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Abstract: Unmanned aerial vehicle (UAV) photogrammetry has recently emerged as a popular
solution to obtain certain products necessary in linear projects, such as orthoimages or digital surface
models. This is mainly due to its ability to provide these topographic products in a fast and economical
way. In order to guarantee a certain degree of accuracy, it is important to know how many ground
control points (GCPs) are necessary and how to distribute them across the study site. The purpose of
this work consists of determining the number of GCPs and how to distribute them in a way that yields
higher accuracy for a corridor-shaped study area. To do so, several photogrammetric projects have
been carried out in which the number of GCPs used in the bundle adjustment and their distribution
vary. The different projects were assessed taking into account two different parameters: the root
mean square error (RMSE) and the Multiscale Model to Model Cloud Comparison (M3C2). From the
different configurations tested, the projects using 9 and 11 GCPs (4.3 and 5.2 GCPs km−1, respectively)
distributed alternatively on both sides of the road in an offset or zigzagging pattern, with a pair of
GCPs at each end of the road, yielded optimal results regarding fieldwork cost, compared to projects
using similar or more GCPs placed according to other distributions.

Keywords: unmanned aerial vehicle (UAV); structure-from-motion (SfM); ground control points (GCP);
accuracy assessment; point clouds; corridor mapping

1. Introduction

The availability of high-resolution topographic products, such as orthoimages and digital surface
models (DSM), is of increasing importance for many different fields of engineering that require a
thorough understanding of topographies. These include, among many others, terrain morphology
to perform reliable simulation of soil erosion, flooding phenomena, and assessment of the sediment
budget [1–5], landslide mapping and multi-temporal study [6–8], road design [9], road condition
surveys for road management [10], precision agriculture [11], or detection of archaeological rests [12].
Unmanned aerial vehicles (UAV) have emerged as a feasible alternative given their lower cost,
high temporal and spatial resolution, and flexibility in image acquisition compared to conventional
airborne and satellite sensors [13–15]. Most available software applications currently used to process
UAV-acquired imagery are based on the structure from motion (SfM) approach. This approach,
unlike traditional digital photogrammetry, resolves the collinearity equations without the need for
any control point, providing a sparse point cloud in an arbitrary coordinate system and a full camera
calibration [16,17]. This is possible due to image matching algorithms that automatically search
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for similar image objects, called keypoints, through the analysis of the correspondence, similarity,
and consistency of the image features [18]. SfM is paired with multi-view stereopsis (MVS) techniques
that apply an expanding procedure of the sparse set of matched keypoints in order to obtain a dense
point cloud [19].

To georeference the 3D point cloud generated in the photogrammetric process, ground control
points (GCPs) are usually employed. These control points can be either permanent ground features or
reference targets scattered on the ground before the flight, which must be surveyed to obtain their
precise coordinates and ensure that they are clearly identifiable on the raw images. A minimum of
three GCPs is necessary to carry out the georeferencing process, although increasing the number of
GCPs is highly recommended in order to improve the accuracy of the photogrammetric products.
In [20], the influence of the number of GCPs on the DSM and orthoimage accuracies obtained with
UAV photogrammetry were studied. A similar conclusion for both horizontal and vertical components
was derived: optimal results were reached with 15 GCPs. Furthermore, in [21], different numbers and
distributions of GCPs were studied to try to optimize the products obtained by UAV photogrammetry
on a surface of 22 ha: it was concluded that more accurate results were reached combining GCPs
located around the study area and a stratified distribution inside that area. In [22], the effect of the
number and distribution of GCPs on the accuracy of the DSM and orthophoto of a surface of 150 ha
was studied. These last two studies reached similar conclusions, proposing 0.5 to 1 GCP ha−1 as the
optimum concentration of GCPs. In [23], the influence of different variations of GCPs arranged on
an area of 2.73 ha on the accuracy of the products of UAV photogrammetry projects was studied.
The optimum concentration was 1.8 GCPs ha−1 uniformly distributed across the whole surface.

The 3D coordinates of GCPs must be accurate; thus, a suitable survey method, such as GPS or
total stations, must be used. Surveying these points is a time-consuming task that can be difficult
to carry out depending on the terrain morphology. Alternative to the use of GCPs, differential GPS
(DGPS) correction techniques, such as real-time kinematics (RTKs) and post-processing kinematics
(PPKs), have been evaluated as methods to provide high-accuracy georeferencing [24–26]. In [25],
it was concluded that a UAV RTK/PPK solution can provide highly accurate spatial data (planimetric
RMSE = 0.044 m, altimetric RMSE = 0.082 m), compared to data acquired through the use of GCPs.
In [27], the repeatability of DSM generation from several blocks acquired with a RTK-enabled drone
was studied. Differential corrections were generated by a local master station or a network continuously
operating a reference station network. Using identical test fields and flight plans, DSM generation
was performed with three block control configurations: GCP only, camera stations only, and with
camera stations and one GCP. The results showed that the average DSM accuracy was approximately
2.1 ground sample distance (GSD) with the first and third configurations and 3.7 GSD with the
second one.

