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GENERAL INTRODUCTION 

  



 

 

The Main Problem 

The nearly unmitigated growth of cities has placed ever-greater pressure on urban water 

systems in terms of climate change, environmental pollution, resource limitations, and 

infrastructure ageing (Ferguson et al., 2013). Currently, urban drainage systems are 

presenting alarming rates of aging and deterioration in both developed and developing 

countries (Osman, 2012). The cities have faced several problems, because of the increasing 

of the deterioration probability of the sewer networks (Micevski et al., 2012; Liu & Kleiner, 

2013; Osman, 2012): flooding on the streets, suffering in the buildings, traffic disturbances, 

environmental impacts, damage in other infrastructures and other problems that affect the 

users directly (Saegrov, 2006).  

Literature Review 

According to the literature, the authors have contributed to different fields of sewer asset 

management with the purpose to build proactive management. In the following, it is sum up 

the main contributions:  

(i) Building new technologies and methods to collect GIS and inspection information in 

which experts on electronic devices and software developers are working with the 

purpose of improving the quality of collected data by inspection technologies (Cherqui 

et al., 2008; Schilperoort & Clemens, 2009; Feeney et al., 2009; Yang et al., 2011; Hao 

et al., 2012; Plihal et al., 2016; Stanic et al., 2017), developing software to automatize 

the collected inspection information with the assessment protocols (Knolmar & Szabo, 

2003; Sinha & Fieguth, 2006; Duran et al., 2007; Yang & Su, 2008; Sarchar et al., 2009; 

Elamin, 2017), and collecting and integrating environmental, physical, economic and 

social information characteristics to simulate the cities’ dynamics in Geographical 

Information Systems (GIS) tools which could be open and adapted for any professional, 

scientist or student who works in topics related to Infrastructure Asset Management, 

urban developing, civil and environmental engineering, climate change, among others 

(Halfway et al., 2002; Möderl et al., 2009; Steiniger & Hunter, 2012; ESRI, 2012; Mair 

et al., 2012; Sinha et al., 2017).  

(ii) Developing or improving the methodologies for assessing the condition of sewer assets 

whose objective is to evaluate the sewer assets according to the structural and 

operational failures collected by inspection technologies (particularly, CCTV inspection 

technologies) (EAAB, 2001; Thronhill & Wildbore, 2005; Le Gauffre, 2007; EPM, 2010; 
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Chughtai & Zayed, 2011; Ennaouri & Fuamba; 2011; Khazraeializadeh, 2012; Ahmadi 

et al., 2014; Daher, 2015), the factors that could affect the operational or structural 

condition (Koo & Ariaratman, 2006; Le Gauffre, 2007; Islam et al., 2009; Ennaouri & 

Fuamba; 2011; Kandasamy & Prasad, 2017), and the consequences that could happen 

whether the sewer asset is not rehabilitated timely (Stein et al.2004; Stein et al., 2006;  

DWA, 2013; Park & Kim, 2013; Anbari et al., 2017). Some of these methodologies, 

particularly those that only consider the observed structural and operational failures by 

CCTV are already national or local standards (protocols) (EAAB, 2001; EPM, 2010; 

WRC, 2013; NASSCO, 2015; CEN, 2011; Zhao et al., 2001; CERIU, 2004; NZWAA, 

2006). The idea of these assessments is to guide the decision-making to carry out 

rehabilitation activities, and thus, prevailing the level-service of urban drainage and 

other infrastructures in the cities (Thornhill & Wildbore, 2005). 

(iii) Identifying the influential factors over the operational and structural condition by 

application of statistical methods (El-Housni et al., 2017, Torres-Caijao et al., 2017; 

Angarita et al., 2017; López-Kleine et al., 2016; Rokstad & Ugarelli, 2015; Fuchs-

Hanusch et al., 2012; Tscheikner-Gratl et al., 2014; Ugarelli et al., 2013; Salman & 

Salem, 2011; Younis & Knight, 2010; Ana et al., 2009; Chughtai & Zayed, 2008; Tran 

et al., 2006; Baik et al., 2006; Micevski et al., 2002; Davies et al., 2001; Ariaratnam et 

al., 2001), entropy’s concepts (Hernández et al., 2016), Bayesian inferences (Anbari et 

al., 2017), and machine learning tools (Laakso et al., 2018; Khan et al., 2009; Tran et 

al., 2007) to find the factors that cause the most common failures or influence the 

deterioration of the structural condition of sewers. The presented studies have centred 

in those defects related to the structural condition since these also affect the sewer flow 

capacity (operational state): structurally deteriorated pipes with cracks and breaks have 

a rougher inner surface that increases the risk of debris accumulation (Chughtai & 

Zayed, 2008; Tran et al., 2007; Davies et al., 2001). Among the variables that have 

been found as influential factors are included: physical sewer characteristics (size, 

material, slope, length, shape, depth), age, sewer type, surrounding variables (trees 

presence, road traffic, soil type, bedding type, geographical locations), and social 

characteristics (construction time and land use). Furthermore, the criteria to choose the 

most influential factors have been the significance (p-value) of different statistical tests, 

redundancy with the sewer condition, and the accuracy’s performance of the 

deterioration models.  



10 

 

(iv) Developing deterioration or predictive models to forecast the condition or probability in 

future time (Tran et al., 2008; Le Gat, 2008; Scheidegger et al., 2011; Egger et al., 2013; 

Kleidorfer et al., 2013; Vitorino et al., 2014; Caradot et al., 2015) or predicting the current 

condition of uninspected pipes (Mashford et al., 2010; Ennaouri & Fuamba, 2011; 

Rockstad & Ugarelli, 2015; Hernández et al., 2018; Hernández et al., 2019a; Hernández 

et al., 2019b; Stanic et al., 2017).  

(v) Designing proactive management proposals (PMPs) to support  the making-decisions 

of this infrastructure is based on stakeholders’ and operators’ expertise (Van Riel et al., 

2016a, Van Riel et al., 2016b), deterioration models’ outputs (Ahmadi et al., 2014; 

Ahmadi et al., 2015; Khan & Tee, 2016), and multi-objective optimisation models 

focused on support the operational conditions developed by machine learning 

techniques (Diogo et al., 2017; Fontecha et al., 2016), and developing proactive 

management of multiple infrastructures (Tscheikner-Gratl et al., 2016; Mikovits et al., 

2017; Marzouk & Osama, 2017; Kielhauser & Adey, 2017). 

Justification 

Even though the above contributions, some gaps are still open, such as: 

(i) The need of the development of technologies will be economically accessible to the 

utilities for inspection activities and the automation the inspections information with the 

assessment protocols (Cherqui et al., 2008; Schilperoort  & Clemens, 2009; Feeney et 

al., 2009; Yang et al., 2011; Hao et al., 2012; Plihal et al., 2016; Stanic et al., 2017; 

Knolmar & Szabo, 2003; Sinha & Fieguth, 2006; Duran et al., 2007; Yang & Su, 2008; 

Sarchar et al., 2009; Elamin, 2017). 

(ii) The current protocols have shortcomings since studies of factors that could affect the 

operational and structural condition of assets are still developing (Angarita et al., 2017; 

El-Hosni et al., 2017), the integration of methodologies as decision-making tools for 

choosing the proper rehabilitation activity has not been included in these protocols 

(Stein et al., 2004; Stein et al., 2006;  DWA, 2013; Anbari et al., 2017) and the generated 

uncertainty by inspection technologies and the way of grouping the defects and their 

severities in grades which, in the end, is the output of these protocols (Dirksen et al., 

2013; Caradot et al., 2017). It is essential to clarify that the protocols are still in 

developing until the time that the research gaps close, and these protocols become part 

of a local, national or international management program with enough information to 

make decisions effectively and timely (Ana & Bauwens, 2007).  
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(iii) Most of the cases, some physical characteristics of pipes, environmental and 

operational characteristics, where the pipes are embedded, have been identified such 

as factors that could influence over the structural and operational conditions of the 

sewer assets by statistical models and analysis (Chughtai & Zayed, 2011; Tran et al., 

2007; Davies et al., 2001). However, depending on the case study, the number of 

variables could differ: the dynamism of infrastructure assets depends on the 

characteristics of each urban area. Thus, some factors could be influential in some cities 

and others not (Chornet, 1994). Each urban area is different because of the integration 

of environmental (topographic, climatic, soil type conditions, bending soil types, 

surrounding infrastructure, external loads that could support the sewers), social (land 

uses, population density), and system operation logistics. Furthermore, the expert 

knowledge, the available information (Angarita et al., 2017; Kabir et al., 2016), and the 

ease of collection (costs and time) (Angkasuwansiri & Sinha, 2013) are some of the 

strategies for choosing the variables that could influence over the sewer condition. For 

example, Angkasuwansiri & Sinha (2013) determined that almost 60 variables could 

affect the performance of the pipes, other studies included between 5 and 16 variables 

that contribute directly to the deterioration of the sewerage network (Ariaratnam et al., 

2001; Baah et al., 2015; Kabir et al., 2016; Laakso et al., 2018; Rokstad & Ugarelli, 

2015). Alternatively, other studies use only one variable to explain structural damage, 

such as Xu et al. (2018). They developed a statistical model to represent the relationship 

between sewer pipes’ structural condition and pipes age. Moreover, Laakso et al. (2018) 

state that in some studies are not deeply explained the selection criteria, leaving outside 

the uncertainties in the methodological procedure to select the appropriate variables. 

Therefore, it is necessary to develop rational methods or methodologies to identify the 

influential factors over the deterioration of the structural condition, the evaluation of their 

inclusion for support tools of decision makings in sewer asset management, and the 

evaluation of their addition for specific management objectives. 

The deterioration models are not precise enough in their prediction because of the low 

available or erroneous information that feeds them (Scheidegger & Maurer, 2012; Chughtai 

& Zayed, 2011). Moreover, most of the variables involved in the models are chosen from 

other experiences or by criteria of intuition of experts (Van Riel et al., 2014a; Van Riel et al., 

2016a; López-Kleine et al., 2016). As well, training the deterioration models with the 

structural condition could generate uncertainty: since a structural condition represents 

several failures whose degradation process could be different and the model could not catch 
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the degradation behaviour (Dirksen et al., 2013; Caradot et al., 2013; Van Riel et al., 2014b). 

And finally, most of the proactive management proposals (PMPs), developed to address 

efficiently and rationally the management activities, are based on the deterioration model 

outputs, the identification of influential deterioration factors, and failures consequences 

(Frone & Frone, 2012; Ahmadi et al., 2014, 2015; Khan & Tee, 2016). Due to the lack in the 

identification of the influential factors which could reduce the deterioration models' 

performance, the effectiveness of the PMPS could decrease.  

According to the above gaps, the identification of factors that affect the condition of sewer 

could be the key, and this selection should link with the management objectives and the 

ease costs of their collection.  

On the other hand, the prediction performance used to carried out by accuracy tools 

(Cohen’s Kappa coefficient, ROC curve, true positive rates, accuracy, among others), 

leaving aside the main objective of development of these deterioration models: guiding 

strategically the decision making to fulfil with the management objectives of this 

infrastructure.  

Although the identification of deterioration factors was left aside in the last decade for 

prioritizing the exploration of deterioration models and designing PMPs, this topic once again 

becomes relevant since the performance of deterioration models and PMPs depend on the 

input data (factors and inspection assessments).  Thus, research on the suitable tools to 

identify the key factors that influence the deterioration of sewer assets is still opening, the 

outcomes in this topic could help to understand the deterioration behaviour of sewer pipes 

and address the deterioration modelling to have a high prediction performance. As 

mentioned by Chornet (1994), the dynamism of infrastructure assets depends on the 

characteristics of each urban area, and thus some factors could be influential in some cities 

and others not.  

Research Questions 

According to the above, research questions appear around this topic, such as:  

(i) Could the factors identified as influential over the sewer condition and deterioration 

model vary according to own distinct characteristics of cities?; 

(ii) Could the factors identified as influential over the sewer condition and deterioration 

model vary according to the management objectives such as investment plans (i.e. 

prediction of the number of assets to rehabilitate per year), prioritisation plans for assets 
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rehabilitation (i.e. the identification of which assets need a replacement immediately), 

or inspection plans?;  

(iii) Is it possible to hierarchize the key factors to develop deterioration models for 

minimising collection costs and the error prediction?;  

(iv) and Is it possible to infer information from other factors (not identified) that could affect 

the structural condition of the sewers? 

Therefore, the importance of proposing a methodology lies in identifying the key factors to 

build proper deterioration models, developing appropriate deterioration models with the 

enough and available information and developing precise deterioration models looking for 

fulfilling the management objectives that utilities have to face to apply a proactive sewer 

asset management.  

Main objective 

The purpose of this research is to develop a methodology for determining which factors 

are enough and necessary to achieve specific objectives in sewer asset management, 

considering the quantity and quality of the available information. 

Structure of the manuscript 

The following manuscript consists of four parts: Part A depicts the theoretical framework of 

the main concepts, tests, methods, and metrics used as the basis for developing the 

proposed methodology; Part B concerns the description of materials (case studies and 

computer-based tools) and the scientific arguments of the choosing methods for developing 

the proposed methodology; Part C is the most essential part of this manuscript because it 

describes the developed sewer asset management tools and the proposed methodology, 

objective of this doctoral thesis; and Part D illustrates the results of the proposed sewer 

asset management tools and the application of the proposed methodology in two case 

studies. 

Main contributions 

During my doctoral studies, I explored and developed sewer asset management tools which 

are described in Part C. These tools are classified in antecedent tools and the proposed 

methodology in this doctoral thesis. 

According to the antecedent tools, I developed: 
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1. A Bayesian Network-based methodology for selecting a cost-effective sewer asset 

management model as a feature selection tool; 

2. Performance metrics linked with management objectives in sewer asset management; 

3. An optimisation methodology for machine learning-based models to find the optimal 

hyperparameters for achieving management objectives; and 

4. Building deterioration models based on different statistical and machine learning 

methods on different case studies, evaluating the predictions from different 

perspectives. 

Thanks to the results of the above, I developed the proposed methodology for this doctoral 

thesis. This methodology consists of two parts: 

1. Bayesian Network-based methodology for selection feature hierarchically 

2. Methodology for the selection of the deterioration model for achieving a management 

objective 

From the above contributions, I already published some articles on International Journals 

from the results of the developed sewer asset management tools. These articles are: 

• Hernández N., Caradot N., Sonnerberg H., Rouault P and Torres A (2020). Support Vector 

Machines used for the prediction of the structural conditions of pipes in Bogota’s sewer system. 

Accepted on Ingeniería y Universidad Journal in March 2020.  

• Hernández, N., Caradot, N., Sonnenberg, H., Rouault, P., & Torres, A. (2020). Optimizing SVM 

models as predicting tools for sewer pipes conditions in the two main cities in Colombia for 

different sewer asset management purposes. Structure and Infrastructure Engineering, 1-14.  

• Tscheikner-Gratl, F., Caradot, N., Cherqui, F., Leitão, J. P., Ahmadi, M., Langeveld, J. G., ... & 

Lepot, M. (2019). Sewer asset management–state of the art and research needs. Urban Water 

Journal, 16(9), 662-675.  

• Hernández, N., Caradot, N., Sonnenberg, H., Rouault, P., & Torres, A. (2018). Support tools to 

predict the critical structural condition of uninspected pipes for case studies of Germany and 

Colombia. Water Practice & Technology, 13(4), 794-802.  

• Caradot, N., Riechel, M., Fesneau, M., Hernández, N., Torres, A., Sonnenberg, H., ... & Rouault, 

P. (2018). Practical benchmarking of statistical and machine learning models for predicting the 

condition of sewer pipes in Berlin, Germany. Journal of Hydroinformatics, 20(5), 1131-1147. 

For more information about my contributions during my doctoral studies, see my curriculum 

vitae in the appendix of this manuscript.   
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Part A of this manuscript describes the theoretical framework of the concepts, definitions, 

and description of the tests, methods, and techniques mentioned along with the doctoral 

document. The idea is to give a theoretical background of these tools to understand the 

procedures of the proposed methodology.  

This part consists of four chapters. Chapter 1 illustrates the concept of sewer asset 

management (SAM), the general context about sewerage, the stages to achieve a SAM 

based on the ones of infrastructure asset management (IAM), the origin of the leading 

research topics in SAM, and a brief state-of-art of the worldwide contributions on each SAM 

research topic.  

Chapter 2 depicts the theoretical framework of the used statistical tools, such as 

Homogeneity and normality tests (Shapiro-Wilk and Bartlett tests), tests of significant 

difference between samples (Wilcoxon-signed rank test), boxplot analysis, the cross-

validation method, Bayesian Networks, binary, ordinal and multinomial logistic regressions, 

and linear discriminant analysis. Statistical tools were useful to develop tools for feature 

selection, deterioration models, and analysis of some results, and from their application, the 

proposed methodology could be developed (Part C). 

Chapter 3 holds machine learning tools as support vector machines (SVM) and random 

forest (RF), and differential evolution algorithm (DE). Machine learning tools were useful to 

develop deterioration models and an optimisation methodology which is described further in 

Part C of this manuscript.  

And finally, chapter 4 describes the used performance measures to validate the developed 

tools. Among these measures are the Cohen’s Kappa coefficient, ROC space, Performance 

curve, and deviation analysis. Thanks to their application in the prediction evaluation of 

deterioration models, these were the basis for proposing the performance metrics depicted 

in chapter 8 of Part C. 

Further, subchapter 6.1. (Part B - Materials and Methods) describes the scientific pertinence 

of choosing the depicted methods and techniques. 

   



25 

 

CHAPTER 1: SEWER ASSET MANAGEMENT 

Urban drainage systems are one of the most critical urban infrastructures because of their 

adverse consequences and effects of inadequate performance. Failure events can 

sometimes lead to disrupting part of a city's functioning. These systems may operate at a 

lower level than desirable for extended periods before appearing evidence of existing 

problems. Structural or hydraulic failures may be unknown for a long time until service 

disruptions, road collapse, or basement flooding emerge (Anbari et al., 2017; Khan et al., 

2009). 

Urban drainage infrastructures, including collection pipes and treatment facilities, represent 

an enormous investment in physical assets. In the last 30 years, most municipalities have 

invested in sewerage expansion to meet growth and treatment plant upgrades; they still 

allocated a relatively small proportion of the budget to sewer rehabilitation (AWWA, 2012). 

According to the distribution of infrastructure investment by sector during the 2003-2012 

period in Latin-America, energy, and transportation infrastructures are the ones with most 

investment capital, then telecommunication and last water and sewer systems (less than 

0.3% Gross Domestic Product - GDP) (Lardé & Sánchez, 2014). As a result, most cities face 

the problem of ageing infrastructure in need of extensive and ongoing repair, rehabilitation, 

or renewal (Caradot et al., 2017b). 

The rehabilitation of existing sanitary sewer networks is essential in many circumstances to 

ensure acceptable operating conditions and to safeguard public health and natural 

resources. Rehabilitation is frequently an expensive task requiring a significant investment 

of public funds (Diogo et al., 2017). To invest these funds rationally, often operators are 

under pressure to minimize their maintenance costs while keeping the risk of failures at an 

acceptable level (Stanic et al., 2017).   

Traditionally it has been economically feasible to apply reactive management strategies, 

repairing when failures occur; however, this strategy becomes less viable as the systems 

age and the funding gap increases (Rokstad & Ugarelli, 2015): In the USA, the American 

Society of Civil Engineers (ASCE) estimated the required capital investment to maintain and 

upgrade water infrastructure at $91 billion, however, only $36 billion of this $91 billion 

needed was funded, leaving a capital funding gap of nearly $55 billion (ASCE, 2011; Caradot 

et al., 2017b); In Germany, over the last years, annual investment for sewer rehabilitation 

was about 4 billion € whereas the capital need is estimated to more than 7 billion €, indicating 
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a capital deficit of a least 3 billion € (Branchenbild, 2011; IPK,2014); and The new Latin-

American governments recognize that investment is too low because it is estimated that is 

needed around $60 and $70 billion of funds to achieve the need levels of water and 

wastewater investment, but the actual inversion is about $18 billion (CG/LA Infrastructure, 

2006). In consequence, the rehabilitation of sewerage systems has been a civil engineering 

area of particular importance in relatively recent times and currently (see, for instance, EPA, 

1991; WRC & WAA, 1986; WRC & WAA, 2004; Werey et al., 2006; Almeida & Cardoso, 

2010; ASCE, 2011, Black & Veatch 2013), given that many networks are in an inefficient or 

degraded state and that it is imperative to manage the public funds and the wastewater 

infrastructures assets rationally (Diogo et al., 2017).  

Recalling the stages of Infrastructure Asset Management (IAM) is essential for achieving 

Sewer Asset Management (SAM) (Ana & Bauwens, 2007). These stages allow building 

strategic operation and maintenance (O&M) programs with enough information for rational 

decision-making considering diverse actors such as budget constraints, environmental 

regulations and public water benefits (Anbari et al., 2017; Cardoso et al., 2012; Younis & 

Knight, 2012; Baik et al., 2006). From the stages of IAM proposed by Lemer (1999), the 

research topics in SAM have born to achieve strategic operation and maintenance 

programs. Figure A1 shows a review of the leading research topics in SAM linked to the 

stages of IAM. 

According to Figure A.1., the research topics in SAM born from the need to develop proactive 

management for the sewer systems following the steps of IAM. Figure A.1. shows three 

boxes related to the first four stages of IAM.  

The first box is related to the collection of Geographical Information Systems and inspected 

information which includes new inspection technologies, development of standards for 

assessing the condition of sewer assets and identifying the influential factors over the 

deterioration of structural, and operational conditions of the sewer assets. By the first 

research topic, the researchers have developed different technologies to inspect the sewer 

assets have been developed based on Visual (Koo & Ariaratnam, 2006; Allouche & Freure, 

2002), electromagnetic (Hao et al., 2012; Mukhopadhyay & Srivastava, 2000; Saha et al., 

2010; Khodayari-Rostamabad et al., 2009; Markar & Changon, 1999; Roubal, 1999; Kuras 

et al., 2007), acoustic (Feeney et al., 2009; Plihal et al., 2016) and thermic techniques 

(Schilperoort & Clemens, 2009). The most used has been the visual techniques such as 

Closed-Circuit Television (CCTV) in which is focused the industry standards for sewer 
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system inspection and structural performance evaluation (Schilperoort et al. 2014). 

Furthermore, information about the characteristics of the terrain that could be recorded by 

Geographical Information Systems (GIS) (Steiniger & Hunter, 2012; ESRI, 2012). From this 

computational tool, it is possible to integrate spatial infrastructure data with inventory data 

to query, explore, visualise, and analyse the infrastructure data in its spatial context (Halfway 

et al., 2002). 

Figure A.1. Conceptual map of origin the main research topics in Sewer Asset Management (SAM) 
based on the stages of Infrastructure Asset Management (IAM) proposed by Lemer, 1999. 

The second research topic, in the first box, is related to the development of standards for 

assessing the condition of sewer assets. UK was a pioneer in proactive management (1978) 

with the application of the CCTV technologies to inspect sewer pipes. The Water Research 

Centre (WRC) developed a codification to score the structural and operational state of sewer 

pipes, becoming a technical standard in this country (Thornhill & Wildbore, 2005; Daher, 
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2015). The manual of sewer condition classification (MSSC) has had five versions with the 

last update in 2013. Based on this manual, cities of other countries have developed own 

standards such as PACP in the USA (NASSCO, 2004), Manuel de standardization des 

Observations, in Canada (CERIU, 2004), EN13508 in European Union (CEN, 2003; Le 

Gauffre et al., 2007), Australian Conduit Evaluation Manual (Board, 1991), among others. 

Moreover, different researchers have developed methodologies based on priorities and 

substance-based methodologies. The methodologies based on priorities consider 

operational and environmental factors to assess the structural condition of sewer assets (Le 

Gauffre 2004, 2007; Chughtai & Zayed, 2011; Ennauri & Fuamba, 2011 and Daher, 2015). 

The substance-based methodologies consist of classifying the sewer assets considering in 

the quantity and rehabilitation type (see some examples in DWA, 2013 and Stein et al., 

2004, 2006). 

And the third research topic related to the first stage of the IAM concerns the identification 

of the influential factors over the deterioration of the sewer assets. Factors such as physical 

characteristics of the sewer assets, environmental and surrounding infrastructure to the 

sewer assets, urban and operational features of the cities, type of effluent, age of the sewer 

assets, climate change, land use’s changes, and demographic growth have been reported 

as influential over the operational and structural conditions (Davis et al., 2001a; Davis et al., 

2001b; Ariaratnam et al., 2001; McDonald & Zhao, 2001, Moore et al., 1987, Marzouk & 

Osama, 2017, Baur & Herz, 2002; Saegrov & Konig, 2005; Salem & Salam, 2012; Post et 

al.,2016; Anbari et al., 2017; Torres et al., 2017; Kleidorfer et al., 2013). Statistics methods, 

entropy’s concepts, and Bayesian inferences have been used to find these influential 

factors. Davies et al. (2001b) applied logistic regression utilizing a stepwise selection 

method to identify the crucial parameters that affect the deterioration of rigid pipes: the 

analysis was related to those pipes in critical conditions. Likewise, Salem & Salman (2011) 

developed deterioration models from the estimation of the probability of failure values for 

sewer sections based on ordinal regressions, multinomial logistic regression, and binary 

logistic regression methods. Other experiences explored tools such as PCA and k-means 

clusters to identify the relationship between the intrusive trees and the observed sewer 

failures (Torres et al., 2017) and find connections between physical pipes characteristics 

and the structural conditions of the sewer pipes (López-Kleine et al.,2016; Angarita et al., 

2017). Joint entropy, average mutual information (AMI), and redundancy were the entropy’s 

concept explored by Hernández et al. (2016) to find relationships between characteristics of 

sewer pipes and their structural condition assessing the quantity of shared information. 
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Recently, Bayesian Networks were used by Anbari et al. (2017) to develop a risk 

assessment model for prioritizing sewer pipes to inspect: they calculated the consequences 

of failure values from a weighted average method guided by experts’ opinion and computing 

the failure probability. 

The fourth research topic in SAM, linked to the second stage of IAM (second box), is related 

to the development of deterioration models. Deterioration modelling is a powerful tool to 

support utilities in planning efficient sewer rehabilitation strategies since from this tool it is 

possible to (i) predict the current sewer condition of uninspected sewers and (ii) forecast the 

evolution of the sewer condition. Researchers around the world have developed methods 

and methodologies based on different approaches (Hernández et al., 2017a; Santos et al., 

2017; Ana & Bauwens, 2010; Mashford et al., 2010; Le Gat, 2008; Saegrov & Konig, 2005). 

According to Caradot et al. (2013), these modelling approaches are generally classified into 

three groups (deterministic, statistical, and machine learning models) regarding their 

mathematical base. Deterministic models describe the deterioration process by evaluating 

the physical ageing mechanism. Linear and exponential regression models are used to 

explain the deterioration of sewer pipes (i.e. Saegrov, 2006; Alegre & Céu Almeida, 2007). 

The basis of statistical models is the data concerning the evolution of the sewer condition 

and pipe deterioration. Survival functions and Markov chains are methods used to quantify 

in probability values the ageing and the deterioration process to simulate the transition of 

the deterioration process: i.e. Gompitz model (Le Gat, 2008; Rokstad & Ugarelli 2015; 

Caradot et al., 2017b) which mix survival functions (Gompertz function) and non-

homogeneous Markov chains, and others which consider one of both methods (Baik et al., 

2006; Tran et al. 2008; Scheidegger et al., 2011; Duschesne et al., 2013; Egger et al., 2013) 

or other distribution functions such as mutinormal distribution (Del Giudice et al., 2016). 

Other methods such as logistic regression and discriminant analysis are used to find the 

relationship between influential factors and the sewer condition status in probabilistic values 

(Wright et al., 2006; Tran, 2007; Salman, 2010; Ahmadi et al., 2014; Tscheikner-Gratl et al., 

2016; Fuchs-Hanusch et al., 2012; Hernández et al., 2017). Machine learning models could 

identify the complex and non-linear relationship between deterioration factors and sewer 

condition states by “learning” the deterioration behaviour of pipes from inspection data. 

Therefore, the knowledge of the sample data (CCTV data) is generalized to predict the 

evolution of the condition. Some machine learning methods used as deterioration models 

are Decision Trees (Santos et al., 2017), Random Forest (Harvey & McBean, 2014; Vittorino 

et al., 2014), Support Vector Machines (Mashford et al.., 2010; Hernández et al., 2017a,b), 
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and Neuronal Networks (Tran et al. 2007, Khan et al. 2010; Jiang et al., 2016), among 

others. 

The last research topic in SAM, linked to the third stage of IAM, is related to the proactive 

management proposals (PMPs). From the deterioration model outputs, it is possible to build 

strategic plans for rehabilitation purposes. Model outputs, in particular, may provide crucial 

information to operators and municipalities for the scheduling of inspection programs (i.e. 

the detection of sewers in critical condition) and the planning of rehabilitation budgets (i.e. 

the comparison of different sewer rehabilitation scenarios and the evaluation of necessary 

investment rates) (Caradot et al., 2017b). In practice, the strategies of proactive 

management used for Decision-Making have based on the companies or municipalities 

employees experience: their intuition and knowledge of the system play an essential role in 

decision-making (Van Riel et al., 2016a; Van Riel et al., 2016b). However, considering all 

the management tasks in a limited time is not possible (López-Santana et al., 2016): proper 

maintenance planning defines the set of tasks, time intervals, and resource consumption for 

each maintenance series (Duffuaa, 2000). Considering that the deterioration models are still 

in developing (the optimisation, adaptation, and lack of information is still the Achilles heel 

for the development of these models), many researchers have developed PMPs for 

particular case studies based on the integration of limited information available of CCTV 

data and influential factors, deterioration models (taking into account their uncertainty), 

budget restrictions, and rehabilitation activities. For instance, Ahmadi et al. (2014, 2015) 

propose a systematic approach using a deterioration model to predict the structural condition 

of sewers to improve the efficiency of sewer inspection programs. The PMP consists of 

choosing only a portion of pipes predicted with structural failures (10% of pipes with a high 

probability of structural failure by a logistic regression model) and a random selection of 

uninspected sewer pipes to build the annual inspection plan considering the budget 

available for that activity. The advantages of this PMP are that it takes advantage of the 

prediction of the logistic regression model and feeds the CCTV database to recalibrate the 

deterioration model for the next annual inspection plan. Another experience, Khan et al. 

(2016) used the computational optimisation algorithm Subset Simulations (SS) to develop a 

risk-cost optimisation of flexible underground pipeline networks from a time-dependent 

reliability analysis. This optimisation algorithm is based on the integration of artificial 

probability density functions (PDF), Markov chains, and Monte-Carlo simulations which 

simulate the degradation process of pipe defects caused by corrosion. Then, the 

minimization of life-cycle cost (LCC) function gives information of the optimal intervention 
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year, and the last, a criterion for pipe renewal is based on identifying the degree of impact 

of an underground sewer failure considering six influential factors: location, embedment soil, 

buried depth, pipe size, functionality, and seismic zone.  

Furthermore, some researchers have developed PMPs considering a group of different 

infrastructure types (such as road, water, and sewer systems) as one element for 

management tasks (Kelly et al., 2013; Makropoulos et al., 2008; Tscheikner-Gratl et al., 

2016; Mikovits et al., 2017; Willuweit & O’Sullivan, 2013; Marzouk & Osama, 2017). These 

PMPs are in developing, identifying areas where rehabilitation is technically necessary but 

also economically recommendable. Criteria such as structural resiliency, the vulnerability of 

the network, capital value, infrastructure components, rehabilitation techniques, 

rehabilitation costs, and costs due to the loss in the level of service play a vital role in 

decision-making for cities’ rehabilitation plans (Tscheikner-Gratl et al., 2016). Examples of 

this research approach are the works of Marzouk & Osama (2017) and Tscheikner-Gratl et 

al. (2016).   
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CHAPTER 2: STATISTICAL TOOLS 

This chapter contains the used statistical tools for developing the proposed methodology. 

Bayesian Networks and statistical tests were useful to build feature selection tools that 

support the proposed methodology. While, Linear Discriminant Analysis, Binomial, 

Multinomial and Ordinal logistic regressions helped develop deterioration models. 

2.1. STATISTICAL TESTS 

2.1.1. SHAPIRO-WILK TEST  

Shapiro-Wilk test is a test for determining normality in the data. This test detects the 

departures from normality due to either skewness or kurtosis, or both (Razali & Wah, 2011). 

As the null-hypothesis of this test is that the data is normally distributed, if the p-value is less 

than 0.05, then the null hypothesis is rejected, and there is evidence that the data is not 

normally distributed (Henderson, 2006).  

2.1.2. BARTLETT’S TEST  

Bartlett’s test is a test to determine the homogeneity of variances in the data. Bartlett’s test 

is designed to test for equality of variances across groups against the alternative that 

variances are unequal for at least two groups. Therefore, this test assumes that variances 

are equal across groups or samples of the data. Bartlett’s test is sensitive to departure from 

normality. That is, if the samples come from non-normal distribution, then Bartlett’s test could 

be testing for non-normality (NIST/SEMATECH, 2012).  

The null hypothesis of this test assumes homogeneity in the variances (𝐻0 = 𝜎1
2 = ⋯ =  𝜎𝑘

2. 

If the p-value is lower than 0.05 (significance level) the null hypothesis is refused; therefore, 

the variance is not the same for all the k samples (Li et al., 2015).  

2.1.3. BOXPLOT AND WILCOXON SIGNED-RANK TEST  

A boxplot is a statistical tool that depicts graphically a summary statistic for univariate 

variables, where observations are ordered from the smallest value to the largest to define 

median, quartiles, the minimum and maximum, and detects outliers. The distribution of the 

data by quartiles measures and identifies outliers (Genton et al., 2015). A boxplot consists 

of two parts, a box, and whiskers (see Figure A.2.).  
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Figure A.2. Description of a box plot. Source: Author 

According to Figure A.2., Q1 refers to the first quartile of the data and represents the 25% 

of the data that have lower values than this limit Q1; Median (bold black line) represents the 

middle quartile of the data; Q3 refers to the third quartile of the data and represents the 75% 

of the data that have lower values the value of Q3 (Hofmann et al., 2017). IQR is the 

interquartile range calculated as Q3-Q1 (size of the box). The values of the whiskers which 

are depicted in Figure A.2. as a minimum (MIN) and maximum (MAX) values corresponds 

to the following data which is inside of the rank after calculating Q1-1.5*IQR for minimum 

constraint and Q3+1.5*IQR for maximum constraint. The values outside of the whiskers are 

considered outliers (Zamora & Torres, 2014).  

Wilcoxon signed-rank test is a rank test in nonparametric statistics, and it is the alternative 

of the t-test. It compares the locations of two populations, to determine if one shift to another. 

The method employed is a sum of ranks comparison (Liu, 2017). The procedure is as 

follows. First, it calculates the difference between each pair of data. The differences are then 

ranked. Next, the ranks are assigned then sign (+) of the corresponding difference, and then 

two sums are computed: the sum of the positive signed-ranks (T+) and the sum of the 

absolute values of the negative signed-ranks (T-). Therefore, the null hypothesis is true 

when the absolute value of negative and positives sums is equal, and as a result, there are 

no differences between that pair of data. Conversely, there are statistical differences 

(Reynolds, 1998). Quantitatively, when the p-value is lower than 0.05, it rejects the null 

hypothesis of this test which means that the pair of data is significantly different (Laake & 

Benestad, 2015). 
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2.1.4. CROSS-VALIDATION METHOD AND GRID SEARCH TECHNIQUE  

Cross-validation provides a simple and effective method for model selection and 

performance evaluation. Under k-fold cross-validation, the data are randomly partitioned to 

form K disjoint subsets of approximately equal size. In the ith fold of the cross-validation 

procedure, the ith subset is used to validate the model trained by the K folds (Cawley & 

Talbot, 2010). 

Grid search is a technique used for finding the optimal hyperparameters of a model which 

results in the most accurate predictions. When the global optimisation problem involves 

continuous variables, there is an infinite number of points in the domain, and complete 

enumeration is impossible (Zabinsky, 2013). Grid Search is a common approach to perform 

an essential discretisation of the domain. A grid search creates an equally spaced grid of 

points over the feasible regions and evaluates the objective function at each point. If the grid 

search indicated that the function is fat over a wide range, there is little reason to proceed 

with sophisticated methods. If the grid search suggests that there are multiple local optimal, 

then it is needed to work hard to find the global optimum (Judd & Judd, 1998). 

2.2. BAYESIAN NETWORKS 

Bayesian Networks is a probabilistic graphical model that represents a set of variables and 

their conditional dependencies (joint probability distribution). The structure of the network 

consists of a direct acyclic graph (DAG), integrated by nodes that represent random 

variables (Xi) with several possible states and arrows that connect pairs of nodes to display 

their probabilistic cause-effect relationship (Liu et al., 2013). These dependencies are based 

on process understanding, statistical, or other types of associations. Conditional probabilistic 

distribution tables are the qualitative representation of the dependencies: they describe the 

probability distribution of each child node, which is conditioned by the combination of the 

probability distribution of its parent nodes. If a variable does not have parents, it means that 

this node has a marginal probability distribution (Pollino & Hart., 2006). These probabilities 

of each node could be evaluated from historical data, expert judgment, or their combination 

(Liu et al., 2013).  

The main objective of learning the structure of a BN from data is finding the network that 

best matches the training set. Therefore, learning algorithms are the best option to learn the 

structure of BN. There are two kinds of learning algorithms based on two general 
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approaches: (i) methods based on conditional independence tests, and (ii) methods based 

on scoring function and a search procedure (De Campos & Castellano, 2007). 

(i) Methods based on conditional independence tests: causal graphical models are the 

basis of these algorithms, which provide a framework for learning a DAG using 

conditional independence tests. The used tests are mutual information (Kraskov et al., 

2004) and the exact t-tests for correlation (Kim, 2015), to detect the Markov blanket of 

the variables, which in turn calculate the structure of the Bayesian Network. The 

Markov blanket for a node contains all the variables shield the node from the rest of 

the network. It means that the Markov Blanket of a node is the only knowledge needed 

to predict the behaviour of that node and its children (Scutari & Nagarajan, 2011, 

Scutari, 2014). 

(ii) Methods based on scoring function and a search procedure: these algorithms attempt 

to find a DAG that maximises a score. These algorithms use a scoring function, which 

measures the fit between the DAG and the data, in combination with a search method 

to measure the goodness of each explored structure from the space of feasible 

solutions (De Campos & Castellano, 2007). Some of the algorithms that belong to this 

approach are Hill-Climbing and Tabu (Scutari & Nagarajan, 2011). Hill-Climbing 

algorithm is a grid search of Hill-Climbing on the space of the direct graphs. The 

optimised implementation uses score caching, score decomposability, and score 

equivalence to reduce the number of duplicated tests (Scutari & Nagarajan, 2011). 

