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—— Abstract
The Cockayne-Hedetniemi Domination Chain is a chain of inequalities between classic parameters
of graph theory: for a given graph G, ir(G) < v(G) < «(G) < a(G) < T'(G) < IR(G). These
parameters return the maximum/minimum cardinality of a set satisfying some property. However,
they can be generalized for graphs with weighted vertices where the objective is to maximize/minimize
the sum of weights of a set satisfying the same property, and the domination chain still holds for them.
In this work, the definition of these parameters as well as the chain is formalized in Coq/Ssreflect.
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1 Introduction

The domination parameters and the relationship between them is a very active research area
due to the numerous applications that can be modeled with them. They are introduced
below, following the treatment given in the textbook [9].

Let G = (V, E) be a simple graph. For any v € V, let N(v) be the set of vertices adjacent
to v and N[v] = N(v)U{v}. Forany S CV,let N(S) = J,cg N(v) and N[S] = {J,cg N[v].

A set S CV is called a stable set if N(S) NS = 0. Alternatively, S is a stable set if no
vertex in S is adjacent to any other vertex in S. The independence number a(G) of a graph
G is the maximum cardinality of a stable set in G.

A set D CV is called a dominating set if N[D] = V. Alternatively, D is a dominating set
if for all v € V — D, there exists a vertex u € D such that u is adjacent to v. The domination
number ¥(G) of a graph G is the minimum cardinality of a dominating set in G and the
independence domination number ((G) is the minimum cardinality of a set which is stable
and dominating simultaneously.

A property p is called hereditary if whenever a set S satisfies p, so does every proper
subset S’ C S. Analogously, p is called superhereditary if whenever a set S satisfies p, so
does every proper superset S’ D S. “To be stable” is an hereditary property while “to be
dominating” is superhereditary.
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Figure 1 I'(G) = 2 < 3 = IR(G).

A set S C V satisfying an hereditary property p is maximal if, for every v € V — S|
S U {v} does not satisfy p. Similarly, a set S satisfying a superhereditary property p is
minimal if, for every v € S, S — {v} does not satisfy p. For instance, a minimal dominating
set D is a dominating set such that any proper subset of D is not dominating. Note that
a dominating set of minimum cardinality is, in particular, minimal. Since finding v(G) is
an NP-Hard problem, heuristics approaches to address them are usual and, in particular, a
greedy heuristic consisting of adding elements to a set until it becomes dominating is one
of these approaches. Such heuristic always returns a minimal dominating set by definition.
Its worst case leads to the definition of the upper domination number T'(G) which is the
maximum cardinality of a minimal dominating set in G.

For a given set D C V and vertex v € D, let sp(v) = N[v] — N[D — {v}]. This set
has those vertices only dominated by v, whose are called private vertices of v in D. A set
D C V is called an irredundant set if, for every v € D, sp(v) # 0. In other words, each
vertex of D must dominate at least one vertex not dominated by any other vertex from D.
The upper irredundance number I R(G) is the maximum cardinality of an irredundant set
in G. “To be irredundant” is an hereditary property and, thus, one might be interested in
finding the minimum cardinality of a maximal irredundant set. The latter is called the lower
irredundance number and denoted by ir(G).

Figure 1 shows an example of a minimal dominating set (on the left) and an irredundant
set (on the right). Both sets are represented by vertices inside boxes. In the right graph,
arrows link vertices from the irredundant set to their private vertices. This graph is a known
example where I' and IR differs [10].

According to Favaron et al. [6], more that 1500 research papers about dominating sets
have been published and, in particular, more than 100 explore properties of irredundant sets
in graphs, showing the importance of this topic (which is still active [2]). Despite that, and
to the best of my knowledge, these concepts have not been formalized yet.