From the georeferenced dense point cloud, photogrammetric products such as orthoimages and
DSM can be obtained. There are several factors that affect the accuracy of these UAV photogrammetry
products: the number and distribution of GCPs, flight altitude, studied surface morphology,
methodology for camera calibration, image overlap, and the incorporation of oblique images.
Agüera et al. [28] carried out a study to determine how flight height, terrain morphology, and number
of GCPs influence accuracy. They studied four terrain morphologies (from flat to very rugged) that
were approximately square-shaped and had areas between 2 and 4.7 ha, four flight altitudes (50, 80, 100,
and 120 m), and three different numbers of GCPs (3, 5, and 10). The results from this work indicated that
horizontal accuracy is not influenced by terrain morphology or flight altitude. Furthermore, differences
between terrain morphologies were observed only when 5 or 10 GCPs were used. Nevertheless,
the number of GCPs influenced the horizontal accuracy: as the number of GCPs increased, the accuracy
improved. While both flight altitude and the number of GCPs had a significant influence on vertical
accuracy, terrain morphology did not. The lower RMSEs values were reached at a 50 m flight altitude
using 10 GCPs (0.053 and 0.049 m for horizontal and vertical components, respectively).
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A massive study with 3465 different combinations was conducted by Sanz-Ablanedo et al. [29] to
determine the influence of the number and location of GCPs on a 1225 ha coal mining area that was
approximately square-shaped. The results demonstrate that the extent to which the accuracy improves
as the number of GCPs increases; the accuracy also depends on the location of the GCPs (the RMSE
converges slowly to a value approximately double the GSD).

The impact of incorporating oblique images was analyzed by Nesbit et al. [30] to enhance 3D
model accuracy in high-relief landscapes, and they concluded that combination datasets including
oblique images are preferred over single camera angle datasets. In that research, the study site area
was less than 5 ha and was approximately square-shaped. All these recently mentioned studies agree
that the accuracy of the DSM and orthoimages obtained through UAV photogrammetry is highly
dependent on the number of GCPs used and their distribution across the study area. Furthermore,
the accuracy improves as more GCPs are used as long as they are well distributed, although there is
a limit, beyond which the accuracy cannot be further improved by increasing the number of GCPs.
However, since the fieldwork and associated cost increase with the use of more GCPs, it is necessary to
balance the appropriate accuracy with a minimum fieldwork cost.

It is important to keep in mind that all the studies referenced so far were developed on
square-shaped terrain or where one dimension is not much larger than another. Thus, it cannot
be guaranteed that the conclusions drawn from them can be applied to site studies in which one
dimension is much larger than another, as is the case with the so-called linear works in civil engineering
(road, linear power distribution, pipelines, or channels).

There is not much research regarding the influence of the number and distribution of GCPs on
the accuracy of UAV photogrammetric projects of this type of infrastructure. James and Robson [31]
applied SfM and MVS technics to study the erosion of a coastal cliff measuring 50 × 3 m. They used
eight GCPs with scale and georeference purposes but did not study the influence of the number or
distribution of GCPs on DSM accuracy. Moreover, they did not use check points (CPs) to estimate
the accuracy and determine it from the GCPs, which it is not a good methodology for estimating the
accuracy or determining if it was affected by the number of GCPs. The title of the work of Zulkipli
and Tahar [9] describes the use of UAV-based photogrammetric mapping for road design, but the
study site has not one dimension longer than another. They derived a conclusion that could not be
generalized to linear work projects. Jaud et al. [32] aimed to assess the extent of the bowl effects on the
DSM generated above a linear beach (250 × 25 m) with a restricted distribution of GCPs. The bowl
effect or doming deformation is a phenomenon that appears in corridor mapping and is caused by the
accumulation of camera calibration errors [33]. To mitigate this effect, two strategies are suggested [33]:
densifying GCP distribution or improving the estimation of the exterior orientation of each image.
Therefore, using images with geolocation and angular deviations from the terrain reference system
included in their EXIF (Exchangeable Image File Format) would limit the geometric distortions [32].
These data are usually included in the images’ EXIF of UAV photogrammetry projects because UAVs
have GPSs and the camera is mounted on a gimbal that has an inertial measurement unit (IMU) that
records the angles to the terrain reference system. Tournadre et al. [34] studied the influence of camera
calibration, the inclusion of oblique images, and the number of GCPs on the magnitude of the bowl
effect on the UAV photogrammetry project of a corridor of 600 × 15 m. They concluded that those
three factors have an effect on DSM accuracy. Regarding GCPs, the results prove that one GCP for each
100 m is optimal for reducing most of the CP reprojection errors to less than one centimeter, but they
do not say anything about GCPs distribution. Skarlatos et al. [35] worked on a UAV photogrammetric
project on a corridor of 2.2 km × 160 m. They used different numbers of GCPs for bundle adjustment.
All combinations had two GCPs at each end of the corridor and from there, they added up to seven
GCPs, and in one project, all GCPs measured. Therefore, the minimum distance between GCPs for all
combinations was 200 m when all measured points were used as GCPs, which implies that, in this case,
the accuracy was not calculated from CPs. Their main conclusion was that, as the number of GCPs
increases, accuracy improves.
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In view of these studies focused on linear works, it can be concluded that it is necessary to deepen
the knowledge of the influence of the number and distribution of GCPs on DSM accuracy in UAV
photogrammetry projects on corridors with lengths of several kilometers.

