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ABSTRACT: The properties of single wall carbon nanotubes and carbon fullerenes in 

molten alkali carbonates were studied as a function of the considered nanomaterial 

and the ions into the molten salt using classical molecular dynamics simulations. The 

adsorption and confinement in carbon nanotubes is developed by efficient adsorption 

of carbonate ions in inner and outer walls of the nanotubes whereas alkali cations do 

not show remarkable interaction with the nanomaterial. Analogous solvation 

mechanisms are inferred for carbon fullerenes with large disruption of the liquid 

structuring of molten alkali carbonate at high fullerene concentrations. The solvation 

ability of the studied lithium-sodium-potassium carbonate eutectic mixture for both 

types of nanomaterials are suitable for considering this fluid in the development of 

composite materials for advanced technological applications. 
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Introduction 

Molten salts (MSs) have received great attention in industry and academia for 

many technological applications, especially for high-temperature thermal energy 

storage1 and heat transfer applications.2 MSs are considered as engineering fluids,3 

with a great potential in renewable energy applications, such as concentrated solar 

power plants (CSPs),4 considering energy storage and transformation processes.5,6,7 

The most relevant thermophysical properties of MSs are largely suitable for energy-

related technologies,8 in particular when considering thermal and transport properties. 

Molten alkali carbonates (MACs) exhibit high thermal stability at high 

temperatures,9,10,11 which is pivotal for high temperature applications. They also show 

very low vapor pressure, 12 wide liquid range, low viscosity13 (which decreases 

pumping costs) and large thermal conductivity. 14,15  Likewise, the low cost of MSs and 

their reduced environmental impact with suitable biodegradability lead to the 

consideration of sustainable fluids.16 Therefore, although some researches have 

showed some problems on the application of MACs for thermal energy storage, which 

may affect the stability of MACs – based systems,17 this technology can be considered 

as very promising materials availability and the possibility of tuning their properties by 

additives introduction, e.g. addition of nanoparticles, to improve their 

performance 18,19. 

Molten alkali carbonates (MACs) have also been used as electrolytes in fuel cell 

applications.20,21 The molten carbonate fuel cell (MCFC) technology offers strong 

potential for both power generation and power-chemicals cogeneration in an 

environmentally friendly way.22,23 Likewise, MACs have been proposed for gas 

separation operations, in particular for CO2 capture and valorisation,24 which is of 

great relevance for CO2 abatement, both using MCFCs25,26 and absorption on the liquid 

phase.27,28 Moreover,  MACs – based membranes for gas (CO2) separation applications 

have been reported considering several supports.29,30,31 In particular, MACs on 2D 

materials such as graphene have showed remarkable and useful properties.32 

The introduction of particular nanoparticle additives to MSs, has been studied 

to improve MSs properties, such as to increase the specific heat capacity and other 

thermal properties.33,34 Nanomaterials based on embedding carbon nanotubes in a MS 
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have been proposed for thermal energy storage purposes, showing a remarkable 

increase in specific heat capacity.35 Likewise, it may be expected that the addition of 

other types of carbon-based nanoparticles such as fullerenes may change remarkably 

the physicochemical properties of MSs. The modifications on the thermal properties of 

MSs by the addition of carbon nanotubes and/or fullerenes should be due to induced 

molecular rearrangements of liquid phase structures by the ordering effect produced 

by the presence of the additives. Studies on the liquid structuring of MSs + carbon 

nanotubes / fullerenes are absent in the literature. Nevertheless, available studies on 

related systems formed by low temperature molten salts (i.e. ionic liquids) + carbon 

nanotubes / fullerenes have showed a large structuring effect induced by the presence 

of these additives.36 This is pronounced in the case of carbon nanotubes due to the 

possibility of ions confinement inside the nanotubes leading to highly structured 

materials.37 Therefore, additional studies are required to understand the molecular 

level (nanoscopic) features of MSs + carbon nanotubes / fullerenes systems, and thus 

advancing in these mixed materials for energy related applications. For this purpose, 

mixtures of MACs, as one of the most relevant types of MSs, and single wall carbon 

nanotubes (SWNTs), or carbon fullerenes (C60), were studied using a theoretical 

approach based on classical molecular dynamics (MD) simulations to infer the main 

nanoscopic features of the studied systems. The theoretical study will be concentrated 

on the features of relevant interfacial regions, since they are essential for the 

performance of the composite system,38 considering that intermolecular forces at the 

interfaces will have a large effect on the macroscopic properties of the mixed 

material(s). In the case of SWNTs, the properties of confined MACs inside the SWNTs 

are also studied. The selected MACs were pure Li2CO3 (m.p. = 996.15 K), pure Na2CO3 

