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Abstract: The purpose of this work is to outline a simple model to
assess the relative merits of different sampling grids for ocular aberrometry
and illustrate it with an example. While in traditional Hartmann-Shack
setups the sampling grid geometries have been somewhat restricted by the
geometries of the available microlens arrays, other techniques such as laser
ray tracing or spatially resolved refractometry allow for a greater freedom
of choice. For all available setups, including HS, it is worth studying
which of these choices perform better in terms of accuracy (closeness
of the obtained results to the actual ones) and precision (uncertainty
of the obtained results). Whilst the mathematical model presented in
this paper is quite general and it can be applied to optimise existing or
new aberrometers, the numerical results presented in the example are
only valid for the particular aberration sample used and centroiding al-
gorithms studied, and should not be generalised outside of these boundaries.
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1. Introduction

We present in this paper a simple model to assess quantitatively the relative merits of differ-
ent sampling grids for ocular aberrometry. There are usually different possible choices for the
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microlens arrays to be used in a Hartmann-Shack (HS) wavefront sensor, as well as for the
sampling patterns of sequential aberrometers such as laser ray-tracers or spatially resolved re-
fractometers. It is then worth developing an evaluation model to ascertain which grids will
perform better in terms of accuracy (closeness of the estimated aberration coefficients to the
actual ones) and precision (uncertainty of the results), for a given population and measuring
device.

By “sampling grid” we mean a given set of values for the following parameters: number
of subpupils, spatial distribution of their centers (square, hexagonal, polar lattice), subpupil
shape, size, and apodization (uniform irradiance vs gaussian apodization as in laser ray-tracing).
Although it is in principle possible to compare several grids building them and checking them
experimentally by measuring a given number of actual or model eyes with known aberrations
this is not always practical, especially if what is sought is to analyze the performance of a
relatively large set of grids and to assess the effects of modifying some of their parameters.
In this paper we present a complementary approach to cope with this problem, based on the
evaluation of the grid performance using equations derived from a small set of assumptions.
The performance of a grid is quantified by its first and second-moment error matrices which
provide, respectively, the expected and the mean squared differences between the actual and the
estimated aberrations, averaged over measurements and population. The required calculations
can be carried out straightforwardly, allowing in each particular case the selection of the best
grid candidates out of a given range of possible choices.

The accuracy and precision of the aberrations measured using a given sampling grid depend
not only on the particular parameters of that grid but also on the statistics of the aberrations
of the population, the measurement noise and, last but not least, the phase estimator,i.e. the
algorithm used to retrieve the wave aberration from the raw data provided by the sensor. All
these factors are included in this model. The population statistics is described by the first and
second-moment matrices whose elements are the average values of the aberration coefficients
in the population and the average values of their cross-products, respectively. The noise statis-
tics is included through the corresponding first and second-moment matrices of noise, which
give the average values of the measurement noise at each microlens and the averages of their
cross-products. Regarding the phase estimator, the only assumption made in this model is that it
is linear,i.e., that the aberration coefficients are estimated as linear combinations of the sensor
measurements (which is the usual case: except for some methods based on the use of, for in-
stance, neural networks, most estimation procedures used in aberrometry are linear. This holds
for the conventional least-squares approach as well as for any method based on the integration
of the measured slopes).

Given this dependence, it must be stressed that any statement about grid performance is not
absolute, but relative to the population, the sensor noise and the estimator chosen to calculate
the aberrations. These factors are necessary inputs of the evaluation process. In principle, then,
there is no “best grid” universally valid for all possible situations and choices. The model pre-
sented here is meant as a flexible tool for grid performance evaluation, and its use requires
substituting in each case the proper values for these input factors.

As an example of an application, we used the general equations presented in this paper to
compute the expected performance of several sampling grids with square, hexagonal and polar
geometry, for the aberration statistics of a population sample measured in the Department of
Optometry and Visual Science at The City University in London (UK) and a particular model
of sensor noise, assuming the use of the conventional unweighted linear least squares estima-
tor (LSQ) which has found a widespread use in eye aberrometry. This example is meant to
illustrate the application of the general equations to a particular case: the behavioral trends of
performance obtained on our study do no claim any validity beyond that range.
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The structure of this paper is as follows: in section 2 we present the general algebraic expres-
sions for the first and second-order estimation error. In section 3 these results are applied to the
assessment of the behaviour of several sampling grids for an example with particular values of
statistics, noise and estimator. Finally, discussion and conclusions are drawn in section 4.

2. Matrix model of wavefront estimation

Let W (r) be the aberration function to be measured by a wavefront sensor using a sampling
grid with N subapertures. The measurements provided by the sensor are the local wavefront
slopes averaged over each subpupil, weighted by the local irradiance distribution2 . They can
be arranged as a 2N dimensional vector,m, whose elementsms (s = 1, ...,2N) are given by

ms =
∫

∞
Ps(r)∇ sW (r)d2r+νs (1)

where:
Ps(r) is the normalized irradiance pupil function associated to thes-th sampling subaperture,

equal to the squared modulus of the amplitude pupil funtion including any irradiance distribu-
tion present in the incoming wave.Ps(r) = Ps+N(r), for s = 1, · · · ,N,

∇ s is d/dx (for s = 1, ...,N) andd/dy (for s = N +1, · · · ,2N),
d2r is the surface element (dxdy) in the pupil plane, the integration limits being extended

formally to the whole plane (the spatial extent of individual subpupils is defined by the function
Ps(r)),

and finallyνs is the measurement noise, whoses = 1, · · · ,2N values can also be arranged as
a 2N vectorν .

For a typical HS sensor measuring a constant irradiance wave with all microlenses of the
same areaa, Ps(r) equals 1/a for points inside thes-th microlens and 0 everywhere else; if the
irradianceI(r) of the wave is not constant,Ps(r) equals

I(r)∫
a I(r)d2r

(2)

for points inside the microlens and 0 otherwise. For a laser ray tracer with a Gaussian spot of
half-widthσ at the eye pupil,Ps(r) is a normalized Gaussian function of this width, centered at
the corresponding sampling location.