The aim of this study is to determine the number and distribution of GCPs that yields the best
balance between accuracy and fieldwork in a linear photogrammetric project, in this case, a road.
To achieve this objective, a UAV photogrammetry project was carried out on a road measuring
2.1 km × 190 m. The coordinates of 47 points were measured with a centimeter accuracy GPS. Of these,
18 were used as CPs, and the rest as GCPs. A total of 13 projects were developed, each with a different
number and distribution of GCPs. DSM accuracy, derived from these projects, was estimated in two
ways: first, by calculating the horizontal and vertical RMSE derived from the 34 CPs, and second,
by comparing the 3D point cloud generated by each project with that generated by the project that
considered the 47 measured points.

2. Materials and Methods

The methodology used to assess the accuracy of the different photogrammetric projects carried
out is summarized in Figure 1.
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Figure 1. Workflow of image acquisition and processing to assess the influence of number and distribution
of ground control points (GCPs) on the accuracy of linear photogrammetric projects.

2.1. Study Site

All coordinates of this study are given in meters and refer to UTM Zone 30N (European Terrestrial
Reference System 1989, ETRS89) and the EGM08 geoid model. The study area is located in Roquetas
de Mar (Almería), southeast Spain (Figure 2). The southwest and northeast coordinates are 533682,
4065630 and 532371, 4067232, respectively. The study site covers the A-1051-R3 branch road from the
A-1051 highway, which measures 2.1 km × 190 m, with 95 m on each side of the road axis, and covers
an area of approximately 40 ha. The main feature of the study site is that, in planimetry, one dimension
is much larger than the other. The elevation in the studied area varies from 7 to 38 m above mean sea
level. Figure 3 shows 3D cloud points corresponding to the northern end of the study site, showing a
roundabout and several greenhouses, used for growing horticultural crops.
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Figure 3. 3D cloud point corresponding to the northern end of the study site, showing a roundabout
and several greenhouses.

2.2. Data Acquisition

The images used in this study were taken from a rotary wing UAV with four motors. The model
employed was the DJI Phantom 4 Pro, which integrates a camera equipped with a one inch and
20 megapixel CMOS sensor, and a f2.8–/f11 wide-angle lens with an equivalent focal length of
24 mm [36].

The whole study area was covered by four different flights, each covering approximately 525 m of
the road. Each flight was autonomous, meaning that the UAV followed a previously programmed
and loaded path consisting of two passes parallel to the road axis. The flight speed was set at 3 m s−1

with images being taken every three seconds in order to achieve an 80% forward overlap. The side
overlap was fixed at 60%. The flight altitude was constant at 65 m above ground level, implying that
every photo covered a surface of 85.12 × 63.84 m2. This resulted in an equivalent ground sample
distance (GSD) of 1.75 cm pixel−1. A total of 746 images were selected from the four flights to use in
the photogrammetric projects.

Prior to the UAV flight, 47 targets were evenly arranged across the study area (Figure 4) to be
used as GCPs or CPs. While GCPs help to georeference the project by establishing the coordinates
of the model, CPs are used to assess its accuracy. Since the shape of the models adapts to the GCPs,
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independent CPs are used to assess accuracy by avoiding possible overestimations [25]. These points
were surveyed using rover and base GPS receivers, model Trimble R6, working in post-processed
kinematic (PPK) mode, and locating the base station within the range of 1 km away to all the
measured points. The base station coordinates were previously determined from the geodesic pillar
Las Lomas through a fast static process. The base station’s 3D coordinates are 533315.482, 4066520.639,
and 24.370 m, respectively. For the PPK measurements, according to the manufacturer’s specifications,
an error of 8 mm + 1 ppm RMS horizontal and 15 mm + 1 ppm RMS vertical can be expected [37].
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2.3. Image Processing

