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Is hypospadias a genetic, endocrine or environmental
disease, or still an unexplained malformation?
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Introduction

Hypospadias is the most frequent genital malformation in

the male newborn and estimates of its prevalence range

from three to eight cases per 1000 male births (Paulozzi

et al., 1997; Carmichael et al., 2003; CDCP, 2004). Hypo-

spadias is defined as a midline fusion defect of the male

urethra which results in a misplaced urethral meatus. This

malformation is usually corrected surgically when the

infant is between 6 and 24 months, depending on the

team and country. It may require endocrine management,

as well, especially for the most severe forms and for

patients with other genital malformations.

Normal penile and urethral development begins in the

sixth week of gestation with the formation of the urogenital

sinus. By the end of the 16th week, the penile urethra has

tubularized and the glanular urethra has started to form.

This process of differentiation is initially directed under the

guidance of maternal human chorionic gonadotropin

(HCG) stimulation of the foetal gonads to produce testo-

sterone and its 5a-reduced form, dihydrotestosterone

(DHT) (Baskin, 2000). The process requires a correct

genetic programme, time- and space-adapted cellular

differentiation, complex tissue interactions, and hormonal

mediation through enzymatic activities and hormonal

transduction signals.

The aetiology of this frequent malformation has not

been elucidated despite intensive investigation. Several

authors reported increasing trends in its birth prevalence

from the 1960s to the 1990s (Czeizel et al., 1986; Paulozzi

et al., 1997; Canning, 1999), with exogenous factors

(environmental) as suspected causes. In addition, hypo-

spadias can be considered as an incomplete virilization of

the genital tubercle related to insufficient development of

the tissues forming the ventral aspect of the penis

(Mouriquand & Mure, 2001). The role of foetal
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Summary

Hypospadias is one of the most frequent genital malformations in the male

newborn and results from an abnormal penile and urethral development. This

process requires a correct genetic programme, time- and space-adapted cellular

differentiation, complex tissue interactions, and hormonal mediation through

enzymatic activities and hormonal transduction signals. Any disturbance in

these regulations may induce a defect in the virilization of the external genitalia

and hypospadias. This malformation thus appears to be at the crossroads of

various mechanisms implicating genetic and environmental factors. The genes

of penile development (HOX, FGF, Shh) and testicular determination (WT1,

SRY) and those regulating the synthesis [luteinizing hormone (LH) receptor]

and action of androgen (5a reductase, androgen receptor) can cause hypo-

spadias if altered. Several chromosomal abnormalities and malformative syn-

dromes include hypospadias, from anterior to penoscrotal forms. More

recently, CXorf6 and ATF3 have been reported to be involved. Besides these

genomic and hormonal factors, multiple substances found in the environment

can also potentially interfere with male genital development because of their

similarity to hormones. The proportion of hypospadias cases for which an aeti-

ology is detected varies with the authors but it nevertheless remains low, espe-

cially for less severe cases. An interaction between genetic background and

environment is likely.
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androgens is crucial, especially during the first trimester

of pregnancy, but any environmental factor with anti-

androgenic activity can alter the complex regulation of

male sex differentiation during foetal life.

Hypospadias thus appears at the crossroads of genetic,

endocrine and environmental mechanisms. We here pro-

pose to review these mechanisms separately, as they may

interact or remain independent (Table 1).

Genetics of hypospadias

Genetic factors play a crucial role in the occurrence of

this early developmental defect, in both the isolated (non-

syndromic) and syndromic forms. Mutations in the genes

affecting penile development and those implicated in the

determination of male gonad and the biosynthesis or cell

action of androgens have been identified in various forms

of hypospadias.