Tabu algorithm is a modified Hill-Climbing algorithm able to escape local optimal by 

scaling a network that minimally decreases the score function (Scutari & Nagarajan, 

2011). For both algorithms, the scores more used are Multinomial log-likelihood, the 

Akaike’s entropy-based Information Criterion (AIC), and Bayesian Information 

Criterion (BIC).  

2.3. BINOMIAL LOGISTIC REGRESSION 

Logistic Regression is a statistical method that represents a simple linear or multiple 

regression where the dependent variable is dichotomous (0 or 1). This method is a particular 

regression that is useful for predicting a categorical variable based on many independent 

variables. The following logit function (Equation A.1.) is the log of the odds that an event 

occurs (category 1). The coefficients (b) depicts how much the logit changes based on the 

values of the predictor variables (X):  
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Equation A.1. Logit Function for logistic regressions 

According to the Equation. A.1., p is the probability of an event occurring depending on the 

values of the independent variables. The parameters bi are obtained from Maximum 

likelihood estimation (Hosmer & Lameshow, 2004). The logit transformation is defined as 

the logged odds: 
𝑝

1−𝑝
, by the formula shown in Equation A.2. (Hernández et al., 2018). 

Equation A.2. Logit transformation to probability 

2.4. ORDINAL LOGISTIC REGRESSION 

An ordinal variable is a type of categorical variable that has a natural ordering of classes, 

but the distances between these are not known. Ordinal regression models are an extension 

of logistic regression considering more than two categories (polychotomous) as the 

response variable. The unique condition is that the response variable must be ordinal 

(Younis & Knight, 2010). There are several types of ordinal logistic regression models; 

however, the most frequent is the “proportional odds model” (Hosmer & Lemeshow, 2004). 

The ordinal logistic regression assumes that the coefficients that describe the relationship 

between the lowest versus all higher categories of the response variable are the same as 

those that describe the relationship between the next lowest category and all the higher 

categories, etc. Equation A.3. states the proportional odds model: 

Equation A.3. Mathematical definition of proportional odds model 

being k the level of an ordered category with K categories, and therefore, K-1 logit equations.  

It is essential to clarify that proportional odds models perform the probability of being in one 

category (or lower) versus being in categories above it (Harrel, 2015).  

Then, when  𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 ≤ 𝑘)] is converted in 𝑃(𝑌 ≤ 𝑘) using Equation A.3., this probability is 

a cumulative probability and not the probability of 𝑝(𝑌 = 𝑘). Equation A.4. shows the 

probability of being in a particular category k. 

𝑙𝑜𝑔𝑖𝑡(𝑝) = 𝑙𝑛  
𝑝

1 − 𝑝
  = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + 𝑏3𝑋3 + ⋯+ 𝑏𝑘𝑋𝑘     

𝑝 =  
1

1 − 𝑒−𝑙𝑜𝑔𝑖𝑡 (𝑝)
 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 ≤ 𝑘)] =  𝑏0 − 𝑏𝑖𝑥,𝑘 = 1,… ,𝐾 − 1 
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Equation A.4. Probability of being in category k 

According to Equation A.4., the probability of being in category K is not calculated, because, 

in this model, the highest level returns a probability of 1. Therefore, Equation A.5. is a 

modification of Equation A.4. to obtain the probability of being in the highest category K 

(Harrel. 2015). 

Equation A.5. Probability of being in higher category 

2.5. MUTINOMIAL LOGISTIC REGRESSION 

Multinomial logistic regression is the regression analysis to conduct when the dependent 

variable is nominal with more than two levels. This regression is useful to predict categorical 

placement in or the probability of category membership on a dependent variable based on 

multiple independent variables (Starkweather & Moske, 2011). If the dependent variable 

consists of K categories, one of them is chosen as the reference category (Salman & Salem, 

2011). The remaining (K-1) categories generate (K-1) logit equation, as shown in the 

Equation A.6. 

 

Equation A.6. Mathematical definition of logit for multinomial logistic regression 

In which i =1, 2, …, (K-1) corresponds to the categories of the dependent variable that has 

the total K variables; αi corresponds to the intercept term for the ith level of the dependent 

variable; X1, X2, …, Xp correspond to the independent variables; and β1, β2, …, βp correspond 

to the regression coefficients for the respective independent variables. As the binary, ordinal, 

and multinomial logistic regression parameters are estimated by using the MLE method 

(Salman & Salem, 2011). 

2.6. LINEAR DISCRIMINANT ANALYSIS 

The independent variables are continuous, and the dependent variable is categorical. LDA 

classifies an object in a category if the Mahalanobis distance is minimum between this object 

and the centroid of the data group that corresponds to this category. LDA assumes that 

covariance matrices are the same for all groups. Assuming that if there are two categories 

𝑃(𝑌 = 𝑘) = 𝑃(𝑌 ≤ 𝑘) − 𝑃(𝑌 ≤ 𝑘 − 1) 

𝑃(𝑌 = 𝐾) = 1 − 𝑃(𝑌 ≤ 𝑘) 

    
𝑃 𝑌 = 𝑖 𝑋1  𝑋2 …  𝑋𝑝 

𝑃(𝑌 = 𝑘 𝑋1 𝑋2 …  𝑋 )
 =      1𝑋1    2𝑋2  ⋯   𝑝𝑋𝑝 
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(K1 and K2) for which are known X explanatory variables, it is possible to construct a linear 

function of the X variables to predict whether a new observation belongs to a group or 

another with the determined probability (Friedman et al., 2001). Equation A.7. defines the 

general linear function of linear discriminant analysis. 

 

Equation A.7. Mathematical definition of linear discriminant analysis (LDA) 

The problem of discriminant analysis function from the analysis of variance is to answer the 

question if two or more groups are significantly different from each other concerning the 

average of a single variable. In the case that the mean of a variable is significantly different 

for several groups, it can be stated that this variable discriminated between groups 

(Friedman et al., 2001). 

  

𝑍 = 𝜆0 +  𝜆1𝑥1

𝑘

𝑖=1
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CHAPTER 3: MACHINE LEARNING TOOLS 

Chapter 3 presents the theoretical framework of Random Forests and Support Vector 

Machines methods, which were the base for developing deterioration models for estimating 

the structural conditions of sewer assets. Also, a differential evolution optimisation algorithm 

was helpful to build a methodology that determines the combination of hyper-parameters 

that most fit in the deterioration models based on machine learning tools for reaching a 

management objective (See Part C).   

3.1. RANDOM FOREST 

Random Forest (RF) is a machine learning algorithm based on an ensemble of decision 

trees. RF is used to solve classification and regression problems (Caradot et al., 2018). The 

basis of this method consists of the construction of multiple decision trees (weak learners), 

using a randomly selected subset of training samples and variables (Belgiu & Dragut, 2016). 

These multiple decision trees are assembled (strong learner) for gaining prediction capacity 

(Hernández et al., 2019). The trees draw a subset of training samples through the 

replacement of variables (bagging approach). It means that the same sample can be 

selected several times, while others may not select at all (Belgiu & Dragut, 2016). In a 

decision tree, each internal node represents a rule (or variable), each branch represents a 

possible outcome of the rule (or attributes of the variable), and each terminal node denotes 

a label or class (Breinman, 2001). In the RF algorithm, it divides each tree’s node by 

selecting the best predictor subset that strengthens the tree learning capacity. This 

characteristic makes this learning algorithm robust against overtraining, giving an advantage 

over other classifiers such as discriminant analysis and neural networks (Breinman, 2001). 

In addition to this advantage, RF is a simple algorithm to use since it requires only three 

hyper-parameters to work: i) the number of the trees: the number of observation samples 

chosen; ii) the node size: the minimum number of nodes that each tree can take at the end 

(tree depth); and iii) the number of variables: the number of attributes to be considered 

during the split (Caradot et al., 2018). Besides, RF has been used to feature selection, due 

to it measures the importance of each feature (variable) by reduction of the accuracy of the 

model (mean decrease accuracy - MDA) when the feature is not included (Sylvester et al., 

2016; Hasan et al., 2016). 
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3.2. SUPPORT VECTOR MACHINES 

SVM is a machine learning method commonly used in classification problems (Betancourt, 

2005), and it has an extension for also solving regression problems. SVM is a machine 

learning developed in the mid-1960s by Vladimir Vapnik (Kuhn & Johnsons, 2013). With the 

application of Kernel functions, SVM increases the data dimensionality to find a hyperplane 

that could separate them correctly (Hernández et al., 2019). Among the kernel functions are 

linear, polynomial, Gaussian, sigmoid Bessel, Laplace, Polynomial, Vanilla or linear, 

Tangent, and Anova (Karatzoglou et al., 2004; Genton, 2001). The most used kernel 

function for classification is the Radial Basis Function (RBF) (Genton, 2001). The principle 

of the SVM is the resolution of binary classification problems which considers a large number 

of predictor attributes. In cases where there are more than two classes, SVM uses "one-to-

one" or "pairwise" methods (Betancourt, 2005) to find the optimum separation hyperplane 

that maximizes the separation margins between each class. The support vectors are the 

training samples that define the optimal separation hyperplane and are the most difficult 

points to classify (Duda et al., 2012). 

The hyperplane equation is defined by the Equation A.8.: 

Equation A.8. Mathematical definition of the separation hyperplane of the support vectors 

being ß0 the bias,   a weight vector and x the support vectors.  

The distance between x and the hyperplane is defined by Equation A.9. and the hyperplane’s 

margin is defined by Equation A.10.:  

Equation A.9. Distance between support vectors (x) and hyperplane 

Equation A.10. Hyperplane’s margin 

 

 =
 

 ß 
 

 ß𝟎 + ß𝑻𝒙 = 𝟏 

 ß𝟎 + ß𝑻𝒙 

 ß 
=

𝟏
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The minimization function that maximizes the hyperparameter’s margin is defined by 

Equation A.11.: 

Equation A.11. Minimization function for finding the optimal separation hyperplane 

being y each label or data class, and Lagrange multipliers are used to find the values of ß0 

and  .  

The hyperparameters that condition the SVM performance depend on the type of kernel and 

the soft margin parameter C. C controls the compensation between the training errors and 

the separation surface which determines the width of hyperplane margins (Hernández et al., 

2019).  

3.3. DIFFERENTIAL EVOLUTION (DE) ALGORITHM OPTIMISATION 

DE is a heuristic optimisation method (requires little or no assumption for searching a 

solution) developed by Storn & Price in 1997.  

A global optimisation problem is defined by an objective function min𝑓(𝑥), a decision vector 

consisting of variables 𝑥 = [𝑥1 𝑥2 …  𝑥𝐷], and constrained bounds in 𝑥𝑗 ∈ [𝑎𝑗 𝑏𝑗] ∀𝑗 =

1 2 . . .  𝐷 which 𝑎𝑗, and 𝑏𝑗 are the lower and upper bounds for each decision variable 

(Mohamed, 2015). 

An initial random population consists of NP (population size) vectors  𝑥 ∀  𝑖 = 1 2 . . .  𝑁𝑃 

which are generated by the boundaries (see Equation A.12.): 

Equation A.12. Initial population for a search optimisation 

where 𝑟𝑎𝑛𝑑𝑗denotes a uniformly distributed number between [0,1], generating a new value 

of each decision parameter. These individuals are evolved by DE operators (mutation and 

crossover) to generate a trial vector. A comparison between the parent and its trial vector is 

then made to select the vector which should survive to the next generation (Mohamed, 

2015). 

 

   
ß ß𝟎

 (ß) =
𝟏

 
 ß                    ß

𝑻𝒙  ß𝟎  𝟏   ∀   

𝒙 𝒋
𝟎 =  𝒂𝒋 + 𝒓𝒂 𝒅𝒋(𝒃𝒋 − 𝒂𝒋) 
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The mutation operator is utilized to generate the mutant vector of Equation A.13.: 

Equation A.13. Mutation operator for Differential Evolution (DE) 

in which G is the generation, 𝑥 
𝐺 is the target vector, 𝑣 

𝐺+1 is the mutant vector, 𝑟1 𝑟2 𝑟3 ∈

{1 2 …  𝑁𝑃} are the randomly chosen indices. F is a real number to control the amplification 

of the difference vector 𝑥𝑟2
𝐺 − 𝑥𝑟3

𝐺 . If a component of a mutant vector violates the search 

space, then the value of this component is generated anew using Equation A.13. (Mohamed, 

2015; Yi, 2016). 

The binomial crossover operator (which is the most used) can be selected to generated the 

vector 𝑢 𝑗
𝐺+1, between 𝑥 

𝐺 and 𝑣 
𝐺 which can be expressed by Equation A.14. 

Equation A.14. Crossover operator (binomial) for Differential Evolution 

where 𝑗 = 1 2 …  𝐷 𝑟𝑎𝑛𝑑(𝑗) ∈ [0 1] is the jth evaluation of a uniform random generator 

number. 𝐶𝑅 ∈ [0 1] is the crossover rate, 𝑟𝑎𝑛𝑑(𝑖) ∈ {1 2 …  𝐷} is the randomly chosen 

index which ensures that 𝑢 𝑗
𝐺+1 gets at least one element from 𝑣 

𝐺+1; on the other hand, no 

new parent vector would be produced and the population is not altered (Mohamed, 2015; 

Yi, 2015).  

  

𝒗 
𝑮+𝟏 =  𝒙𝒓 

𝑮 + 𝑭 𝒙𝒓 
𝑮 − 𝒙𝒓𝟑

𝑮  ,     𝒓𝟏 ≠ 𝒓 ≠ 𝒓𝟑 ≠   

𝒖 𝒋
𝑮+𝟏 =   

𝒗 
𝑮+𝟏, 𝒓𝒂 𝒅(𝒋) ≤ 𝑪𝑹    𝒐𝒓    𝒋 = 𝒓𝒂 𝒅 ( )

𝒙 
𝑮+𝟏,        𝒓𝒂 𝒅(𝒋) > 𝑪𝑹   𝒂 𝒅  𝒋 ≠ 𝒓𝒂 𝒅( )
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CHAPTER 4: PERFORMANCE MEASURES 

This chapter describes the theoretical framework of the used methods to evaluate the 

prediction capacity of the explored deterioration models. Besides, these methods were the 

antecedent metrics of the Knet and Kpipe metrics also proposed in this work (see Part C). 

4.1. COHEN’S KAPPA COEFFICIENT (K) 

Cohen’s kappa coefficient is an index that measures inter-rater reliability for qualitative 

terms. Cohen’s Kappa measures the agreement between two rates which each classifies N 

items into mutually exclusive categories (Cerda & Villaroel, 2008; Shan & Wang, 2017). 

Equation A.15. defines the Cohen’s kappa coefficient mathematically. 

Equation A.15. Mathematical definition of Cohen’s kappa coefficient (K) 

In which p0 is the proportion of rater pairs exhibiting agreement and pe is the proportion 

expected to exhibit agreement by chance alone. Thus, the perfect agreement would indicate 

K = 1, and no agreement K = 0. For k categories, N observation to categorize and nki the 

number of times rater i predicted category k (Wang & Xia, 2019). Therefore, pe is calculated 

following the Equation A.16. 

Equation A.16. Calculation of the proportion expected to exhibit agreement by chance alone (pe) 

4.2. ROC SPACE 

It is the space in which draws the Receiver Operating Characteristic (ROC) curve. The ROC 

space is a two-dimensional space in which is defined by False Positive Rate (FPR) and True 

Positive Rate (TPR) as x and y axes, respectively. This space is a graphical representation 

of a confusion matrix that compares the predicted classes versus the observed ones from a 

binomial classification (positive and negative labels). According to a binomial classification, 

the confusion matrix contains four outcomes which analysis the correct classifications and 

miss-classifications: (i) True Positives (TP) refer to the instances classified correctly in the 

positive label; (ii) True Negatives (TN) represent the instances classified correctly in the 

𝑲 =  
𝒑𝟎 − 𝒑𝒆

𝟏 − 𝒑𝒆
= 𝟏 −

𝟏 − 𝒑𝒐

𝟏 − 𝒑𝒆
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𝑵 
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𝒌
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negative label; (iii) False Positives (FP) refer to the instances wrongly classified in the 

positive label; and False Negatives (FN) represent the instances improperly classified in the 

negative label (Saito & Rehmsmeier, 2015). Dividing the TP over the total positive instances 

in the real classification obtains the TPR; and dividing the FP over the total negative 

instances in the actual classification obtains the FPR (Fawcett, 2006). A ROC space depicts 

trade-offs between benefits (TPR) and costs (FPR). Therefore, if the TPR value (y-axis) is 

higher than the FPR value (x-axis) means that the model prediction is better than a random 

one; if the TPR and FPR values are the same means that the model prediction is equal that 

a random one; and if the TPR value (y-axes) is lower than FPR value (x-axis) means that 

the model prediction is worse than a random one. 

The Positive Likelihood Ratio (PLR) is an index obtained dividing TPR over FPR, and it 

quantifies how likely it is to have a correct prediction than a wrongly one (Hernández et al., 

2018).  

4.3. PERFORMANCE CURVE 

The performance curve is a technique based on Le Gat et al. (2008). The main goal is 

analysing if the probabilities of sewer assets predicted in most deteriorated conditions are 

really in these conditions. The procedure is sorting in decreasing order the probabilities of 

being in critical conditions of all the sewer assets. Then these assets are ranking in 

percentages: it means that the 1% represent the sewer assets with the highest probability 

of being in the cost deteriorated states. Suddenly, it compares the probability of being in 

critical conditions and the actual one (observed condition by CCTV): the probabilities of 

being in critical conditions are in the x-axes, while the percentage of the real condition is in 

y-axes, and from them is building the performance curve. Figure A3 shows an example of 

the performance curve. 

The main idea of the performance curve is to visualize the performance prediction in 

estimating the most deteriorated assets to make decisions for rehabilitation plans. For 

example, coming back to Figure A.3., it is possible to visualize the proportion of the 

conditions of the 10% assets with the highest probability to be in critical conditions. 
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Figure A.3. Example Performance Curve 

4.4. DEVIATION ANALYSIS 

Deviation analysis is an analysis technique proposed by Caradot et al. (2015). It measures 

the deviation between the proportion of observed and predicted assets on each condition 

and by each age period. It means that this technique only analyses the difference in the 

number of assets predicted on each condition by each age period. 

Figure A.4. depicts three graphics: (i) the top plot shows the conditions’ distributions of the 

sewer assets, by each age period, found by CCTV inspections; (ii) the centre plot shows the 

conditions’ distribution of the sewer assets, by each age period, obtained by a deterioration 

model’s predictions; and (iii) the below plot shows boxplots that summarized the deviations 

of the four conditions and a red circle that depicts the deviation of the critical conditions by 

each age period. Hence, according to the Figure A.4., when the deviation is negative, it 

means that the prediction overestimated the structural condition (the model predicted in 

better conditions than are the sewer assets); and when the deviation is positive, it means 

that the prediction underestimated the structural condition (the model predicted in worse 

conditions than are the sewer assets). 
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Figure A.4. Deviation analysis plot example 
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CONCLUSIONS PART A 

The importance of the theoretical framework in this doctoral manuscript consists of giving a 

conceptual background about the used concepts, mathematical and statistical definitions for 

developing the proposed methodology. According to Part A, a wide range of notions, 

mathematical, statistical, and machine learning methods have supported the construction of 

sewer asset management. The concept of Sewer Asset Management (SAM) is based on 

the generalist concept of the Infrastructure Asset Management (IAM), and from, the stages 

to reach an effective IAM, the research topics in SAM born. Even though the general 

introduction has a brief state-of-the-art to justify the objective of this doctoral thesis, Chapter 

1 shows more detailed information about the contributions of the worldwide authors for each 

SAM research topics. 

Interestingly, the developed tools are based on methods of different natures (mathematical, 

statistical, and machine learning) which during the doctoral manuscript are going to be 

integrated and modified to develop feature selection and predictive tools support strategies 

at the sewer asset management. Understanding the theoretical background of the methods, 

the author could identify the advantages and disadvantages of the explored methods, tests, 

or techniques. 

As well, it identified the properties of some methods to develop optimisation tools to 

complement those methods used for building feature selection and predictive tools, making 

more robust, precise, and reliable the proposed methodology. 

Besides, Part A presents four performance measures to evaluate the predictions of the 

developed deterioration models based on different focusses. Deviation analysis and ROC 

space are focused on the prediction of sewer asset at the network level, while Cohen’s 

Kappa coefficient and Performance curve evaluate the prediction of each sewer element. 

Thanks to the above, the assessment of the deterioration models should focus on two aims, 

and in turn, these support the management objectives on sewer asset management. 

Therefore, the author developed two metrics based on these four performance measures to 

achieve two management objectives. In Part C of this manuscript, the author depicts the two 

developed performance metrics that link with two management objectives (objectives related 

to the sewer network and single sewer asset) in detail. 
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Part B of this manuscript consists of the description of the materials and methods to develop 

the proposed methodology for this doctoral thesis. The depiction of the case studies, 

computational tools, and the reasons for the chosen methods to build the present doctoral 

thesis is the objective of this part.  

The selected case studies for the development of the present doctoral thesis need to fulfil 

with the following criteria: (i) large percentage of sanitation coverage on the city; (ii) to have 

georeferenced information about each asset that belongs to the sewer network; (iii) to have 

an assessment protocol to classify the structural and operational state of the sewer assets 

on grades from visual inspections; and (iv) to have information about a non-depreciable 

quantity of inspected and assessed sewer assets. 

The author considered two case studies randomly to apply the proposed tools of this doctoral 

thesis to identify the influential factors on the structural conditions of both sewer systems. 

The main idea is to apply the methodology proposed in this doctoral thesis to identify if really 

the influential variables over the structural conditions vary according to the own 

characteristics of the cities (first research question). According to the closeness and 

availability, the chosen case studies were Bogota and Medellin: the two most populated and 

important Colombian cities. Colombia is one of the Latin-American countries with the highest 

coverage in water supply and sewerage after Chile and Mexico (IDB, 2019): around 90% of 

sanitation coverage in urban areas, 70% in rural areas, and 88% of sewerage coverage in 

the national territory (IDB, 2019; DNP & MAVDT, 2018). Currently, Bogotá and Medellín are 

the Colombian cities that have their assessment protocols to qualify the structural and 

operational conditions of the sewer assets from CCTV inspections.  

According to the above, chapter 5 consists of the description of Bogota’s and Medellin’s 

case, subchapter 5.1., and 5.2. respectively. Each subchapter consists of two items: (i) 

information about the sewer system; and (ii) collected of surrounding variables to the sewer 

assets (operational, environmental, and urban characteristics of the city), a brief description 

of the assessment protocol and description of the CCTV inspected data.  

The collection of the information depends on (i) the variables found as influential in the 

deterioration of the structural conditions of the sewer assets in other case studies; (ii) their 

availability; and (iii) the variables that have been not studied yet as possible influential 

variables over the structural conditions in sewer assets. The sewer systems, as any 

underground infrastructure, represent radiography of the city’s conditions, thus the sewer 
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systems cannot be considered as a single infrastructure, but part of a complex system called 

the city. 

Hence, it seems crucial to evaluate the influence of other infrastructures, as well as 

environmental, urban, and operational conditions over the structural and operational 

conditions of the sewer assets. The focus of this thesis is the structural conditions of sewer 

assets because of the severity of their consequences. Physical sewer characteristics 

(diameter, length, slope, material, and depth in which is located the sewer asset), the age, 

type of effluent that transport the sewer assets, surrounding characteristics(trees presence, 

road traffic, soil type, bedding type, and geographical locations, and districts), and social 

features (installation period, land uses) are some of the variables which have been selected 

as influential over the structural conditions of sewer assets in other experiences (Ariaratman 

et al., 2001; Baik et al., 2006; Younis & Knight, 2010; Tscheikner-Gratl et al., 2014; López-

Kleine et al., 2016; Torres-Caijao et al., 2017; Hernández et al., 2018b; Hernández et al., 

2019a; Hernández et al., 2019b). Moreover, the seismicity, social classes, information 

quality, geology, water level depth, precipitation levels, basins, and flood risk, also were 

considered because these variables are part of the environment dynamism in which are 

immersed the sewer assets. Also, it contemplates the seismicity and geology because of 

the displacements and breakage in the sewer assets after telluric movements. Besides, 

water level depth, precipitation levels, the closeness with the basins, and flood risk are 

variables that could increase the flow’s capacity of the sewer assets and/or generate 

pressure to the assets ’structure, making breakage and collapse in the sewer system. 

Information about social classes and information quality could complement the information 

about urban dynamism and the operational behaviour of the utilities. 

Finally, chapter 6 depicts the literature review and pertinence of the selected methods and 

techniques to develop the tools proposed in this doctoral thesis (subchapter 6.1.) and a brief 

description of the used computational tools (subchapter 6.2). Subchapter 6.1. justifies the 

selection of the used methods from literature reviews and results of their exploration by the 

author during her doctoral studies, and subchapter 6.2. shows a description of the used 

software, main libraries and functions to apply the mentioned methods in subchapter 6.1. 

Thanks to the explorations written in subchapter 6.1., the following publications and 

participations in conferences were carried out: (i) participation with an oral presentation at 

LESAM conference 2017 entitled “Support tools to predict the critical structural condition of 

uninspected sewer pipes in Bogota DC” (Hernández et al., 2017a); (ii) participation with two 
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oral presentations at ICUD 2017 entitled “Support Vector Machines used for the prediction 

of the structural conditions of pipes in Bogota’s sewer system” (Hernández et al., 2017b) 

and “Support tools to predict the critical structural condition of uninspected pipes for case 

studies of Germany and Colombia” (Hernández et al., 2017c); (iii) publication on the Water 

Practice and Technology Journal under the title “Support tools to predict the critical structural 

condition of uninspected pipes for case studies of Germany and Colombia” (Hernández et 

al., 2018a); (iv) submission on the Ingeniería y Universidad Journal in March 2019 under the 

title “Support Vector Machines used for the prediction of the structural conditions of pipes in 

Bogota’s sewer system” (Hernández et al., 2019a); (v) submission on the Journal of 

Modelling in Management in October 2019 under the title “Is it possible developing reliable 

prediction models considering only the pipe’s age for decision-making in sewer asset 

management?” (Hernández et al., 2019b) in which compared the prediction performance 

considering only the age and considering the age together with other sewer characteristics 

as input variables in the deterioration for two Colombian case studies; and (vi) the selection 

of the most pertinent models to predict the structural condition of uninspected sewer assets 

for the case studies considered in the present thesis (Part D). A summary of these results is 

shown in Part D of this manuscript. 
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CHAPTER 5: CASE STUDIES 

Bogota and Medellin are the case studies considered in this doctoral thesis, due to are the 

main Colombian cities that contain most of 90% of installed sewer assets in Colombia. This 

chapter consists of two subchapters related to Bogota’s and Medellin’s case studies.  

Each subchapter contains two items about the description of sewer systems and the 

description of the collected surrounding and CCTV inspection information. The second item 

describes the collected information about environmental, urban and operational 

characteristics, a summary of their assessment standards of the sewer assets conditions, 

and a description of the data collected by CCTV inspections. 

5.1. BOGOTA’S CASE STUDY 

Subchapter 5.1 contains two items: (i) a description of the Bogota’s sewer systems and the 

basic characteristics of installed sewer assets; (ii) description of the collected information 

about the surrounding information of Bogota’s city, a summary of the local sewer 

assessment standard used in Bogota to classify the structural condition of sewer assets and 

a description of the collected CCTV sewer inspections. For more information about Bogota’s 

case, please see appendix-Part B.1. 

5.1.1. DESCRIPTION OF THE BOGOTA’S SEWERAGE 

Bogota’s sewer system has three main drainage basins that drain sanitary and rainwater, 

from the east to the west, through separate and combined sewer systems (EAAB, 2006). In 

the central and southeast zones of Bogota, the combined sewer system is working, and then 

it connects with the sanitary system to the rest of the zones of the city (EAAB, 2006). The 

Bogota’s residual water treatment plant (PTAR Salitre) locates at the west of the city close 

to the Bogota’s river. This plant cleans most of the residual water of the city and then it 

discharges over Bogota’s river. Likewise, each system is divided into main and local assets. 

The main assets correspond to the interceptor assets in which all local assets converge. 

Figure B.1. shows the sanitary and stormwater systems in Bogota.  
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In summary, the sanitary system contains 146763 installed assets (6615.3 km) between 

main (500.5 km) and local (6115.3 km) networks, and the stormwater system includes 71278 

installed assets (3001 km) between main (536.1 km) and local (2464.9 km) networks. In 

total, Bogota contains 10479.9 km of the installed sewer assets (DNP & Superservicios, 

2018) that represents around 98.5% of sewerage coverage in the city. 

Table B.1. shows a summary of the basic characteristics contained in the database of the 

Bogota’s sewer system. According to this database, the variables contained were: (i) type 

of effluent, (ii) shape; (iii) material; (iv) type of the element according to its functionality, (v) 

diameter (in meters), (vi) length (in meters) of the sewer assets, (vii) installation periods 

when were installed, (viii) depths (in meters) where is located (average between sewer level 

upstream and downstream), and (ix) slope (in m/m) of the sewer assets. Besides, some 

factors of the variables were grouped because the amount was minimum compared to other 

factors. The numerical variables were categorized to visualize their proportion on the sewer 

system. 

Figure B.1. Bogota’s sewer systems. Map on the left shows sanitary and combined sewer systems and on the 
right stormwater system. The main assets are in red colour and local assets in blue colour. Source: Author 
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Table B.1. Description of the basic characteristics contained in the Bogota's sewer systems database 

Variables Factors Proportion Variables Factors Proportion 

Type of 
effluent 

Combined 20.3% 

Length (m) 

< 25 30.0% 

Sanitary  46.3% 25 - 50 34.7% 

Stormwater 33.4% 50 - 75 21.2% 

Shape 
Circular 98.6% 75 - 100 10.2% 

Other shapes 1.4% > 100 3.9% 

Material 

Clay 25.7% 

Installation 
Period 
(years) 

< 1930 5.9% 

Concrete 58.2% 1930 - 1960 13.1% 

Masonry 2.9% 1960 - 1980 26.8% 

PVC 8.6% 1980 - 2000 15.8% 

Other materials 4.6% > 2000 38.3% 

Element type 

Collector 93.9% 

Depth (m) 

< 1 5.8% 

Interceptor 4.7% 1 - 2 48.3% 

Other Elements 1.4% 2 - 3 28.9% 

Network type 
Main 7.0% 3 - 4 9.4% 

Local 93.0% 4 - 5 2.9% 

Diameter (m) 

< 0.2  34.9% > 5 3.9% 

0.2 - 0.45 41.6% 

Slope (m/m) 

< 0.34 26.0% 

0.45 - 0.6 9.4% 0.34 - 0.8 26.6% 

0.6 - 0.75 3.3% 0.8 - 4.8 24.4% 

0.75 - 0.9 3.7% 4.8 - 11.5 10.4% 

> 0.9 7.1% > 11.5 12.6% 

Source: Author 

According to Table B.1., most of the sewer assets are pipes (circular areas – 99%) in 

concrete and clay materials (84%), with diameters lower than 0.45m (75% approximately). 

Furthermore, the most important installation period of the sewer assets was after 1955 when 

the company of water and sewerage (“Empresa de Acueducto y Alcantarillado de Bogotá – 

EAAB”) was established as a public company (Jiménez & Gomez, 2003). Currently, EAAB 

had been the private-public company responsible for the water supply and sewerage service 

for Bogota’s city.  

EAAB provided the information shown in Table B.1. concerning the installed sewer assets. 

However, this database has inaccuracies in the proportioned information because there is 

no information about some replacement assets, the new characteristics and the replacement 

dates. 

5.1.2. COLLECTED INFORMATION OF BOGOTA’S CITY. 

This subchapter contains three items. The first one describes the collected information about 

environmental, urban and operational characteristics of Bogota gathered from different 

public institutions. The second item depicts the Bogota’s assessment standard that the utility 

uses for qualifying the operational and structural conditions of CCTV inspected sewer 



67 

 

assets. And the last item shows a description of the CCTV inspection information carried out 

between 2007 and 2017. 

5.1.2.1. Surrounding characteristics of Bogota’s city  

Databases of different public institutions, reports and other sources were collected to 

capture the characteristics of the city. The collected variables were: (i) database of 

geotechnical zoning in 2010, provided by Bogotá’s institution for risk management and 

climate change (Institución distrital de gestion de riesgo y cambio climático - IDIGER), which 

describes the soil conditions and geomorphology; (ii) database of intrusion trees in Bogotá 

for the year 2017 provided by Bogota’s Botanical Garden (“Jardín Botánico de Bogotá - 

JBB”); (iii) land use database of the year 2016; (iv) databases of social classes classified by 

zonal planning units (Unidades de Planeamiento Zonal - UPZ) ; (v) road database that 

contains information about road classification according to the type of traffic and its material 

surface for year 2016; (vi) database of the 20 districts of Bogotá in the year 2017 collected 

by Bogota’s integrated infrastructure of spatial data (“Infraestructura integrada de datos 

especiales para el distrito capital - IDECA”); (vii) database of Bogota’s urbanization growth 

from 1923 to 2013, collected by Gorani (2017); (viii) database of precipitation levels collected 

by Institute of hydrology, meteorology and environmental studies (Instituto de hidrología, 

meteorología y estudios ambientales - IDEAM); and (ix) database of operational zone, data 

quality and operational status of the sewer assets collected from EAAB. Table B.2. shows a 

summary of the collected information. 

The information shown in Table B.2. was cleaned-up and pre-processed to feed the 

database. The information about urban growth areas was used to correct the installation 

year of some sewer assets with doubtful years of installation. The calculus about trees root 

length was carried out theoretically by the influence area of growth radios of the trees’ roots 

(Torres-Caijao et al., 2017): 1.3 times of equatorial diameter (tree’s crown diameter). The 

social classes and land uses are discriminated by ZPU -Zonal planning unit (UPZ - Unidad 

de planeamiento zonal). The social levels in Colombia vary from 1 to 6 category, being 6th 

category the highest social class in which lives people with the most top economic 

resources, and first the lowest social level in which lives people with the most inferior 

financial resources (SDP & UNAL, 2009). Further, the land uses are categorized according 

to the most predominant economic activity as shown in Table B.2., such as (i) Commercial, 

which means business areas; (ii) Developing, indicates an integrated urban development of 

projects that combines residential, public and business areas; (iii) Institutional, areas with 
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hospitals, schools, and parks that give a service to the community; (iv) Government it is the 

land use that refers to the public and historic buildings; (v) Industrial, areas with 

manufacturing companies; and (vi) three types of residential lands (SDP, 2017; Preciado-

Beltran, 2010). The three types of residential lands refer to: the first one, residential areas 

with infrastructure deficits (social classes 1 and 2); the second, domestic areas of middle 

social classes with land-use changes; and third, domestic areas of middle and high social 

levels with properly infrastructure’s conditions (SDP, 2017; SDP, 2011).  

Table B.2. Description of collected information from Bogota's city 

Source 
Type of 

variables 
Variables Description 

Bogotá’s institution 
for risk management 
and climate change 

(IDIGER) 

Environmental  

Geotechnical zone 
Eight geotechnical zones: Alluvial, Foothill, Lacustrine, 
Landfill, Plain, Riverbed, Hillside deposit, Mountains 

Soil Type 
Seven soil types: clay, Foothill, Landfill, Residual soil, 
wetlands rivers, rocks and sand 

Geology period Cretaceous, Paleogene, and Quaternary 

Water level depth (m) 0 - 13.78 

Seismic shear wave speed(m/s) 1.3 - 3.5 

Seismic Acceleration (gravity field 
intensity - g) (Return period of 475 
years) 

0 - 0.26 

Bogota's Botanical 
Garden (JBB) 

Environmental 
Type of Intrusive trees 

Acacia, Cherry Tree, Chicali, Eucaliptus, Pine, Rubber, 
Willow, and others 

Root trees length (m) 0.78 - 15.54 

Bogotá’s integrated 
infrastructure of 

spatial data (IDECA) 
Urban 

District 

19 Urban districts: Antonio Nariño, Barrios Unidos, Bosa, 
Ciudad Bolivar, Candelaria, Chapinero, Engativa, Fontibon, 
Kennedy, Martires, Puente Aranda, Rafael Uribe, 
SanCristobal, Santafe, Suba, Teusaquillo, Tunjuelito, 
Usaquén, Usme 

Land use 
Commercial, Developing, Institutional, Government, 
Industrial, Residential (1,2 and 3) 

Social classes Classes 1 and 2; Classes from 3 to 6; and Multiple 

Surface material 
Unpaved, concrete pavement, asphalt pavement, green, 
and others 

Road type Primary, Intermediate, Local, and Supplementary 

Gorani (2017) Urban Urban Growth periods 
Developed urban areas to 1923, 1938, 1958, 1976, 1985, 
and 2013 year. 

Institute of hydrology, 
meteorology and 

environmental studies 
(IDEAM) 

Environmental 
Levels of precipitation of 6hr and 
return period of 10 years (mm) 
(Information until 2014) 

0.14 - 61.48 
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Bogota's Water and 
Sewerage Company 

(EAB) 
Operational 

Operational zone 

Five operational zones which are grouped according to 
districts: Zone 1 - Suba and Usaquén districts; Zone 2 - 
Engativá, Chapinero, Teusaquillo and Barrios Unidos 
districts; Zone 3 - Santafé, San Cristóbal, Tunjuelito, 
Fontibón, Antonio Nariño, Puente Aranda, Rafael Uribe 
Uribe, Mártires, Antonio Nariño and La Candelaria districts; 
Zone 4 - San Cristóbal, Usme, Tunjuelito, Kennedy, Puente 
Aranda, Rafael Uribe Uribe and Ciudad Bolívar districts; 
Zone 5: Kennedy and Bosa districts 

Data quality 
Information collected from maps, unvalidated, validated and 
unknown 

Operational status Out of service and on service 

Latitude coordinate North, mid-north, mid-south, and south 

Longitude coordinate East, mid-east, mid-west and west 

Source: Author 

Other variables included by the author was the geographical coordinates of the sewer 

systems (latitude and longitude). The calculus of these variables lies in the average of 

longitude and latitude coordinates of the location upstream and downstream of sewer 

assets. Finally, they were categorized into four factors, as shown in Table B.2. 

Furthermore, the variables related to the seismicity correspond to the seismic answer of the 

soils considering the reported earthquakes until 2010 with a return period of 475 years. The 

seismic variables (acceleration and wave speed) are the ones used for Seism-resistant 

Construction Regulations for Colombia NSR-10 (MAVDT, 2010). IDIGER and Garzón-

Casares (2011) provided the above information. 