The photogrammetric process was carried out using an algorithm based on SfM-MVS techniques.
The workflow consists of a three-step process. In the first step, the algorithm searches for common
points, usually known as key points, among the uploaded images in order to align them through a
matching process. When two different key points from two different images are identical, they become
matching points. These matching points, as well as the approximate values of the image position
automatically extracted from the EXIF metadata, allow the algorithm to carry out a bundle adjustment
and calculate the 3D coordinates of each point. To improve the geolocalization accuracy, the process
was supported by both the loading of the GCP coordinates, measured as indicated in the previous
section, and the marking of these GCPs in the images. The results obtained from this first step are the
exact camera position and orientation for every image, the internal camera calibration parameters,
and the 3D coordinates of the sparse point cloud referred to the local coordinated system selected.
In the second step, the sparse point cloud is densified through the MVS technique. This technique
uses the calculated camera parameters to obtain a higher point cloud density and therefore a more
detailed 3D model. The 3D textured mesh is also generated during this second step. In the third step,
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the DSM can be generated from the densified point cloud, and, in turn, the georeferenced orthomosaic
is generated using the DSM. This entire process was carried out by the commercial UAV processing
software Pix4Dmapper, version 4.5.6 [38].

2.4. Ground Control Points

Of the 47 targets placed on the ground of the study site, 18 were used as GCPs, while the remaining
29 were used as CPs.

To assess the influence of the number of GCPs and their distribution on the accuracy of the
photogrammetric linear projects, 13 different configurations were designed. For this purpose, four GCP
distributions, with projects using different numbers of GCPs within each type of distribution, were taken
into account for the bundle adjustment. The number of CPs employed for all projects remained constant,
independently of the number of GCPs used. The different distributions studied were:

Distribution 1: GCPs were located on both sides of the road and faced each other, as indicated by the
red dots in Figure 5. Within this distribution, four projects using 4, 6, 10, and 18 GCPs were performed
(Figure 5a–d). The pairs of GCPs were chosen so that they were similarly spaced from one another.
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Figure 5. Location of the targets used as GCPs (red dots) for each project within Distribution 1. Four projects
using (a) 4, (b) 6, (c) 10, and (d) 18 GCPs were carried out.

Distribution 2: GCPs were located on both sides of the road in an offset or zigzagging pattern,
as indicated by the red dots in Figure 6. For this configuration, three different projects were carried out
using three, five, and nine GCPs (Figure 6a–c).

Distribution 3: GCPs were located on only one side of the road, as indicated by the red dots in
Figure 7. Under this distribution, three different projects employing three, five, and nine GCPs were
developed (Figure 7a–c).

Distribution 4: as in Distribution 2, GCPs were located on both sides of the road in a zigzagging
pattern, but there was an additional pair of GCPs located at each end of the corridor. Under this
distribution, three projects were carried out using 7, 9, and 11 GCPs (Figure 8a–c). This configuration
can be considered as a combination of Distributions 1 and 2.
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2.5. Accuracy Assessment

Two different methods are used to assess the accuracy of photogrammetric products. The first
method is the mean square root of square differences between the reconstructed model and the surveyed
coordinates of the 29 CPs, known as root mean square error (RMSE), since it can compensate errors
with positive and negative values [39]. Differences between the reconstructed model and the surveyed
coordinates are called errors, and the effect of each error on the RMSE of each error is proportional to
the size of the squared error. Thus, RMSE is sensitive to estimated outlier values because large errors
have a big effect on RMSE. Therefore, it is advisable to study the value of the error for each CP to check
whether it is an outlier and, if so, to try to find the cause.

The RMSE values for the X component, Y component, XY component, and Z component are
estimated as shown in Equations (1)–(4).

RMSEX =

√∑n
i=1 (XOi−XGPSi)

2

n
(1)

RMSEY =

√∑n
i=1 (YOi−YGPSi)

2

n
(2)

RMSEXY =

√∑n
i=1 [ (XOi−XGPSi)

2 + (YOi−YGPSi)]
2

n
(3)

RMSEZ =

√∑n
i=1 (ZOi−ZGPSi)

2

n
. (4)

where:
n is the number of CPs;
XOi, YOi, and ZOi are the X, Y, and Z coordinates estimated by the model for the ith CP, respectively;
XGPSi, YGPSi, and ZGPSi are the X, Y, and Z coordinates measured by GPS for the ith CP, respectively.

The second method used in this study to assess the accuracy of the point clouds obtained through
a UAV paired with SfM-MVS techniques consists of the freely available Multiscale Model to Model
Cloud Comparison (M3C2) plugin offered by the CloudCompare software [40]. For the comparison
of the different point clouds, a reference cloud was computed using the 47 surveyed points as GCPs,
assuming that it is the most accurate and precise that can be achieved with the available data.

