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Efficient scheduling of batch

processes in continuous

processing lines

Presentada por Carlos Gómez Palaćın
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Summary

English

This thesis focuses mainly on the development of efficient formulations for schedul-

ing in industrial environments. Likewise, decisions over the processes more related

to advanced process control or production planning are included in the scheduling;

in this way, the schedule obtained will be more efficient than it would be if the

additional restrictions were not considered. The formulations have to emphasize

obtaining online implementations, as they are planned to be used in real plants.

The most common scheduling problems handled in the industrial environments

are: the assignment of tasks to units, the distribution of production among parallel

units and the distribution of shared resources among concurrent processes. Most

advances in this work are the result of a collaborative work.

Two industrial case studies are presented: the first is the optimization of the

use of resources in a network of industrial evaporation plants where the workload is

divided between parallel evaporation plants; and the second is the optimal schedule

of batch processes that share a necessary resource during processing.

In the case of the evaporator network, it is modeled following a methodology

for obtaining gray-models using real plant data and data reconciliation techniques.

Although the plant works in a steady state, the degradation of the equipment is

included entailing its dynamics. This reduction in equipment efficiency is added

to the problem of optimizing the work point. When degradation is excessive, a

maintenance job is required to recover efficiency, this is achieved by performing

v
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cleaning tasks. So, the scheduling of these cleaning tasks is also included in the

optimization problem, deciding not only when to perform them, but also the type

of cleaning task.

Once the operation of one evaporation plant has been optimized, the problem

of scheduling the whole evaporation network arises. The load to every evaporation

plant must be defined, in terms of flows and type of product. Each evaporation plant

has a different efficiency, and some combinations between products and units are

not permitted. In addition, the problem of degradation in equipment is maintained,

so that the cleaning tasks scheduling must also be carried out, which includes the

selection of type and selecting when to perform them. It should be taken into

account that the productivity of the section should not be affected when a plant

is undergoing maintenance, so its workload must be distributed among the rest of

allowed evaporation plants.

The problem is handled using mathematical programming, and modeling the sys-

tem as a mixed-integer linear programming problem, which allows to obtain optimal

solutions in a reasonable time. There are factors that can affect the productivity of

the units, such as the outside temperature or the workloads planned by the manage-

ment departments. These external factors present uncertainty that is considered

into the scheduling problem using a technique commonly used in the advance control

field but not frequently applied in scheduling problems, as is stochastic two-stage

approach. It allows to tackle uncertainty problems with a less conservative way than

the classic robust approach.

Finally, this thesis faces the problem of organizing batch processes that share cer-

tain resources, and have to be performed between continuous production processing

lines. First, the problem of batching the products that arrive in a the discrete flux,

and the subsequent scheduling of the processes has been solved to minimize overall

manufacturing time (makespan). Then, restrictions on the use of resources have

been incorporated.

Two formulations have been developed to deal with these types of problems. In

the first one resource availability is limited. Real consumption behavior during its
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processing time is modeled, and global restrictions are added to avoid exceeding a

maximum bound set by the plant architecture. In the second case, instead of adding

a restriction on consumption, the effect of concurrent consumption is considered.

If several processes are executed concurrently consuming the same resource, both

duration will be affected. In this case, the duration of the processes is what should

be modeled to be included in the task scheduling problem.

In both options, a tool with a closed-loop approach has been developed, similar

to that used in advanced control techniques, which allows to react to deviations

from the planning and reduces the resolution times, allowing the implementation in

plants.
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Español

Esta tesis se enfoca, principalmente, en el desarrollo de formulaciones eficientes

para la programación de las tareas de procesamiento en entornos industriales. Aśı

mismo, se busca la integración de la toma de decisiones más relacionadas con el

control avanzado de los procesos o con la planificación de la producción; de esta

manera, la programación obtenida será más eficiente de lo que seŕıa si no se tuvieran

en cuenta las restricciones adicionales. Las metodoloǵıas diseñadas enfatizan la

resolución rápida de los problemas, dada su prevista implementación en plantas

reales.

Se tratan los problemas de programación de tareas más comunes en las indus-

trias: la asignación de tareas a unidades, la distribución de la producción entre

equipos paralelos y el reparto de recursos compartidos entre procesos concurrentes,

principalmente. Los avances obtenidos durante el desarrollo de esta tesis son fruto

de trabajo colaborativo, y no debeŕıan entenderse como un mérito individual del

autor.

Se presentan dos casos de estudio industriales donde se implementan las metodoloǵıas

propuestas para comprobar su efectividad: el primero consiste en la optimización

del uso de recursos en una red de evaporadores industriales donde se reparte la

carga de trabajo entre plantas de evaporación paralelas; y el segundo consiste en la

organización óptima de procesos de esterilizado que comparten un recurso necesario

durante el procesamiento.

En el caso de la red de evaporadores, estos son modelados siguiente una metodoloǵıa

de obtención de modelos grises usando datos reales de planta y reconciliación de

datos. Aunque la planta trabaja en estado estacionario, se incluye la degradación

de los equipos con el uso que conlleva una dinámica. Esta reducción en la eficiencia

de los equipos se añade al problema de optimización del punto de trabajo. Cuando

la degradación es excesiva se requiere la realización de tareas de mantenimiento

para recuperar eficiencia (distintas tareas de limpieza). En un segundo punto se

realiza la optimización de la programación de estas tareas de limpieza, donde se

debe decidir el momento de realizarlas y el tipo de las mismas.
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Con el trabajo de una planta de evaporación optimizado, se plantea el problema

de la organización de toda la sección de evaporación, donde se debe asignar la

carga a cada planta de evaporación con respecto al tipo de producto y la cantidad

de flujo. Cada planta de evaporación tiene una eficiencia diferente, y no todas las

asignaciones producto-equipo se pueden realizar. Además, se mantiene el problema

de la degradación en los equipos, con lo que la organización de las tareas de limpieza

también debe realizarse, lo que incluye la selección del tipo de limpieza y la organi-

zación temporal de las mismas. Se debe tener en cuenta que la productividad de la

sección no se debe ver afectada cuando una planta está siendo sometida a tareas

de mantenimiento, por lo que su carga de trabajo se debe repartir entre el resto de

unidades de evaporación accesibles.

El problema se plantea usando programación matemática como un problema de

programación mixta-entera lineal, lo que nos permite obtener soluciones óptimas

en un tiempo razonable. Aśı mismo, existen factores que pueden afectar la pro-

ductividad de las unidades, como la temperatura exterior o las cargas de trabajo

planificadas por los departamentos de gerencia. Estos factores externos presentan

incertidumbre en cuanto a sus valores que se incorpora en el problema de pro-

gramación usando una técnica común en el control, pero no aplicada en la pro-

gramación, como es el enfoque estocástico en dos etapas, que permite afrontar

problemas de incertidumbre de una manera menos conservadora que el enfoque

robusto clásico.

Por último, esta tesis se enfrenta al problema de organizar ĺıneas de producción

continua y ĺıneas de procesado discreto o por lotes que comparten ciertos recursos.

Primero se ha resuelto el problema del loteo de los productos y la subsecuente

programación de las tareas de producción para minimizar el tiempo de fabricación

global. Después, se han incorporado las restricciones en cuanto al uso de recursos.

Se han desarrollado dos formulaciones para enfrentarse a este tipo de proble-

mas. En la primera opción, la disponibilidad de recurso es limitada, por lo que la

sincronización de los arranques de las unidades debe respectar restricciones globales

de consumo. Se modela el consumo de los equipos durante su tiempo de proceso

y se añaden restricciones globales a dicho consumo para evitar que se supere un
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ĺımite máximo fijado por la arquitectura de la planta. En el segundo caso, en lugar

de añadir una restricción en el consumo, se tiene en cuenta que si varios procesos

se ejecutan de manera concurrente consumiendo el mismo recurso, la duración de

ambos se verá afectada. En este caso, la duración de los procesos es la que debe

modelarse para incluirse en el problema de programación de tareas.

En ambas opciones se ha desarrollado una herramienta con un enfoque en lazo

cerrado, similar al que se emplea en las técnicas de control avanzado, que per-

mite reaccionar ante desviaciones frente a la planificación y reduce los tiempos de

resolución, permitiendo la implementación en las plantas buscada.
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Chapter 1

Introduction

Nowadays the industrial sector is immersed in a deep renovation. The incursion

of new technologies has opened the door to the implantation of a large number

of advanced sensors, promoting the insertion of the Internet of Things, becoming

what has been called Industrial Internet of Things (IIoT)(Gilchrist, 2016).

Even though, this greater capacity for data collection represents an advance in

terms of the knowledge that can be obtained from an industrial process, it has to

come accompanied by tools that transform this raw data into practical informa-

tion, as it is being done within the contemporary branch of knowledge around Big

Data (McAfee et al., 2012), or using different modeling tools combined with fitting

methods as data reconciliation (Narasimhan and Jordache, 1999; Albuquerque and

Lorenz T. Biegler, 1996). But having better plant information is not enough, and

the core of the improvement resides in using the data and models in decision making

for control and plant optimization at all levels.

All these advances are giving rise to an industrial revolution, predicted even

before it has been fully implemented, the Industry 4.0, which has the purpose of

automate the decision making procedures by a better knowledge of the plant status

in the models (Industria Conectada 4.0 2019).

1



2 Introduction

Typically, the decision making system of a plant is divided in four different levels,

each one more complex than the previous one and operating on larger time scales.

The bottom layer contains the systems in charge of maintain the observed variables

in their range or set point, by modifying the controlled ones, as it can be PIDs,

SCADAs, PLCs, et cetera.

In the next level, there are the procedures that seek for suitable set points or

ranges, as model predictive control (MPC) among others (Burns, 2001; Cesar de

Prada, Daniel Sarabia, et al., 2017; Cesar de Prada and Pitarch, 2018; Santos

et al., 2020).

Over those, in the supervision layer, the manufacturing execution system (MES)

provides the operation points for long time horizons, usually around few days, and

the scheduling that has to be fulfilled in order to serve the clients reducing costs

due to delays or storage.

And, on top, the enterprise resource planning (ERP) which focuses on the eco-

nomic planning of the factory or enterprise. It makes decisions about what products

to produce, what resources to invest in the production and when to start it.

Generally, referring to what is known as process industry, the bottom layers, that

are controlled by the operators in order to fulfill the demands set by the MES and

ERP systems, work in a continuous way; meanwhile the top layers have to choose

between different working policies.

The lower layers of this pyramid have been the focus of several studies since

more than fifty years (Skogestad, 2007; Åström et al., 2006; Boyd and Vanden-

berghe, 2004).

The more we climb the pyramid, the bigger and more complex the systems are;

therefore, they are less automated, and the human presence is a must.

Furthermore, the industrial sites in Europe are forcing themselves to reduce their

environmental footprint. However, the final production cost cannot be increased

within the actual market conditions, with a fierce rivalry presented by the eastern

industrial sectors. The efficiency in the use of natural resources must be performed

without losing competitiveness. The objective function in the advanced control
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techniques begin to include some economic cost terms (D. Sarabia et al., 2012),

v.gr., economic model predictive control (eMPC).

Nevertheless, the fact that the units of one site work in their individual opti-

mal operation points, does not necessarily make the whole plant to work optimally

(Grossmann, 2012). The links between the different processing sections, treated

as boundary values, have to be included in the global optimization problem. The

goal becomes to obtain the enterprise-wide optimization. Thus, the previously rigid

limits of the pyramid layers, become blurred and horizontal and vertical integration

of layers, besides automation of the higher levels, becomes an important target.

The well defined and isolated control departments are no longer a model to follow.

Furthermore, new IIoT technologies will replace the old control equipment. New

controllers will no longer be physically delimited, and will become dispersed through

the plant, or even implemented in the cloud. The old bounds between layers are

becoming difficult to outline.

Industry 3.0 Industry 4.0

ERP

MES

Control

Field

Connectivity

Distributed

Centralized

Automation Pyramid Automation Pillar

Figure 1.1: Evolution from the industry 3.0 pyramid based architecture (left) to

the new industry 4.0 pillar deployment (right). In the new structure, the number of

field devices has increased, the control is divided into distributed control devices and

some centralized advance control systems. The supervision tasks are integrated in

the ERP

The Industry4.0 aims on automating supervision and management tasks, previ-

ous third level (MES), and incorporates the advance control models in the overall

optimization. The control pyramid becomes more similar to a control pillar, see
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figure 1.1.

Supervision and management tasks are, in general, scheduling problems. The

job orders determined by the superior ERP system, to fulfill the external demands,

have to be organized. To perform the optimal distribution of the work orders, some

details from the control layer should be considered. This global problem becomes

more complex to solve, however the potential benefits encourage the study.

Scheduling problems have to answer four principal objectives: the selection of

the jobs to perform; the assignment of the jobs to equipment; the sequencing of

the orders; and finally, the start time for every job (Pinedo, 2008; Brucker, 2007).

There is no one unique approach to solve scheduling problems, which is very

dependent on the type of problem considered and the environment the purpose

of the scheduling. These days, ERP and MES systems are focused in obtaining

a feasible solution in a short time. To do so, the formulation can be performed

using graph theory (Birand et al., 2012), heuristics and metaheuristics (Umetani et

al., 2017; Green et al., 2016), timed automata (Behrmann et al., 2005), constraint

programming (Rossi et al., 2006),et cetera.

However, the progress that mathematical solvers for mixed-integer linear pro-

gramming (MILP) problems have achieved, has encouraged the use of mathematical

programming to solve scheduling problems. Mathematical programming techniques

allow the user to include in a rigorous way cost functions to weight the possible

solutions and all constraints affecting the problem.

This thesis aims to provide efficient solutions to problems associated to the imple-

mentation of real-time optimization (RTO) and scheduling in the process industry.

To focus the problems, two industrial case studies are considered:

The first one deals with the operation of a large evaporation section in a viscose-

fiber factory located in Austria, in which the process is basically continuous, but the

optimal economic operation requires integration with discontinuous maintenance

tasks.

The second case study deals with a tuna canning factory located in Galicia,

where continuous product flows and sterilizers operating in batch mode interact and

real-time scheduling must be implemented in order to optimize production flows.
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Both case studies bring problems that have not received extensive treatment in

the literature.

1.1 State of the art

We could follow the roots of scheduling theory to the years previous to the second

world war. In the 1950s this field gained recognition, and first important textbooks

date from the 1960s (Baker and Trietsch, 2009). A collection of relevant papers

can be found in Muth and Thompson (1963).

Nevertheless, it is worth mentioning George B. Dantzig, whom can be seen as

the father of linear programming (George Bernard Dantzig, 1983). In the early

stages of his academic career, Dantzig formulated the simplex method to solve

linear problems (George B Dantzig, 1951). Instead of linear programming, the

problem structure was called initially Programming in a Linear Structure.

This new solving algorithm and structure was widely applied in the production,

planning and allocation field, i.e. the scheduling; since, as he said: “most practical

planning problems could be reformulated as a system of linear inequalities” (Albers

and Reid, 1986). After the simplex method, a second important achievement by

Dantzig was to replace “ground rules for selecting good plans by general objective

functions”.

Therefore, in the beginning, scheduling was widely attached to mathematical

programming, and has been widely study in the operational research field (Winston

and Goldberg, 2004).

Typical scheduling problems consider a set of equipment, where a set of different

tasks can be performed. Which equipment to use, how to assign tasks to equip-

ment, in which order and when are the most common decisions to be taken. The

solution provides answers to these questions minimizing a certain cost functions,

and respecting a set of constraints.

In the process industry, the scheduling problems can be organized taking into

account different features (Méndez et al., 2006):
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� Considering the topology of the processing section, the problems can be di-

vided in: scheduling problem with tasks that only require one stage, scheduling

problems with tasks that require several stages, and scheduling problems that

require several stages but with different routes between the processes depend-

ing on the product.

� Considering the assignment of units, this can be fixed or variable, depending

on the existence of multipurpose units.

� Considering the possible routes between units, the section can present a fixed

architecture where some units only led to other units, or variable sequences

where the job can execute the the different required processes in a free order.

In summary, taking all this possibilities into account, the scheduling problems can

be divided into:

� single machine problems, all task have to be performed on the same unit, the

scheduling problem has to organized the sequence

� problems with machines in parallel, every task can be performed in one of

many parallel units. The schedule algorithm has to assign the tasks to the

units and then proceed with the sequence

� flow-shop problems, where there are several stages and the tasks have to be

processed on all of them, following a predefined order

� job-shop problems, similar to the previous approach, but the order is related

to the task and can differ one from another, also the routes do not have to

incorporate all the units

� open-shop problems, these problems consist on job-shop problems but the

routes do not have a fixed sequence of units

The shop problems can be increased by considering parallel machines, which arises

flexible shop problems. In figure 1.2 the different structures are shown.
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In addition, when formulating the scheduling problem, it has to be taken into

account the following points:

� required storage policies. That can be:

– unlimited storage, where both the final and the intermediate storage

are suppose infinite, and therefore is not included in the model as a

constraint

– limited storage related to tanks or warehouses, one processing task can-

not be started if the respective tank is full. The storage can be shared

between products, or devoted to a specific product

– limited storage in the units, again one processing task cannot be started

is the unit has not been emptied

– without storage, where the product after being processed have to be

emptied of the unit immediately and sent to another unit, tank or ware-

house

� product transfer policies, i.e., the duration of the transfer of products between

units and/or tanks can be:

(a) Single machine. All the products

have to be submitted to one process.

(b) Machines in parallel. All the

products have to be submitted to

one process, which can be performed

by several parallel machines.

(c) Flow shop architecture. The

products have to be submitted to a

sequence of processes.

(d) Flexible flow shop. The prod-

ucts have to be submitted to a se-

quence of processes. Some of the

processes can be performed by par-

allel machines.
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(e) Job shop structure. The differ-

ent products have to be submitted

to a sequence of processes depend-

ing on the product.

(f) Flexible job shop. The differ-

ent products have to be submitted

to a sequence of processes depend-

ing on the product. Some of the pro-

cesses can be performed by parallel

machines.

(g) Open shop. The products have

to be submitted to a series of pro-

cesses but without a required se-

quence.

(h) Flexible open shop. The prod-

ucts have to be submitted to a se-

ries of processes but without a re-

quired sequence. Some of the pro-

cesses can be performed by parallel

machines.

Figure 1.2: Main scheduling problems structures

– approximated as immediate, this approximation can be done when the

time require to perform the different tasks takes much more than the

time to move the products

– modeled in the scheduling problem

� size of the batch:
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– the size of the batches is fixed and known a priori

– it is modeled in the scheduling problem, the optimizer decides the size

of every task

� duration of the batch process:

– the duration can be fixed and related to the type of task

– the duration can depend on the size of the batch

– the duration can depend on the unit that performs the task

� deadline policies. The production orders can have:

– a fixed due date per order or product

– a time window to deliver the products

� changeovers required by the system. The set-up times can be:

– nonexistent, if the units can work with the different products equally

– predefined by the unit

– defined by the tasks sequence

– defined by the tasks sequence but related to each unit

� resources constraints. Which depends on the type of resources:

– discrete resources, as personal or special equipment. The demand can

be fixed or variable over time

– continuous resources, as steam or electrical power. The demand can be

variable over time, or fixed through the whole tasks

� working day constraints. This constraints can consider:

– non-working days during the weekend

– already scheduled maintenance tasks

– the different shifts
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– that all the days are equal

� costs associated with different items. When the scheduling problem is for-

mulated with an economical objective function, there can be costs related

to:

– the use of processing units

– the amount of resource consumed

– storage use

– changeovers

� uncertainties present in the system. With respect to the uncertainty in the

data, the scheduling model can be formulated as a:

– deterministic model, where it is assumed that the most probable scenario

will occur

– stochastic model, where all the possible scenarios are considered

The combination of all this factors and the specificity of every process plant,

create an enormous variety of problems, so that no single solution pattern can be

applied to all of them, but they may share the fact that it is possible to formulate

the problems mathematically in terms of mixed-integer programming.