5.1.2.2. Local assessment standard  

Bogota’s water and sewerage company has its sewer assessment standard (NS-058 – 

“Technical Aspects for Inspection of Sewer Networks and Structures”) since 2001, updated 

three times (EAAB, 2001). The standard regulates the circuit-camera television technology’s 

(CCTV) inspection guidelines in which classifies the found defects in operational and 

structural defects. At the same time, each category is ranked in the defect’s types. According 

to the defect’s type, the severity and the defect’s location, the standard gives a score from 

0 to 165 points for structural defects and from 0 to 10 for operational defects (See Tables 1 

and 2 of the appendix - Part B.1.1.). 

Once the scores are given to each defect found in the sewer asset, the standard provides a 

categorization of the structural and operational conditions for each sewer asset. Both 

structural and operational states rank into five grades. However, the ranking differs from its 

calculation: the calculus of the structural grade focus on the sum of the scores of all structural 

defects found in the sewer asset and then categorized (See Table 3 of the appendix – Part 
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B.1); while the calculus of the operational grade lies on the quotient between the sum of the 

scores of all operational defects found in the sewer asset and the sewer asset’ length, then 

this rate is categorized (See Table 4 of the appendix -Part B.1). In both rankings, grade 1 

represents excellent structural or operational conditions of the sewer assets while grade 5 

means critical structural or operational conditions of the sewer assets. For more details 

about the diagnosis of each grade and suggested recommendation by NS-058, please see 

Tables 3 and 4 of the appendix – Part B.1.2. 

5.1.2.3. CCTV Inspected data 

EAAB provided the records of CCTV inspections and CCTV inspection reports of Bogota’s 

sewer assets carrying out from 2007 to 2017. The CCTV inspection database contains 

information about the ID of the sewer assets, the physical characteristics of the inspected 

sewer assets, inspection date, surface material over the sewer asset’s location, and its 

structural and operational conditions (in grades). The author assessed part of CCTV 

inspection data provided during 2017 and 2017 following the NS-058 standard by the 

visualized failures of the inspection reports. A data clean-up of the CCTV inspection data 

was carried out, removing wrong information about incoherent values of slopes, diameters, 

lengths, dates of inspection (before 2007), and depths. After CCTV inspection data clean-

up, 8349 consistent inspections (representing 430 km) were linked to 7968 sewer assets 

(around 3% of the total sewer system). Figure B.2. shows the inspected sewer assets and 

the whole Bogota’s sewer system. 

According to the inspected sewer assets, it was found that 45.8% are in excellent structural 

conditions (grade 1), 14.9% are in good structural conditions (grade 2), 4.7% in moderate 

structural conditions (grade 3), 13.5% in poor structural conditions (grade 4), and 21.1% in 

critical conditions (grade 5). Besides, 93% in excellent operational conditions (grade 1), 

5.5% in good operational conditions (grade 2), 1.3% in moderate operational conditions 

(grade 3), 0.16% in poor operational conditions (grade 4) and 0.1% in critical operational 

conditions (grade 5).  
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Figure B.2. Bogota’s inspected sewer assets between 2007 and 2017. Whole sewer systems in blue 
lines and inspected sewer assets in red lines. Source: Author 

A big database was built by merging the Bogota's sewer systems information (subchapter 

5.1.1) and the collected information of Bogota's city (subchapter 5.1.2) related to 

surrounding characteristics of Bogota's city and CCTV inspection reports. Figures from 1 to 

4 of the appendix – Part B.1.2. show bar plot analysis that depict the distribution of the 

structural condition regarding the collected variables to observe an apparent relationship 

between the deterioration of the structural condition of sewer assets and the collected data. 

From the above bar plot analysis, it is possible to observe that the deterioration of structural 

condition does not show an apparent relationship with inspection year periods, land uses, 

road types, operating status, trees' types, quality data, precipitation levels, social classes, 

geology, and element types. Table B.3. a summary of the variables presenting an apparent 

relationship with the deterioration of the structural condition of the sewer assets. 
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Table B.3. Summary of variables that apparently show a relationship with the deterioration of the 
structural condition of sewer assets according to the bar plots shown in Figures from 1 to 4 of the 

appendix – Part B.1.2. 

Variables Relations with the deterioration of the structural condition 

Installation periods Older installation period, higher percentage of deteriorated sewer assets 

Age periods Older sewers' age period, higher percentage of deteriorated sewer assets 

Diameter Smaller sewer assets, higher percentage of deteriorated sewer assets 

Material Higher percentage of deteriorated sewer assets in clay and PVC sewers  

Type of effluent Higher percentage of deteriorated sewer assets in sanitary and combined sewers  

Length Longer sewer assets, higher percentage of deteriorated sewer assets 

Slope Higher slopes of sewer assets, higher percentage of deteriorated sewer assets 

Depth Shallow sewer assets, higher percentage of deteriorated sewer assets 

Districts 
Older districts (Santafe, Chapinero, San Cristobal, and Rafael Uribe Uribe), higher percentage of 
deteriorated sewer assets. (Teusaquillo and Tunjuelito districts were not considered as relevant 
information because of the lower information of inspected sewer assets in these districts) 

Network type Main sewer assets are in better structural conditions than local sewer assets 

Surface material 
Sewer assets located behind pavement area show a higher percentage of deteriorated sewer 
assets. 

Operating zones 
2, 3 and 4 zones are the zones were more population density of Bogota's city and these zones 
were the ones with the highest percentage of deteriorated sewer assets 

Operational condition 
Higher operational grade (lower hydraulic operation condition), higher structural deterioration on 
sewer assets (inspected sewer assets do not show 4 or 5 operational conditions grades) 

Water level depth Deeper water levels, higher structural deterioration sewer assets 

Trees roots' length From 1 m of roots' length, higher structural deterioration of sewer assets 

Seismic acceleration Over 0.16 g shows higher structural deterioration on sewer assets 

Seismic shear wave 
speed 

Higher structural deterioration lower 1.7 m/s and higher 2.7 m/s 

Longitude coordinate Higher structural deterioration at the east zone 

Latitude coordinate Higher structural deterioration on the south and mid-north zones of the city 

Geotechnical Zones Higher structural deterioration in Foothill and mountains zones 

Source: Author 

According to Table B.3., the physical characteristics of the sewer assets show apparently 

relationship with the deterioration of structural condition as reported in other studies 

(Ariaratnam et al. 2001; Baik et al., 2006; Tscheikner-Gratl et al., 2014). The apparent 

relationship of the deterioration of the structural conditions of the sewer assets with latitude 

and longitude coordinates, geotechnical zones, type of effluent, water level depths and 

districts show that the geographical localisation of the sewer assets influent over the 

deterioration of the structural conditions of the sewer assets: sewer assets close to the 

mountains (east zone of the city) show higher deterioration. However, it is essential to clarify 

that Bogota’s city has grown from the east to the north, west and south of the city, it means 
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that the oldest sewer assets are located on the east of the city. This fact is confirmed 

analysing the relationship with the age and installation year periods variables: older sewer 

assets show higher deterioration on the structural condition of the sewer assets. In other 

studies of different case studies, the age has a strong influence over the structural condition, 

because of the lifetime of the sewer assets (Davis et al., 2001a; Baik et al., 2006; Le Gat, 

2008; Ana et al., 2009; Rokstad & Ugarelli, 2015; El-Housni et al., 2017; Caradot et al., 

2018). 

Environmental variables such as roots trees length also show apparently influence over the 

structural condition of sewer assets which supports the findings of Torres-Caijao et al., 

(2017) in which more giant trees (longer roots lengths) cause more damage in sewer assets 

than small trees (shorter roots lengths). As well, the surface material over the sewer assets 

shows that pavement areas influence over the deterioration of the sewer assets, which 

means that the road infrastructure could be the cause of the deterioration of the sewer 

assets.  

Seismic shear wave speed and acceleration also show an apparent relationship with the 

deterioration of the structural condition of sewer assets; however, it is not possible to assure 

this relationship because could depend on the location of the sewer assets. The relationship 

between the structural condition of the sewer assets and the seismic variables has not been 

studied deeply. 

Besides, operational conditions of sewer assets also show an apparent influence over the 

structural conditions of the sewer assets: higher operational conditions, higher deterioration. 

This result could be explained, because of the reduction of the hydraulic capacity of the 

sewer assets and in the events of water flow’s peaks could generate pressure on the sewer 

asset causing breakage on the structure.  
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5.2. MEDELLIN’S CASE STUDY 

Subchapter 5.2 consists on the description of three subchapters related to this thesis: (i) a 

description of the Medellin’s sewer system and the basic characteristics of installed sewer 

assets; (ii) description of the collected CCTV sewer inspections and the collected information 

about the surrounding information of metropolitan Medellin city; and (iii) a summary of the 

local sewer assessment standard used the Metropolitan city of Medellin to classify the 

structural condition of sewer assets. For more information about Medellin, please see 

appendix-Part B.2. 

5.2.1. DESCRIPTION OF THE MEDELLIN’S SEWERAGE 

The city extends along of the natural axis of Medellin river in which converge 25 gorges: 

Doña María, La Jabalcona, La Guayabala, Altavista, La Picacha, Ana Diaz, La Hueso, La 

Iguana, Malpaso, La Quintana, La Cantera, Minitas, La Zuñiga, La Aguacatala, La Volcana, 

La Sucia, La Presidenta, La Poblada, La Asomadera, El Indio, Santa Helena, El Ahorcado, 

El Molino, La Bermejala, La Rosa and La Seca. EPM (Medellin public companies - 

Empresas Públicas de Medellín) is the company that provides water supply, sewerage, 

energy and natural gas to metropolitan Medellin city (Bello, Envigado, Itagüi, La Estrella, 

Medellín, Sabaneta, Copacabana, Girardota, Caldas and Barbosa) (Alcaldía de Medellín, 

2017). The Medellin’s sewer system contains 151063 sewer assets (corresponding to 4367 

km). Medellin’s sewer system contains three types of sewers: combined, sanitary and 

stormwater. The combined system, which was the first system constructed in Medellin, 

consists of secondary collector assets that transport water to the collector sewers. These 

collectors are located parallelly to the gorges to collect the discharge and transport the 

sanitary and stormwater (combined sewer system) to the interceptor assets. The interceptor 

is located parallelly to Medellin’s river to transport the residual water to the “San Fernando” 

wastewater treatment plant - WWTP (Superservicios, 2014). The separate sewer system 

was constructed around the 1950s’ decade in the new neighbourhoods without sewer 

service. As Bogota’s case study, the sanitary system is connected to the combined system 

which discharge to the WWTP and stormwater system is discharged in the gorges and 

Medellin’s river (Superservicios, 2014; Arboleda & Bayona, 2015). Figure B.3. shows the 

sanitary and stormwater systems in Medellin.  
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In summary, the combined and sanitary systems contain 134000 installed assets (3887.2 

km), and the stormwater system includes 44876 installed assets (1434.5 km) which 

represent around 89% of sewerage coverage of Medellin's city (Alcaldía de Medellin, 2016). 

Table B.4. shows a summary of basic characteristics contained in the Medellin's sewer 

system database and their proportion. According to this database, the provided variables 

are (i) Type of effluent that transport the sewer assets; (ii) Material of the sewer assets; (iii) 

Element type of the sewer assets; (iv) Diameter (in meters) of the sewer assets (sewer 

assets are pipes); (v) Length (in meters) of the sewer assets; (vi) Installation periods; (vii) 

Depth (in meters) in which located the sewer assets (mean depth between sewer level 

upstream and downstream); and (viii) Type of foundation implemented in the sewer assets. 

As well as Bogota's case, the numerical variables were categorized to visualize their 

proportion on the sewer systems, and some factors were grouped because their portion was 

smaller in comparison with other factors. 

 

Figure B.3. Medellin's sewer system. Map on the left shows sanitary and combined sewer systems and on the 
right side shows the stormwater system. In red colour are the main assets (or interceptor sewers) and in blue 

colour the collector sewers. Source: Author 
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Table B.4. Description of the basic characteristics of the Medellin's sewer systems database 

Variables Factors Proportion Variables Factors Proportion 

Type of Effluent 

Combined 42% 

Installation 
period (years) 

< 1960 7.80% 

Sanitary 32.70% 1960 - 1970 10.50% 

Stormwater 25.30% 1970 - 1980 12.60% 

Material 
Concrete 88.40% 1980 - 1990 14.50% 

Other materials 11.60% 1990 - 2000 24.30% 

Element type 

Interceptor 0.30% > 2010 4.60% 

Collector 8.60% 

Depth (m) 

< 1m 7.10% 

Secondary collector 91.10% 1m - 1.5m 15.40% 

Diameter (m)  

< 0.15 0.6% 1.5m - 2m 29.10% 

0.15 - 0.2 40.40% 2m - 2.5m 24.20% 

0.2 - 0.3 26.10% 2.5m - 3m 12.50% 

0.3 - 0.45 15.90% 3m -3.5m 5.90% 

0.45 -0.6 9.40% > 3.5m 5.80% 

> 0.6 7.60% 

Slope (m/m) 

< 1 63.50% 

Length (m) 

< 10 19.70% 1 - 2% 4.60% 

25-Oct 30.50% 2 - 4% 5.60% 

25 - 50 29.50% 4 - 8% 7.20% 

50 -75 13.70% 8% - 12% 4.90% 

> 75 6.60% > 12% 11.50% 

Foundation 
Type 

A 2.20%    

B 7.90%    

C 6.60%    

E 13.40%    

P 0.30%    

T 1.90%    

Unknown 67.70%    

Source: Author 

According to Table B.4., most of the sewer assets are pipes in concrete (88.4%) with 

diameters lower than 0.3 m. Besides, the most important installation period of the sewer 

assets was after 1960 and almost 70% of sewer assets do not report the installed foundation 

type. The information presented in Table B.4. was provided by EPM. Likewise, as EAAB 

(Bogota’s case), EPM does not report the assets’ replacement, the new characteristics, and 

the replacement dates.  
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5.2.2. COLLECTED INFORMATION OF METROPOLITAN CITY OF MEDELLIN. 

The item 5.2.2. refers to the additionally collected information of the Metropolitan city of 

Medellin that was useful to develop the present document. It contains the following items: (i) 

a description of the collected information about environmental, urban and operational 

characteristics of metropolitan Medellin city which provided by different public institutions; 

(ii) a description of the Medellin’s assessment standard that the utility uses for qualifying the 

operational and structural condition of CCTV inspected sewer assets; (iii) a description of 

the CCTV inspection information carried out between 2010 and 2017. 

Databases of two different public institutions were collected to gather environmental, urban 

and operational characteristics of the metropolitan city. EPM gives additional information 

about trees presence close to the sewer assets, the operational status of sewer assets and 

hydrographic basins. On the other hand, the municipality of Medellin gives information about 

the soil type of Aburra’s valley, districts (which are the 16 districts of Medellín and the towns 

that belong to metropolitan Medellin’s city), and the closest cities of Aburra’s valley; land 

uses of urban areas (which are categorized in high, medium, low land mixtures and public 

space), the risk for by movements of mass for Aburra’s valley (which refers to the seismic 

zoning), road database that contains information about road classification according to the 

type of traffic; the probability of flood risk in Aburra’s valley (which is already categorized in 

high, medium, low and very low flood risk); and finally geographic location (latitude and 

longitude coordinates). Table B.5. shows a summary of the above variables. 

The information about land uses of Medellin’s case is categorized in a different way than 

Bogota’s case. According to the territorial ordinance plan for metropolitan Medellin’s city 

(Alcaldía de Medellín, 2014), the land uses classifies in low, medium and high mixture land 

areas and public space. Along with land mixtures areas in the following is the meaning of 

each land mixture area: (i) low land mixture area means that predominates residential uses; 

(ii) medium land mixture areas refer to transition zones, institutional uses (schools, hospitals, 

and others), a higher percentage of population density and neighbourhood services; (iii) high 

land mixture areas denote areas of economic activity in transformation and economic and 

industrial areas. Besides, the information of risk for movements of mass means descending 

movements, at different speeds, of a volume of soil and/or rock on one or several rupture 

surfaces, under the action of gravity that can be activated by water, earthquakes and 

anthropic actions (UNAL, 2009). The categorization of the risk for movements of mass is 

ranked from the values of maximum ground acceleration (MGA) at rock level, which 
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corresponds to a return period of 475 years according to the results of INGEOMINAS & 

UNAL (2010) and Salgado et al., (2010). Therefore, the risk of movements of mass was 

categorized as the following: (i) very low risk corresponds to a MGA from 0 to 100 cm/s2; (ii) 

low risk, from 100 to 150 cm/s2; (iii) medium risk, from 150 to 200 cm/s2; (iv) high risk, from 

200 to 300 cm/s2; and (v) high risk, MGA’s values higher than 200 cm/s2 (SGC & EAFIT, 

2014; SGC, 2013). 

Table B.5. Description of collected information from metropolitan Medellin city 

Institution Variable Description 

Medellin’s 
public 

companies 
(Empresas 
Públicas de 
Medellín- 

EPM) 

Trees presence Yes and No 

Operational status Construction, Design, operation and out of service 

Basin 

Aguas calientes, Altavista, Castrol Indio y Asomadera, Centro parrilla, Interceptor 
Occidental-Naranjal, Interceptor Occidental - Nutibara, Interceptor Oriental 
Industriales, Distrito1, Doña María, El Ahorcado, El Bolo, El Hatillo, El Molino, El 
Salado, Granizal, Interceptor Occidental Calle 50, La Aguacatala, La Ayura, La 
Bermejala, La Doctora, La Estrella, La García, La Grande, La Guayabala, La 
Hueso, La Iguana, La loca y hato, La lopez, La madera, La Malpaso, La Miel Sur, 
La Mina, La Minita, La Muñoz, La Olleta, La Paulita, La Picacha, La Poblada, La 
Presidenta, La Quintana, La Rosa, La Seca, La Señorita, La Sucia, La Tinajas, La 
Valeria Norte, La Valeria Sur, La Volcana, La Zuñiga, Loreto-San Diego Calle 31, 
Piedras Blancas, Pueblo Viejo, Rio Medellín, Rodas, Santa Helena, and Tasajera  

Municipality 
of Medellín 
(Alcaldía de 

Medellín) 
GeoMedellin 

Web 

Soil type Clay, Colluvium, Gravel, Sand, Silt, and Stone 

District 

16 Medellin’s districts: Popular, Santa Cruz, Manrique, Aranjuez, Castilla, Doce de 
Octubre, Robledo, Villahermosa, Buenos Aires, La Candelaria, Laureles – Estadio, 
La América, San Javier, El Poblado, Guayabal and Belén, 
7 towns: Barbosa, Bello, Caldas, Copacabana, Itagüí, La Estrella and Girardota. 

City Barbosa, Bello, Copacabana, Girardota, Itagüí, La Estrella, Caldas and Medellín 

Land uses High, medium, low mixture and public space 

Risk for movements of 
mass (Seismic zoning) 

Very High, High, medium, low and very low risk 

Road type 
Highway, national street, regional street, rural primary, rural local, urban primary 
and urban local 

Flood Risk High, medium, low, and very low probability flow risk 

Latitude Coordinate  East, mid-east, mid-west and west 

Longitude Coordinate  North, mid-north, mid-south, and south 

Source: Author 

Furthermore, the climatic zoning (IDEAM, 2001) calculates the information about Flood risk 

from the maximum daily rain (MDR) evaluated with a return period of 25 years. Therefore, 

the categorization of flood risk was: (i) very low risk corresponds to a DMR’s values from 0 

to 100 mm; (ii) low risk, from 50 to 100 mm; (iii) medium risk, from 100 to 150 mm; (iv) high 

risk, from 150 to 220 mm; and (v) very high risk with DMR’s values higher than 220 mm 

(SGC & EAFIT, 2014). 
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5.2.2.2. Local assessment standard 

Medellin public companies (EPM) has its methodology for assessing the condition of sewer 

assets (“Methodology for diagnosis and evaluation of sewage networks with CCTV”) since 

2010 (EPM, 2010). The methodology guides the CCTV inspections of the sewer assets and 

then qualifies each sewer asset according to the severity of failures found. An assessment 

system qualifies each sewer asset according to the failures found and established criteria 

for determining the deterioration level or grade regarding a collapse probability of the asset.  

As well as Bogota’s case, for Medellin’s sewer system, the standard classifies the 

operational and structural condition of the sewer assets in five grades, being grade 1 which 

represents the sewer assets in excellent conditions, and grade 5 the critical conditions. For 

more details about this assessment, please see appendix – Part B.2.1. 

5.2.2.3. CCTV Inspected data 

EPM provided the collected CCTV inspections: records of CCTV inspections carrying out 

from 2010 to 2017. The CCTV inspection database contains information about the ID and 

the address of the sewer assets, the inspection date, and its structural conditions (in grades). 

After CCTV inspection data clean-up, 17293 consistent inspections (representing 536 km) 

were linked to 16684 sewer assets (around 12% of the total sewer system). Figure B.4. 

shows inspected sewer assets of the whole Medellin’s sewer system.  

According to the inspected sewer assets, 31.7% are in excellent structural conditions (grade 

1), 2% are in good structural conditions (grade 2), 3.6% in moderate structural conditions 

(grade 3), 57.4% in poor structural conditions (grade 4), and 5.5% in critical conditions 

(grade 5). 

A big database was built based on the Medellin’s sewer systems information (item 5.2.1) 

and the collected information of Medellin’s city (item 5.2.2) related to surrounding 

characteristics of Medellin’s city and CCTV inspection reports. Figures from 5 to 7 of the 

appendix – Part B.2.2. show bar plot analysis that depicts the distribution of the structural 

condition regarding the collected variables to observe an apparent relationship between the 

deterioration of the structural condition of sewer assets and the collected data. 
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Figure B.4. Medellin’s inspected sewer assets between 2010 and 2017. Whole sewer system in blue 
lines and inspected sewer assets in red lines. Source: Author 

From the bar plot analysis (Figures from 5 to 7 of the appendix – Part B.2.2), it is possible 

to observe that the deterioration of structural condition does not show an apparent 

relationship with depths in which locates the sewer assets, land uses, operating status, soil 

type, foundation type, flood risk and cities. Table B.6. a summary of the variables presenting 

apparent relationship with the deterioration of the structural condition of the sewer assets 

for Medellin’s case. 

Table B.6. depicts that the physical characteristics of the sewer assets presented an 

apparently influence over their structural condition for Medellin’s case. As well, the age, 

installation and inspection years periods an apparent shown relationship with the structural 

condition. Type of effluent and variables related to geographical location (districts, basins, 

seismic risk areas, longitude and latitude coordinates) also are variables that could influence 

the deterioration of the structural conditions; these variables show associations with 

topographic conditions of the terrene and the urban dynamism of the city (Micevski et al., 

2002). Closeness with road networks and trees also depicted an apparent relationship with 

the deterioration of the structural condition of the sewer assets.  
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Table B.6. Summary of variables that show a relationship with the deterioration of structural condition 
of sewer assets according to the bar plots from Figure 5 to 7 of the appendix – Part B.2.2. 

Variables Relations with the deterioration of structural condition 

Inspection periods Higher percentage of deteriorated sewer assets in the last inspection period (2014-2017) 

Installation periods Older installation period, higher percentage of deteriorated sewer assets 

Age periods Older sewers' age period, higher percentage of deteriorated sewer assets 

Diameter Smaller sewer assets, higher percentage of deteriorated sewer assets 

Material A higher percentage of deteriorated sewer assets in concrete sewers  

Type of effluent Higher percentage of deteriorated sewer assets in separate systems (sanitary and stormwater) 

Length Longer sewer assets, higher percentage of deteriorated sewer assets 

Slope A higher percentage of deteriorated sewer assets in sewer assets of slopes lower than 0.5 m/m 

Districts 
A higher percentage of deteriorated sewer assets in sewers located in Laureles (Estadio), Las 
Américas and Castilla districts. In fact, the districts at the west side of the river show higher percentage 
of deteriorated sewer assets 

Road Type A higher percentage of deteriorated sewer assets in assets located in urban roads 

Trees presence A higher percentage of deteriorated sewer assets in assets that have trees presence closeness 

Seismic Zones A higher percentage of deteriorated sewer assets in assets located in low seismic zones 

Element Type A higher percentage of deteriorated sewer assets in collector assets 

Basin 
A higher percentage of deteriorated sewer assets in assets located in Altavista, La Picacha-Nutibara, 
La Poblada, La Malpaso, La Grande-Estrella and Granizal basins 

Longitude 
coordinate 

A higher percentage of deteriorated sewer assets in assets located at the west geographical zone 

Latitude coordinate 
A higher percentage of deteriorated sewer assets in assets located on the mid-south geographical 
zone 

Source: Author likewise as Bogota's case 

it is important to highlight that even if, Medellin is a smaller city and its assessment standard 

is more recent than Bogota’s case, the percentage of inspections is higher because of the 

inspection’s routes are centralized. Bogota’s utility divides the water supplies and sewerage 

management into five zones in which each zone is autonomous, which makes that each 

zone has its own rules and strategies to manage these infrastructures. 

The information provided from CCTV inspections was given from both utilities by confidential 

agreement between “Pontificia Universidad Javeriana” and the utilities (EAB and EPM). The 

agreement states that the author could work with the provided data with the commitment of 

reporting the results of this thesis doctoral. This fact allows working with real data for 

contributing to the utilities in the sewer asset management of their cities. 

In accordance of bar plot analysis for both cities, variables related to the physical 

characteristics, age and installation year periods, type of effluent of the sewer assets, and 

surrounding variables such as closeness with other infrastructures (road networks and 

trees), the geographical location of the sewer assets (districts, towns, basins, seismic risk 
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areas, longitude and latitude coordinates) shown an apparent relationship with the structural 

condition. However, this analysis does not assure the sizable influence of these variables 

over the deterioration of the structure of the sewer assets, because bar plot analysis is a 

superficial technique and does not show an interaction of the collected variables with the 

structural condition. It makes impossible to find a hierarchy of the variables regarding their 

influence over the deterioration of the structural condition of the sewer assets. Nevertheless, 

this analysis could give clues of the variables that should include within the deterioration 

models to support their prediction performance. Most of these variables have already 

reported in other case studies as influential (Ariaratnam et al. 2001; Baik et al., 2006; 

Tscheikner-Gratl et al., 2014; Davis et al., 2001a; Le Gat, 2008; Ana et al., 2009b; Rokstad 

& Ugarelli, 2015; El-Housni et al., 2017; Caradot et al., 2018; Baur & Herz et al. 2002; 

Chughtai & Zayed, 2008; Salman & Salem, 2011; Ugarelli et al. (2013); and Torres-Caijao 

et al. 2017). 

Furthermore, some variables that present an apparent relationship with the deterioration of 

the structural condition for both case studies shown that relation in a different way, such as 

type of effluent: for Bogota’s case the structural deterioration was related to the combined 

and sanitary sewers, while for Medellin’s case the structural deterioration was associated 

with the separate sewers (stormwater and sanitary). It could happen because, in Medellin, 

the sewer operators have been carried out rehabilitation activities in the oldest zone (historic 

centre) of the city the last years. And other variables showed an apparent influence over the 

structural condition in a case study and the other not: depth and inspection period years 

showed influence for Medellin’s case and Bogota’s case does not. It implies that the found 

variables are not always influential over the deterioration of the structural condition. It 

depends on each case because the interaction of the physical, urban, environmental and 

operational characteristics makes unique each city (Chornet, 1994). 

Besides, characteristics such as land use, operating status, and those related with flood risk 

(precipitation levels for Bogota’s case) do not show an apparent influence over the damage 

of the structure of the sewer assets in both cities. However, these relationships should be 

analysed in-depth since there are relationships with districts for both cities and the 

operational conditions of the sewer assets for Bogota’s case. 
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CHAPTER 6: SELECTED METHODS  

Chapter 6 consists of the description of the arguments of the chosen methods to develop 

the proposed methodology. The theoretical description of these methods is in Part A. 

Chapter 6 has two subchapters: subchapter 6.1. describes the arguments of choosing the 

used methods to become tools for supporting the sewer asset management and subchapter 

6.2 describes the used computer-based tools to develop the methods mentioned in 

subchapter 6.1.  

6.1. METHODS USED AS SAM’S TOOLS 

This subchapter explains in detail the justification, exploration and analysis of different 

methods for supporting the development of sewer asset management tools. Here, it 

describes the input data and information to be considered to handle with the explored 

methods. Subchapter 6.1 consists of four items according to the method’s application in the 

sewer asset management tools: (i) Bayesian networks as feature selection method, (ii) 

statistical and machine learning methods as deterioration models for predicting the structural 

condition of the sewer assets, (iii) methods used to develop optimisation methodologies for 

finding the combination of hyperparameters that best fit for a management objective, and 

(iv) the used performance measures to evaluate the accuracy of the developed deterioration 

models for different performance perspectives. 

6.1.1. BAYESIAN NETWORKS AS A FEATURE SELECTION METHOD 

In general, some physical characteristics of pipes, environmental and operational features 

have been identified as factors that could influence the structural and operational conditions 

of the sewer assets by statistical models and analysis (Chughtai & Zayed, 2011; Tran et al., 

2007; Davies et al., 2001a).  

In recent years, Bayesian Networks (BN) has become a promising tool for cause-effect 

analyses, which allows representing uncertain knowledge in probabilistic systems such as 

risk analysis (Kabir et al., 2015). This tool has proven to be effective in capturing and 

integrating qualitative (nominal variables) and quantitative information from various sources 

(see the theoretical framework of Bayesian Networks in subchapter 2.5 of Part A). Therefore, 

it can strengthen decisions when empirical data are lacking (Kabir et al., 2015; Li et al., 

2016). For example, España (2007) developed a model for prioritising the pipes to construct 

inspection plans based on BN, GIS (Geographical Information Systems) and survival 
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functions. In this model, the BN let incorporating the information in an organised way and 

limited zones where the information’s cost was readily available. Furthermore, this identified 

the relevant variables to the failure mechanisms and their consequences and determined 

conceptual relationships among them. 

Bayesian Networks have also been successful in experiences related with medical diagnosis 

(Curiac et al., 2009; Gadewadikar et al., 2010; Bucci et al., 2011) because of the integration 

of variables of different natures (i.e. numerical, categorical) such as physical findings, 

laboratory test results and image study findings (Gadewadikar et al., 2010).  The 

identification of cause-and-effect relationships between variables from the calculus of 

conditional probabilistic of the observed database, which indicates the amount in which one 

variable influences another (subchapter 2.5 of Part A). Bayesian Networks are useful in 

contexts where are different interactions of variables of different natures, in which a failure 

or modification of one variable could affect another variable because both belong to the 

same system. Thus, the human organs and urban systems are systems that belong to 

complex systems (human body and city), therefore, sometimes the failure of one of them 

could be produced from the damage or influence of another system or organ, and this is 

detectable with the Bayesian Networks. According to the above, Bayesian Networks could 

be a suitable tool to determine the number of variables that are enough to obtain a 

satisfactory prediction quality for the structural condition of sewer pipes, to reduce the 

collection costs of the variables that could influence over the structural condition. 

6.1.2. METHODS USED AS DETERIORATION MODELS 

Globally, some methodologies and models have  already proposed to support the sewer 

asset management (Vittorino et al., 2014; Baah et al., 2015; Rokstad & Ugarelli, 2015; 

Saegrov, 2006), especially deterioration models to support the definition of cost-effective 

inspection and rehabilitation strategies (Caradot et al., 2013) from the prediction of condition 

of uninspected sewer assets (Mashford et al., 2010; Wright et al., 2006) to the forecasting 

of the sewer condition (Ana & Bauwens, 2007). Most of these models base on statistical and 

machine learning approaches (description of the theoretical framework of these methods 

are in chapter 2 and 3 of part A). According to a literature review (Wright et al., 2006; 

Mashford et al., 2010; Younis & Knight, 2010; Salman & Salem, 2011; Harvey & McBean, 

2014), the explored methods were Binomial Logistic Regression -LR, Random Forest (RF), 

multinomial logistic regression – Multi_LR, Ordinal logistic regression – Ord_LR, linear 

discriminant analysis – LDA and support vector machines -SVM. 
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During the research internship, the author together with researchers of Kompetenzzentrum 

Wasser Berlin (KWB) explored the above-described methods applying them in different case 

studies of Colombian and German cities, to analyse their performance to support sewer 

asset management strategies. The internship was supported by a mobility exchange DAAD 

– COLCIENCIAS contract. 

Therefore, the explored deterioration models were based on (i) logistic regression - LR, (ii) 

random forest - RF, (iii) multinomial logistic regression - Multi_LR, (iv) ordinal logistic 

regression – Ord_LR, (v) linear discriminant analysis - LDA and (vi) support vector machine 

- SVM).  

The input data for all methods were numerical variables. Dummy variables were useful to 

handle with categorical variables, except for Random Forest, which works well both with 

categorical and numerical variables. The dependent variable was always categorical. 

However, for logistic regression, the categorical variable was grouped into two levels to 

become a dichotomic response. In this case, the structural condition represents critical and 

non-critical. 

For LDA and SVM, different methods exist for estimating the parameters and kernel 

functions. For the LDA model, four methods for estimating the parameters, such as t-student 

distribution, mve (minimum volume ellipsoid), moment and mle (maximum likelihood 

estimation) (Friedman, 2001). According to the results from the deviation analysis and 

performance curve, t-student distribution and mve were the ones with the highest quality 

predictions for the validation dataset (Hernández et al., 2019b). Likewise, for the SVM 

model, seven kernel functions were explored: (Gaussian) radial basis (Rbf), linear (vanilla), 

polynomial, hyperbolic tangent, Bessel and ANOVA (Genton, 2001). In the end, the 

Laplacian kernel function was the one with the most successful results according to 

deviation analysis and performance curve (Hernández et al., 2019b). 

The above deterioration models were applied using 2/3 of the data for calibration and the 

rest for validation. Three techniques were used to analyse the prediction performances 

obtained by the developed deterioration models: ROC space, Performance Curve, and 

deviation analysis. For more details about these techniques, see chapter 4 of part A.  

From the results of these explorations, the methodology proposed in this doctoral thesis 

(Part D) includes some methods such as LR, SVM, RF and Ord_LR to build deterioration 

models because of their successful results in Bogota’s and Medellin’s case. 
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6.1.3. METHODS USED AS OPTIMISATION METHOD 

Grid search technique and Differential Evolution algorithm optimisation (for a theoretical 

framework, see in items 2.1.4 and 3.3 of the part A) were used to develop an optimisation 

methodology for finding the combination of hyperparameters that best fit to reach a 

management objective. These techniques are often useful to find the optimal 

hyperparameters for machine learning methods such as SVM and RF. The selection of Grid 

Search and Differential evolution algorithm optimisation as optimisation methods were 

chosen by the successful results in finding hyperparameters in other experiences such as 

Bergstra & Bengio, (2012), Ortiz-García et al. (2014) and Tarmizi et al. (2014) for Grid 

Search Method and López-Kleine & Torres (2014), Bazi et al. (2013), and Tien et al. (2016) 

for differential evolution algorithm optimisation. Differential Evolution algorithm (DE) is widely 

useful since it provides the following advantages over other optimisers: i) it improves a 

candidate solution by the use of bio-inspired operators (such as crossover and mutation); ii) 

it does not require a gradient to find the optimal global solution; and iii) it can handle non-

differentiable functions, which allows its use in non-continuous problems (Price et al., 2006, 

Torres et al., 2013). Part C describes in detail a methodology which links both techniques 

for finding the optimal combination of hyperparameters that best fit to fulfil two management 

objectives. 

6.1.4. METHODS USED AS PERFORMANCE METRICS 

Cohen’s Kappa coefficient, ROC space, performance curve and deviation analysis are 

methods used as metrics to measure the prediction performance of the structural condition 

estimated by deterioration models. These metrics evaluate the prediction under different 

points of view: (i) Cohen’s Kappa coefficient (subchapter 4.1 of Part A) gives a value 

between 0 and 1 which measures the agreement between the predicted structural conditions 

and the real structural conditions to evaluate the performance of the prediction robustly, 

since it considers the agreement occurring by chance (Vieira et al., 2010); (ii) ROC space is 

used to analyse the performance prediction of an objective (in this case, a structural 

condition), calculating the True Positive Rate (TPR) and False Positive Rate (FPR) to 

compare the times that the model predicted correctly and incorrectly the structural condition; 

(iii) performance curve is a method that specifically analysis the performance of critical 

conditions by comparing the probability of being in critical conditions with the actual condition 

reported by CCTV; and (iv) deviation analysis is a technique that compares the condition 

distribution of the sewer assets on the network and by times period between the predicted 
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and observed conditions, this technique compares the proportions of sewer assets on each 

condition. ROC Space and Deviation analysis are useful to evaluate the predictions at a 

global level, that could be useful to develop management strategies at the network level of 

the sewer system. On the other hand, Cohen’s kappa coefficient and performance curve 

evaluate the performance of the prediction of the structural condition of each single sewer 

asset. These tools are useful for identifying assets with more urgency to be rehabilitated and 

supporting strategies for rehabilitation activities.  

Based on these four-performance metrics, in subchapter 8.1 of part C, the author proposes 

performance metrics that englobe four performance perspectives explained before and 

guides the prediction to two specific management objectives: at the network and single pipe 

levels. 

6.2. COMPUTER-BASED TOOLS 

Computer-based tools are software that helps with the handling and processing data, as 

well as the development of the sewer asset management tools to reach the methodology 

proposed in this doctoral thesis. R software and ArcGIS were the main used tools during the 

doctoral thesis. The link between GIS tools and R software is helpful because of the 

versatility of R software. GIS tools allow collecting and georeferenced the data in order to 

be handled with R software. Once the thesis ’results were obtained, GIS tools were used 

one more time, in order to plot in georeferenced maps. This subchapter splits into two items: 

(i) a description of the primary libraries and functions of R Software for developing the 

methods described in the subchapter 6.1, and (ii) a description of the leading used tools in 

ArcGIS for collecting and merging information geographically, and building georeferenced 

maps to visualize the predictions of the sewer assets.  

6.2.1. R SOFTWARE 

R software is a language and environment for statistical computing and graphics. R offers a 

wide variety of statistical (linear and nonlinear modelling, classical statistical tests, 

classification, clustering, machine learning algorithms, mathematical algorithms, etc.) and 

graphical techniques, and is highly extensible. R is an integrated suite of software facilities 

for data manipulation, calculation and graphical displays. One of the most important 

characteristics of R software is the ease to produce publication-quality plots, including 

mathematical symbols. R is available as Free Software under the terms of the Free Software 

Foundation’s GNU General Public License in source code form. It compiles and runs on a 
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wide variety of UNIX platforms and similar systems: Linux, Windows and macOS. R could 

extend via packages: there are about eight packages provided with R distributions and many 

more are available through the CRAN family of internet sites covering an extensive range of 

modern tools (R Core Team, 2019).  

