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A B S T R A C T

In this paper, a rapid methodology to elucidate microalgae species in suspensions has been developed and
validated. To do this, microalgae spectral signatures from light absorption measurements of different algal
species were analysed through an artificial neural network (ANN) in order to describe and classify them. Four
important species were used: Nostoc sp., Scenedesmus almeriensis, Spirulina platensis and Chorella vulgaris.
Absorbance from monoalgal and mixed algal cultures was the input data for training, testing and validating the
ANN. The results show that the ANN was capable of distinguishing between monoalgal and mixed algal cultures,
identifying the microalgae species in the monoalgal cultures and providing the approximate composition of
mixed algal cultures. These results confirm that the application of spectral signatures with ANN is a suitable
method for approximating the biological composition of microalgae cultures.

1. Introduction

Microalgae have been proposed for a wide range of applications,
from the production of foods and animal feed, cosmetics, biofuels and
wastewater treatment processes [1–4]. Despite the large variety of ap-
plications proposed, only a few are presently performed at the com-
mercial scale using a limited number of algal strains. Examples of this
are the production of carotenoids, beta-carotene and astaxanthin from
Dunaliella salina and Haematococcus pluvialis [5], biomass for foods from
Chlorella vulgaris and Spirulina platensis [6], and biomass for aquaculture
from Nannochloropsis gaditana, Tetraselmis suecica and Isochrysis galbana
T-ISO [7]. All of these applications require the maintenance of mono-
algal cultures, whereas when focusing on biofuel production or was-
tewater treatment, the utilization of mixed cultures is usually accep-
table. In the case of mixed algal cultures, the relative composition is
gradually modified according to changes in environmental or opera-
tional conditions [8].

Monitoring the biological composition of microalgae cultures is a
mandatory task, generally performed through routine microscopic ex-
amination. By means of light microscopy, an expert can distinguish the
presence of a “contaminating” microorganism and whether the pre-
vailing algal strain is close to the expected value. However, only highly
skilled taxonomists are capable of correctly recognizing algal strains
(their species and genera) using light microscopy observation solely

based on morphology – this is because most of the strains are small
round cells with similar features, only a few have easily recognizable
morphology. Alternative methods, based on omics allow to accurately
identify the prevailing microalgae strains in cultures [9] but these are
expensive and require a lot of time (reducing time can be useful for
making operation process decisions). As intermediate methods, bio-
chemical analyses, such as the chlorophyll to carotenoid ratio and the
fatty-acid profile have also been used as tools for verifying the biolo-
gical composition of microalgae cultures; however, their precision is
limited. These methods are unable to identify the presence of low-level
contamination; likewise, they take time, although their cost is much
lower than that for the omics methods [10,11].

Microalgae strain identification up to the phylum or class levels has
been achieved based on the fluorescence properties of photosynthetic
pigments using flow cytometry [12]. Employing light-emitting diode
induced fluorescence analysis, it is possible to differentiate between
Anabaena sp. and Cylindrospermum sp. cells by comparing the fluores-
cence spectra [13]. Microalgae have photosynthetic pigments providing
different spectral signatures for different strains; thus, it is possible to
build classes based on the presence of pigments. As a result, the relative
content of chlorophyll, carotenoids and other pigments can be used to
differentiate between diatoms, red/green/brown microalgae and cya-
nobacteria groups by means of their light absorption spectra [10].

Microalgae species can be distinguished by their spectral signature.
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As an example, Rivularia M-216 exhibits a different absorbance sig-
nature to that of Anabaena variabilis - the heterocyst absorbance from
Rivularia is more than double that from A. variabilis at wavelengths
between 540 and 620 nm; this variation is a result of the different
phycocyanin and chlorophyll contents [14]. The spectral signatures of
Botryococcus braunii, Chlorella sp. and Chlorococcum littorale allow to
clearly identify them by comparing their absorption indexes [15].
Moreover, the absorption spectrum in the 400 to 700 nm range is used
to determine the extinction coefficient of the biomass, such as a specific
microalgae strain characteristic or the culture conditions [16]. Based on
this, absorption properties could be a possible approach to distinguish
between microalgae species [17].