The M3C2 algorithm calculates the local differences between the reference cloud and the compared
point cloud relative to local surface normal orientation. The algorithm does this through two different
steps [41]:

1. A user-defined diameter of the spherical neighborhood in the reference point cloud is used to
compute the local normal orientations. This user-defined diameter is known as the normal scale;

2. The normal orientation calculated is then used to project a cylinder, with a user-defined diameter
called the projection scale, inside which equivalent points in the compared point cloud are
searched for. From the points intercepted within the cylinder in each cloud, the average position
along the normal direction is calculated for both clouds. The local distance between the two
clouds is then given based on the distance between these averaged positions.

To ensure that the normal orientation is unaffected by point cloud roughness, the normal
scale was set as 25 times the average local roughness calculated for the reference point cloud by
CloudCompare [41]. To compare point clouds, the M3C2 distances between the reference point cloud
and the point clouds generated for the 13 projects were calculated. Mean and standard deviation
values calculated from the M3C2 distance were then used to assess the accuracy and the precision,
respectively, of each point cloud. The mapping of the errors and their distribution curve allowed us to
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determine the influence of the GCP distribution on the M3C2 difference spatial distribution and to
identify possible patterns for the spatial distribution of the errors.

3. Results

3.1. Accuracy Based on RMSE

For all four types of distribution considered in this study, the planimetric accuracy (RMSEXY)
decreases as the number of GCPs increases (Figure 9). For Distribution 1, in which GCPs were placed
on both sides of the road facing each other, RMSEXY values ranged from 0.061 using 4 GCPs to 0.027 m
using 18 GCPs. For Distribution 2, in which GCPs were located on both sides of the road and offset
from one another, RMSEXY values ranged from 0.076 using three GCPs to 0.026 m using nine GCPs.
For Distribution 3, in which GCPs were located on only one side of the road, RMSEXY ranged from
0.084 using three GCPs to 0.029 m using nine GCPs. Finally, for Distribution 4, in which GCPs were
placed according to a combination of Distributions 1 and 2, the planimetric error ranged from 0.031
using 7 GCPs to 0.028 m using 11 GCPs. Our results show that an increase in the number of GCPs
used in the bundle adjustment leads to an increase in planimetric accuracy, independent of the spatial
distribution. Only five GCPs (approximately 2.4 GCPs km−1) were necessary to achieve an RMSEXY

less than two times the GSD of the project, and no fewer than nine GCPs (4.3 GCPs km−1) were required
to achieve RMSEXY values less than 0.03 m. The improvement in planimetric accuracy when 18 GCPs
(8.6 GCPs km−1) were used was less than 0.01 m compared to the accuracy obtained with five GCPs.
The increase in accuracy became insignificant when more than nine GCPs were used.

Remote Sens. 2020, 12, x 11 of 21 

 

 
Figure 9. RMSExy values (in meters) obtained according to the number of GCPs used in the bundle 
adjustment. Each distribution is represented by a different color. 

Our results also show that GCP distribution influences planimetric accuracy. Distributions 2 and 
3 yielded very similar results. Furthermore, with an identical number of GCPs, Distributions 2 and 3 
achieved better accuracy values than Distribution 1. Distribution 4 also improves upon the results 
obtained by Distribution 1, yielding better or similar accuracy values with fewer GCPs. The lowest 
RMSExy value was obtained with nine GCPs in a Distribution 2 configuration. 

For all the photogrammetric projects performed, the values obtained for vertical accuracy 
(RMSEz) are higher than those obtained for RMSExy. As with planimetric accuracy, the RMSEz also 
decreases as the number of GCPs used for the bundle adjustment increases for the four types of 
distribution (Figure 10). RMSEz values ranged from 0.394 to 0.055 m for Distribution 1, from 0.679 to 
0.071 m for Distribution 2, from 0.931 to 0.105 m for Distribution 3, and from 0.081 to 0.055 m for 
Distribution 4. 

Independent of the distribution, at least seven GCPs (3.3 GCPs km−1) are necessary to achieve 
RMSEz values significantly less than 0.1 m, and nine or more are required to obtain values less than 
0.06 m. Three projects were close to the recommended RMSEz value of three times the GSD of the 
project (0.053 m) [35]. For all distributions, the accuracy improves along with the number of GCPs 
included. For Distribution 1, the difference between the use of 10 and 18 GCPs is less significant 
considering the large increase in the number of GCPs. The accuracies obtained for projects in 
Distribution 1 using 10 and 18 GCPs and in Distribution 4 using 9 and 11 GCPs are very similar, 
ranging from 0.055 to 0.06 m. 

Figure 9. RMSExy values (in meters) obtained according to the number of GCPs used in the bundle
adjustment. Each distribution is represented by a different color.