1.1.1 Mixed-integer linear programming

When the scheduling problem is modeled using mathematical programming, the

previous features are included using binary and/or real variables using different for-

mulations according to the type of problem considered.

Depending on the general structure of the problem, there are two main formula-

tions: based on precedence or based on networks. In the case of precedence, binary

variables assign tasks to units or to slots, which are related to the units and other

binary variables define the order between slots.



1.1. State of the art 11

Regarding network topologies, there are two main formulations, state-task net-

work (STN) described in Kondili et al. (1993) and resource-task network (RTN)

explained in Pantelides (1994). Both maintain a continuous control on the amount

of available resources, the main difference is how each one model the units.

If the scheduling problem has a particular sequence for the tasks as in flow-

shop problems, the precedence formulations are preferred; meanwhile, the network

formulations should be use for general scheduling problems.

Both approaches can be modeled using either discrete time grids or continuous

slots. With the discrete time grids the time is divided in a sequence of time instants

or samples. Events only take place on them. Meanwhile, the continuous formulation

depends on the inclusion of variables to represent time events and may be more

natural, but the synchronization of events and the management of shared resources

is more difficult and sometimes the numerical solution is more difficult.

Whenever possible, due to the numerical difficulties associated to the solution

of non-linear problems (MINLP), the formulations of practical scheduling problems

tend to be linear:

min cT · x + dT · y

s.t. A · x + B · y ≤ b

x ≥ 0, x ∈ X ⊆ Rn

y ∈ {0, 1}q

(1.1)

where x and y are vectors of continuous and binary variables respectively, c, d and

b are vector of parameters, and A and B are matrices.

There are several approaches to deal with MILP problems (Floudas, 1995). The

most common are:

� cutting planes methods

� branch-and-bound methods
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� decomposition methods

� logic-based methods

The cutting planes methods are based on a method to solve integer linear pro-

gramming problems (Gomory, 1960), using the simplex method. These methods

are based on the relaxation of the binary variables. The problem is first solved, if

the solution has binary values in all the binary variables, the solution has been found.

If some binary variable have real values, new inequalities are added that constraint

the feasible region without cutting the integer solutions. Then the optimization

problem is solved again, and the process is repeated until the solution gives binary

values to all the binary variables.

The branch-and-bound methodology (Dakin, 1965) explore the possible solutions.

The solutions can be represented as a binary tree of all the possible combinations

of the binary variables using relaxations of binary variables and fathoming to stop

exploration of branches. The branch divide the feasible solution region into feasible

sub-regions. Each division is compare independently. The bound refers to find lower

bounds for the divisions. If a lower bound for one division is larger than a previous

solution in a different division, the first one can be disregarded.

Both techniques can be merged in the branch-and-cut method, where cutting

planes are used to obtain the lower bounds for every division.

The decomposition methods are based in the Lagrangean relaxation method

(George B. Dantzig and Wolfe, 1961; Held and Karp, 1970), where the dual problem

is exploited.

Last, the logic-based methods (Balas, 1975) uses disjunctive constraints and

inference techniques in terms of binary variables.
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1.2 Open fields

Even though scheduling is becoming widely implemented in the process industry,

there are yet many open problems in the industrial sector (Castro et al., 2018).

Scheduling problems arise in very different sections, most of the solutions developed

are solutions ad hoc.

Actually, in a real industrial environment, scheduling problems are usually solved

manually by expert operators using data sheets or similar tools. To obtain formu-

lations as general as possible is a must. Current formulation tend to scale badly.

When there is a huge number of tasks to organize, the problem becomes unap-

proachable using regular formulations. Efficient formulations have to reduce the

scaling factors to apply scheduling over a whole processing section and with a long

enough prediction horizon.

On the other hand, when the prediction horizon exceeds a few days, the con-

fidence on the forecast shall be reduced. The uncertainty in the external factors

or the model is a field that is being study in the advance control field (Zhou and

Doyle, 1998), however there is lack in the scheduling applied to the process in-

dustry (Baldea and Harjunkoski, 2014). With the new market environment, where

the demands are higher in number but smaller in size and allowed deadlines, tack-

ling uncertainty in the scheduling is gaining attention, and will become a priority

(Grossmann, Apap, et al., 2016a).

When parallel batch units are concurrently consuming from one shared resource,

the demand has to be well modeled to prevent the system from blocking. This

problem also arise when batch units produce the same final product. The level of

the storage has to be taken into account, to prevent overflows in the system.

In addition, the schedule of batch processes where the duration depends on the

amount of shared resource or on the schedule itself, is an open problem that is

widely present in the industry.
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1.3 Aims of the thesis

In this thesis we tried to contribute to the solution of these problems studying

specific industrial cases where they are present and providing novel, efficient and

industrially feasible solutions to them.

In particular, we aimed at:

� To study the problems of incorporating maintenance due to degradation in

continuous operating plants in RTO

� To study the problems of optimally scheduling the operation of a set of con-

tinuous plants, incorporating maintenance operations

� To find industrially implementable solutions to these problems incorporating

a explicit consideration of the effect of uncertain variables

� To study the problems of operation of plants with continuous lines followed

by parallel batch units and the use of real-time scheduling

� To find efficient scheduling formulations for dealing with limited shared re-

sources

� To develop scheduling formulations to tackle variable batch times created by

the synchronization itself

� To integrate the operation of the scheduling and control of batch units to

improve the overall performance of the system

� To validate the methods and algorithms with industrial data and study its

industrial implementation.

1.4 Outline

The rest of the thesis is organized as follows: first, the state of the art in the schedul-

ing area is presented. The most common methodologies to deal with scheduling
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problems are organized, and a brief summary on mathematical programming tech-

niques are described.

In chapter three, an scheduling problem about maintenance tasks in continuous

lines is presented. The solution is implemented in an evaporation network. First,

the optimal operation point for each evaporation plants is computed. Then, main-

tenance policy for one evaporation is modeled. Last, the whole network is treated,

and the scheduling for the maintenance tasks and the distribution of load among

the different units is performed. Results on the case study are presented.

In chapter four, the scheduling of a high amount of tasks in multipurpose units

is treated. The tasks have to be gathered in slots, and then assigned to the units.

The duration of the slots depends on the type of tasks gathered. To prove the

performance of the solutions, the formulations are implemented for a canning plant.

The cans are produced in a continuous way, but have to be submitted to a batch

sterilization process. A new precedence methodology is developed to increase the

solution time. The result of using this methodology are shown.

In chapter five, the previous gathering problem is increased by shared resources

constraints. The slots have to be synchronized to avoid an excessive consumption.

This problem is also presented using the previous industrial case study. The steril-

ization procedures share steam as heat source. The steam consumption have to be

bounded to the maximum capacity of the plant steam supply. Two new approaches

to the system are implemented. The solution are implemented and some test are

performed and showed.

At last, the main contributions of the thesis are listed, and a brief discussion is

presented.



Chapter 2

Maintenance scheduling of

continuous processing lines

In the process industry, processing lines tend to work in steady-state, while man-

agers and operators aims to find the best operating point that satisfies the process

constraints.

Following the pyramid of control scheme (see figure 1.1 (left)), the optimal op-

eration point can be computed using RTO formulations considering the production

targets provided by the economic planning.

The set points obtained are then passed to the control layer, where advanced

techniques, as model predicted control (MPC), can be applied to guide the system

to the required operation point. This approach is well known and is well described

in Camacho and Alba (2013).

Nevertheless, optimal operation points for separate units, may not be the optimal

operation point for the global industrial site (Zhang and Grossmann, 2016).

Therefore, integration and coordination among the different elements of a layer

and between the different layers of the control pyramid is required. In particular,

scheduling may be used to determine the execution order of different activities and

its assignment to different units.

16
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In addition, equipment suffers degradation due to its continuous use. The initial

optimal operation point may not be optimal anymore when the features of the units

change.

Furthermore, the optimal operation point for steady state could increase the

degradation effect if this is not considered. The benefits are reduced, and mainte-

nance tasks to recover the lost efficiency become necessary. Moreover, the cost for

this maintenance tasks also have to be taken into account in the global operation

cost.

This chapter will focus on the development of the optimal control for one large-

scale continuous industrial system, and the integration of this control in the optimal

scheduling of production and maintenance of the overall network.

First the optimal steady state operation point for one unit will be calculated,

and then compared with the optimal policy when considering degradation.

Later, the scheduling of a whole section for several units working concurrently

will be obtained. To increase the potential of the solution, a uncertainty study is

carried on. A stochastic solution is applied to the schedule.

Next, a real industrial plant section will be described. This industrial site will

be use as a reference in the formulation of the problems and as a test site of

the methods developed. Then, the main operation problems of the system will

be explained. Later, the main objectives of the thesis in this particular case will

be listed. In Section 2.3 the methodology applied will be described. After that,

the mathematical models obtained to solve the problem and the algorithms and

methods developed are described. In the last section, some results are presented.

2.1 Viscose plant

The industrial system considered consists of an evaporation network, owned by

Lenzing AG GmbH, the biggest European man-made cellulose fiber plant sited in

the small town of Lenzing (Austria). This plant produces several type of either

textile fibers or non-woven ones, using wood as raw material. First, the pulp of the
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wood that has been matured, is dissolved in a multi-stage physical-chemical process

to obtain a viscous fluid . After that, this fluid is pressed through micro-fine nozzles

sunken in an acid bath obtaining the fibers by a chemical reaction and then spinning

them. The fibers are subject to different treatments, washed and stretched; finally,

once they are dried and cut, and in order to obtain a nice and soft final product,

the fibers are equipped with a finish made of soap-like saponaceous substances.

Wood Pulp Fiber
production

Viscose
fibers

Recovery of
process

chemicals

Figure 2.1: Diagram of viscose production (Lenzing AG, 2018)

The chemical processes performed need several chemical compounds, as hydro-

gen sulfide (H2S), sulfuric acid (H2SO4) and carbon disulfide (CS2) among others.

In order to reduce the wastewater and the carbon footprint this compounds are re-

covered with different procedures, see figure 2.1. Particularly for the H2SO4, which

can be found in the bath used to spin the fibers, or spin-bath in short, it is recovered

increasing the concentration of the worn-out spin-bath by evaporating the solvent,

in this case water. The plants where this procedure is carried out are multiple-effect

evaporation stations, or evaporation plants, (C. de Prada et al., 1987). A typical

evaporation plant consists of several separation chambers, each one working at low

pressure to ease the boiling, connected in series, as can be seen in figure 2.2. The

last evaporation chamber is connected to a barometric steam condenser with a

cooling tower. The solution is preheated in heat exchangers arranged in series using

the vapor of the evaporation chambers but the last ones, that are heated using
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fresh stream. The outcome of the last group of evaporation chamber is mostly

recirculated to the heat exchangers. The spin-bath is fed in the station in the

last evaporation chambers, meanwhile the concentrate is obtained by overflow in a

previous one, see figure 2.2 for a simplified scheme of one evaporation plant.

There are 29 evaporation plants in the evaporation network working concurrently.

They are connected to the recovery system of the spinning section, as shown in

figure 2.3. These evaporation plants are not equivalent. Each evaporation plant

has different evaporation bounds and efficiency.

Even though the evaporation network is a small department in only one step

of the fibers production, it means about four fifths of the whole factory steam

consumption. Consequently, even a minor reduction on the steam demands of each

evaporation station will have a big impact on the overall expenditure. Therefore, the

aim of this work is to developed a system able to fulfill the steam requirements in

the evaporation network in an optimal way, considering the maintenance operations

associated to continuous production

Lenzing AG GmbH produces several types of man-made fibers. Each type uses a

particular spin-bath to obtain different final features. Every spin-bath has different

requirements regarding the amount of water evaporated. However, the behavior of

the evaporation plants does not differ with respect to the spin-bath treated.

Each evaporation plant can only be fed by one type of spin-bath at a time.

The spin-baths are divided among the available evaporation plants to obtain the

required concentration for each. Due to structural restrictions, there are combina-

tions spin-bath to evaporation plant that cannot be accomplished. See figure 2.4

for a graphical explanation, where different spin-baths are assigned to several evap-

oration plants, some are forbidden because of possible maintenance scheduled tasks

or failures, and each spin-bath has a different production load required.
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Figure 2.2: Diagram of an evaporating plant, where several evaporation plants and

heat exchangers have been grouped in V1, V2 and W1, W2 for simplicity

2.1.1 Operation problems

The evaporation network is the main steam consumer of the site. The amount of

steam required per evaporation plant has to be minimized, while the concentration

degree for each spin-bath is a target that must be reached and maintained.

On the other hand, there is a shortage of sensors in the system, and hence

measurements. Therefore, there is a lack of awareness on the evolution of the

system and the actual operation state. Besides, the measurements acquired could

be affected by noise or caused by a faulty sensors, requiring a previous treatment

to assure the information recovered is trustworthy.



2.1. Viscose plant 21

Viscose Strings

Spinning

machine

Degassing

Sulfides

Sulfates

Bottom

tank

Filter

Evaporation

plant

Water

Heat

recovery

Crystallizer Calcination

Worn-out

sulfates

Figure 2.3: Recovery station connections

Industries which have fluids flowing through pipes usually have to deal with foul-

ing problems inside them that can produce a loss of efficiency. In the case of

heat exchangers, this deposit formation is related mainly to the fluid velocity, the

compounds of the dissolution and the temperature. The fouling layer affects the

heat-transmission coefficient and can block the conduct. Performing regular clean-

ing tasks becomes mandatory.

There are several types of cleanings, each with different recovery degree, re-

quired cleaning time and material and personnel cost.

The evaporation plants have different efficiency. The spin-bath fluids have to be

distributed properly among the evaporation plants. Meanwhile, the aggregation of

water evaporated per spin-bath is constrained.

All the production processes in the plant are continuous, which means the spin-

bath fluid has to be concentrated also continuously. When one evaporation plant

have to be stopped to be cleaned, the rest of the evaporation plants connected to

the same spin-bath, or the ones stopped and already cleaned, have to take care of
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Spinning section

on network

20 tn/h

27 tn/h

32 tn/h 12 tn/h

40 tn/h

Figure 2.4: Example of connections between spinning units and evaporation plants

and the distribution of production load among them

the load assigned to this one. Nevertheless, they can switch between some spin-

baths for each evaporation plant, provided that a cleaning task is done in between.

Yet, only one cleaning task can take place at the same time due to limitations

on the available personnel.

2.2 Objectives

The global aim is to improve the efficiency of the evaporation network in the in-

dustrial site explained. This implies targets at the plant level and targets at the

network level. Initially, the optimal operation point for every evaporation plant will

be computed. The cleaning tasks frequency will be calculated.

Then, we will analyze how to optimally distribute the spin-bath loads among

the different evaporation plants. And then, the fouling effect will be added to the
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global problem, computing the scheduling of the use of the evaporation plants and

its maintenance.

The evaporation plants will be modeled to simulate the behavior of the system.

A reliable model will be obtain to been able to estimate the status of the plant.

The optimal operation point that minimizes the steam consumption will be com-

puted. Then, the fouling effect has to be added, and the optimal cleaning policies

will be obtained.

The model to distribute the spin-bath among the evaporation plants will be im-

plemented. After the optimal distribution, the fouling effect in all the evaporation

stations will be included, and so will the cleaning policies for all the evaporation

network.

In summary:

� To obtain a reliable model to simulate the behavior of the system

� To calculate the optimal operation point for one evaporation plant with and

without fouling dynamics

� To compute the optimal sort of the cleaning tasks and when to perform it in

order to maximize the benefits

� To conduct the optimal load allocation among several evaporation plants

� To schedule the cleaning tasks for the whole evaporation network

2.3 Methodology

First, one evaporation plant has to be studied alone. As production changes are rare,

and the dynamic of the system is fast enough, the model focuses on representing

the steady state reliably. Its kernel is based on first principles, i.e., energy and mass
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balances (including heat transmissions), density relationship between volumetric and

mass flows, and chemical equilibrium within the evaporation chambers.

Due to a lack of measurements and controllers, the model of the real station

had to be somehow simplified in the number of devices present, as it can be seen

in figure 2.2, where heat exchangers and evaporation chambers have been gathered

in two sets each. Nevertheless, this increases the uncertainties in the model and

forces to apply different techniques to reduce them and have a valid model.

Real behavior of the processes is difficult to formulate, moreover with the sim-

plifications done. To overcome this problem, some parts are modeled as black-box

where relations between variables are identified from real data including empirical

constraints, giving rise to a gray-box model. Grey-box models have been proved as

a reliable approach to simulate the state of a system (Pitarch, Sala, et al., 2019).

The approach starts by recognizing that not all plant measurements are reliable,

and good estimates of them, besides unknown parameters, must be obtained be-

fore any optimization can take place. The different techniques to approximate the

models through the data from the real plant, depend on the existing redundancy in

the initial model due to additional algebraic constraints and duplicated sensors.

In this methodology to obtain the gray-box models, instead of including rela-

tions between the not clearly determined variables in the model, their values are

constrained within a sensible region. Then, the model is approximated by applying

data reconciliation methods (Leibman et al., 1992). This process estimates the

plant status by solving an optimization problem that finds the values of the model

variables and unknown parameters that better fit the plant measurements:

min
θ
η2 ·

∑

j

∈ J

[

|εj |

η
− log

(

1 +
|εj |

η

)]

⌊θ⌋ ≤ θ ≤ ⌈θ⌉

h(θ) = 0

(2.1)

where θ is a set containing the estimated value of the measures, the value of

internal parameters and the value of the status; and the error εj is computed as
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(θj − yj) /σj∀j ∈ J, where the set J is a subset of the θ elements that corresponds

to the measurements (yj∈J), and σ represents the variance. The vector h(θ) is a

vector of non-linear functions of class C2, i.e., the model constraints.

The objective function in this case is the so-called Fair function, however data

reconciliation can be performed with any usual error measurement technique, v.gr.,

least squares. Fair function is a robust estimator (Huber, 2014), which prevents

weighting gross errors. The slope of the function to reduce the weight of large

residuals is tuned using the parameter η.

After solving (2.1), a set of reliable values are obtained for all variables, according

to the model h(θ), which in our case is the simplified first-principles model.

Using the new values, unknown patterns or relations between variables can be

identified in order to complete the gray-box model. These relations are then modeled

using regression techniques, and the new equations obtained are incorporated to the

model.

