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Abstract: In this work, a soft sensor for tomato crop has been developed using dynamic models to 
reproduce physical and biological phenomena inside a greenhouse. External weather forecasts were utilised 
to predict crop growth for a short-term horizon. In addition, data assimilation was performed from 
observable information of the process, such as measurements captured by sensors, in order to correct 
uncertainty errors of simulated variables by dynamic models. From the automatic control perspective, the 
proposed mechanism might allow to implement optimal resource management strategies. Furthermore, 
crop prediction systems could offer relevant information to farmers as a support tool for decision making. 

Keywords: Prediction, virtual sensor, crop monitoring, decision support system, data assimilation. 

 

1. INTRODUCTION 

Nowadays, there is a growing concern among international 
governments to achieve an increasingly efficient agriculture. 
Despite numerous technological enhancements have been 
made in recent decades, several policies are arising in order to 
encourage the implementation of advanced techniques to 
increase the yield of farms and evolve towards a sustainable 
bioeconomy model (Egea et al., 2018). 

In the coming years, a greater digitalization of agriculture is 
expected to occur, especially due to the progression of the 
Internet of Things (IoT) paradigm. IoT technologies might 
significantly improve the level of existing monitoring in 
current greenhouses by developing economic sensors to 
measure variables of interest and simplifying data collection to 
automate processes or predict future crop scenarios (Tzounis 
et al., 2017; Wolfert et al., 2017; Kochhar and Kumar, 2019). 
Measurements could be remotely sent to platforms in which 
Artificial Intelligence and Big Data techniques are applied to 
optimally analyse and interpret the collected information 
(Jayaraman et al., 2016; Guirado-Clavijo et al., 2018). 

In greenhouses, some relevant variables are yet difficult to be 
measured by sensors, such as Leaf Area Index (LAI), one of 
the most important indicators to evaluate crop growth. At 
present, LAI is commonly measured by manually performing 
destructive tests to some plants of the crop. This tedious 
procedure encourages to develop an alternative technique to 
avoid destructive tests and to offer a method for continuous 
monitoring. For instance, new artificial vision techniques are 
aimed to estimate growth based on crop images (Kaiyan et al., 
2014). Also, neural networks seem to be useful (Qaddoum et 
al., 2013; Wang et al., 2017). 

In this work, a different proposal is presented, focusing on the 
concept of soft sensors, also named virtual sensors. A soft 
sensor has been developed to offer an estimation for LAI by 
using available information from other real sensors inside a 
greenhouse. The LAI estimation is generated with a dynamic 

model specifically developed for tomato crops (Jones et al. 
1999). Soft sensors based on dynamics models have 
remarkable versatility to be improved. New approaches are 
emerging to combine components from different classical 
models in order to obtain a better overall performance in 
tomato crop growth estimation (Kuijpers et al., 2019). 

2. MATERIALS AND METHODS 

2.1  Description of the greenhouse 

In this work, a traditional greenhouse was used to obtain 
climate and crop data under real production conditions. The 
“parral-type” greenhouse (Fig. 1) is located at “Las 
Palmerillas” Experimental Centre (Almería, Spain), property 
of Cajamar Foundation. 

       

Fig. 1. Traditional “parral-type” greenhouse. Left: exterior 
view. Right: interior view. 

The total surface of the greenhouse is 877 m2 (37.8 × 23.2 m). 
Under the polyethylene cover, an area of 600 m2 is dedicated 
for the crop, which is distributed in rows oriented from north 
to south, with a longitudinal slope of 1%. Planting is done in 
coconut fibre bags. 

Natural ventilation is automated to control inside air 
temperature and humidity by means of five zenithal windows 
(8.36 x 0.73 m) and two lateral windows (32.75 x 1.9 m) 
situated on the north and south sides of the greenhouse. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 16005



 
 

     

 

2.2  Experimental data 

Experimental data for this work came from three different 
sources: (i) climate variables monitored outside and inside the 
greenhouse, (ii) manual measurements to determine crop 
growth, and (iii) weather forecast provided by the Spanish 
State Meteorological Agency, AEMET. 