(m.p. = 1124.15 K), pure K2CO3 (m.p. = 1164.15 K) and the eutectic mixture 

Li0.87Na0.63K0.50CO3 (i.e. an eutectic mixture composed of 43.5 % Li2CO3 + 31.5 % Na2CO2 

+ 25 % K2CO3, m.p. = 673 K)39 for analyzing the behavior high and low melting point 

MACs as well as the effect of the additives in a complex eutectic mixture. The reported 

results are analysed in terms of structuring at interfaces, ions adsorption and changes 

in MACs properties upon formation of composite systems. Likewise, dynamic 

properties of molecules at interfacial regions were studied together with the strength 



5 
 

of intermolecular interactions determining the main characteristics of SWNT’s/C60 – 

MACs nanocomposites. 

Methods 

MDynaMix v.5.2 molecular modelling package40 was used for all the MD simulations. 

The force field parameterizations for MACs ions are reported in Table S1 (Supporting 

Information) and were obtained from Roest et al.38 SWNTs and C60 fullerene were 

modelled as a rigid entities, i.e. frozen along the simulations. SWNTs studied were 

hydrogen terminated entities with force field parameters as well as those for C60 

obtained from a previous work,41 and reported in Table S1 (Supporting Information). 

The MACs (Li2CO3 or Na2CO3 or K2CO3 or Li0.87Na0.63K0.50CO3 eutectic mixture) + SWNT / 

C60 systems used for molecular dynamics simulations were reported in Table S2 

(Supporting Information). Simulations were carried out using periodic boundary 

conditions were applied in the three space directions. Initial simulation boxes were 

built using Packmol program42 placing SWNTs or C60 fullerene in the center of cubic 

simulation boxes being surrounded by the corresponding MAC. The studied SWNTs 

were: i) an armchair SWNT with chirality (6,6), 3.4 nm long and 0.9 nm diameter (360 

carbon atoms and 24 terminal hydrogen atoms), ii) an armchair SWNT with chirality 

(15,15), 3.4 nm long and 2 nm dimeter (900 carbon atoms and 60 terminal hydrogen 

atoms) and iii) an armchair SWNT with chirality (25,25), 3.4 nm long and 3.4 nm 

dimeter (1500 carbon atoms and 100 terminal hydrogen atoms). The size of the 

simulation boxes was 68 × 68 × 68 Å3, which when comparing with SWNTs length leads 

to boxes two times larger than the SWNTs, thus discarding interactions with neighbor 

simulation cells.  Regarding simulations involving fullerene, two types of simulations 

were carried out. First, a single C60 fullerene molecule was placed at the center of 

simulation boxes and surrounded by the corresponding MAC (to analyze the solvation 

of fullerene). Second, a system with 6 C60 fullerenes randomly distributed in the 

simulation cell were surrounded by the MACs.  

All MD simulation were carried out according to a two-step procedure: i) 

equilibration in the NVT ensemble (assured by the constancy of total potential energy) 

followed by ii) production runs in the NPT ensemble  (10 ns long). Simulations at 1023, 

1153, 1193 and 673K were performed for systems containing Li2CO3, Na2CO3, K2CO3 
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and Li0.87Na0.63K0.50CO3, respectively, i.e., molten salts were present in all simulation 

cases. Regarding possible doubts on the stability of carbon nanotubes and fullerenes at 

the temperatures used in the simulations, studies in the literature have showed that 

SWNTs are stable at temperatures up to 3073K in vacuum, while no remarkable 

degradation is inferred for applications up to 1023K in air.43 In the case of fullerene, 

Eletskii et al.44 and Millican et al.45 state that C60 molecule is stable in an inert (Ar) 

atmosphere at temperatures up to 1200K. In other studies46,47 it is ascertained that C60 

retains its thermal stability up to 1700K.  