Additionally, the new model can be again adjusted, for example applying again

data reconciliation. Therefore, the methodology to obtain precise gray-model mod-

els consists in three main steps: first, developing a first-principle model; then,

adjusting the system and uncertain states through data reconciliation; and finally,

obtaining using regression techniques over the new data the relation between the

unknown variables. The process is well explained in Pitarch, Palaćın, Merino, et al.

(2017).

To enhance the knowledge about the process, some indicators that represent

the relation between the production and the resources required in real time are

implemented, the so called Resource Efficiency Indicators (REI) (Krämer and En-

gell, 2018). These REIs give information to the operators about the favorable

current operation state. The developed REIs that relate the steam consumption

(resource) to the water evaporated (efficiency) are used as cost function in RTO

problems.
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Once a reliable process model is available, next step is to formulate the optimal

plant operation in terms of mathematical programming.

Current optimization algorithms can perform efficiently if accurate enough gra-

dients for the cost function and constraints are provided and, in some cases, the

Hessian is also needed (Lorenz T. Biegler, 2018), v.gr., Ipopt (Wächter and Lorenz

T Biegler, 2006).

On the other hand, automatic differentiation technique has been proved more

powerful than symbolic differentiation in terms of speed, and than numerical differ-

entiation regarding accuracy, (Griewank, 1988). Hence, the model is coded using

CppAD that performs automatic differentiation, (Bell and Burke, 2008). The gra-

dients can be computed as the derivatives of the cost function and constraints with

respect to the decision variables.

In this way, an optimization problem can be formulated with the REIs set as the

cost function, i.e., minimizing the resource use preserving the load demand. This

solution will give optimal set points to operate the plant within the actual state.

Using automatic differentiation and current NLP solving algorithms, the solution

can be obtained in real-time.

Subsequently, the dynamic of the fouling growth is modeled. The steady-state

model previously developed has to include the slow dynamics of the fouling growth

inside the pipes. This is implemented by estimating the heat transfer coefficient

over a large period of time by means of several independent steady-state models. In

this way, we can obtain the evolution of the heat transmission coefficient, so that

a model relating this heat transfer coefficient with other process variables can be

developed. The model can then be simulated from the present state until a cleaning

task takes place.

The RTO problem is also modified, replacing the cost function based in REIs

with an economic target. This optimization problem takes into account also the

cost of the operation in the future with its decreasing efficiency and including the

cost of the cleaning task. In this dynamic scenario the control actions don’t have to

remain constant, which can be achieved splitting the prediction horizon in different
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intervals. This economic RTO gives a prediction about the behavior of the plant

with the expected control actions, and estimate the best cleaning type and the

moment to apply it in order to maximize the economic benefit.

Once the optimization problem for one evaporation plant has been solved, the

goal now becomes to compute the optimal policy for the whole evaporation network

comprising 29 evaporation plants. This includes the load allocation for all the

evaporation plants, meaning the flow assigned to each evaporation plant and the

type of spin-bath while maintaining the total flow of each of them, and the schedule

of cleaning tasks. Including discrete decisions, the problem becomes mixed-integer,

which increases the computational weight of the optimization problem. To reduce

the resolution times in order to being able to keep real-time implementation, the

model is implemented as a MILP problem.

The non-linearity of the model are linearized. A surrogate model is estimated

using the previous rigorous model. This new model relates the operation cost with

the load of the evaporation plant, the fouling state and other external factors that

can’t be modified but has to be taken into account, as outdoor temperature.

Then, the evolution of the fouling state is modeled in the scheduling problem

to obtain the optimal cleaning policy.

Once the deterministic standpoint has been solved, the uncertainty in the external

factors mentioned is included as an obstacle that the model has to deal with. To

deal with the uncertainties, the stochastic methods have become one important

tool, (Heyman and Sobel, 2004; Constantinescu et al., 2011). As the model is

linear, a two-stage approach can assure feasibility by creating scenarios to all the

possible combinations of the bounds of the variables, (Ruiz-Femenia et al., 2013;

Grossmann, Apap, et al., 2016b).

Using stochastic techniques in scheduling has been proved useful in Palaćın,

Pitarch, Jasch, et al. (2018).
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2.4 Evaporation process optimization

The evaporation plant is modeled as follows. First, the heat exchangers are merged

into only two devices. One using fresh steam as heat source (W2), and one using

the evaporation chambers vapor (W1). And, the same process is applied to the

evaporation chambers, where also only two devices remain, one which vapors are

used to heat the flow (V1), and a second one (V2) connected to the barometric

condenser, which actually is formed by two parallel condensers, one big (BC1) and

one small (BC2). The numerical order of the exchangers and chambers has been

set due to the spin-bath flow direction.

Inside the heat exchangers, evaporation chambers and barometric condensers,

mass and energy balances are arranged. Defining as D the set of these devices, i.e.,

D = {V1, V2,W1,W2, BC1, BC2}, and as K the set of chemical compounds present

in the spin-bath, v.gr., H2O:

fi d
T · Ci d = fod

T · Cod

∀d ∈ D
(2.2)

fi d
T · enthw(Ti d , pi d) = fod

T · enthw (Tod , pod)

∀d ∈ {BC1, BC2}
(2.3)

fi d
T · enth(Ti d ,Ci d) = fod

T · enth(Tod ,Cod) + κd · (⌈T ⌉d − Tamb)

∀d ∈ {V1, V2}
(2.4)

Qd + fi d
T · enth(Ti d ,Ci d) = fod

T · enth(Tod ,Cod) + κd · (⌈T ⌉d − Tamb)

∀d ∈ {W1,W2}
(2.5)

Where fi d and fod are vectors representing the incoming mass flows to and

outgoing mass flows from a device respectively; and Ci d and Cod are matrices of

|K| columns representing the content in the incoming flows and outgoing flows

respectively for each chemical compound k ∈ K. Note that vectors will be defined

as column vectors, as long as the opposite is not specified.
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The enthalpy of the flows with the temperatures T and the concentrations C

is calculated by enth(t, C), using the specific heat of each compound previously

computed; and, for water or steam enthw is used, that computes the water specific

enthalpy using the flow temperature or pressure. The parameter κd is the coefficient

of heat loss to the ambient in the device d , ⌈T ⌉d is the maximum temperature in

the equipment d, and Tamb is the ambient temperature. For the heat exchangers

(W1, W2), the flows considered (fi d , fod) are the spin-bath flows and, assuming that

there are no loss of material, they are equivalent, i.e., fi d ≡ fod ,∀d ∈ {W1,W2};

however, in order to preserve the same notation, the sub indexes i and o for incoming

and outgoing flows are maintained. Qd represents the heat gained from the steam.

Qd = UAd · ∆TLMd

∀d ∈ {W1,W2}
(2.6)

∆TLMd =
∆Tind − ∆Toutd

ln
(

∆Tind
∆Tout d

) ≈

(

∆Tind · ∆Toutd ·
∆Tind − ∆Toutd

2

)
1
3

∀d ∈ {W1,W2}

(2.7)

Qd = f si d · lat (Tsi d)

∀d ∈ {W1,W2}
(2.8)

The variable UAd is the heat transmission coefficient times the exchange surface

for the device d , and ∆TLMd is the logarithmic mean temperature difference, ap-

proximated using Chen formulation (Chen, 1987) as it can be seen in equation 2.7,

where ∆Tin and ∆Tout are the temperature differences between the flows at the inlet

and at the outlet respectively. f si d is the incoming steam flow into the equipment

d , and lat (Tsi d) is used to compute the condensation latent heat of the incoming

saturated steam flows at temperature Ts in the device d .

The, phase equilibrium between pressure, concentration and temperature inside

the evaporation chambers, i.e., V1, V2, is formulated.
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P̄d = pres(T̄d , C̄d) ∀d ∈ {V1, V2} (2.9)

T̄ sd = temp(P̄d) ∀d ∈ {V1, V2} (2.10)

Where P̄d is the mean pressure inside an evaporation chamber d , computed

using the mean temperature of all the flows (T̄d) and the mean concentrations

for each compound of these flows (C̄d). With the pressure estimation, the mean

temperature of the saturated steam (T̄ sd) can be calculated.

The cooling tower, CT is modeled using previous studies found in the literature,

as the ones by Wallace and Hobbs (2006). HSx and Hx : x ∈ {i , o} are the

saturated and current specific humidity respectively of the incoming and outgoing air

flows; and HR represents the ambient relative humidity. The partial pressure of the

saturated steam is calculated using ppres that relate the pressure and temperature.

The flows fa and fi CT and foCT represent the incoming air flow to the cooling tower,

and the inlet and outlet water flows respectively, being ta, ti CT and toCT their

temperatures. The water specific heat (SH) is equalized to 4.184 kJ kg−1 K−1. See

figure 2.5 for clarifications.

HSi = 0.622 ·
ppres (Tamb)

1.01325− ppres (Tamb)
(2.11)

HSo = 0.622 ·
ppres (Tao)

1.01325− ppres (Tao)
(2.12)

HR = 100 · Hi/HSi (2.13)

Ho =















HSo if (Tao > Tamb)

HSi if (Tao ≤ Tamb) and
(

H̄o > HSi
)

⌈Ho⌉ otherwise

(2.14)

⌈Ho⌉ = SH · (Ti CT − TiBC [water ]) ·
foCT

fa · lat (Tamb)
+Hi (2.15)
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Figure 2.5: Diagram of cooling tower

Finally, flow behavior equations are implemented, where the features of the flows

are related. Represented by vi d the volumetric incoming flows for each device

d ∈ D, and calculated the density of each flow as a function of its temperature,

concentration of each component and pressure (dens (Ti d ,Ci d , pi d)). Note that

water and steam flows only have one compound, i.e., Ci d [i
′] is a row of the matrix

with the elements equal to zero but for water or steam column respectively; and

that they are represent as different compounds due to the different density formulas

used for a water flow or a super heated steam flow. The parameters vector MW

contains the molecular weights of the different chemical compounds.

fi d [i
′] = vi d [i

′] · dens (Ti d [i
′],Ci d [i

′], pi d [i
′])

∀d ∈ D, ∀i ′ ∈ i
(2.16)

dens (Ti d [i
′],Ci d [i

′], pi d [i
′]) = Xi d [i

′] · den comp (Ti d [i
′], pi d [i

′])

∀d ∈ D, ∀i ′ ∈ i
(2.17)
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Xi d [i
′, k] =

Ci d [i
′, k]

MW [k]

∑

k ′∈K

Ci d [i
′, k ′]

MW [k ′]

∀d ∈ D, ∀k ∈ K, ∀i ′ ∈ i

(2.18)

The flow through the valve that controls the pure steam is calculated using

the valve constant Cv as follows, where pin represent the pressure of the incoming

steam flow to the steam saturator. Also, the vapors flow that leaves the second

evaporation chamber route to the steam condenser is modeled similarly, where κf

is a parameter that has to be estimated.

fiW2 [steam] = a · Cv ·
√

p2in − po
2
d : d = Steam saturator (2.19)

foV2 [steam] = κf ·
√

pres(ToW1[steam])2 − pres(TiBC [water ])2 (2.20)

This model represents almost completely the evaporation network, however there

are still some dependencies and some behaviors that cannot be modeled using first

principles. Therefore additional equations and mathematical relations, based on

expert knowledge and regression analysis, have to be included. In order to do so,

real data from the plant is first filtered, excluding outliers and transients evolution,

and then a data reconciliation process is run.

Once the data reconciliation process has been executed, some relations between

variables can be identified using the smoother data obtained, and then added to

the model. The coefficient κf , which determines the steam flow from the evapora-

tion chamber V 2 to the condenser in (2.20), can be approximated by an equa-

tion of TiBC [water ] (ToCT to shorten). And the cooling tower performance,

η = (Ti CT−TiBC [water ])/(Ti CT−Tao), is related to the temperatures of water and air,

see figure 2.6.
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κf =







14.67 if (ToCT ≤ 12.1)

0.0121 · ToCT ]
2 − 0.9772 · ToCT + 24.247 otherwise

(2.21)

η =















1 if (∆T < 5)

0.387 if (∆T ≥ 25)

126′807 · exp−0.0475 · ∆T otherwise

(2.22)

where ∆T = ToCT − Tamb.

In addition, the incoming air flow to the cooling tower, fa, is determined as the

sum of the air flow produced by the fan of the cooling tower (faf an), and the flow

produced by the convection effect (faconv ). Data from cold seasons, when the fan

is stopped, feeds the data reconciliation to approximate the convection effect, an

Eckert-like number is identify (Ec = 18 900). And data from hot seasons, when

the convection effect is negligible, is used to identify the maximum flow speed

produced by the fan, ⌈faf an⌉ = 21× 10
5m3 h−1, that is obtained when the fan runs

at maximum speed, ⌈ω⌉ = 1500 rpm. Then, the incoming air flow is modeled as:

fa = faf an + faconv (2.23)

faf an = ⌈faf an⌉ ·
ω

⌈ω⌉
(2.24)

faconv = Ec ·

(

Ti CT + ToCT
2

−
Tao − Tamb

2

)

(2.25)

Further there is a slow dynamic on the system due to the fouling on the pipes.

This dirt layers growth cause a loss in the heat transmission coefficient (UAd). It
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Figure 2.6: Graphs representing the reconciliated data and the regression models

is approximated as:

UAd(m,T , v) = UAd0 −
α · T [d ]4 + β · T [d ]3 + γ · T [d ]2 + δ · T [d ] + ζ

v [d ]

·

(

1− exp

(

−τ ·
t

v [d ]2

))

∀d ∈ {W1,W2}

(2.26)

where the values for α, β, γ, δ and ζ are obtained using model fitting to the values

of U, acquired by data reconciliation.

The accuracy of the solution obtained can be see in the figure 2.7.
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Figure 2.7: Approximation and value obtained from real data comparison for the

heat transmission coefficient in one group of heat exchanger chambers

2.4.1 Real-time optimization of one evaporation plant

The optimizer has to solve the NLP problem:

min
fiW1 ,ToW2

fiW2 [steam]

s.t. (2.2)− (2.22)

(2.27)

Initially, the steady state system is optimized using CppAD to model the evap-

oration plant, and Ipopt to solve the RTO problem. The appropriate REI related

to the steam consumption is used as cost function. The optimizer gave a solution

that consist in maximizing the utilization of the cooling tower, and maximizing the

temperature of the income product to the evaporation chambers and then adjust

the recirculating flow to assure the required evaporation rate. As the income prod-

uct to the evaporation chambers is heated as much as possible, their vapors will

heat the spin-bath in the heat exchangers, reducing the total steam flow needed.

This solution reduces the amount of steam required without regarding the effi-

ciency decrease over time. It is implemented in the industrial site by a self-optimizing

control strategy and has reduced sensibly the steam consumption.
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RTO considering maintenance

In this implementation, the dynamic of the fouling growth is included in the problem.

Considering two types of cleaning tasks, one cheaper but with a lower recovery

degree A, and one more efficient but more expensive B (which can be defined as

small and big types), the relative dynamic RTO is defined as:

min
c,tF ,uA,uB

c ·

∫ tF
t0
SteamFlow(t) · Pth · dt + cleaningCostA

tF − t0

+ (1− c) ·

∫ tF
t0
SteamFlow(t) · Pth · dt + cleaningCostB

tF − t0

s.t. h(uA) = 0

h(uB) = 0

(2.28)

where c ∈ [0, 1] is a real variable to select between the types of cleaning A and B,

tF is the time when the cleaning task takes place, and the vectors uA and uB are

the decision variables for the case when the system performs a cleaning task of type

A or of type B respectively, and Pth is the price for fresh steam production.

The model of the evaporation plant including the evolution of the dirt layer, (2.2)-

(2.26), is represented as h(u) = 0. Notice that the equation for the time evolution

of UA is included, which provides a dynamic nature to the model. The optimizer

will obtain the optimal decision variables evolution for both cleaning types, and will

decide which one is less expensive in terms of steam consumption and cleaning cost.

Note that (2.28) is monotonous with respect to c. Therefore, the minimum

value will be either at c = 0 or at c = 1.

To implement the solution, the problem (2.28) is discretized as can be seen

in (2.29). Then, the main RTO problem consists of as many independent RTO

problems as time samples, using as objective function a cost aggregation. The

independent models for every time sample will be linked by the slow fouling dynamic

modeled in (2.26), and the time samples length that will be optimized by the NLP

solver.
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min
c,tF ,uA,uB

c ·

∑tF
t=t0
(SteamFlow[t] · Pth) + cleaningCostA

tF − t0

+ (1− c) ·

∑tF
t=t0
(SteamFlow[t] · Pth) + cleaningCostB

tF − t0

s.t. h(uA, t) = 0 ∀t ∈ [t0, tF ]

h(uB, t) = 0 ∀t ∈ [t0, tF ]

(2.29)

The solution for the dynamic RTO including the fouling dynamics and the steady

state solution has been compared in figure 2.8. As it can be seen, when the evap-

oration plant is cleaned, the steady state solution is similar to the one including

the dynamics. However, when the dirt layer grows, this solution tries to reduce the

growth by increasing the speed of the flow.

Both solutions compared can be seen in figure 2.8, where the final tF has been

forced to 600 h. The optimizer took around one minute to obtain the solution,

therefore this model is suitable to be applied in real-time.
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(a) Evolution for the decision vari-

able that determines the recirculat-

ing flow

ToW2 (%)

Time (h)

(b) Temperature set point in the

outcome of the heat exchangers

Figure 2.8: Optimal control evolution for an evaporation plant using dynamic RTO

(green) compared with a steady state RTO solution (red)
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2.5 Evaporation network scheduling model

It must be mentioned that, even though a non-linear approximation of the fouling

evolution has been obtained, which relates the dirt layer evolution with the working

set points, in practice it has been noted that it mostly depends on the time that the

evaporation plant has been running since the last cleaning, and there is no much

loss of accuracy by making this approximation.

Therefore, a surrogate model that relates the cost associated to the specific

steam consumption to the production load, the ambient temperature and the fouling

growth degree can be obtained, see figure 2.9. This model is obtained by performing

a linear regression from simulated working points. The points are equally spaced

through the three dimensions (production, temperature and fouling), setting up a

regular grid. With this surrogate models, the cost function value for one evaporation

plant becomes linear with respect to the decision variables and the external factors.

The evolution over time of the evaporation plant efficiency is discretized, using

one day as the length of each sample. This duration is chosen because it corresponds

to the average time required to perform one cleaning task. The evolution of the

state of each evaporation plant is represented by a finite state machine (FSM),

where each state is the actual condition of the plant, see figure 2.10, (Basán et

al., 2017). The scheduler has to organize the tasks to perform, by deciding the

evolution over time of the state of the evaporation plants.

One evaporation plant, if completely clean, starts on the first working state S0.

As time passes, the evaporation plant evolves through the working states. The

evolution through the states let us keep track of the fouling evolution as well. As

we can see in figure 2.10, after a certain number of days in operation, it is possible

to choose between keep working or perform a cleaning task of one specific type.