Expressing the aberration as a sum of basis functions (not necessarily orthogonal, although
this is the most common choice) we can write

W (r) =
M′

∑
i=1

aiZi(r) (3)

Where theZi(r) are usually the Zernike polynomials and theai, i = 1...M′ are the actual
coefficients of the aberrated wavefront. This sum has to be extended to aM′ large enough as to
faithfully capture any spatial variation of the wavefront. In strict mathematical termsM′ should
equal infinity in order to represent exactly any aberration functionW (r), independently from
their discontinuities, although physically it is not expected that contributions of order higher
than a givenM′ will have any relevance in eye aberrometry.∗ In what follows we will takeM′
as an arbitrarily large number, however finite in order to ease some matrix computations.

∗Note that the actual number of modes present in the wavefront (M′) may be a very large number, probably greater
than the number of modes which may have by themselves a direct clinical relevance. As it will be shown below, higher
order modes introduce aliasing into lower order modes. This means that modes that may not be clinically relevant,
may nevertheless introduce an error in the estimation of modes that are clinically relevant. Hence one should aim to
reconstruct a wavefront as completely as possible.
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Substituting Eq. (3) into Eq. (1) it is easy to obtain the matrix form of Eq. (1) as

m = Aa+ν (4)

wherea is the modal coefficients vector (of lengthM′) whose elements are the actual aberration
coefficientsai (i = 1, ...,M′), andA is a (2NxM′) matrix whose(s, i)-th element is given by

∫
∞

Ps(r)∇ sZi(r)d2r (5)

In practice the aberrationW (r) is estimated by a truncated finite sum of terms

We(r) =
M

∑
i=1

âiZi(r) (6)

whose coefficients ˆai (i = 1, ...,M), M < M′, have to be estimated fulfilling some merit criteria.
If the estimation procedure is linear (as it is the usual case in ocular aberrometry) then each
coefficient is estimated as a linear combination of the measurements. In matrix form this can
be written as

â = Rm (7)

where â is the M-dimensional vector of estimated coefficients ˆai and R is a M × 2N ma-
trix known as the “estimator” or “estimation matrix”. The elements of R,Ris, (where i =
1, ...,M; s = 1, ...,2N), are the weights used to obtain the estimated coefficients ˆai as linear
combinations of the measurementsms.

2.1. First order statistics: coupling matrix, aliasing and estimation bias

Equations (4) and (7) are useful to construct a fast picture of the way modal estimation works.
Let us assume that the aberration to be estimated may vary according to some statistics and
that the measurement noise is a zero-mean random variable, and let the brackets<> denote
averaging over measurements and population, except when indicated otherwise. Substituting
Eq. (4) into Eq. (7) we have†

â = R(Aa+ν) = RAa+Rν (8)

Since the measurement noise averages to zero after a set of enough measurements the ex-
pected value of̂a is given by

< â >=< RAa+Rν >= RA < a > (9)

and the expected error, that is, the expected difference between the actual and the retrieved
coefficients will be

< a− â >= (I−RA) < a > (10)

whereI is the identity matrix. If, aditionally, the actual wavefront remains constant between
measurements we have

< â >= RAa (11)

†A note on dimensions:̂a is M×1, R is M×2N, A is 2N×M′, a is M′ ×1,ν is 2N×1. RA is thenM×M′. In order
to write expressions such as< a− â > or I−RA it is formally useful to extend̂a to have as many elements asa, setting
âi = 0 for i = M +1, ...,M′, and similarly to extendR to be aM′ ×2N matrix, completing it withM′ −M identically
zero rows. With this extensionRA becomes of sizeM′ ×M′ and all sums and differences of vectors or matrices have
the proper dimensions. For the sake of simplicity, however, in loose speaking we will usually refer toâ, R andRA as
being of sizesM×1, M×2N andM×M′, respectively, ignoring their trivial extensions.

#8467 - $15.00 USD Received 15 August 2005; revised 7 October 2005; accepted 18 October 2005

(C) 2005 OSA 31 October 2005 / Vol. 13,  No. 22 / OPTICS EXPRESS  8804



and
< a− â >= (I−RA)a (12)

Note from Eqs. (9) and (11) that if the productRA is not equal to the identity the retrieved
coefficients will be biased, in the sense that their average value after a set of measurements
will not be equal to the expected value of the actual coefficients. The retrieved coefficients will
show a systematic bias no matter how many measurements could be made to average to zero
the measurement error.

An exception is the case of a population where< a >= 0, which trivially ensures always
unbiased estimation in the broad sense indicated by Eqs. (9) and (10); this is indeed the case
in atmospheric optics, although it seems not hold for the eye, at least for some terms like for
instance spherical aberration which does not average to zero over the population. Note also that
unbiased estimation over a population, in the sense of Eqs. (9) and (10) is a less strict condition
than unbiased estimation over measurements for a given individual of that population, in the
sense of Eqs. (11) and (12)

The matrixRA gives useful information.RA is a “coupling matrix” which determines how
the actual coefficients mix up and combine among themselves to produce the values of the
retrieved ones. Bearing in mind that the vector of actual coefficients,a, has lengthM′ and that
the vector of retrieved ones,â, is of lengthM, RA is anMxM′ matrix. In an ideal case the square
sub-matrix formed by the firstMxM elements ofRA should be the identity and the remaining
elements (that is, all columns ofRA of index k such thatM < k < M′) should be identically
zero. This would ensure that each retrieved coefficent would be exactly equal to the actual one,
i.e. âi=ai (i = 1, ...,M). However, as will be shown below, this ideal situation does not arise in
practice (excepting whenM = M′, and the least-squares estimator is correctly calculated).