Artificial neural networks (ANNs) are a powerful tool for finding
relationships between experimental data and the phenomena behind
these data. ANNs have been used to predict harmful algal blooms in
lakes [18,19], as well as microalgae growth and biomass concentration
under laboratory conditions and in outdoor environments [20,21]. In
microalgae identification using ANN, extracted features such as the
perimeter, shape, area and Fourier transformations of microalgae mi-
crographics were used to train a model capable of identifying the
genera Navicula, Scenedesmus, Microcystis, Oscillatoria and Chroococcus
[22]. Microalgae micrographic image processing and colour analysis
were used with ANN to achieve taxonomic accuracy of up to 99% by
first detecting a cell in the image and subsequently extracting the de-
tected cell colour [17].

In this paper, we analysed the ability of ANN to differentiate be-
tween monoalgal and mixed algal cultures. To do this, we used only the
light absorption spectra of the different cultures, without any additional
equipment or image analysis algorithms. The objective of this work is to
determine the feasibility of using such a methodology to elucidate the
presence of contaminants in monoalgal microalgae cultures and to
approximate the microalgae species contaminating the cultures - this
would provide a fast and powerful tool for microalgae culture man-
agement at the commercial scale.

2. Materials and methods

2.1. Microalgae species and growth conditions

The microalgae Nostoc sp., Scenedesmus almeriensis, Spirulina pla-
tensis and Chorella vulgaris were obtained from the culture collection of
“Las Palmerillas” Research Center (Almería, Spain). These species were
selected because they include two fast growing green microalgae -
Chlorella vulgaris and Scenedesmus almeriensis, and two distinct cyano-
bacteria - Nostoc sp. and Spirulina platensis; therefore, they cover a wide
range of possible microalgae species. Continuous cultures of the dif-
ferent microalgae were cultivated under laboratory conditions in 2 L
bubble-column photobioreactors at an irradiance of 750 μE·m−2·s−1,
adapting the described methodology [23]. Arnon medium was used for
the four microalgae, although in the case of S. platensis, it was enriched
with 16 g·L−1 of sodium bicarbonate. The temperature of the cultures
was maintained at 25 °C while the pH was controlled at 8.0 by the on-
demand injection of CO2. To perform absorption measurements, sam-
ples from the reactors were collected and placed in batch mode inside
0.2 L flasks for ten days, with no CO2 injection and at an irradiance of
250 μE·m−2·s−1 to simulate variations in pigments and composition
that can be found in batch cultures of each of the selected microalgae.

2.2. Light absorption measurements

Samples of Nostoc sp., S. almeriensis, S. platensis and C. vulgaris were
taken from the reactors over five consecutive days. Light absorption
measurements were performed on the monoalgal cultures. Additionally,
light absorption measurements were carried out on paired cultures in
proportions of 50%/50% and 75%/25%. In total, 22 suspensions were
prepared daily; these included both monoalgal and mixed algal

cultures. Each suspension was measured 25 times. Over the five days, a
total of 550 samples were measured to obtain sufficient data to train the
ANN; the larger the amount of data, the lower the model error and the
greater the accuracy of the developed ANN [24]. In order to validate
the ANN, additional measurements were taken over two further days
for monoalgal and mixed algal suspensions. Mixed algal suspensions
were of the same and different proportions to those used in the training
phase; in addition, mixtures of 3 algal species were used. Measurements
were performed using a Minolta CM-3500d colorimeter - 31 light ab-
sorption data points were acquired per sample in the 400 nm to 700 nm
range, in bandwidths of 10 nm. Each sample consisted of a 12mL mi-
croalgae suspension, which was stirred and homogenized.

2.3. Artificial neural network and data analysis

The absorbance values were converted to their relative frequencies
using Eq. (1), where rai is the relative absorbance for a specific band-
width, ai is the raw absorbance in a bandwidth, and ∑a is the total light
absorption of a microalgal suspension across the spectrum. Conse-
quently, the relative absorbance represents the quantity of light ab-
sorption in each bandwidth without the cell concentration effect.

=
∑

ra a
ai
i

(1)

To develop the ANN, data were normalized in order to improve
network performance, increase output accuracy and reduce computa-
tional cost [25,26]. The statistical, or Z-score, normalization technique
(Eq. (2)) was applied to the relative absorbance data, where rai is the
relative light absorption datum (for each absorbance band per sample),
μi is the mean of the whole dataset, σi is the standard deviation and rai′

is the normalized datum.
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The ANN was a fully connected feed-forward neural network, pro-
grammed in Python 3.6.5 language using the TensorFlow 1.8.0 machine
learning library; both are open source. After various configuration tests,
the simplest structure with the least training and testing errors was
selected. Hence, the neural network architecture was 31 neurons in the
input layer, one neuron for each absorbance datum acquired per
sample, 45 neurons in the hidden layer with the hyperbolic tangent
activation function and 4 neurons in the output layer with the softmax
activation function to weight each microalgae species in suspension; a
schema is presented in Fig. 1.