The greenhouse at “Las Palmerillas” has an advanced system 
for measuring and controlling climatic variables, developed by 
the Automatic Control, Robotics and Mechatronics research 
group (ARM) of the University of Almería. Outside the 
greenhouse, a meteorological station registers air temperature 
and relative humidity, wind velocity, solar radiation, and CO2 
concentration in the air. Inside the greenhouse, distributed 
sensors measure air temperature and relative humidity, CO2 
concentration in the air, global radiation, photosynthetic active 
radiation (PAR), and soil surface temperature, among other 
variables not utilised in this work. All variables are registered 
every 30 seconds. 

Tomato crop growth was measured manually by performing 
destructive tests applied to some plants randomly selected 
from the entire crop. In each test, plants were cut and broken 
down into leaves, stems, and fruits, allowing the area of the 
leaves to be measured and the fresh weight of each part to be 
determined. Subsequently, samples were dried for 24-48 
hours, and finally weighed to obtain the total dry weight. 
Planting destructive tests were carried out every 30 days, 
approximately. Periodic maintenance tasks of the crop were 
also registered, since pruning and deleafing also affects to leaf 
area index. 

External weather forecasts provided by AEMET were 
obtained from the high-resolution atmospheric model 
HARMONIE-AROME (Bengtsson et al., 2017). This 
powerful model performs data assimilation from satellite 
observations, ground weather stations, radiosondes and 
sensors in the fuselage of commercial aircrafts. For this work, 
AEMET periodically sent weather data to a private server at 
University of Almería. Every day, four climate forecasts were 
provided at 00:00, 06:00, 12:00 and 18:00, Coordinated 
Universal Time, UTC. Each forecast had a 48 hours prediction 
horizon for the following variables with a 15 minutes sampling 
interval: air temperature, air relative humidity, solar radiation, 
wind velocity, wind direction and total accumulated rainfall. 

2.3  Tomato growth model 

In this work, the reduced TOMGRO model (Jones et al., 1999) 
was utilised to simulate tomato crop growth. This model 
allows to estimate five state variables, as showed in the 
schematic representation in Fig. 2. The model consists of a set 
of equations to calculate crop photosynthesis, respiration, and 
other metabolic activities. The original model was adapted to 
Mediterranean greenhouses conditions by including the effects 
of irrigation and fertilizers (based on electrical conductivity). 
A more extensive description can be found in (Rodríguez et 
al., 2015). 

 

Fig. 2. Schematic representation of tomato growth model. 

Leaf Area Index is a reference variable to indicate crop growth. 
In the reduced TOMGRO model, LAI evolution in time is 
determined by a differential equation showed in (1), as a 
function of other crop variables such as number of nodes, XN. 
This equation is also affected by an unitless function 
 𝑓𝐿𝐴𝐼(𝑋̅𝑇𝑑,𝑎), which reduces LAI depending on the daily 
average of inside greenhouse air temperature, plant density, 𝜌, 
maximum leaf area expansion per node, 𝛿𝑙, a coefficient in 
expolinear equation, 𝛽𝑙, and a projection coefficient related to 
the number of nodes, 𝑁𝑏. 

𝑑𝑋𝐿𝐴𝐼

𝑑𝑡
= 𝜌 𝛿𝑙 𝑓𝐿𝐴𝐼(𝑋̅𝑇𝑑,𝑎)

𝑒(𝛽𝑙(𝑋𝑁−𝑁𝑏))

1+𝑒(𝛽𝑙(𝑋𝑁−𝑁𝑏))

𝑑𝑋𝑁

𝑑𝑡
 (1) 

 

2.4  Greenhouse climate model 

The microclimate inside a greenhouse can be simulated by a 
simplified pseudo-physical dynamic model, completely 
described by Rodríguez et al. (2015). This model was obtained 
by simplifications of first principles, such as energy balances 
(e.g. heat transfer flows) and mass balances (e.g. water vapor 
in the air). State variables for this model are inside air 
temperature, inside air relative humidity, and inside solar 
radiation. In this work, a sub-model was included to simulate 
inside soil surface temperature as an internal disturbance.  