The cleaning type available depends on the fouling growth. However, as it may

not be any cleaning team accessible, there is one state that represent one plant

stopped but waiting to be cleaned. As the cleaning type depends on the working

state the flow comes from, there is one dirty stand-by state per cleaning type. After
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one cleaning task is performed, the next state can be again a working state, or the

evaporation plant can wait stopped until needed. The working state where the plant

resumes depends again on the type of cleaning, as a less expensive clean cannot

fully remove the dirt layer.

(a) Surrogate model comparison

with simulated cost points when the

evaporation station has been work-

ing for 5 days

(b) Surrogate model comparison

with simulated cost points when the

evaporation station has been work-

ing for 20 days

(c) Surrogate model comparison

with simulated cost points when the

evaporation station has been work-

ing for 35 days

(d) Surrogate model comparison be-

tween different fouling states, for 5,

20 and 35 days working

Figure 2.9: Surrogate model representation for the steam consumption cost in a

single plant in three different fouling states
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No clean task is needed

Working

stages allowed

to be cleaned

performing A

Working

stages allowed

to be cleaned

performing B

Cleaning B cycle

Cleaning A cycle

S0

Figure 2.10: Finite state machine to represent the evolution of the current status of

one evaporation plant. The states are divided in three cycles, the working cycle with

a brown background and two types of cleaning cycles with green background, the

darker the green the deeper the clean effect. The working cycle consist in several

sequential working states (blue chevrons) that model the fouling evolution. The

cleaning cycle has three different states, stand-by states before and after clean-

ing task (gray chevrons) that are optional, and the proper cleaning task (green

chevrons) that is mandatory. The dashed gray lines represent the possible routes

between the states

Then, a global scheduling problem arises, where how distributing the different

spin-baths flows among the evaporation plants and programming the cleanings min-

imizing the overall consumption is the new objective function. The optimizer must

keep track of the evolution of all evaporation plant status and decide the optimal

load allocation in every instant.

The mixed integer linear programming problem approach applied establishes four

sets: the evaporation plants, V; the states of the FSM, S; the different spin-baths

or products, P; and the time samplings or days,M with mF ∈ M as the last day.

The set of stages, S, is divided in subsets: SI ⊂ S, are the initial stages where
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the decision of cleaning is not yet profitable; SX ⊂ S : X ∈ {A,B, . . .}, are the

stages where the decision of making a cleaning task has to be taken into account,

representing by X the type of cleaning (type A, type B, et cetera); SL ⊂ S, are

the cleaning stages per se; and SP ⊂ S, are the stages where the evaporation

plant is stopped, this set, in turn, is divided into pre-cleaning stops, SPX ⊂ SP :

X ∈ {A,B, . . .}, and post-cleaning stops, SPLX ⊂ SP : X ∈ {A,B, . . .}. All these

subsets don’t intersect, v.gr., SI ∩ SL = ∅, SA ∩ SB = ∅, and so on.

Two binaries variables are defined to relate the sets: Evsm : v ∈ V, s ∈ S, m ∈

M, denotes that the evaporation plant v is in the state s in the day m; and

Avpm : v ∈ V, p ∈ P, m ∈ M, which stands for the assignment of product p to the

evaporation plant v in the day m.

First, some assignment equations are formulated, in order to represent nicely

the network. Each evaporation plant can only be in one state at a time. Each plant

can only be working with one product, and this is only possible when it is working.

And only one cleaning task can be performed per day.

∑

s∈S

Evsm = 1 ∀v ∈ V,∀m ∈M (2.30)

∑

p∈P

Avpm +
∑

s∈(SL∪SP )

Evsm = 1 ∀v ∈ V,∀m ∈M (2.31)

∑

s∈SL,v∈V

Evsm = 1 ∀m ∈M (2.32)

The progression through the stages is formulated using implication asserts. For

the initial stages the asserts are logical bi conditionals, except for the starting

ones denoted as s0X ∈ SI : X ∈ {A,B, . . .}, that represent the state where an

evaporation plant starts after a cleaning task of each type. These can’t be bi

conditionals as the previous state can be several different stages. The next equations

shows the formulated paths through the FSM.
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Evsm = Ev(s+1)(m+1)

∀v ∈ V,∀s ∈ SI : (s + 1) 6= s0X ,∀m ∈ M \ {mF}
(2.33)

Evsm ≤ Ev(s+1)(m+1)

∀v ∈ V,∀s ∈ SI : (s + 1) = s0X ,∀m ∈ M \ {mF}
(2.34)

Evsm ≤ Ev(s+1)(m+1) + Evs ′(m+1) + Evs ′′(m+1)

∀v ∈ V,∀s ∈ SX ,∀s
′ ∈ SLX ,∀s

′′ ∈ SPX ,∀m ∈ M \ {mF}
(2.35)

Evsm ≤ Evs(m+1) + Evs ′(m+1)

∀v ∈ V,∀s ∈ SPX ,∀s
′ ∈ SLX ,∀m ∈M \ {mF }

(2.36)

Evsm ≤ Evs(m+1) + Evs0X(m+1)

∀v ∈ V,∀s ∈ SPLX ,∀m ∈M \ {mF }
(2.37)

Evsm ≤ Evs0X(m+1) + Evs ′(m+1)

∀v ∈ V,∀s ∈ SLX ,∀s
′ ∈ SPLX ,∀m ∈ M \ {mF}

(2.38)

This progression through states has also to be taken into account in the products

assignment, as one evaporation plant cannot change products between cleanings.

Avpm ≤ Avp(m+1) + Evs(m+1)

∀v ∈ V,∀p ∈ P,∀s ∈ (SL ∪ SPX) ,∀m ∈M \ {mF }
(2.39)

To maintain control over the global production rate, a real variable is defined that

represents the load associated with each evaporation plant per day and per product,

Rvpm : v ∈ V, p ∈ P, m ∈ M. Each evaporation plant can have different upper and

lower production bounds (UBv , LBv : v ∈ V), and all of them have a maximum

capacity every day (UBm : m ∈ M) that is related to the external temperature due

to the cooling tower dependency. Also, a minimum whole production rate has to

be reached every day, to fulfill plannings demands (SPpm : p ∈ P, m ∈ M).
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Rvpm ≥ LBv · Avpm ∀v ∈ V,∀p ∈ P,∀m ∈M (2.40)

Rvpm ≤ UBv · Avpm ∀v ∈ V,∀p ∈ P,∀m ∈M (2.41)

Rvpm ≤ UBm ∀v ∈ V,∀p ∈ P,∀m ∈M (2.42)
∑

v∈V

Rvpm ≥ SPpm ∀p ∈ P,∀m ∈M (2.43)

2.5.1 Scheduling results

Then, the mixed-integer formulation was implemented to cover the whole evapo-

ration network. The objective function was to minimize the system consumption

over a time horizon. It has to include not only the operation costs, but also the

cleaning tasks costs.

First, every state of the FSM gets an associated cost depending on the evapo-

ration plant (Cvs : v ∈ V, s ∈ S). Moreover, each one has an operative cost (Kov :

v ∈ V), and one cost related to its cooling tower efficiency (Kcvm : v ∈ V, m ∈ M)

that depends on the external temperature. The cost function corresponds to the

total cost per day, computed over the future horizonM.

Therefore, the MILP optimization problem to solve is:

min
fiW1 ,ToW2

∑

v∈V,m∈M

∑

s∈S ((Cvs +Kcvm) · Evsm) +
∑

p∈P (Kov ·Rvpm)

|M|

s.t. (2.30)− (2.43)

(2.44)

where the objective function represent the surrogate model shown in figure 2.9. The

production load requirements (SPpm) predictions are fixed using demands forecast-

ing, and the temperature constraints are included assuming average weather evolu-

tion.

The optimization problem (2.44) is modeled in GAMS, an integrated development

environment (IDE) focused in mathematical programming. GAMS offers interfaces

to the most common NLP, MILP and MINLP solvers, v.gr., in this case the MILP
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solver CPLEX was used (ILOG CPLEX Manuals 2020).

With this design, we could schedule one month of operation for the whole network

(23 evaporation plants) with nine different products and two different cleaning types.

Only one cleaning task can be performed each day. Due to physical constraints not

all evaporation plants can be connected to any product, the available combinations

are shown in table 2.1.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

p1 X X X X X X X X X X X X

p2 X X X X X

p3 X X

p4 X X X X X X X X X X X X

p5 X X X X X X X

Ko 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.1 1.11 1.12

Table 2.1: Possible connections of products with the evaporation plants. In addition,

the operative cost for every evaporation plant

v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

p1 X X X X X

p2 X X X X X X X X X X

p3 X X X X X X X

p4 X X X X X X X X

p5 X X X X X X X X X X

Ko 1.13 1.14 1.15 0.9 1 1.1 1.2 1.3 1.4 0.7 0.8

Table 2.1: (Continuation) Possible connections of products with the evaporation

plants. In addition, the operative cost for every evaporation plant

Each product has a different production rate that have to be fulfilled. In addition,

every evaporation plant has lower and upper operation bounds. The lower bound
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is fixed, meanwhile the upper bound depends on the external temperature. This

external factor has an estimated evolution over the time horizon.

Two types of cleaning tasks have been considered, one labeled as small and one

labeled as big, each with a relative cost. Also, marginal costs have been assigned

to the waiting states before the cleaning tasks.

It has been observed, using the non-linear models, that operating the plant for

more than 35 days is sub optimal. Hence, the maximum number of days permitted

without cleaning is 40, i.e., the number of working states is 40.

If not considered, the optimizer would stop cleaning the evaporation plants during

the last days as it suppose an additional cost. This would lead the system to

unfeasible situations.

To prevent a point of no return, there are two main strategies: dirt stages can

be forbidden for the last days, or a residual cost can be added to not clean enough

states; both options having advantage and disadvantages.

In this case, the additional constraints:

EvsmF = 0 ∀v ∈ V,∀s ∈ (SPX ∪ S
′
X ) : X ∈ {A,B, . . .}, X

′ /∈ {A} (2.45)

would permit the clean states or those where a small clean can be performed (SA ⊂

S). This will let the optimizer to react in the next iterations.

Figure 2.11 shows the solution obtained. The model has a size of 35 150 binary

variables, 3 452 real variables and 42 613 constraints. An optimal solution was

found in around 10 minutes, with a relative gap less than 1%. The horizontal axis

represents the time evolution. The evaporation plants are showed in the vertical

axis. Each color represents one product, and the darken of them represent the

fouling evolution. Gray are the stand-by stages and cyan cells are the cleaning

tasks, light and dark to represent the two different options. The number inside

each cell is the production rate associated with that evaporation plant for that day.
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Figure 2.11: Optimal deterministic schedule example

It can be seen that the optimizer tries to maximize the production in the most

efficient evaporation plants. However, when the external temperature decreases the

maximum bound, the less efficient evaporation plants increase their production rate

to compensate the loss in capacity in the others evaporation plants.

2.6 Stochastic approach

In order to address variations in the forecasting used to schedule an optimal planning,

i.e., production rates and weather conditions uncertainties, a two-stage formulation

is applied. First, one additional set is added, the scenarios E, that are all the possible

combinations of values that the unknown boundaries will take.

Therefore, all variables must include this new sub index, as now there are as many

independent MIP problems as possible scenarios. Using the two-stage technique,

variables have to be divided in here-and-now variables and wait-and-see ones (Kall et

al., 1994); implementing only the first ones, and using the second ones to prepare

the system to act when the moment comes, but not forcing it to adopt them.

The time horizon set is divided in two subsets, MW ⊂ M denotes the robust

horizon, and the rest of time samples belong to MU ⊂ M, i.e., MW ∩ MU =

∅ ∧MW ∪MU =M. In this problem here-and-now variables are the choices that
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have to be made on the first week (MW ), meanwhile wait-and-see variables are

the possible options that will be taken in the future (MU) in dependence of the

realization of one of the possible scenarios, see figure 2.12.

Figure 2.12: Representation of the two-stage decision variables

To implement the here-and-now variables, the decisions during the first week are

forced to be equal irrespective of future scenarios. This applies to the decisions

around what products are assigned to which evaporation plants and the evolution

through the states for every evaporation plant. The rest of the days, the scenarios

are independent from each other. However, as they all start from the same work

point, the results will not differ too much.

Evsme = Evsme ′

∀v ∈ V,∀s ∈ S,∀m ∈MW ,∀e, e
′ ∈ E : e 6= e ′

(2.46)

Avpme = Avpme ′

∀v ∈ V,∀p ∈ P,∀m ∈ MW ,∀e, e
′ ∈ E : e 6= e ′

(2.47)

Rvpme = Rvpme ′

∀v ∈ V,∀p ∈ P,∀m ∈ MW ,∀e, e
′ ∈ E : e 6= e ′

(2.48)

Notice that this is different to a classical robust approach as there are additional

degrees of freedom in the second stage, one per scenario, that allows adapting the
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solution to the realization of the uncertainty in this stage

To inspect the robustness of a solution as every scenario could present a differ-

ent schedule for the days in MU , one similarity index (SI) has been designed. It

measures how much the different scenarios solutions look alike by comparing the

similarities on the decision variables. The two-stage approach is already able to

coup with disturbances if considered in the scenario tree. Nevertheless, there is al-

ways a possibility that the suggested optimal schedule cannot be fully applied when

the uncertainty realization is not explicitly considered due to the discrete nature of

the scheduling decisions.

A straightforward approach could consist in increasing the number of scenarios.

However, this might be discarded for practical implementations. A second option

that would reduce the risk of infeasibilities, is enlarging the robust horizon, to

cover with only one solution the whole convex region considered. Nonetheless, this

approach will vanish the benefits of the two-stage approach. The similarity index

will indicate whether a suggested schedule is closer to the more risky one obtained

by the standard two-stage approach, or to the risk averse single schedule.

Binary variables are hard to compare as they can be either equal or completely

different. In order to ease this, the decisions are fuzzified based on the studies

by Sakawa and Kubota (2000), where the concept of minimum agreement index

is developed for fuzzy due date or fuzzy completion time. The similarity index is

computed per day. The proximity between the same state in the different scenarios

for the same evaporation plant is weighted with respect to a predefined time span,

see figure 2.13a.

As it can be seen, if the solutions for all the scenarios match, the similarity index

will be 100%. Hence, the schedules coincide for all scenarios, which represents the

risk-averse solution.

In our case, the time span is set to three days, the proper execution day and

both days backward and forward, and the decisions are weighted by 100% if they

coincide for all the scenarios, and by 50% if they occur with one day difference, see
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Time span

(a) Discrete decision fuzzification ex-

ample. The similarity index between

the two cleaning decisions in percent-

age corresponds to the shared area di-

vided by the maximum possible area
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CL
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0
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(b) Similarity index values for different

stages for one evaporation plant ex-

ample, v.gr., the SI for the state k in

the sample mn−1 is weighted by 50%

because of the third scenario, where it

happened the sample mn−2

Figure 2.13: Illustrative calculations for the similarity index

figure 2.13b. The similarity index is then computed as:

SI :=
∑

v∈V

∑

s∈S

∑

m∈MU\tF

mine∈E
(

100 · Evmse + 50 · Ev(m+1)se + 50 · Ev(m−1)se
)

nv (200 · (nu − 1) + 150)

(2.49)

where nv is the number of evaporation plants, and nu is the number of days in the

uncertain area, i.e., |MU |.

This similarity index can be computed to measure the robustness of the solutions

obtained. Nevertheless, it can be also included as a constraint to force the solutions

to be similar.

2.6.1 Stochastic scheduling solution

The deterministic schedule detailed in section 2.5, uses a fixed weather predic-

tion, and supposes that the production plannings are known over the time horizon.

Practice reveals that both conjectures are not true.

To tackle this uncertainties a two-stage stochastic formulation was adopted
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v1 v2 v3 v4 v5 v6 v7 v8 v9

p1 X X X X X X

p2 X X X X X X X

p3 X X X X X X X

Ko 1 0.88 1.1 1.01 0.77 0.95 1.2 1 1.05

Table 2.2: Possible connections of products with the evaporation plants and oper-

ative cost for every evaporation plant

considering some scenarios for each of the uncertain variables. Specifically, split-

ting the respective constraints into two choices instead of one known value. See

figure 2.14 for a graphical explanation. It can be seen that the previous forecast is

now extended to include some errors providing a sensible trustworthy region.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1918 20 21 22 23 24 25

Ambient
temperature

Production
load

Time (days)

Figure 2.14: Uncertainty evolution over time example. The time is sampled in

days. The weather forecast and production planning is trusted for the first week,

the following week a possible region for the weather forecast is included and then

sensible changes in the production load for every product is added

As the problem is linear, fulfilling both bounds will ensure the feasible solution of

any middle option. Applying this to the whole system, 2|E| different combinations

between the gap limits appear.

One complex model with three different products and nine evaporation plants has

been implemented to test the feasibility of the approach. In table 2.2 the possible

combination between products and evaporation plants are shown. Considering also

the weather uncertainty, there are sixteen possible scenarios in total.
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The time horizon is 25 days. The here-and-now variables are the decision taken

for the first week, meanwhile the rest of the days are the wait-and-see ones. During

the first week both, the temperature and the production forecast, are supposed

accurate enough. Then, the next seven days, only the production rates estimation

is trusted. Finally, all the values include the confidence gap. In figure 2.14 the

evolution of the bounds considered is shown.

The solution obtained is plotted in figure 2.15. Again, the problem was modeled

using the IDE GAMS and solved using CPLEX. The size of the problem is 130

536 binary variables, 7 994 real variables and 152 863 constraints. This optimizer

took around five minutes to reach a one percent gap. Only two evaporation plants

are shown instead of the whole network. The Gantt chart has a similar structure

than the previous one, where the colors represent the type of product, and the

darken is the fouling evolution. The horizontal axis represents the time. However,

the vertical axis represents the possible scenarios. Every evaporation plant has

a different Gantt chart. It can be seen that the first seven days (here-and-now

variables) all the scenarios are forced to coincide, while in the future the optimal

decisions could be adapted to the specific realization of the uncertain variables

(wait-and-see variables).

To see the robustness of the stochastic solution, the similarity index is included

in the two-stage scheduling problem, (2.49). A multi-objective problem is defined

with cost functions as the economical cost, the global production rate, and the

robustness measured with the similarity index.

In figure 2.16 the Pareto front is plotted. The vertical axis represents the cost,

the higher the worse.

To compute the Pareto front efficiently, additional constraints with bounds in

the cost functions are added to the MILP scheduling problem (Reynoso-Meza et

al., 2014). The bounds to the constraints are increased for each execution, defining

a grid where only one cost function is the objective for the optimization problem.
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Figure 2.15: Two-stage stochastic schedule example

In this case, this Pareto front is calculated forcing a minimum similarity index and

minimizing the cost, then raising it and launching again the optimization problem.

This procedure is repeated until reaching the 100% similarity.

In the solution plotted in figure 2.16 the relation between robustness and cost

can be seen. When the production rate is bounded to a low rate, the optimiza-

tion problem has more degrees of freedom. There are more differences between

scenarios, and there is a possible gain in efficiency. On the other hand, when the

production rate is fixed to a high value, there are only one possible solution to all

the scenarios.
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It can be also seen that, even though the cost is lower for low production rates,

the efficiency is higher for high production rates, see the color legend.
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Figure 2.16: Representation of the efficiency with respect to robustness

2.7 Conclusions

Resource efficiency was achieved using a gray-box model. A methodology to ob-

tain accurate models was described, and was proven reliable to obtain trustworthy

mathematical models. The optimal working policy for the steady state was ob-

tained. Then, the fouling dynamics were included and a new working policy that
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evolves over time was obtained.