The Nose–Hoover method was used for the control of temperature and 

pressure. Ewald method was applied for handling Coulombic interactions (15 Å cut-off 

radius). Tuckerman–Berne double time step algorithm48 (1 and 0.1 fs for long and 

short time steps) was considered for solving equations of motion. Lorentz-Berthelot 

mixing rules allowed the calculation of cross Lennard-Jones terms. A cutoff of 15 Å was 

considered for Lennard-Jones interactions. 

 

Results and discussion 

Four different MACs (Li2CO3 or Na2CO3 or K2CO3 or Li0.87Na0.63K0.50CO3 eutectic 

mixture) were considered in this work and their behaviour with systems containing 

carbon SWNTs and C60 fullerene were studied using MD simulations, with the main 

nanoscopic properties being discussed in the following sections. 

MACs + carbon SWNTs 

 Three different types of SWNTs, (6,6), (15,15) and (25,25), were considered in 

this work regarding the various MACs systems. MACs + SWNTs show two main 

different features which will be analysed in separate: i) SWNTs solvation (i.e. MACs 

behaviour in the external shell of SWNTs and possible development of external 

adsorbed layers) and ii) MACs confinement inside SWNTs (i.e. behaviour of MACs 

under cylindrical pore confinement). Firstly, the behaviour of Li2CO3 MAC will be 

analysed and then the remaining salts will be considered to infer the effect of the 

involved type of cation on systems’ properties. The solvation of SWNTs should be 

characterized by a rearrangement of MACs ions in the region around the external shell 

of SWNTs, and thus leading to ions–SWNTs interactions, which may be quantified 
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through the intermolecular interaction energy (Einter, defined as the sum of Lennard-

Jones and Coulombic contributions), Figure 1. Data for Einter in Li2CO3 + SWNTs 

reported in Figure 1 are reported for the different ion–SWNT contributions, showing 

that Einter for Li–SWNTs are positive for the three studied SWNTs (increasing with 

increasing SWNT diameter, Figure 1a), negative for CO3
2− (also increasing in absolute 

value with increasing SWNT size, Figure 1d) and the balance for all the ions being 

negative (Figure 1e), thus confirming that the adsorption of Li2CO3 on SWNTs external 

surface is energetically favoured. The almost linear increase of Einter with SWNT 

diameter, i.e. with number of C atoms in the SWNT, shows increasing adsorption 

efficiency by ion – C contacts mainly in the first adsorbed layer. The development of 

adsorbed layers around the SWNTs is confirmed in results reported in Figure 2. Up to 

three well defined solvation shells are inferred for CO3
2− anions around all the 

considered SWNTs. The first shell appears at 4.4 Å of the SWNTs surface and the 

consecutive solvation shells are separated 3.5 Å; this structuring is maintained 

independently of the SWNT diameter. The  CO3
2− densification around SWNTs is 

confirmed by number density profiles reported in Figure 2. Nevertheless, the widening 

of the number density peaks on going from the first solvation shell toward further shell 

shows more disrupted solvation layers when the distance to the SWNTs decreases. 

Regarding the arrangement of Li+ cations, number density profiles reported in Figure 2 

show poorly defined adsorption layers, although cation density peaks are inferred, 

especially for SWNT(25,25), they are wider and less intense than those for  CO3
2−, 

showing poor adsorption ability, in agreement with interaction energies reported in 

Figure 1. Likewise, number density peaks for Li+ cations are placed between those 

corresponding to  CO3
2− ,  e.g. the first density peak for Li+ is placed 1.2 Å above the 

first  CO3
2− peak. Therefore, the structure of solvation shells around SWNTs is formed 

by alternating anion-cation layers, although cation layers are poorly defined, thus  

CO3
2− guide the structuring around carbon nanotubes with cation layers developed for 

maintaining anion-cation interactions above the nanotubes. Additional features of ions 

structuring on solvation shells around the SWNTs are inferred in Figure 3, in the case of  

CO3
2− for large SWNTs (in the case of the studied SWNTs only for SWNT(25,25)) anions 

adopt a configuration on the first solvation shells forming well defined rows, i.e. anions 

are arranged in concentric circumferences for the first solvation shell, as confirmed by 
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the number density profiles in Figure 3d. In the case of Li+ cation this arrangement is 

absent, and cations are spread over the whole nanotube above the first anion 

adsorbed layer. Likewise, this orientation is largely dependent on the available 

adsorption surface, and results in Figures 3a to 3c show that it is absent in small 

SWNT(6,6), it starts to form in intermediate SWNT(15,15) and kit is fully developed in 

SWNT(25,25). Additionally, results in Figure 3d show the densification of  CO3
2− close to 

the enter of SWNTs, increasing with increasing SWNT size, and in minor extension for 

Li+ cations. 