Note that if one or more diagonal elements of the firstMxM square box ofRA are different
from 1 they will give rise to an under or overestimation of the corresponding actual coefficient;
that is, were the actual wavefront had just only one of these modes, it would be retrieved with
bias (said otherwise, there would be a wrong self-modal coupling). In turn, the off-diagonal
elements of this box different from zero as well as any other nonzero element in the columns
M +1· · ·M′, will give rise to aliasing (cross-modal coupling): the value of thei− th retrieved
coeficient ˆai will depend not only on the corresponding actual coefficientai but will have con-
tributions from other modesa j ( j �= i) present in the incoming wavefront.

In this work we use the word ‘bias’ to denote the first-order statistical expectation error
< a− â > arising from the fact thatRA differs from the identity matrixI (for theM retrieved
modes). ‘Bias’ encompasses in a single word the effects of wrong self-modal coupling and
aliasing, since these two effects play a similar formal role in the calculations: they arise from
the same source, the nonzero elements of(I−RA), and give rise to the same consequence, a
systematic error in the estimation of the aberrations. However, they may have different origins,
and to give some insight of them it is necessary to choose the estimatorR. The common choice
for R in eye aberrometry is the unweighted least-squares one.

A is not a square matrix, hence it has no inverse in strict sense and we cannot chooseR as
the otherwise obvious choiceR = A−1 which would assureRA = I . However, if theM′ ×M′
matrixAT A is nonsingular then a so-called Moore-Penrose pseudoinverse can be defined as:3,4

A† = (AT A)−1AT (13)

whereT stands for ‘transpose’. ChoosingR = A† we would have< a >=< â > and hence no
bias. Note however that avoiding this bias would require computing exactly the estimator

R = (AT A)−1AT (14)
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and this cannot be done satisfactorily in many practical cases, since the matrixA in this equa-
tion has 2N ×M′ elements, that is, as many columns as modes are actually in the aberrated
wavefront. This number may be exceedingly high, and to ensure thatAT A is nonsingular there
must be enough measurement pointsN. In practice the finite sampling grid size is a limiting
factor which excludes using the matrixA with the complete number of modes to construct the
estimator; the common solution in aberrometry is to computeR using instead ofA a matrix
of smaller dimensions (let it be denoted byAM) with the same 2N rows but with only the first
M columns (M < M′) corresponding to the firstM modes, such that the available measurement
points are enough to ensure thatAT

MAM has inverse. The resulting least squares (LSQ) estima-
tor R = (AT

MAM)−1AT
M is biased. This effect is graphically shown in Figure 1(a), where we

show the values of the elements of the firstM′ = 35 columns of the coupling matrixRA for
a square lattice of 69 square microlenses. It assumes that only the firstM=20 Zernike modes
are included in the estimatorR. Note that the firstMxM square box is the identity (there is no
wrong self-modal coupling) but there are nonzero elements in the columns of index greater than
M. These nonzero elements give rise to aliasing of high order-modes to low-order ones (The
figure is displayed in a logarithmic grayscale).

Fig. 1. FirstM′ = 35 columns of the coupling matrix RA for a square grid of 69 square mi-
crolenses assuming that only the first M=20 Zernike modes are included in the estimator R.
(a)with R constructed using the correct model of measurements (wavefront slopes spatially
averaged over each subpupil); (b)with an incorrect measurement model (wavefront slopes
evaluated at the center of each subpupil). The values are shown in a logarithmic grayscale
comprising four decades (white= 1, black< 0.0001).

In the preceeding paragraph we implicitly assumed that the elements ofAM used to con-
structR are correctly calculated using Eq. (5), which in turn results from Eq. (1) which de-
scribes the actual working of the wavefront sensor. But if these elements are calculated with
wrong assumptions (for instance, neglecting spatial averaging over subpupils or the actual irra-
diance distribution) then some additional bias will appear.2 The reason is that no matter what
our assumptions may be about the measurements (and hence how we computeR) the actual
measurements will behave according to Eq. (1) with the correct parameters forA. So, if R is
not computed using the correct matrixAM , the firstMxM box of RA will not be the identity.
This effect is shown in Figure 1(b), which shows the elements ofRA for the same grid of Fig
1(a), but in this case assuming that the elements ofR were incorrectly computed neglecting the
spatial averaging of the wavefront slope that takes place at each sampling subaperture (that is,
each element ofAM was now calculated as the local derivative of the corresponding Zernike
mode evaluated at the center of each microlens, instead of averaged over the subpupil). Note
that this choice of the estimator would lead in this example to aliasing also from modes with
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index smaller thanM. Actual situations, however, may be even richer and more complex. As
shown in ref,2 if the uneven irradiance distribution actually present across each microlens is not
correctly taken into account when constructingR, there may appear modal cross-coupling of
low-order modes to high-order ones, in addition to the usual ”high-to-low” aliasing, even for
the caseM = M′ (see figures 2 and 3 of that reference for details).

This example shows that, even for the same population and noise statistics, the grid per-
formance is strongly tied to the choice ofR. For the usual least-squares estimator,R =
(AT

MAM)−1AT
M , the performance depends on how close isM to M′ and also (and this is a

fact frequently overlooked) on how well the way of calculating each element ofAM repro-
duces the measurements that the sensor would give were the corresponding Zernike mode, with
unit amplitude, being incident on it (since this is essentially the meaning of Eq(5)).

Nothe that the magnitude of the systematic errors in the estimated coefficientsâ depends not
only onRA but also ona, the actual aberration. If the first-order aberration statistics< a > is
available, the expected bias can be obtained straightforwardly using Eqs. (9) and (10), or (11)
and (12) for the limiting case of a static aberration.