The optimizer was the gradient descent algorithm with the cross-
entropy cost function. In the training and testing phase, 10% of the
input dataset was used for testing. The early stop, used to prevent
overfitting, was applied before the testing error started to increase [27].
In order to validate the model, the ANN output was analysed by per-
forming a regression using the expected microalgae concentration in
suspension of the validation dataset.

3. Results and discussion

3.1. Light absorption

The light absorption spectrum of a microalga is a function of the
biomass concentration in the culture and the pigment content of the
biomass. The light absorption spectrum measurement is presented in
Fig. 2 (left). The results showed that no substantial variations in the
absorption spectrum occurred for any of the microalgae over the time
course measurements, the slight variations observed being due to dif-
ferences in the biomass content - the higher the cell density, the greater
the absorbance [28,29]. These variations were ruled out after the ab-
sorbance was converted to the relative absorbance for each measure-
ment (Eq. (1)).
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When normalizing to relative absorption, the spectral signature is a
function of the pigment content; this varies depending on the algal
species. One can observe how the lines overlap each other, thus making
the spectral signature of the different microalgae used more comparable
(Fig. 2 right). The results show that each microalga specie had a sin-
gular spectral signature: S. almeriensis and C. vulgaris had similar
spectral signatures while Nostoc sp. and S. platensis had particular
shapes that allow to distinguish one from the other. In the case of Nostoc
sp., slight variations in spectral signature were observed over time,
especially on days 4 and 5. This variation, especially in the chlorophyll
absorbance region, is not due to changes in environmental conditions
because these were kept constant under laboratory conditions, so it
might be related to changes in the cells' biochemical composition.

Nutrient supply and light conditions are two major factors that
modify the pigment content of a microalga strain. Thus, the pigment
content is related to the physiological status of the cells [30]. Fur-
thermore, the growth-cycle phase also modifies the pigment content
[31]. Other pigment content variations are related to changes in en-
vironmental and operational conditions [32,33]. Despite the difference
in days between sample measurements, other factors remained constant
and the absorption spectrum remained uniform. Under different culture
conditions, the spectral signature could present variations within the
same microalgae species across the measurements.

The variation in a microalga species' spectral signature over time
was minor compared to the inter-species signature variation. Similar
light absorption spectra, with peaks at 450 nm and 680 nm, have been
obtained for other microalgae, such as Chlamydomonas reinhardtii [34],
Thalassiosira pseudonana [35] and C. vulgaris [36]. Absorbance peaks
are caused by photosynthetic pigments. Thus, while chlorophylls pre-
sent two distinct absorption maxima, one between 400 and 500 nm and
the other between 600 and 700 nm, the maximum absorption for car-
otenoids can increase above 500 nm due to spectral shifts caused by
different contributing pigments [37].

3.2. Artificial neural network and data analysis

Data from 550 samples were measured to train and test the ANN.
Once the training and testing phases were concluded, the obtained
model was used to determine whether or not the validation dataset
samples were monoalgal or mixed algal cultures. The number of sam-
ples met the requirement of having more training samples than hidden
neuron units [38], more than 10 times the present scenario. The final
average cross-entropy (ACE) during the training and testing phases
were 0.520 and 0.487, respectively. For the validation phase, the ACE
was 0.527. The comparison between the experimental data and the
ANN output is shown in Table 1.

Monoalgal cultures (S101 to S104) from the first validation ex-
periment day were correctly identified by the artificial neural network,
providing results above 98% purity. Regarding the mixed algal samples,
S105 and S106 correspond to not-previously-performed combinations,
thus, they are “unknown combinations” for the model. Despite this, the
model was capable of approximating the composition of these samples.
Therefore, these samples were close to the monoalgal cultures and the
model was able to identify the most abundant strain and its relative
proportion. The ANN considered that small amounts of other strains
were also present in these samples; nevertheless, it was always capable
of identifying the most prevalent strains and percentage composition.
Regarding the samples with 50% of two different strains (S107 and
S108), the artificial neural network was, likewise, capable of approx-
imating the composition of these mixed algal samples, identifying the
two prevailing strains and their approximate percentage. In no case
were these samples identified as monoalgal cultures. The same valida-
tion protocol was repeated on the second day. In this case, when using
monoalgal cultures (S201 to S204), the ANN provided results above
99% purity for these samples. For samples containing 90–95% of one
strain and 10–5% of another (S205 to S209), these samples were “un-
known combinations” for the model. Nonetheless, it was able to identify