 The results in Figures 2 and 3 show large densification of  CO3
2− on top of 

SWNTs, density profiles in Figure 4 show the orientation of these anions when 

adsorbed on the nanotubes surface. The results show that  CO3
2− anions are deformed 

by the presence of SWNTs surface, the planarity of  CO3
2− is disrupted leading to a 

configurations with O atoms placed all above the C atom for all the adsorbed layers 

although with larger deformations for layers closer to the SWNTs surface (although up 

to the third adsorbed layers  CO3
2−  are non-planar ions). The orientations inferred in 

Figure 4 show alternating configurations of  CO3
2−, i.e. with O atoms pointing outwards 

of the surface for the first adsorbed layer and with O atoms pointing toward the 

surface for the second layer, this orientation can be justified considering that Li+ 

cations are mainly placed between the  CO3
2− adsorbed layers and thus  CO3

2−  

adsorption is accompanied by efficient anion – cation coulombic interaction between 

the O atoms in  CO3
2− (negatively charged) and cations. The arrangements and ions 

orientation in the adsorbed layers around SWNTs should lead to charge accumulation 

as a function of distance to the nanotubes surface. Results in Figure S1 (Supporting 

Information) show charge peaks corresponding to cation and anion layers around the 

nanotubes, but the structure of the total charge density peaks is characterized by 

alternating positive and negative peaks, i.e. corresponding to an electrical double layer 

structuring.  

 The large densification of  CO3
2− ions around the SWNTs and the strength of  

CO3
2− - SWNTs interactions reported in previous paragraphs should lead to remarkable 

differences between the dynamic properties of ions in the adsorbed layers and those 

in bulk liquid phases. These effects are quantified through the self-diffusion 

coefficients reported in Figure 5. CO3
2− ions when adsorbed on the SWNTs outer 
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surface decrease their mobility in comparison with ions in the liquid phase (non-

adsorbed). This effect is more pronounced in small diameter nanotubes and for ions in 

solvation layers closer to the nanotube surface.  These results confirm that even ions in 

the third adsorbed layer, which are placed at 1.1 nm of the SWNTs, have low ionic 

mobility, as an effect of very efficient and strong  CO3
2− - SWNTs interactions. 

Regarding the effect of SWNT size on  CO3
2− mobility, lower diffusion rates for smaller 

nanotubes, considering that the SWNTs effect on  CO3
2− - SWNT interactions is linearly 

related to the number of the adsorption sites (i.e. C atoms into nanotubes), it can be 

rationalized by steric effects due to the larger extension of adsorbed layers in large 

nanotubes, which allows CO3
2− mobility within the adsorbed layer. 

 Ions in Li2CO3 MAC can also be confined inside the SWNTs internal cavities by 

diffusion from the bulk liquid phases toward this region, which is spontaneously 

produced in MD simulations when SWNTs are placed in molten Li2CO3.  The 

arrangement of confined ions is reported in Figure 6 for the studied SWNTs. As in the 

case of external adsorbed layers reported in previous sections, the behaviour of ions 

inside the SWNTs (cylindrical) cavities is characterized by a large orientation of  CO3
2− 

anions and in minor extension of Li+ cations. In the case of narrow SWNT(6,6) (with 8.1 

Å diameter) CO3
2− anions are arranged in a single row following the central SWNT 

longitudinal axis, with Li+ adopting a shell around them, Figure 6a. The increase of 

SWNTs diameter leads to more complex arrangements of  confined CO3
2− anions, 

following the same pattern as for the external solvation shells, i.e. concentric shells 

with the number being dependent on the diameter of the internal SWNT cavity, two 

layers for SWNT(15,15) (diameter 20.3 Å) and four layers for SWNT(25,25) (diameter 