Different sampling grids will give rise to different estimation biases because the elements of
A (Eq. (5)) depend on the distribution and shape of the subpupils and any sensible choice for
the estimation matrixR will be a more or less sophisticated function ofA or of a subset of its
elements.

The effects of noise are dependent on the estimation matrixR, as indicated by Eq. (8). How-
ever, with regard to first-order statistics, if the noise is of zero mean it will produce no biasing
effects. It will, however, be a relevant term of the overall rms error given by the second order
statistics, as it will be shown in the next section.

2.2. Second-order statistics: Expected rms estimation error for a given population

The expected bias is just one factor of concern. Another relevant quantity is the expected rms
estimation error. It is determined by the second-order statistics of the aberration coefficients
and noise, as well as by the estimator and the sampling grid.

A useful parameter to assign a single figure to the estimation error is the squared difference
between the estimated and actual wavefronts, spatially averaged over the eye pupilΠ. For a
given actual aberration patterna this difference is given by:

σ2(a) =
∫

Π
[W (r;a)−We(r;a)]2d2r (15)

where the dependence ona has been explicitly indicated. Working with a given population,
a single figure useful to assess the relative merits of different reconstruction schemes isσ2,
that is, the expected value ofσ2(a) averaged over population and measurements,i.e. over all
possible values fora and the measurement noise. Smaller values ofσ2 will correspond to better
(in the rms sense) reconstruction schemes. If we expand the wavefronts in terms of the basis
functions and these are orthogonal, it is easy to see that

σ2 =
〈
σ2(a)

〉
=

〈∫
Π
[W (r;a)−We(r;a)]2d2r

〉

=
M

∑
i=1

〈
(âi −ai)2〉+

M′

∑
i=M+1

〈
(ai)2〉 (16)

where the brackets indicate averaging over population and measurements. If a non orthogonal
basis would be used, double-index sums and crosscorrelation terms like< (âi −ai)(âk −ak) >
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would appear in Eq. (16). The first sum in Eq. (16) arises from the estimation error in theM
retrieved coefficients. The second sum corresponds to the error due to those aberration terms of
order higher thanM are not estimated and hence are not included inWe. We can write Eq. (16)
as a single sum up toM′, with the provision that ˆai = 0 for i > M.

Given two column vectorsf and g, of lengthsNf and Ng, their second-moment matrix is
defined as theNf ×Ng matrix

C f g =< fgT >

It can be seen then, thatσ2 is just the trace of the matrixCe, the second-moment matrix of the
estimation errors of the modal coefficients, given by

Ce =< (â−a)(â−a)T > (17)

ComputingCe as a function of useful parameters is an easy task, if we make use of Eqs (7)
and (4). We get the long but straightforward expression:

Ce = < ââT > − < âaT > − < aâT > + < aaT >

= R[ACaAT +ACaν +CT
aν AT +Cν ]RT −R[ACT

a +CT
aν ]

−[CaAT +Caν ]RT +Ca (18)

where:

• Ca =< aaT > is the second-moment matrix of the actual coefficients (sizeM′ ×M′),
computed from the known statistics of the population.

• Caν =< aνT > is a second-moment matrix whose elements are the expected values of
the cross-products of the actual coefficients and measurement noise (sizeM′ ×2N)

• Cν =< νν T > is the second-moment matrix of noise (size 2N ×2N), computed from a
good knowledge of the experimental setup or from a run of callibration measurements
made with a static reference wavefront (In order to measure this noise term under rel-
evant experimental conditions, artificial eyes with scattering retinas and phase plates
introducing aberrations of magnitude typical of those found when measuring human
eyes should be used. As pointed out by an anonimous reviewer, measuring noise with
a scattrering-free and nonaberrated artificial eye will give rise to an underestimation of
Cν )

• R is any estimator whose performance we want to assess, andA has been defined in Eq.
(5).

This formula is the main result of this model, and it allows one to compute the expected
performance (in the rms sense) of any combination of grid, population, noise and estimator,
through the single parameter trace(Ce), once the required second-moment matrices have been
measured or calculated. Note that the geometry of the sampling grid only appears inA and
possibly inR. The other matrices are determined by the population statistics and/or the sensor
noise.

Some reasonable assumptions allow to simplify somewhat this equation. For instance, as a
first approximation the actual coefficients and the measurement noise can be taken as essentially
uncorrelated for usual experimental setups and conditions. Then, settingCaν = 0, taking into
account thatCa = CT

a , and rearranging terms, Eq. (18) becomes:

Ce = (I−RA)Ca(I−RA)T +RCν RT (19)
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A further simplification can be made taking into account that usually the measurement noise
has an equal rms value at all the subapertures, and there is no correlation of noise between
different subapertures and/or along diferent directions. The matrixCν is then diagonal with all
diagonal terms equal to the noise varianceσ2

ν so that

Ce = (I−RA)Ca(I−RA)T +σ2
ν RRT (20)

The first term in the right-hand side of Eq. (20) accounts for the expected squared wave-
front error due to the biased estimation of the modal coefficients. It depends on the population
statistics throughCa and on the first-order bias through the matrix(I−RA). The second one
accounts for the propagation of the measurement noise, and it depends on the noiseσ2

ν and on
the estimatorR. Different grids will contribute differently toCe, again due to the definition ofA
and to theA-dependent choices forR. Eq. (20) may be used as a good tool for grid evaluation,
through the parameterσ2 = Tr(Ce).