Arguments for a genetic aetiology of hypospadias

Familial clustering, defined as patients with one or more

first-, second- or third-degree relatives also affected with

hypospadias, is seen in about 10% of cases (Chen &

Woolley, 1971; Czeizel et al., 1979; Kallen et al., 1986;

Fredell et al., 2002). The recurrence risk in the male sib-

lings of an affected patient is about 15% and, conversely,

the incidence in fathers of a child with hypospadias is 7%

(Bauer et al., 1979; Stoll et al., 1990; Asklund et al.,

2007). The risk of recurrence depends on the severity of

the hypospadias and the more proximal the malforma-

tion, the higher the risk is for the next male sibling

(Bauer et al., 1979). Segregation analyses have suggested

that hypospadias might be due to monogenic effects in

a small proportion of families, whereas a multifactorial

mode of inheritance is assumed to be more likely in the

majority of families (Harris & Beaty, 1993; Fredell et al.,

2002).

Genes coding for non-endocrine-related morphogenetic

factors

These genes are in fact implicated in the development of

the phallus:

1 Homeobox genes (HOX). HOXA and HOXD genes are

expressed in the foetal urogenital structures. Knock-out of

these genes in mice induces a malformation in the exter-

nal genitalia: loss of function in both HOXA13 genes

induces an agenesis of the genital tubercle, and hetero-

zygosity is associated with a defect in penile development

and patterning (Morgan et al., 2003). Similarly, mutations

of HomeoboxA3 (HOXA13) have been reported in

humans with hand–foot-genital syndrome (HFGS), in

which small hands, malformed thumbs with flat thenar

eminence, small big toe and short first metacarpal and

phalanx are associated with genital abnormalities, includ-

ing hypospadias in males (Mortlock & Innis, 1997; Frisen

et al., 2003). HOXA13 is essential for the normal expres-

sion of fibroblast growth factor (FGF) 8 and bone mor-

phogenetic protein 7 in the developing urethral

epithelium in mice. It also acts in androgen receptor

expression and mediates glans vascularization (Mouriqu-

and & Mure, 2001).

2 FGF genes also participate in the development of geni-

tal structures in mice (Petiot et al., 2005) and knock-out

of FGF10 is associated with hypospadias (Yucel et al.,

2004). In humans, the FGF family, especially FGF8,

Table 1 Aetiologies of hypospadias

Abnormality of testicular determination

Pure

Duplication of Dax 1

Duplication of WnT4

Mutation of gene DMRT1 and 2

Chromosomal deletion (2q32…)

Associated with other abnormalities

Mutation of SF1 gene (±no adrenal development)

Mutation of WT1 gene (abnormality of renal morphogenesis and

function)

Denys-Drash syndrome (Wilms’ tumor)

WAGR syndrome (Wilms’ tumor, aniridia, mental retardation)

Frasier syndrome (female phenotype)

Mutation of SOX9 gene (bone malformation, IUGR)

‘Mixed’ with karyotype 46,XY, 46,X0

Disorder of sex development (often 46,XX)

Disorder of androgen biosynthesis

Abnormality in cholesterol biosynthesis (‘deficient in’ 7 dehydro-cho-

lesterol reductase = SLO syndrome)

Abnormality in testosterone biosynthesis

Mutation of LH receptor, Leydig cell aplasia

Mutation of LH (micropenis)

Adrenal hyperplasia (mutation of STAR gene)

‘Deficient in’ 3b HSD deshydrogenase (17 hydroxy pregnenolone

increased)

‘Deficient in’ 17a alpha hydroxylase (17–20 Desmolase) = mutation

of CYP 17

‘Deficient in’ 17b HSD deshydrogenase, type 3 (increased D4 andro-

stenedione)

Androgen resistance

Abnormality of cellular and molecular action of (‘deficient in’ 5 a

reductase type 2)

Androgen insensitivity (increased or normal plasma androgen levels)

With AR mutation

Partial insensitivity: hypospadias, micropenis

Without AR mutation

Isolated

Associated with malformations

Associated with IUGR

Environment (endocrine disruptor ⁄ chemical pollutants)

Idiopathic
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FGF10 and FGFR2, is suspected to increase the risk of

hypospadias (Beleza-Meireles et al., 2007).

