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Abstract: We present equilateral hyperbolic zone plates with variable focal 
length, which are formed as moiré patterns by a mutual rotation of two 
identical basic grids. Among others, all principal zone plates, except of the 
spherical one, can be used as these basic transmittances. Three most 
important advantages of the proposed moiré zone plates are: a constant 
aperture of the created element during the mutual movement of basic grids, 
lack of aberrations due to their undesired mutual lateral displacements and 
high diffraction efficiency of the binary phase version. To obtain clearer 
moiré fringe pattern, a radial carrier frequency can be added additionally to 
the transmittances of basic grids. The destructive interference between both 
arms of the focal cross of the equilateral hyperbolic moiré zone plate can be 
obtained by a constant phase shift introduced in the transmittances of the 
basic grids. Potential applications of discussed elements are indicated, 
including the most promising one in the three-point alignment technique. 
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1. Introduction 

The paper deals with equilateral hyperbolic zone plates (EHZP’s) of variable focal length, 
which are formed as a moiré pattern by a superposition of two basic grids and their 
subsequent rotation. These ZP’s turn out to be interesting because of their unusual optical 
properties and resulting thus promising potential applications.  

The first mention of varifocal optical elements, which can be obtained by a mutual 
displacement of its two parts belongs to Alvarez [1] and to Lohmann [2], who proposed to 
shift laterally two superposed refractive elements with cubic surfaces and to obtain in this way 
a spherical lens with variable focal length. Next, Lohmann and Paris presented varifocal 
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spherical zone plates being moiré patterns created by translations and rotations of the basic 
grids, as well as cylindrical ZP’s formed by translations [3].  

Further improvement of the spherical moiré ZP’s obtained by displacement relied on 
adding a linear carrier frequency to the basic grids described by curves of third degree, what 
allowed to make their period more uniform and to obtain thereby a clearer moiré fringe 
pattern [4], [5]. The moiré diffractive optical elements have small diffraction efficiency, equal 
to 1/π4 (≈1.03%) in the case of binary amplitude basic grids and 16/π4 (≈16.43%) in the case 
of binary phase basic grids. An increase to the values reaching up to 100% by superposition of 
two conjugated kinoforms was first proposed [6] and then realized experimentally [7], [8]. 
The principle of tunable moiré patterns was extended onto other wavefront shapes, leading to 
variable aberration generators with possible application in aberration control [9-11].  

Another application of moiré diffractive optical elements is an alignment method known 
as the three-point technique, where a focusing element of small optical power is attached to 
the measured point of the system that has to be aligned and repeats its transversal 
displacements. In consequence the optical axis changes its direction and the image of the point 
object moves on the receiving device accordingly [12]. In contrary to the alignment technique 
using the autocollimating telescope, the three-point technique is insensitive against possible 
angular misalignments. The relative accuracies of measurement reaching the order of 10-6 
over a range of up to 80 m in the open air were reported using this method [5]. Since elements 
with very long focal length are required and they are hardly obtainable in the refractive 
version, ZP’s became the best choice, because then they are even easier to manufacture.  

One of main and most successful applications of the three-point method turned out to be 
the alignment of linacs. The Stanford Linear Accelerator (SLAC) was aligned in this way, 
both during its construction [13], as well as after the 1989 earthquake [14]. Since the whole 
set-up worked within the vacuum line, the relative accuracy higher than 10-7 over a distance 
longer than 3 km was achieved. In this particular case an element composed of two crossed 
linear ZP’s with constant focal length was used. Nowadays the three-point method becomes a 
standard alignment technique for accelerators [15-17]. Another recent application of this 
technique is the monitoring system of the world’s greatest dam of Three Gorges [18].  

However, in order to apply the three-point method in varying conditions, a diffractive 
optical element with long and variable focus would be required, as it was proposed for the 
spherical moiré ZP obtained by translations in earlier works [4], [5]. A focal cross composed 
of two perpendicular arms, similar to that of two crossed cylindrical ZP’s used for linacs 
alignment, is created by the EHZP [19], [20]. Therefore the principal aim of this paper is to 
find basic grids forming such moiré patterns by their mutual rotations and to discuss their 
properties.  