In Fig. 3, a schematic representation of the model is exposed. 
Red coloured inputs correspond to disturbance variables, 
fundamentally associated to external weather conditions, and 
the blue input is a manipulated variable (actuator). Simulated 
state variables are coloured in green as model outputs. 

 

Fig. 3. Schematic representation of greenhouse climate model. 

Inside air temperature, 𝑋𝑇,𝑎, is calculated in (2) as a differential 
equation considering greenhouse inside heat fluxes, Q, and 
physical constants such as air specific heat coefficient, 𝑐𝑠𝑝ℎ,𝑎, 
air density, 𝑐𝑑𝑒𝑛,𝑎, greenhouse volume, 𝑐𝑣𝑜𝑙,𝑔, and inside soil 
surface area, 𝑐𝑎𝑟𝑒𝑎,𝑠𝑠. 

𝑐𝑠𝑝ℎ,𝑎 · 𝑐𝑑𝑒𝑛,𝑎 ·
𝑐𝑣𝑜𝑙,𝑔

𝑐𝑎𝑟𝑒𝑎,𝑠𝑠
·

𝑑𝑋𝑇,𝑎

𝑑𝑡
= ∑Q + ∑Q(𝑥𝑇,𝑎) (2) 
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Inside air relative humidity, 𝑋𝐻𝑎,𝑎, is determined with the mass 
balance expressed in (3), where 𝑀𝑡𝑟𝑝,𝑐𝑟 is the crop 
transpiration flux, and 𝑀𝑣𝑒𝑛,𝑎−𝑒 is the outflow corresponding 
to natural ventilation. 
𝑐𝑑𝑒𝑛,𝑎·𝑐𝑣𝑜𝑙,𝑔

𝑐𝑎𝑟𝑒𝑎,𝑠𝑠
·

𝑑𝑋𝐻𝑎,𝑎

𝑑𝑡
= 𝑀𝑡𝑟𝑝,𝑐𝑟 − 𝑀𝑣𝑒𝑛,𝑎−𝑒 (3) 

 
Solar radiation inside the greenhouse, 𝑉𝑟𝑠,𝑐𝑟, is calculated by 
the static expression showed in (4), where 𝐷𝑟𝑠,𝑒 is the external 
solar radiation, and 𝑉𝑡𝑠𝑤,𝑔 is a short wave transmission 
coefficient depending on the type of greenhouse cover. 

𝑉𝑟𝑠,𝑐𝑟 = 𝑉𝑡𝑠𝑤,𝑔 · 𝐷𝑟𝑠,𝑒 (4) 
 
Finally, soil surface temperature, 𝑥𝑇,𝑠𝑠, can be simulated with 
equation (5), where 𝑐𝑠𝑝ℎ,𝑠𝑠 is the specific heat coefficient for 
soil surface material, 𝑐𝑑𝑒𝑛,𝑠𝑠 is the soil surface material density, 
and 𝑐𝑡ℎ,𝑠𝑠 is the thickness of the soil surface. 

𝑐𝑠𝑝ℎ,𝑠𝑠 · 𝑐𝑑𝑒𝑛,𝑠𝑠 · 𝑐𝑡ℎ,𝑠𝑠 ·
𝑑𝑥𝑇,𝑠𝑠

𝑑𝑡
= ∑𝑄𝑠𝑠 (5) 

 
This equation was implemented as a simplified sub-model to 
be only executed when no real measurements were available 
for soil surface temperature. Thus, this sub-model can offer an 
estimation for this variable as an internal disturbance for 
greenhouse climate. 

