposition 3.17. Let p ∈R be such that p ≥ 1. Then, there exists a constant L > 0, only
dependent on (b− a), such that

‖x‖W1,p
Δ
≤ L ·∥∥xΔ∥∥Lp

Δ
, ∀x ∈W

1,p
0,Δ(J), (3.32)

that is, in W
1,p
0,Δ(J), the norm defined for every x ∈W

1,p
0,Δ(J) as ‖xΔ‖Lp

Δ
is equivalent to the

norm ‖ · ‖W1,p
Δ
.

Proof. Choose x ∈W
1,p
0,Δ(J); the fundamental theorem of Calculus and Proposition 3.15

allow to assert that the following inequality

∣
∣x(t)

∣
∣=

∣
∣
∣
∣x(a) +

∫

[a,t)∩T
xΔ(s)Δs

∣
∣
∣
∣=

∣
∣
∣
∣

∫

[a,t)∩T
xΔ(s)Δs

∣
∣
∣
∣≤

∥
∥xΔ

∥
∥
L1Δ

(3.33)

is valid for every t ∈ T. Thus, (3.32) follows from Hölder’s inequality. �

Remark 3.18. One can check that the function defined for every x, y∈H1
0,Δ(J) as(x

Δ, yΔ)L2Δ
is an inner product inH1

0,Δ(J) and its associated norm is equivalent to the norm associated
to (·,·)H1

Δ
.

4. Generalization to order n≥ 2

The aim of this section is to define recursively the nth-order Sobolev’s spaces on J for

n≥ 2,W
n,p
Δ (J), which consist in the Δ-antiderivatives of functions inW

n−1,p
Δ (Jκ).

Definition 4.1. Let n∈N, n≥ 2, let p ∈ R̄, p ≥ 1, and let u : J → R̄. Say that u belongs to

W
n,p
Δ (J) if and only if u∈W

n−1,p
Δ (J) and there exists g1 : Jκ→R such that g1 ∈W

n−1,p
Δ (Jκ)

and
∫

Jo

(
u ·ϕΔ

)
(s)Δs=−

∫

Jo

(
g1 ·ϕσ

)
(s)Δs, ∀ϕ∈ C1

0,rd

(
Jκ
)
. (4.1)
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It is easy to prove the following characterization of the setW
n,p
Δ (J).

Proposition 4.2. Suppose that u : J → R̄ is such that u∈ L
p
Δ(J

o), then u∈W
n,p
Δ (J) if and

only if there exist gj : Jκ
j → R̄, j ∈ {1, . . . ,n}, such that gj ∈ L

p
Δ((J

κj−1
)
o
),

∫

Jo

(
u ·ϕΔ

)
(s)Δs=−

∫

Jo

(
g1 ·ϕσ

)
(s)Δs, ∀ϕ∈ C1

0,rd

(
Jκ
)
, (4.2)

and for all j ∈ {2, . . . ,n},
∫

(Jκ j−1 )
o

(
gj−1 ·ϕΔ

)
(s)Δs=−

∫

(Jκ j−1 )
o

(
gj ·ϕσ

)
(s)Δs, ∀ϕ∈ C1

0,rd

(
Jκ

j)
, (4.3)

with

C1
0,rd

(
Jκ

j)
:= { f : Jκj−1 −→R : f ∈ C1

rd

(
Jκ

j)
, f (a)= 0= f

(
ρj−1(b)

)}
(4.4)

and C1
rd(J

κj
) is the set of all continuous functions on Jκ

j−1
such that they are Δ-differentiable

on Jκ
j
and their Δ-derivatives are rd-continuous on Jκ

j
.

The integration by parts formula for absolutely continuous functions on closed subin-
tervals of T establishes that the relation

V
n,p
Δ (J) := {x ∈ ACn−1(J) : xΔ

n ∈ L
p
Δ

((
Jκ

n−1)o)}⊂W
n,p
Δ (J) (4.5)

is true for every p ∈ R̄with p ≥ 1; moreover, both sets are, as class of functions, equivalent
as one can check in the following result.

Theorem 4.3. Suppose that u∈W
n,p
Δ (J) for some n∈N with n≥ 2, p ∈ R̄ with p ≥ 1 and

that (4.1) holds for g1 ∈ L
p
Δ(J

o). Then, there exists a unique function x ∈V
n,p
Δ (J) such that

x = u Δ-a.e. on Jo, xΔ
j = gj Δ-a.e. on

(
Jκ

j−1)o
, 1≤ j ≤ n, (4.6)

where Jκ
0 = J and gj : Jκ

j → R̄, 1≤ j ≤ n, are given in Proposition 4.2.

Inductively, one can prove that the setW
n,p
Δ (J) is endowedwith the structure of Banach

space.

Theorem 4.4. Assume n∈N, n≥ 2, p ∈ R̄ and p ≥ 1. The set W
n,p
Δ (J) is a Banach space

together with the norm defined for every x ∈W
n,p
Δ (J) as

‖x‖Wn,p
Δ

:=
n∑

j=0

∥
∥xΔ

j∥∥
L
p
Δ
, (4.7)

where xΔ
0 = x. Furthermore, the set Hn

Δ(J) :=Wn,2
Δ (J) is a Hilbert space together with the

inner product given for every (x, y)∈Hn
Δ(J)×Hn

Δ(J) by

(x, y)Hn
Δ
:=

n∑

j=0

(
xΔ

j
, yΔ

j)

L2Δ
. (4.8)
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Properties proved for the spaces W
1,p
Δ (J) can be derived for the spaces W

n,p
Δ (J); for

instance, we have the following.

Proposition 4.5. The immersion W
n,p
Δ (J)↩Cn−1(Jκn−1 ) is continuous; where Cn−1(Jκn−1 )

is the set of all functions defined on J with n− 1 continuous Δ-derivatives on Jκ
j
, 1 ≤ j ≤

n− 1.

Finally, by extending, whenever it is necessary, the function xΔ
n−1

to J as

xΔ
n−1(

ρj(b)
)= xΔ

n−1(
ρn−1(b)

) ∀ j ∈ {0, . . . ,n− 2}, (4.9)

with ρ0(b) = b, one can prove inductively the following relation between the Banach
spacesW

n,p
Δ (J) andWn,p((a,b)).

Theorem 4.6. Let n∈N, n≥ 2, let x : J →R be such that x ∈ Cn−1(Jκn−1 ).
Then, x ∈W

n,p
Δ (J) if and only if the function y : [a,b]→R defined for every t ∈ [a,b] as

y(t) :=
n−2∑

j=0
xΔ

j
(a)

(t− a) j

j!
+
∫

At

xΔn−1(sn−1
)
dsn−1 ···ds1 (4.10)

belongs to Wn,p((a,b)), where xΔn−1 : [a,b]→R is the extension of xΔ
n−1

: Jκ
n−1 →R defined

in (2.13) and

At :=
{(
s1, . . . ,sn−1

)∈ [a,b]n−1 : sn−1 < ··· < s1 < t
}
. (4.11)

Moreover, the following equalities

yn = xΔ
n

Δ-a.e. on Jκ
n
, yn−1 = xΔ

n−1
on Jκ

n−1
(4.12)

hold.
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