Besides R, there is a friendly software called “RStudio”. RStudio is an integrated 

development environment for R. RStudio includes a console, syntaxis-highlighting editor that 

supports direct code execution, as well as tools for plotting, history, debugging and 

workspace management. RStudio is also available in open source and commercial edition 

and runs on the desktop (Windows, Mac or Linux) or in a browser connected to RStudio 

Server or RStudio Server Pro (for Ubuntu, CentOS, and Linux) (RStudio Core Team, 2019). 

6.2.1.1. Libraries used for data pre-processing 

Libraries such as Base, Utils (R Core Team, 2019), kwb.utils (KWB, 2017a), kwb.sema 

(KWB, 2017b), lubridate (Spinu,2016), and plyr (Wickham H & Wickham M.H., 2016a) were 

helpful to call data from CSV and shapefiles of the collected information of the case studies. 

For the pre-processing activity, the data were cleaned-up, merged and filtered to consolidate 

a unique database for each case study. Besides, some variables were calculated, such as 

the depth and the age of the sewer assets. The numeric data also were categorised (based 

on boxplot distribution) to analyse their distribution in the database and compare with other 

variables. Besides, libraries such as grDevices, graphics (R Core Team, 2019), ggplot2 

(Wickham et al., 2016b), scales (Wickham, 2016c), multipanelfigure (Graumann & Cotton, 

2018) were useful for plotting the cleaned-up database to visualise the distribution of the 

collected variables with the structural grades and draw the graphics related to the 

measurement techniques such as performance curve and deviation analysis.  

6.2.1.2. Function used as feature selection tool  

Library Bnlearn is a package that contains Bayesian network structure learning, parameter 

learning and inference. The package implements constrained-based, pairwise, score-based 

and hybrid structure learning algorithms for discrete, Gaussian and conditional Gaussian 

networks, along with many score functions and conditional independence tests (Scutari, 

2019). All the learning algorithms need that all input data should be categorical; therefore, 

the numerical data must be categorised. As Hill-Climbing algorithm was the chosen learning 

algorithm, this library contains the function hc to build a network based on hill-climbing 
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greedy search node ordering. (Scutari, 2019). hc worked to develop the proposed feature 

selection methodologies for both case studies described in Part C. 

6.2.1.3. Main functions for deterioration models  

Several deterioration models were developed based on seven statistical and machine 

learning methods. The application of this deterioration models is in Part D of this manuscript. 

Therefore, the functions of different libraries were applied to develop the deterioration 

models. In the following, it is describing the used functions for each method: 

- lda: this function is helpful for developing linear discriminant analysis (LDA) models. 

This function contains the four methods for estimating the parameters of LDA. MASS 

is the library that holds this function (Ripley et al. 2013). However, it is not the only 

one library that develops linear discriminant analysis models in R.  

- polr: polr is the function that fits a logistic or probit regression model to an ordered 

factor response. The default logistic area is proportional odds logistic regression, 

after which is named ordinal logistic regression. polr belongs to the functions that 

holds the library MASS (Ripley et al., 2013) 

- glm: this function is useful to fit generalized linear models, specified by giving a 

symbolic description of the linear predictor and a description of the error distribution. 

This function helps to develop binomial logistic regression models. Stats is the library 

that contains glm function (R Core Team, 2019). 

- multinom: multinom is helpful  to model nominal outcome variables, in which the log 

odds of the outcomes generate linear combination of the predictor variables. nnet 

package contains the function multinom to develop a multinomial logistic regression 

model (Ripley & Ripley, 2016).  

- randomForest: This function implements Breiman’s random forest algorithm (based 

on Breiman and Cutler’s original Forthan code) for classification and regression 

tasks. It can also be used in an unsupervised mode for assessing proximities among 

data points (RcolorBrewer & Liaw, 2018). randomForest is included in the functions 

that offer randomForest library, which is used for classification and regression tasks 

based on a forest of trees using random inputs.  

- ksvm: ksvm implements Support Vector Machines which are a tool for classification, 

novelty detection, and regression tasks. ksvm support the well-known C-svc, nu-svc, 

(classification), one-class-svc (novelty), eps-svr, nu-svr (regression) formulations 

along with native multi-class classification formulations and the bound-constraint 
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SVM formulations ksvm also supports class-probabilities output and confidence 

intervals for regression. ksvm belongs to kernlab library (Karatzoglou et al., 2018). 

6.2.1.4. Main functions for optimisation tools  

To develop the grid search technique and differential evolution algorithms, two libraries were 

suitable: caret (Kuhn, 2012) and DeOptim (Mullen et al., 2011). caret package contains 

functions to streamline the model training process for complex regression and classification 

problems. From caret package and other packages that support caret packages such as 

parallel (R Core Team, 2019), do.parallel (Weston & Calaway, 2019a), foreach (Weston, 

2019b), and base (R Core Team, 2019) packages to develop grid search technique reducing 

the computational time by splitting the running process in different cores. DeOptim package 

implements the Differential Evolution algorithm for global optimisation for a real-valued 

parameter vector. The implementation of differential evolution interfaces with code for 

efficiency. 

Moreover, the package is self-contained and does not depend on any other packages 

(Mullen et al., 2011). The function used to perform the global evolutionary optimisation via 

differential Evolution algorithm is DeOptim (Mullen et al., 2011). 

6.2.2. ArcGIS 

ArcGIS is a software related to Geographical Information Systems (GIS) for working maps 

and geographic information. This software helps for creating and using maps, compiling 

geographic data, analysing mapped information, sharing and discovering geographical 

information, using maps and geographical information in a range of facilities, and managing 

geographical information in a database (ESRI, 2019). ArcGIS desktop consists of several 

integrated applications such as ArcMap, ArcCatalog, ArcToolbox, ArcScene, ArcGlobe and 

ArcGIS Pro. ArcCatalog is the data management application. ArcMap is the application used 

to view, edit and query geospatial data, and create maps. ArcToolbox contains 

geoprocessing tools, data conversion, and analysis tools. ArcScene and ArcGlobe are an 

application for viewing GIS data in 3-D. And finally, ArcPro allows using ArcPy python 

scripting for database programming (ESRI, 2019).  

For this doctoral thesis, the ArcGis tool was used mainly for extracting information of the 

collected information of both case studies and building maps. Table B.7. shows the tools 

that were suitable for the above purpose. 
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Table B.7. Used tools and functions of ArcGis (ESRI, 2019) 

Tools Functions Used for 

Analysis 
Toolbox 

Extract, overlay, spatial joint and clip Extract and join information of different shapefiles 

Conversion 
Toolbox 

Convert files from KML, PDF, 
Raster, GPS and WFS files to 
shapefiles and raster files 

Convert the collected information in shapefiles to extract information 

Data 
Management 
Toolbox 

projections and transformations 
tools, aggregate o delete features, 
joints merge, rename, sort, find 
identical, and geometry calculator 

One of the most used toolbox: The projections and transformation 
tools were used to convert geographical data from one map 
projection to another; also aggregates o delete features into the 
shapefiles, joint and merge shapefiles (also feature information 
tables), renames features, sort data,  find identical points and 
Calculates and add information to a feature's attribute fields 
representing the spatial or geometric characteristics and location of 
each feature, such as area, length, and x, y and z coordinates 

Insert 
add shapefile, add legend, add north 
arrow, add scale bars, and add base 
maps 

Add information to build and visualize data in the ArcMap: Add 
Shapefiles, add a legend, add data frame (more than 1 map 
environments), add a north arrow, add scale bars and add base 
maps (add a background of geographical context of the map that 
user wants to visualize)  

Selection Selection by attributes 
This function allows providing a SQL query expression that is used 
to select that match the selection criteria 

Source: Based on ESRI (2019) 

According to Table B.7., these functions help to extract, join and merge information to build 

an extensive database in which each sewer asset contains information about physical 

characteristics of sewer assets and surrounding variables. Functions such as Insert and 

selection help to create maps to show the predictions of the sewer assets geographically on 

each case study. 
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CONCLUSIONS PART B 

The chosen case studies were Bogotá and Medellin because of their availability and the 

criteria needed to develop the proposed methodology: (i) large percentage of sanitation 

coverage on the city; (ii) georeferenced information; (iii) assessment protocol for evaluating 

the structural and critical conditions of sewer assets; and (iv) non-depreciable quantify of 

CCTV inspected information.  

From the available information (sewer system and CCTV reports) that own the EAB and 

EPM, the managers can already make decisions in rehabilitation activities. However, these 

decisions are based on reactive management (making decisions after the damage occurs). 

The idea of collecting data of different nature (numerical, categorical, special, and others) 

represents a challenge for its processing. The development of feature selection and 

deterioration models should consider this diversity to include all the collected data and take 

advantage of this variety in the models. 

According to the description of the collected data (bar plot analysis), it was possible to 

observe that the relationship of some variables varies from a case to another. It means that 

it is not possible to generalize over "universal" variables in sewer asset management. It is 

essential to handle each case study separately, and it is evident that it is necessary to 

develop methodologies for being applying to different cases.  

Despite some variables presented an apparent relationship with the deterioration of the 

structural conditions for both case studies, there are doubts about the importance of some 

variables than others. It difficult to assures if these variables have the same weight within 

the model or could handle in the same way. 

Following the last two conclusions, it is not possible to make conclusive decisions about the 

key variables to include in the deterioration models because the bar plot analysis is not deep 

enough. However, variables such as some physical characteristics, age, construction year 

periods and type of effluent of the sewer assets, as well as closeness with trees and road 

networks, the geographical location of the sewer assets, and seismic characteristics could 

include supporting the performance of the deterioration models. 

The exploration of deterioration models, based on different statistical and machine learning 

methods for different case studies, allows analysing the prediction accuracy from different 

perspectives. According to Hernández et al. (2018) and Hernández et al. (2019b), it was 
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found that there is not a unique model for predicting the structural condition of the sewer 

assets; there are multiple models that achieve a good prediction quality. Nevertheless, some 

models could better behave in some case studies than others, because of the specific city's 

characteristics, assessment standard, collected data of CCTV inspections and management 

objectives. 

On the other hand, some explored methods and computational-based tools could help to 

the decision-making for (i) including or not specific variables within the deterioration models; 

and (ii) including or not particular variables within the deterioration models for reaching 

particular management objectives. 
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Part C is the most important of this manuscript because it describes the developed tools 

during the doctoral time and the proposed methodology for identifying the key and enough 

factors for achieving objectives in sewer asset management. Part C contains first the 

description of the developed tools independently (Chapter 7 and 8), and their final integration 

for building the proposed methodology (Chapter 9). The main idea of these tools is 

answering the research questions of this doctoral thesis. Hence, the developed tools are 

splitting in two: antecedent tools and the main methodology. The antecedent tools are those 

developed independently and proved to determine their applicability (chapters 7 and 8), and 

the main methodology is the integration of all these tools to achieve the objective of this 

doctoral thesis, and thus answering the open research questions in part D.  

Chapter 7 consists of the description of a Bayesian network-based methodology that was 

the first antecedent of the proposed methodology in this thesis. The Bayesian network-

based methodology depicts in this section was carried out together with the support of 

Master students (Julián Guzmán-Fierro, Sharel Charry, Iván González and Felipe Peña-

Heredia), who developed this methodology. The final products of this Bayesian network-

based methodology were: (i) participation for an oral presentation at LESAM/PI conference 

2019 under the title “Selecting effective sewer asset management models: a probabilistic 

inference approach” (Guzmán-Fierro et al., 2019a); (ii) submission in the International 

Journal of Critical Infrastructures in November 2019 under the title “Bayesian network-based 

methodology for selecting a cost-effective sewer asset management model” (Guzmán-Fierro 

et al., 2019b); and finally (iv) the base in the development of the proposed methodology of 

this manuscript (subchapter 9.1 of this Part). 

Chapter 8 has two subchapters: (i) the description of the proposed developed metrics that 

links with two different sewer asset management objectives: to network and single pipe 

objectives; and (ii) the description of the optimisation’s methodology, based on grid search, 

Monte-Carlo simulations and Differential Evolutionary (DE) algorithms, that finds the optimal 

hyperparameters of the machine learning-based deterioration models guided to the two 

proposed sewer asset management objectives of the proposed developed metrics. In the 

following, it is shown some products of these developed tools: (i) publication of the paper 

entitled “Practical benchmarking of statistical and machine learning models for predicting 

the condition of sewer pipes in Berlin, Germany” (Caradot et al., 2018) in the Journal of 

Hydroinformatics“; (ii) submission of the paper entitled “Optimising SVM models as 

predicting tools for sewer pipes in the two main cities in Colombia for different sewer asset 
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management purposes” (Hernández et al., 2019c) in Structure and Infrastructure Systems 

Journal; (iii) participation on UDM conference 2018 as a poster (Hernández et al., 2018b); 

(iv) application of the proposed metrics and optimisation methodology in Guzman-Fierro et 

al., (2019c) and finally, (v) application of the proposed metrics and optimisation methodology 

in the present thesis (Subchapter 9.2 of the present part). The performed work shown in 

chapter 8 was carried out together with Kompetenzzentrum Wasser Berlin (KWB), during 

the mobility exchange DAAD-Colciencias contract, celebrated in 2016 and 2017 years. 

Chapter 9 describes the methodology for identifying the key and enough factors for 

achieving objectives in sewer asset management. This methodology consists of two parts: 

(i) Bayesian Networks (see 6.1.1. of Part B of this manuscript) based methodology as a 

feature selection tool to develop a methodology that chose and sort the importance of 

features to influence in the deterioration of the structural condition of the sewer assets 

(Subchapter 9.1); and (ii) Methodology for selection the deterioration models that best fit two 

management objectives related to network and single asset purposes (Subchapter 9.2). 

Both parts integrate the proposed metrics (chapter 8.1) that links with two different 

management objectives (at the network and single pipe prediction levels), and the proposed 

optimisation methodology (subchapter 8.2) to find the hyperparameters combination that 

best fit the management objectives. The methodology could apply to different case studies 

and for different structural condition scenarios in which is also explored the prediction quality 

and the advantages of these scenarios in the decisions-making in sewer asset management.  

Chapter 9 is the most important chapter of this manuscript. This chapter integrates the 

different developed tools (Chapter 7 and 8) to develop a complete methodology for 

determining which factors are enough and necessary to achieve specific objectives in sewer 

asset management, considering quantity and quality of the available information. Part D 

shows the application of the proposed methodology in Bogota's and Medellin's cases. 
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CHAPTER 7: FEATURE SELECTION TOOL 

Chapter 7 presents the development of a methodology based on Bayesian networks to 

select a set of variables that could influence the deterioration of sewer asset management. 

Thanks to the properties of Bayesian Networks, stated in item 2.5 (Part A) and 6.1.1 (Part 

B) of this manuscript, could be a suitable tool to determine the number of variables that are 

enough to obtain a satisfactory prediction quality for the structural condition of the sewer 

assets.  

For the development of this tool, some master students (Julián Guzmán Fierro, Sharel 

Charry, Ivan González, and Felipe Peña Heredia) participated together with the author of 

this manuscript to build a methodology based on BN to prioritize and select a minimal 

number of variables that allows predicting the structural condition of sewer pipes for the 

management of this type of infrastructure. 

From this work, an article was submitted on International Journal of Critical Infrastructures 

(Guzman-Fierro et al., 2019b), an oral speech was presented in an international conference 

(LESAM/PI 2019) (Guzman-Fierro et al., 2019a). Subchapter 10.1. (Part D) shows a 

summary of the results of this methodology.  

Bayesian Network-based methodology consists of six steps in which are integrated 

Bayesian Networks, a statistical measurement of the agreement such as Cohen's Kappa 

coefficient – Kappa (See 4.1 of Part A of this manuscript), data distribution (boxplots) and 

statistical tests (Wilcoxon test), as shown in the following: 

➢ Step 1 – Data collection: as shown in Figure C1, the proposed methodology begins 

with the collection of data from CCTV inspections (which describe the failures and 

sewer pipe structural conditions according to a visual inspection and qualification 

standard), and information of the sewer system corresponding to the physical 

characteristics of the assets (i.e. diameter, material, length), operational 

characteristics (i.e. type of wastewater, flow), and environmental factors (i.e. 

geotechnical and seismic aspects, urban and demographic aspects) obtained by 

Geographical Information Systems GIS in one database. Then, this information is 

merged to build one database in which each asset has information of each physical, 

environmental and operational characteristic together with the structural condition 

reported by CCTV inspections.  
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➢ Step 2 – Creation of structural condition scenarios (SCS): different structural 

condition scenarios are created to identify in the next step (step 3) the scenario that 

provides more predictive capacity. Assessment standards such as MSSC (WRC, 

1993) or PACP (NASSCO, 2004), which generally qualify the structural condition in 

five categories, can be taken as a reference for proposing condition aggrupation 

such as the one shown in Table C.1. 

The purpose of creating SCS is to discriminate in a better way the structural state to 

maximize the prediction quality (López-Kleine et al., 2016; Caradot et al., 2016), 

reducing the uncertainty of wrong evaluation of the operators or the camera quality 

of CCTV technology (Caradot et al., 2017). Moreover, the reduction of the structural 

condition of sewer assets in categories could support the management objectives 

and management activities, considering budget restrictions.   

Table C.1. Structural Condition Scenario (SCS) example 

Description 

Original Aggrupation  

WRc Protocol (5 
grades) 

proposal (3 
categories) 

Acceptable Condition 1 1 

Minimal Collapse Risk 2 2 

Unlikely collapse in near future 3 2 

Likely collapse in near future 4 2 

Imminent collapse or collapsed 5 3 

Source: Guzmán-Fierro et al. (2019b and c) 

➢ Step 3 – Selection of BN learning algorithm: Merging the collected data with one 

of the created SCS, then it is explored different learning algorithms to build a 

Bayesian Network (BN). 70% of random data is chosen for training the BN, and the 

rest is used to validate the performance by Cohen’s Kappa coefficient. The selected 

learning algorithm was the one with the highest Cohen’s Kappa coefficient. 

➢ Step 4 – SCS selection: for each scenario proposed in step 2, BN-based models 

are trained considering 1000 random selections (Monte-Carlo simulations) of 

different calibration and validation subset (varying percentages randomly from 50% 

/ 50% to 90%/10 % with 10% steps) and all available variables to predict the 

structural condition range values for each validation sets. 1000 random selections 

were chosen to apply Monte-Carlo simulations, to find an agreement between the 

low computational cost and a rank of possible prediction performance that the model 
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could achieve considering a large amount of random data selection. This agreement 

also is suggested in the findings of Bauer & Guzy (2004) and Austin (2009). 

Moreover, the percentages steps for building the different calibration and validation 

subsets could be according to the user criteria, for this case the authors chose ranks 

of 10% steps for exploring the significant differences in the performance prediction 

considering these calibration and validation subsets. Cohen’s Kappa Coefficient 

(See 4.1 of Part A) (Kappa) is used to evaluate the prediction performance of each 

model because, a part of being a statistical measure of inter-rater agreements for 

qualitative items (predicted and observed structural conditions), it is a robust 

measure than simple per cent agreement calculation since it considers the 

agreement occurring by chance (Vieira et al., 2010; items 4.1 and 6.1.4 of the parts 

A and B of this manuscript). Then, the K’s sets of each scenario are compared to 

each other by boxplot analysis and statistical tests to determine if there are significant 

differences (Wilcoxon test). The chosen structural condition scenario is the one that 

shows the highest Kappa’s set, a low variance, and shows differences significantly 

with the Kappa’s sets of the other SCSs. In the case that Kappa’s sets do not show 

differences significantly, it is chosen the SCS with the lowest Kappa’s variance and 

high Kappa’s median value.  

➢ Step 5 - Calibration/Validation percentage subsets selection: considering the 

chosen SCS from step 3, for each calibration/validation percentage subsets (the 

varying percentages from 50%/50% to 90%/10% by increasing and decreasing each 

10% of the calibration and validation data respectively), 1000 BN-models are trained 

using Hill-Climbing algorithm (item 2.2 and 6.1.1 of the Parts A and B of this 

manuscript) with all the available variables to predict the structural condition range 

values for each validation set. As well as for step 3, Kappa is calculated to measure 

the model performance, and boxplot analysis and Wilcoxon test are applied to 

analyse the data distribution and determine significant differences among the Kappa 

values correspond to each calibration/validation percentages subset. The chosen 

calibration/validation percentages subset is the one that shows the highest K’s set, 

a low variance, and shows differences significantly with the Kappa’s sets of the other 

calibration/validation percentages subsets. In the case that Kappa’s sets do not show 

a significant difference, it is chosen the calibration/validation percentage subset that 

needs less data for training the model.  



107 

 

➢ Step 6 – Comparing the prediction performance: the “reference model” is 

constructed with the chosen SCS and the calibration/validation percentage subsets 

from steps 3 and 4 and with all the available variables. From the reference model, a 

Bayesian Network is built to extract the variables with a direct relationship (first 

parenting relation) with the structural condition. Then, a new model is carried out 

using only these variables (first parenting relationship with the structural condition). 

Anew, 1000 random selections (Monte-Carlo simulations) of the chosen 

calibration/validation percentages subsets are carried out in both models (“reference 

model” and the new model – “reduced variables model”) and these are evaluated by 

Kappa, creating two Kappa’s sets related to “reference model” and “reduced variable 

model” respectively. Wilcoxon test is applied for determining if there are significant 

differences between both Kappa’s sets. If there is not differences significantly, it 

means that it is possible building a model with few variables that achieve the same 

capacity prediction than a model considering all available variables; conversely, if 

there is differences significantly between both models, it is constructed a new model 

considering the variables with a direct relationship with structural condition (first 

parenting relationship) and the variables with a direct relationship with the first 

parenting relationship variables (second parenting relationship with the structural 

condition variable), and it is carried out again the same comparison procedure. If still, 

the comparison shows differences significantly between both “reference model” and 

“reduced variables model”, it is considered the third, fourth and so on parenting 

relationship variables to build new “reduced variables models” until we find a model 

that could achieve the same capacity prediction than the “reference model”. 

For more details about this methodology, and the corresponding results, discussion and 

conclusions, see Guzmán-Fierro et al. (2019b). 



108 

 

  

Figure C.1. Flowchart of Bayesian network-based methodology. Source: Guzmán-Fierro et al. (2019b) 
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CHAPTER 8: PROPOSED OPTIMISATION 

METHODOLOGY AND METRICS 

As well as the exploration carried out in the item 6.1.2 of Part B of this manuscript, the 

proposed metrics and optimisation methodology in the present chapter was carried out 

together with Kompetenzzentrum Wasser Berlin (KWB) during the mobility exchange DAAD-

Colciencias contract.  

8.1. PERFORMANCE METRICS PROPOSAL 

Thanks to the exploration of different methods (item 6.1.2 of this manuscript) to predict the 

structural condition and the evaluation of these predictions by different performance 

techniques (Cohen’s Kappa coefficient, ROC space, performance curves, and deviation 

analysis), the authors found that some methods are more suitable for fulfilling some goals 

than others (Hernández et al., 2017a, b and c; Hernández et al., 2018a; Hernández et al., 

2019a; Hernández et al.. 2019b). Furthermore, it was found that these four performance 

techniques guide to two prediction perspectives that could support two different objectives 

in sewer asset management. According to Rokstad & Ugarelli (2015), the accuracy and 

efficiency of the deterioration models should be analysed considering questions related to 

condition assessment which frequently arise in the Infrastructure Asset Management (IAM) 

planning process at the network and single pipe level. According to the above, two 

performance metrics were developed based on the above performance techniques. These 

proposed metrics are intuitive, self-explanatory and thus clearly understandable. 

The management goal addressed by the network level metric is the extent to which the 

model can predict the distribution of the condition of the network (i.e., the number of pipes 

in each categorized condition), as well as the identification of those areas that require 

rehabilitation more urgently, to design effective investment plans considering the coherent 

budget routes for rehabilitation (Rokstad & Ugarelli, 2015; Hernández et al., 2019c).  

Meanwhile, the management goal addressed by the pipe level metric is related to the actual 

identification of a structural condition of each sewer asset (identifying with higher importance 

those assets in critical conditions). From that information, the stakeholders could develop 

inspection and rehabilitation plans considering additional information about the confidence 

of the outputs of deterioration models (Caradot et al., 2018; Hernández et al., 2019c).  
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The first performance metric (Knet) is related to the network level. It estimates the deviations 

between observed and predicted structural conditions –SC–, usually defined by qualification 

standards such as MSSC (WRC, 1993) or PACP (NASSCO, 2004), for the entire network 

(KDEV_1, K DEV_2,…,K DEV_N) and the deviations of the oldest pipe group for each structural 

condition –SCO (KOLD(DEV_1), KOLD(DEV_2),…,K OLD(DEV_N)). The selection of the oldest pipe group 

because these are ones with the most urgent need of rehabilitation, as they near the end of 

their lifespan. In accordance to Moore (2008) and Dirksen et al. (2012), the oldest sewer 

pipes show more deterioration because the thickness of the inner wall is smaller, as 

chemical attacks and the sum of structural and operational damages that support the sewers 

accrue as time passes. Therefore, many utilities take as reference the oldest sewer pipes 

for prioritizing the renovation of assets (Baur & Herz, 2002; Basu et al., 2013). However, the 

utility assumes this decision depending on other factors such as the depreciation period of 

concrete and clay pipes (Caradot et al., 2018). 

The purpose of this metric is to estimate the model’s ability to predict the distribution of the 

structural conditions in the sewer network (percentage of pipes under a specific structural 

condition) focused on the distribution prediction of the old sewers (more priority). Equation 

C.1. shows the calculation of the Knet metric. 

The second performance metric (Kpipe), related to the pipe level, is obtained from a 

confusion matrix, which compares the predicted and the observed conditions for each pipe, 

and counts the number of agreements and disagreements. Three types of indicators are 

calculated in this metric, related to the True Positive Rates – TPR (K TPR_1, K TPR_2, …, K TPR_N), 

False Positive Rates – FPR (K FPR_1, K FPR_2, …, K FPR_N-2), and False Negative Rates – FNR (K 

FNR_1, K FNR_2, …, K FNR_N-1), of the confusion matrix. Equation C.2. shows the calculation of the 

proposed formula to achieve Kpipe metric. 

The indicators for TPR refers to the percentage of assets predicted correctly in their 

structural conditions; meanwhile, the indicators for FPR and FNR refers to the percentage 

of assets mispredicted. It is vital to observe the indicators of the wrong prediction, as they 

𝑲 𝒆𝒕 =  
𝑲𝑫𝑬𝑽_𝟏

 + 𝑲𝑫𝑬𝑽_ 
 + ⋯ + 𝑲𝑫𝑬𝑽_𝑵

 + 𝑲𝑶 𝑫(𝑫𝑬𝑽_𝟏)
 + 𝑲𝑶 𝑫(𝑫𝑬𝑽_ )

 + ⋯+ 𝑲𝑶 𝑫(𝑫𝑬𝑽_𝑵)
 

𝑵𝒖 𝒃𝒆𝒓 𝒐𝒇 𝒕𝒐𝒕𝒂𝒍 𝑲   𝒅 𝒄𝒂𝒕𝒐𝒓𝒔
 

𝑲𝒑 𝒑𝒆 =  
(𝟏𝟎𝟎 − 𝑲𝑻𝑷𝑹_𝟏) + ⋯+  𝟏𝟎𝟎 − 𝑲𝑻𝑷𝑹_𝑵 

 
+ 𝑲𝑭𝑷𝑹_𝟏

 + ⋯+ 𝑲𝑭𝑷𝑹_𝑵− 
 + 𝑲𝑭𝑵𝑹_𝟏

 + ⋯+ 𝑲𝑭𝑵𝑹𝑵−𝟏

𝑵𝒖 𝒃𝒆𝒓 𝒐𝒇 𝑲   𝒅 𝒄𝒂𝒕𝒐𝒓𝒔
 

Equation C.2. Calculation for determining the Kpipe metric 

Equation C.1. Calculation for determining the Knet metric 
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imply the severe consequences when a decision is made in sewer asset management using 

wrong predictions.  

There are two kinds of possible incorrect predictions: those that predict assets in better 

structural conditions than they are (overestimation of the structural conditions – FNR), and 

those that predict assets in worse structural conditions than they are (underestimation of the 

structural condition – FPR). The most important is taken those indicators in which the 

seriousness of the consequence could affect the decision-making guided by the 

deterioration models' outputs in sewer asset management. 

The percentage of sewer assets incorrectly predicted (overestimations and 

underestimations) is essential for asset management decision-making: for overestimated 

predictions, the utility could assume that urgent actions do not required which could lead to 

sudden collapses (undesirable situation); while if the prediction model classifies an element 

in a worse structural condition than it is, the utility does not have unexpected breakdowns in 

the network. As the severity of the consequences of mispredictions is higher for the 

overestimated predictions, it considers more indicators that represent these predictions than 

the underestimated conditions (see Equation C.2.). 

It is important to note that the proposed metrics were applied for three or two structural 

conditions. In the case that the structural conditions consist of more levels (i.e. five structural 

grades), it is suggested grouping in two or three structural categories assuring data balance 

in the categories: a similar proportion of data on each category. Many grouping scenarios 

were created to explore the best grouping assuring that balance, considering as criteria the 

importance level of the structural conditions and prevailing the same data proportion on each 

category. The importance level of the structural conditions grouping means that only could 

be grouped in order of severity that represents the grades: i.e. that grade 1 cannot be 

grouped with grade 5, or grade 1 cannot be grouped with grades three unless in the group 

is included grade 2. 

The sum of squared difference was the indicator used to evaluate the categories balance 

(as shown in the Equation C3 with an example of three categories), the chosen aggrupation 

of categories is the one with the lowest sum of squared differences.  

Equation C.3. Sum of squared differences (three categories example) 

Being C1, C2, and C3, the length of data for each category.  

    𝒙 = (𝑪𝟏 − 𝑪 ) + (𝑪 − 𝑪𝟑)
 + (𝑪𝟑 − 𝑪𝟏)  
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Hernández et al. (2019c) and Caradot et al. (2018) used the proposed metrics considering 

three structural categories and Guzmán-Fierro et al. (2019c) considered two structural 

categories.  

The performance metrics used here allow to manage specific objectives and serve as tools 

to build effective investment plans to maintain the operation of the network or to rehabilitate 

specific elements that can reach a critical condition (Rokstad & Ugarelli, 2015). 

8.2. OPTIMISATION METHODOLOGY 

As the machine learning methods have taken relevance for the development of deterioration 

models because of the successful predictions of structural conditions of the sewer assets 

(Mashford et al., 2010; Harvey & McBean, 2014; and Rokstad & Ugarelli, 2015), it is 

essential to increase their prediction capacity, finding the combination of optimal 

hyperparameters and guiding the prediction to specific management objectives. Among the 

hyperparameters are included the hyperparameters proper to the machine learning tools 

and the weights of the structural conditions to give equity to the prediction models, reducing 

the classification errors provided by the data distribution (Gunn, 1998).  

The present optimising methodology suggests two steps for finding the optimal combination 

of hyperparameters that increase the prediction quality of the deterioration models: the grid 

search technique (Caradot et al., 2018) and the differential evolution algorithm (DE) 

technique (Hernández et al., 2019c). For more details about these methods, see item 2.1.4 

and subchapter 3.3 of part A and item 6.1.3 of part B. 

In this proposal were considered both techniques because: (i) the grid search technique only 

gives a rank where are located the optimal hyperparameters, and (ii) the DE technique is 

successful in finding the optimal hyper-parameters combination in the search space that 

falls into an optimal global solution (Torres et al., 2013; Zhang et al., 2015). Hence, 

constraining the search space by the grid search technique support the finding of the DE 

technique. Any objective function works with the present methodology. For this thesis, the 

minimisation of Knet and Kpipe metrics are the objectives functions.  

The database used for this methodology should contain the covariates (variables chosen as 

influential over the structural conditions) and the response variable (grades or categories 

that represent the structural conditions). The database is divided randomly, 70% of the data 

for calibration and the rest for validation. The calibration data helps to search for the optimal 
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hyper-parameter combination to achieve the management purposes following the next 

procedures. 

8.2.1. GRID-SEARCH TECNIQUE PROCEDURE 

This methodology consists of two steps to reduce computation time. The idea is to run a first 

coarse grid search to find the optimal values rank for the most sensitive parameters, in this 

case, the weighting factors, and a second fine grid search with thinner weight values to 

identify the optimal values of the remaining hyperparameters. With this two-step procedure, 

the computation time for the parameter search can be reduced compared to a full grid search 

covering all hyperparameters (Bergstra & Bengio, 2012). 

➢ Step 1 – Random Search: a list of 1000 random hyperparameter combinations has 

been prepared based on the reasonable range of variation of the hyperparameters. 

For each combination of hyperparameters, a five-fold cross-validation procedure has 

been performed on the training dataset using the performance metrics defined in the 

previous section. 

- The calibration dataset is divided into five random equal-sized subsets 

- Of the five subsets, a single subset is retained as the testing data to calculate 

the performance metrics and the remaining four subsets are used to train the 

model 

This procedure is repeated five times with each subset as testing data. Finally, it 

calculates the median of the five sets of performance metrics. It is keeping the 

hyperparameters ranks in which the performance metrics were the lowest. Finally, 

the obtained Knet and Kpipe values are plotting according to tested weigh values of 

the grid search to identify the weight values rank that could maximize the 

performance prediction: lowest values of Knet and Kpipe. 

➢ Step 2 – grid search: It is repeated with fixed values of weights and varying the values 

of the remaining hyperparameters. Again, the values of the metrics Knet and Kpipe 

are plotted against the hyperparameters to identify the combination that maximises 

the performance: lowest values of the metric Knet and Kpipe. 

The result of this technique is giving ranks of the hyperparameters’ values that could provide 

a search space to find the local solution of their optimal combination. 
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8.2.2. DIFFERENTIAL EVOLUTION (DE) ALGORITHM METHODOLOGY 

Once defined the search space for the optimal combination of the hyperparameters, the DE 

algorithm optimisation methodology is applied. Knet and Kpipe metrics are the objective 

functions that the DE algorithm attempts to minimise. In the following procedure are the 

steps for this optimisation methodology: 

➢ Step 1- Defining hyperparameter values ranking and objective function: it is given to 

the DE algorithm the minimum and maximum values of the hyperparameters found 

by Grid Search technique and the objective function to minimize: Knet or Kpipe 

(Equations C1 and C2 respectively) 

➢ Step 2 – Five Monte-Carlo (MC) simulations: as the grid search technique, the 

calibration data is divided five times randomly, splitting each subset in 70% for 

training and 30% for testing data.  

➢ Step 3 – Machine learning-based deterioration model: for each MC simulation, the 

model uses the 70% of the data for training it with the hyperparameters given by the 

DE algorithm, then with the resulting model is predicted the structural conditions for 

the testing data and evaluated with observed structural conditions of the testing data 

by performance metric (Knet or Kpipe). Into a vector, it saves the five elements of 

the performance metric values of MC simulations.  

➢ Step 4 – Median of the performance metric: it calculates the median value of the five 

metric values saved on the vector. From the median value, the DE algorithm search 

other combination of hyperparameter values in the search space given in step 1. 

➢ Step 5 – 1000 times repetitions: The procedure from steps 2 to 4 repeats 1000 times 

again searching the combination of hyperparameters that minimize the objective 

function (Knet or Kpipe). The DE algorithm proves other hyperparameter values' 

combination whose result should be the lowest than the median of the last repetition. 

If the median value is higher or equal to the last median of the last time, the DE 

algorithm saves the hyperparameters combination that obtained the lowest median 

of the performance metric and tries other hyperparameters combinations closest to 

the one that obtained the lowest median performance metric. 

In the end, it is chosen the hyperparameter values combination that the DE algorithm could 

search after 1000 searching.  
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CHAPTER 9: METHODOLOGY FOR IDENTIFYING THE 

KEY AND ENOUGH FACTORS FOR ACHIEVING 

OBJECTIVES IN SEWER ASSET MANAGEMENT 

The developed tools described in chapter 7 and 8 were relevant due to fulfilling different 

goals: (i) identification of the main variables that influence over the structural condition; and 

(ii) finding the optimal combination of hyperparameters of the machine learning-based 

deterioration models for two management objectives linked to two performance 

metrics(subchapter 8.1).  

The first attempt of integration was developed in a methodology to select the appropriate 

prediction models for two sewer asset management objectives, as well as the selection of 

enough variables and training data to maximise the prediction quality of models. In this 

methodology, two deterioration models, the proposed performance metrics, and the 

optimisation methodology are integrated (chapter 8). The results showed the importance of 

selecting variables and methods for implementing prediction models for specific case 

studies and orienting to management objectives (Guzmán-Fierro et al.,2019c). This 

methodology was developed together with the Master student Julián Guzmán who was 

directed by the supervisor and the author of this doctoral thesis. The products of this 

methodology were the direction of the master thesis entitled “Methodology for selecting 

suitable variables, prediction models and data subsets to maximize the prediction capacity 

of decision-making support models for different sewer asset management objectives”, which 

was defended in July 2019, and submitted as a paper on the Journal of Infrastructures 

Systems in November 2019 (Guzmán-Fierro et al., 2019c). For more details about this 

methodology, please see appendix -Part C.  

From the advantage of the above methodology, the principal proposed methodology of this 

doctoral thesis born. This methodology consists of two parts: (i) Bayesian Network-based 

methodology for selecting features hierarchically described in subchapter 9.1.; and a 

methodology to choose the deterioration model for achieving a management objective 

described in subchapter 9.2. From this methodology, it is possible to determine which factors 

are enough and necessary to achieve specific goals in sewer asset management, 

considering the quantity and quality of the available information. This methodology could be 

applied in any case study that owns its local assessment standard.  
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9.1. BAYESIAN NETWORK BASED METHODOLOGY FOR SELECTING 

FEATURE HIERARCHICALLY 

Thanks to the properties (Item 6.1.1.) and successful results using the Bayesian Networks 

(BN) tool as a feature selection method in Guzmán-Fierro et al. (2019a) (Chapter 7), it 

proposes a second BN-based methodology that establishes a relationship with the structural 

condition in different importance levels: first, second and third-grade relation. The idea with 

this classification is exploring the prediction quality of the deterioration models adding each 

variables group that represents the different importance levels in the deterioration of sewer 

assets. 

The first-grade relationship refers to those variables that display a direct relationship with 

the structural condition, and these variables are called “Parent variables”; the second-grade 

relationship refers to those variables that show a direct relationship with the parent variables, 

and these are called “Grand-Parent Variables”; and the third-grade relation are those 

variables that depict direct relationship with the Grand-Parents variables, and these 

variables are called “Grand-Grand Parent variables”. 