2. Determination of the basic grid  

2.1 General solution 

Looking for a solution of our problem, we will make use of the general method described in 
Refs. [21-23], which allows to find basic grids producing given moiré pattern for a particular 
kind of mutual infinitesimal displacement. The corresponding relationship reads:  

                                                        ( ) ( )rrr
��� Ψ=∆Φ∇ ,                   (1) 

where ( )r
�Φ  stands for the basic grid curves, ( )r

�Ψ  for the moiré pattern curves and r
�∆  is the 

displacement vector (in general, in our case it can be composed both from rotations as well as 
from displacements). For the pure rotations the above equation reduces to the following 
simple formula:  

                                               
( ) ( )θθ

θ
θ

,
,

r
r Ψ=∆
∂

Φ∂ ,                  (2) 
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where ∆θ is the angle of basic grids mutual rotation and r, θ are the polar coordinates. 
The set of curves of an EHZP, e.g., determining the borders of the zones, which we want 

to obtain as the moiré pattern, is given by the following equation [19], [20]:  

                                               ( ) ( ) nf
rr

M
==Ψ λ

θθ 2
2sin,

2

,                  (3) 

where fM is the focal length of the moiré ZP, which we want to create, λ is the wavelength of 
the illuminating beam, and n is an integer indexing the curves. Substituting Eq. (3) into Eq. 
(2), we obtain the general expression for the basic grid:  

                                                  ( ) ( ) ( ) mcrff
rr

BG
=++−=Φ λ

θθ 2
cos,

22

,                 (4) 

where fBG=fM∆θ is the focal length of the cylindrical ZP present in the solution for the basic 
grid, f(r) is an arbitrary function depending on radial coordinate only, c is a constant, and m is 
the integer indexing the curves. As it can be seen, the found solution is periodic in respect to 
full rotations by 2π radians and therefore the whole aperture will be occupied by the desired 
moiré pattern, whereas in the case of all moiré ZP’s produced by translation the width of the 
element must to decrease during the lateral shifting of its parts. In turn, in the case of the 
spherical moiré ZP produced by rotations its focal spot will be disturbed, because the sector of 
angular width equal to the rotation angle ∆θ within the aperture of the moiré element, where 
the coarse part of one grid overlaps with the dense part of the second one, is occupied by an 
undesired ZP pattern of different focal length [21].  

Now the validity of the found solution should be checked for arbitrary rotations. Let us to 
superpose two basic grids given by Eq. (4) and rotated by angles θ0 and -θ0 (i.e., ∆θ=2θ0), 
correspondingly. In order to find the resulting moiré pattern, we will make use of the indicial 
equation for the moiré beats [24], [25]:  

                                                        nmm =− 21 ,                   (5) 

where m1 and m2 are integers indexing the curves of the basic grids. The final result for the 
obtained moiré pattern, after substitution of Eq. (4) into Eq. (5) is given by:  

                                        ( ) ( ) nf
rr

M
==Ψ λ

θθ 2
2sin,

2

, where ( )02sin θBGM ff =                 (6) 

and confirms that the basic grids given by Eq. (4), which were found for infinitesimal 
rotations, can be applied in the case of arbitrary rotations too. In continuation we will consider 
in more detail some special cases of the general solution. 

2.2 Zone plates as the basic grids 

Placing ( ) BGfarrf λ22= we can obtain hyperbolic (0<a<1), elliptic (a<0, a>1) and linear 
(a=0, a=1) zone plates as basic grids:  

                             ( ) mf
y

f
xyx

yx
=+=Φ λλ 22,

22
, where ( ) a

ffa
ff BG

y
BG

x =−= ,1 .           (7) 

Some particular solutions of this kind were already published elsewhere, e.g., the EHZP 
moiré pattern created by elliptic ZP’s was used for determination of the ellipticity distortion of 
the scanning beam lithography applied for the fabrication of spherical ZP’s [26]. Such defect 
can appear due to slightly different magnification in perpendicular directions. Similar moiré 
pattern created by two EHZP’s was also presented recently [27]. Let us mention that the wide 
range of different ZP’s, which we can use as basic grids, allows us to choose the range and 
sensitivity of the focal length change in function of the rotation angle. The greatest range of 
the focal lengths and thus the smallest sensitivity gives the EHZP (a=1/2) used as the basic 
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grid [27], whereas in the case of elliptic ZP’s with decreasing ellipticity (i.e., for a→±∞), the 
range of the focal length change decreases to zero. An example of the EHZP moiré pattern 
created by two elliptical ZP’s and the focus, being two perpendicularly crossed focal lines for 
the case when both basic grids are binary phase transmittances, are shown in Fig. 1. As it was 
already derived elsewhere [28] and can be seen in Fig. 1, length of the focal cross arms is 
twofold as long as width of the moiré EHZP aperture.  