3 Other genes are implicated in the interactions between

mesenchyme and urothelium. Sonic Hedgehog (Shh) in

mice is expressed in the endodermally derived urethral

plate epithelium situated along the ventral side of the

genital tubercle and is required for outgrowth and pat-

terning of the genital tubercle (Digilio et al., 2003; Yucel

et al., 2004). Mice with a targeted deletion of Shh have

penile and clitoral agenesis, consistent with the crucial

role of Shh in genital development (Haraguchi et al.,

2001; Perriton et al., 2002). No mutations have yet been

reported in children with hypospadias.

Genes or chromosomal aberrations leading to testicular

dysgenesis

Severe abnormalities in testis development classically

cause complete (pure) gonadal dysgenesis (Swyer syn-

drome) with marked underandrogenization and persistent

Mullerian structures. However, gonadal dysgenesis can be

viewed as a spectrum of disorders, with partial forms

associated with normal Mullerian regression and varying

degrees of testicular descent and external malformation,

such as hypospadias. Thus, milder loss of function muta-

tions in established testis determining ⁄ promoting factors

can all present with hypospadias.

Heterozygous mutations of WT1 (Wilms Tumour 1

gene) are associated with severe hypospadias and other

genital abnormalities. In humans and mice, WT1 is impli-

cated in male gonadal determination and its knock-out in

mice induces bilateral renal agenesis, anorchia and defec-

tive genital tubercle development (van Heyningen et al.,

1990; Pritchard-Jones et al., 1990; Pelletier et al., 1991a,b;

Shimamura et al., 1997; Gao et al., 2006; Kohler et al.,

2007). In humans, its mutations are associated with the

syndromes described below (Kaltenis et al., 2004).

Mutations in steroidogenic factor 1 (SF1) have yet to

be identified as causes of isolated hypospadias.

SOX9, DMRT1 and GATA4 encode transcription

factors acting immediately before the differentiation of

the gonad into testis. Mutations of these genes may be

associated with male disorders of sex differentiation

(DSD), including severe hypospadias, often associated

with testicular dysgenesis (Huang et al., 1999; Wang

et al., 2004; Leipoldt et al., 2007; Maciel-Guerra et al.,

2008). SOX9 may also be duplicated on a rearranged

chromosome 17, which could explain the occurrence of

penoscrotal hypospadias in patients with mosaicisms

46,XX and 46,XX d17 (Huang et al., 1999). Last, the

observation of 46,XX male hypospadiac patients with no

detectable SRY or SOX9 suggests the existence of other

virilizing genes.

Gonosomal abnormalities are also detected in about 7%

of patients with hypospadias (Moreno-Garcia & Miranda,

2002). They include Klinefelter’s syndrome, 47,XXY

(Moriyama et al., 1988), 48,XXYY (Neugebauer et al.,

1991) and various mosaicisms, e.g. 45,X ⁄ 46,XY, which is a

relatively common chromosomal abnormality known as

mixed gonadal dysgenesis (Telvi et al., 1999), 45,X ⁄
46,XYq- (Mailhes et al., 1979), 45,X ⁄ 46,X,idic(Yp) (Raff

et al., 2000), 45,X ⁄ 69,XXY (Quigley et al., 2005). Abnormal

genital development in these patients may be related to a

dosage effect of the SRY gene (Sinisi et al., 2003).

Genes driving to isolated androgen synthesis or action

defects

Genes driving to androgen synthesis defects

Whereas early genital development is controlled by a

genetic program that operates prior to the production of

steroid hormones, the second phase of penile development

requires exposure to an androgen, either testosterone or

DHT (Abney, 1999). Androgenic steroids, synthesized by

the Leydig cells of the testes, are first seen just prior to

the onset of androgen-induced genital differentiation.

5a-reductase type 2, an enzyme that converts testosterone

to 5a-DHT, is highly expressed in the mesenchymal

stroma surrounding the urethra (Kim et al., 2002). Muta-

tions of 5a-reductase have been identified in severe vari-

ants of hypospadias in combination with other genital

abnormalities (Ocal et al., 2002; Wang et al., 2004; Nico-

letti et al., 2005). Conversely, the V89 allele in the SRD5A2

gene reduces the risk of hypospadias (Thai et al., 2005).