If R = (AT A)−1AT , with all M′ modes included inA and a correct computation of its ele-
ments, then the first term of Eq. (20) would identically vanish sinceRA = I, and hence no bias,
independently from the chosen grid. But even in this wildly optimistic case, the rms uncertainty
due to noise propagation would remain. Again, different grids would give rise to different rms
wavefront errors due to noise propagation. For this particular choice ofR, and taking into ac-
count that(AT A)−1 is symmetrical we get

Ce = σ2
ν RRT = σ2

ν [(AT A)−1AT ][(AT A)−1AT ]T

= σ2
ν [(AT A)−1AT ][A(AT A)−1] = σ2

ν (AT A)−1 (21)

If, as usual,R is chosen asR = (AT
MAM)−1AT

M with M < M′, the noise contribution toCe

will be the trace of the matrix
σ2

ν (AT
MAM)−1 (22)

3. Performance of sampling grids: a case study

In this section we evaluate the performance of different sampling geometries and densities ap-
plying the model described above to a particular choice of the input factors: population statis-
tics, sensor noise and estimator. This section is intended as an illustration of the application of
this model, and its results do not claim validity for situations where the assumptions made here
about these input factors do not hold.

We have divided this analysis in two subsections each one adressing a particular term of the
overal estimation errorσ2 = Tr(Ce). First we analyse how the measurement noise propagates in
different grids assuming the same noise characteristics as that used to derive Eq. (20). Secondly
we analyse the contribution of the bias introduced by different geometries.

Under the usual assumptions the variance of the wavefront slopes measurement errorσ2
ν

is a scalar and a function of the detector used, SNR, centroiding algorithm, etc. The noise
contribution to the total error in the wavefront estimation is given by

σ2
ν Tr[(AT

MAM)−1] (23)

This last result is in agreement with Southwell.5

The contribution to the total error due to the bias introduced by the sampling geometry is
given by

Tr[(I−RA)Ca(I−RA)T ] (24)

This contribution depends on the second-moment matrixCa of the particular population being
tested. In this study we have used a population sample of 93 eyes taken at City University
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with a commercial wavefront sensor. The information in this sample is restricted to modes
up to the 4-th order (14 first non-trivial Zernike terms). Hence, no aliasing effects coming from
modes higher than the 14-th may be studied, averaged over the population, using this dataset. To
our knowledge, comprehensive datasets of the statistics eye aberrations including the detailed
values for all cross-correlation terms< aia j > up to high orders are not yet easily available in
the open literature. In spite of this limitation of our statistical sample, it is perfectly valid for
illustrating an example of the way in which this model may be applied, although the numerical
results of each grid performance would of course vary to some extent were the information
from the statistics of modes higher than 14 be included inCa. Details of the sample’s statistics
are given in section 3.2.1.

3.1. Noise propagation

The sampling geometries explored were square, hexagonal and 3 different polar geometries, as
shown in Fig. 2. The number of sampling points in each ring of the polar geometries is defined
as

Sn = Mn; n >= 2 (25)

Sn = 1; n = 1;

whereSn is the number of sampling points in ringn, andM is 2, 4, and 6 for the geometries
Polar2, Polar4 and Polar6 respectively. The rings are counted from the center with the central
spot defined as the first ring,n = 1.

Fig. 2. Different geometries analysed. From left to right: Square, Hexagonal, Polar2, Polar4
and Polar6.

Each one of these geometries defines a particular matrixA. The usual least squares estimator
for M modesR = (AT

MAM)−1AT
M gives rise to a corresponding “noise propagator matrix”Nσ =

(AT
MAM)−1, and according to Eq. (23), the diagonal of this matrix quantifies how the noise is

propagated for each mode. Hence the contribution of noise to the overal estimation error will
be

σ2 = σ2
ν Tr(AT

MAM)−1)
= σ2

ν Tr(Nσ )
= σ2

ν Nσ (26)

where the scalarNσ = Tr(Nσ ) is the overal mean square noise propagator.
For each geometry in Fig. 2 different sampling densities were analysed. First, the number of

sampling points were varied discretely, depending on each geometry. The square and hexagonal
geometries were varied by increasing in one the number of sampling points over the horizontal
diameter of the pupil while the polar geometries were varied by increasing the number of rings
by one. Then, the number of reconstructed modes,M, was varied from 4th order up to 8th order
(That is 14, 20, 27, 35, 44 terms respectively). Finally, for each geometry, sampling density and
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number of modes a matrixAM and its corresponding mean square error propagatorNσ were
calculated.

If the number of modes is larger than the number of sampling points the matrixAT
MAM may

become singular or close to singular. These configurations were eliminated from the analysis.
The chosen base was a Zernike polynomial base following the OSA normalisation.

Figure 3a shows the results for all the geometries together. While Fig. 3b shows the results
for 14 and 44 modes with each geometry in a different colour. These plots show very similar
behaviour for all the geometries tested. Firstly, it is evident that the noise propagator diminishes
as the sampling density increases. Conversely the noise propagator increases as the number of
modes to be reconstructed also increases. The changes with geometry are negligible compared
with the changes observed with increased sampling density. The latter showing a power law
behaviour:

Nσ = Ax−α (27)

wherex has replaced the previously usedN as the number of sampling points –lenslets in HS
for instance– (This change of notation is done to avoid confusion withNσ in the remaining of
the text),A defines the offset of each curve andα the negative of its slope in a log-log plot.
Table 1 shows the values forα for the different sampling geometries under study and several
number of reconstructed modes. The larger the value ofα is the more rapidly the magnitude of
the noise propagator increases as the number of sampling points is reduced.
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Fig. 3. noise propagators for different geometries and number of modes

Table 1. Values ofα for different geometries and different number of modes. As the number
of modes increases so does the value ofα . Also note thatα takes maximum values for a
square geometry and minimum for polar4. See text for further details

Square Hexagonal Polar2 Polar4 Polar6
α 14 modes 1.0209 1.0103 0.9992 1.0003 1.0028
α 20 modes 1.0307 1.0166 1.0055 1.0071 1.0113
α 27 modes 1.0401 1.0216 1.0106 1.0127 1.0188
α 35 modes 1.0526 1.0284 1.0168 1.0197 1.0295
α 44 modes 1.077 1.0393 1.0347 1.028 1.0474

The implications of these results are not as straight forward as it may appear. One would be
tempted to conclude that maximising the density of the sampling geometry would minimise the

#8467 - $15.00 USD Received 15 August 2005; revised 7 October 2005; accepted 18 October 2005

(C) 2005 OSA 31 October 2005 / Vol. 13,  No. 22 / OPTICS EXPRESS  8811



noise propagation as a direct consequence of Eq. (27). However, according to Eq. (26) the total
propagated rms error depends not only on the mean square noise propagatorNσ but also on the
error in the measurementσ2

ν .
Note on the one hand that Eq. (27) is only valid for the geometries and sampling densities

explored, and that any generalisation beyond these parameters is not justifiable. On the other
hand, note that Eq. (26) is much more general and the coupling betweenσ2

ν andNσ should
always be studied.