 

 
Fig. 1. A superposition of two binary amplitude elliptic ZP’s with fX=600 mm and fY=1500 
mm for λ=632.8 nm rotated mutually by an angle of 2θ0=0.075π rad creates the moiré 
EHZP oriented perpendicularly with fM=4284 mm (left); the focal pattern in the distance 
fM=4284 mm formed by the moiré EHZP made from the binary phase versions of the basic 
grids (right).  

 

 
Fig. 2. A superposition of two binary amplitude elliptic ZP’s with fX=600 mm and fY=1500 
mm for λ=632.8 nm, rotated mutually by an angle of 2θ0= 0.075π rad, one of them shifted 
from the centre, creates the displaced moiré EHZP oriented perpendicularly with fM=4284 
mm (left); the focal pattern in the distance fM=4284 mm formed by the moiré EHZP made 
from the binary phase versions of the basic grids (right). 

 
An interesting feature of ZP’s used as the basic grids for creation of moiré ZP’s by 

rotations is that any additional lateral shifting of both transmittances during the rotation does 
not introduce any aberration affecting the quality of the focal cross, whereas already known 
solutions for ZP’s produced by translations [4], [5] or spherical ZP’s obtained by rotations [3] 
were susceptible for this kind of aberration. Since phase functions of the basic grid ZP’s are of 
second degree, any undesired shearing between them results in appearance of a linear carrier 
frequency, thus any misalignment of this kind results only in the displacement of the focal 
cross (Fig. 2).  

Although such change of the focal cross position will overlap with displacements of the 
measured system, nevertheless, in some situations it can be at least partly eliminated using 
correctly chosen basic ZP’s (e.g., the linear ZP is not sensitive against displacements along its 
axis of symmetry) and basing on a priori knowledge about the kind of expected movements 
which have to be measured. An example can be one-dimensional displacement sensing, what 
is quite frequent situation, e.g., in the case, when bending of bridges is measured.  

1 mm 2 mm 

2 mm 1 mm 
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2.3 Basic grid with radial carrier frequency 

Let us recall that in the case of moiré ZP’s obtained by translations, the basic grids are cubic 
curves [3], thus their lines are sparse in the center, what makes the moiré fringes less clear in 
this region, because their period becomes comparable to the period of the basic grids. This 
limitation can be avoided by adding a linear carrier frequency, say, in the direction OX [4], 
[5], what makes the period of the basic lines more uniform. Although in our case the basic 
grids, being ZP’s, i.e., a set of second degree curves, are less affected by this problem, 
however their period also can be made more uniform by adding a radial linear frequency. The 
equation for the basic grid will be then equal to:  

                                            ( ) ( ) mrfarf
rr BG

BG
=++−=Φ αλλ

θθ 22
cos, 2

22

, where              (8) 

α is the radial direction cosine of the linear carrier frequency. In Fig. 3 both the basic grid 
being a cylindrical zone plate with linear radial frequency and the resulting pattern of moiré 
EHZP are shown. The price for such solution is that now the undesired displacements of the 
basic grids not only displace the focal cross, but also introduce aberrations, because the basic 
grid is no longer a pure ZP transmittance (Fig. 4).  
 

 
Fig. 3. The binary amplitude cylindrical ZP with fX = fBG=1000 mm for λ=632.8 nm and 
radial carrier frequency α=-0.005 (left); the moiré EHZP oriented perpendicularly with 
fM=4284 mm created by superposition of two such binary amplitude cylindrical ZP’s with 
radial carrier frequency α=-0.0075 rotated mutually by an angle of 2θ0=0.075π rad (right).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. A superposition of two binary amplitude cylindrical ZP’s shown in Fig. 3, rotated 
mutually by an angle of 2θ0= 0.075π rad, one of them shifted from the centre, creates the 
aberrated moiré EHZP oriented perpendicularly with fM=4284 mm (left); the focal pattern in 
the distance fM=4284 mm formed by the moiré EHZP made from the binary phase versions 
of the basic grids (right). 
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2.4 Basic grid with constant phase shift 