The optimization for one evaporation plant has been performed and the results

implemented in the factory successfully.

The scheduling for the evaporation network is achieved. The decrease in efficiency

of the plants due to fouling effect is considered. The mandatory maintenance tasks

are also taken into account.

Last, two-stage stochastic scheduling formulation was implemented to tackle

uncertainty in the external variables. One similarity index was developed to measure

the differences between solutions to different scenarios.

Multi-objective optimization is performed to analyze the possible production

situations.



Chapter 3

Real-time scheduling of batch

processes in between

continuous processing lines

In several industrial sectors with discrete material fluxes, such as consumer goods in-

dustries or food factories, the products require an appropriate organization of works

and equipment, as the products usually have to be submitted to batch processes.

Batch processes impact significantly on intermediate storage and resources con-

sumption of the system, the feed or the outcome of these processes are performed

at specific time instants. Therefore, the synchronization with previous or following

continuous lines is an important issue to consider in scheduling and planning. In

general, planning manages the workflow of the plants, programs the jobs calendar

and assigns equipment for orders to fulfill certain production deadline; meanwhile,

scheduling manages the material movement, the start time and duration of produc-

tion procedures or maintenance ones. Both are important for productivity and are

in need of each other (Pegden, 2017).

Typical scheduling problem has to deal with four main questions: what tasks

to perform, which equipment to assign to every task, what sequence do the tasks

55
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have to follow, and when does every task have to start (Maravelias, 2012). The

formulation used to solve the scheduling problem depends on the type of problem

in the scope. For example, when tasks have to follow some kind of sequence, the

formulations relies in different types of precedence, being the most extended the

global precedence general (Méndez et al., 2006); meanwhile for general problems,

the system usually is modeled based in reserving equipment and storage for the task

(Kondili et al., 1993; Pantelides, 1994).

In this chapter, a section with an architecture of similar units in parallel is treated.

The machines can work concurrently and are similar, which penalizes obtaining the

optimal solution in a short time. The main problem is the one of real-time operation

and adaptation to the changing conditions of the process. In figure 3.1 a graphical

representation is shown, where there are several continuous producing lines feeding

intermediate products to different equivalent batch units. Products have to wait

in buffers, tanks or warehouses to be processed until a unit is available. There are

forbidden assignments feeding line - batch unit. In some cases, products can be

gathered in one unit and then be submitted to the same process.

Regarding real-time operation, we present a formulation where the scheduling

is executed periodically with a short time interval, distinguishing between what is

already in place and what is expected to arrive in order to improve the adaptation

to the current plant conditions. This requires integration with the MES system and

the results of the planning.

In addition, instead of direct task assignment to units, the schedule has to gather

products and select the appropriate type of task for every group. While making

groups of the same type might increase the resource consumption efficiency, mixing

different products would decrease the global processing time.

Since the solution is intended to be executed in an industrial site, all the develop-

ments are designed with the objective of obtaining a real-time tool at the end. This

solution will have to deal with uncertainties in the supply of raw material attached
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Figure 3.1: Scheme of the allocation problem, with several previous processing lines

feeding different intermediate products that have to be treated

to the discrete nature of the flux. Therefore, the reschedule will be as important as

the initial schedule.

The rest of the chapter is organized as follows: first the real case study where the

solutions will be implemented is described; then the objectives of the thesis in this

particular type of problems are listed; in the following section a simulation of the

plant is presented; in Section 3.4 the methodology followed to solve the problem is

described; followed by the mathematical model of the optimization problem; in the

last section, some examples of the results obtained in the case study are shown.

3.1 Industrial site

The process considered in this chapter corresponds to the sterilization section of a

canned sea food factory. It is located in the autonomous community of Galicia, a

north-west region of Spain where there is a huge industrial fabric associated with

fishing sector. In particular, the study is focused on a tuna canning plant. Final
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product consists on metallic cans filled with a piece of tuna and food filling liquid, as

olive oil, water or pickle sauce. There are several types of container, with different

shapes and volumes, and different products with respect to the cut of the tuna that

is included, v.gr., the belly is more appreciated than the loin.

Tuna is fished and deeply frozen immediately. Therefore, the initial raw product

in the site is frozen fish pieces. First, in order to fulfill the production demand

planned by the ERP, the required amount of fish is introduced in big thawing cham-

bers, with a controlled humidity and temperature. Then, the fish is boiled and

cleaned. The different cuts are extracted. The appropriate cuts are selected with

respect to the products that are being process, and the pieces are placed into the

feeders of automatic filling lines. Here, a piece of the tuna cut (pill) is introduced

in every can, and these are filled up with their respective food filling liquid. The

cans are then sealed.

The combination of fish cuts, filling liquids and type of containers leaves a big

amount of different final products that are released by the sealing lines.

The cans must be sterilized, once they are sealed, to remove all the present

microorganism that could be harmful to health and assure a long preservation time

(Alonso, Arias-Méndez, et al., 2013). This is achieved by making the cans go

under a thermal treatment in industrial autoclaves, or sterilization. The degree of

the sterilization cycle is measured by the reduction on the number of microorganism

by log cycles in minutes. This feature is called microbial lethality, or lethality to

shorten (Stumbo, 1973). The lethality (F) is measured in the coldest point, the

center of the tuna pill. The lethality evolution over time corresponds with a thermal

death time kinetic equation (Alonso, Banga, et al., 1997), as:

F0(t) =

∫ t

0

10
T (t)−Tref
zref

where T (t) is the temperature at time instant t in the point where the lethality is

being measured, and Tref and zref are reference values depending on the bacterial

lethality to measure. The sub-index 0 in lethality indicates that lethality is computed

for Clostridium Botulinum, which is the most dangerous bacteria that is usually
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found in the tuna pills, and is one of the most resistant to the thermal sterilization

processes. Thereby, the reference values will be Tref = 121.1
◦C and zref = 10

◦C.

The reference temperature (Tref ) and the thermal resistance factor (zref ) in-

dicate the temperature change needed to reduce by ninety percent (one log-cycle)

the time required to reduce the microorganism population by one log-cycle. Conse-

quently, cans must achieve certain lethality level to fulfill sanitary constraints after

been sealed, that means that they have to be heated during certain time at a high

temperature, depending these values of time and temperature on the type of product

or reference (type of filling liquid, cut of fish, ...). Henceforward, the combination

of time and temperature set point inside the autoclaves of any sterilization cycle is

called recipe. In figure 3.2b it is represented the temperature profile followed in the

center of one can pill (green), and the lethality value relative to it (red). Notice

that all numerical data have been scaled to guarantee complete confidentiality.

The temperature inside the cans cannot be measured online, as this would re-

quire invasive techniques that will ruin the product. Instead, the temperature evo-

lution is simulated using accurate mathematical models. Obtaining rigorous models

is a complex process, as it requires to describe the physical, chemical and biological

changes in the system. Nevertheless, these models will require a subsequent re-

finement using real data to reduce the uncertainty present in unknown parameters

(Vilas et al., 2018).

The figure 3.2a shows the temperature set point profile over time (blue) on

a typical sterilization thermal process, and the temperature inside the can for this

recipe (green). In this figure, it can be seen that the sterilization cycle can be divided

into three stages: the heating stage, when the temperature inside the autoclave

rises up to the recipe temperature set point; the maintenance or plateau stage, when

the temperature is maintained during certain fixed time indicated in the recipe; and

the cooling stage, that reduces the temperature as high temperatures reduce the

quality of the product. The duration of the plateau stage is computed as the time

needed to achieve certain lethality level for all the cans inside the autoclave, in this

case around 2.8 (see figure 3.2b).
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Figure 3.2: Graphs of the simulated temperature inside the can evolution over time

The autoclaves used in the site to perform the sterilization cycle consist of two

main parts, the sterilizer per se, and the plate heat exchanger, see figure 3.3. The

cans are introduced inside the autoclave using metallic carts, containing thousands

of cans each one. These carts are automatically filled at the end of the sealing
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lines. Each cart is filled by one sealing line, for this reason we can talk about type

of cart referring to the type of product or reference it carries. Obviously, the total

number of cans in every cart depends on the size of the can; therefore, the time

that the sealing lines take to fill one cart also depends on the reference that is being

produced. Then, carts arrive more or less randomly to the sterilization section and

must be joined in groups of similar characteristics waiting in a storage place until

a sterilizer is available. When this happens, the carts of a group are moved to

a sterilizer. Once the carts have been placed inside the autoclave, its doors are

closed hermetically and a control sequence is started,which begins by pumping a

certain amount of water inside the autoclave. There is a closed loop circuit that

recirculates the water and sprinkles it over the carts. This water is heated or cooled

in a plate heat exchanger using steam or water respectively. During the heating

phase, the steam consumption is almost continuous; however, during the plateau

phase, the consumption is minor, as it only has to compensate the heat losses. At

last, during the cooling phase, the steam circuit is opened, and cooling water is

used instead. During the whole process there is an independent pressure control to

prevent damages in the containers lids. Vilas Fernández and Alonso (2018) provide

a more detailed explanation of the sterilization cycle.

Steam

Cooling
water

Figure 3.3: Autoclave deployment scheme
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When the carts are released from the sealing lines, they may be introduced in

an autoclave or wait in a kind of input buffer in front of one autoclave until one

of them is available. However, the time one cart can wait in the buffer before it

starts being sterilized is limited due to health reasons, which constitute one of the

hard constraints of the problem. In addition, the storage space is limited; if the

buffer is full, it will force to stop the previous sealing lines. Consequently, a good

assignment of each cart to the right autoclave is key to maintain a high productivity

in the sterilization section avoiding bottlenecks and providing safe operation.

Regarding grouping of the carts, it is important to mention that some of the

different type of carts share a similar recipe, or even the same as some references

only differ on labeling or packing. Those that have a cycle time that do not differ

more than a few minutes, for the same temperature set point, can be gathered

together and undergo the same sterilization cycle. However, this must be combined

with the fact that due to space limitations, there are no feasible paths from some

sealing line to some autoclaves, this constraint does not depend on the type of the

carts.

3.2 Objectives

In this chapter, this thesis will provide solutions to the different scheduling problems

that arise in the previously explained sterilization section, formulating an optimiza-

tion problem that computes current and future decisions about the grouping and

assignment of carts to the autoclaves over a prediction horizon, with the purpose

of using it in real-time in near closed-loop operation mode.

The steps followed in the development of such a systems are the following ones:

First, we will implement one reliable simulation of the process with the aim

of better understand the behavior of the system. Then, with the knowledge ac-

quired with the simulation, we will compute the optimal scheduling to increase the

productivity of the sterilization section.

One key point in the formulation of the scheduling problem, is the choice of the

base time. We decided to select a continuous one in order to avoid the need of using
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a small step required by a realistic implementation, which implies large number of

variables, and correspondingly computational times, making more difficult its real-

time implementation. Consequently, we followed a precedence approach for the

associated assignment problem.

� To obtain a reliable model to simulate the behavior of the system

� To calculate an optimal scheduling to increase the productivity of the steril-

ization section

3.3 Operation simulation

The simulations of production sections constitute a valuable tool to increase the

knowledge of the process within scope. They are useful to visualize different sce-

narios, from the default working routine to the undesirable situations. If the model

developed is accurate enough, the simulation can be used to test new policies.

The ERP systems themselves model an evolution of the works to be done and

the tracking of material and resources. However these systems lack on tackling

devices availability and uncertainties, as them just divide the expected outcome by

a theoretical production rate associated with each section of the plants. These high

level programs are used to plan the overall production course, and they don’t take

into account the low level arrangement or scheduling.

On the other hand, even though the mathematical model of the system can

be used to simulate the behavior of the system, the interface to show the solution

is not simple, and does not give a global vision. This disadvantage makes the

operators and plant managers to not truly trust the decision making blindly on the

optimization tools.

Here arise the scheduling simulators, where the system is truly depicted. They do

not only render the section by representing every device, resource and even human

operator, but also implement the interactions between them in real time, i.e., they

will show how an operator has to push a cart through an indicated path, or how

another will have to be present in a equipment in order to fulfill the associated jobs.



64 Real-time scheduling of batch processes

These high-level simulators let the operators face the site as it will be in real

world beforehand, allowing them to be prepared as much to the usual work that will

occur on a daily basis as to unexpected fails that would block some equipment and

have to be avoided somehow to achieve the production plan. They also provide a

tool to the modeler to understand the most important constraints in the system that

must be included in the optimization problem, and those that may be disregarded.

In our case study the chosen software is SIMIO (Smith et al., 2018). Among

the different tools that SIMIO provides, there are probabilistic break downs of the

devices, and uncertainty on the frequency of incoming material flows, making the

likeness of the simulator to the real plant very high and, henceforth, the experience

that the operators would get by interacting with the software.

It also offers, once a simulation has been run, tables of the results obtained.

A huge amount of information can be recovered, as the sum of productive hours

of every equipment or the probability of problems with the supply from previous

lines or to following ones. Having a controlled model to simulate the system will

allow to fairly compare between the usual methodology to handle the sterilization

section and the implementation of the optimized results, that would be impossible

in practice as the uncertainties in real world are too many to monitor.

The sterilization section is fully modeled inside the simulation environment SIMIO,

see figure 3.5a. The model is composed by four main different parts:

� the carts and the operators. The carts are the units need to move the cans

between the different processing units. The carts need an operator to push

them between the units. The operators can move freely. Empty carts are

picked from an empty carts buffer in the middle of the initial section. Every

empty cart can be filled with any type of can

� the production section. There are eight filling units, with their respective

supply lines, see figure 3.5a. Every supply line feed their respective filling unit

with only one type of can for a certain period of time, but this can change

according to the overall production plan. The frequency differs between lines.
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Figure 3.4: Screenshots of the SIMIO interface showing the whole sterilization

section model

There are four types of cans being produced. The filling lines need an empty

cart to put the cans in. Every filling unit has an stochastic duration set for

every filling process, which differs depending on the type of can. Once a cart

is fill with one type of can, it changes it color to ease the visualization. One

empty cart is gray, meanwhile one fill cart can be: pink, yellow, blue or red

� the sterilization section. Twelve equivalent autoclaves have been included

in the model, (figure 3.5b), even though the real factory operates with six-

teen. Once the carts are filled, the operators push them to one of the closest

sterilizers. The autoclaves wait until they reach certain number of carts intro-

duced, then the sterilization cycle is executed. The sterilization cycle duration

depends on the type of cans introduced. When it has finished the sterilizer

waits until the operators remove the carts

� the packaging section. There are one packaging line for every reference (fig-

ure 3.5c). The operators push the carts after the sterilization process to the

packaging lines, where the carts are emptied. Then, the carts have to be
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pushed again to a conveyor that takes them to the initial empty carts buffer

to be used again

All the working units change their color to visualize their status. When one unit

is working it is filled green, when it is idle it is filled gray, and when it is blocked it

is filled red.

In addition to final statistics after one simulation, SIMIO also provides tools to

follow the evolution of different units in real time. In the figure 3.5d the evolution

of some sterilizers occupation is plotted in pie graphs.

(a) Sealing units section in detail. In

red sealing units that are blocked and

waiting for its already filled cart to be

removed

(b) Parallel autoclaves. Some are

waiting to be filled with carts (gray)

and some are performing an steriliza-

tion cycle (green)

(c) Two packaging units, one is cur-

rently emptying some carts (green)

and the other one is idle (gray).

Some empty carts (gray) are waiting

to be removed by one operator

(d) Example of the graphs tool in-

cluded in the software that let the

user visualize the degree of use

of different units: working (green),

starving (yellow) or blocked (red)

Figure 3.5: Close-up screenshots of the SIMIO interface showing different sections

of the simulation

As cons of the simulator, the communication with external tools has to follow

a very restrictive format. However, it presents an application program interface,
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more commonly known as API. These routines and protocols allow the simulation

program to incorporate existing complex logic. It can be used for importing or

exporting data, and modify the behavior of objects in the simulation.

3.4 Methodology

First, the scheduling problem present in the sterilization section had to be classified

among the different types of approaches and formulations. The problem presents a

multiply parallel units architecture, with different shared resources.

Each cart that arrives to the system can be modeled as an independent task,

whose deadline is the maximum waiting time. Every task has an associated recipe.

The number of carts entails the number of tasks. Every autoclave is supposed as a

multipurpose unit with capacity for several tasks.

The scheduling problem arises as a sequencing problem among the tasks. The

precedence methodology is more suitable for this kind of models than the networks

formulations (Harjunkoski et al., 2014).

The carts arrive every few minutes, however the sterilization cycles could take

several hours. The differences between the time scales suggests a continuous slots

formulation rather than a discrete-time approach. The tasks relative to the carts

are gathered in slots or group of carts. How to form this groups is one of the

key decisions of the problem. The slots are assigned to the multipurpose units or

sterilizers. The maximum size of the slot depends on the capacity of the autoclaves.

Every slot has an initial time instant and a duration. Both are the same for all the

task gathered inside the slot.

The slots are ordered to fulfill all the tasks deadlines. Two slots cannot be

performed at the same time in the same unit. The number of tasks affects the

solution time. In this thesis a new precedence methodology is applied, where the

slots have a predefined order and the optimizer assigns the tasks to the ordered

slots. This formulation improves the sequence-position proposed by Wagner (1959),

removing the binary sequence variable. Therefore, by definition, this formulation will
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have less constraints than it would using a precedence formulation, while keeping a

reduce number of variables.

The carts arrive from different sealing lines. Due to infrastructure limitations,

some paths from sealing lines to autoclaves are forbidden. Even though the units are

multipurpose, some carts cannot be assigned to some units to prevent the forbidden

paths. The constraint does not depend on the type of task.

The final problem is intended to be executed in real-time. The time horizon

one of the parameters that must be selected in the formulation of the problem.

The choice was to use a short-time but with frequent re-scheduling adapted to the

conditions of the process, operating in near closed-loop.

A similar approach has been proposed in Gupta and Maravelias (2019). The

optimizer will be executed iteratively with a high frequency.

The set of tasks considered in every iteration comprises the carts that have

already arrived to the sterilization section but have not been introduced in one

autoclave, and the forecast of carts arrival. The inherent uncertainty in the arrival

of carts makes imprudent to firmly determine future task.

The optimizer does not force the solution to set all the carts to be submitted to

an sterilization process. The system can react in the future and adapt the situation

to new predictions. Nevertheless, the solution has to assure that the tasks are

performed before their due dates. The optimizer considers the carts up to a robust

horizon, which value depends on the frequency of the optimization executions.