This ongoing work intends to reduce the gap between what is already informally proved
and what is not, such that other graph theorists may have a framework to formalize their
results, especially when their proofs require the analysis of dozens of mechanical cases (the
Four-Color Theorem is an example of a result involving an overwhelming number of cases
[7]). In particular, this work is the basis to prove later that IR,, (defined in the next section)
is polynomial on {claw, bull, Ps, Cg }-free graphs [12]. However, it requires to consider several
“boring” cases and its formalization could be a way to channel this result, reaching a twofold
goal: on the one hand, to get confident about the proof and, on the other, to have the
advantage that a reader can accept it without the need of manually checking step by step (it
eventually could reduce the time spent in the peer-review process).

Another line of research that motivated this work is presented at the end of the paper.

A starting point is to formalize in Coq/Ssreflect [8] the Cockayne-Hedetniemi domination
chain, which is the basis for many other results [9]. It states that for any graph G,

ir(G) <9(G) < uG) < a(G) <T(G) < IR(G).
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The proof relies on the following facts:

A stable set D is maximal if and only if D is stable and dominating (see Prop. 3.5 of [9]).

A maximal stable set is a minimal dominating set (see Prop. 3.6 of [9]).

A dominating set D is minimal if and only if D is dominating and irredundant (see
Prop. 3.8 of [9]).

A minimal dominating set is a maximal irredundant set (see Prop. 3.9 of [9]).

For instance, in order to prove ir(G) < v(G) one can pick a dominating set D of minimum

cardinality, i.e. |D| = v(G). Since D is minimal dominating, it is also maximal irredundant.

Therefore, |D| > ir(G).

2 Weighted parameters

The parameters defined in the previous section can be generalized as follows. For a given
graph G = (V, E), consider a positive integer weight w(v) associated to each vertex v,
i.e. w: V — Nj, where N; denotes the set of natural numbers starting from 1. For any
S C V, define the weight of S as w(S) = > cqw(v). Let § € {ir,v,1,a,I',IR} be a
parameter consisting of minimizing (or maximizing) the cardinality of a set S satisfying the
corresponding property p (e.g. if 5 = « then the objective is “to maximize” and p is “to be a
stable set”), and define $3,,(G) as the value of w(S) such that S satisfies p and minimizes
(maximizes resp.) w(S).

Since weights are positive, sets of minimum (maximum resp.) weight are also minimal
(maximal resp.), and the domination chain still holds for these parameters:

» Theorem 1. For any graph G and weights w : V(G) — Ny, ir,(G) < 7 (G) < 14(G) <

In particular, the problems of finding ~,,(G) and ., (G) are the classic optimization
problems MINIMUM WEIGHTED DOMINATING SET and MAXIMUM WEIGHTED STABLE SET.
Nevertheless, the weighted versions of the remaining parameters are also beginning to be
studied: some theoretical results about I',,(G) have recently been reported [3] and algorithms
for obtaining (a generalized form of) ¢,,(G) have been proposed [4].

Therefore, it makes sense to directly formalize the domination chain for the weighted case,
and the original chain can be proved straightforwardly by setting w(v) = 1 for all v € V. The
code accompanying this paper (from now on, the code) contains 3 Coq files, described below:

Name Definitions Proofs Lines (spec) Lines (proof)
basics.v 12 46 282 303

dom.v 55 60 311 551
example.v 1 17 62 166

The second and third column display the number of global definitions and proofs, and the
fourth and fifth column show the number of lines of specification and proof reported by the
tool coqwe. The total number of lines (spec + proof) amounts to 1675. Also, there is a
browsable version of the code made with CogDocJS, and a solver for computing parameters
Yws bws Qw, [y and TR,,. The solver can also generate a Coq file with a proof of a(G) > k.
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3  Graph definition

This section is devoted to briefly discussing how to represent a finite simple graph in the
language Coq. First, a description of current representations is given.

The Mathematical Components library [13] (from now on, MC library) is equipped
with a definition of finite graphs, which can be consulted in the file fingraph.v. Basically,
vertices are elements of a finite type T and a graph is represented by a function of type
T — seq T, i.e. an assignment from vertices to lists containing their adjacencies (here, seq
is the ssreflect type for sequences, see seq.v from [13]). This library also has some basic
results about connectivity, which is seen as the transitive closure of the adjacency relation,
and they are used in the formal proof of the Four-Color Theorem [7] (at that time the file
was called connect.v).