The amount of light reaching an ocular wavefront sensor depends on the irradiance of the
light used to illuminate the eye, the reflectivity of the subject’s retina and the scattering and ab-
sorption in ocular media. This in turn, combined with instrument losses and sensor sensitivity
defines the error in the measurementσ2

ν . Because the amount of light allowed into the eye is
limited by safety considerations, the error in the measurementσ2

ν will depend for a particular
instrument on the patient reflectivity and SNR at each sampled location. In turn, the SNR will
depend in many “real life” parameters like size of the retinal spot, intraocular scattering, sub-
jects’ refraction, aberration dynamics, speckle, etc. It is through Eq. (26) that these “real life”
parameters can be brought into this model. This can be achieved by using a realistic model eye
to experimentally measureσ2

ν or a realistic numerical model to computationally estimate it.
In the case of a HS sensor, or similar devices, the SNR at each lenslet will decrease as the

number of lenslets increases. The same energy is distributed over more sub-apertures. In this
case we could expect an optimal number of lenslets that would minimise Eq. 26 as a function
of energy per lenslet.

Sequential sensors, as a ray tracing device, collect all the light reflected by the retina at each
sampling location. In such a sensor a similar situation occurs, but now in the temporal domain.
As the number of sampled location increases, the time allocated to sample each one is reduced.
This in turn leads to a reduction in SNR. Moreover, as the eye is a dynamic system, all measure-
ments need to be completed in a very short time interval to ensure all of them correspond to the
same temporal state of the eye. The situation is again that of the SNR being reduced as the num-
ber of samples is increased, and the need to optimise the number of measurements as a balance
between noise and noise propagator described by Eq. (26) arises again. In the same fashion as
with a HS sensor, the SNR and henceσ2

ν in this case, is dictated by “real life” parameters, and it
can be estimated either experimentally or computationally. The way this is done does not affect
the validity of Eq. (26).

3.1.1. Signal to noise ratio vs sampling density.

In this section we proceed to further explore the coupling between the measurement errorσ2
ν

and the noise propagatorNσ . To do this we simulated as a first approximation to a real ocular HS
spot, a Gaussian spot and added photon and electronic noise to it. Several sets of 100 sampling
points each were generated. Each set with the same noise statistics, and their centroids found
using an iterative centroiding algorithm assisted with a Gaussian mask. The performance of the
centroiding algorithm for the different noise statistics were then analysed. Full details of these
simulations can be found in reference.6 In this paper we only summarise those results and link
them to the error propagation problem in the context of this particular example.

Figure 4(a) shows the centroiding error, which is proportional to the slope measurement
errorσ2

ν , as a function of spot intensity and for several levels of electronic noise. A power law
behaviour similar to that in Eq. (27) is observed.

σ2
ν = DI−β (28)

Table 2 shows the different values thatβ takes for different levels of electronic noise. It is clear
that β increases together with the electronic noise. This means that a drop in intensity has a
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Fig. 4. (a) Centroding error as a function of spot intensity for different levels of electronic
noise. (b) Comparison betweenα andβ . Each row depicts a level of electronic noise, from
2 to 32 electrons rms from the top row to the bottom one. Each column depicts a different
number of reconstructed modes and each symbol a different geometry. For each geometry
the column furthest to the left corresponds with 14 modes (4th order) increasing to the right
up to 44 modes (8th order). The diagonal line representsα = β

Table 2. Values ofβ for several different levels of electronic noise. Note thatβ increases
together with the electronic noise

Read-out noise in
electrons rms 2 4 8 16 32

β 1.0405 1.0622 1.1585 1.2379 1.2602

major impact on the accuracy of the centroiding for larger levels of electronic noise. This is not
unexpected. Note also thatβ takes values close to one in most cases.

In order to couple these results with those obtained in the previous section we need to relate
the number of sampled locations with the intensityI in Eq. (28). In the case of a HS sensor
this is straight forward, as the number of sampled locations is equal to the number of lenselts
utilised and the intensity of each spot produced by the lenslet array is proportional to 1/x,

I = C/x (29)

wherex is the number of lenslets andC is the number of electron counts that a sensor with one
single lens would produce on the same CCD camera. Substituting this in Eq. (27) we obtain

Nσ = A(C/I)−α

= BIα (30)

whereB = AC−α .
The total error in the reconstruction is then found by substituting Eqs. (28) and (30) into Eq.

(26)

σ2 = σ2
ν Nσ

= Γxβ−α (31)
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whereΓ = ADC−β .
Finally, Fig. 4 (b) comparesα andβ in an attempt to explain the meaning of Eq. (31). The

diagonal line is the locus ofα = β . Any point that lies on this curve represents an equilibrium
state: an increase in the number of sampling points is perfectly balanced by an increase in the
centroiding error. In this caseα −β = 0 and Eq. (31) becomes

σ2 = Γ = constant (32)

The error is constant and depends onADC−β . A is fixed by the sampling geometry and
the number of estimated modes,D depends on the CCD camera’s electronic noise,C the to-
tal number of photons over the entire pupil andβ which is fixed by the CCD camera noise
charactersitics and the centroiding algorithm used.