2.5  Models calibration and validation procedure 

A genetic algorithm (Houck et al., 1995) was employed to 
achieve constants calibration by minimizing the error between 
simulated dynamics and real dynamics of the process. The 
utilised error function corresponds to the root of sum of 
quadratic errors and is presented in the following expression:  

𝐸𝑟𝑟𝑜𝑟 = √∑ (𝑥𝑟𝑒𝑎𝑙,𝑘 − 𝑥𝑠𝑖𝑚,𝑘)
2𝑛

𝑘=1  (6) 

 
where 𝑥𝑟𝑒𝑎𝑙,𝑘 are real data from process, 𝑥𝑠𝑖𝑚,𝑘 are simulated 
data from a dynamic model, and n is the total number of 
samples (referred to time instants, k). 

Based on the sensitivity analyses originally performed by 
Rodríguez (2002), constants with greater impact on simulated 
dynamics were calibrated. Constrained values (limits) were 
imposed during the calibration procedure to ensure that 
calibrated constants retain their physical meaning. 

Validation methodology consisted in performing several 
simulations for each model with real experimental data that 
offered dynamic variety to graphically evaluate the behaviour 
of the models under different scenarios. For each validation 
test, absolute errors between simulated variables and real 
measurements were calculated. Mean Absolute Error (MAE) 
was selected as an index to assess the quality of models’ 
simulations, as it represents the average deviation of simulated 
variables against real measurements. 

2.6  Software 

Dynamic models’ equations and prediction mechanism 
functions were programmed in MATLAB® (MathWorks, 
Massachusetts, USA), version 2018b. In addition, analysis 
tools such as MATLAB® Profiler were utilised to optimize the 
execution time of the programmed code. Simulations with real 
experimental data were also performed in this software. 

3. RESULTS AND DISCUSSIONS 

3.1  Tomato growth model validation 

Tomato growth model was validated with real crop data from 
a complete season between September 2015 and May 2016 
(240 days). The model was simulated using the actual values 
registered for inside air temperature and PAR radiation, as 
shown in Fig. 4. Electrical conductivity was controlled 
throughout the season, with an average value of 2.6 dS·m-1. 
CO2 concentration in the air inside the greenhouse was not 
measured continuously. Hence, in order to simulate the model, 
it was assumed an average value of 380 ppm for CO2 
concentration, as no enrichment systems were utilised. 

 

Fig. 4. Inputs for tomato growth model simulation. Season 
2015-2016. 

Plant density was established in 1.4 plants·m-2. During the 
season, eight destructive tests were performed to determine 
real values of crop biomass. Additionally, nine pruning tasks 
were registered. The amount of LAI retired from the plants in 
each pruning was provided to the model so that simulated LAI 
could be modified by subtracting the pruned value. 

Values for model constants were taken from baseline studies 
previously published in the literature (Jones et al., 1991, 1999). 
Some constants were calibrated in previous works to reflect 
some characteristics for the crop variety, as shown in Table 1. 

Table 1.  Calibrated constants for tomato growth model 

Constant Value Units Affects to 
𝑐𝑁𝑚

 0,56 nodes·day-1 Nodes 
𝑐𝑁𝑏

 4 nodes LAI 
𝑐𝐸 0,74 gd.w.·g-1

CH2O Growth rate 
𝑐𝑒𝑥𝑡 0,65 - Photosynthesis 
𝑐𝑟𝑚

 0,016 gCH2O·g-1
d.w.·day-1 Respiration 

𝑐𝑇𝑐𝑟𝑖𝑡
 28 ºC Fruit dry weight 
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Validation results are presented in Fig. 5, comparing model 
simulation for state variables against real biomass data. Real 
data tendency was calculated as a linear interpolation of the 
scattered samples from destructive tests. Standard deviation of 
real samples was determined for each destructive test and is 
represented as error bars. Results reveal a good correlation 
between the simulated variables and the actual samples, 
considering that a simplified model has been utilised. It should 
be highlighted the complexity of validating the model with 
sporadic biomass samples in a season with several pruning. 