Recently, another representation was given by Dockzal, Combette and Pous [5] since
fingraph in the MC library as well as other results in the formal proof of the Four-Color
Theorem were conceived to deal with planar graphs and do not fulfill some requirements
needed for a general theory of graphs. The authors define a graph G as a structure (V, R)
(called sgraph) where V' is a finite type inhabited by the vertices of G and R : V — V — bool
is a symmetric and irreflexive relation representing the adjacency relation of G (and denoted
by “~="). Several results about connectivity, morphisms, minor relation and treewidth among
others are formalized.

In this work, the latter representation is adopted. Moreover, the code is compatible with
the one proposed in [5] and it can certainly extend that library.

Formalizations of some aspects of graph theory are not restricted to the language Cogq.
One of them is the work of Noschinski [11] for Isabelle/HOL. He defines a simple graph (not
necessarily finite) as a pair (V, E) € P(N) x P(P(N)) (where P(X) denotes the powerset of
X) satisfying the condition Ve € E o e CV Ale| = 2. As this set-theoretic representation
can be more intuitive for newcomers, the file basics.v (from the code) defines the edge
set F(G) in terms of the adjacency relation. Some results are then expressed with F(G),
including one of the first classic facts given in textbooks: the sum of the degrees of all vertices
is equal to twice the number of edges.

Theorem sumdeg_2E : V G : sgraph, 2 *x #|E(G)| = ¥(w in V(G)) deg G w.

The file basics.v also has simple results about finite sets and summations not found in the
MC library, and definitions of open and closed neighborhoods, and the degree of vertices.

4  Formalizing the domination chain

This section exposes the most relevant details about the formalization performed in the file
dom. v, which contains definitions and results about: 1) stable, dominating and irredundant
sets, 2) private sets, 3) hereditary and superhereditary properties, 4) maximal and minimal
sets, 5) sets of maximum and minimum weights, and 6) weighted and unweighted parameters.

One of the obstacles found was that it was easier to prove statements about properties
over sets when they were defined as Prop-terms rather than bool-terms, while the MC
library commonly uses the latter. For that reason, the concept of property was packaged in a
structure, where a property p comes in two flavors: vsbool, which is a compact definition of
p having type {set G} — bool (see the definition of pred in the MC library), and vsprop,
which is the same property written in terms of quantifiers and having type {set G} — Prop,
where {set G} denotes the type of sets of vertices:
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Record vsproperty := VertexSetProperty {
vsprop :> {set G} — Prop ;
vsbool : pred {set G} ;
vsrefl : V D : {set G}, reflect (vsprop D) (vsbool D) ;
vsinhb : {set G} ;
vspinh : vsprop vsinhb
}.

A boolean reflection view vsrefl is used to prove the equivalence between the two. In
addition, the structure is equipped with a set vsinhb satisfying the property p. Its proof is
given in vspinh. For instance, stable sets are defined as follows:

Definition stable := QVertexSetProperty
p_stable pb_stable stableP () st_empty.
where p_stable and pb_stable are the two versions given below, stableP is the reflection
view between them, and st_empty is a proof that the empty set is stable.

Definition p_stable :=Vuv : G, u €8S »>veEesS— - (u--v).
Definition pb_stable := NS(S) N S == 0.

In the code, NS(8) is notation for N(S), i.e. the open neighborhood of a set S.

Having different definitions in both types is useful and has already been applied previously
in the MC library: for example, the lemma setOPn proves the equivalence between the Prop-
term “3 x, x € A” and the bool-term “A !'= ()” in the file finset.v. As it was pointed
out previously, vsbool is mainly used when interacting with the MC library while vsprop
is preferred for performing proofs. A coercion between vsproperty and vsprop is declared
since the latter is used intensively and improves readability.