33.8 Å), Figures 6b to 6d. Regarding the arrangement of confined Li+, layers are more 

poorly defined than for CO3
2− (as for the case of external solvation shells), Figures 6b 

and 6c, but they tend to be placed between the  CO3
2− peaks, Figure 6d. Therefore, 

confined ions follow a similar pattern to external solvation shells, with ions 

reorganization being largely dependent on SWNTs internal diameter. This effect is 

confirmed by the orientation of  CO3
2− ions, which are also disrupted in their planarity 

when confined and follow analogous pattern as those in external solvation shells 

(Figures 4 and 7), thus showing analogous confinement and solvation mechanisms 

guided by  CO3
2− adsorption with intermediate cation layers for maintaining anion-
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cation electrostatic interaction even upon confinement. Likewise, the number of 

confined anions and cations follows the 1 anion : 2 cations ratio for all the considered 

nanotubes, Table 1, thus maintaining Li2CO3 stoichiometry and electrical neutrality in 

confined salts and showing that the structuring developed upon confinement by  CO3
2− 

anions is accompanied by Coulombic interaction with the cations. 

 The effect of cation type on the properties of MACs + SWNTs is analysed by 

considering Na2CO3, K2CO3 and the Li0.87Na0.63K0.50CO3 eutectic (EU) mixture. Regarding 

the solvation of SWNTs, results in Figure 8 show a large effect of the type of 

considered cation, although adsorption is inferred for all the studied MACs (e.g. the 

three well-defined adsorption layers closer to the nanotubes surface), the layering of 

CO3
2− anions is largely dependent on the type of cation, with adsorbed peaks intensity 

decreasing with increasing cation size (Li < Na < K). Likewise, the EU shows a behaviour 

intermediate between those for Li2CO3 and Na2CO3, thus confirming the role of cation 

size on the development of CO3
2− guided adsorption layers. This can be justified 

considering the disrupting effect of large cations on the structuring of adsorbed layers 

by decreasing the number of adsorbed CO3
2− anions, and thus decreasing the anion – 

SWNT interactions. The latter is quantified by the decreasing interaction energy with 

increasing cation size, as shown in Figure 1. The disrupting effect of larger cation size 

on the structuring of CO3
2− adsorbed layers is confirmed by the results in Figures 9a to 

9c, these distributions, when compared with the one in Figure 3c for Li2CO3, show the 

disappearing of the ordered concentric circular arrangements around the SWNT(25,25) 

for MACs with larger cations than Li+. This disruptive effect is also confirmed by the 

CO3
2− - CO3

2− radial distribution functions, RDFs, for ions in the first solvation shell 

reported in Figure 9d. In the case of Li2CO3, consecutive peaks corresponding to the 

arrangement reported in Figure 3c are inferred, but as the cation size increases, the 

first RDF increases its distance (i.e. CO3
2− anions are placed far from their neighbouring 

ones) and additional peaks have almost vanished. In the case of EU, the situation is 

intermediate, i.e. in between the observed behaviour for Li2CO3 and those for the 

other MACs. The behaviour of confined MACs follows the same pattern, CO3
2− anions 

develop layering upon confinement for all the studied ions, but it is less remarkable for 

MACs with Na+ or K+ cations or EU (Figure S2, Supporting Information) system than in 

the case with Li+ cations (Figure 6c). The disruptive effect on the confinement of MACs 
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with larger cations is confirmed by RDFs reported in Figure 10 showing an increase of 

ion-ion distances (both for anion-cation and anion-anion ones), which agrees with the 

number of confined ions reported in Table 1. Nevertheless, it should be remarked that 

the 1:2 anion-cation ratio is maintained for all the considered MACs, leading to 

electrical neutrality of confined MACs. Therefore, although the structure of confined 

MACs is guided by the trend of CO3
2− anions to develop well-ordered layers following 

the SWNTs geometry, thus increasing anion-SWNTs interactions, the CO3
2−confinement 

is accompanied by the penetration of the corresponding cations in stoichiometric 

amounts thus, limiting the number of confined CO3
2− anions and decreasing the 

strength of ion-SWNTs interactions, Figure 1. 