We can see that only an asterisk (*) and a circle (o) intersect (or almost intersect) this line.
The asterisk corresponds with the 3rd column from the right and bottom row for the square
geometry (27 modes reconstruction and 2 e− readout noise rms) while the circle corresponds
with the first column (again from the right) and the bottom row for the hexagonal geometry
(44 modes reconstruction and 2 e− readout noise rms). In these two cases the number of HS
lenslets does not affect the result, provided that there are at least 27 and 44 lenslets in each case.
Increasing or decreasing the sampling density does not affect the accuracy of the wavefront
estimation.

All the points below the diagonal represent configurations in which increasing the number of
lenslets will increase the accuracy of the result. The limit in this case is the number of photons
available over the whole pupil. In this case we can increase the sampling density until being
photon limited in each lenslet to maximise the accuracy.

All the points above the diagonal, represent configurations in which minimising the sampling
density is the best strategy. In this cases the minimum number of sampling areas would be
limited by the need of preventingAT

MAM of becoming singular or close to singular.
These results can be sumarised as follows: If the algorithm used for centroiding in this exam-

ple was to be used in a HS sensor that produced similar spots to those used in the simulations,
and a very low electronic noise CCD camera, in such a way thatβ < α the best design would
need to maximise the number of samples. On the other hand, if the CCD camera to be used had
a higher electronic noise, and this would makeβ > α , then it would be better to minimise
the number of SH lenslets. The authors feel important to stress once again that in principle it
is not jusitifed to generalise these results beyond the boundaries of this example, and that the
coupling betweenNσ andσν needs to be addressed by instrument designers on an instrument
to instrument basis.

3.2. Sampling rms error.

We turn now our attention to the rms error introduced in wavefront measurements by the dif-
ferent sampling geometries.

3.2.1. Population statistics

We applied this model to a population of 93 eyes measured at City University using a commer-
cial aberrometer, a WASCA Wave Front Analyzer. (Asclepion Meditec AG), which provides
the value of the coefficients of the firstM′ = 14 non trivial Zernike polynomials (i.e. Zernike
aberrations up to a radial 4-th degree).

A random sample of 50 subjects was taken from a university setting. The age range was
from 18 to 52 years with an average age of 25.5 years and a standard deviation of 7.1 years. Two
hundred and one aberration measurements from 50 right eyes and one hundred and twenty seven
aberration measurements from 43 left eyes were taken. Each subject was measured with their
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usual refractive correction of glasses or contact lenses and it was assumed that this gave each
subject best-corrected vision. Thirty subjects were emmetropes, eleven subjects wore glasses
and nine subjects wore contact lenses. No exclusion criteria were applied to the sample.

No mydriatic or cycloplegic drugs were administrated and each eye was measured in its
natural state. The data was collected in a darkened room. The subject placed his head on the
chin rest. To align the centre of the pupil with the axis of the instrument six dots of corneal
reflections have to be brought into focus and aligned concentrically with the pupil. The subject
was asked to blink before the measurement was taken to establish a clear and uniform tear film.
The subject was then asked to look through the target image of a spider web, into the distance,
to reduce accommodation effects. Several image captures were taken until a satisfactory result
was obtained where the pupil size was comparatively large and well aligned with the axis of
the instrument. The smallest pupil size measured was 2.34mm and the largest was 7.27mm in
diameter.

The measurements from each eye were averaged, the aberration coefficients reduced to a
common pupil size7 from the resulting coefficient sets the second-moment matrixCa =< aaT >
was calculated. The(i, j) element ofCa is the product of the i-th and j-th aberration coefficients
averaged over the whole population,< aia j >. The result showed that in this population there
is a variable degree of correlation between different Zernike terms, hence, the second-moment
matrix was not diagonal. Other populations may well show a different matrixCa, depending
on their particular composition; hence previous measurements of the eye aberrations of a sta-
tistically significant sample of eyes are required to assess the behaviour of the sampling grids.
We have used for this study the first 14 Zernike terms, including tilts, which give a population
rms aberrationσa = [Tr (Ca)]

1/2 of about 2.86µm. The population rms aberration associated
exclusively to high-order aberrations (i.e. excluding prismatic and second-order spherocylin-
drical terms) is about 0.45µm. These statistical parameters are characteristic of this sample of
population and by no means are intended to be representative of other groups of people.

3.2.2. rms error introduced by different sampling geometries

In this section we discuss the effects of geometry on the rms error introduced in the estimation
of the eye aberrations. The second-moment matrixCa from the sample described in section 3.2
was used in this calculations. The sample geometries explored were Square, Hexagonal and
Polar2 from Fig. 2. Polar4 and Polar6 were not used in this case as the number of sampling
points in these two geometries increases considerably faster than on the other three, making
it difficult to make a meaningful comparison across the different geometries in this particular
context.
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Fig. 5. Bias introduced for the different samples as a function of grid density. (a) Square
grid, (b) Hexagonal grid, (c) Polar grid.

For each geometry five sampling grids were produced, each one of larger sampling density
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than the previous one. For each gridσ2 = Tr(Ce) = Tr[(I−RA)Ca(I−RA)T ] was calculated
using least-squares reconstruction matricesR = (AT

MAM)−1AT
M with M ranging from 1 toM′ −

1. The caseM = M′ = 14 was not included, since with the input data of this example (database
extending only up the the 14-th mode) it gives an identically zero rms error. The results are
shown in Figs. 5 and 6
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Fig. 6. Bias introduced for the different samples as a function of grid density. (a) Very low
density, (b) Low density, (c) Medium density, (d) High density and (e) Very high density.