The accuracy of alignment in obvious manner depends on the precision with which the centre 
of the focal pattern can be determined. A focal pattern distribution with zero irradiance in its 
centre was claimed to be superior over the ordinary ones thanks to smaller characteristic 
dimensions and owing to the fact that displacements from the desired position can be 
measured then by an infinite proportional change of the irradiance [29]. A focal pattern of this 
kind in the case of the EHZP’s can be achieved by introducing a phase shift of π radians 
between both arms of the focal cross, what results in destructive interference in their crossing 
point. Such phase difference will appear, if the EHZP with the phase function given equal to:  

                                                        ( ) ( ) 2, 22 πλπ +−=Ψ Mfyxyx ,                 (9) 

will be applied [30].  
In turn, the moiré pattern of this shape can be created by any of two basic grids expressed 

by Eq. (4) with an additional condition that  

                                                        221 π=− cc , where               (10) 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. A superposition of two binary amplitude elliptic ZP’s with fX=600 mm and fY=1500 
mm for λ=632.8 nm rotated mutually by an angle of 2θ0= 0.075π rad, one of them with 
phase shift equal to π/2, creates the moiré EHZP oriented perpendicularly with fM=4284 mm 
and with phase shift equal to π/2 (left); the focal pattern in the distance fM=4284 mm formed 
by the moiré EHZP with the initial phase shift equal to π/2 made from the binary phase 
versions of the basic grids (right). 

 
c1 and c2 are constant. The corresponding basic grids, the resulting moiré pattern, and the 
obtained focal pattern are shown in Fig. 5. All moiré patterns and focal distributions shown in 
Figs. 1-5 are a result of numerical simulation based on the convolution approach [31].  

2.5 Diffraction efficiency of moire ZP’s  

Another quantity of interest is the diffraction efficiency of the proposed moiré element. The 
diffraction efficiency of moiré ZP’s can reach 100%, when both basic grids are conjugate 
kinoforms [6-9]. However, the focal pattern of the EHZP consists of two perpendicular lines, 
which are created by two conjugate diffraction orders, therefore the kinoform version of the 
EHZP creates only one focal line. On the other hand, using two binary phase EHZP’s as basic 
grids, one can collect light in two perpendicular focal lines of equal intensity, useful for two-
dimensional displacement sensing. The diffraction efficiencies of the first diffraction order 
and its conjugate of the moiré EHZP are formed by orders (1,-1) and (-1,1) of the product of 
basic grids transmittances, i.e., to squared diffraction efficiency of the basic grid’s first 
diffraction order [6-8], hence the total amount of energy collected in the focal cross is equal to  

                                                        ( ) %85.3222
4

11 ==+= −+ πηηηTOT ,              (11) 

1 mm 2 mm 
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The phase functions of remaining two orders (1, 1) and (-1,-1), which have the same high 
efficiency, are adding and therefore they usually exhibit much shorter focal length and do not 
disturb the focal pattern of interest.  

3. Conclusions  

The moiré pattern in the form of EHZP was analyzed. Its focal length can be controlled by 
mutual rotation of transparencies forming the mentioned moiré pattern and by a proper choice 
of the basic grid’s particular form. It was shown that hyperbolic, cylindrical and elliptic ZP’s 
can be used as the basic grids for the EHZP moiré pattern creation. It was shown also that the 
found solution, in contradiction to earlier ones, exhibits constant aperture during the mutual 
displacement of the basic grids. Moreover, another interesting feature of the newly found 
solution is that any residual lateral displacement of the basic grids does not introduce any 
additional aberration into the focal pattern except of its displacement, thus leaving the focal 
shape unaffected. An additional linear radial frequency allows to increase clarity of moiré 
fringes by making their period more uniform in the center of the transmittances. As far as the 
diffraction efficiency of the moiré ZP is concerned, relatively high diffraction efficiency can 
be achieved by an application of a simple binary phase version of the basic grids. Because of 
these reasons we dare to express an opinion that the moiré EHZP obtained by rotation is 
maybe the best candidate among other ZP’s moiré patterns for successful application in the 
three-point alignment method.  
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