MACs + C60 fullerene 

 The second type of systems considered in this work were mixtures formed by 

C60 fullerenes and MACs. In an initial stage a single C60 fullerene was surrounded by 

MACs to mimic low concentration C60 solutions in MACs and to analyse the solvation 

behaviour of MACs. Results in Figure 11a show RDFs between the C60 center-of-mass 

and the corresponding ions in the studied MACs, i.e. the distribution of MACs in the 

solvation shells around the fullerene.  In the case of Li2CO3,  three well-defined 

solvation shells are inferred for CO3
2− anions (spaced 3.5 Å, as in the case of shells 

around SWNTs, Figure 2), and Li+ layers placed between CO3
2− ones, with the first one 

above the first CO3
2− one, i.e. CO3

2− ions placed closer to the C60 surface. The 

comparison of results in Figures 2 and 11a shows similar solvation patterns around 

SWNTs and C60 fullerenes. The increase of cation size in MACs (Na+ and K+) leads to a 

shifting of the first CO3
2− adsorbed layer and the vanishing of further solvation shells, 

Figure 11a. Likewise the arrangement of cations changes on going from Li+ to Na+ and 

K+, with cations shifting toward the region occupied by CO3
2− anions closer to the 

fullerene surface.  In the case of EU system, the CO3
2− solvation shells are mostly 

maintained in comparison with Li2CO3 although the peaks are slightly shifted from the 

fullerene surface. For EU, Na+ and K+ cations are placed in the same first CO3
2− 

adsorbed shell whereas Li+ cations are placed between the first and the second CO3
2− 

solvation shells, thus showing that EU has an intermediate behaviour between that of 

pure MACs, and the distribution of cations seems to be independent of the considered 

MAC. The number of ions in the corresponding solvation shells, N, is reported in 
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Figures 11b and 11c. The number of adsorbed CO3
2− anions decreases with increasing 

cation size in the MAC, with the EU showing an intermediate behaviour between 

Li2CO3 and the remaining MACs and analogously is inferred for the number of cations. 

Nevertheless, the number of anions and cations in each adsorbed layer follows the 1:2 

anion:cation ratio confirming the electrical neutrality of the whole adsorbed layers and 

showing an analogous mechanism of adsorption with the SWNTs case. The distribution 

of ions in the first solvation shell around C60 fullerene is shown in Figure14. In the case 

of Li2CO3, Figure 12a, the Li+ cation layer placed above the CO3
2− layer and extending 

around the whole fullerene surface. In the case of MACs with  Na+ and K+  cations the 

arrangement is completely different, Figures 12b and 12c, with both cations and CO3
2− 

anions sharing the surface, in agreement with the RDFs reported in Figure 11a which 

showed the shifting of cations toward regions occupied by CO3
2− ions in the first layer, 

thus leading to spots corresponding to cations and anions evenly distributed on the 

fullerene surface. In the case of EU mixture, Figure 12d, cations (including Li+) and 

CO3
2− anions are evenly distributed on the C60 surface, and in this case the presence of 

Na+ and K+ cations affects the Li+ distribution, which is completely different to that for 

Li2CO3. The strength of ion-C60 interactions are quantified through intermolecular 

interaction energies reported in Figure 13, negative values are inferred for CO3
2− - C60, 

with lower values than for CO3
2− - SWNTs, Figure 1, because of the lower number of C 

atoms, but showing a very efficient solvation of C60 fullerene. Moreover, these 

energies decrease with increasing size of the involved cation, with EU showing an 

intermediate behaviour, Figure 13a, which agree with results in Figure 11. In the case 

of cation – C60 interaction energies, Figure 13b, small values are inferred for all the 

considered cations and MACs, with negative values for Li+ and positive for Na+ and K+, 

but in all the cases the total ion-C60 energies (sum of cation and anion contributions) is 

large and negative confirming the efficient C60 solvation by the studied MACs although 

decreasing with increasing with cation size. The values of interaction energies for the 

EU show efficient solvation, which considering the low melting point, compared to 

other MACs, it can be used for C60 solution in required applications. 

 To study the effect of larger C60 concentrations on MACs properties a system 

composed by 6 C60 fullerenes in the considered simulation boxes were studied (Table 

S2, Supporting Information). The comparison between the properties of neat MAC (i.e. 
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in absence of C60) and the system containing the 6 C60 fullerenes are reported in 

Figure 14. The presence of this large concentration of C60 leads to remarkable changes 

in MACs structuring for all the considered systems.  Regarding CO3
2− - CO3

2− 

interactions, RDFs reported in Figure 14a, show the disruptive effect of C60 on the 

anionic arrangement, decreasing the number of ions in the first solvation shell and 

almost vanishing CO3
2− - CO3

2− arrangement beyond the first solvation shell. In the case 

of CO3
2− - cation interactions, Figure 14b, the long-range arrangement, especially for 

Li2CO3, is also weakened. Therefore, these results show that large C60 concentrations 

disrupt the anion-cation interactions in the considered MACs, which are weakened for 

solvating the available C60, because of the efficient CO3
2− adsorption on the shells 

around the C60 fullerenes. 