3.5 Mathematical Model

The system is modeled using mathematical programming. In order to speed up

the computations, it is important to use linear formulation, so that the resulting

problem is a MILP problem. First, all the units that belong to the sterilization

section are represented as abstract sets. The gathering problem have to group

the carts considering their recipes, and the sterilization cycles of the groups are

scheduled to reduce the so-called makespan of the section. The makespan is the
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time elapsed since the execution of the scheduling to the end of the last slot. It

includes the possibility of combining different recipes that don’t differ more than

an allowed time threshold, and the physical constraints that ban the connections

between every sealing line and every autoclave

First, the following sets are defined:

� I, represents the carts that have to be sterilized. The set includes the carts

that have already arrived, and the forecast of carts expected to leave the

sealing lines

� J , represents the set of groups of carts that will be gathered in the same

autoclave, this means that it also corresponds with the sterilization cycles or

slots. From now on, these terms will be used indistinctly

� K, represents the set of autoclaves or sterilizers

� L, represents the sealing lines that release the carts filled with cans

– In addition, we use Lk∈K ⊆ L, to represent the subset of sealing lines

whose carts can be loaded inside the autoclave k, i.e., the paths to the

autoclaves available for every sealing line

� H, represents the set of commercial products or references, each one has a

determined sterilization cycle temperature-time profile

As known parameters to the problem we have: the expected arrival time of every

cart (or the actual one if the cart has already been released from the sealing lines);

the type of commercial product loaded in a cart; the production line that has filled

each cart; the required sterilization cycle for every reference, and the maximum

number of references that can be gathered.

� oi∈I , is a real value that indicates the arriving instant of the carts; it is modeled

as the time distance in minutes between the current instant and the arrival of

cart i . It will be negative if the cart has already arrived, or positive if it is an

estimation.
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� Ci∈I,h∈H ∈ {0, 1}, is a binary value that defines the relation between the type

of can or reference and every cart. If it values one then the cart i is filled with

cans of reference h

� Qi∈I,l∈L ∈ {0, 1}, is a binary value that relates the sealing lines with the carts

to indicate which line releases each cart. If its value is equal to one, then

production line l has filled cart i

� rd h∈H and rth∈H, are real values that indicates the maintenance phase duration

and the maintenance temperature set point required for each reference.

� ξh∈H and χh∈H, are real values that set the duration of the heating and cooling

phases required for every reference respectively

� ζ, is an integer value that constraints the maximum number of different ref-

erences that are allowed in one sterilization cycle

� Γk∈K, is an integer value that sets the maximum number of carts that can fit

in the autoclave k

� γk∈K, is an integer value that determines the minimum number of carts allowed

to be in one sterilization cycle in the autoclave k, this parameter helps the

optimizer to discard sub optimal solutions

� θ, is a real value that indicates the maximum time that a cart might wait

since it is released by the sealing lines until its sterilization cycle starts

� η, is a real value that sets the robust horizon of the solution. It will be

explained in more details later

� δ, is the maximum difference in minutes between the maintenance stage du-

ration of two carts included in the same sterilization cycle

� τk∈K, is a real value that indicates when one autoclave k, that is busy, will be

released. Will be explained in detail later.

Carts are released by the sealing lines with different frequencies. Each producing

line will have associated one reference, nevertheless more than one line can share
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the same reference. Each reference has its own duration and temperature set

point. However, different references might share the same recipe and differ on the

container, or final package. Therefore, the first stage on the optimization of the

sterilization section, is to group the carts that arrive in batches of up to Γ carts

that can be submitted to the same sterilization cycle, and to choose the appropriate

recipe.

To model this issue in mathematical programming language the following binary

and real variables are defined:

� Vj∈J ,h∈H, is a binary variable that indicates if group of carts j includes at least

one cart of type h

� Xi∈I,j∈J , is a binary variable that determines if cart i belongs to group of

carts j

� Yj∈J ,k∈K, is a binary variable which equals one if group of carts j is introduced

in autoclave k

� Zi∈I,k∈K, is a binary variable that indicates the relation between carts and

autoclaves. This variable is the conjunction of the previous ones, i.e., Zi ,k ≡

Xi ,j ∧ Yj,k ∀i ∈ I,∀j ∈ J ,∀k ∈ K, meaning that cart i is introduced in

autoclave k

� Uj∈J , is a binary variable that determines if a group of carts is defined, which

also means if one sterilization cycle is executed or not

� sj∈J , is a real variable that specifies the start instant of the sterilization cycle

of group of carts j , it is stored as the distance between the current time and

the start instant

� pd j∈J , is a real variable that sums up the whole sterilization cycle duration

required for the group of carts j , all the stages included

� pt j∈J , is a real variable that indicates the temperature set point during the

maintenance stage of the group of carts j
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together with the following inequalities that relate the variables between them:

∑

j∈J

Xi ,j ≤ 1 ∀i ∈ I (3.1)

∑

i∈I

Xi ,j ≤ Uj · Γ ∀j ∈ J (3.2)

∑

i∈I

Xi ,j ≥ Uj · γ ∀j ∈ J (3.3)

∑

k∈K

Yj,k = 1 ∀j ∈ J (3.4)

Inequality 3.1 establishes that each cart must be processed only once. Note

that the solution approaches the problem as a closed-loop scheduling, which means

that it will be executed iteratively as time passes by; hence, the sterilization of

carts is not forced considering the upcoming executions or runs of the optimizer,

analogous to the concept of moving horizon in advanced control. Inequalities 3.2

& 3.3 define the amount of carts introduced in the sterilization cycles, being the

upper bound (Γ) the autoclaves capacity, and the lower bound (γ >= 1) is an

optional parameter selected by the operators to prevent quasi-empty procedures.

Depending on the objective function chosen such parameter may or may not be

required. Equation 3.4 ensures that each sterilization cycle is assigned only to one

autoclave.

∑

h∈H

Vj,h ≤ ζ ∀j ∈ J (3.5)

Inequality 3.5 sets the maximum number of references per sterilization cycle that

is admissible (ζ). This parameter is chosen by the operators to ease the unload of

the autoclaves.

Vj,h ≥ Ci ,h ·Xi ,j ∀i ∈ I,∀j ∈ J ,∀h ∈ H (3.6)

Vj,h ≤
∑

i∈I

(Ci .h · Xi ,j) ∀j ∈ J ,∀h ∈ H (3.7)
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The belonging of references to group of carts is constrained by a convex hull(Balas, 2018)

in: (3.6), where the variable Vj,h is set to one if one reference is included in one

group of carts; and (3.7), where the variable Vj,h is set to zero if one reference is

not included in the group.

And the logical conjunction between the variables Xi ,j and Yj,k (i.e. the relation

cart to autoclave) is included in the following inequalities:

Zi ,k ≥ Xi ,j + Yj,k − 1 ∀i ∈ I,∀j ∈ J ,∀k ∈ K (3.8)
∑

k∈K

Zi ,k ≤
∑

j∈J

Xi ,j ∀i ∈ I (3.9)

∑

i∈I

Zi ,k ≤ Γ ·
∑

j∈J

Yj,k ∀k ∈ K (3.10)

where the variable Zi ,k is forced to zero for every cart that is not gathered in any

group (inequality 3.9) and for every autoclave that is not related with any group of

carts (inequality 3.10); and is forced to one when the group of carts which the cart

belongs to, is introduced in the autoclave, Xi ,j = Yj,k = 1 (inequality 3.8).

Once the relation between carts and autoclaves is modeled, as each cart has its

respective sealing line that has released it, the allowed path sealing lines - autoclaves

can be included in the MILP problem.

∑

l∈Lk

Qi ,l ≥ Zi ,k ∀i ∈ I,∀k ∈ K (3.11)

where the variable Zi ,k is forced to zero if the sealing line that released the cart

does not belong to the subset of sealing lines that can feed the autoclave, Lk .

With the previous inequalities included in the model, the carts are gathered in

groups with an acceptable size to fit in the autoclaves, and considering the allowed

paths and the operator working choices (maximum different references in the same

group and minimum size). However, no time constraint has been defined yet.

sj ≥ oi −M1 · (1−Xi ,j) ∀i ∈ I,∀j ∈ J (3.12)

sj ≤ oi + θ +M1 · (1−Xi ,j) ∀i ∈ I,∀j ∈ J (3.13)
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The starting time of every sterilization cycle is bounded by the carts included in

its group j . It has to start before the maximum waiting-time gaps (θ) elapses for

every cart included in the group, (3.13); but after all those carts have arrived to

the system, (3.12).

In these inequalities one new parameter is introduced, M1. This parameter is

needed to formulate the constraints using big M formulation (Winston and Gold-

berg, 2004), which makes the constraints idle when the term that multiply the

parameter is not canceled and vice versa. The parameter has to have a value high

enough to make the constraint idle, but if it meets the same order of magnitude

than the rest of the values of the inequality, it can improve the computational time.

Therefore, the different sets of constraints formulated using the big M approach

will have their respective parameter, (Stein et al., 2004).

Note that the above starting time inequalities only consider the carts selected to

be sterilized, not those left waiting for the next run: i ∈ I :
∑

j∈J Xi ,j = 0. So

far, no constraint has forced the carts to be included in any sterilization cycle. To

prevent carts that have to start their sterilization cycles before the next run of the

problem from being left out of the autoclaves, the following constraint is added:

oi ≥ η −M1 ·
∑

j∈J

Xi ,j∀i ∈ I (3.14)

meaning that all carts that have arrived before the robust horizon η will be necessarily

gathered in a group. The robustness horizon parameter (η) is defined relatively to

the current time. It will maintain its value, but as the current time evolves, so the

horizon will.As a real-time optimization tool, the optimizer should be executed at

periods much lower than η to avoid infeasibilities.

On the other hand, every reference h ∈ H has a related sterilization cycle with

an established recipe. As long as the temperature set point for the reference is

respected (rt h) the procedures can be extended up to a maximum fixed span δ

without a significant loss in the product quality properties, but never reduced. This

feature increases the degrees of freedom in the MILP problem, and reinforces the
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need for the parameter ζ, that imposes a maximum number of different references

in every group of carts. Therefore, the duration of every sterilization cycle is not

fixed, but bounded according to the following inequalities:

pd j ≥ ξh + rd h + χh −M2 · (1− Vj,h) ∀j ∈ J ,∀k ∈ K (3.15)

pd j ≤ ξh + rd h + χh + δ +M2 · (1− Vj,h) ∀j ∈ J ,∀k ∈ K (3.16)

note from (3.16) that the allowed variation is only included in a positive sense.

Then, the temperature set point is set by:

pt j ≥ rt h −M3 · (1− V j, h) ∀j ∈ J ,∀h ∈ H (3.17)

pt j ≤ rt h +M3 · (1− V j, h) ∀j ∈ J ,∀h ∈ H (3.18)

where it is not only fixed, but it must be exactly the same for all the references

included in the same sterilization cycle.

3.5.1 Ordering the slots

Once the carts have been gathered into groups considering the sealing lines, the

references recipes, the arrival time and the maximum waiting time, the groups have

to be ordered over the time horizon. In the literature of scheduling problems, it is

usually declared additional binary variables that determine the precedence between

slots (Méndez et al., 2006). With this approach becomes tedious to synchronize the

whole set of slots. To overcome this, a pre-ordered slots strategy has been applied,

or predefined precedence, explained in Palaćın, Carlos G. et al. (2019), where the

slots are neither assigned previously to any equipment nor to any sterilization recipe.

Henceforth, as we can assure that every sterilization cycle will only be executed once,

these procedures will occur in certain a priori unknown order.

First, the sterilization cycles are defined as an ordered set. These sterilization

cycles coincide with the group of carts set J , as only one group of carts is submitted

to one sterilization cycle in one autoclave at a time. This order is extended to the

slots starting time, and then used to organize the cycles that have been assigned

to the same unit.
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sj ≤ sj ′ ∀j, j ′ ∈ J : j ≺ j ′ (3.19)

sj + pd j ≤ sj ′ +M4 · (2− (Yj,k + Yj ′,k)) ∀j, j ′ ∈ J : j ≺ j ′,∀k ∈ K (3.20)

Inequality 3.19 extends the set order to the starting time. In (3.20) it is con-

strained that, if two group of carts are going to be introduced in the same autoclave,

then the one that succeed cannot start before the previous one has finished its ster-

ilization cycle, i.e., cannot start before pd j has passed since the starting instant

sj .

In addition, the first sterilization cycle in every autoclave cannot start if these are

busy, v.gr. when an already started sterilization cycle has not finished yet. This is

modeled in the following constraint:

sj ≥ τk · Yj,k ∀j ∈ J ,∀k ∈ K (3.21)

where the parameter τk is the time in minutes that will take for autoclave k to

be ready again. In this way, inequality 3.21 constraints all the sterilization cycles

assigned to the autoclave k to start after τk .

With the previous inequalities, the gathering and scheduling sub problem is com-

pletely modeled, and could be solved by computing the MILP optimization problem:

min
Vj,h ,Xi ,j ,Yj,k ,Zi ,k ,Uj ,sj ,pd j ,pt j

MK

s.t. (3.1)− (3.21)

MK ≥ sj + pd j ∀j ∈ J

(3.22)

where the objective function is the makespan.
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3.6 Examples of execution instances

In this section some results of the implementation of the previous formulation are

shown.

The model guarantees that the cans will be sterilized with an adequate thermal

treatment within a time window shorter than the maximum waiting time regardless

of the cost function. Usually this cost function is related to economical aims,

however this does not have to be the case for all scenarios.

If the workload of the sterilization section is huge, a sensible objective function

to be maximized would include the production, v.gr. max
∑

i∈I,j∈J Xi ,j will increase

the number of carts per sterilization cycle. In these cases, it is recommended to

include one constraint for the maximum ending time, i.e., MK ≤ 2 · η.

In time periods when the section has enough available working capacity, energy

consumption could become the cost function. The energy consumed by every

sterilization cycle depends on the maintenance stage temperature set point, see

figure 4.3. As a convex non-linear function, this curve could be approximated by

linear functions, in a similar way as the feasible region was approximated:

Enh,j ≥ Cx,h · pt j +Dx,h −M6 · (1− Vj,h) ∀h ∈ H,∀j ∈ J ,∀x ∈ {1 · · ·κ′}

Enh,j ≥ 0 ∀h ∈ H,∀j ∈ J

where Enh,j is the energy consumed by the sterilization cycle j if its thermal treat-

ment follows the reference h, the parameters Cx,h andDx,h would represent the slope

and the initial value of the straight lines respectively for the reference h, and κ′ is

the number of straight lines used to approximate the relation energy-temperature.

Then, the cost function would be determined as the aggregation of every ster-

ilization cycle, i.e. min
∑

h∈H,j∈J Enh,j .

3.6.1 Implementation details

Since the model has been formulated as a mathematical programming problem, it

will be coded in a language based on OPL (Optimization Programming Language),

(Hentenryck et al., 1999). This type of languages provides tools to ease the in-
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troduction of sets, and constraints applied to the elements of those sets. They

automatically repeat the desired constraints over specific subsets, which reduces

the number of bugs and speed up the coding phase.

In the beginning, a specific mathematical programming software was used GAMS

(Bisschop and Meeraus, 1982). This software includes interfaces to the most com-

mon solvers, and incorporates an editor to write the code inside the program HMI

(human-machine interface). It is, however, a closed-source tool, and the commu-

nication to load data to or save data from the application is difficult and requires

an intermediate step using a spreadsheet program.

Furthermore, it is possible to use a general purpose high level programming lan-

guage, and apply frameworks or libraries that increase their potential to include

an OPL translator. Such is the case of the library JuMP (Dunning et al., 2017),

that let the programmer to code using mathematical programming formulations

over the language julia, (Bezanson, Karpinski, et al., 2012; Bezanson, Edelman,

et al., 2015). This approach increases the communication capacity of the MILP

optimization, and allows to work with the solution data once the MILP solver has

been executed.

As solvers to the MILP optimization problem, two commercial solvers have been

tested: CPLEX and Gurobi (Gurobi Optimizer Reference Manual 2020). Both have

a similar performance.

3.6.2 Gathering the carts

Next, we will present results of the scheduling of the operation of the sterilization

section in different contexts, using both, simulated and plant data. In the later case,

due to confidentially reasons, the data and results are scaled. In the first case study

the consumption of shared resources is not considered. The carts are gathered in

groups with a maximum difference of time in the duration of the processes of 15

minutes (δ). The maximum waiting time for all the carts is two hours (θ = 120).
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The sealing lines are not included in this model, therefore all the carts can be

assigned to every autoclave.

The solutions obtained to this problem are similar to the ones provided by the

ERP system, as it only considers the ideal working capacity of the system.

(a) Scheduling of 250 carts in twenty sterilization cycles without mixing products

(b) Scheduling of 250 carts in twenty sterilization cycles letting the optimizer to

gather different products

Figure 3.6: Gantt charts of scheduling solution obtained using real plant data

In figure 3.6 two solutions to the scheduling problem are plotted. The horizontal

axis represents the time evolution. The origin is the current time. The vertical axis

represents the autoclaves. Two sterilization cycles that coincide in the vertical

dimension will be executed in the same autoclave. The carts assigned to every slot

are specified inside these.

The sterilization section considered has ten parallel autoclaves. The maximum

number of carts per sterilization cycle is set to nine (Γ = 9), and the minimum is set

to one, (γ = 1). The arrival of 250 carts were considered. The system has to order

twenty sterilization cycles (|J| = 20). There are four different recipes (|H| = 4).



80 Real-time scheduling of batch processes

And the robust horizon is two hours.

The precedence methodology used is the global precedence, which needs a binary

variable that defines if two slots precedes each other. To decrease the computing

cost, the slots were forced to be executed (Uj = 1 ∀j ∈ J ). However, using the

global precedence methodology, the time spent solving the optimization problem

was around ten minutes.

In figure 3.6a all the carts submitted to the same sterilization cycle have to share

the same recipe, δ = 0. This makes that some sterilization cycles are executed half

empty, as slot 1, since there is no carts with the same recipe expected before the

maximum waiting time has passed. In figure 3.6b different recipes can be gathered

together, δ ≫ 0. This solution fills the sterilization cycles to finish all the process

sooner, and distributes better the slots among the autoclaves.

3.7 Conclusions

The study of scheduling of a sterilization section in a canning plant has been

achieved successfully. Tools for the implementation in the process have been devel-

oped and tested.

One simulation was deployed to improve the knowledge of the section, and can

be used in the plant as a test bed or to train new operators.

The section presented different scheduling problems that were solved, first inde-

pendently and latter globally. The gathering of different tasks with similar processes

to reduce the global completion time was performed, including constraints in the

maximum number of different references, and the similarity between the tasks sub-

mitted to the same process.

Then, the sterilization tasks were ordered with a new precedence formulation than

reduces the solving time. This formulation improves the commonly used precedence

formulations reducing the number of constraints.
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The solutions obtained can be used in real-time, and therefore, are suitable to

be implemented in the MES system of the plant.



Chapter 4

Scheduling of batch processes

with shared resources

In this chapter, the same sterilization section is treated. The distribution of shared

resources is considered, which may influence the duration of the batch cycles. In

figure 4.1 the same scheme than in the previous section is shown, with the inclusion

of the shared resources (see figure 3.1). Here, the batch units share some resources,

what may affect concurrent processes. Every product has its own consumption

profile for every resource.

All units share some resources and supply lines. When some resources are shared

among parallel equipment, scheduling has to consider the concurrent consumption,

v.gr., if the demand surpasses the supply, the system might block, or it may happen

that, in some cases the behavior of the equipment depends on the amount of

resource available, in particular the duration of the cycle time, and is this feature

what has to be included in the scheduling.