The proposed methodology consists of the following five steps: 

➢ Step 1 - Definition of the data: the database should contain the collected variables 

and the variable that represent the structural condition. Whole variables should be 

categorical variables. Numerical variables are categorized by to boxplots’ analysis with 

the purpose to make a fair categorization.  

➢ Step 2 - random selections of data sets: it creates different data sets that vary from 

2% to 100% of data with 2% steps and 1000 random selection for each set to find the 

first, second and third-grade relationship variables with the structural condition for each 

subset. In the end, it chooses randomly 1000 data from these 50 sets. 1000 random 

selections were chosen for applying Monte-Carlo simulations, to find an agreement 

between the low computational cost and a rank of possible prediction performance that 

the model could achieve considering a large amount of random data selection. This 

agreement also is suggested in the findings of Bauer & Guzy (2004) and Austin (2009). 

Moreover, the criteria of choosing the percentages steps to build the different subsets 

are according to the user decision, for this case the authors chose ranks of 2% steps 

for exploring the dynamic of the relationship of the variables with the structural condition 

considering the size of the subsets. 
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➢ Step 3 –Probability of relationship with the structural condition: It builds a BN 

following any structure learning algorithm to find the first, second, and third-grade 

relationship variables with the structural condition for each data subset. 1000 Monte-

Carlo simulations (MC) are making, according to the 1000 selected data for each 

subset. When it finishes the Monte-Carlo simulations, it is counting the number of 

times each variable has first, second and/or third-grade relationships with the 

structural condition to calculate their probability: number of times of each relationship 

grade over 1000.  

➢ Step 4 – Summary of the probabilities: according to the results from step 3, it 

summarises the probabilities of the variables that present first, second and third-

grade relationship with the structural condition in boxplots: it summarises each 

variable's relationship with the structural condition in a boxplot, The boxplot contains 

the probabilities of that relationship considering the different data subsets (from 2% 

to 100% of data by 2% steps). The purpose of this sum up is to identify that, 

regardless that the percentage of data changes, the studied variables show any 

relationship grade with the structural condition. 

➢ Step 5 – Classification of the variables according to the relationship 

importance level with the structural condition: it analysis the above boxplots 

beginning with the probabilities of the variables that present a first-grade relationship. 

It selects the variables whose boxplot’s median is over 0.05, and the others are 

leaving aside. The chosen variables are called “parent variables”. The cut-off was in 

0.05 because it shows that the relationship between variables is non-depreciable, 

and it selects the median because it is the most representative value of the data that 

characterises the boxplot. Then, it carries out the same procedure with the boxplots 

that represent the variables that show the second-grade relationship with the 

structural condition; however, it does not consider the variables (boxplot median 

higher than 0.05) are called “grandparent variables”. Likewise, this procedure 

repeats with the boxplots that represent the variables that show the third-grade 

relationship with the structural condition leaving aside the variables already chosen 

as parent and grandparent variables. The selected variables for this last boxplot 

analysis are called “grand-grandparent variables” and the variables whose boxplot 

median below 0.05 represent the variables that do not show any relationship with the 

structural condition. 
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This methodology could be applied for different structural condition scenarios (SCS) to 

evaluate their importance on the structural deterioration following the management plan that 

managers would like to develop, for example, structural condition scenarios considering: (i) 

the five structural grades provided by the local standards that give parameters to manage 

the sewer assets; (ii) three categories in which classify in excellent, intermediate and critical 

structural conditions to re-address management parameters; two categories in which 

classifies in two conditions types (i.e. excellent and critical structural conditions, acceptable 

and poor structural conditions, sewer assets without structural failures, and with structural 

failures). The aggrupation of the structural conditions in (SCS) follows the equation C.3 of 

the subchapter 8.1 of this manuscript to keep a balance among the categories of the SCS.  

Figure C.2. shows a flowchart describing the above methodology graphically. 
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Figure C.2. Flowchart of the Bayesian Network-based methodology for selecting features 
hierarchically. Source: Author  
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9.2. METHODOLOGY FOR THE SELECTION OF THE DETERIORATION 

MODEL FOR A MANAGEMENT OBJECTIVE 

According to the classification of influential variables suggested by the BN-based 

methodology, proposed in subchapter 9.1., the deterioration models are built and optimised 

considering each level importance of variables group: Parent, Grandparents, Grand-

grandparents, and all variables. Then, it carries out a boxplot analysis to select the most 

appropriate model. Machine learning and statistical methods such as Random Forest (RF), 

Support Vector Machines (SVM)), linear discriminant analysis (LDA), and binomial (LR), 

multinomial (Multi_LR) and Ordinal logistic regressions (Ord_LR) were the basis of the 

explored deterioration models.  Their selection was focused on their application in other 

case studies with successful predictions results in predicting the structural condition of the 

sewer assets (Wright et al. 2006; Mashford et al., 2010; Salman & Salem, 2011; Younis & 

Knight, 2010; Harvey and McBean, 2014; Rokstad & Ugarelli, 2015). Experiences reported 

in item 6.1.2. of Part B. 

This methodology contains the following three steps: 

➢ Step 1 - Exploration of different deterioration models: according to the literature, 

it explores different deterioration models (see items 2.6, 2.7, 2.8, 2.9, 3.1, and 3.2 of 

Part A and 6.1.2. of Part B) evaluated by different performance metrics such as 

Cohen’s Kappa coefficient, ROC space, Performance curve and Deviation analysis 

(Chapter 4 and item 6.1.4 of Part A and B) to identify the prediction advantages of 

each model. According to the conclusions of Part B, there is not a unique model for 

predicting the structural condition of the sewer assets; there are multiple models that 

could achieve good prediction qualities, it depends on which is the most adapted to 

each case study and to the management objective. Hence, the exploration of 

different deterioration models is fundamental. 

➢ Step 2 – Optimisation of the chosen deterioration models: once are chosen the 

methods that give the highest performance quality to develop deterioration models; 

new deterioration models are built considering Parents, Grandparents, Grand-

grandparents and all variables. For increasing the performance quality of the 

deterioration model to reach a management objective, it applies the methodology 

proposed in subchapter 8.2 for the 70% of the data (training data) to find the optimal 

hyperparameters’ combination for models whose basis are machine learning 

methods. There is one change in the application of the methodology described in 
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subchapter 8.2.: instead of five-fold cross-validations, it carries out ten-fold cross-

validations in step 2 related to the Differential Evolution (DE) algorithm methodology 

to rise reliability for finding the proper combination of the hyperparameters. This 

change was made following the criteria of the author of this thesis to increase the 

reliability for finding the proper combination of the hyperparameters, but not 

increasing meaningfully the computational costs. Regarding to models related to 

Logistic Regression models, the hyperparameters to find are related to the 

coefficients of the considered variables in the model. As it is shown in the items 2.3, 

2.4 and 2.5 of Part A, the logistic regression models fit as linear regressions because 

of the transformation in odds functions. Therefore, the optimisation of these models 

is handling with numeric methods such as Maximum Likelihood estimation and 

Newton-Raphson methods (Hilbe, 2009). The functions of the R’s libraries glm, nnet 

and MASS fits the models using the above numeric methods by default (see item 

6.2.1.3 of Part B).  

➢ Step 3 – Selection of the model: Once found the combinations of hyperparameters 

that most minimise the Knet and Kpipe metrics for each developed deterioration 

models, again 70% of the data are choosing as training data to develop this step. 

1000 random selections of 70% and 30% of the training are choosing as calibration 

and validation subsets respectively, to apply the deterioration models considering 

the combination of hyperparameters found. Anew, it carries out 1000 Monte-Carlo 

Simulations to find the balance between the computational costs and enough 

quantity of random data selection to assess the possible prediction performance rank 

that could reach the model (procedure also implemented in the methodologies of 

chapter 7, and subchapters 8.2 and 9.1 and appendix – Part C, suggested by Vieira 

et al., (2010)). Depending on the management objective (Knet or Kpipe) for the 

deterioration model was developed, 1000 Knet (or Kpipe) values are obtained for 

each deterioration model, and these values are plotted in boxplots to visualize the 

ranks of Knet (or Kpipe) values obtained by the deterioration models. Then, 

Wilcoxon-signed rank tests are applied to measure statistically significant differences 

among the Knet (or Kpipe) values obtained by the evaluated deterioration models: 

the Wilcoxon-signed rank test is evaluated by pairs of samples, it means that all 

models are compared by pairs building a matrix that shows the p-values of these 

comparisons. The model chosen for the management objective is the one that: (i) its 

boxplot depicts the lowest values of Knet (or Kpipe); and (ii) shows significant 
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differences with the values of the other deterioration models. In the case that the 

Knet (or Kpipe) values of the deterioration models do not show significant 

differences, it is chosen the model with fewer needed variables to be built. 

The above methodology is carried out by each deterioration model that looks for reaching a 

management objective that links with the Knet and Kpipe metrics. Likewise, this 

methodology could be applied considering different SCS for achieving the same 

management objective. In the end, it chooses the most suitable SCS comparing the obtained 

Knet (or Kpipe) values by the Wilcoxon signed-rank test to find differences significantly. If 

there are differences significantly between the Knet (or Kpipe) values, it chooses the one 

whose boxplot shows the lowest Knet (or Kpipe) values. On the contrary, it chooses the 

model with fewer needed variables to be developed. 

Figure C.3. shows a flowchart that describes graphically the current methodology. 
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Figure C.3. Flowchart of the methodology for selecting the deterioration model for a management 
objective 
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CONCLUSIONS PART C 

The following conclusions show the contribution of the developed tools in the sewer asset 

management field. The development of these tools was vital for developing the principal 

methodology proposed for this doctoral thesis (Part D). 

It develops a methodology based on methodology Bayesian Network as a feature selection 

method to prioritise and select the minimum and enough variables that allow predicting the 

structural condition of sewer pipes with the same prediction performance as a model that 

considers several variables. The selection and reduction of the number of variables diminish 

the quantity of information to collect, and therefore, a lower amount of investment resources 

re-addresses to data collection. The use and integration of agreement measure, statistical 

tests and Monte-Carlo simulations allows measuring in a simple, direct and robust way the 

prediction assessment of the model, the existence of significant differences between one or 

another, and decreasing probabilities of random effects. It makes a model more trustworthy 

for being used for the utilities in a sewer system of any city. As well, Bayesian Networks was 

a proper tool for integrating qualitative and quantitative information by cause-effects 

analysing, removing limitations of the type of data (Guzmán-Fierro et al., 2019b). 

According to the above, performance metrics were developed with the purpose to link these 

metrics with specific management objectives. The development of each metric was based 

on the ones found in the literature for measuring the accuracy of the predictions such as 

ROC space, Cohen’s Kappa coefficient, performance curve, and deviation analysis.  It 

shows the development of two metrics following the management objectives that search the 

managers currently: for developing investment plans (predictions at the network levels) and 

rehabilitation plans (predictions at the pipe level) (Rokstad & Ugarelli, 2015; Caradot et al., 

2018, Hernández et al., 2019c). Besides, the development of specific metrics for each 

management objective allows evaluating the accuracy of the developed deterioration 

models under two different perspectives. As each metric links to a particular management 

objective, it makes easier the optimisation of deterioration models, guiding the predictions 

for achieving a specific management objective. It this way, the metric works as an objective 

function in the optimisation method. 

Additionally, it proposes an optimisation methodology linking two main techniques: Grid 

Search and Differential Evolutionary algorithm. Both techniques are complementary, due to 

Grid Search finds a rank where could be the global solution, and the Differential Evolutionary 
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algorithm could find the global solution of that rank. Moreover, both techniques consider 

Monte-Carlo simulations for avoiding overtraining problems (Caradot et al., 2018; 

Hernández et al., 2019c). The proposed optimisation methodology could be applied to find 

a suitable combination of hyper-parameters for deterioration models based on machine 

learning tools (Hernández et al., 2019c). 

From the results of the developed tools of chapter 7 and 8, it was possible to build a complete 

methodology that integrates these tools. This methodology consists of two parts whose 

objective is determining which factors are enough and necessary to achieve specific 

management objectives in sewer asset management, considering the quantity and quality 

of the available information. 

The first part of this methodology is a Bayesian Networks based methodology that proposes 

to classify the importance of influential variables in the deterioration of the structural 

conditions of sewer assets. This classification allows focusing on the collection of the most 

influential variables, reducing the information collecting costs. Moreover, the integration of 

boxplots analysis, the application of Monte-Carlo simulations, and the study of the variables 

by different sizes of data subset in this methodology assure the reliability and robustness of 

this classification.  

Regarding the second methodology of the complete one, whose goal is selecting the most 

appropriate deterioration model to support a management objective, allows identifying the 

advantages of some deterioration models over others for specific sewer asset management 

objectives. The exploration of methods of different mathematical approaches and their 

evaluation under different management perspectives confirms that there is not only one 

method that could fulfil the requirements to support different sewer asset management 

objectives. Also, the integration of optimisation methodologies, the application of Monte-

Carlo simulations with cross-validation techniques strengthens the methodology of 

selection, reducing the overtraining process and outlier’s prediction results. 

The above methodology is flexible because: (i) some decisions depends on the user criteria; 

(ii) it could be implemented in different case studies with any restrictions of the inclusion of 

characteristics of different nature; and (iii) it could be applied for different aggrupation of 

structural conditions of the sewer assets (Structural Conditions Scenarios – SCS). It implies 

that the methodology could be reproduced in other databases to support sewer asset 

management or other infrastructure asset management.
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PART D METHODOLOGY’S APPLICATION FOR 
CASE STUDIES



 

 

Part D presents the results of this doctoral thesis. This part has two chapters: (i) Chapter 10 

depicts the results obtained from the antecedent tools (chapters 7 and 8 of Part C); and (ii) 

Chapter 11 shows the results of the methodology proposed in this PhD thesis for Bogota’s 

and Medellin’s cases (see description of the methodology in chapter 9 of Part D).  

The importance of presenting the results of the antecedent tools lies in the fact that from 

their successful results, the author made decisions on integrating and modifying some of 

them to build the proposed methodology (describes in chapter 9). Chapter 10 contains: (i) 

the results of the proposed method of chapter 7 for prioritising some variables over others 

to achieve the same prediction quality as if the model had been considered all collected 

variables for Bogota’s case; (ii) the results from the exploration of different machine learning 

and statistical methods for developing deterioration models to predict the structural 

conditions of the sewer assets for Colombian and German case studies; and (iii) the results 

from the application of the optimisation methodology (chapter 8, Part C) for SVM-based 

models to support two objectives for the sewer asset management of Bogota’s sewer 

network. These results are published in Hernández et al. (2017a, b and c; 2018a, b; 2019b 

and c), Caradot et al., (2018) and Guzmán-Fierro et al. (2019a, b and c). 

According to the results of chapter 10, the methodology proposed of chapter 9 was 

developed. From the results of chapter 10, it was identified the use of some methods for: (i) 

selecting and hierarchising the importance of some characteristics over the deterioration of 

the structural condition of the sewer assets; (ii) achieving the prediction of uninspected 

sewer assets for different management perspectives; and (iii) the effectivity of finding the 

optimal hyperparameters to increase the prediction for a specific management objective.  

Therefore, the methodology proposed in chapter 9 integrates all these methods to develop 

a complete methodology able to find which variables are needed and under which 

deterioration model could achieve a specific management objective. This methodology was 

applied for two Colombian case studies which contain enough information to develop it. 

Thanks to this integration, it is possible to answer the research question mentioned in the 

general introduction. The first part of the methodology (subchapter 9.1) gives a 

hierarchisation of the key factors to develop deterioration in the second part of the 

methodology, and from their application in the two case studies (Bogotá and Medellín), it is 

possible to identify the influential factors on each case study and analysing if these vary 

according to the own characteristics and management objectives.  
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Chapter 11 depicts the results of the application of the methodology proposed in chapter 9 

in Bogota’s and Medellin’s cases. The methodology was developed for different 

management objectives and structural condition scenarios (SCS) that support the 

management plans. Prediction at network and pipe level were the objectives proposed to 

support investment and rehabilitation plans. As well, the exploration of different SCS was 

suggested because of (i) the exploration of the prediction quality and (ii) to facilitate the 

decision-making in sewer asset management. Four structural conditions scenarios were 

built for both case studies to evaluate the most suitable configuration for prediction 

purposes. 

Chapter 11 contains the subchapters 11.1. and 11.2 which show the results of the 

application of the proposed for Bogota and Medellin. Each subchapter contains: (i) the 

hierarchy of the variables that influence the structural condition for each SCS; (ii) the 

exploration and identification of which statistical and machine learning methods are more 

suitable for predicting the structural condition under different perspectives (at network and 

pipe sewer asset level); (iii) the optimal hyperparameters found for each machine learning 

method to achieve a management objective (at network and pipe sewer asset levels); and 

finally (iv) the selection of the most suitable deterioration model for the two evaluated 

management objective for each SCS. Maps at network and pipe sewer asset level are shown 

to design financial plans and rehabilitation activities for both case studies. Subchapter 11.3 

presents a discussion of the obtained results in the application of the proposed methodology 

for Bogota’s and Medellin’s cases (subchapters 11.1 and 11.2). 
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CHAPTER 10: FIRST RESULTS 

The results shown in chapter 10 are related to the developed tools depicted in chapter 7 and 

8 of Part C and the exploration of different statistical and learning machine methods to 

develop deterioration models (6.1.2). This chapter consists of four subchapters: (i) Results 

of feature selection tool based on Bayesian Networks (Guzmán-Fierro et al., 2019a, b); (ii) 

Results of the exploration of different deterioration models (Hernández et al. 2017a,b,c; 

2018a and 2019a,b); and (iii) Results of the application of the proposed optimisation 

methodology (Hernández et al., 2018b, 2019c). 

Most of the results of chapter 10 are written in more detail in some published articles 

(Guzmán-Fierro et al., 2019b, Hernández et al., 2019a, b and c) and articles in submitted 

status (Hernández et al. 2017a, b, c; 2018a; 2018b; Caradot et al., 2018; Guzmán et al. 

2019a). From the results of this chapter, it was possible to make decisions for constructing 

the methodology, the main objective of this PhD thesis. 

10.1. RESULTS OF FEATURE SELECTION TOOL 

A BN-based methodology reported in Guzmán-Fierro et al. (2019a) and described in chapter 

7 (Part C) of this manuscript was applied for Bogota’s sewer system. This first methodology 

was developed to prioritize and select a minimal number of variables that allows predicting 

the structural condition of sewer pipes.  

The Bayesian Network (BN)-based method has been used to develop methodologies for 

finding the variables that influence the structural condition. During the doctoral period, two 

methodologies were developed using this method.  

Chapter 7 (Part C) depicts a methodology to prioritize and select a minimal number of 

variables that allows predicting the structural condition of sewer pipes (methodology 

reported on Guzmán-Fierro et al. (2019a, b)) and Chapter 9 (Part C) depicts a methodology 

that establishes a classification that gives different relationship levels of some variables with 

the structural condition for prediction purposes, a methodology that being part of the 

principal methodology proposed in this PhD thesis. This subchapter shows only the most 

relevant results obtained using the first developed Bayesian Network-based methodology 

described in chapter 7 (Part C).  

This methodology applies for Bogota's sewer system, and the considered variables for this 

study were physical characteristics of the sewer assets such as material ("Mat"), length 
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("Leng"), diameter ("Diam"), type of effluent ("Sew"), network type ("Net"), age ("Age"), depth 

("Depth") and slope ("Slope"); and surrounding variables such as geotechnical zones 

("Geotech"), water level depths ("W_T_D"), districts ("Distr"), land uses ("Land_U"), surface 

material ("Mat_R"), road type ("Road_Typ"), closeness to water bodies ("Water_B") and 

intrusive trees ("Tree"). The performance quality of three structural condition scenarios was 

analysed considering (i) the five structural grades given by NS-058 (EAAB, 2001); (ii) two 

structural categories discriminating the critical conditions with the others (suggested by 

Ariaratnam et al., 2001); and (iii) two structural categories evaluating only the critical and 

excellent conditions, leaving aside intermediate conditions (following the suggestions of 

López-Kleine et al. 2016). Furthermore, the chosen learning algorithm was Hill-Climbing 

because of its successful predictions in the exploration. 

According to the results of this methodology, Figure D.1. shows in boxplots the K values 

obtained from validation data of each SCS to visualise the performance and the variability 

that each model could reach. 

 

Figure D.1 Boxplots of validation Cohen’s Kappa values obtained from the three SCS proposed in 
Guzmán-Fierro et al. (2019b). Source: Guzmán-Fierro et al. (2019b) 

According to Figure D.1. the K’s set of the third scenario shows a median of 0.41 which is 

significantly higher (Wilcoxon test, p-value <0.001) than the first and second scenarios 

whose K’s medians are around 0.19 and 0.12 respectively. Consistent with the classification 

of the association agreement, that represents K, proposed by Cerda & Villarroel, (2008), the 

third scenario shows a moderate association agreement (K’s values around of 0.41-0.60) 

between the prediction and observation data, while the other scenarios show K’s values that 
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correspond to a low association agreement (0.1 - 0.2). Therefore, the third scenario was 

chosen based on these results and considering that the methodology seeks to increase the 

prediction capacity of the BN model. 

The above results confirm the findings of Ariaratnam et al. (2001), who suggests that two 

categories are sufficient to correctly classify the status of the infrastructure: non-deficient 

status (sewers without any failures) and deficient status (sewers with failure); and López-

Kleine et al. (2016) who, for the same case study of the present work, found a better 

prediction quality of the structural condition of sewer pipes considering only structural grades 

1 and 5 instead of the five structural grades described in NS-058 standard (EAAB, 2001). 

Also, once it was chosen the SCS with the highest performance quality (third scenario), this 

methodology tested different calibration/validation percentage subsets to evaluate which 

subsets significantly increase the prediction quality of the BN-based model. Figure D.2. 

shows the boxplot analysis of Cohen’s Kappa coefficient obtained from the validation results 

of the different calibration/validation percentage subsets. 

 

Figure D.2 Boxplots of Cohen's Kappa values obtained from models that considered 
calibration/validation percentage subsets between 50%/50% and 90%/10% (***p-value <0.001). Source: 

Guzmán-Fierro et al. (2019b) 

According to Figure D.2, the validation K’s set related to 90%/10% percentage subsets 

shows significantly highest values in comparison to the other groups of percentages 

subsets, with a median K’s value of 0.420 (Figure D.2). However, the variation of this 

percentage subsets group is the largest of all groups with K’s values (varies from 0.320 to 

0.530), which makes it less favourable to predict the structural condition of sewer pipes.  
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On the other hand, the boxplot related to the 80%/20% calibration/validation percentages 

subsets results show a K’s median around 0.417 with lower variability than the 90%/10% 

percentage subsets group, and it requires less information to calibrate the prediction model; 

therefore, the group of subsets of 80%/20% for calibration/validation data was chosen for 

the BN-based model. Figure D.3 shows the most common Bayesian Network (BN) obtained 

(from 1000 trained) for the 80%/20% calibration/validation percentage subsets considering 

the structural condition scenario that only predicts the excellent and critical structural 

conditions of the sewer assets. 

 

Figure D.3 The most representative BN model with 1000 random selections following 80%/20% 
calibration/validation percentage and all available variables. Source: Guzmán-Fierro et al. (2019b) 

As shown in the BN (Figure D.3), the age and the diameter are the variables with a direct 

relationship with the structural condition (first parenting nodes of the structural condition). 

The first dependence relationships found in this BN with the structural condition, for the case 

study, agrees with studies such as Ariaratman et al. (2001), Yan & Vairavamoorthy (2003), 

Chughtai & Zayed (2011) and Salman (2010) that show that these two variables play a 

significant role in the structural deterioration of sewer pipes and therefore in their structural 

condition. 
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In the end, two BN-based models were built considering (i) all the studied variables 

“reference model” (16_var), and (ii) only the variables with direct a relationship with the 

structural condition, age and diameter of the sewer assets “reduced variables model” 

(2_var). Figure D.4. shows the comparison of both models by boxplot analysis. 

 

Figure D.4 Boxplots of validation K’s sets obtained by the “reference model” (16_var) and the 
“reduced variables model” considering only the first parenting variable relationships with the 

structural condition (2_var): age and diameter of sewers 

According to Figure D.4, the K's set related to "reference model" shows a median of 0.438 

that is not significantly higher (Wilcoxon test p = 0.08) than the median of the K's set related 

to the "reduced variables model" (K's median of 0.432). This result shows that only 

considering the diameter and the age of sewer assets; it is possible to build a prediction 

model, using BN, that achieve the same prediction capacity (K's> 0.4 - moderate association 

agreement between predicted and observed structural conditions) than a model based on 

BN that considers more variables. For more details about the prediction application in 

Bogota's case, please see Guzmán-Fierro et al. (2019a, b). 

10.2. RESULTS OF DIFFERENT DETERIORATION MODELS 

This subchapter consists of depicting the results of the exploration of different statistical and 

machine learning methods.  This exploration was vital and gave clues to develop the 

methodology proposed in this manuscript. Other works such as Hernández et al. (2017b; 
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2019a; 2019d) include an exploration of some methods such as SVM and Logistic 

regression for estimating the structural states of uninspected sewer assets. 

Subchapter 10.2. consists of two items: (i) Results of the exploration of different statistical 

and machine learning methods to develop deterioration models in sewer asset management 

for Bogota’s case (Hernández et al., 2017a); and (ii) the results of the comparison of two 

deterioration models in a Colombian and a German case study (Hernández et al. 2017a; 

2018a). 

10.2.1. RESULTS OF EXPLORATION OF DETERIORATION MODELS FOR 

BOGOTA’S CASE  

It shows a first exploration of statistical and machine learning-based methods to develop 

deterioration models that support the sewer asset management for Bogota’s sewer system. 

Logistic regression (LR), Random Forest (RF), Multinomial logistic regression (Multi_LR), 

linear discriminant analysis (LDA) and support vector machines (SVM) were the explored 

methods for developing deterioration models and analysing their advantages or 

disadvantages to predict the critical conditions of the sewer assets under two study options: 

(i) considering only age as influential variable over the deterioration of the structural 

condition of the sewer assets; and (ii) considering the age together with other variables such 

as material, type of effluent, depth, length, slope and diameter of the sewer assets as 

influential variables over the deterioration of the structural conditions of the sewer assets. 

Table D.1. shows the ROC space analysis (True Positive Rate -TPR and False Positive 

Rate -FPR and their relationship by Positive Likelihood Rate PLR) of the explored 

deterioration models for Bogota’s case. 

Table D.1. ROC space coordinates (TRP and FPR) and PLR index from the prediction results by each 
method with (i) option 1: only the variable age; and (ii) option 2: age together with other covariates. 

Method 
option 1 option 2 

TPR FPR PLR TPR FPR PLR 

Random Forest (RF) 0.62 0.22 2.82 0.57 0.15 3.80 

Logistic Regression (LR) 0.07 0.04 1.75 0.38 0.07 5.43 

Multinomial Logistic Regression (Multi_LR) 0.32 0.15 2.13 0.71 0.21 3.38 

Linear Discriminant Analysis (LDA) 0.32 0.15 2.13 0.7 0.2 3.50 

Support Vector Machine (SVM) 0.32 0.15 2.13 0.66 0.17 3.88 

Source: Hernández et al. (2017a) 
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For option 1, results obtained with Multi_LR, LDA and SVM were the same (Table E.1) 

because Multi_LR and LDA estimate the same statistical significant coefficients (0.048) and 

SVM uses the same discriminant function such as the function of the hyperplane that best 

separates the data in a high dimensionality due to the data transformation by RBF kernel 

function. Furthermore, it is possible to observe the for LR results (TPR = 0.07 and FPR 

=0.04) are close to coordinates (0, 0) in ROC space, which means that this model has a low 

probability to predict any pipe in critical condition. The RF results show the highest values 

of TPR and PLR for model 1 (0.62 and 2.82, respectively). It means that RF has 62% of 

probability to predict the critical structural condition correctly, and it has 2.82 times more 

probability to predict this condition correctly than wrongly.  

On the other hand, the prediction results considering all the co-variables (see Table D.1 -

option 2), show that including more variables the prediction’s capacity improves. The ROC 

space’s coordinates are quite similar for all methods (except for LR): around 60-70% for 

TPR and 15-20% for FPR. The main difference among these four methods is in the PLR 

value: SVM and RF methods have higher values (around 4). Although TPR values for SVM 

and RF are lower than for LDA and Multi_LR, PLR index assures the prediction effectivity of 

SVM and RF methods: for 60 of pipes predicted in critical conditions, 15 pipes are 

mispredicted by SVM, and RF (PLR is 4) and 20 pipes are mispredicted by Multi_LR and 

LDA (PLR is 3). LR results show the lowest values of TPR and FPR; however, the PLR value 

is the highest (PLR is 5): for 60 pipes predicted in critical conditions, 12 are wrongly 

predicted.  

The prediction results of the option 1 and 2 show that the five methods predicted more pipes 

correctly than wrongly, it could be due to the linear relationship between the structural 

condition and the variable age for both options: the older is the pipe, higher is the probability 

to be in critical condition (Davis et al., 2001). However, there are some notable differences 

among the methods’ prediction for each option which are analysed in the following: 

- For option 1, it is observed three behaviours: (i) the linear relationship between 

structural condition and the variable age (LDA, SVM, Multi_LR), (ii) the weak linear 

relationship between variable age and logit of the structural condition (LR); and (iii) 

the classification of the structural condition in a specific time period by the intuitive 

decision rules (RF). Although Multi_LR is based on a non-linear method (LR), the 

results are quite different from LR, probably because Multi_LR assumes 

independence among the groups of the dependent variable (structural condition). 
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This condition implies that when it is not valid, Multi_LR estimates unrealistic 

coefficients (it could guide method to be linear) which make an imperfect separation 

and could guide method to be linear (Melter & Vannata, 2015). In our case, the 

structural condition is an unreliable value, because this qualification depends on the 

quantity and seriousness of the found failures in the CCTV inspections; therefore 

these conditions are ordinal variables (EAAB, 2001).  

- For option 2, the behaviour of Muti_LR and LDA is similar, but SVM does not. The 

behaviour of the SVM method considering other variables together with age is not 

linear due to the nature of the other variables and their interaction. Hence the SVM, 

Random Forest and Logistic Regression are the methods that ensure a high 

percentage of pipes predicted correctly in critical conditions (TPR) with a high 

performance (PLR) due to these are non-linear methods. 

From the above results, Figure D.5 shows the performance curves obtained from the LR, 

RF and SVM-based deterioration models.  

According to option 1 (Figure D.5., left), the RF’s performance curve shows a high 

percentage of success for pipes with high probability to be in critical conditions. Likewise, it 

is possible to observe that the rate of success decreases when the probability of being in 

critical condition also decreases. In contrast, LR and SVM prediction results do not show a 

high percentage of success for pipes with high probabilities to be in critical conditions: these 

peaks are located respectively at 13 and 7% of pipes with high probability to be in critical 

conditions. These results suggest that is not possible to use this technique as a tool to 

prioritize the rehabilitation of most critical sewer pipes because the percentage of success 

is not the highest for the pipes with the highest probability to be in critical conditions. 



140 

 

Figure D.5 LR, RF and SVM performance curve with a sample on its left of 100 pipes. On the left side 
are results of the option 1 (Considering only the variable age as influential variable in the models) and 

on the right, the option 2 (considering all variables as influential variables in the models). Source: 
Hernández et al., (2017a) 
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On the other hand, the LR and RF performance curves of option 2 (Figure D.5., right) show 

high percentages of successful for pipes with a high probability of being in critical conditions. 

Likewise, these performance curves show that when the probability of being in critical 

condition decreases, also the success's percentage decreases. However, the SVM 

performance curve (option 2) shows two peaks of percentages of successful located at 7% 

and 22% of the pipes with high probabilities to be in critical condition. SVM method is not a 

suitable method for the objective that follows the performance curve because this method 

does not give a probability to be in critical condition. 

The LDA and Multi_LR prediction results are not displayed because their performance 

curves do not show remarkable peaks of success's percentage, and neither a particular 

behaviour of this percentage with the high probability to be in critical conditions. 

The bar plots on the right side of each performance curve show a sample of the percentage 

of success for the first 100 pipes with high probabilities to be in critical condition (around 

10% of validation data). For option 1, RF is the method with the highest percentage of 

successful (56%) following by SVM and LR, with 50% and 37% respectively. These two last 

percentages show that these predictions tend to be random when the age is the only input 

variable in the models. On the other hand, the bar plots for option 2 show percentages over 

50%, it means that the three predictions show better results than a random scenario. In this 

model, RF also shows the highest rate of effectivity (65%) to predict the critical structural 

conditions in those pipes with high probability to be in that condition following by LR and 

SVM with 63% and 58% of successful respectively.  

In general, it is observed that considering more attributes as input variables (option 2) 

improves the prediction of the critical structural condition in the present case study, in 

particular for the LR method: according to the bar plots (first 100 pipes with high probabilities 

to be in critical condition of the option 1 and 2) the success's percentage increases from 

37% (option 1) to 63% (option 2). 
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10.2.2. RESULTS OF THE EXPLORATION OF DETERIORATION MODELS FOR 

COLOMBIAN AND GERMAN CASES 

This exploration consist of the application of Random Forest and Logistic regression-based 

deterioration models for a Colombian and German sewer systems, and then it compares 

their prediction results. The purpose of this prediction was focus on predicting the critical 

structural condition of the sewer assets by Positive Likelihood Ratio (PLR), Performance 

curve and deviation analysis.  

According to the obtained PLR (Table D.2), the models of both approaches have PLR's 

value higher than 1 for the Colombian city's case, which means that both models give better 

predictions than a random prediction (True Positive Rate TPR > False Positive Rate FPR). 

However, for the German city's case, only RF's model gives PLR's value higher than 1, the 

PLR's value was assumed to be zero for LR's model. Besides, for each model, it was found 

that: (i) LR prediction shows that the PLR value is higher for the Colombian city (5.43) than 

for the German one (0.02); and (ii) RF prediction shows the opposite result: 3.8 and 5.2 for 

the Colombian and the German cities respectively. The RF's results are interesting to 

highlight the importance of PLR because even though the proportion of pipes predicted 

correctly for the Colombian city's case is higher (TPR = 0.57) than the German city's one 

(TPR = 0.26). Likewise, the proportion of pipes predicted wrongly is also higher for the 

Colombian city (FPR = 0.15) than for the German city (FPR = 0.05).  

Therefore, PLR of the critical condition's prediction shows that LR is more adapted for the 

prediction of the Colombian city's sewer system's critical conditions, and RF for the German 

one. 

Table D.2. PLR index of the critical conditions of sewer pipes in Colombian and German case studies 
using RF and LR. 

 German City Colombian City 

 TPR FPR PLR TPR FPR PLR 

RF 0.26 0.05 5.2 0.57 0.15 3.8 

LR 0.02 0 0 0.38 0.07 5.43 

Source: Hernández et al. (2018a) 

The performance curves presented in Figures D.6. and D.7. show that both methods (RF 

and LR) exhibit similar behaviour, but different results for each case study. According to the 

performance curves analysis of RF's prediction shown in Figure D.6 for both cities, RF 

predicts correctly 63% of pipes in critical condition (or 83% of pipes in critical and poor 

conditions) for the first 10% of pipes with high probability to be in this condition for the 
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Colombian city's case (Figure D.6., left). While for the German city's case, RF predicts 33% 

of the first 10% of pipes (or 63% of pipes in critical and poor conditions) with high probability 

to be in critical condition correctly (Figure D.6., right). Although the behaviour of the curves 

concurs to the fact the probability to be in critical condition decreases when the success's 

percentage does it, the prediction results show more accuracy to identify those pipes in the 

critical condition for the Colombian city's case. 

On the other hand, in accordance to Figure D.7., the performance curves of LR prediction 

results, for both cities, show lower accuracy than the RF prediction results: according to the 

bar plots on the right side of each performance curve (Figure D.7.) which represent the 10% 

of pipes with the highest probability to be in critical condition, the accuracy is around 62% 

and 27% for the Colombian and the German cases respectively. 

 

For the Colombian city's case, the accuracy in identifying those pipes with a high probability 

to be in a critical condition is similar for both RF and LR methods. However, for the German 

city's case, this accuracy is worse than a random selection for both models (RF and LR), 

which matches with TPR results shown in Table D.2. 

The above performance curves' analysis shows that the models based on RF and LR could 

be useful to identify the critical conditions correctly for the Colombian's case: Colombian 

Figure D.6. Performance curves with 10% pipes sample bar plot on its right of LR prediction results for the Colombian 
city (on the left) and the German city (on the right). X-axes: predicted pipes ordered from the highest to the lowest 

probability to be in critical conditions. Y-axes: the real structural condition observed by CCTV. The bar plot (right side): 
10% of pipes-sample with the highest probability to be in critical conditions. Red: critical condition, and green: excellent 

condition. Source: Hernández et al. (2018a) 
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city's stakeholders could make strategic plans of rehabilitation choosing that 10% of pipes 

with the highest probability to be in critical condition ensuring to find more than 60% of 

success for critical condition and more than 83% (according to RF) for critical or poor 

structural condition (red and orange stripes, Figure D.6. left). 

 

Figure D.7 Deviation analysis of the RF prediction results vs inspection data results for the 
Colombian city’s case (left) and the German city’s case (right). Top-graph: bar plots of structural 
condition’s distribution by each period given by CCTV inspections; Middle-graph:  bar plots of 

structural condition’s distribution by each period given by the predicted conditions; Bottom-graph: 
mean deviation (of all structural conditions) between the Top-graph and the Middle-graph. Source: 

Hernández et al. (2018a) 

Figures D.7. and D.8. show the deviation analysis of the prediction results of both methods 

(RF and LR, respectively). According to the analysis of RF, the Colombian’s city´s case 

results show higher deviation in the prediction of critical condition for each period of 10 years 

(Figure D.7., left) than the German city’s case ones (Figure D.7, right). It is essential to 

observe that for the Colombian city, for pipes with ages between 40 and 50 years, the model 

overestimates the critical condition, predicting these pipes in better conditions (orange, 



145 

 

yellow and green stripes), but for the young pipes (age <20 years) and 50-60-year-old pipes 

the model underestimates the critical condition, predicting some pipes in critical condition 

which actually are not in that condition. According to the distribution conditions of both case 

studies, it is possible to observe (graphs on the top of Figures D.7. and D.8.) that the 

deterioration depends on the age, making directly proportional with the criticality of the 

assets. This behaviour is observed for the German case (deviation lower than 5%) and the 

Colombian case for assets younger than 60 years old (deviation lower than 7%). Therefore, 

the model represents the same behaviour in the prediction. However, for pipes older than 

60 years old in the Colombian case, this behaviour changes, in which the model 

underestimates the prediction of these pipes. The author assumes that the atypical 

behaviour of the pipes older than 60 years for the Colombian case depends on the reliability 

of the data, the old construction methods, the lack of information about the rehabilitation 

dates and if these assets have been rehabilitated and these rehabilitations have not been 

reported. These gaps should be explored in future research works, and the analysis should 

be careful with the information of the oldest sewer pipes. 