For a given property p and a given set of vertices D, the latter is a maximal set if it
satisfies p but no proper superset F' of D does. In addition, if p is hereditary, it is possible to
apply the definition of maximal set given in the introduction (here called maximal_altdef):

Definition maximal := p D A (V F : {set G}, D C F —- - p F).
Definition hereditary :=V F : {set G}, FC D - pD — p F.
Theorem maximal_altdef : hereditary p —

(maximal < (p DA (Vv : G, v¢D— —-p (DU {v})))).

Something similar is done for the definitions of minimal and superhereditary. From now on,
only concepts related to maximal sets are presented (keeping in mind that the same is done
for minimal ones).

In order to define the property that a given set is maximal irredundant, it is required to
propose an inhabitant of that property. The code gives a tool called ex_maximal for providing
these kind of sets. For instance, ex_maximal irredundant generates a maximal irredundant
set and maximal_exists gives a proof that the generated set satisfies that property.

Let p be a property, F' = vsinhb p, i.e. a set satisfying p, and pb = vsbool p, i.e. the
bool-version of the property. The following function provides a set of maximum weight:

Definition maximum_set := [arg max_(D > F | pb D) weight_set DJ].

where weight_set is the weight of a given set. Note that maximum_set is defined in terms
of [arg max_(D > F | P) M], a function from the MC library that returns an object D
maximizing M subject to P, where P holds for F.

Now, we have all the elements to introduce the parameters. For instance, IR, (G) is
defined as the weight of the irredundant set of maximum weight.
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Definition IR_w := weight_set weight (maximum_set weight irredundant).

For unweighted cases, cardinality is used. That is:

Definition maximum_set_card := [arg max_(D > F | pb D) #|D|].
Definition IR := #|maximum_set_card irredundant].

Then, the equivalence between both cases (when weights are ones) is established:

Lemma IR_is_IR1 : IR = IR_w ones.

Finally Theorem 1 is proved and the original chain is derived as a consequence of that
theorem. For instance, for the statements I',(G) < IR, (G) and T'(G) < IR(G) we have:

Theorem Gamma_w_leq_IR_w : V (G : sgraph) (weight : G — nat),
''w G weight < IR_w G weight.
Corollary Gamma_leq_IR : V G : sgraph, I' G < IR G.

The file example.v shows an example on how to use these concepts: it proves that a com-
plete graph K satisfies c,, (K) = T (K) = IR, (K) = max{w(v) : v € V(K)}, by bounding
oy (K) from below and TRy, (K) from above, and applying Theorem 1 for collapsing the three
parameters. It is also shown that ir(K) = y(K) = (K) = o(K) =T'(K) = IR(K) = 1.

A future research line related to this work conceives the idea of obtaining the proof (as a
Coq file) of the value of a parameter over instances of reasonable size. For example, suppose
that a certain application is modeled as a MAXIMUM STABLE SET PROBLEM and, after
all, one wants to verify a(G) = k, for some G and k. Certifying that a(G) > k is easy
(i.e. polynomial in the size of G): propose a set of k vertices and prove that it is stable. In
fact, this is done by the solver provided in the supplement material. Therefore, the effort
should be put in the generation of a proof of a(G) < k as small as possible. Below, a
technique is briefly elaborated. Consider an Integer Linear Programming formulation that
models the problem, e.g. maximize ;) @i subject to z; +x; <1 for all i, j € E(G) and
z; € {0,1} for all i. By adding the contraint ;.\ () ®; = k + 1, the formulation turns
infeasible. Next, find an Irreducible Infeasible Subsystem (IIS). There are tools that perform
this task, e.g. Conflict Refiner of IBM CPLEX (or, even better, one can get the minimum IIS
by solving a set covering problem). Then, solve the IIS via Branch-and-Bound (the number
of explored nodes can be reduced by using a strong branching strategy). It generates a tree
where each leaf corresponds to a infeasible Linear Programming (LP) problem. Hence, the
proof of a(G) < k consists mainly of enumerating these LP problems and certifying that
each one is infeasible, which can be done via Farkas Lemma. The library of formalized LP
concepts provided in [1] might be useful here. Integer LP formulations for 7, ¢, and «,, are
well-known, while recent ones for I',, and IR,, have been proposed [12] and implemented
(see supplement material).
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