Imposing constraints over the total consumption of shared resources is not dif-

ficult when a discrete time formulation of the scheduling problem is chosen. But

when using a continuous time base, this is much more difficult. Here we present an

82
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Figure 4.1: Scheme of the allocation problem, several previous processing lines feed

different intermediate products to parallel batch units. The products have to be

submitted to batch processes each with its own resources consumption profiles

approach that is able to deal efficiently with this difficult problem.

At the same time, we present a novel formulation for the situation in which the

use of the shared resources influence the duration of the cycle time of the batch

processes involved. In this chapter both approaches are studied and solutions are

implemented to use in a real case study.

Since the solution is intended to be executed in an industrial site, all the develop-

ments are designed with the objective of obtaining a real-time tool at the end. This

solution will have to deal with uncertainties in the supply of raw material attached

to the discrete nature of the flux. Therefore, the reschedule will be as important as

the initial schedule.

The rest of the chapter is organized as follows: first the description of the case

study is extended; then the objectives in this particular type of problems are listed;
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followed by the mathematical model of the optimization problem; in the last section,

some examples of the results obtained in the case study are shown.

4.1 Case study

The process considered in this chapter corresponds to the same sterilization section.

All the autoclave’s plate heat exchangers of the different autoclaves are con-

nected to the same steam supply ring. If the consumption is too high, it may

surpass the capacity of the sources. When this is the case the supply steam pres-

sure drops, the heating phase cannot follow the optimal temperature profile and its

slope decreases. This leads to an increase in this stage duration and, as the plateau

phase time length is fixed, results in an overall extension on the duration of the

sterilization. In figure 4.2 a comparison example is pictured: in continuous line, the

normal temperature profile can be seen for a specific reference; and, in a dashed

line, the temperature evolution over time if the heating resource (steam) lacks in

the system. Hence, a right synchronization of the sterilization cycles to prevent

exceeding a consumption bound is mandatory, or one adaptation of the scheduling

to the cycle time changes created by overlapping.

Notice that the sterilization cycle has to guarantee that certain bacterial lethality

has been achieved. In the current situation, the recipes have a predefined tem-

perature set point for the plateau stage, and its duration is computed such that

fulfills the lethality constraint. However, this temperature set point might be a

decision variable, which would modify the duration of the sterilization cycle. In the

figure 4.3 the relation temperature-duration is pictured (blue line) for one lethality

bound value, it is also represented the energy consumption during the sterilization

cycle (red line) with respect to the working point chosen.

This means that by proper integration of the control and scheduling levels, and

taking advantage of this extra degrees of freedom that may be available, better

overall operation may be achieved.
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Figure 4.2: Comparison of temperature profiles over time with (continuous line) or

without (dashed line) steam availability
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Figure 4.3: Plateau phase duration (blue) versus temperature set point for a de-

termined lethality value and the energy consumption (red) respective to the steam

required to follow the same temperature-time profile
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4.2 Objectives

The shared resource consumption during the sterilization processes is an open issue

in the scheduling field applied to industrial plants. Continuous consumption or pro-

duction problems can be approached in several ways. In this thesis two approaches

will be included: one approach tries to maintain the total consumption of shared

resources at every time instant below a threshold, in order to avoid disturbances

in the planned sterilizers recipe in real-time; and the other one schedule the tasks

optimally considering the effects of tasks overlapping over the cycle time.

Finally, as the main matter in the thesis, the control layer actions will be integrated

in the scheduling. The control of the sterilizers presents, on its own, one multi-

objective problem between time, energy consumption and quality. This problem has

to be included in the global schedule to obtain the real optimum of the section.

This will increase the degrees of freedom provided to management.

In summary:

� To include shared resource consumption constraints

– Approaching the system with certain maximum resource availability

– Approaching the problem constraining the performance of the units due

to a lack in the resource

� To include the control of the batch units in the global scheduling model

� To test the system with real plant data and prepare the integration in the

MES system of the factory

4.3 Methodology

With the scheduling of task already implemented, in this chapter we focus in the

share resources consumption. A concurrent consumption alters the duration of the

slots. The optimization problem can forbid to surpass certain consumption bound.

To include continuous profiles in continuous-time formulation is not trivial. The
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resource level has to be considered all over the time horizon, and not only in the

events needed in the precedence formulation. Adding more events than necessary

can affect dramatically the computational cost. In this thesis a new approach is

implemented, which combines different time scales.

This approach is useful to certain systems where this resource bound is enough

to assure a high productivity and/or can be managed at will by the operators or

plant managements.

Nonetheless, in the case study, the system does not provide enough steam to

feed more than one sterilizer during the heating stage concurrently without alter-

ations in the duration. To schedule the system without affecting the productivity,

the alterations have to be included in the model.

In this thesis a new approach is developed, where the duration dependence on

concurrent slots is included in the scheduling. This new formulation increases the

range of problems manageable by mathematical programming scheduling.

Scheduling problems usually leave the control of the batch tasks aside. The

batch control sets the duration of the tasks and other important features as energy

consumption. To obtain a closer solution to the real optimum operation point, they

should be included in the optimization model.

The duration of the tasks is not fixed anymore. The duration takes a value

depending on the parameters chosen by the optimizer. The duration value becomes

a feasible region constrained by the linearized relation.

The language chosen to implement the optimization problem depends on the

future use of it. To perform theoretical studies a closed environment could be useful;

however, to include the optimizer in a bigger system one multipurpose programming

language should be preferred.

4.4 Mathematical Model

Every sterilization cycle must follow its own temperature-time profile, which implies

a time varying steam consumption. As steam is a limited shared resource, if many
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sterilizers coincide in their operation in time, the feeding pipes could suffer supply

shortage. This implies alterations in the temperature-time profiles, which could

affect the effectiveness of the thermal treatment.

All the autoclaves are connected to the same steam ring supply. The main steam

consumption takes place during the heating stage, when the unit and the load

itself must be heated from room temperature to the maintenance temperature.

When one autoclave starts a sterilization cycle, it opens the steam supply valve

that generates a drop in the pressure in the ring. If there are several pressure

drops at the same time, the volumetric flow of steam to the plate exchangers is

trimmed in excess. Hence, the slope of the temperature rising inside the autoclave

is reduced, see figure 4.2, and the time spent heating the autoclave is increased. In

order to assure fulfilling the lethality threshold (i.e., achieving a lethality F0 higher

than certain value), the operators maintain unchanged the duration of the plateau

stage. This situation will alter the previously computed schedule, requiring a quick

reschedule, which sometimes could become unfeasible.

As mentioned before, to tackle these alterations due to shared resources, there

are two main approaches: one can constraint the resource consumption in the sec-

tion to the maximum available supply, when this is the case, the temperature-time

profiles in the autoclaves will remain unchanged; on the other hand, the alterations

in the duration of the processes can be included in the model, in this case the MILP

problem will consider the real duration of the sterilization cycles when concurrent

heating phases occur.

In the next subsections both approaches are explained in details.

4.4.1 Consumption bound

New constraints will be added to the previously modeled scheduling problem, im-

posing that the overall consumption cannot surpass a maximum bound determined

by the supply source. The scheduling MILP model must maintain a continuous

constraint on the total shared resource demand. Instead of discretizing the time,
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which would reduce the degrees of freedom by decreasing the maneuver range, a

continuous-time formulation will obtain a closer solution to the optimum. However,

the computation of continuous flow of products becomes difficult as it is only known

in the predefined time events, not providing sensible estimations over time of the

shared resource.

In this approach, an alternative method that simultaneously considers several time

bases is implemented (César de Prada et al., 2019): one global regular discrete-time

base is appended, which will help keeping track of the whole consumption; mean-

while, one non-regular discrete-time base will be assigned to every sterilization cycle,

to approximate the consumption profile per slot; finally, the scheduling of steriliza-

tion cycles maintains its continuous-time formulation, to avoid losing degrees of

freedom.

Thereby, in addition to the whole model explained in Section 3.5, two new sets

are defined, as well as a new subset:

� M = {0, 1, 2, . . . µ}, represents the global regular discrete-time base inter-

vals. The number of elements will define the accuracy when computing the

aggregate consumption, as it will be computed at the start of every interval

m ∈ M. The purpose is to use them as time instants where the availability

of the total shared resources can be checked.

� N = {−ν, 0, 1, 2, . . . ν − 1, ν}, represents the particular non-regular discrete-

time base intervals. The size of the set will affect the precision of the approx-

imations to the sterilization cycle consumption. The purpose is to facilitate

the description over time of the shared resource consumption of every steril-

ization cycle to be executed

� Hh ⊂ {H, ∅}, represents the subset of references that have a thermal treat-

ment more restrictive than h, but are yet allowable for the cans of type h

because these cans would not suffer a high quality loss

Followed by the variables:
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� tMm∈M, is a real variable, represents the starting instant of every interval m.

It determines the time distance between the real current time and the start

instant of the interval. Hence, both time scales (the global continuous and

this one discrete) coincide in their origin with the current time, i.e., tM0 = 0.

� tN n∈N , is a real variable, whose values correspond to the time distance be-

tween the starting time of the interval n and the starting time of its own

interval 0, v.gr., tN 2 − tN 0 = tN 2. This relative time base covers the global

discrete-time base:

tN−ν ≤ −tMµ

tN ν ≥ tMµ

Every sterilization cycle is connected to one non-regular base, synchronizing

the starting time of the slot with the starting time of the interval 0 of that

particular base. Thus, every slot has a local time scale, divided in intervals.

This relation between sterilization cycles or slots and the relation between

time scales is presented in figure 4.5a.

However, this time base is equal for all the different sterilization cycles, and

it has to support the description of the steam profile at time instant relative

to the start of operation (tN n). The thermal treatment may be different

between references; hence, their steam consumption profiles will differ in the

duration, amount of demand and main time instants. Therefore, the duration

and the number of non-regular intervals of N are chosen such that all the

profiles important time points coincide with the intermediate interval start

instants, tN n : n ∈ N \ {−ν, ν}

� ωm∈M,j∈J ,n∈N is a binary variable defined to relate the global discrete-time

base with the time base relative to every slot. It identifies where any sample

time of the global discrete base is located relatively to the start of every slot

or sterilization cycle (sj ). It indicates if the relative time distance tMm − sj

belongs to the interval [tN n, tN n+1) of the time base relative to the slot j .

� αm∈M,j∈J ,n∈N ∈ [0, 1] is a real variable that weights the proximity of the
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global interval start tMm to the interval start instant tN n of the time base

relative to slot j , when tMm − sj belongs to the intervals [tN n−1, tN n) or

[tN n, tN n+1).

� Υj∈J ,h∈H is a binary variable that determines the steam flow profile needed

by the thermal treatment applied to the slot j . It is a more restrictive variable

than Vj,h:

Vj,h ≥ Υj,h ∀j ∈ J ,∀h ∈ H

The precise consumption profiles are approximated to first-principle models by

piece-wise linear functions. For that purpose, a new parameter en∈N ,h∈H, is defined.

It represents the steam flow consumption for the reference h at time instant tN n,

relative to the start of operation (see figure 4.4). Note that, for the first and last

intervals, the consumption is zero for all the references, since they coincide with

the interval previous to the start of the sterilization cycle and the interval after

sterilization is completed. Consequently, steam consumption is zero at the edges

of both intervals:

e−ν,h = e0,h = eν−1,h = eν,h = 0 ∀h ∈ H

0 1 2

e1,h1
e2,h1

−ν ν

Reference h1

(a) Example of steam flow

consumption related to the

reference h1

0 1 2

e1,h2

e2,h2

−ν ν

Reference h2

(b) Example of steam flow

consumption related to the

reference h2

Figure 4.4: Initial intervals of the piece-wise linear functions that approximate the

steam consumption profiles
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The variables are related by the following inequalities:

∑

n∈N

ωm,j,n = 1 ∀m ∈M,∀j ∈ J (4.1)

ωm,j,ν = 0 ∀m ∈M,∀j ∈ J (4.2)

Every global time sample must be in a single interval of every slot relative time

base, (4.1). Note that, as the variable ωm,j,n indicates that the time sample belongs

to the interval that has just started, and as the relative time base covers the global

one (tN ν ≥ tMµ), it is impossible for a time sample to happen after tN ν , (4.2).

tMm − sj =
∑

n∈N

(αm,j,n · tN n) ∀m ∈M,∀j ∈ J (4.3)

αm,j,n ≤ ωm,j,n−1 + ωm,j,n ∀m ∈M,∀j ∈ J ,∀n ∈ N \ −ν (4.4)

αm,j,−ν ≤ ωm,j,−ν ∀m ∈M,∀j ∈ J (4.5)
∑

n∈N

αm,j,n = 1 ∀m ∈M,∀j ∈ J (4.6)

One time sample is defined as a linear combination of the edges of the interval it

belongs to, (4.3). Therefore, all the weighting variables must be zero but the ones

relative to both edges of the interval, (4.4) and (4.5). The aggregation of α must

be equal to one, (4.6). For clarifications see figure 4.5, where a little example is

pictured.

Since any global time sample can be computed related to the evolution of every

sterilization cycle, and as the steam flow consumption has been approximated by

piece-wise linear functions, the consumption in every global sample time can be cal-

culated as a linear combination of the consumption at the edges of the interval the

sample time belongs to.However, there are as many different piece-wise functions

as references, en∈N ,h∈H. In order to keep linearity, avoiding product of decision

variables in the calculation of each slot consumption, the real variable αm,j,n is

modified to include the type of reference, so that it becomes αm,j,n,h∈H. This new

variable will only weight the edges of the interval for the appropriate reference. The
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0 1 2 3 4
M

Slot j1N

Slot j2N
−ν

−ν

ν

ν

µ

(a) The global time scale is shown

completely. Note that the non-

regular time bases cover the global

discrete one

1 2

2 3M

Slot j1N
α3,j1 ,2 α3,j1 ,1

α2,j1 ,2 α2,j1 ,1

(b) The interval [2, 3] of the global

time base is enlarged, and only the

time base relative to the first slot

is maintained to enhance the com-

prehension

Figure 4.5: Two non-regular time bases relative to the slots j1 and j2 are plotted

over the global time base. Both relative time bases are similar. It can be seen that

the length of N is bigger than twice M. In the right subplot, the value of α are

shown. Notice that tM2 − sj1 = (α2,j1,1 · tN 1) + (α2,j1,2 · tN 2) and tM3 − sj1 =

(α3,j1,1 · tN 1) + (α3,j1,2 · tN 2)

equations and inequalities (4.3) - (4.6) become:

tMm − sj =
∑

n∈N ,h∈H

(αm,j,n,h · tN n) ∀m ∈M,∀j ∈ J (4.7)

∑

h∈H

αm,j,n,h ≤ ωm,j,n−1 + ωm,j,n

∀m ∈M,∀j ∈ J ,∀n ∈ N \ −ν

(4.8)

∑

h∈H

αm,j,−ν,h ≤ ωm,j,−ν ∀m ∈ M,∀j ∈ J (4.9)

∑

n∈N ,h∈H

αm,j,n,h = 1 ∀m ∈ M,∀j ∈ J (4.10)

where αm,j,n has been replaced by
∑

h∈H αm,j,n,h.

When gathering the carts, the references were mixed in the same group of carts,

with a maximum number of references per group. A specific reference related to

every group of carts were not determined. The time and temperature for the
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sterilization cycle were chosen such that fulfill all the requirements for the load.

Considering the subset Hh, the most restrictive temperature-time profile can be

selected as:

∑

h∈H

Υj,h = 1 ∀j ∈ J (4.11)

Vj,h −Υj,h ≤
∑

h′∈Hk

Υj,h′ ∀j ∈ J ,∀h ∈ H (4.12)

αm,j,n,h ≤ Υj,h ∀m ∈M,∀j ∈ J ,∀n ∈ N ,∀h ∈ H (4.13)

Every sterilization cycle must have only one prevailing reference, (4.11). If one

reference is included in one group of carts, the prevailing reference will be the more

restrictive one, (4.12). Once the reference for every sterilization cycle is determined,

only the variables relative to the selected type are allowed to be positive, (4.13).

Thus, the resource consumption of any sterilization cycle j1 in every time sample

can be computed as:

∑

n∈N ,h∈H

(αm,j1,n,h · en,h) ∀m ∈M

See figure 4.6, where, as an example, the consumption relative to the slot j1, whose

reference is h1, is computed at the global time sample 3 as the linear combination

of the consumption at the time samples 1 and 2 relative to the slot j1.

Finally, denoting as ̺ the maximum amount of shared resource available at every

time sample, the overall demand is constrained as:

∑

n∈N ,j∈J ,h∈H

(αm,j,n,h · en,h) ≤ ̺ ∀m ∈M (4.14)

The whole optimization problem that would replace (3.5.1), can be formulated
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2 3

1 2

M

Slot j1N

α3,j1 ,2,h1 α3,j1 ,1,h1

e1,h1

e2,h1

(α3,j1,2,h1 · e2,h1)

+(α3,j1,1,h1 · e1,h1)

Figure 4.6: Example of resource consumption modeling via piece-wise linear function

and variable α labeling as h1 the reference corresponding to the slot j1

as:

min
Vj,h,Xi ,j ,Yj,k ,Zi ,k ,Uj ,sj ,pd j ,pt j ,tMm,tN n,ωm,j,n,αm,j,n,h,Υj,h

MK

s.t. (3.1)− (4.2)

(4.7)− (4.14)

MK ≥ sj + pd j ∀j ∈ J

(4.15)

Furthermore, once there is only one reference related to every sterilization cycle,

some of the previous big M formulated constraints can be replaced by the following

ones, that use the convex hull approach:

pd j =
∑

h∈H

((ξh + rdh + χh) ·Υj,h) ∀j ∈ J (4.16)

pt j =
∑

h∈H

(rt h ·Υj,h) ∀j ∈ J (4.17)

This formulation will replace inequalities (3.15) - (3.18).

Note that, even though by (3.2) & (3.3) the sterilization cycles are not forced

to be executed, in (4.11) one consumption profile is chosen. This issue can cause
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a consumption aggregation related to an empty slot. In order to solve this matter,

one new virtual reference (h0) might be included with a related consumption of zero,

i.e., en,h0 = 0 ∀n ∈ N . This virtual reference can be forced when the sterilization

cycle is not used.

Υj,h0 = 1− Uj ∀j ∈ J

4.4.2 Variable processing time

In some cases, preventing the system to surpass the availability bound is unavoidable.

This situation may cause alterations in the predefined profiles, by enlarging the

duration of the batch processes. When this happens, the schedule has to consider

the interference.

In the tuna canning plant, if several sterilizers are in the heating stage at the

same time, the overall demand may surpass the capacity of the steam supply line.

This will reduce the steam pressure, and increase, for all the slots affected, the

time required to achieve the temperature set point of the recipes, see figure 4.2.

However, as the consumption during the maintenance stage is low, its control will

not be affected, nor the control of the cooling phase will, due to enough available

cooling water.