On the other hand, the deviation analysis of LR (Figure D.9.) shows higher deviations for 

both cities (Figure D.9.) compared with those obtained with RF (Figure D.8). Nevertheless, 

the deviation is still higher for Colombian city´s case. For the Colombian city´s case, LR also 

tends to overestimate pipes whose ages are between 40 and 50 years, while pipes younger 

than 30 years and older than 60 years-old pipes are underestimated. For the German city´s 

case, the deviation on each period is lower than +/- 5%, except for 70-year-old pipes. 

Figure D.9. shows a clear relationship between the distributions of conditions and the pipes' 

age, in particular for the German case. However, even if LR's prediction represents this 

behaviour is not as accurate as RF' prediction. 
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Figure D.8 Deviation analysis of the RF prediction results vs. inspection data results for the 
Colombian city’s case (left) and the German city’s case (right). Top-graph: bar plots of structural 

condition’s distribution by each period given by CCTV inspections; Middle-graph: bar plots of 
structural condition’s distribution by each period given by the predicted conditions; Bottom-graph: 

the mean deviation (of all structural conditions) between the Top-graph and the Middle-graph. 

According to the general prediction´s approach, both methods are suitable to predict the 

structural condition; however, it depends on each case study. According to the ROC space 

analysis, RF was the method with a higher effectiveness rate (PLR) to predict the critical 

structural condition for the German city’s case, while Logistic Regression (LR) was the 

suitable one for Colombian city´s case. Nevertheless, in the analysis with the Performance 

curve and deviation analyses, Random Forest (RF) was the one with adequate results in 

both cases: based on the performance curve analysis, RF was appropriate for identifying 

the pipes in critical condition with an accuracy of 63% for the Colombian city´s case, and 
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based on the deviation analysis, RF had the lowest deviation (<+/-5%) on each 10-years’ 

pipes for the German city’s case. 

The reason because RF prediction results are more appropriate in both cases lies in the fact 

that RF does not expect linear features or direct interactions as LR do it. Although the PLR´s 

index showed that LR has greater correct predictability for the Colombian city´s case, there 

were not so many pipes predicted in critical condition (True Positive Rate = 0.38), while for 

the same case study, the True Positive Rate was around 0.57 for RF.  

Since the Random Forest prediction results are different from both case studies, it is possible 

to analyse in which way the stakeholders could take advantage of these predictions: (i) for 

the German city’s case, the stakeholders could design strategic budget plans having an 

approach based on the number of pipes in critical condition taking into account their age; 

and (ii) for the Colombian city’s case, the stakeholders could be concerned in developing 

support tools to predict the current structural condition of uninspected sewers and to 

prioritise the management of those in worst conditions. For more details about these results, 

see Hernández et al. (2017b and 2018a).  

10.3. RESULTS OF APPLICATION OF OPTIMISATION METHODOLOGY 

According to the optimisation methodology proposed in chapter 8 (Part C), the first 

procedure related to grid search was applied in the frame of the collaboration project with 

(Kompetenzentrum Wasser Berlin) KWB colleagues for sewer systems of a German city, 

and their results were published in Caradot et al. (2018), and the second procedure related 

to the differential evolutionary (DE) optimisation algorithm was applied for Bogota’s and 

Medellin’s sewer systems and the results are in Hernández et al. (2019c). Hence, this 

subchapter consists of the results of both procedures for these case studies. 

10.3.1. RESULTS OF THE GRID-SEARCH METHODOLOGY’S PROCEDURE  

According to the procedure shown in Caradot et al. (2018), Random Forest and Gompitz 

were the models used to find the rank of hyperparameters combination which rise the 

prediction performance to fulfil two management objectives related to both the network and 

single pipe level. However, in this item, it is shown only the results of Random Forest since 

the grid search methodology for this machine learning method focus on finding the 

hyperparameters of the model. In contrast, for Gompitz the hyperparameters were related 
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to the survival functions of the covariates. The considered variables as covariates in this 

model were age, material, type of effluent, diameter, depth and districts.  

For assess the structural condition of the sewer assets, the utility of the studied German city 

follows a local standard similar to the German guideline ATV M 143-2 (1999). This standard 

classifies the structural condition of the sewer assets on six levels: being grade 1, which 

represents the sewer assets in critical conditions and grade 6, which represents the sewer 

assets in excellent conditions. For this study, the structural conditions were grouped in three 

categories: C1 which represents the sewer assets in excellent and good conditions (Grades 

5 and 6); C2, the sewer assets in intermediate conditions (Grades 3 and 4); and C3 the ones 

in critical and poor structural conditions (Grades 1 and 2). 

The following hyperparameters were considered to set up for finding their optimal 

combination to achieve the management objectives, objectives represented in Knet and 

Kpipe metrics (see subchapter 8.1 of Part C): 

- nodesize: minimum size of terminal nodes 

- mtry: number of variables randomly sampled as a candidate at each split 

- ntree: number of trees in the forest 

- w1, w2 prior (i.e., weights) of the categories C1 and C2. w3 is not defined as a 

parameter since its value can be calculated form other priors (w1+w2+w3 =1) 

The tested ranges of the hyperparameters were: nodesize: 4-1808; mtry: 1-12; w1: 0.2-3; 

and w2: 0.2-3. According to the grid search, Table D.3. shows the best combination of 

hyperparameters at both network and pipe levels. For more details about sensitive analysis 

for selecting these hyperparameters, see Figure 3 and 4 in Caradot et al. (2018) 

Table D.3. Best combinations of hyperparameters at both network and pipe levels 

Hyperparameter 
Best model at 
network level 

Best Model at 
pipe level 

ntree 100 100 

nodesize 7 55 

mtry 10 11 

w1 2 1 

w2 1 0.8 

w3 1 1 

Source: Caradot et al. (2018) 
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Once the combination of hyperparameters was chosen for each model, Figure D.10 shows 

a deviation analysis for analysing the model at the network level. 

Table D.4. shows a summary of the value of the metrics obtained on the test data. The 

metrics have been calculated with the best models at both network and pipe levels.  

According to Table D.4. the deviations at the network level are relatively low, below 5%. At 

pipe level, 64% of the pipes inspected in excellent conditions have been predicted correctly 

(KTPR_1), 40% of the pipes inspected in intermediate conditions have been predicted correctly 

(KTPR_2), and 66.7% of the pipes in critical conditions have been predicted correctly (KTPR_3). 

17.1% of the pipes inspected in intermediate conditions and 9.5% of the pipes inspected in 

Figure D.9 Deviation analysis of the inspected and predicted condition distribution for the entire network (right) and for 
each age group (left). The colours light grey, medium grey and dark grey represented good, medium, and poor 

conditions, respectively. Source: Caradot et al. (2018) 
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critical conditions have been wrong predicted in critical conditions (KFNR_21, KFNR_31). 28.3% of 

the pipes inspected in excellent conditions have been mispredicted in critical conditions.  

Table D.4. Summary of performance metrics for the two models on the test data 

Metrics Goal   Metrics Goal   

KDEV_1 

Minimize 

-3,50% KTPR_1 

Maximize 

64% 

KDEV_2 3,40% KTPR_2 40% 

KDEV_3 0,10% KTPR_3 66,70% 

KOLD(DEV_1) 2% KFNR_21 

Minimize 

17,10% 

KOLD(DEV_2) -0,10% KFNR_31 9,50% 

KOLD(DEV_3) 1,90% KFPR_13 28,30% 

Knet 2,3 Kpipe 34,5 

Source: Caradot et al. (2018) 

For more details about these results and conclusions, please see Caradot et al. (2018).  

10.3.2. Results of Differential Evolutionary (DE) algorithm methodology’s 

procedure 

The differential Evolutionary algorithm methodology’s procedure was applied for findings the 

combination of hyperparameters of Support Vector Machines (SVM) models that best fit to 

minimise Knet and Kpipe metrics to achieve management objectives at network and pipe 

levels for Bogota’s and Medellin’s sewer systems. The results of this study are in more detail 

in Hernández et al. (2019c). In this article, the main objective was comparing the 

performance predictions of SVM models optimising the hyperparameters by the proposed 

methodology and considering by the default optimisation carried out by ksvm function (see 

6.2.1.3 of Part B) of R software (which optimises only the hyperparameter related to the 

used kernel function). The variables considered for each case study were chosen by 

Cramer’s test and redundancy concepts (cut-off = 0.05, representing a 95% probability that 

the results are extreme enough for supporting dependence between the variables): age, 

type of effluent, diameter, material, network type, districts, and surface material were 

selected for Bogota’ case as influential variables over the deterioration of structural 

conditions of the sewer assets; and age, length, diameter, depth, slope, type of effluent, and 

districts were selected for Medellin’s case. Regarding the analysed hyperparameters to fit 

SVM models are: 

- sigma: hyperparameter related to Radial Basis (RBF) kernel function 

- C: hyperparameter that trades off misclassification of training samples for simplicity 

in the decision surface and determines the hyperplane margin’s width. 
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- W1, W2, W3, W4 and W5: weights related to the structural grade 1, 2, 3, 4 and 5, 

respectively.  

Tables D.5. and D.6. show a comparison of the values of the hyperparameters for the 

conventional model (default SVM optimisation by R function) with the optimal SVM 

hyperparameters found by the proposed optimisation methodology at the network (Knet) 

and the pipe (Kpipe) levels for Bogota and Medellin respectively. 

Table D.5.Optimal SVM hyperparameters for Bogota's case 

Models 
Hyper-Parameters for Bogota  

Sigma C W1 W2 W3 W4 W5 

Conventional SVM model 0.039 1 1 1 1 1 1 

DE-optimised SVM model at network level Knet  3.171 101.31 2.975 4.554 3.253 5.044 4.279 

DE-optimised SVM model at pipe level Kpipe  0.097 6.543 1.336 4.360 2.653 1.749 2.227 

Source: Hernández et al. (2019c) 

Table D.6. Optimal SVM hyperparameters for Medellin's case 

Models 
Hyper-Parameters for Medellin 

Sigma C W1 W2 W3 W4 W5 

Conventional SVM model 0.022 1 1 1 1 1 1 

DE-optimised SVM model at network level Knett  0.955 211.56 7.643 5.893 7.324 5.430 5.567 

DE-optimised SVM model at pipe level Kpipe 0.019 95.92 2.131 9.365 9.903 1.012 1.207 

Source: Hernández et al. (2019c) 

From the results shown in Tables D.5. and D.6, it is possible to determine that the values of 

sigma and C are far higher when trying to obtain the minimum Knet than for the minimum 

Kpipe. For the data, a sigma of 3.17 for Bogotá and of 0.95 for Medellin gave the minimum 

Knet, while a σ of 0.097 and 0.019 for each case gave minimum values of Kpipe; and a 

similar trend was noted for the C hyper-parameter. According to theory (Hornik et al., 2006), 

a larger σ for a minimal Knet than Kpipe implies a smaller γ for the former than the latter. 

Therefore, the DE-optimised SVM model at the network level is more constrained, and the 

data is less complex than the DE-optimised SVM model for Kpipe. Likewise, a larger C 

hyper-parameter means a thinner margin and smaller chance of misclassification from the 

complexity of the surface function of the separation hyperplane, which is built choosing more 

data as support vectors (Hornik et al., 2006). The results of the sigma hyper-parameter are 

intuitive since the objective of the Knet metric is describing the deviation between the 

predicted and the inspected condition distributions, while the objective of Kpipe is evaluating 

whether the model predicts the pipes’ condition correctly. According to the C hyper-
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parameter, the margin and surface function of separation were more complex for Knet, with 

values lower than 1.89; while C values obtained for Kpipe show a simpler decision surface 

function. Additionally, each case study is weighted differently, as this is dependent on the 

grade distribution into our conditions for optimisation. As shown in Tables D.5 and D.6, the 

lower weight values were applied to those conditions with the most pipes per grade in 

inspection data. 

For Bogota's case, W1 is the smallest weight, which corresponds to grade 1, alone in 

condition 1, which had 45% of all information in the dataset. W5, corresponding to grade 5, 

alone in condition 3, corresponds to 21% of the information, is the second smallest, given 

that W2, W3 and W4 are grouped into a single category. This proportional relationship is 

harder to observe when it comes to grades 2 through 4, as W2, W3 and W4 were grouped 

into condition 2 in the optimisation function and accounted for 33% of all data. 

For Medellin's data, two structural grades were grouped for each of the intermediate (grades 

2 and 3) and critical (grades 4 and 5) conditions. According to the database, those pipes 

deemed to be in critical condition account for 70% of all data, and so, in Table D.6, it is clear 

that they were given the lowest W values. As for the other conditions, it is not easy to discern 

the balancing effect of the given weights.  

According to the hyper-parameters shown in Tables D.5. and D.6., the DE-optimised SVM 

model was trained in an RBF kernel function, using 70% of the data as calibration, and 30% 

as validation data. Table D.7. shows the deviation results (K indicators) and the Knet 

obtained for the test data for each city, which were then compared for both case studies 

between the conventional SVM model and the DE-optimised SVM model. 

Table D.7. SVM models' performance results at the network level for both case studies 

Model 
Indicators for validation data 

KDEV_1 KDEV_2 KDEV_3 KOLD(DEV_1) KOLD(DEV_2) KOLD(DEV_3) Knet 

Bogota - Conventional model -18.64 26.16 -7.52 -15.09 19.81 -4.72 19.05 

Bogotá – DE-optimised model at 
network level 

1.37 2.67 -4.04 3.64 1.82 -5.45 2.91 

Medellin – conventional model  15.75 6.72 -22.47 12.76 10.46 -23.21 16.31 

Medellín -DE-optimised model at 
network level 

-1.58 1.74 -0.15 -4.59 2.3 2.3 1.36 

Source: Hernández et al. (2019c) 

This comparison shows an undoubted and evident difference, with the lowest deviations 

occurring in the optimised model (about 6 and 5% respectively for each city). In contrast, the 

conventional model reaches deviations of 20 and 23% respectively.  
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To better understand the trends of the K indicators of the DE-optimised SVM model for both 

case studies in detail, the distribution of each complete network (right) and each age group 

(left) was plotted, shown as Figures D.11 and D.12 respectively for each city, with the 

inspection data shown at the top and the predicted values at the bottom.  

 

Figure D.10 Inspected and predicted distribution of data in DE-optimised SVM model at the network 
level for Bogota’s case. Total network (Right) and broken down by age group (Left). The colours 

green, yellow and red represent excellent, intermediate and critical structural conditions. Source: 
Hernández et al. (2019c) 

A positive K value (Table D.7) shows that the model underestimated the percentage of pipes 

that are actually in each condition, while a negative value indicates overestimation. Figure 

D.11. shows these under and overestimations for Bogotá in richer detail. Most pipes were 

overestimated to be in critical condition and underestimated to be in an intermediate 

condition, except for those that are 40-50, 20-30 or <10 years old. Interestingly, there is an 

abrupt change in the distribution of the sewer’s structural condition at pipes aged 40-50 

years, which could reflect the evident changes that happened due to the arrival of both new 

technologies and materials allowing the evolution of construction processes, as well as 

accelerated population growth from the 1960s. Furthermore, it is worth noting that the model 
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attempted to simulate this atypical behaviour, which displays SVM’s advantages when 

handling non-linear data behaviour. 

 

Figure D.11 Inspected and predicted distribution of data in DE-optimised SVM model at the network 
level for Medellin’s case. Total network (Right) and broken down by age group (Left). The colours 
green, yellow and red represent excellent, intermediate and critical structural conditions. Source: 

Hernández et al. (2019c) 

For Medellín’s case, the condition of pipes older than 10 years was overestimated (negative 

KDEV_1 and KOLD(DEV_1), Table D.7), predicting an excellent condition, while pipes younger than 

that are underestimated (Figure D.12.). The lowest K-indicators are seen for those pipes in 

critical condition (0.15% and 2.30% for KDEV_3 and KOLD(DEV_3) respectively), which were 

underestimated with the exception again being those pipes installed in the last ten years, 

that were overestimated with a deviation close to 7% to be in intermediate or excellent 

condition.  

Onto analysing the adequacy of our model, Table D.8. shows the K indicators obtained by 

the confusion matrices of the validation data and the respective Kpipe for each case study. 

This table compares the K indicators and Kpipe obtained by i) conventional SVM models ii) 

our DE-optimised SVM model. 
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Table D.8.SVM model performance results at pipe levels for both case studies. 

Model 
Indicators for validation data 

KTPR_1 KTPR_2 KTPR_3 KFNR_1-2 KFNR_1-3 KFPR_3-1 Kpipe Kappa 

Bogota without optimisation by DE 
methodology 

82.94 12.88 56.21 56.99 36.88 23.09 49.9 0.26 

Bogotá - optimised model 53.81 54.19 54.04 20.05 12.62 25.46 35.48 0.3 

Medellin without optimisation by DE 
methodology 

21.83 0 95.8 6.74 4.2 20.91 52.65 0.18 

Medellín- optimised model 53.55 32.58 65.4 23.6 17.17 14.25 38.63 0.26 

Source: Hernández et al. (2019c) 

Contrary to the Knet values (Table D.7.), Kpipe values are very similar in both DE optimised 

and conventional models, with slightly smaller values in the DE-optimised SVM model than 

in the conventional SVM model for both case studies. Furthermore, the KTPR_1 and KTPR_3 

(except, KTPR_1 for Medellín) are higher for the conventional SVM model, which shows the 

result of only optimising the 𝜎 hyper-parameter in both the condition predicted and its 

corresponding data distribution. Besides the Kpipe metric, Cohen’s Kappa coefficient 

(Kappa) (Kraemer, 1982) was calculated to find the degree of agreement between observed 

and predicted conditions. From these calculations, we can observe how the DE-optimised 

SVM model improves agreement in both scenarios, and in Medellín’s case it does so enough 

to rise from slight (0 – 0.2) to fair agreement (0.2 – 0.4) (Cerda & Villarroel, 2008).  

In Bogotá’s case, the DE-optimised SVM model presents more homogenous TPR values 

(53.81-54.19%), despite the conventional model having higher KTPR_1 and KTPR_3 values than 

it. Said TPR values are also significantly higher than those expected from a random 

prediction, which would be around 33%. When looking at FNR values (KFNR_1-2 and KFNR_1-

3), those from the DE-optimised model are lower than those from the conventional model, 

both overall and for the most critical overestimation (KFNR_1-3). The exception is the False 

Positive Rate (FPR) value shown by KFPR_ 3-1  which is lower for the conventional SVM model 

(23%) than for the DE-optimised model (25%); however, this indicator is the least critical of 

all measured, as underestimating the condition of assets leads to less critical incorrect 

decisions than overestimation. Cleaning and inspection activities needed before carrying out 

rehabilitation would only result in minor costs to be assumed by the utility due to a wrong 

prediction, with stakeholders realizing that the condition is not as critical as predicted by the 

model.  For more details about this study and results about the performance prediction of 

these models, please see Hernández et al. (2019c).   
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CHAPTER 11: RESULTS METHODOLOGY  

The methodology was applied for each case study considering four structural conditions 

scenarios (SCS). The idea was to find the models that most support the management 

objectives for each case study. 

Therefore, the results for each case study contains: (i) the hierarchy of the most influential 

variables, (ii) the exploration of the prediction performance of different methods to develop 

deterioration models; (iii) the construction and optimisation of the deterioration models 

based on the statistical and machine learning methods that showed high predictive 

performance in the exploration for each case study; and (iv) the results of the suitable 

deterioration models to fulfil two management objectives (at network and sewer asset level). 

11.1. RESULTS FOR BOGOTA’S CASE 

This subchapter contains the results of the proposed methodology (described in chapter 9, 

part C) for Bogota’s sewer system. In chapter 9, this methodology is described considering 

only one structural condition scenario. However, for this thesis, four structural conditions 

scenarios were created to support the management objectives and activities. Therefore, 

Table D.9. presents the built structural condition scenarios considering: (i) the five structural 

grades given by NS-058; (ii) three structural categories that classify the structural condition 

in excellent, intermediate and critical conditions; (iii) two categories that classify the 

structural condition in sewers without defects and with any defect; and (iv) two categories 

that only consider the sewer assets in excellent and critical conditions.  

Table D.9. Description of structural condition scenarios (SCS) for Bogota's case 

Original Groups  

NS-058 (EAAB, 2001) 3 Categories 2 Categories 2 Categories 

1 C1 C1 C1 

2 

C2 
C2 

- 

3 - 

4 - 

5 C3 C2 

Source: Author 

It chooses three and two structural categories because the first simplifies the decision 

making in sewer asset management that offers the local standard to design management 

plans to short, medium and long term and following the Equation C.3. (Part C). The structural 

conditions were grouped in excellent, intermediate and critical structural conditions to look 

for balance in the data. Also, two more scenarios were created grouping the structural 
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conditions in two categories, following the suggestions of Ariaratman et al. (2001) and 

López-Kleine et al. (2016). Therefore, the scenario of two categories was created following 

the recommendations of Equation C.3. (Part C) which suggest grouping the structural 

conditions in excellent and with any structural damage (See Table D.9); and another 

scenario was created considering only excellent and critical structural conditions, leaving 

aside intermediate conditions, from the findings of Guzmán-Fierro et al. (2019a, b, and c), 

in which leaving outside those sewer assets in intermediate conditions could reduce the 

mispredictions due to the uncertainty by qualification for sewer assets in intermediate 

conditions. Besides, grouping the structural conditions in two categories is useful to develop 

management plans for sewer assets that need urgent repair. 

11.1.1. HIERARCHY OF THE KEY VARIABLES FOR THE DETERIORATION OF 

THE SEWER ASSETS FOR BOGOTA’S CASE 

According to the first methodology described in subchapter 9.1., Table D.10. shows a 

summary of the hierarchy of the variables that have the most influence over the deterioration 

of the structure of the sewer assets for each structural condition scenario for Bogota’s case.  

The hierarchy shown in Table D.10. was chosen by each variable’s relationship grade (first, 

second and third relation grade) with the structural condition of the sewer assets and the 

boxplot analysis of the Monte-Carlo simulations suggested in the Methodology (see 

subchapter 9.1., Part C). The relationship between each variable was hierarchically sorted 

according to the ratio between the median value and the interquartile range of the given 

boxplot (Q3-Q1). For more details, please see appendix – Part D.1.1. 

According to Table D.10., from the 32 studied variables for Bogota’s case, 23 variables show 

a non-depreciable relationship with the four structural condition scenarios (boxplot median 

>= 0.05). Only to remember, the boxplots summarized the probabilities in which each 

variable has any relationship (first, second and third grade) with the structural condition. 

Therefore, the variables whose boxplot median is lower than 0.05 means a depreciable 

relationship with the structural condition, according to the evaluated relationship (first, 

second and third grade). Variables such as soil type, trees roots length, surface material 

over the sewer assets, operational status, element type, road type, operational condition of 

the sewer assets and longitude and latitude coordinates where is located the sewer asset 

do not show any relationship with the structural condition in the four studied structural 

condition scenarios.  



 

 

Table D.10. Summary of the hierarchy of the influential variables the over structural condition by each structural condition scenario (SCS) 

Relationship 
grade 

Variables 

First SCS:  Second SCS:  Third SCS: Forth SCS: 

5-structural grades 3-structural categories 2-structural categories 
Excellent and critical structural 

conditions 

First  
(Parent 

variables) 

Inspection Year (“IY”) Inspection Year (“IY”) Diameter (“Diam”) Type of Effluent (“Sew”) 

Diameter (“Diam”) Diameter (“Diam”) Inspection Year (“IY”) Inspection Year (“IY”) 

Installation Year (“CY”) Age (“Age”) Installation Year (“CY”) Diameter (“Diam”) 

Length (Length”) Installation Year (“CY”) Length (“Length”) Installation Year (“CY”) 

Type of effluent (“Sew”) 
    

Network type (“Net”) 

Age (“Age”)   

Second 
(GParent 
variables) 

District (“District”) District (“District”) District (“District”) District (“District”) 

Social Classes (“SocialC”) Social Classes (“SocialC”) Social Classes (“SocialC”) Social Classes (“SocialC”) 

Land Uses (“LandUse”) Type of Effluent (“Sew”) Type of Effluent (“Sew”) Depth (“Depth”) 

Depth (“Depth”) Depth (“Depth”) Land Uses (“LandUse”) Material (“Mat”) 

Seismic shear wave velocity (“Vel”) 

  

Depth (“Depth”) 

  

Seismic Acceleration (“Acc”) Seismic Acceleration (“Acc”) 

Presence of trees (Tree”) Presence of trees (“Tree”) 

Slope (“Slope”) Seismic shear wave velocity (“Vel”) 

  Slope (“Slope”) 

Third 
(GGParent 
variables) 

Operational Zones (“Zones”) Land Uses (“LandUse”) Operational Zone (“Zone”) Operational Zones (“Zone”) 

Type of intrusive trees (“TreeType”) Operational Zone (“Zone”) Geotechnical zones (“GeoTec”) Land Uses (“LandUse”) 

Geotechnical zones (“GeoTec”) Geological Zone (“Geo”) Type of intrusive trees (“TreeType”) Seismic shear wave velocity (“Vel”) 

Geological zones (“Geo”) Seismic shear wave velocity (“Vel”) Precipitation levels (“Prec”) Age (“Age”) 

Precipitation levels (“Prec”) 

  

Geological Zone (“Geo”) Quality data (“Quality”) 

    

Seismic Acceleration (“Acc”) 

Geological zones (“Geo”) 

Precipitation levels (“Prec”) 

Water level depths (“WT”) 

Source: Author 



 

 

Variables such as Inspection Year (“IY”), Installation Year (“CY”), and diameter (“Diam”) of 

the sewer assets show a direct relationship (first relation grade or parent variable) with the 

four SCS. The Age (“Age”) shows a direct relationship with the structural condition in the 

first two SCS (five structural grades and three structural categories); in the third SCS (two 

structural categories), it does not show any relation, and for the fourth structural condition 

scenario, the variable Age shows a relationship of the third grade. And the variable length 

of the sewer assets (“Length”) shows a direct relationship with the structural condition in the 

first two SCS (five structural grades and three structural categories); while in the other 

scenarios do not show any relationship. 

Variables that show a relationship of second grade (Grandparent variables) in the four 

structural condition scenarios were district (“District”), social classes (“Social_C”) and depth 

(“Depth”) in which are located the sewer assets. The type of effluent (“Sew”) was positioned 

in the first and second relation grade (Parent and GParent variables).  

Operational (“Zone”) and geological (“Geo”) zones show relationships of third grade (Grand-

Grandparents) in the four structural condition scenarios. Land use (“LandUse”) shows a 

relationship of second and third grade (grandparents and grand-grandparent variables), as 

well the seismic shear velocity (“Vel”) which shows the relationship of second and third grade 

(grandparents and grand-grandparent variables). Furthermore, precipitation levels (“Prec”) 

and seismic acceleration (“Acc”) also show a relationship of third grade in three of the four 

SCS. Geotechnical zones shows a relationship of third grade in the first and third SCS. 

Variables related to trees showed a relationship with the structural condition in the first and 

third SCS (five structural grades and two structural categories). This confirms the findings 

of Torres-Caijao (2017) with the same case study. The hierarchy of variables of the first and 

third SCS are similar. 

The fourth SCS showed a relationship of the first, second and third grade with variables that 

were not considered in the other SCS, such as the network type ("Net"), the material of the 

sewer assets ("Mat"), data quality ("Quality") and water level depths ("WT").  

Comparing the results of Table D.10. with Table B.3. (Part B of the manuscript), it is possible 

to confirm that installation years, type of effluent, age, length, diameter and type of effluent 

show a direct relationship with the structural condition and their behaviour is explained 

according to the stated in Table B.3. Variables such as districts, seismic variables, geological 

and operational zones show relationships of second and third grade with the structural 
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condition, which confirms that these relationships depend on other variables that link them 

with the structural condition. The above mentioned is showed in the Bayesian Networks 

plotted in figures 9 to 12 of the appendix – Part D.1.1, in which those variables that act as a 

link between the above variables and the structural conditions are installation year ("CY") 

and age ("Age") of the sewer assets. Coming back to the analysis of Table B.3. in which it 

was not evident to know which variables between geographical or age ones were the most 

influential over their structural deterioration, with the results of the proposed methodology is 

confirmed that it is more influential the age variables (installation period and age) of the 

sewer assets. It reinforces the findings of other studies in which the age has a strong 

influence over the structural condition, because of the lifetime of the sewer assets (Davis et 

al., 2001a; Baik et al., 2006; Le Gat, 2008; Ana et al., 2009; Rokstad & Ugarelli, 2015; El-

Housni et al., 2017; Caradot et al., 2018).The physical characteristics of the sewer assets 

such as length, diameter and slope showed relationships of the first and second grade 

(Parent and GParent variables). However, the material of the sewer assets only had a 

relationship in the fourth SCS in which the sewer assets with intermediate conditions were 

not considered. Comparing these results with the bar plot analysis (Table B.3.), the variable 

material showed influence over the structural deterioration of the sewer assets: sewer assets 

in clay and PVC showed a higher percentage of structural deterioration. The fact that 

physical characteristics and variables related to the age of the sewer assets show a 

relationship of first and second grade (Parent and GParent variables) confirms that these 

variables show a great influence over the structural condition of the sewer assets, as it has 

been reported in other case studies (Ariaratnam et al. 2001; Baik et al., 2006; Tscheikner-

Gratl et al., 2014).  

Furthermore, variables such as Precipitation levels (“Prec”), Geological zones and land uses 

show relationships of third grade that were not detected in the bar plot analysis (Table 

B.3.).On the other hand, variables that showed an apparent relationship with the structural 

condition in the bar plot analysis (Table B.3.) such as longitude and latitude coordinates, 

operational conditions, surface material and trees roots’ length do not show any relationship 

with the structural condition from the application of the proposed methodology.  

In summary, physical characteristics and variables related to the age show a direct 

relationship with the structural condition. In contrast, the surrounding variables were 

positioned in a second and third level relationship with the structural condition. Information 
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about road infrastructure does not show any relationship over the deterioration of the 

structure of the sewer assets for Bogota’s case. 

11.1.2. Exploration of deterioration models  

An exploration of statistical and machine learning tools was carried out to develop 

deterioration models for Bogota’s case. Methods such as support vector machines (SVM), 

random forest (RF), lineal discriminant analysis (LDA), binomial (LR), multinomial (Muti_LR) 

and ordinal (Ord_LR) logistic regressions were explored by two different scenarios 

considering only the age as influential variable over the structural conditions (scenario 1) 

and age together with other characteristics such as material, type of effluent, depth, length, 

slope, and diameter for estimating the critical structural condition (scenario 2). In this study, 

the five structural conditions were grouped into four structural categories looking for the 

same proportion of data on each structural category. Therefore, grades 3 and 4 were 

grouped. Figure D.13. shows a deviation analysis for estimating the critical structural 

condition.  

 

According to Figure D.13., most of the models have higher deviations when these consider 

scenario 1 (only age as a predictor variable), except LR. The highest overestimation 

(positive deviation values) and underestimation (negative deviation values) were obtained 

for the 40-years old group for both scenarios.  

Figure D.12 Deviation analysis of the models’ prediction vs inspection data results for Bogota’s case considering 
the scenario 1 (on the left) and scenario 2 (on the right). 
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The prediction results of RF and SVM models show the lowest deviation for both scenarios, 

especially when these models consider scenario 2: RF exhibits deviations lower than +/-

10% and SVM lower than +/-15%. However, the prediction results of Ord_LR (scenario 2) 

are not as different as the SVM and RF ones (scenario 2) for pipes with less than 60 years.  

Furthermore, it is interesting to observe that SVM and RF models change the sign of 

deviation (from overestimation (+) to underestimation (-)) for the 30-50 years groups for SVM 

and the 20-50 years groups for RF for both scenarios 1 and 2. It implies that when the 

models mispredict the first one (considering scenario 1), they were wrongly predicted in 

better conditions than really they are; and the second (considering scenario 2) mispredicted 

some pipes in critical conditions when they really were in a better condition. The results 

obtained with LDA and Multi_LR models show similar behaviour, mainly, for scenario 2. In 

comparison to scenario 1, these models reduce the percentage of overestimated predictions 

but increase the percentage of underestimated predictions. However, the underestimation 

of scenario 2 does not exceed the percentage of underestimation of scenario 1: except for 

50-60 years group for Multi_LR model. 

LR model results exhibit deviations lower than +/- 10% for all the age groups for scenario 1; 

however, the results obtained with the RF model for scenario 2 are the ones with the lowest 

deviation among all results. Although the RF model results (scenario 2) show lower deviation 

than the LR model ones (scenario1), LR models are simpler than the RF models, due to it 

only needs the age to make a successful prediction at the network level. Also, it is possible 

to observe that the LR model under scenario 2 does not behave in the same way as the LR 

model under scenario 1, because the obtained results show that adding more covariates 

reduces the prediction capacity, overestimating predictions. Furthermore, the LR model 

under scenario 2 is the only one that overestimates the mispredictions while the other 

models under the same scenario underestimate the mispredictions (including Ord_LR and 

Multi_LR). This fact could be because the LR model works as a linear function with the log-

odds (𝑙𝑜𝑔𝑏
𝑝(𝑦)

1−𝑝(𝑦)
=  0   1𝑥2) considering only the age. It means that the LR model catches 

the behaviour of the deterioration pipes through the time by a logarithmic function, and it is 

expressed by the probability to be in critical condition. On the other hand, if more variables 

are included, the log-odds' linear function is more complex, and a logarithmic function would 

not be the function that could explain the deterioration behaviour. The probability of being in 

critical condition could be distorted. It is important to remember that this analysis does not 

show the identification of the critical condition of each sewer; this analysis shows the 
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performance of the model detecting the number of pipes on each age period. Meanwhile, 

RF, SVM, and LDA are machine learning models whose classification way is different: these 

models need the training data to separate the categories by decision trees or hyperplanes, 

while LR uses the training data to build a logarithm function for making a regression. 

On the other hand, the prediction of Ord_LR and Multi_LR models differ from those obtained 

with the LR model because Ord and Multi_LR have many objectives, not only one as the LR 

model: Ord_LR measures the probabilities of being in any condition from accumulative 

probabilities, as the order starts from C1 when it arrives at the critical condition (C4), the 

probability depends on the probabilities of the previous conditions (Gelman & Hill, 2006) and 

the probability of being in critical condition could be mispredicted compared to the one 

obtained with the LR model; and Multi_LR assumes independence among the conditions (it 

means that C1, C2, C3 and C4 are independent each other, which is not true, see the local 

assessment standard of Bogota, making that it could estimate unrealistic coefficients leading 

to a wrong separation (Melter & Vannata, 2015). 

Figure D.14. shows the performance curves for LR, SVM and RF prediction results, under 

scenarios 1 and 2, since these models were the most successful ones in predicting the 

percentage of sewer pipes with the highest probabilities to be in critical conditions.  

According to Figure D.14., it is possible to observe that the performance curves for LR, SVM 

and RF results show higher successful percentages detecting sewer pipes in critical 

condition considering the scenario 2. Furthermore, for scenario 1 the behaviour of 

performance curves of the models tend to be flat, which means that the models do not 

correlate the sewers with high probability to be in critical condition with the successful 

percentage to be in that condition. Meanwhile, models considering the scenario 2 correlate 

the successful percentage with the probability to be in critical conditions (mainly for LR and 

RF models). The bar plots, on the right side of each performance curve, show a sample of 

the success percentage for the first 10% of sewers with the highest probabilities to be in 

critical condition. According to these bar plots, for scenario 1, LR, SVM and RF results show 

similar successful predictions around 42%; while for scenario 2, the highest successful 

prediction results are around 55% for LR and RF. Even though the SVM model under 

scenario 2 improves the prediction quality compared to the SVM model under scenario 1, 

for which the corresponding performance curve tends to be flat.  
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Figure D.13. LR, RF and SVM performance curves with a sample on its right of 10% pipes. Left: scenario 1 
(considering only the age as an influential variable); right: scenario 2 (considering the age and other variables as 

influential variables) 
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Here, it does not show the performance curves obtained by LDA, Ord_LR and Multi_LR 

model predictions because their prediction quality is lower than RF, SVM and LR model 

predictions (see Appendix – Part D.1.2.). 

It is essential to highlight that even if Ord_LR and SVM show similar deviation results under 

both scenarios, the performance curves of Ord_LR tend to be flatter than SVM ones in both 

cases. Furthermore, the success percentage to be in critical condition of the first 10% of 

pipes with the highest probability to be in that condition was lower for Ord_LR (44%) than 

for SVM (47%) under scenario 2. 

According to the above results, Support Vector Machines (based on Laplace kernel 

functions), Random Forest and Binomial Logistic regressions are the selected methods for 

developing deterioration models for Bogota’ case. Moreover, it also considers Ordinal 

Logistic Regression in the case that structural condition consists of more than two structural 

categories. For more details about this exploration, see Hernández et al., 2019b.  

11.1.3. SUITABLE DETERIORATION MODELS FOR MANAGEMENT MODELS 

FOR BOGOTA’S CASE 

After finding the above hyperparameters’ combinations for the machine learning-based 

deterioration models, it carries out 1000 Monte-Carlo simulations for all the selected 

deterioration models (based on both statistical and machine learning methods). The idea of 

this is to estimate the prediction rank of validation data for the structural condition of the 

sewer assets focused on the two analysed management objectives. 

It compares the predictions of each method-based deterioration model to finding the one 

that most significantly minimises the Knet and Kpipe metrics (see Appendix-D.1.4, Figures 

from 13 to 52). Based on the proposed methodology (Chapter 9 of part C), when the models 

do not show a significant difference in their prediction results, it is chosen the one with the 

lowest number of needed variables to achieve the management objective. 

Figure D.14. shows the most suitable models to achieve the network level management 

objective (Knet) for each SCS: (a) five structural grades (5_COND), (b) three structural 

categories (3_CAT), (c) two structural categories (2_CAT), and (d) excellent and critical 

structural conditions (C1C5). 

According to Figure D.14., the statistical-based deterioration models such as ordinal 

(Ord_LR) and binomial (LR) logistic regression are the ones with the lowest variance, but 
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with the highest Knet median (except for the second SCS). Furthermore, the SCS that 

showed the lowest Knet values are related to SCS that groups the structural condition in two 

categories (third – 2_CAT and fourth SCS -C1C5): Knet median varies between 1 and 2. In 

contrast, the Knet median of the SCS that groups the SCS in more than two categories (first 

– 5_COND and second SCS – 3_CAT) varies from 3 to 6. 