 
Fig. 5. Validation results for tomato growth model. Season 
2015-2016. 

Absolute error for each state variable is analysed in Table 2. 
Error values obtained for validation are similar to those 
published in previous studies (Rodríguez et al., 2015), and 
hence an adequate behaviour is confirmed for the tomato 
growth model. Nonetheless, there is a slight increase in the 
total dry weight error, which may be caused due to the 
simulation of the model using a fixed value for CO2 
concentration in the air, as no continuous measurements were 
available. LAI error is also noteworthy, but it is tolerable 
considering the variation interval for this variable and the 
numerous pruning tasks performed to the crop during the 
whole season. 

Table 2.  Error analysis for growth model validation 

 Variation 
interval MAE Max. Std. dev. 

Nodes [2, 66.90] 1.82 4.62 1.46 
LAI [0, 5.60] 0.58 1.37 0.55 

Table 2.  (Continued) 

 Variation 
interval MAE Max. Std. dev. 

Total d. w. [0.42, 1500] 61.59 128.75 34.16 
Fruit d. w. [0, 1073] 44.23 118.39 35.77 
Mature d. w. [0, 955.20] 38.18 96.57 35.66 
 

3.2  Greenhouse climate model validation 

Greenhouse climate model calibration must be achieved as 
proposed by Rodríguez (2002). The methodology consists in 
considering two scenarios: (i) empty greenhouse (without 
crop), and (ii) greenhouse with crop inside. For this work, 
calibration and validation for climate model was carried out at 
the beginning of the current season in August 2019. The 
greenhouse was initially empty and crop transplantation was 
performed in the last weeks of August 2019. 

In the calibration procedure, five constants (Table 3) were 
adjusted. For validation test, the climate model was simulated 
with real input data as shown in Fig. 6. Real inside soil surface 
temperature was also utilised as an input. Model validation 
results are presented in Fig. 7, with a good adjustment of the 
model, since simulated dynamics clearly evolves in 
concordance with real dynamics, even when rapid changes 
occur for external solar radiation. 

Table 3.  Calibrated constants for climate model 

Constant Description Units 
cven,d Ventilation discharge 

coefficient 
- 

cven,cv Ventilation wind coefficient - 
ccnv,ss−a Convection coefficient 

between soil surface and air 
W·m-2 K-1 

c𝑐𝑛𝑑−𝑐𝑛𝑣,a−e Thermal loss coefficient in 
the cover between outside 
and inside air 

W·m-2 K-1 

𝑉𝑡𝑠𝑤,𝑔 Short wave transmission 
coefficient (cover) 

- 

 
In view of the MAE error analysis (see Table 4), all state 
variables present significantly reduced errors for their range of 
variation, agreeing with previous studies (Rodríguez et al., 
2015). Therefore, it can be concluded that the model 
successfully reproduces the indoor climate of the greenhouse. 

Table 4.  Error analysis for climate model validation 

 Temp. (ºC) RH (%) Rad. (W·m-2) 
Variation 
interval [22.55, 42.08] [29.48, 80.78] [0, 497.30] 

MAE 0.96 2.55 16.44 
Max. 3.88 12.01 129.88 
Std. dev. 0.94 1.98 21.92 
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Fig. 6. Inputs for greenhouse climate model simulation. 

 

Fig. 7. Validation results for greenhouse climate model. 

Greenhouse climate model was complemented with a 
simplified soil surface temperature sub-model, which was also 
validated with same real data set showed in Fig. 6. As a 
summary, error analyses for this sub-model are presented in 
Table 5. Error values for validation were slightly high but 
acceptable to utilise this sub-model when greenhouse climate 
model is used for future predictions. Nevertheless, if a more 
accurate estimation is needed for soil temperature, a complex 
model should be used to consider additional heat transfers 
between different layers of the soil (Rodríguez et al., 2015). 