Other defects in the androgen synthesis pathway are

secondary to an abnormality in Leydig cell development

or an enzymatic defect in testosterone synthesis. These

defects are characterized by low concentrations of plasma

testosterone in the neonatal period.
l Mutations of the LH receptor (Leydig cells hypo-

plasia) are associated with hypospadias and micropenis.

Testosterone secretion is dramatically low and contrasts

with higher values of LH in early life (Huhtaniemi &

Alevizaki, 2006).
l A deficit in 3b-hydroxysteroid-deshydrogenase induces

a testicular and adrenal block which is autosomal and

recessive. Diagnosis is based on the association of hypo-

spadias and adrenal insufficiency and an increase in

dehydroepiandrosterone (DHEA) and 17-hydroxypregne-

nolone (Perrone et al., 1985; Codner et al., 2004).
l A defect in 17-hydroxysteroid-reductase induces a tes-

ticular block (autosomal and recessive) by altering the

final step in testosterone synthesis. A marked increase in

D4 androstenedione with low testosterone despite an

HCG test allows the diagnosis. If the diagnosis is missed

in the neonatal period, the patient presents with viriliza-
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tion at the time of puberty (Mendonca et al., 2000; Lee

et al., 2007).
l Rare defects are also described in steroidogenic acute

regulatory protein (STAR) and CYP11A1 (P450scc),

which usually cause a salt-losing adrenal phenotype and

more severe underandrogenization, although in rare cases

hypospadias may theoretically be the presenting feature of

these conditions. Combined 17a-hydroxylase ⁄ 17,20-lyase

deficiency (or isolated 17,20-lyase deficiency) or P450 oxi-

doreductase deficiency can present with varying degrees

of hypospadias or micropenis.

Overall, endocrine investigation confirms the aetiology

of hypospadias as a defect in androgen synthesis in 20%

of cases (Rey et al., 2005).

Genes driving to androgen action defects

Mutations in the androgen receptor gene (AR) have

also been found in patients with severe forms of hypo-

spadias (Sultan et al., 2001), e.g. perineo-scrotal hypo-

spadias (Kaspar et al., 1993; Holterhus et al., 2005),

hypospadias associated with cryptorchidism (Hiort et al.,

1994), and micropenis (Sultan et al., 1993; Li et al.,

2004). The phenotype is variable in partial androgen

insensitivity syndrome (Sultan et al., 1993; Deeb et al.,

2005), and a mutation in one of the eight exons is found

in less than 10% of cases. Similarly, AR is expressed in

the epithelium of the urethra (Kim et al., 2002), as is the

FGF receptor 2 gene (FGFr2), a transcriptional target of

AR (Petiot et al., 2005).

New genes of hypospadias

The ATF3 gene is a suspected aetiology of hypospadias

for several reasons. First, microarray analysis of tissues

from normal and hypospadiac patients revealed upregula-

tion of this gene in hypospadias (Wang et al., 2007). Sec-

ond, using a mouse model of steroid hormone-dependent

genital tubercle development, ATF3 messenger RNA levels

were found to be elevated in all oestrogen-exposed foetal

genital tubercles compared with controls (Liu et al.,

2006). Third, immunohistochemical analysis on human

foreskin showed 86% of the hypospadias samples to be

positive for expression of ATF3 whereas only 13% of

those from normal penises were positive (Liu et al.,

2005). In addition, ATF3 expression and promoter activ-

ity in human foreskin fibroblasts were responsive to in

vitro exposure to ethinyl oestradiol (Liu et al., 2005).

Finally, ATF3 is implicated in cell cycle suppression and

its upregulation may interfere with urethra formation

(Willingham & Baskin, 2007).