Our results also show that GCP distribution influences planimetric accuracy. Distributions 2 and 3
yielded very similar results. Furthermore, with an identical number of GCPs, Distributions 2 and 3
achieved better accuracy values than Distribution 1. Distribution 4 also improves upon the results
obtained by Distribution 1, yielding better or similar accuracy values with fewer GCPs. The lowest
RMSExy value was obtained with nine GCPs in a Distribution 2 configuration.

For all the photogrammetric projects performed, the values obtained for vertical accuracy (RMSEz)
are higher than those obtained for RMSExy. As with planimetric accuracy, the RMSEz also decreases
as the number of GCPs used for the bundle adjustment increases for the four types of distribution
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(Figure 10). RMSEz values ranged from 0.394 to 0.055 m for Distribution 1, from 0.679 to 0.071 m for
Distribution 2, from 0.931 to 0.105 m for Distribution 3, and from 0.081 to 0.055 m for Distribution 4.
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Independent of the distribution, at least seven GCPs (3.3 GCPs km−1) are necessary to achieve
RMSEz values significantly less than 0.1 m, and nine or more are required to obtain values less than
0.06 m. Three projects were close to the recommended RMSEz value of three times the GSD of the project
(0.053 m) [35]. For all distributions, the accuracy improves along with the number of GCPs included.
For Distribution 1, the difference between the use of 10 and 18 GCPs is less significant considering the
large increase in the number of GCPs. The accuracies obtained for projects in Distribution 1 using 10
and 18 GCPs and in Distribution 4 using 9 and 11 GCPs are very similar, ranging from 0.055 to 0.06 m.

Regarding vertical accuracy, the influence of GCP distribution is more evident than for planimetric
accuracy. While Distributions 2 and 3 yielded similar results in terms of horizontal accuracy, when it
comes to height accuracy, Distribution 2 achieves lower RMSEz values, with a difference of up to 0.03 m
when nine GCPs are used.

Distribution 1 significantly improves the vertical accuracy obtained for Distributions 2 and 3.
Using just 11 GCPs, Distribution 4 achieves an RMSEz value similar to the accuracy yielded with
18 GCPs in Distribution 1 (0.055 m). Furthermore, with the use of nine GCPs in Distribution 4, a very
close value (0.057 m) to Distribution 1 with 18 GCPs (0.055m) was obtained.

Taking into account both horizontal and vertical accuracy, the configurations with the lowest
total RMSEs are Distribution 1 with 18 GCPs (8.6 GCPs km−1, RMSEXY = 0.027 m, RMSEZ = 0.055 m),
and Distribution 4 with 11 GCPs (5.2 GCPs km−1, RMSExy = 0.028 m, RMSEz = 0.055 m). The configuration
with nine GCPs (4.3 GCPs km−1) in Distribution 4 yielded a total RMSE value of 0.064 m. For the
remaining configurations, the total RMSE is 0.07 m in the case of 10 GCPs (4.8 GCP km−1) in Distribution 1,
while the other distributions resulted in better values.

3.2. Accuracy Based on M3C2-Distances

For every distribution, point clouds become more accurate and more precise as the number of
GCPs increases. In most cases, with nine GCPs or more, mean difference values are around 0.02 m or
less and standard deviation values are less than 0.07 m. Distribution 3 yielded the worst results with
nine GCPs: 0.053 m (Figure 11).
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Figure 11. Multiscale Model to Model Cloud Comparison (M3C2) distance measurements between
the reference cloud and the clouds obtained from the different photogrammetric projects carried out.
(a) Mean difference (accuracy); (b) standard deviation (precision).

Further, for the majority of the projects carried out, neither accurate nor precise point clouds were
achieved with fewer than seven GCPs, regardless of the type of distribution employed. Distribution 3
presents higher standard deviations and mean values, which means lower precision and accuracy than
the other distributions. For projects with nine GCPs, the one placed according to Distribution 2, yielded
better accuracy but lower precision than those with 9 and 11 GCPs in Distribution 4. Distribution
1 with 18 GCPs resulted in the lowest standard deviation and smallest mean difference than any
other configuration, although similar values can be achieved with 9 or 11 GCPs placed according to
Distribution 4.
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In order to better understand how the distribution of GCPs impacts the accuracy of the projects,
the spatial distributions of the M3C2-calculated distance between the reference cloud and the clouds
from the photogrammetric projects were analyzed. For this purpose, only projects that used nine or
more GCPs were considered (Figures 12 and 13).
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Figure 12. Distribution of errors for the M3C2-calculated distance between the reference cloud and the
clouds obtained from the photogrammetric projects that used nine GCPs. The black squares represent
the locations of the GCPs. (a) Distribution 2, (b) Distribution 3, and (c) Distribution 4.
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Figure 13. Distribution of errors for the M3C2-calculated distance between the reference cloud and the
clouds obtained from the photogrammetric projects that used more than nine GCPs. The black squares
represent the locations of the GCPs. (a) Project with 10 GCPs in Distribution 1, (b) project with 18 GCPs
in Distribution 1, and (c) project with 11 GCPs in Distribution 4.