   

Conclusions 

 A theoretical study using molecular dynamics simulations on the properties of 

molten alkali carbonates with carbon nanotubes and fullerenes is reported in this work 

considering the effect of the involved cation, and the characteristics of the carbon 

nanomaterials. In the case of carbon nanotubes, the development of concentric 

adsorbed layers of CO3
2− anions control the properties of the solvation shells around 

the nanotubes. The arrangement of CO3
2− anions is almost planar regarding the 

nanotube surface with oxygen atoms deviating from the molecular plane to develop 

efficient Coulombic interaction with the corresponding cations placed above the anion 

adsorbed layers. Therefore, solvation shells are characterized by alternating negative – 

positive layers developing electrical double layer arrangement. Regarding the ions’ 

confinement inside the nanotubes’ cavities, configurations totally analogous to the one 

in the outer solvation shells are developed with the number of confined anions and 

cations following the stoichiometry of the carbonates. The adsorbed and confined 

CO3
2− and cation layers are more ordered with increasing nanotube diameter and are 

more disordered, and thus less effective solvation, with increasing cation size. In the 

case of C60 fullerenes, solvation shells follow analogous pattern to those in carbon 

nanotubes, CO3
2− being efficiently adsorbed on the fullerene surface with well-ordered 

layers being developed beyond the first solvation shell, especially for MACs with Li+ 
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cation. In the case of largely concentrated C60 solutions, the presence of fullerenes 

largely disrupts the anion-cation interactions for maintaining the solvation efficiency of 

fullerenes, which can be related to high solubility of these fullerenes in MACs. In all 

studied carbon nano-systems, the considered eutectic mixture, which has lower 

melting point compared to the primary MACs, show good solvation properties 

regarding nanotubes and fullerenes, and thus eutectic MAC + carbon nano-systems 

can be considered as suitable technological platforms for moderate temperature 

applications. 
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Table 1. Number of ions, N, confined inside SWNT(25,25) for the reported (Li2CO3 or Na2CO3 or K2CO3 

or Li0.87Na0.63K0.50CO3, EU) + SWNT(25,25) systems. 

salt NCO3 Ncation Ncation(s) / NCO3 

Li2CO3 375±3 754±5 2.0 

Na2CO3 251±3 504±5 2.0 

K2CO3 154±3 308±5 2.0 

Li0.87Na0.63K0.50CO3 266±2 248±2 (Li) 

157±2 (Na) 

131±1 (K) 

2.0 

 

  



18 
 

Figure Captions 

 

Figure 1. Intermolecular interaction energies (sum of Lennard-Jones and coulombic contributions, Einter) 

for ion – SWNT interactions in (Li2CO3 or Na2CO3 or K2CO3 or  Li0.87Na0.63K0.50CO3 (eutectic mixture, EU)) + 

SWNT ((6,6) or (15,15) or (25,25)) at 1023 K (Li2CO3), 1153 K (Na2CO3), 1193 K (K2CO3) and 673 K 

(Li0.87Na0.63K0.50CO3) and 1 bar. Results in panel e correspond to the sum of cation – SWNT + anion – 

SWNT contributions for each system. 

 

Figure 2. Snapshots of CO3
2− ions around SWNTs and the corresponding radial number density profiles of 

CO3
2− and Li+ ions (center-of-mass), with r being the distance to the radial axis of the SWNTs and rwall the 

position of the SWNTs carbon atoms for Li2CO3 + SWNT systems. A extended plot of the solvation shells 

around SWNT(25,25) is showed at the top of the figure (blue arrow) showing the three first solvation 

shells. 

 

Figure 3. (a to c) Snapshots of the arrangement of C atoms in CO3
2− ions on top of SWNTs, for the first 

solvation shells, and (d) the corresponding longitudinal number density profiles of CO3
2− (blue) and Li+ 

(red) ions (center-of-mass), with R being the distance along the radial axis of the SWNTs. Vertical dashed 

lines show the position of the SWNTs carbon atoms for Li2CO3 + SWNT systems. Filled symbols show the 

position of maxima for the sake of visibility. White arrow indicates atoms wrapping around SWNT 

surface. 