Another of the most recently identified candidate genes

in the development of the male genitalia is CXorf6 (for-

merly F18). This gene, discovered in the course of identi-

fying the gene responsible for X-linked myotubular

myopathy, MTM1, maps to proximal Xq28 (Laporte

et al., 1997a,b). CXorf6 is expressed ubiquitously, but its

expression is especially high in skeletal muscle, brain and

heart. It is also hypothesized to be implicated in male

genital development. Indeed, myopathic individuals with

intragenic mutations of MTM1 have normal sexual devel-

opment whereas those with microdeletions of MTM1

extending to the CXorf6 locus have abnormal genitalia

(Hu et al., 1996; Bartsch et al., 1999; Biancalana et al.,

2003). Subsequent studies have demonstrated that CXorf6

is mutated in 46,XY disorders of sexual development

(46,XY DSD): Fukami et al. (2006) recently identified

three nonsense mutations in four individuals with 46,XY

DSD including micropenis, bifid scrotum and penoscrotal

hypospadias. The exact mechanism by which CXorf6

induces hypospadias remains to be established but CXorf6

augments testosterone production and contains the SF1

target sequence (Fukami et al., 2008).

Overall, a genetic basis of hypospadias is likely when

the defect is associated with an inactivating mutation of

the genes involved in penile development or the hypo-

thalamo–pituitary–testicular axis, including testicular dys-

genesis, defect in the synthesis or the molecular action of

testosterone (5aR, AR), and a chromosomal abnormality.

Environmental factors affecting gene expression
or endocrine pathways

A ‘web of arguments’ for an environmental contribution

1 Hypospadias, whether associated or not with micro-

penis, has been reported in numerous wildlife species

when the habitat is particularly contaminated by pesti-

cides (Hayes et al., 2002).

2 Male rat pups exposed to DES during gestation

(at concentrations similar to those measured in first-tri-

mester human foetal tissues) developed hypospadias.

Hypospadias in male rodents was found after maternal

treatment with vinclozolin (dose–response effect) (Gray

et al., 2001), and similar findings were recorded for pre-

natal exposure to polychlorinated biphenyls (PCB),

phthalates and dioxin (Baskin et al., 2001; Gray et al.,

2001; Fisher et al., 2003).

3 Over the last 30 years, male reproductive health has

been marked by a deterioration in sperm count and an

increasing number of undescended testes, testicular can-

cers and hypospadias (Czeizel et al., 1986; Paulozzi et al.,

1997; Canning, 1999). This phenomenon has raised some

concerns regarding environmental chemicals, such as

industrial and agricultural by-products.

4 In a recent epidemiologic study, we observed a 4%

incidence of hypospadias in neonates whose mothers were

treated with DES during pregnancy. This incidence was
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8.4% in the neonates of the second generation and sug-

gests a transgenerational effect [Sultan C., personal data;

(Klip et al., 2002)].

Endocrine environmental disruptors

Multiple substances found in the environment can poten-

tially interfere with male genital development because of

their similarity to hormones. Humans are in constant

contact with these substances (Brock et al., 1998; Gray

et al., 2001) as they are found in water, soil, food and air

(Restrepo et al., 1990a,b). Although there is a long list of

suspicious substances contained in herbicides, fungicides,

insecticides, and industrial by-products and end-products

(plasticizers, cosmetics, paints, etc), none of them has

been clearly identified as causing the hypospadiac penis

(Restrepo et al., 1990a,b; Brock et al., 1998; Zumbado

et al., 2005). These pollutants enter the body by ingestion,

inhalation, or absorption or they may be conveyed

through the placenta. Individual exposure varies with

diet, lifestyle and workplace. As most of these chemicals

use the same pathways as natural hormones, they have

been named xenooestrogens and ⁄ or environmental dis-

rupting chemicals (EDC). The molecular actions of xeno-

oestrogens are listed in Table 2. Xenooestrogens have

both oestrogenic and anti-androgenic actions and com-

pete with natural androgens for the ligand-binding

domain (LBD) of the AR (Paris et al., 2002). The confor-

mation of the LBD is therefore changed and the nuclear

transfer of AR is altered, as are the transcriptional co-acti-

vators and the expression of the androgen-specific gene.