Although the mean difference was lower for Distribution 2, the precision improved considerably
when a pair of GCPs was placed at each end of the corridor (Distribution 4, Figure 12). Distribution 2
(mean = −0.008 m, standard deviation = 0.071 m) and Distribution 4 (mean = −0.011 m, standard
deviation = 0.063 m) achieved much better results for both accuracy and precision than Distribution 3,
which yielded a higher mean (0.053 m) and standard deviation (0.135 m).
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Figure 13 shows the spatial distributions of the M3C2-calculated distance between the reference
cloud and the clouds generated from the photogrammetric projects in which more than nine GCPs were
used to carry out the bundle adjustment. Although the project with 18 GCPs yielded the lowest values
for both accuracy (0.004 m) and precision (0.057 m), close values can be obtained with just 9 (accuracy
= −0.0121 m, precision = 0.0643 m, Figure 12) or 11 GCPs (accuracy = 0.011 m, precision = 0.063 m)
placed according to Distribution 4. This distribution has better values of accuracy and precision with
both 9 (accuracy = −0.011 m, precision = 0.063 m) and 11 (accuracy = 0.011 m, precision = 0.063 m)
GCPs than those of Distribution 1 with 10 GCPs (accuracy = 0.021 m, precision = 0.064 m). This could
be caused by the better distribution of GCPs in Distribution 4 than in Distribution 1, where the pairs of
GCPs are very close.

4. Discussion

In the literature, there is little research that focuses on studying the effect of the number and
distribution of GCPs on the accuracy of UAV photogrammetric projects on corridors. Most of the studies
are focused on surfaces where one dimension is not much larger than the other. Skarlatos et al. [35],
on a corridor measuring 2.2 km × 160 m, used a GCP distribution similar to our Distribution 4, with two
points at each end of the corridor and others (one, two, and three points) along the corridor. Therefore,
their project with seven GCPs is equivalent to our Distribution 4 with seven GCPs, which represents
3.3 GCPs km−1. In this situation, Skarlatos et al. reported an RMSExy = 0.130 m and an RMSEz = 0.170
m, while our results were RMSExy = 0.031 m and RMSEZ = 0.081 m. The main difference between
Skarlatos et al.’s study and our own is the GSD: 0.040 m for their images and 0.0175 m for our images.
If we consider the GSD, Skarlatos et al. achieved horizontal and vertical accuracies of approximately
three and four times the GSD. In our work, the planimetric accuracy was better (less than two times the
GSD of the project), but the vertical was similar (in the range of four times the GSD). These accuracies
can be improved by adding more GCPs, independently of their distribution. When Skarlatos et al.
used all 16 measured points as GCPs, they report an RMSExy = 0.070 m and an RMSEz = 0.130 m,
which are higher than those found in our work for Distribution 4 with 11 GCPs (RMSExy = 0.028 m
and a RMSEz = 0.055 m). If we again consider using the GSD to compare the results, the values are
similar: 1.75 and 1.6 GSD for horizontal accuracy and 3.25 and 3.14 GSD for vertical accuracy. In any
case, it should be noted that the accuracy values of Skarlatos et al. when 16 GCPs were considered
were calculated from the GCPs themselves.

Tahar [22] evaluated different numbers of GCPs in a UAV photogrammetric block. Although Tahar
did not indicate the linear dimension of the study area, the text refers a road to this. Several combinations
of numbers (from four to nine) and distributions of GCPs were tested to study their influence on the
achieved accuracy. The best RMSEs calculated in that study were reached using nine GCPs: 0.48 m for
the horizontal component, and 0.78 m for the vertical component, which are larger than any value
found in any of our projects. In that work, the GSD is not reported, so it is not possible to make a
comparison using this value.