 

Figure 4. Radial number density profiles of CO3
2− ions (C and O1, O2, O3 atoms), with r being the 

distance to the radial axis of the SWNT and rwall the position of the SWNT carbon atoms for Li2CO3 + 

SWNT(25,25) system. The snapshot is showed to clarify the orientation of CO3
2−  ions regarding SWNT 

surface  

 

Figure 5. Ratio of  CO3
2−self-diffusion coefficients in i solvation shell to bulk liquid phase, 𝐷𝐷𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐷𝐷𝑏𝑏𝑏𝑏𝑒𝑒𝑏𝑏⁄  

(for first, second and third solvation shells as showed in snapshot), for Li2CO3 + SWNTs systems. Dbulk 

(Li+)= 4.5×10-5 m2 s-1  and Dbulk (CO3
2−)= 0.52×10-5 m2 s-1. 

 

Figure 6. (a to c) Snapshots and (d) radial number density profiles of CO3
2− and Li+ ions (center-of-mass), 

with r being the distance to the radial axis of the SWNTs.  Vertical dashed lines show the position of  the 

SWNTs carbon atoms for Li2CO3 + SWNT systems. Points indicate the position of the maxima for guiding 

purposes. 

 

Figure 7. Radial number density profiles of CO3
2− ions (C and O1, O2, O3 atoms), with r being the 

distance to the radial axis of the SWNT for Li2CO3 + SWNT(25,25) system.  
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Figure 8. Radial number density profiles of CO3
2− (center-of-mass), with r being the distance to the radial 

axis of the SWNTs and rwall the position of the SWNT carbon atoms for (Li2CO3 or Na2CO3 or K2CO3 or 

Li0.87Na0.63K0.50CO3, EU) + SWNT(25,25) systems.  

 

Figure 9. (a to c) Snapshots of CO3
2− (center-of-mass), for (Li2CO3 or Na2CO3 or K2CO3 or 

Li0.87Na0.63K0.50CO3, EU), in the first external solvation shell around SWNT(25,25) system and (d) CO3
2− -  

CO3
2−center-of-mass radials distribution functions, g(r), in the same shell. Numbers inside (d) panel 

indicate the position of the first maxima. 

 

Figure 10. Center-of-mass radials distribution functions, g(r), for the reported ions confined  inside 

SWNT(25,25) for Li2CO3 or Na2CO3 or K2CO3 or Li0.87Na0.63K0.50CO3, EU. Numbers inside each panel 

indicate the position of the maxima. 

 

Figure 11. (a) Radial distribution functions, g(r), between the fullerene C60 and the center-of-mass of 

ions and (b,c) the corresponding solvation numbers, N, for Li2CO3 or Na2CO3 or K2CO3 or 

Li0.87Na0.63K0.50CO3, EU, + fullerene C60. Numbers inside each panel indicate the position of the maxima. 

 

Figure 12. Ions distribution in the first solvation shell around fullerene C60 for Li2CO3 or Na2CO3 or K2CO3 

or Li0.87Na0.63K0.50CO3, EU, + fullerene C60. 

 

Figure 13. Intermolecular interaction energies (sum of Lennard-Jones and coulombic contributions, Einter) 

for ion – fullerene C60 interactions in (Li2CO3 or Na2CO3 or K2CO3 or  Li0.87Na0.63K0.50CO3 (eutectic mixture, 

EU)) + fullerene C60. Results in panel c correspond to the sum of cation – C60 + anion – C60 

contributions for each system. 

 

Figure 14.  Radial distribution functions (center-of-mass), g(r), for the reported pairs in neat Li2CO3 or 

Li0.87Na0.63K0.50CO3, EU, and Li2CO3 or EU + fullerene C60.  
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15
r / Å

0

10

20

30
g(

r)

 

 

 

 Li2CO3

EU
Na2CO3

K2CO3

    



29 
 

 

 
 

Figure 10. 
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Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 5 10 15
r - rC60-com / Å

0

2

4

6

8

10
g(

r)

co

 
 

 

 

(c) Ncation

Li2CO3

EU
Na2CO3

K2CO3

Li (Li2CO3)
Na (Na2CO3)
K (K2CO3)
Li (EU)
Na (EU)
K (EU)



31 
 

 

 
 

Figure 12. 
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Figure 13. 
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Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