Table 5.  Error analyses for soil surface temp. sub-model 

 Calibration (ºC) Validation (ºC) 
Variation interval [21.61, 46.90] [22.38, 44.26] 
MAE 1.58 2.17 
Max. 4.09 4.47 
Std. dev. 0.86 0.86 

3.3.  Soft sensor structure 

The aim of implementing a soft sensor for tomato crops in 
greenhouses is to offer an alternative method to destructive 
tests in order to certainly determine biomass values for crop 
growth status. In combination with IoT systems, a soft sensor 
is intended as a powerful tool for continuous crop monitoring. 

The proposed soft sensor (Fig. 8) is based on the tomato 
growth model previously described. Therefore, LAI can be 
estimated indirectly from other measurements provided by real 
sensors installed inside the greenhouse. Also, electrical 
conductivity should be considered as an input for the soft 
sensor, although in this work has been omitted because it was 
automatically controlled through fertigation at a fixed value. 

 

Fig. 8. Tomato growth soft sensor scheme. 

In this manuscript, two possible applications for the developed 
soft sensor are proposed. The first possibility is to feed the soft 
sensor with real data from a past date until a current date. 
Thereby, farmers could obtain important information about the 
state of their crop at any moment of the current season. The 
second possibility is to utilise the soft sensor to predict tomato 
crop growth in future days. For instance, farmers could 
anticipate to undesirable situations that may affect the rate of 
tomato growth. 

3.3  Short term prediction mechanism 

A prediction mechanism has been proposed to offer a future 
estimation of tomato crop evolution by combining the 
greenhouse climate model and the tomato growth model as a 
soft sensor. The complete structure of this mechanism is 
presented in Fig. 9. The mechanism performs data assimilation 
from three different sources: (i) AEMET weather forecasts 
every 6 hours, (ii) measured data from greenhouse real sensors, 
and (iii) real biomass samples when available during a season. 

This prediction mechanism is recursive and is based on a 
sequence that allows to execute two differentiated 
computational loops. The main loop is dedicated to predicting 
crop growth with a 48 hours horizon for each AEMET weather 
forecast. The secondary loop is exclusively executed to 
estimate crop growth by utilizing registered past data from 
inside greenhouse sensors, accumulated during the last 6 hours 
(AEMET forecast intervals). This secondary loop is intended 
as a correction action for a better Leaf Area Index estimation 
provided by the designed soft sensor. 
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Utilizing real values as inputs for tomato growth soft sensor 
ensures to eliminate the uncertainty partially originated by the 
greenhouse climate model and AEMET weather forecasts. 
Corrected values for tomato growth state variables are fed back 
to initialize the main loop before its next execution. 
Greenhouse climate model state variables are also initialized 
with the last available measurements from real sensors. 

 

Fig. 9. Leaf Area Index soft sensor integrated in the short-term 
prediction mechanism. 

Inside the main loop, a temperature and humidity control 
algorithm has been implemented to simulate the actual control 
system of the experimental greenhouse. It consists of a series 
of heuristics rules (a kind of gain-scheduling control approach) 
to calculate the opening percentage for the natural ventilation 
in order to achieve proper climate conditions for the crop 
inside the greenhouse. It was necessary to include this control 
block to predict future behaviour for actuators since they affect 
to greenhouse climate conditions. 

As a preliminary stage to utilize the complete prediction 
mechanism, AEMET weather forecasts should be evaluated in 
conjunction with the greenhouse climate model. It is important 
to highlight that AEMET provided weather forecasts for 
coordinates corresponding to the University of Almería, which 
is located 25 km far from the experimental greenhouse. Thus, 
it is expected to observe some errors between forecasts and 
real external measurements. 