Zulkipli and Tahar [9] focused on using UAV as a tool to capture data of the ground for road
design. Considering that the study site was not a corridor and the results are not comparable to ours,
they obtained RMSE values of 0.155, 0.228, and 0.479 m for X, Y, and Z, respectively, with six GCPs
and a fly height of 148 m (the GSD value is not reported). These values mean that, although the
height accuracy is close to the one presented in the present study for six GCPs and Distribution 1,
the planimetric accuracy is much higher for the same number of GCPs since an increase in the number
of GCPs is necessary to improve the accuracy of photogrammetric projects, as the authors concluded.
Nevertheless, since the fly height of the present study is 65 m, while in Zulkipli and Tahar it was 148 m,
their GSD was likely larger than ours, and it is important to note that, as the flight height (and, in turn,
the GSD) increases, the accuracy deteriorates [27]. One of our main findings is that the project using
more GCPs was not the most accurate. It is very important to consider not only the number of GCPs
but also their distribution across the study area.
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Tournadre et al. [34] aimed to present a method to assure precise accuracy in UAV photogrammetric
projects of linear works and to minimize the number of GCPs required. Their study was developed
on a corridor of 600 × 15 m. The influence of camera calibration, the inclusion of oblique images,
and the number of GCPs on the magnitude of the bowl effect in the UAV photogrammetric project
was studied. They concluded that one GCP for each 100 m (six GCPs in the studied corridor) is the
optimal distribution to reduce most of the CPs reprojection errors to less than one centimeter, they do
not mention GCP distribution. Our accuracies with six GCPs are better than the accuracy given by
Tournadre et al., but they do not report the project GSD.

Several studies have already proven that the distribution of the GCPs affects the accuracy of the
projects, and a good geometrical distribution of GCPs will lead to better accuracies [21,29]. In terms of
the distribution of GCPs, since the results of the projects using GCPs on only one side of the road were
the worst in both the RMSE and M3C2 distance values, we found that, to improve the accuracy in
corridor-shaped projects, it is necessary to place GCPs on both sides of the road. The distribution in
which the GCPs are placed alternately on each side of the road and separated by an offset distance
presented results similar to those of the distribution in which GCPs are set out in pairs along the road.
However, the best results were yielded by a combination of both, in which the GCPs were set out
in an offset pattern but with the addition of a pair of GCPs at each end of the road, yielding better
results with just 11 GCPs (5.2 GCPs km−1) than another distribution using 18 GCPs (8.6 GCPs km−1).
This configuration yielded values less than two and three times the GSD of the project for both
horizontal and vertical accuracy.

In view of Figures 12 and 13, it can be deduced that there are no significant errors in the clouds of
the projects represented and that these are not concentrated in certain areas. An exception is Distribution
3 with nine GCPs (Figure 12), where values of approximately 0.3 m are reached in the southeast area.
This is related to the RMSE values found for the CPs located in the same area (points 12, 13, and 17,
Figure 4). In the other representations of the error distribution in Figures 12 and 13, the values of the
errors observed in an area are in agreement with the RMSE values calculated for the CPs located in
that same area.

The results derived from both methodologies used to assess the accuracy are coherent. Similar results
were obtained through these two different approaches, thus strengthening the conclusions of the work
carried out. Furthermore, when the distribution of errors for the M3C2-calculated distance between
the reference cloud and the clouds was obtained from the different photogrammetric projects, no bowl
effect was observed, even when the number of GCPs was small.

5. Conclusions

This study was performed to assess how the number of GCPs and their distribution impact the
accuracy of UAV photogrammetry projects in a corridor-shaped study site. For that purpose, several
projects with different configurations were carried out on a 2.1 km road, where 47 points were surveyed
to be used either as GCPs or CPs. To assess accuracy, RMSE values from the georeferencing process
and the M3C2 distance from the point clouds comparison were used.

For all the distributions studied, both horizontal and vertical accuracy improved as the number
of GCPs used in the bundle adjustment increased, and planimetric accuracy was always better than
vertical accuracy. Independent of the chosen distribution, no fewer than seven GCPs (3.3 GCPs km−1)
must be used to reach values of RMSExy ≤ 0.031 m and RMSEz ≤ 0.081 m. The best results were
achieved for those distributions where the GCPs were placed on both sides of the road. Placing GCPs
alternatively on each side of the road and separating them by an offset distance, with a pair of GCPs
placed at each end of the corridor, proved to yield the best results.

Considering the results, configurations with 9 or 11 GCPs (4.3 and 5.2 GCPs km−1, respectively)
placed on both sides of the road in an offset pattern, with a pair of GCPs at each end, yielded the best
results in terms of balancing the accuracy and fieldwork, with RMSE mean values of 0.029 and 0.028 m
for horizontal and 0.057 and 0.055 m for vertical accuracy, respectively. Similar results in terms of
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RMSE values (0.027 for horizontal and 0.055 m for vertical) and slightly better results in terms of M3C2
distance (mean difference and standard deviation) were achieved with 18 GCPs (8.6 GCPs km−1) set
out in pairs along the corridor. Since every GCP must be surveyed using high-accuracy technology,
the use of 9 or 11 GCPs, with the offset distribution mentioned previously, is recommended in study
areas similar to that assessed in this study, since it can significantly reduce both the fieldwork and
survey duration without a loss in accuracy, compared to the use of a higher number of GCPs placed
according to other distributions.

To determine if the conclusions derived from this study are generally applicable, it would be
necessary to carry out related studies in corridors with different terrain morphologies.
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