According to Figure D.14., the statistical-based deterioration models such as ordinal 

(Ord_LR) and binomial (LR) logistic regression are the ones with the lowest variance, but 

with the highest Knet median (except for the second SCS). Furthermore, the SCS that 

showed the lowest Knet values are related to SCS that groups the structural condition in two 

categories (third – 2_CAT and fourth SCS -C1C5): Knet median varies between 1 and 2. In 

contrast, the Knet median of the SCS that groups the SCS in more than two categories (first 

– 5_COND and second SCS – 3_CAT) varies from 3 to 6. 

Furthermore, there are interesting results in the selection of the most suitable model for the 

second and third SCS. According to Figure D.14.(b). SVM_Laplace and Ord_LR -based 

models, they have Knet medians of 3; however, the variability is higher for SVM_Laplace-

based model. Therefore, as the proposed methodology (chapter 9, Part C) suggests to 

choose the one with the lowest K metric value and it presents a statistically significant 

difference with the other models (Figure 31.b. of the appendix – Part D.1.4.), the 

SVM_Laplace-based model should be the selected. However, also the SVM_Laplace-based 

model shows the highest Knet values between both models (SVM_Laplace and Ord_LR). 

Therefore, it was analysed the Q1 and Q3 values of the boxplots to verify the variability 

below or above the median. Regarding this analysis, it was found that the variability above 

the median is higher than the one below of the median for the SVM_Laplace-based model. 

Thus, it was chosen the Ord_LR-based model as the most suitable model for the network 

level objective and the second SCS. 
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(a)  (b) 

(c)  (d) 

Figure D.14. Comparison of the most suitable deterioration models to achieve the management 
objective at the network level for the first (a), second (b), third (c) and fourth (d) SCS. Source: Author 

 

On the other hand, Figure D.14.(c) shows that SVM-based models depict similar results 

considering a different number of variables, and according to Figure 42.b. of the Appendix-

Part D.1.4., the results of both models do not show significant statistical differences (p-value 

> 0.05.  Therefore, it was chosen the one that needs a fewer number of variables to achieve 

the lowest Knet values (SVM_RBF considering any relationship of first, second and third 

grade with the structural conditions – GGParent variables). 
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a) b) 

c) d) 

Figure D.15. Comparison of the most suitable deterioration model to achieve the management 
objective at the pipe level for the first (a), second (b), third (c) and fourth (d) SCS. Source: Author 

According to Figure D.15. SVM and RF-based models were the ones that show the lowest 

Kpipe values; however, the RF-based models considering all the studied variables are the 

ones chosen to achieve the pipe level objective. According to Figure D.15. SVM and RF-

based models were the ones that show the lowest Kpipe values; however, the RF-based 

models considering all the studied variables are the ones chosen to achieve the pipe level 

objective for the second, third and fourth SCS. The appendix-Part D.1.4. shows in detail the 

analysis of the selection of the most suitable models for each SCS. 

Table D.11. shows the summary of the most suitable model for each SCS and each 

management objective.  
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Table D.11. The chosen deterioration models for each SCS and management objective after the 
analysis of boxplots and Wilcoxon tests showed in appendix – D.1.4.  

SCS 
Management 

objective 

Method-based 
deterioration 

model 
Type of hierarchy  Variables 

First: five 
structural 
grades 

(5_COND) 

network SVM-RBF 
First relationship 
grade (Parent) 
variables 

Inspection year, diameter, installation year, 
length, type of effluent and age (6 variables) 

pipe SVM-RBF 
First and second 
relationship grade 
(GParent) variables 

Inspection year, diameter, installation year, 
length, type of effluent, age, districts, social 
classes, land uses, depth, seismic shear wave 
velocity, seismic acceleration presence of 
trees and slope (14 variables). 

Second: three 
structural 
categories 
(3_CAT) 

network Ord_LR 
All studied 
variables 

See Table B.1 and B.2 of Part B 

pipe Random Forest All studies variables See Table B.1 and B.2 of Part B 

Third: two 
structural 
categories 
(2_CAT) 

network SVM-RBF 
First relationship 
grade (Parent) 
variables 

Diameter, inspection year, installation year and 
length (4 variables). 

pipe Random Forest All studies variables See Table B.1 and B.2 of Part B 

Fourth: 
Excellent and 

critical 
structural 
conditions 

(C1C5) 

network SVM-RBF 

First, second and 
third relationship 
grade (GGParent) 
variables 

Type of effluent, inspection year, diameter, 
installation year, network type, district, social 
classes, depth, material, operational zones, 
land uses, seismic shear wave velocity, age, 
data quality, seismic acceleration, geological 
zones, precipitation levels, and water level 
depths (18 variables) 

pipe Random Forest All studies variables See Table B.1 and B.2 of Part B 

Source: Author 

According to Table D.11., it is possible to observe that machine learning-based models are 

the most suitable to develop deterioration models for the prediction of the structural 

conditions for Bogota’s sewer system after applying the proposed optimisation methodology 

(chapter 8). However, no one method or model leads to a specific sewer asset management 

objective. It confirms the hypothesis of this PhD thesis that the performance of the 

deterioration models to predict the structural conditions of sewer assets depends on the 

case study, the management objective and the information included in the model identified 

as key factors. Furthermore, Table D.11. shows that the models related to the network level 

need fewer variables than the models related to the pipe level for achieving their respective 

objectives. 
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Furthermore, variables such as inspection year, installation year and diameter of the sewer 

assets are considered in all the chosen models. In addition, according to the variables 

considered on the chosen models of each SCS, it was found that: (i) for the first SCS 

(5_COND), it is enough to consider Inspection year, diameter, installation year, length, type 

of effluent, age, districts, social classes, land uses, depth, seismic shear wave velocity, 

seismic acceleration presence of trees and slope for achieving the network and pipe level 

objectives; (ii) for the second SCS (3_CAT), it is necessary to considers all the studied 

variables for achieving both management objectives; (iii) for the third SCS (2_CAT), it is 

enough to consider only four variables (diameter, inspection year, installation year and 

length) for achieving the network level objectives and necessary to include all the studied 

variables for achieving the pipe level objective; and (iv) for the fourth SCS (C1C5), all the 

variables that show any relationship with the structural condition (GGPar) are necessary for 

achieving the network level objective and all the studied variables for achieving the pipe 

level objective.  

 

From the models depicted in Table D.11., Figures D.16. and D.17. show the boxplot analysis 

of the Knet and Kpipe values obtained for the validation data to visualise which model and 

SCS showed the highest performance quality. As well, Tables D.12. and D.13. show the p-

values obtained after applying the Wilcoxon analysis to find significant differences in the 

prediction results among the models of the different SCS shown in Figures D.16. and D.17. 

respectively.  

Figure D.16. Comparison of the most suitable deterioration model to achieve the management 
objective at the network level for the four SCS. Source: Author 
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According to Figure D.16., the third (two structural conditions – 2_CAT) and fourth (excellent 

and critical structural conditions - C1C5) SCS are the ones with lower Knet values than the 

ones obtained from the first (5_COND) and second (3_CAT) SCS. It confirms the findings 

of Ariaratman et al. (2001), López-Kleine et al. (2016) and Guzmán-Fierro et al. (2019a, b 

and c): grouping the structural conditions in two categories increases the performance 

prediction quality independently of the deterioration model (in this case SVM considering 

RBF and Laplace kernel function and Random Forest) and the variables included as 

predictors in the models (Parent and GGParent variables). The advantage in sewer asset 

management on grouping the structural conditions in two categories to support the 

investment plans at the network level is focused on identifying the number of sewer assets 

in critical conditions for feeding investment plans of short term. Besides, the figure shows 

that leaving aside the sewer assets in intermediate conditions (fourth SCS – C1C5), more 

significantly (see Table 22 – appendix – Part D.1.4.5.) increases the prediction performance 

(the lowest Knet values) to estimate the number of sewer assets in excellent and critical 

conditions.  

On the other hand, the results of Knet values of the model chosen as suitable for the first 

SCS (five structural grades -NS-058, 5_COND) are significantly lower (see Table 22 – 

appendix – Part D.1.4.5) that the Knet values of the model chosen as suitable for the second 

SCS (three structural categories – 3_CAT). It means that the SVM_RBF-based model 

considering only parent variables (first relationship grade with the structural condition) and 

the five grades achieves the network level objective to find the number of sewer assets on 

each structural grade to develop investment plans of medium and long term and follow the 

recommendations given by EAAB (Table 1 of the Appendix – Part B.1.1) for management 

planning.  
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According to Figure D.17., the models that show the lowest Kpipe values are the ones that 

group the structural condition in two categories (third and fourth SCS). The results for the 

network level objectives, these results confirm the findings of Ariaratman et al. (2001), 

López-Kleine et al. (2016) and Guzmán-Fierro et al. (2019a, b and c): the performance 

quality increases when the structural conditions are grouped in only two categories. 

According to the Wilcoxon test (p-values showed in Table 23 of the appendix - Part D.1.4.5), 

there is not a statistically significant difference (p-value > 0.05) between the models chosen 

for the third and fourth SCS. The above means that the most suitable model for identifying 

the sewer assets with any structural damage (third SCS) or in critical condition (fourth SCS) 

is an RF-based model considering all the collected variables in Table B.1 and B.2 of part B. 

Regarding the first (5_COND) and second (3_CAT) SCS, the SCS that groups the structural 

condition in three categories (second SCS) has more prediction performance quality than 

the one that considered the structural condition as the assessment of the Bogota’s standard 

– NS-058 (EAAB, 2001). Therefore, the selected model to prioritise the activities in sewer 

asset management is the one based on RF considering all the studied variables (Tables 

B.1. and B.2). This model allows a hierarchy on the management activities in three levels, 

according to their importance: replacement (C3 – critical structural conditions), rehabilitation 

(C2 – intermediate structural conditions) and cleaning (C1 -excellent structural conditions). 

From the chosen models to fulfil the network level objectives (Figure D.16.), Table D.12. 

shows the K indicators and Knet metric obtained from the selected models for the first and 

fourth SCS. According to this table for the first SCS (5 structural grades – 5_COND), the 

Figure D.17. Comparison of the most suitable deterioration model to achieve the management 
objective at the pipe level for the four SCS. Source: Author 
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deviations for the whole network were not higher than 5.4, being poor and critical conditions 

(the model overestimated the poor condition and underestimated the critical condition) the 

ones with the highest deviations. Moreover, the deviations for the oldest sewer assets (ages 

between 70 -80 years old) are higher for those assets predicted in good and acceptable 

conditions (the model underestimated the good condition while overestimated the 

acceptable condition). In the end, the Knet for validation data was 2.88. Moreover, regarding 

the fourth SCS (excellent and critical conditions - C1C5), the deviations are visible in the 

total sewer system, while there is no deviation for the oldest sewer assets, giving a Knet of 

0.084. 

Table D.12. K indicators and Knet metric for validation data obtained from the chosen models of the 
first and fourth SCS for Bogota’s case. 

SCS 
Deviation total sewer system Deviation old sewer assets: 70-80 years Knet 

KDEV_1 KDEV_2 KDEV_3 KDEV_4 KDEV_5 KOLD(DEV_1) KOLD(DEV_2) KOLD(DEV_3) KOLD(DEV_4) KOLD(DEV_5)  

SCS_1: 
5_COND 

0.29 0.29 0.29 4.33 -5.19 0.76 -5.34 2.29 1,53. 0.76 2.88 

  KDEV_1 
  

KDEV_5 KOLD(DEV_1) 
 

KOLD(DEV_5)  

SCS_4: 
C1C5 

-0.12 0.12 0 0 0.084 

Source: Author 

The above results are visualized in the bar plots of Figure D.18 and D.19. of the SVM-based 

model considering parent variables and the five structural grades; and RF-based model 

considering GGParent variables and only excellent and critical structural conditions. 
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According to Figure D.18., the SVM-based model chosen for the first SCS at the network 

level tends to capture the distribution of the structural conditions by each age periods. The 

great differences are that the model underestimates the structural conditions of acceptable 

and poor sewers (CC3 and CC4 -yellow and orange colours) in critical conditions (CC5-red 

colour) for 50-70- and 30-40-years old sewer assets; while it overestimated the structural 

conditions of recent (<30 years old), and 40-50 years old sewer assets and the oldest sewer 

assets predicting in better conditions than really they are. 

 

 

Figure D.18. Inspected and predicted distribution of validation data (SVM-model) considering only parent 
variables at the network level for Bogota’s case. Total network (right) and broken down by age group (left). 
The colours dark green, green, yellow, orange and red represent excellent (CC1), good (CC2), acceptable 

(CC3), poor (CC4) and critical (CC5) structural conditions. Source: Author 
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Regarding Figure D.19., RF-based model chosen for predicting the structural condition at 

the network level for the fourth SCS also manages to capture the distribution of the structural 

condition of the observed data. Furthermore, as well as Figure D.18., this model 

underestimates the structural conditions for the 50-70 and 30-40-year-old sewer assets; and 

it overestimates the structural conditions of recent sewer assets (<30 years old), 40-50-year-

old sewer assets and the oldest sewer assets (70-80-year-old). 

 

Figure D.19. Inspected and predicted distribution of validation data (RF-model) considering GGParent variables at the 
network level for Bogota’s case. Total network (right) and broken down by age group (left). The colours dark green, 

green, yellow, orange and red represent excellent (CC1), good (CC2), acceptable (CC3), poor (CC4) and critical (CC5) 
structural conditions. Source: Author 
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From the successful results for validation data, the above models were used to predict the 

structural condition of the whole sewer system to visualise areas in which the sewer assets 

are in critical condition and from them, developing investment plans. Therefore, Figure D.20. 

shows the maps with the prediction of the total sewer system for both models at the network 

level considering both structural condition scenarios (5_COND and C1C5).  

According to the maps of Figure D.20., districts such as Usaquén and Engativá depicted 

vast areas of sewer assets in excellent conditions for both predictions, likewise districts such 

as Suba and Kennedy depict areas with sewer assets in critical conditions. It is essential to 

observe that both models (SVM and RF) considering different SCS and variables could 

achieve almost the same prediction result. Moreover, even if these models are guided by 

the same objective (prediction at the network level for investment plans), the results could 

Figure D.20. Maps overview of the predicted structural condition of Bogota’s sewer system at network 
level from SVM-RBF model considering only parent variables and the five structural grades or first 

SCS (on the left) and RF model considering GGParent variables and two structural conditions 
(excellent and critical – fourth SCS) (on the right) 



177 

 

support different perspectives of the investment plans at short (Figure D.27., map on the 

right), medium and long term (Figure D.26., map on the left). 

Regarding the map of Figure D.20. on the left, apart from Suba and Kennedy districts that 

need investment in replacement actions of an urgent nature, Puente Aranda, Bosa, Los 

Mártires, Fontibon, San Cristobal, and Rafael Uribe are districts in which investment plans 

should be built for maintenance, rehabilitation and inspection actions of short and medium 

term, according to the recommendations of the standard NS-058 (see Table 3 of Appendix 

– B.1.1).  

Table D.13. shows the K indicators and Kpipe metric obtained from the prediction for 

validation data from the chosen model in Figure D.24. for the pipe level objectives. 

Table D.13. K indicators and Kpipe metric of validation data obtained from the chosen models of the 
second and third SCS 

SCS KTPR_1 KTPR_2 KTPR_3 KFPR1_3 KFNR2_1 KFNR3_1 Kpipe 

SCS_2: 
3_CAT 

62 58,9 55,9 19,24 18,77 9,61 31,34 

  KTPR_1 KTPR_2  KFPR1_2 KFNR2_1    

SCS_3: 
2_CAT 

76,5 74,8  21,17 25,23  23,83 

Source: Author 

According to Table D.13., RF-based model considering the second SCS (3_CAT) shows 

True Positive Rate -TPR values above f 56%. It means that most than 56% of sewer assets 

were correctly predicted in the observed condition. It implies that the model predicts and 

identifies the structural condition of the sewer assets better than a random model (TPR = 

33%) for the three structural categories. Moreover, the overestimation of mispredictions that 

implies severe consequences (KFNR3_1: Model predicted in excellent condition those sewer 

assets that really are in critical condition) is less than 10% given a Kpipe value of 31.34. 

Furthermore, RF-based model considering the third SCS (2_CAT) shows TPR values 

around 75%, which implies that more than 75% of sewer assets were correctly predicted in 

excellent and critical conditions, given a Kpipe value of 23.83.  

Figures D.21 and D.22. show performance curves for validation data considering the models 

of both SCS (3_CAT and 2_CAT). These curves were built from calculating the probability 

of each sewer asset of being in critical conditions (the strip in red colour). 
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Figure D.21. Performance curve with a sample on its right of 10% sewer assets for validation data 
obtained from RF-based model considering all studied variables and second SCS (3_CAT) for the 
pipe level objective. Excellent, intermediate and critical conditions in green, yellow and red strips. 

Source: Author 

According to Figure D.21., the performance curve shows a decreasing behaviour when the 

probability of being in critical condition reduces. It means that the prediction of RF-based 

model helps to prioritise the replacement of the sewer assets with the highest probability of 

being in critical condition with the reliability of being in that condition. The sample on its right 

shows the 10% of sewer assets with the highest probability of being in critical condition. This 

bar-plot shows that 69% of the sewer assets are effectively in critical conditions, 24% in 

intermediate conditions and 7% in excellent conditions. The above means that if the budget 

for replacement is low, there is no need to inspect all the sewer systems to develop 

replacement/rehabilitation activities plans. For instances, in accordance with the prediction 

of this model, the managers could rehabilitate 10% of the sewer assets with the highest 

probability of being in critical condition with a reliability of 69% that the sewer assets need 

urgent replacement activities and 93% of reliability that need any management activity. 

Figure D.29. shows a comparison between the structural conditions, grouped under the 

second SCS, found on CCTV data inspections (observed conditions), and the probability of 

being in critical conditions from the RF-based model prediction.  
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According to Figure D.22., it is found that the sewer assets in red scale that represent the 

higher probability of being in critical conditions (probability >70%) from the map “predicted 

conditions” really are in critical conditions in the map “observed data”. As well, the sewer 

assets in green scale that represent the lowest probabilities of being in critical conditions 

(probability <20%) really are in excellent structural conditions. The sewer assets in median 

probabilities of being in critical conditions are the ones that it is difficult to intuit. However, 

the RF-based model also gives the probabilities of being on each structural category. The 

relevant fact from the above comparison is visualising the performance of the chosen model 

for rehabilitation activities to prioritise the management activities in some sewer assets over 

others.  

Figure D.22. Comparison between the conditions found by CCTV inspection data grouped according to the second SCS 
(left) and prediction of the probability of being in critical conditions (right) for Bogota’s case, magnified onto Engativá 

district. Source: Author 
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Figure D.23. Performance curve with a sample on its right of 10% sewer assets for validation data 
obtained from RF-based model considering all studied variables and third SCS (2_CAT) for the pipe 

level objective. Green and red strips represent without and with structural damage in the sewer 
assets. Source: Author 

Figure D.23. shows that the performance curve depicts a decreasing behaviour when the 

probability of a sewer asset has any structural damage also diminishes. This result is positive 

due to the model could address rehabilitation plans prioritising those sewer assets with the 

highest probability of presenting any structural damage. Supposing that the budget for 

rehabilitation is limited, it is suggested rehabilitating the 10% of sewer assets with the highest 

probability of present any structural damage with a 96% of reliability.  

As well as Figure D.21., Figure D.23. shows a comparison between the observed structural 

categories (from CCTV inspections), grouped under the third SCS (two categories sewer 

assets without and with structural damages) and the probability of the sewer assets have 

any structural damage.  
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According to Figure D.24., the sewer assets in red-orange scales (map of predicted 

conditions) that represent the highest probability that the sewer assets have any structural 

damages really have any structural damage. As well, the sewer assets are in yellow colour 

have more prediction mistakes. Likewise, the sewer assets in green scales are the ones that 

have higher probabilities of being in excellent structural conditions (no damages). From the 

above comparison, it confirms the successful predictions of the chosen RF-model 

geographically together with the performance curve of Figure D.23.  

From the above successful results, the model for the pipe level objectives was used to 

predict the structural condition of the whole Bogota’s sewer system to simulate in detail the 

structural condition of sewer assets and support rehabilitation plans. Figure D.24. shows a 

segment of the prediction of the structural condition of Bogota’s sewer system in Kennedy 

Figure D.24. Comparison between the conditions found by CCTV inspection data grouped according to the third SCS 
(left) and prediction of the probability of being in critical conditions (right) for Bogota’s case, magnified onto Engativá 

district. Source: Author 
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district obtained from RF models considering all studied variables and the second (three 

structural categories: excellent, intermediate and critical) and two (without and with 

damages) SCS.  

According to Figure D.24., both maps predict the same sewer assets in excellent conditions 

(green lines), as well the sewer assets that have any structural damage have painted in 

yellow or red for the map of the second SCS (map on the left) and in red for the third SCS 

(map on the right). From the above results, the rehabilitation plans could be addressed from 

two perspectives: (i) prioritisation of the most important sewer assets of being replaced and 

(ii) identification of sewer assets that need rehabilitation activities and tracing in inspection 

activities.  

Figure D.25. Example of maps overview of predicted structural condition of Bogota’s sewer system (magnified onto 
Kennedy district) at pipe level from RF-model considering all the studied variables and the three (excellent, 

intermediate and critical – second SCS) (on the left) and two structural conditions (without and with structural 
damages – third SCS) (on the right) 
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11.2. RESULTS FOR MEDELLIN’S CASE 

This subchapter contains the results of the proposed methodology (described in chapter 9, 

part C) for Medellin’s sewer system. As well as for Bogota’s case, four structural conditions 

scenarios were created to support the management objectives and activities (Table D.14.): 

(i) the five structural grades given by Medellin’s standard (EPM, 2010); (ii) three structural 

categories that classify the structural condition in acceptable, poor and critical conditions; 

(iii) two categories that classify the structural condition in sewers in acceptable and poor 

structural conditions; and (iv) two categories that only considers the sewer assets in 

excellent and critical conditions.  

Table D.14. Description of structural condition scenarios (SCS) for Medellin's case 

Original Groups  

EPM (2010) 3 Categories 2 Categories 2 Categories 

1 

C1 C1 

C1 

2 - 

3 - 

4 C2 
C2 

- 

5 C3 C2 

Source: Author 

Three and two structural categories were chosen because it simplifies the decision making 

in sewer asset management that offers the local standard. These clusters support the 

designing of management plans to short, medium and long term. The use of Equation C.3. 

(Part C) allows for balancing the data in the structural condition for prediction purposes. 

Therefore, the best way was grouping the structural conditions in acceptable, poor and 

critical structural conditions. Also, two more scenarios were created grouping the structural 

conditions in two categories, following the suggestions of Ariaratman et al. (2001) and 

López-Kleine et al. (2016). Therefore, the third SCS was created following the 

recommendations of Equation C.3. (Part C) which suggest grouping the structural conditions 

in acceptable and bad-critical structural conditions (See Table D.14.) and the fourth SCS 

was created according to the findings of Guzmán-Fierro et al. (2019a, b, and c) for Bogota’s 

case: estimating only the excellent and critical structural conditions (leaving aside 

intermediate conditions) increases the prediction quality because it reduces the qualification 

uncertainty in the intermediate conditions. Besides, grouping the structural conditions in two 

categories is useful to develop management plans for sewer assets that need urgent repair. 
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11.2.1. HIERARCHY OF THE KEY VARIABLES OF THE DETERIORATION OF 

THE SEWER ASSETS FOR MEDELLIN’S CASE 

According to the first methodology described in subchapter 9.1., Table D.15. shows a 

summary of the hierarchy of the variables with the most influence over the deterioration of 

the structure of the sewer assets for each structural condition scenario for Medellin’s case. 

As well as for Bogota’s case, Table D.15. shows a hierarchy was chosen according to the 

relationship of each variable with the structural condition. The relationship showed in this 

table has three levels that represent the first, second and third relationship grade with the 

structural condition. These relationships were obtained after a boxplot analysis of 1000 

Monte-Carlo simulations of the BN results of the suggested methodology in subchapter 9.1 

(Part C). The relationship between each variable was sorted hierarchically according to the 

ratio between the median value and the interquartile range of the given boxplot (Q3-Q1). 

For more details about these hierarchies, please see appendix – Part D.2.1. 

Table D.16. depicts that 13 variables of the 23 studied variables showed a non-depreciable 

relationship with the four structural condition scenarios (boxplot median > = 0.05).  

Reminding the proposed methodology (subchapter 9.1., part C), the boxplots summarized 

the probabilities in which each variable has any relationship (first, second and third grade) 

with the structural condition. Therefore, variables such as inspection year, age, installation 

year, basin, material, and foundation type are variables that have any relationship with the 

structural condition in the four SCS for Medellin’s case. 

Variables related to the age (inspection year, installation year and age) occupied the first 

relationship in all SCS. Physical and surrounding (urban, environmental and operational) 

characteristics of sewer assets showed similar relationships with the structural deterioration 

of sewer assets. Physical and surrounding characteristics showed second and third grades 

relationships with the structural condition (except for the third SCS). However, from the 

physical characteristics only length and material were relevant in more than two SCS. 

Variables such as basin showed stronger relationship with the structural condition than the 

district (district showed a relationship with the structural condition for the second, third and 

fourth SCS); even both variables could represent area characteristics. It could happen 

because the area of the basin is smaller than the district, and this variable would characterise 

in a better way the inclusion of some unknown variables. Furthermore, the relevance of the 

foundation type on the structural deterioration of the sewer assets is related to relationship 

with the material variable, which also was relevant to the structural deterioration of the sewer 
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assets. It happens because the foundation type is chosen from the material of the sewer 

assets according to the standard of sewer design given by EPM (EPM, 2013). 

The type of effluent showed a relationship with the structural condition in the first, second 

and third SCS (SCS, considering intermediate conditions). In contrast, the operational 

status, the diameter of sewer assets, the depth and seismic zones showed a relationship 

with the structural condition for the fourth SCS when the intermediate structural conditions 

were not considered. 

Table D.15. Summary of the hierarchy of the influential variables over the structural condition by each 
SCS for Medellin’s case. 

Relationship 
grade 

Variables 

First SCS:  
5-structural grades 

Second SCS: 
3-structural categories 

Third SCS:  
2-structural categories 

Fourth SCS:  
Excellent and critical 
structural conditions 

First  
(Parent 

variables) 

Inspection Year (“IY”) Inspection Year (“IY”) Inspection Year (“IY”) Inspection Year (“IY”) 

Age (“Age”) Age (“Age”)  Installation Year (“CY”) Installation Year (“CY”) 

  

Length (“Length”) Material (“Mat”) Age (“Age”) 

  
Length (“Length”) 

  
Age (“Age”) 

Second 
(GParent 
variables) 

Installation Year (“CY”) District (“Dis”) Basin (“Basin”) 
Foundation Type 
(“Ciment”) 

Basin (“Basin”) Installation Year (“CY”) 
Foundation Type 
(“Ciment”) 

Material (“Mat”) 

  
Basin (“Basin”) District (“Dis”) 

Operational Status 
(“OpStatus”) 

    Districts (“Dis”) 

Third 
(GGParent 
variables) 

Material (“Mat”) Material (“Mat”) Type of effluent (“Sew”) Diameter (“Diam”) 

Foundation Type 
(“Ciment”) 

Foundation Type 
(“Ciment”) 

  

Basin (“Basin”) 

Type of effluent 
(“Sew”) 

Type of effluent (“Sew”) Depth (“Depth”) 

    
Seismic Zone 
(“SeismicZ”) 

Source: Author 

According to the first exploration of bar plot analysis (Table B.6., Part B), variables related 

with the age of the sewer asset (inspection year, age, installation year), as well as the basin, 

districts, seismic zones, type of effluent, material, length and diameter of sewer assets were 

identified in this exploration as influential over the deterioration of the structural condition. 

According to this bar plot analysis (Table B.6, Part B),  

the following criteria could be alert to identify assets in poor structural conditions and could 

eventually be used to support a preliminary decision-making in a simplified manner: (i) the 
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oldest sewer assets; (ii) sewer assets inspected between 2014 and 2017; (iii) the smallest 

sewer asset (diameters < 0.3 m); (iv) sewer assets located in low seismic zones; (v) separate 

sewer systems; (vi) concrete sewer assets; (vii) the extended sewer assets (lengths > 50 

m); and (viii) sewer assets located on the west (particularly Laureles, Las 

Américas and Castilla districts, and Altavista, La Picacha-Nutibara, La Poblada, La 

Malpaso, La Grande-Estrella and Granizal basins). However, variables identified in the bar 

plot analysis with an apparent relationship with the structural condition such as slope, road 

type, the closeness to trees, element type and longitude and latitude coordinates do not 

show any relationship with the structural condition, according to the proposed methodology. 

While variables such as foundation type, operational status, and depth of the sewer assets, 

that did not show any apparent relationship with the structural condition by the bar plot 

analysis, were found as related with the structural condition (second and third relation grade) 

by the proposed methodology (Table D.15.) 

In summary, as well as for Bogota’s case and other experiences in the literature (Davis et 

al., 2001a; Baik et al., 2006; Le Gat, 2008; Ana et al., 2009; Rokstad & Ugarelli, 2015; El-

Housni et al., 2017; Caradot et al., 2018), the variable age is a key factor for the deterioration 

of the structure of the sewer assets.  

11.2.2. EXLORATION OF DETERIORATION MODELS 

As well as for Bogota’s case, for Medellin’s case was explored the same statistical and 

machine learning methods to develop deterioration models for predicting the structural 

condition of uninspected sewer assets: support vector machines (SVM), random forest (RF), 

lineal discriminant analysis (LDA), binomial (LR), multinomial (Muti_LR) and ordinal 

(Ord_LR) logistic regression. These models also were explored by two scenarios (scenario 

1 considering only the age as an influential variable, and scenario 2 considering the age, 

material, type of effluent, depth, length, slope, and diameter) for estimating the critical 

structural condition. For this case study, grades 2 and 3 were grouped because of the low 

of sewer assets qualified in these grades. Figure D.26. shows a deviation analysis for 

estimating the critical structural condition. 
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Figure D.26. Comparison models prediction of the critical structural condition for Medellin’s case by 
deviation analysis. Left: results for scenario 1. Right: results for scenario 2 

According to Figure D.26., there is a lighter improvement (lower deviation) when the models 

consider the sewer characteristics together with age (scenario 2) as input variables, in 

particular for sewers with more than 40 years (except for LDA and Ord_LR models). This 

figure shows that LR and RF-based models are the ones with the closest deviation to zero: 

lower than 2% deviation for sewer assets with less than 40 years and lower than 10% for 

sewer assets with more than 40 years. However, LR-based model results present lower 

deviations considering only the age as the predictor variable over the critical condition of the 

sewer pipes. The prediction results of SVM, Multi_LR and Ord_LR are similar for sewers 

with less than 40 years for both scenarios. However, for sewer assets with more than 40 

years, SVM and Multi_LR-based models, for scenario 2, predict more sewer assets in critical 

condition correctly, reducing the deviation percentage. The Ord_LR-based model does not 

show any change between both scenarios. On the other hand, even if the prediction results 

given by LDA-based model, are not the best in comparison with the results obtained with 

the other models, it is important to highlight that the closest deviation to zero was obtained 

under the first scenario. The above results indicate that under certain circumstances, some 

models need more information for achieving a particular management objective. 

In summary, the models that show higher prediction capacity are the ones based on LR and 

RF for Medellin’s case. However, it is interesting to highlight some facts: (i) RF, SVM and 

Multi_LR improve their capacity prediction when the model considers more variables than 

only the age (scenario 2); (ii) LR shows higher prediction considering only the sewer age as 

input variable; (iii) LR models show higher prediction quality than Multi_LR; and (iv) Multi_LR 

and LDA show similar prediction results (scenario 1 for Medellin). 
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Figure D.27. shows the performance curves of LR, SVM and RF prediction results, under 

both scenarios 1 and 2, since results obtained with these models were the ones with the 

highest success percentage to be in critical conditions. Besides, this figure shows that LR 

and RF under scenario 2 show the highest success percentages: according to the sample 

of the first 10% of sewer assets with the highest probability to be in critical condition, RF and 

LR identify 34% and 29% of sewer assets in that condition. The performance curves result 

of the SVM-based model is not as successful as LR and RF ones. However, it is important 

considering that the SVM-based model shows a higher success percentage under scenario 

1 (only age): according to the bar plot that shows the sample of the first 10% of sewers with 

the highest probability to be in critical condition, the SVM-based model under scenario 1 

identifies 20% of sewers in that condition while the SVM under scenario 2 identifies only 

17%.  

Furthermore, the models under scenario 1 do not tend to be flat. It means that any of SVM, 

LR or RF models could be considered to support decision-making for rehabilitation plans. 

However, it is recommendable to consider the results obtained from LR and RF-based 

models under scenario 2 for identifying more pipes in that condition. The performance 

curves obtained by LDA, Multi_LR and Ord_LR model predictions are not shown because 

their prediction quality does not show remarkable peaks of success percentage (flat 

tendency) (see appendix – Part D.1.2). For more details about this exploration, please see 

Hernández et al., 2019b. 
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Figure D.27. Performance curves of the LR, RF and SVM-based models with a sample on its right of 10% sewer 
pipes. Left: scenario 1 (considering only the input variable age as an influential variable); right: scenario 2 

(considering the age and other variables as influential variables) for Medellin’s case. Source: Author 



190 

 

11.2.3. SUITABLE DETERIORATION MODELS FOR MANAGEMENT 

OBJECTIVES FOR MEDELLIN’S CASE  

After finding the above hyperparameters’ combinations for the machine learning-based 

deterioration models, 1000 Monte-Carlo simulations were carried out for all the selected 

deterioration models (based on both statistical and machine learning methods) to estimate 

the prediction rank of validation data for the structural condition of the sewer assets focused 

on the two analysed management objectives (at the network and pipe level).  

It compares all the predictions obtained with the deterioration models to find the one that 

most significantly minimises the Knet and Kpipe metrics (see Appendix-D.2.4, Figures 59-

98). Based on the proposed methodology (Chapter 9, Part C), when the models do not show 

a significant difference in their prediction results, it is chosen the one with the lowest number 

of needed variables to achieve the management objective. 

Figure D.28. shows the most suitable models to achieve the network level management 

objective (Knet) for each SCS: (a) five structural grades (5_COND), (b) three structural 

categories (3_CAT), (c) two structural categories (2_CAT), and (d) excellent and critical 

structural conditions (C1C5).  
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a) b) 

c) d) 

Figure D.28. Comparison of the most suitable deterioration models to achieve the management 
objective at the network level for the first (a), second (b), third (c) and fourth (d) SCS for Medellin’s 

case. Source: Author 

According to Figure D.28., the statistical-based deterioration models such as ordinal 

(Ord_LR) and binomial (LR) logistic regression are the ones with the lowest variance (except 

for the fourth SCS), but with the highest Knet median. In fact, all the optimised machine 

learning-based models gave Knet values below 5 (except for the fourth SCS, with a median 

of 3.7 for the LR-based model). Comparing with Bogota’s case, for Medellin’s case, the SCS 

that groups the structural condition in two categories do not show the lowest Knet values for 

validation data. 

As a summary of the analysis carried out in the Appendix -Part D.2.4., it was found that: (i) 

the prediction results of SVM-based models for the first SCS (5_COND) are very close, 

however the Wilcoxon test showed that there are significant differences between both 
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models, being the SVM_RBF-based model considering the variables that show any 

relationship with the structural condition (GGPar) the one with the lowest Knet values for the 

validation data; (ii) the predictions of SVM_Laplace and RF-based models showed closer 

Knet values; however, according to the Wilcoxon test, there is a significant difference 

between both models, being the RF-based model that considers the variables that presented 

the first and second relationship grades with the structural condition (GPar) the one with the 

lowest Knet values for the second SCS (3_CAT); (iii) the predictions obtained with the RF-

based model that considers the variables with the first relationship grade with the structural 

condition (Par) is the one with the lowest Knet values for the third SCS (2_CAT), and all the 

models (SVM, RF and Ord_LR-based models) present significant differences among them; 

and (iv) the prediction results obtained with SVM-based models are the ones with the lowest 

Knet values for the fourth SCS (C1C5), and after testing significant differences between both 

models (SVM-based models considering RBF and Laplace kernel functions), it was found 

that there are not significant differences between them: any of both SVM-model could be 

chosen because both consider the same number and type of variables (first and second 

grades relationships with the structural condition -GPar).  

Moreover, Figure D.29. shows the most suitable models to achieve the pipe level 

management objective (Knet) for each SCS: (a) five structural grades (5_COND), (b) three 

structural categories (3_CAT), (c) two structural categories (2_CAT), and (d) excellent and 

critical structural conditions (C1C5).  

According to Figure D.29., Ord_LR and LR-based models are the ones that gave the highest 

values of Kpipe values for the validation data. Furthermore, it is interesting to highlight that 

the Kpipe values for the SCS that groups the structural condition in two categories presented 

lower Kpipe values than the SCS that group the structural condition in more categories, for 

all the models. It confirms the findings of Ariaratman et al. (2001) and López-Kleine et al. 

(2016). Furthermore, the lowest Kpipe values for the validation data obtained with all the 

models are related to the fourth SCS (critical structural conditions), leaving outside the 

predictions of sewer assets in intermediate conditions. 

In accordance with the analysis carried out in appendix -Part D.2.4., it was found that all the 

models show significant differences. 
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a) b) 

c) 

 

d) 

Figure D.29. Comparison of the most suitable deterioration models to achieve the management 
objective at the pipe level for the first (a), second (b), third (c) and fourth (d) SCS for Medellin’s case. 

Source: Author 

 

 

Table D.16. shows the summary of the most suitable model for each SCS and each 

management objective for Medellin’s case.  
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Table D.16. The chosen deterioration models for each SCS and management objective for Medellin’s 
case after the analysis of boxplots and Wilcoxon tests showed in appendix – D.2.4.  

SCS 
Management 

objective 

Method based 
deterioration 

model 
Type of hierarchy  Variables 

First: five 
structural 
grades 

(5_COND) 

network SVM_RBF 

Variables that show 
any relationship 
with the structural 
condition (GGPar) 

Inspection year, age, installation year, 
basin, material, foundation type and type of 
effluent (7 variables) 

pipe SVM_RBF 
All studied 
variables 

See the variables of Tables B.4 and B.5. 

Second: 
three 

structural 
categories 
(3_CAT) 

network Random Forest 
First and second 
relationship grade 
variables (GPar) 

Inspection year, age, length, districts, 
installation year and basin (6 variables). 

pipe SVM_Laplace 
All studied 
variables 

See the variables of Tables B.4 and B.5. 