Fig. 1. ANN architecture schema, with 31 neurons in the input layer, 45 in the hidden layer and 4 in the output layer.
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the prevailing algal species present in each sample, with percentages
similar to monoalgal cultures. The one exception was the 90% S. pla-
tensis and 10% C. vulgaris sample, for which an accurate estimate was
given. Similar mixed algal samples to those used for the training process
(S210 to S227) provided better results, with none of them being clas-
sified as monoalgal. The last sample (S228) also corresponded to an
“unknown combination” for the model, and it was, likewise, not clas-
sified as monoalgal.

According to these results, mixed algal samples with 10% or less
contamination are weighted as monoalgal suspensions. Mixed algal
samples are less accurate when predicting their composition. In a study
using flow cytometry with the SYTO9 stain, it was possible to classify C.
vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii, and Navicula
pelliculosa, with errors ranging from 5 to 10%. However, the method
misidentified microalgae cells in mixed algal samples [39]. Given that
contamination by non-target microalgae is a serious problem for mi-
croalgae cultivation [40], our method could be a powerful alternative
for supervising algal cultures. Additionally, the method can provide
information about the relative composition of a sample, an advantage
over traditional methods in which more steps and time are needed to
reach similar conclusions.

The ANN gives the approximate composition of a sample based on
data input processing; each absorbance bandwidth is weighted during
the training phase. Confusion over the composition can be caused by
microalgae species with similar spectral signatures and by the manner
each absorbance bandwidth influences the ANN output. For instance, in
S102, a S. almeriensis monoalgal sample, C. vulgaris obtained a 1.30%
prediction compared to 98.70% for S. almeriensis - both microalgae
species exhibited similar spectral signatures (Fig. 2 right). Furthermore,
C. vulgaris was overestimated in mixed algal samples, whereas S. pla-
tensis was underestimated (S110, S216 and S221). This confusion may
be due to the way the resulting spectral signature bandwidths of the
mixed algal samples are weighted by the ANN.

To better show the accuracy of the developed ANN, a regression
analysis of the experimental and modelled values was performed
(Fig. 3). The results show that, regardless of the microalga species, the
ANN fitted the experimental values, with the regression coefficient
ranging from 0.951 to 0.970.

Microalgae identification by means of ANN has been previously
reported with taxonomic accuracy of up to 99%, using micrographic
image analysis [17], similar accuracy to that achieved in the present
study for monoalgal cultures. The method reported here demonstrated

Fig. 2. Light absorption spectrum of monoalgal cultures as obtained from the colorimeter (left), and relative absorbance conversion (right).
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its efficiency in discriminating mixed algal cultures whereas it was less
efficient when there were smaller percentages of another strain in the
samples. If the ANN output indicated 90% or less, there was a high
probability that the examined sample was derived from a mixed algal
culture; conversely, if it was more than 90%, the culture should be
examined to confirm that it was monoalgal. Therefore, this decreases
the number of chemical analyses required to monitor the biological
composition of microalgae cultures.

Re-training the ANN with more samples of mixed algal cultures in a
wider variety of relative composition or using a higher spectral re-
solution could improve the ANN precision. The re-training could also be
applied to incorporate more microalgae species into the model and test
the model capability to differentiate a greater number of microalgae.
This is a relatively fast process and can take anywhere between 5min to
about 1 h depending on the computer hardware, training the ANN in a
GPU is significantly faster than in a CPU only system [41].

4. Conclusions

It was demonstrated that microalgae light absorption spectra vary
mainly as a function of the microalga strain, although variations due to
environmental and operational conditions can also take place. When
maintaining the cultures under similar conditions, the light absorption
spectra can be used to develop an ANN that differentiates monoalgal
from mixed algal cultures and identifies the prevailing strains. In ad-
dition, it is useful to be able to approximate the percentage of each
strain in mixed cultures.

A major advantage of this method is that it does not require much
time or chemical analysis, a single light absorption spectrum is enough
to “quantify” the biological composition of the cultures. Re-training the
ANN with more microalgae species, using monoalgal and mixed algal
samples with more combinations and using more resolution in the
spectral signature measurements are key to reinforcing the model and
achieving more classification capability.
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Table 1
Comparison of the results from the experimental and the artificial neural network output of the validation experiment.