To date, three epidemiologic studies have reported the

possible relationship between exposure to pesticides and

hypospadias. Kristensen found a moderate increase in the

odds ratio (OR) for hypospadias in individuals exposed

to farm chemicals (OR = 1.5%). Weidner observed that

maternal farming or gardening led to a low risk of hypo-

spadias (OR = 1.27), and Longnecker found no signifi-

cant risk of hypospadias (OR = 1.2) when mothers were

exposed to DTT. The critical level of exposure to EDCs

was not assessed in any of these epidemiologic studies

(Kristensen et al., 1997; Weidner et al., 1999; Longnecker

et al., 2002). Residence in the vicinity of hazardous waste-

disposal sites has been associated with a high incidence of

hypospadias (Dolk et al., 1998). Similarly, an increased

rate of hypospadias was reported in boys from parents

exposed to dioxin after the Seveso industrial accident

(Mastroiacovo et al., 1988). A vegetarian diet in pregnant

women is reported to carry a significant risk of hypo-

spadias (Fig. 1, OR = 4.99) (North & Golding, 2000).

Multifactorial aetiology involving the interaction
of environmental factors and genetic
polymorphisms

Three risk factors of hypospadias illustrate the multi-

factorial aspect of this malformation

Low birth weight, small head circumference and birth

length are also associated with increased risk of hypo-

spadias. Studies that controlled for length of gestation

found that the association remained, indicating that at least

in part it may be related to growth retardation [·10 accord-

ing some authors (Hussain et al., 2002)]. This intra-uterine

growth retardation may be related to a dysfunction of

the placenta, which is at the crossroads of maternal and

foetal genetics and environmental influences (Brouwers

et al., 2007).

A number of studies have shown an association

between hypospadias and a prolonged time to pregnancy

(mother older than 35 years: 50% increase in the risk of

hypospadias) or subfertility (Sweet et al., 1974; Czeizel,

1985) (Czeizel & Toth, 1990). Several authors have even

hypothesized a central role of subfertility in the aetiology

of this defect (Wennerholm et al., 2000). Low sperm

motility was noted in fathers of boys with hypospadias in

one study (Fritz & Czeizel, 1996) but not in two others

(Sweet et al., 1974). However, an association with assisted

reproductive technology has been found, particularly with

intracytoplasmic sperm injection (ICSI) (Wennerholm

et al., 2000; Lie et al., 2005). The subfertility of parents

and an alteration in the spermogram, both of which are

associated with hypospadias, may themselves be depen-

dent on genetic, endocrine and environmental factors

(Wennerholm et al., 2000; Ericson & Kallen, 2001).

Interactions between genetics and environment

Beleza-Meireles et al. (2006) reported that polymorphisms

of ERb2 may increase susceptibility to xenooestrogens

and increase the risk of hypospadias (10%). Similarly,

Baskin (Liu et al., 2005, 2007; Wang et al., 2007) demon-

strated that the expression of ATF3 (a CREB family

Table 2 Molecular actions of xenooestrogens

Binding of ERa ⁄ ERb nuclear receptor and transcription of activation

(or repression) of specific gene expression

Non-genomic actions mediated by a plasma membrane oestrogen

receptor

Induction of more potent oestrogenic metabolites

Reduced binding of endogenous oestrogens to sex hormone-binding

globulin

Inhibition of transcription of androgen-dependent genes

Potential additive effects

Oncogenic effects

According to Sultan et al. (2007) Environment and hypospadias.

Dialogues in Pediatric Urology 28, 8–9.
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transcription factor) was oestrogen-dependent in human

and animal models. Thus, susceptibility to environmental

factors might depend not only on the endocrine disruptor

itself, but also on individual sensitivity, which is modu-

lated by genetic background, including polymorphisms.

Isolated hypospadias vs. syndromic hypospadias

Autosomal dominant forms of syndromic hypospadias are

caused by mutations in genes involved in early genital

development. Hypospadias may also be associated with

various chromosomal abnormalities, including gonosomal

mosaicisms (exposed in previous sections) and autosomal

deletions.