Third: two 
structural 
categories 
(2_CAT) 

network Random Forest 
First relationship 
grade variables 
(Par) 

Inspection year, installation year, material, 
length and age (5 variables).  

pipe Random Forest 
All studied 
variables 

See the variables of Tables B.4 and B.5. 

Fourth: 
Excellent 

and critical 
structural 
conditions 

(C1C5) 

network 
SVM_RBF or 
SVM_Laplace 

First and second 
relationship grade 
variables (GPar) 

Inspection year, installation year, age, 
foundation type, material, operational status 
and districts (7 variables). 

pipe Random Forest 
All studied 
variables 

See the variables of Tables B.4 and B.5. 

Source: Author 

According to Table D.16., it is possible to observe that machine learning-based models are 

the most suitable to develop deterioration models for the prediction of the structural 

conditions for Medellin’s sewer system after applying the proposed optimisation 

methodology (chapter 8). Nevertheless, there is not one unique model that achieves a 

specific sewer asset management objective. It confirms the hypothesis of this PhD thesis 

that the performance of the deterioration models to predict the structural conditions of sewer 

assets depends on the case study, the management objective and the input variable 

included in the model identified as key factors. Furthermore, Table D.16. shows that the 

models related to the network level need fewer variables than the models related to the pipe 

level for achieving their respective objectives. It could happen because the predictions 

objectives at pipe level are more rigorous since it should identify the structural condition of 

each single sewer asset. 
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Also, all chosen models consider variables such as inspection year, age and installation 

year of the sewer assets. Furthermore, for achieving the pipe level objectives is necessary 

to include all the studied variables. Besides, regarding the variables considered on chosen 

models of each SCS for achieving the network level objectives, it was found: (i) for the first 

SCS (5_COND), it is enough to consider variables such as basin, material, foundation type 

and type of effluent additional to variables related to age in the models; (ii) for the second 

SCS (3_CAT), it is enough to consider variables such as length, districts and basin additional 

to variables related to age in the models; (iii) for the third SCS, it is enough to consider also 

material and length together with the variables related to age in the models; and (iv) for the 

fourth SCS (C1C5), it is enough to consider variables such as foundation type, material, 

operation status and districts together with the variables related to age for achieving 

network-level objectives. 

From the models depicted in Table D.16., Figures D.30. and D.31. show the boxplot analysis 

of the Knet and Kpipe values obtained for the validation data for Medellin’s case to visualise 

which model and SCS showed the highest performance quality. As well, Tables D.19. and 

D.20. show the p-values obtained after applying the Wilcoxon analysis to find significant 

differences in the prediction results among the models of the different SCS shown in the 

above figures respectively. 

 

 

Figure D.30. Comparison of the most suitable deterioration model to achieve the management objective at 
the network level for the four SCS for Medellin’s case. Source: Author 
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According to Figure D.30., the models that most minimise the Knet metric for achieving the 

network level objectives are the ones related to the second (3_CAT) and third (2_CAT) SCS 

that correspond to RF-based models considering the variables that presented first and 

second relationship with the structural condition (GPar) for the second SCS (3_CAT) and 

only considering the variables that presented the first relationship grade with the structural 

condition (Par) for the third SCS (2_CAT). It is interesting to highlight that the model that 

most minimises the Knet metric is the one obtained for the second SCS (3_CAT), contrasting 

the results for Bogota’s case: for Bogota’s case, the models that most minimise the Knet 

metrics were the related with the SCS that groups the structural condition in two categories, 

especially the SCS that only considers excellent and critical structural conditions, leaving 

out the intermediate conditions. 

Table 36 of appendix – Part D.2.4.5. shows the obtained p-value from a Wilcoxon test, in 

which the models related to the first, second and third SCS depicted differences significantly 

among them (p-value < 0.05). However, the models related to third and fourth SCS do not 

have differences significantly in their prediction of the validation data (p-value > 0.05). In this 

case, it is chosen the third SCS because this model is more robust (needs fewer variables 

to achieve the network level objective) than the model chosen for the fourth SCS. For the 

network level objective, it is important to highlight that the intermediate conditions (be more 

specified in poor condition) is a relevant condition for Medellin’s case because the majority 

of the inspected sewer assets are qualified in this condition by the Medellin’s assessment 

standard (EPM, 2010). 

As a result, the RF-based model chosen for the second SCS (RF_GPar) is the suitable one 

for developing investment plans of medium and long term readdressing the recommendation 

given by EPM (Table 7 of the appendix – Part B.2.1) for management planning; while RF-

based model chosen (RF_Par) for the third SCS (two categories: acceptable and poor-

critical conditions) is the appropriate one for developing investment plans at short term, since 

it identifies the number of sewer assets in poor and critical conditions.  
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According to Figure D.31., the model that most minimises the Kpipe metric is the chosen 

one for the fourth SCS (excellent and critical conditions -C1C5) with a median lower than 

10; while the Kpipe boxplot median of the models chosen for the other SCS varies between 

20 and 25. Furthermore, Table 37 of the appendix – Part D.2.4.5. shows that all models 

showed differences significantly in their predictions results (p-value <0.05). Therefore RF-

based model with all the studied variables is the most suitable for identifying the sewer 

assets in critical conditions and thus, developing routing plans for sewer assets replacement 

for Medellin’s case. 

Besides, the suitable model for prioritising the management activities is the one that 

considers the five structural grades (first SCS), because it was the model that depicted lower 

Kpipe values for validation data than the model chosen for the second SCS (three 

categories: acceptable, poor and critical structural conditions -3_CAT). From this result, the 

prioritising management activities could be guided by the recommendations given in the 

Medellin’s assessment standard (EPM, 2010) (see Table 7 of the appendix – Part B.2.1). 

From the chosen models to fulfil the network level objectives (Figure D.30.), Table D.17. 

shows the K indicators and Knet metric obtained from the chosen models for the second 

and third SCS. According to this table, for the second SCS (three structural categories– 

3_CAT), the deviations for the whole network were not higher than 0.5. Moreover, the 

deviations for the oldest sewer assets (more than 50 years old) are higher for those assets 

predicted in poor conditions. In the end, the Knet for validation data was 2.13. Moreover, 

Figure D.31. Comparison of the most suitable deterioration model to achieve the management 
objective at the pipe level for the four SCS for Medellin’s case. Source: Author 
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regarding the third SCS (acceptable and poor-critical conditions – 2_CAT), the deviations 

are closer to zero in the total sewer system, while for oldest sewer assets, there is a deviation 

of 1.21, giving a Knet of 0.86. 

Table D.17. K indicators and Knet metric for validation data obtained from the chosen models of the 
second and third SCS for Medellin’s case. 

SCS 

Deviation total sewer 
system 

Deviation old sewer assets: > 50 
years 

Knet 

KDEV_1 KDEV_2 KDEV_3 KOLD(DEV_1) KOLD(DEV_2) KOLD(DEV_3)   
SCS_2: 
3_CAT 

-0,33 -0,12 0,44 -2,91 4,13 -1,21 2,13 

  KDEV_1 KDEV_2 KOLD(DEV_1) KOLD(DEV_2) Knet 
SCS_3: 
2_CAT 

0,17 -0.17 -1.21 1.21 0,86 

Source: Author 

 

The above results are visualised as bar plots (Figures D.32. and D.33.) for (i) the RF-based 

model considering the variables that showed the first and second relationship grades with 

the structural condition (GPar) and the second SCS (acceptable, poor and critical 

conditions); and (ii) the RF-based model considering only the variables that showed the first 

relationship grade with the structural condition (Par) and the third SCS (acceptable and poor-

critical structural conditions).  
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According to Figure D.32., the RF-based model chosen for the second SCS at the network 

level, for Medellin’s case, also tends to capture the distribution of the structural conditions 

by each age periods and for the whole Medellin’s sewer system (see inspected and 

predicted bar plots on the right of the figure). Furthermore, the deviations at whole network 

(right bar plots of Figure D.32.) are almost imperceptible.  

Besides, the RF-based model overestimated some sewer assets in critical conditions and 

underestimated some sewer assets in acceptable conditions, predicting them in poor 

conditions for the oldest sewer assets (older than 50 years old). Furthermore, for sewer 

assets between 10 and 50 years old, the model underestimates the structural condition of 

some sewer assets in acceptable conditions (less than 10% of sewer assets with these 

Figure D.32. Inspected and predicted distribution of validation data (RF-model), considering variables that 
showed the first and second relationship grade with the structural condition (GPar), at the network level 

objective for Medellin’s case. Total network (right) and broken down by age group (left). The colours green, 
orange and red represent acceptable (CC1), poor (CC2) and critical (CC3) structural conditions. Source: Author 
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ages), predicting them in poor conditions. Finally, for the youngest sewer assets (younger 

than 10 years old), the model overestimates the structural conditions of some sewer assets 

that were in poor conditions, predicting in acceptable conditions (less than 5% of the 

youngest sewer assets).  

Figure D.33. depicts that the RF-based model considering the variables that presented the 

first relationship grade with the structural condition for the third SCS (acceptable and poor-

critical conditions) can correctly predict the number of sewer assets in acceptable and poor-

critical conditions with a deviation of 1% for the whole Medellin’s sewer network. According 

to the deviation of the distribution of the structural conditions by each age period, the RF-

based model tends to capture their distribution which few differences: (i) for the oldest and 

youngest sewer assets (older than 50 years old and younger than 10 years old), the RF-

based model underestimated the structural conditions of some sewer assets (less than 5%); 

and (ii) for sewer assets between 10 and 50 years old, the RF-based model overestimated 

the structural conditions of them (less than 10%). 
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From the successful results for validation data, the above models were used to predict the 

structural condition of the whole Medellin’s sewer network to visualise the areas in which the 

sewer assets are in critical condition and, from them, developing investment plans. 

Therefore, Figure D.33. shows the maps with the prediction of the total sewer system for 

both models at the network level considering both structural condition scenarios (3_CAT and 

2_CAT).  

 

 

 

Figure D.33. Inspected and predicted distribution of validation data (RF-model), considering only parent variables at the 
network level objective for Medellin’s case. Total network (right) and broken down by age group (left). The colours green 

and red represent acceptable (CC1) and poor-critical (CC2) structural conditions. Source: Author 
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According to Figure D.33., districts such as La America, Laureles-Estadio, San Javier, La 

Candelaria, and La Estrella presented considerable areas of sewer assets in critical 

conditions for both predictions. Likewise, districts such as Robledo and Villa Hermosa shows 

areas with sewer assets in acceptable conditions. Both models achieve similar prediction 

results at the network level. The model for the third SCS could support the investment plans 

at short, intermediate and large term because it predicts the critical structural condition giving 

a percentage of sewer assets that need urgent replacement and specifying in which districts 

need these investments. The RF-based model for the third SCS gives the percentage of 

sewer assets in poor and critical conditions if the management perspective is also prioritising 

their rehabilitation.  

 

Figure D.34. Maps overview of the predicted structural condition of Medellin’s sewer system at network level from RF 
model considering the variables that showed the first and second relationship with the structural condition (GPar) and 
the second SCS (on the left) and RF model considering only parent variables and two structural conditions (acceptable 

and poor-critical – third SCS) (on the right) 
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Table D.18. shows the K indicators and Kpipe metric obtained from the prediction for 

validation data from the chosen model in Figure D.31. It is important to clarify that the 

percentage of inspected sewer assets in grades 2 and 3 are around 2% and 3.6 % 

respectively. Hence, the optimisation of the RF-based model for the first SCS was addressed 

with the same aggrupation of the second SCS. It means, the model predicted the five 

structural grades, but in the optimisation, these grades were grouped in acceptable, poor 

and critical conditions. The SVM-based model for the first SCS (5_COND) shows that the 

model predicts more than 68% (TPR > 68%) of sewer assets correctly for these three 

structural grades, being the critical conditions with TPR close to 87%. The TPR related to 

the structural grades 2 (good conditions) and 3 (acceptable conditions) is 0%, because in 

the optimisation process, the grades 1, 2 and 3 were grouped in one category due to the 

low quantity of sewer assets qualified in these grades in calibration data. Furthermore, the 

14.05% of sewer assets that were found in excellent, good or acceptable conditions were 

underestimated in critical conditions by the SVM-based model (FPRacceptable_critical). 

And 20.28% and 2.61% of sewer assets were overestimated, predicting in excellent, good 

or acceptable conditions those sewer assets observed in poor (FNRpoor_acceptable) and 

critical (FNRcritical_acceptable) conditions. The above results gave a Kpipe value of 20.16. 

 

Table D.18. K indicators and Kpipe metric for the validation data obtained from the chosen models of 
the first and fourth SCS for Medellin’s case. 

Source: Author 

In accordance with the fourth SCS (C1C5), the RF-based model considering all studied 

variables achieves TPR values higher than 92%, with FPR of 14.53 and FNR of 7.84. 

The fact that for both above models the TPR are higher than 33.3% and 50% for the first 

(5_COND) and fourth (C1C5) SCS means that the predictions with both models were better 

than random models under the same aggrupation of the structural conditions. Furthermore, 

for both models, FPR values are higher than the FNR values, which means that when the 

model mispredicts, it tries to predict the sewer asset in a worse condition than really it is. 

SCS 
KTPR_(excellent-

good-acceptable) 
KTPR_poor KTPR_critical KFPRacceptable_critical KFNRpoor_acceptable KFNRcritical_aceptable Kpipe 

SCS_1: 
5_COND 

67.9 75.2 86.6 14.05 20.28 2.61 20,16 

  KTPR_excellent 

  

KTPR_critical KFPRcritical_excellent 

  

KFNRexcellent_critical Kpipe 

SCS_4: 
C1C5 

97.5 92.2 14.53 7.84 9.215 
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Figures D.35 and D.38. show performance curves for validation data considering the models 

of both SCS (5_COND and C1C5). These curves were built from calculating the probability 

of each sewer asset of being in critical condition (stripe in red). It is important to clarify that 

for the SVM-based model (Figure D.35 and D.36) cannot predict the probabilities when the 

weights are optimised. Therefore, these figures show their predictions considering only the 

optimised values of Sigma and C.  

According to Figure D.35., the performance curve shows a strong decreasing behaviour 

when the probability of being in critical condition decreases. It means that the sewer assets 

that show the highest probability of being in critical condition have a higher probability of 

being in that condition, supporting the prioritisation plans for rehabilitation activities. 

However, the figure shows also a large percentage of sewer assets predicted in poor 

conditions independently of the probability of being in critical condition. The bar plot on the 

right shows the first 10% of sewer assets with the highest probability in critical conditions, 

meaning that these sewer assets have 44% of success in being in critical conditions and 

78% to be in critical or poor conditions. 

The above means that if the budget for replacement is low, there is no need to inspect all 

the sewer systems to develop replacement/rehabilitation plans: the managers could 

Figure D.35. Performance curve with a sample on its right of 10% sewer assets for validation data obtained 
from SVM-based model considering RBF kernel function and all studied variables and first SCS (5_COND) for 
the pipe level objective for Medellin’s case. Excellent, good, intermediate, poor and critical conditions in dark 

green, green, yellow, orange and red stripes. Source: Author 
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rehabilitate only the 10% of the sewer assets with the highest probability of being in critical 

condition with a reliability of 78% that the sewer assets need urgent replacement or 

rehabilitation activities. 

Figure D.36. shows a comparison between the structural grades found on CCTV data 

inspections (observed conditions), and the probability of being in critical conditions from the 

SVM-based model prediction for the first SCS (5_COND), for Medellin’s case. 

According to Figure D.36., the sewer assets in red scale that represent the highest 

probability of being in critical conditions (probability >70%) from the map “predicted 

conditions” are in critical conditions in the map “observed data”. Nevertheless, the sewer 

assets that were in green scales on the predicted map (map on the right, Figure D.49.) are 

not in good and excellent conditions on the observed map (map on the left, Figure D.49). In 

fact, the observed map shows most of these sewer assets in poor structural conditions, 

confirming the results of the performance curve of Figure D.35.  

Figure D.36. Comparison between the conditions found by CCTV inspection data according to the first SCS (left) and 
prediction of the probability of being in critical conditions (right) for Medellin’s case, magnified onto Laureles-Estadio, 

La America and Belen districts. Source: Author 
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Figure D.37. shows the comparison of the validation data of the inspected (on the left) and 

predicted (on the right) sewer grades by SVM-based model considering all studied variables 

and all the optimised hyperparameters (including the weight values). According to this figure, 

the predicted and inspected maps show correspondence in structural grades of the sewer 

assets.  

 

 

Figure D.37. Comparison between the conditions found by CCTV inspection data according to the first SCS (left) and 
prediction of the structural grades for Medellin’s case, magnified onto Laureles-Estadio, La America and Belen districts. 

Source: Author 
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On the other hand, Figure D.38. shows the performance curve of the chosen model for the 

fourth SCS (RF-based model considering all the studied variables). According to this figure, 

the performance curve shows a strong decreasing behaviour as the probability of being in 

critical condition reduces. This result is satisfactory because the model could support 

rehabilitation plans prioritising the sewer assets with the highest probability of being in critical 

conditions. Supposing that the budget for rehabilitation is limited, it is suggested 

rehabilitating the 10% of the sewer assets with the highest probability of presenting any 

structural damage with 94% of reliability.  

 

Figure D.39. shows a comparison between the observed structural categories (from CCTV 

inspections), grouped under the fourth SCS (excellent and critical structural conditions) and 

the probability of being in critical conditions.  

 

 

 

Figure D.38. Performance curve with a sample on its right of 10% sewer assets for validation data 
obtained from RF-based model and all studied variables and the fourth SCS (C1C5) for the pipe level 
objective for Medellin’s case. Excellent and critical conditions in dark green and red stripes. Source: 

Author 
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According to Figure D.39., the sewer assets with the highest probability of being in critical 

conditions (probabilities > 80%) are really in critical conditions. Likewise, the sewer assets 

with the lowest probability of being in critical conditions (green lines) are really in excellent 

conditions. The above comparison confirms the successful predictions of the chosen RF-

model graphically, together with the performance curve of Figure D.38. 

From the above successful results, the model for the pipe level objectives was used to 

predict the structural condition of the whole Medellin’s sewer system to simulate in detail the 

structural condition of sewer assets. Figure D.39. shows a segment of the prediction of the 

structural condition of Medellin’s sewer system in the area of Laureles, La America, 

Candelaria and Belen districts obtained from the RF-based model considering all studied 

Figure D.39. Comparison between the conditions found by CCTV inspection data according to the fourth SCS 
(left) and prediction of the probability of being in critical conditions (right) for Medellin’s case, magnified onto 

Laureles-Estadio, La America and Belen districts. Source: Author 
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variables and the first (five structural grades) and fourth (excellent and critical structural 

conditions) SCS. 

According to Figure D.40., both maps predict the same sewer assets in excellent conditions 

(green lines). The sewer assets in critical conditions have been painted in orange or red for 

the first SCS (map on the left) and in red for the fourth SCS (map on the right). From the 

above results, the rehabilitation plans could be addressed from two perspectives: (i) 

prioritisation of the most important sewer assets of being replaced and (ii) identification of 

sewer assets that need rehabilitation activities and tracing in inspection activities. 

  

Figure D.40. Example of maps overview of predicted structural condition of Medellin’s sewer system (magnified 
onto Laureles-Estadio, La Candelaria, Belén and La América districts) at the pipe level from the RF-based model 

considering all the studied variables and the five structural grades (excellent, good, intermediate, poor and 
critical – first SCS) (on the left) and considering only excellent and critical conditions (fourth SCS) (on the right). 

Source: Author. 
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11.3. DISCUSSION ABOUT RESULTS OBTAINED IN CASE STUDIES 

Although four structural conditions scenarios (SCS) were built for Bogota’s and Medellin’s 

cases, their groups were different because of the quantity of the inspected sewer assets in 

the structural grades (see items 5.1.2.3 and 5.2.2.3 for Bogota’s and Medellin’s respectively, 

Part B): for the second and third SCS, the structural conditions were grouped in excellent, 

intermediate and critical conditions; and without and with structural damages for Bogota’s 

case; while for Medellin’s case, the structural conditions were grouped in acceptable, poor 

and critical conditions; and acceptable and poor-critical conditions. It is important to highlight 

that a large number of sewer assets in excellent and poor conditions for Bogota’s and 

Medellin’s cases conditioned the creation of these SCS. Furthermore, in spite of the 

predictions performance increase significantly grouping the structural grades in the SCS, 

the management perspectives of the investment or rehabilitation plans change: i.e. 

predicting which sewer assets have any structural damage or not could help to identify the 

sewer assets that only need activities of cleaning for Bogota’s case; while predicting which 

sewer assets are in poor-critical conditions identifies the sewer assets that need 

rehabilitation and replacement activities for Medellin’s case. Naturally, the quantity of sewer 

assets classified on each structural grade depends on the assessment standard and the 

administrative and operational procedures for the inspection activity of each city, which could 

indicate that the structural grades of Bogota do not represent the same structural grades of 

Medellin at all. Therefore, the comparison between which city has a sewer network in better 

conditions is superfluous.   

On the other hand, it was possible to hierarchise by importance levels the influence of some 

variables over others with the structural conditions, answering one of the research 

questions. According to the hierarchisation of the variables for both case studies, It was 

possible to answer the research question variables related to if the influential variables could 

vary according to the own characteristics of cities. The answer is some variables vary and 

other not. The age and physical characteristics of the sewer assets showed direct a 

relationship with the structural conditions in both case studies (also considering the different 

structural condition scenarios), which confirms the findings of different authors in other case 

studies (Davis et al., 2001a; Ariaratnam et al. 2001; Baik et al., 2006; Le Gat, 2008; Ana et 

al., 2009; Tscheikner-Gratl et al., 2014; Rokstad & Ugarelli, 2015; El-Housni et al., 2017; 

Caradot et al., 2018). However, not all the physical characteristics showed a direct or indirect 

relationship with the structural conditions and neither the same physical characteristics for 
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all the structural condition scenarios (SCS) and case studies: diameter and length of the 

sewer assets showed a direct relationship with the structural conditions for Bogota’s case 

and length and material of the sewer assets showed a direct relationship with the structural 

conditions for Medellin (the length of the sewer assets showed direct relationship only in two 

SCS). Furthermore, some variables such as District and basin show a relationship with the 

structural condition. However, they were not linked with age variables, other infrastructures, 

land uses, and neither geographical coordinates. It is interesting because these variables 

give information that it is still unknown, but relevant. This answer the research question 

about the possibility of inferring information from other factors (not identified) that could 

affect the structural condition of sewer assets. 

Moreover, thanks to the exploration of different statistical and machine learning methods as 

deterioration models evaluated by two different prediction objectives (at network and pipe 

levels), it was possible to answer if the influential variables and deterioration models vary 

according to the management objectives. The answer was that there is not only one method 

that could be suitable for achieving prediction objectives for any city. However, from this 

exploration, it was possible to identify that Logistic Regression (LR), Random Forest (RF) 

and Support Vector Machines (SVM)- based models could predict more sewer assets 

correctly in critical conditions evaluated by different prediction perspectives for Bogota and 

Medellin cases. Therefore, these models were chosen to include in the proposed 

methodology. In spite of Ordinal Logistic Regression models (Ord_LR) do not show relevant 

prediction performance as binomial logistic regression models in the above-mentioned 

exploration, they were included for SCS that contained more than two structural categories 

to compare the prediction of machine learning-based models with logistic regression 

models. The Ord_LR were chosen over Multinomial Logistic Regression models (Multi_LR) 

because prediction performances of Ord_LR were better than Multi_LR. Besides, the 

exploration of the prediction performance of the above six methods was the turning point in 

determining that the method was not the basis to build strategic deterioration models. Also, 

the included variables could increase or decrease the prediction performance of the 

deterioration models for achieving a specific management objective. 

Even though, the objectives of this thesis do not consist on analysing in detail the obtained 

hyperparameters after applying the optimisation methodology for achieving network and 

pipe level objectives; it is important to highlight that Sigma and C values of SVM-based 

models are higher for achieving network-level objectives than for pipe-level objectives, 
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independently of the structural condition scenarios (SCS) for both case studies (except for 

the SVM_RBF-based model considering the first SCS and RBF kernel function for Medellin’s 

case). But, while both SVM-based models (at network and pipe level objectives) consider 

fewer variables, the C values are closer for both case studies. According to the above, in 

general, the SVM-based models built for the network level objectives are more constrained, 

and data is less complex than the SVM-based models for achieving pipe level objectives, as 

well as the margin of the hyperplane’s separation is thinner, and the surface function of the 

separation hyperplane is more complex, choosing more data as support vectors. But as the 

model includes fewer variables, the separation hyperplane’s margin is wider, and the surface 

function of the separation hyperplane is less complex, choosing less data as support 

vectors. These results are intuitive because of (i) prediction requirement for minimizing Knet 

metric is not as demanding as for minimizing Kpipe metric and (ii) while the model needs 

fewer variables, the classification task is easier for the model. For the values of the 

hyperparameters obtained for RF-based models, there is not a behaviour regarding the RF-

based models at network or pipe level objectives and SCS for both cities. The 

hyperparameters’ values are different in each case. However, when the values of 

hyperparameters are analysed according to the number of variables included on each 

model, the RF-based models for achieving pipe level objectives have a bigger size of 

terminal nodes and less number of random variables on each tree than the RF-based model 

for achieving network objectives, independently of the number of variables included for both 

case studies. 

Furthermore, from the chosen models at network and pipe levels for Bogota’s and Medellin’s 

case, machine learning-based models achieve the studied management objectives, 

especially the SVM-based models considering RBF kernel function and the RF-based 

models. According to the chosen models results, it found that it is necessary the use of the 

methodology for hierarchisation (Chapter 9.1, Part C) for finding the variables that most 

influence the deterioration of the sewer assets, and from that selection the prediction 

performance at network level objective increases; while for achieving pipe level objectives, 

the models should include the greatest amount of information available for increasing the 

prediction performance at pipe level objective. Besides, grouping the structural condition in 

two categories increases the performance predictions of the sewer assets for Bogota and 

Medellin case studies, confirming the findings of Ariaratman et al. (2001), López-Kleine et 

al. (2016) and Guzmán-Fierro et al. (2019a, b and c). Nevertheless, for the application of 

the proposed methodology in Bogota and Medellin case studies, the author also considered 
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the SCS with more than two structural categories to include management plans at the short, 

medium and long term. Moreover, it is interesting to highlight those chosen models for 

Medellin’s case showed the highest performance at network and pipe level (the lowest Knet 

and Kpipe metrics) objectives than for Bogota’s case, despite the fact that the information’s 

availability was more restricted for Medellin’s case than for Bogota’s case. The above 

confirms the hypothesis that the infrastructure of each city behaves differently, and some 

cities need less information for achieving specific management objectives than others. 

As a relevant specific result for the case studies, it found that RF-based models were the 

most suitable for achieving network and pipe level results considering two structural 

categories (grouping the structural condition in two categories or considering only the 

excellent and critical conditions), as well as for models that consider the five structural 

grades the most suitable model was based on SVM considering RBF kernel functions. The 

inclusion of the SCS that consider only the sewer assets in excellent and critical conditions, 

leaving outside the intermediate structural grades, was helpful for both case studies. For 

Bogota’s case, it increases the prediction performance at the pipe level objective, while for 

Medellin’s case, it increases the prediction performance at the network level objective. 

Furthermore, the prediction results of statistical methods such as Logistic Regression and 

Ordinal logistic regression were not as suitable as machine learning-based models since the 

hyperparameters depend on the variables and not depend on the mode: the coefficients of 

the linear regression of the odds (see subchapters 2.3 and 2.4) are the hyperparameters for 

building logistic regression models are related to the considered variables, while the 

hyperparameters of machine learning-based models are related to the kernel function and 

the properties of separation hyperplane for classifying the structural conditions for building 

SVM-based models and the number of trees, minimal size of terminal nodes and the random 

variables of each tree of the random forest for building RF-based models. It does not 

consider the Gompitz model (Le Gat, 2008) because, in previous explorations, the prediction 

results were not satisfactory, since it needs sewer systems with a high percentage of 

inspected sewer assets to predict/forecast their structural condition. Besides, Gompitz 

needs a reduced number of variables (overall categorical variables) to be built which was 

not coherent with the objectives of this thesis. 
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CONCLUSIONS PART D 

The following conclusions are related to the application of the proposed methodology 

(depicted in chapter 9, Part C) in the case studies considered in this doctoral thesis: Bogota’s 

and Medellin’s sewer system infrastructure.  

From the preliminary results (chapter 10), different methods were explored and selected for 

developing tools that support the sewer asset management for different activities. These 

results allow to build a complete methodology that integrates (i) Bayesian Networks as the 

base for developing a feature selection tool for hierarchizing the most influential variables, 

(ii) different statistical (Logistic Regression and Ordinal Logistic Regression) and machine 

learning (Support Vector Machines and Random Forest) methods for developing 

deterioration models; and (iii) the use of Grid Search, Differential Evolution methods and the 

proposed performance metrics (chapter 8, Part C) for developing an optimization 

methodology for finding the optimal combination of hyperparameters. Above steps were 

done for designing the structure of a complete model that could predict the structural 

condition for two management objectives. 

Furthermore, the use of different structural condition scenarios (SCS) allows identifying the 

clusters of structural conditions that most increase the prediction performance of the 

structural condition of the sewer assets for each management objective and case study. 

Likewise, the creation of SCS supports the design of investment or rehabilitation activities 

prioritizing and contemplate different management time-terms. 

In the results of the proposed methodology, it was possible identifying enough factors for 

achieving a management objective. This goal was achievable for the management objective 

at the network level. However, for the management objective at the pipe level that 

hierarchization was not necessary, because of the deterioration models needed a large 

quantity of information available for achieving that objective. Therefore, for attaining 

network-level goals, variables related to the age of the sewer assets, physical 

characteristics, type of effluent, and districts or specific areas (basins) of the cities were 

identified as the key variables to achieve this objective. However, not all the physical 

characteristics were important, neither the same for both case studies or all structural 

condition scenarios of each city. It confirms the hypothesis that for each city or database is 

necessary to apply a specific modelling structure to predict the structural condition of the 

uninspected sewer assets. The fact that districts or basins were identified as key factors, but 
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these do not show a link with other features, suggests that there are unknown characteristics 

(which were not available in the collected data) that influence the deterioration of the 

structural condition. The above confirms that even if the age and physical characteristics of 

the sewer assets have been found as influential in other case studies, the influence depends 

on the case study, their information and assessment standard and the interaction of the 

physical characteristics of the sewer assets with operational, urban and environmental 

characteristics of the sewer assets. 

According to the selected deterioration models at the network level objective, it found that 

the machine learning methods are more robust than the statistical ones for building 

deterioration models, because of the first needless information to increase their performance 

predictions for specific management objectives. It implies that the collection of the necessary 

information must build deterioration models reliable enough. 

Also, it was possible to observe that for reaching each management objective, and structural 

condition scenario, the number of variables could change also depending on the selected 

deterioration models and clustering of the structural conditions. It confirms the hypothesis 

that for each management objective, a specific number of variables should be chosen, due 

to increasing or reducing this number could reduce the performance prediction. 

Besides, grouping the structural condition in two categories increases the performance 

predictions of the sewer assets of the considered case studies, confirming the findings of 

Ariaratman et al. (2001), López-Kleine et al. (2016) and Guzmán-Fierro et al. (2019a, b and 

c). However, for the application of the proposed methodology in the case studies, the author 

also considered the SCS with more than two structural categories to include management 

plans at the short, medium and long term. 
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GENERAL CONCLUSIONS 

The methodology for determining which factors are enough and necessary to achieve 

specific objectives in sewer asset management, considering the quantity and quality of the 

available information, was developed and applied for two Colombian case studies that met 

the quantity and quality of information available: Bogota and Medellin. This methodology 

consists of two parts: (i) a Bayesian Network-based methodology as a feature selection tool 

for identifying hierarchically the variables that influence the structural deterioration of the 

sewer assets; and (ii) a methodology for selecting the deterioration models that best fit two 

management objectives related to network and single asset purposes. However, from the 

application of the methodology, it was found that the complete methodology was only useful 

for achieving management objectives at network level perspectives. For pipe level 

management objectives, the second part of the methodology is useful to increase the 

prediction performance of the deterioration models considering all the information available. 

It is important to highlight that even though the methodology for feature selection was not 

useful for increasing the performance prediction of the deterioration models guided at pipe 

level objective, it could be considered for reducing collection costs and achieving acceptable 

predictions. 

According to the application results, it confirms the hypothesis that there is not only one 

model with specific variables to predict the structural condition of the sewer assets in a city. 

Bogota’s and Medellin’s case studies are two cities with different assessment standards, 

different operational management, a different interaction of physical, urban and 

environmental characteristics that make that each city would be unique. Therefore, their 

infrastructure behaves differently. It is observable in the fact that even the information 

collection of Medellin’s case was smaller than for Bogota’s case, the predictions at the pipe 

level were better for Medellin’s case than for Bogota’s case. Here lies the importance of 

increasing the inspection rates, because whether a model has more data to train, the 

prediction will increase.  

Furthermore, the development of a Bayesian network-based methodology suggests a new 

tool for the feature selection method to hierarchise the influence of some variables on the 

structural condition. It allows prioritising the collection of the most influential variables for 

achieving similar prediction performances with the models that consider several variables, 

collecting the necessary information for building deterioration models reliable enough. 
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Furthermore, this tool makes to develop deterioration models more robust and 

computationally less expensive than the models that consider a large number of variables.  

This thesis also proposes two metrics for evaluating the prediction of the deterioration 

models to support two management objectives: at the network and the pipe level. The 

predictions at the network level give an overview of the distribution of the structural condition 

to the whole sewer network, which allows designing investment plans to know the 

percentage of sewer assets on each structural condition. Furthermore, the predictions at 

network level identify the areas that contain more sewer assets that need urgent 

rehabilitation activities. The models at the pipe level give predictions more detailed, 

determining the structural condition of each sewer asset that has not been inspected 

previously. With the identification of areas with sewer assets in critical conditions given by 

the model at the network level, the model at the pipe level identifies the sewer assets that 

need to be rehabilitated and prioritise the rehabilitation of sewers with the highest probability 

of being in critical conditions with high reliability of being in that condition. Both metrics 

support the managers to design rehabilitation and investment plans in the sewer 

infrastructure rationally and proactively. It is essential to highlight that the author broke away 

from standard metrics (such as the accuracy) to be able to link the predictions with objectives 

of the sewer asset management.  

Besides, an optimisation methodology for finding the optimal hyperparameters for the 

machine learning-based models was proposed to increase the prediction quality for 

achieving two management objectives linked to the above-proposed metrics: Knet and 

Kpipe. This optimisation methodology could be applied in other fields that need the 

development of machine learning tools for developing prediction tools and increase their 

predictability for a specific objective (by the accuracy or other metrics). 

Also, this thesis considered surrounding variables that could give more information about 

the structural condition of the sewer assets than the physical characteristics. According to 

the application results, not all the physical features are influential on the deterioration of the 

structural condition. In contrast, characteristics such as city’s districts or basins are more 

prominent in both case studies. 

The developing of the proposed methodology give an alternative to constructing sufficiently 

accurate and not expensive tools, reducing the computation time and the collection of 

several variables for feeding the model and have similar prediction performances.  
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Besides, statistical and machine learning methods were useful for achieving specific tasks 

in the developed methodology. Bayesian Network helped to the feature selection identifying 

the variables that influence the deterioration of the structural conditions, Support Vector 

Machines and Random Forest methods were helpful to develop the deterioration models, 

and for optimisation task, it was useful the differential evolutionary algorithm. Deviation 

analysis and confusion matrix was the basis to develop to build the metrics that link with the 

management objectives. It is important to take into account the identification of methods for 

each step of the methodology for future applications or improvements.  

Besides, deterioration models based on machine learning such as random forest are 

recommendable tools for predicting the structural condition or failures to support the sewer 

asset management of any city, thanks to their success predictions and flexibility of providing 

the prediction in categories or probabilities of being on each category 

Furthermore, the creation and exploration of structural condition scenarios indicate there are 

other clusters of the structural condition that could increase the prediction performance of 

the deterioration models (Ariaratman et al., 2001, López-Kleine et al.,2016) and Guzmán-

Fierro et al.,2019a, b, c). From the creation of the structural conditions scenarios (SCS), it 

was possible to confirm that the deterioration model could unlink from the standard and 

regrouping the structural conditions to increase the prediction quality. Furthermore, the 

inclusion of intermediate conditions could have uncertainty and do not give enough 

information for building deterioration models reliable enough. It does not mean that the 

standard is wrongly designed as a guide to support sewer management; it is just that the 

classification would not be adapted to develop deterioration models with high prediction 

performances. 

It is recommended for further researches to include the analysis of calibration and validation 

data presented in Guzmán-Fierro et al. 2019 (a, b and c) to increase the prediction quality 

for achieving any of both management objectives proposed. With this inclusion, the 

deterioration models could need fewer variables for achieving a specific management 

objective: i.e. at the pipe level.  

It could be interesting for further investigations, to develop sewer asset management tools 

from the structural failures found on the sewer assets and unlinked these tools from the 

categorization of the structural condition of the sewer assets. The main aim of the above is 

removing the uncertainty generated for that categorization and thus build more reliable tools 

that support sewer asset management.  
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Also, it is suggested to verify the classification of the structural condition given by the local 

standards to evaluate if the five structural grades are more informative as a guide for the 

decision-making in the sewer asset management or reducing the number of categories could 

give better or equal information for this decision-making. 

As a practical recommendation based on the results of this doctoral thesis, it suggests to 

include surrounding variables of ease collection related to environmental, urban and 

operational features of the case study to build deterioration models for the sewerage of any 

city, such as districts, closeness with other infrastructures and operational zones.  They give 

information about the dynamic of the city that influences the structural behaviour of the 

sewerage. 

It is essential to apply this methodology in case studies that fulfil the following criteria: (i) 

large percentage of sanitation coverage on the city; (ii) to have georeferenced information 

about each asset that belongs to the sewer network; (iii) to have an assessment protocol to 

classify the structural and operational state of the sewer assets on grades from visual 

inspections; and (iv) to have information about a non-depreciable quantity of inspected and 

assessed sewer assets. From the last item depends on the performance quality of the 

methodology: while more CCTV inspections has the calibration data to train the models, 

higher probabilities of success. 

It is imperative that utilities focus more on implementing proactive asset management in the 

sewerage, investing in tools that support their decision makings and preventing future 

disasters that could affect other infrastructures and the community. Linking the identification 

of causes (influential variables of the deterioration of sewer assets), rational assessment 

protocols for the structural and operational condition of sewer assets with the possible 

damages should be the strategy.  
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