Figure 5 shows that in the square and hexagonal grids the sampling density has a very small
impact on the rms error introduced, apart from very low densities in the hexagonal case. The
variations with grid density in the case of the square one are almost nill. Instead, in the case
of the polar grid, lower sampling densities consistently produced a smaller error. These results,
together with the previous ones regarding noise propagation suggest that a low density grid may
actually be the best one for ocular wavefront sensing under the particular assumptions on the
statistics of the population and noise used for this example.

Figure 6 shows the behaviour of grids of comparable density for different geometries. It is
clear from this figure that the polar geometry produces consistently a lower rms error than
the other two. The hexagonal grating performs moderately better than the square one, and the
square one is the worst in all cases. Although as the sampling density increases the performance
of the polar grids moves closer to that of the hexagonal and square ones. Once again, this result
is valid for the assumptions made in this particular example. Polar grids may be more sensitive
to aliasing from higher order modes with angular frequencies multiple of the frequency of the
grid, whose statistics were not available in our clinical sample.

4. Discussion

Ocular aberrometry has become a very popular technique in the fields of visual and physiolog-
ical optics. The analysis presented in this paper is just a step for a better understanding of how
measurements are affected both by random and systematic errors. In this section we discuss the
limitations of the methodology presented and some of the problems that need to be addressed
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in the future.
We presented in Section 2 of this paper a simple yet reasonably comprehensive model for

evaluating the performance of sampling grids in eye aberrometry. The main results of this paper
are summarized in Eqs. (10) and (18) relative to the first order estimation bias and the rms
estimation error. The model uses as inputs, besides the grid parameters, the statistics of the
aberrations in the population, the sensor noise and the estimator used to retrieve the aberrations
from the raw data provided by the aberrometer. The range of validity of this model is wide,
as far as first- and second-order error effects are of concern. The only limiting assumptions
made to deduce Eqs. (10) and (18) are that the aberrometer raw-data are the displacements
of centroids, that the paraxial wave equation holds (both are the basic assumptions leading to
Eq. (1)) and that the modal aberration estimation is linear, that is, the aberration coefficients
are estimated as linear combinations of the centroid displacements. The model accounts in an
intuitive way for the sources and effects of aliasing and wrong self-modal coupling, through
the analysis of the coupling matrixRA and its effects in the first- and second-order estimation
errors. This model is intended to serve as an evaluation tool which shall be applied in each case
using the appropriate values for the input parameters, corresponding to the particular clinical
or experimental settings.

In Section 3 we applied this model to a particular choice of statistics, noise and estimator.
This section is intended as an example of application and the particular results obtained therein
should not be taken as guidelines for aberrometer design outside the range of validity of the
assumptions made to get them. Different population statistics, estimator or noise behaviour
will give rise to different performace results. Two main limitations are present in this numerical
example. One of them is due to the fact that the clinical database available for our study was
limited to Zernike modes up to 4-th order. This allowed us to study the effects of aliasing
due to the first 14 modes. This leaves out of consideration aliasing from higher order modes
whose inclusion would certainly change to a bigger or lesser extent the results obtained here,
depending on its statistical expectation values in the population. For instance, it is expected
that taking into account these additional contributions to aliasing, a higher numberM of modes
should be retrieved in order to keep bias within acceptable limits; this in turn would push for
a higher number of sammpling subpupils than that suggested by our example. This limitation
may be at least partially overcome in future studies using clinical databases with higher order
modal data. It may also be overcome by using a model for the aberration power spectrum: we
are currently developping this last approach.

Another limitation of the numerical results of Section 3 is that we used Eq. (20) instead of the
more general Eq. (18) to calculate the rms estimation error. Eq. (20) stems from the simplifying
assumption that the phase slope measurement noise is uncorrelated with the actual aberration
of the wave incident on the aberrometer (i.e., we setCaν = 0). However, for highly aberrated
wavefronts some correlation may be expected. If the aberration is strong and has relevant high-
order terms, the focal spots of the microlenses will get deformed and blurred. This blurring, in
itself, would not be a problem were it not for the CCD noise. The noiseless centroids of these
blurred spots behave as expected,i.e. are proportional to the aberration slope averaged across
the microlens subpupil (Eq. (1)). However, since under strong aberrations the same amount of
energy is spread over a wider focal region and there is always an unavoidable amount of detector
noise, the centroiding noise will increase. Centroid SNR can in principle be partially restored
by increasing the irradiance of the illuminating beam, but of course this has unavoidable limits
related to eye safety. Additionally, if blurring is severe, some overlapping of neighhboring focal
regions may appear, making more difficult their isolation to proceed to centroid computation,
maybe causing some loss of relevant information. All this means that the measurement noise
will be higher that that considered in our numerical example and, additionally, will be correlated
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with the actual aberration coefficients. Ellaborating a quantitative model for the correlation of
aberrations and noise deserves further sudy, in order to properly account for the effects of
nonzeroCaν .

The general model introduced in Section 2 can be used to evaluate the performance of any
sampling grid, for any given combination of linear estimator and statistics of aberrations and
noise. Two related and interesting topics not addressed here are: first, how to use this model
to compute the optimum estimator for any given combination of grid, population and noise
statistics. By “optimum” we mean that linear estimator which provides the smaller minimum
mean squared error (LMMSE) between the actual and the estimated aberration coefficients,
averaged over measurements and individuals in the population using the given sampling grid. In
general this optimum estimator will not be equal to the usual LSQ. The LMMSE estimator can
be straightfordwardly calculated by a direct application of the Gauss-Markov linear estimation
theorem1 and its study has been extensively developed for wavefront sensing by the astronomy
community.

And secondly, the selection of the best grid in a more general sense, that is, the sampling grid
which –in combination with its corresponding LMMSE estimator, which takes into account the
population and noise statistics– will give the smallest possible error, leaving the grid parame-
ters as optimization parameters free to vary between certain bounds. Solving this last problem
requires the use of nonlinar optimization methods in a realtively high-dimensional space. Both
topics will be the subject of forthcoming work.
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