Day Sample Experimental Model

Nostoc sp. S. almeriensis S. platensis C. vulgaris Nostoc sp. S. almeriensis S. platensis C. vulgaris

1 S101 100.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
S102 0.00% 100.00% 0.00% 0.00% 0.00% 98.70% 0.00% 1.30%
S103 0.00% 0.00% 100.00% 0.00% 0.02% 0.00% 99.98% 0.00%
S104 0.00% 0.00% 0.00% 100.00% 0.00% 0.14% 0.00% 99.86%
S105 95.00% 5.00% 0.00% 0.00% 99.93% 0.05% 0.00% 0.02%
S106 90.00% 10.00% 0.00% 0.00% 98.71% 1.19% 0.00% 0.09%
S107 50.00% 0.00% 0.00% 50.00% 60.16% 0.91% 0.00% 38.93%
S108 0.00% 50.00% 50.00% 0.00% 0.01% 30.01% 69.36% 0.62%
S109 33.33% 33.33% 33.33% 0.00% 47.63% 36.42% 15.29% 0.66%
S110 12.50% 50.00% 37.50% 0.00% 5.76% 42.75% 16.39% 35.10%

2 S201 100.00% 0.00% 0.00% 0.00% 99.83% 0.00% 0.17% 0.00%
S202 0.00% 100.00% 0.00% 0.00% 0.00% 99.99% 0.00% 0.01%
S203 0.00% 0.00% 100.00% 0.00% 0.10% 0.00% 99.89% 0.01%
S204 0.00% 0.00% 0.00% 100.00% 0.00% 0.26% 0.00% 99.74%
S205 90.00% 10.00% 0.00% 0.00% 99.68% 0.25% 0.01% 0.06%
S206 0.00% 90.00% 10.00% 0.00% 0.02% 99.70% 0.21% 0.06%
S207 0.00% 0.00% 90.00% 10.00% 0.01% 0.51% 89.19% 10.29%
S208 0.00% 5.00% 0.00% 95.00% 0.00% 0.02% 0.00% 99.98%
S209 10.00% 0.00% 0.00% 90.00% 0.01% 0.12% 0.00% 99.87%
S210 75.00% 25.00% 0.00% 0.00% 87.42% 12.42% 0.00% 0.16%
S211 75.00% 0.00% 25.00% 0.00% 73.57% 0.00% 26.43% 0.00%
S212 75.00% 0.00% 0.00% 25.00% 68.98% 0.87% 0.00% 30.15%
S213 0.00% 75.00% 25.00% 0.00% 0.09% 82.03% 17.85% 0.03%
S214 0.00% 75.00% 0.00% 25.00% 0.00% 79.11% 0.00% 20.88%
S215 25.00% 75.00% 0.00% 0.00% 32.55% 67.43% 0.02% 0.00%
S216 0.00% 0.00% 75.00% 25.00% 0.00% 0.28% 60.20% 39.52%
S217 25.00% 0.00% 75.00% 0.00% 19.39% 0.00% 80.59% 0.01%
S218 0.00% 25.00% 75.00% 0.00% 0.01% 19.11% 80.44% 0.44%
S219 25.00% 0.00% 0.00% 75.00% 7.92% 0.03% 0.01% 92.04%
S220 0.00% 25.00% 0.00% 75.00% 0.00% 17.98% 0.00% 82.02%
S221 0.00% 0.00% 25.00% 75.00% 0.06% 0.02% 9.61% 90.31%
S222 50.00% 50.00% 0.00% 0.00% 62.62% 37.37% 0.01% 0.00%
S223 50.00% 0.00% 50.00% 0.00% 49.55% 0.00% 50.45% 0.00%
S224 50.00% 0.00% 0.00% 50.00% 48.69% 0.59% 0.02% 50.70%
S225 0.00% 50.00% 50.00% 0.00% 0.04% 38.49% 61.39% 0.09%
S226 0.00% 50.00% 0.00% 50.00% 0.01% 53.80% 0.00% 46.20%
S227 0.00% 0.00% 50.00% 50.00% 0.00% 0.01% 56.01% 43.98%
S228 20.00% 0.00% 40.00% 40.00% 0.79% 0.56% 36.22% 62.44%
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