Almost 200 syndromes have been associated with hypo-

spadias. For example, Smith-Lemli-Opitz (SLO) syn-

drome, which includes mental retardation, microcephaly,

facial dysmorphism, 2–3 syndactily of the toes and, in

males, hypospadias and a hypoplastic scrotum, is caused

by a defect in steroid biosynthesis. SLO syndrome is

because of recessive mutations of the DHCR7 gene coding

for 7-dehydrocholesterol reductase, localized on chromo-

some 11q13 (Ryan et al., 1998; Mnayer et al., 2006).

Wilms’ tumour, aniridia, genital abnormalities, and

growth and mental retardation (WAGR) syndrome is

considered to be a contiguous gene syndrome because of

a deletion involving band 11p13 (Kaltenis et al., 2004).

The WT1 gene, which maps within the deleted WAGR

region and encodes a zinc-finger transcription factor

involved in the development of the kidneys and gonads,

may be responsible for the genital abnormalities observed

in this syndrome (Bickmore et al., 1989; van Heyningen

et al., 1990). WT1 point mutations may also result in

urogenital abnormalities, depending on the nature and

location of the mutation: Denys-Drash syndrome (mesan-

gial sclerosis, gonadal dysgenesis and high risk of Wilms’

tumours) (Pelletier et al., 1991a,b; Ogawa et al., 1993),

Frasier syndrome (focal glomerular sclerosis, gonadal

dysgenesis (Klamt et al., 1998), or severe hypospadias and

Wilms’ tumour (Kohler et al., 1999).

Other autosomal abnormalities have also been reported

with syndromic hypospadias. For example, deletion syn-

dromes with hypospadias have been observed on chromo-

somes 3q29 (Willatt et al., 2005), 4p (Balci et al., 2006),

9p23 (Ogata et al., 1997), 9q34.3 (Iwakoshi et al., 2004),

10q26 (Ogata et al., 2000) and 13q32-q34 (Bartsch et al.,

1996).

Hypospadias of unknown origin

The proportion of hypospadias cases for which aetiology

is detected varies according to the authors but it remains

low, especially for less severe cases. For example, McPhaul

(Allera et al., 1995) identified an AR mutation in only

one case of nine isolated hypospadias, and Marcelli in

one of 40 cases (Sutherland et al., 1996). In a series of 90

patients, Wang et al. (2004) described a mutation of AR

in no more than two cases, a mutation of 5aR2 in two

cases and three mutations of WT1. The proportion of

hypospadias with an identified endocrine disorder, even if

significant, remains low: Cassorla (Rey et al., 2005) iden-

tified hormonal abnormalities in 13 cases of 61 isolated

hypospadias (20% of patients). The occurrence of hypo-

spadias thus remains unexplained in most cases. A multi-

factorial explanation and the implication of unknown

genes or unidentified environmental factors remain

possible.

Conclusion

Is hypospadias a genetic disease?

Yes, especially in familial and syndromic forms, and

hypospadias due to abnormal genital development

(phallus or testicular dysgenesis) or associated with a

defect of the androgens pathway (20% of the cases).

Is hypospadias an environmental disease?

Parents’ occupation / farmers

Parents’ occupation / farmers

Parent’s exposed / dioxins

Parent’s / waste landfill

Vegetarian mothers

1 2 3

x 10

4 5 6 7
OR

Contaminated mother / DTT

Figure 1 Relative risk of hypospadias accord-

ing to EDC exposure during maternal gesta-

tion and parents’ occupation, environmental

contamination and maternal diet [according

to Sultan et al. (2007) Genetics of hypo-

spadias. Dialogues in Pediatric Urology 28,

8–9].
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Probably yes, especially when the hormonal work-up

is normal or the parents are known to live or work

in an at-risk environment. But a definitive demon-

stration remains to be made!

Is hypospadias still an unexplained malformation?

Yes, in most cases, especially the less severe ones…
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