Fig. 10 shows a comparison of an AEMET weather forecast 
(represented in local time: 02:00 GMT + 48 h horizon) and real 
data measured outside the greenhouse. External global 
radiation is predicted with great accuracy on sunny days. 
External air temperature and relative humidity have quite 
similarity in tendency, although relative humidity presents a 
substantial error in the first hours. The biggest error is 
observed for wind velocity. This forecast was then utilised as 
inputs to simulate climate model, obtaining results offered in 
Fig. 11. Climate model state variables are plotted with a 
surrounding confidence area corresponding to MAE values 
that each state variable presented in the model validation stage. 
In general, an adequate behaviour is observed for all state 
variables, despite an overestimation for inside air temperature 

in the middle of each day, or an underestimation at night 
periods for soil surface temperature. The inside air relative 
humidity also presents an overestimation in the first hours of 
August 23, while the rest of the prediction clearly fits to real 
tendency. Mentioned differences may be justified considering 
existing mismatches between external weather forecast and 
real climate conditions. 

 

Fig. 10. AEMET weather forecast compared against real 
measured data. 

 

Fig. 11. Inside greenhouse climate prediction after model 
simulation with AEMET forecast as inputs. 

Once the quality of climate predictions was evaluated, the 
complete short-term prediction mechanism was tested. To that 
end, the tomato growth soft sensor was previously executed 
with registered data during 15 days until September 8, when 
LAI was estimated in 0.5 (m2 leaf·m-2 ground). Unfortunately, real 
LAI samples were not available to confirm the accuracy of the 
soft sensor. However, the estimated value was close to 
historical registers for other seasons beginning in similar dates. 
Hence, the estimated value for LAI was utilised to initialize 
the short-term prediction mechanism at September 8.  
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In order to test the recursive action, two AEMET weather 
forecasts were utilised for the same day, as seen in Fig. 12. 
Results of inside climate state variables are presented in Fig. 
13, in which outstanding differences between predictions and 
real data are appreciable. These discrepancies directly affect to 
LAI predictions, as shown in Fig. 14. In this graphic, the blue 
line could be considered the “true” measurement for LAI, 
since it was generated by the soft sensor. The range of 
variation for LAI is small in a period of 48 hours as crop 
growth is a slow dynamic process. Even so, it can be noted that 
for the prediction beginning at 02:00 (local time), the predicted 
LAI progressively drifts apart from real tendency. Thanks to 
correction action at 14:00 (local time), LAI is reinitialized to 
the true value and the second prediction starts. A few hours 
later (in September 9), error between second prediction and 
soft sensor tendency is increasing. This justifies the necessity 
of recursively correct each prediction with the execution of the 
tomato growth soft sensor. 

 

Fig. 12. AEMET weather forecasts as inputs for the short-term 
prediction mechanism. 

 

Fig. 13. Predictions for inside greenhouse climate as a result 
for the short-term prediction mechanism. 

 

Fig. 14. LAI predictions compared against soft sensor 
tendency. 

4. CONCLUSIONS 

In this work, a soft sensor to estimate tomato crop growth has 
been proposed. The main function of the soft sensor is to 
obtain an estimation for LAI suppressing the need to manually 
perform several destructive tests. 

The developed methods to predict tomato crop growth 
demonstrate a reasonable performance under different 
dynamics. These methods have a clear application to real 
scenarios currently presented by greenhouses in the province 
of Almería (Spain). The proposed tomato growth soft sensor 
could be directly applied to those greenhouses with inside 
installed sensors or IoT systems. Other greenhouses with low 
level of technology or lack of inside sensors should utilise the 
short-term prediction mechanism as a support tool for decision 
making, but in this case, correction for the predicted LAI 
tendency still must be carried out by periodically registering 
real biomass samples. 

Future works may be aimed at introducing new dynamic terms 
to improve the utilised models and the developed soft sensor. 
For instance, simulation for CO2 concentration in the air could 
be incorporated to the greenhouse climate model. Moreover, 
the effect of vapor pressure deficit and water deficit on the crop 
should be consider for the tomato growth model. Additionally, 
the proposed prediction mechanism could be complemented 
with artificial vision techniques based on regularly taking 
pictures of the crop. 
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