These drops of pressure in the steam ring supply will occur always that a steril-

ization cycle starts, as the steam consumption has a peak at the beginning of the

cycle. All the heating phases running at that instant will be affected, even those

which were supposed to be finished, but had been extended due to other concurrent

heating stages. Hence, the interference between slots cannot be computed offline

by a difference in starting times.

As the drop in the steam supply ring pressure depends on the number of sterilizers

connected, the alterations in the duration are modeled as a linear function of the

concurrent heating phases. The duration of the heating stage (ξh) will be divided

into:

� ξf h a minimum fixed value, equal to the value of the heating stage when the

sterilization cycle is executed alone (there is enough steam supply to follow
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the temperature set point)

� ξph a value that represents the effect of two overlapping heating stages

Figure 4.7 shows different possibilities of overlapping among operations of four

similar sterilization cycles.

Heating

Heating

Heating

Heating

Maintenance

Maintenance

Maintenance

Maintenance

Cooling

Cooling

Cooling

Cooling

Figure 4.7: Graphical representation of the influence among four slots. Each slot is

represented by a bar with colors orange, red and blue corresponding to the heating,

maintenance and cooling phases respectively. Heating stage in the first slot does

not coincide with the heating stage of any other slot, therefore its heating time

remains unchanged. Meanwhile, the heating phases of the second and fourth slots

are executed simultaneously to the third one, ergo their heating phases are increased

by ξp each (dark-orange with red outline rectangle); finally, the third slot coincides

with both of the previously commented slots, so its duration is increased twice

Accordingly, instead of using the formulation presented in the previous subsec-

tion constraining the consumption, the gathering of carts (Section 3.5) is modified

to include the alteration on the duration of the batch processes when there are

concurrent consumption.

Two new variables are added:

� ξh∈H,j∈J is a real variable that equals the duration in minutes of the heating

stage that will suffer the group of carts j , it replaces the parameter ξh

� Wj∈J ,j ′∈J :j≺j ′ is a binary variable that equals one when two slots coincide in

their heating stage. As the slots are affected independently of which one was

initiated first, the variable is only defined for successive slots. In addition, it is
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only defined for the next |K| − 1 slots (the number of sterilizers minus one),

which is the maximum number of sterilization cycles that can coincide

This variables are related by:

sj + ξj ≥ s
′
j −M5 · (1−Wj,j ′) ∀j, j ′ ∈ J : j ≺ j ′ ∧ dist(j, j ′) < |K| (4.18)

sj + ξj ≤ s
′
j +M5 ·Wj,j ′ ∀j, j ′ ∈ J : j ≺ j ′ ∧ dist(j, j ′) < |K| (4.19)

where dist(j, j ′) represents the distance between the slots j and j ′, meaning as

distance the number of elements between them in the ordered set J . In addition

to the order of the sterilization cycles (constrained in (3.19)), these inequalities

force the heating stage of the first slot to finish after the second slot has started if

Wj,j ′ = 1, (4.18), or before if the binary variable equals zero, (4.19).

Wj,j ′ ≥ Wj,j ′′ ∀j, j ′, j ′′ ∈ J : j ≺ j ′ ≺ j ′′ (4.20)

Wj ′,j ′′ ≥ Wj,j ′′ ∀j, j ′, j ′′ ∈ J : j ≺ j ′ ≺ j ′′ (4.21)

To reduce the computational cost, some constraints can be added in order to

remove unfeasible solutions, (4.20) and (4.21), which consider that, if two slots

coincide in the heating stage, all the intermediate slots will coincide too.

ξh,j = ξf h + ξph ·





∑

j ′∈J :j ′≺j

Wj ′,j +
∑

j ′′∈J :j≺j ′′

Wj,j ′′



 ∀j ∈ J ,∀h ∈ H (4.22)

pd j ≥ ξh,j + rdh + χh −M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.23)

pd j ≤ ξh,j + rdh + χh +M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.24)

In (4.22) the duration of the heating phase is computed, as the fixed value plus

the proportional part times the number of concurrent heating stages. This time is

performed for all the possible references, as each one has a different heating profile

and it would suffer different alterations. Then, the inequalities that constrained

the duration of the process, (3.15) and (3.16), will be modified to include the new
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variable ξh,j , (4.23) & (4.24).

The optimal schedule for the section, considering the extensions in the heating

stages due to concurrent steam consumption, could be solved as:

min
Vj,h ,Xi ,j ,Yj,k ,Zi ,k ,Uj ,sj ,pd j ,pt j ,Wj,j ′ ,ξh,j

MK

s.t. (3.1)− (3.14)

(3.17)− (3.21)

(4.18)− (4.24)

MK ≥ sj + pd j ∀j ∈ J

(4.25)

Nevertheless, this approximation is an overestimation of the duration of the heat-

ing stages, as two slots will be equally affected by ξph whether they coincide in the

start of the heating stages or only in the last few minutes of the first one and the

initial ones of the second slot.

To reduce the conservatism of the formulation, the affected stages can be split

into different divisions, each with a different proportional increase to the duration.

And include as many binary variables as divisions are, to mark where the slots

coincide.

For example, if the heating stage were split into two regions, there will be needed

two binary variables: W1j,j ′, that will determine if j
′ starts before the first region

of j has passed; and W2j,j ′, that will value one if j
′ starts before j has finished its

heating phase.

ξh,j = ξf h + ξp1h ·





∑

j ′∈J :j ′≺j

W1j ′,j +
∑

j ′′∈J :j≺j ′′

W1j,j ′′





+ ξp2h ·





∑

j ′∈J :j ′≺j

W2j ′,j +
∑

j ′′∈J :j≺j ′′

W2j,j ′′





∀j ∈ J ,∀h ∈ H

If both slots coincide during most part of the heating phase, and supposing there
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are no more slots, the final heating duration would be ξf h+ξp1h+ξp2h; meanwhile,

if they coincide only during the second defined region, the heating duration would

be ξf h + ξp2h.

4.4.3 Reducing quality loss due to altered profiles
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(a) Temperature set point pro-

file over time for the default

sterilization cycle (blue), and

for a case where the heat-

ing phase has taken more time

but the duration of the main-

tenance stage is not modi-

fied(red)
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(b) Lethality growth over

time for cans submitted to

the temperature-time profiles

shown in the left subplot

Figure 4.8: Graphs comparing the optimal case and the worst case of sterilization

cycles in case of concurrent heating phases when the duration of the maintenance

is the constraint

The thermal treatment required to fulfill the lethality threshold, besides killing

the microorganism, reduces the quality of the food inside the cans, hence the du-

ration of the sterilization cycle should be minimized as much as possible. The

maintenance stage is performed for the time required to achieve certain lethality

level, see figure 3.2b.

Nevertheless, when the heating time duration is increased due to concurrent

sterilization cycles, the duration of the maintenance stage is kept untouched to

guarantee the lethality is achieved. As the product inside the cans is already being

heated during the first stage, the microbial lethality level has already started to grow
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before the maintenance stage begins. Hence, when the sterilization cycle ends, the

lethality level has surpassed the threshold value, see figure 4.8.

Consequently, in order to reduce energy consumption and to increase final product

quality, the time of the whole process could be decreased to obtain a profile similar

to the one shown in figure 4.9, where the lethality is achieved, but the total duration

is minimized.
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phase has taken more time but

the duration of the sterilization

is reduced (red)
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Figure 4.9: Graphs comparing the optimal case and the worst case of sterilization

cycles in case of concurrent heating phases when the lethality is the constraint

To perform the reduction in the maintenance stage duration, one new variable

is defined:

� rd h,j is a real variable that represents the duration of the maintenance stage

of the slot j if the reference of the slot is h

The value of the new variable is computed by:

rdh,j = rd h − ρh ·





∑

j ′∈J :j ′≺j

Wj ′,j +
∑

j ′′∈J :j≺j ′′

Wj,j ′′



 ∀j ∈ J ,∀h ∈ H (4.26)
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where rdh is the default duration of the maintenance stage for the reference h, and

ρh is a new parameter equal to the number of minutes that the maintenance has

to be reduced, if the heating stage is increased by ξph.

This change in the duration of the maintenance will modify the duration of the

sterilization cycle as:

pd j ≥ ξh,j + rd h,j + χh −M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.27)

pd j ≤ ξh,j + rd h,j + χh +M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.28)

replacing (4.23) & (4.24).

4.4.4 Integrating control in the scheduling

Usually schedule is highly constrained by the job orders that comes from the ERP

system, and it considers the control of the units as fixed values. These artificial con-

straints prevent the system from obtaining a better plant optimum for the sections

or departments.

In the previous subsections, the job orders are altered inside the optimization

problem by mixing the different references inside the autoclaves. This improves the

final objective cost at the expense of increasing computational time. In addition,

the presented algorithms are able to tackle this without a significant rise in solving

time. In this subsection, the lower control layer is integrated in the scheduling

problem.

The temperature-time profile required for every reference is chosen such that the

lethality constraint is achieved. When the temperature set point during the main-

tenance stage is constant, obtaining this lethality can be performed by submitting

the cans either to a very high temperature for a relatively short time or to a lower

temperature for a longer time, see figure 4.3. This relation, between temperature

set point and duration of the maintenance stage, draws a curve that represents

the minimum operation point that fulfills the lethality constraint. However, all the

points over the line will submit the cans to a more restrictive thermal treatment
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and, consequently, they are feasible operation points, see figure 4.10.

Using an accurate enough model for the sterilization section, which considers

the heat transmission inside the food cans, the relation temperature-time can be

obtained for all the references (Vilas Fernández and Alonso, 2018). The feasible

region drawn is a convex non-linear space. In order to include it in the MILP model,

it is inner approximated by linear functions that will outline the bound of the region,

see figure 4.10a. The number of linear functions used will determine the accuracy

of the model, but they will increase the complexity of the MILP problem.

In addition to the lower bounds, one additional upper bound is included to fully

define the feasible region. This upper bound will decrease the computational cost

by rejecting a prior known sub-optimal solutions. Even though operation points far

away from the curve are feasible thermal treatments, these will increase the energy

consumption and decrease the quality of the final product. Therefore, a sensible

region will be near the curve.

When more than one reference are gathered into the same group of carts, the

operation point has to be inside both feasible regions, see figure 4.10b.

The following formulation extends the one from the section 3.5.

A new pair of parameters are defined to define the feasible areas for every

reference:

� (Ax,h∈H, Bx,h∈H) : x ∈ {0 . . . κ} are real parameters that describe the linear

functions that outline the feasible region for the reference h. A is the slope of

the function, and B is the intersection with the vertical axis. The parameter

κ is the number of linear functions that will approximate the non-linear curve.

The upper bound is determined for the first combination of parameters, i.e.,

x = 0 . In this model, temperature has been chosen as the independent

variable, so the bounds that the linear functions describe are:

duration = Ax,h · temp. set point + Bx,h ∀x ∈ {0 . . . κ},∀h ∈ H

And the duration of the process, that was first defined as a known parameter,

is now treated as a new variable:
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Temperature set point
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time

{h1} ⊆ H

Anh1 · T + Bnh1

A0h1 · T +B0h1

h1

(a) Feasible area to select the op-

eration point for reference h1. The

combination temperature-time has

to be over the blue line. The area is

approximated by several linear func-

tions

Temperature set point

Processing

time

{h1, h2} ⊆ H
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(b) Combination of two different ref-

erences feasible areas. The feasi-

ble region approximation for h1 is

colored in light blue, meanwhile the

approximation for h2 is colored in

light-yellow. The feasible area for

both can be seen as the green area,

and covers the operation points over

both lines

Figure 4.10: Feasible area approximation for different references

� rd h,j is a real variable that represents the duration of the maintenance stage of

sterilization cycle j if it performs the thermal treatment relative to reference

h. It replaces rdh

The relation between the duration of the maintenance stage and the temperature

set point is modeled as follows:

rdh,j ≥ Ax,h · pt j + Bx,h ∀h ∈ H,∀j ∈ J ,∀x ∈ {1 · · ·κ} (4.29)

rdh,j ≤ A0,h · pt j + B0,h ∀h ∈ H,∀j ∈ J (4.30)

The inequalities that constrained the temperature for every sterilization cycle

are removed from the model ((3.17) & (3.18)). And the constraints (3.15) and

(3.16), which set the bounds to the whole duration of the sterilization cycle, have
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to be replaced with:

pd j ≥ ξh + rd h,j + χh −M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.31)

pd j ≤ ξh + rd h,j + χh +M2 · (1− Vj,h) ∀j ∈ J ,∀h ∈ H (4.32)

where the variable for the duration has been included instead of the parameter.

The scheduling MILP problem, considering the gathering of the carts and inte-

grating the control parameters of the batch units, can be solved by:

min
Vj,h ,Xi ,j ,Yj,k ,Zi ,k ,Uj ,sj ,pd j ,pt j ,rd h,j

MK

s.t. (3.1)− (3.14)

(3.19)− (3.21)

(4.29)− (4.32)

MK ≥ sj + pd j ∀j ∈ J

(4.33)

On the other hand, if the shared resource constraints are considered within this

formulation, using the extension in the duration of the stage approach, the MILP

problem would look like:

min
u
MK

s.t. (3.1)− (3.14)

(3.19)− (3.21)

(4.18)− (4.22)

(4.29)− (4.30)

pd j ≥ ξh,j + rd h,j + χh −M2 · (1− Vj,h)

∀j ∈ J ,∀h ∈ H

pd j ≤ ξh,j + rd h,j + χh +M2 · (1− Vj,h)

∀j ∈ J ,∀h ∈ H

MK ≥ sj + pd j ∀j ∈ J

(4.34)
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where the decision variables are represented as the vector u ≡ (Vj,h, Xi ,j , Yj,k , Zi ,k ,

Uj , sj , pd j , pt j , rdh,j ,Wj,j ′, ξh,j), and constraints (4.31) and (4.32) have been modified

to include the variable ξh,j .

4.4.5 Considering quality loss

This formulation can be improved by incorporating the developments explained in

the subsection 4.4.2. With the same models used to compute the default relation

temperature-time, several surfaces that cover the different possible extensions in

the heating stage can be obtained for every reference.

The new feasible surfaces, related to every heating stage extension, are not

approximated by straight lower bounds. Instead, they are approximated by moving

the original feasible region through the vertical axis (”Processing time”). In this

way, the duration of the maintenance stage related could be computed by:

rdh,j ≥ Ax,h · pt j + Bx,h − ρh ·





∑

j ′∈J :j ′≺j

Wj ′,j +
∑

j ′′∈J :j≺j ′′

Wj,j ′′





∀h ∈ H,∀j ∈ J ,∀x ∈ {1 · · ·κ}

(4.35)

rdh,j ≤ A0,h · pt j + B0,h − ρh ·





∑

j ′∈J :j ′≺j

Wj ′,j +
∑

j ′′∈J :j≺j ′′

Wj,j ′′





∀h ∈ H,∀j ∈ J

(4.36)

Notice that, when the sterilization cycle is executed without overlapping with

other units, the feasible operation points considered is the same that in the previous

version, as the binary variables relative to the concurrent processes are canceled,

i.e.,
∑

j ′∈J :j ′≺j Wj ′,j +
∑

j ′′∈J :j≺j ′′Wj,j ′′ = 0 ∀j ∈ J . Meanwhile, when there are

concurrent heating phases, the feasible operation points are moved down through

the vertical axis by ρh times the number of concurrent sterilization cycles, v.gr.,

when two heating phases coincide, the duration of all the points belonging to their

respective regions will be reduced by ρh.
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4.5 Results

In this section, results from implementing the previous formulations are shown.

The cost function that has been defined for the different examples is minimizing

the makespan, i.e., minimizing the maximum ending time.

The shared resources consumption is included in the MILP model. The system

considers four different thermal treatments, with their respective steam consump-

tion profiles, see figure 4.11. The references are ordered by total steam demand,

the higher the reference number, the higher the steam flow demand. It is considered

that all the references can be submitted also to the superior thermal treatments.

The shorter reference has a duration of 85 minutes and the longest one of two

hours.

Figure 4.11: Piece-wise linear approximations to the steam consumption required

by four different recipes. The horizontal axis represents the time evolution. The

figure is divided in five subplots, one per reference and one with all the profile

superimposed. The vertical axis represents the steam flow demand in tn/h

The steam consumption profiles are approximated by piece-wise linear functions,

which values are computed in the edges of the non regular time base interval. Note

that all the profiles share the same time base (N ). The markers in the figure show

the edges of the intervals. Every important change in any steam demand profile is

well defined with the selected intervals, in total there are fifteen intervals, |N | = 16.
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Not all the intervals are required for every reference. The first and last time points

of the time base (−ν, ν) are far to the left and to the right respectively.

The optimization problem solved is (4.15), which limits the total steam con-

sumption. To implement this solution in a real industrial environment, a moving

horizon approach has been applied within a framework similar to the one of MPC.

This methodology let the system to adapt the scheduling to the changing process

conditions in real time. Some constraints only affect a short horizon (η), releasing

more degrees of freedom to the future in order to being able to react. In this case

the solver is executed every twenty minutes, and the solving time is five minutes.

The sterilization section considered in this example consists in six parallel auto-

claves to process the orders. The carts arrive with a mean frequency about ten

minutes. The carts included in the scheduling are the ones expected to arrive in less

than two hours fro the current time. The robust horizon is one hour. The carts

must be gathered in groups with a size between γ = 2 and Γ = 8 carts. The maxi-

mum number of slots is computed automatically in every execution of the problem,

it values the geometric mean between the maximum and the minimum number of

groups needed to sterilize all the carts considered. The maximum waiting time for

every cart is one hundred minutes.

The discrete-time base has a sample step of five minutes, up to two hundred

and fifty, so that |M| =
250

5
= 50. The maximum available steam in every time

sample is ̺ = 200 tn/h.

As the moving horizon approach has been used, four successive solutions are

shown in the figure 4.12. Every sub figure is divided in two subplots: one Gantt

chart and one linear chart. Both subplots share the same horizontal axis, which

represents the time. A vertical red line shows current time. The Gantt chart

describes the scheduling per se. The autoclaves are represented in the vertical axis.

When one autoclave is busy, v.gr. due to a previous sterilization cycle, gray squares

are plotted until it is released again. In the legend, the type of recipe selected for

every sterilization cycle is shown.
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The linear chart plots the steam consumption. The light-blue line represents

the whole steam demand. Notice that the upper limit of 200t/h of steam is never

exceeded and the time constraints are fulfilled. The demand related to every slot

(a) Solution obtained at 01:10 am to the carts expected to arrive until 03:10

am. The carts that are expected to arrive before 02:10 are introduced in a

sterilization cycle

(b) Solution obtained twenty minutes after the one in 4.12a. The carts that

are expected to arrive before 02:30 are introduced in a sterilization cycle. As

there are new carts considered, the previous schedule is modified
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(c) Solution obtained at 1:50 am. The carts that are expected to arrive

before 02:50 are introduced in a sterilization cycle. The previous first slot

assigned to the sixth autoclave has already started at current time, and is

plotted as gray squares

(d) Solution obtained twenty minutes after the solution in 4.12c. The carts

that are expected to arrive before 03:10 are introduced in a sterilization cycle

Figure 4.12: Four successive solutions to the scheduling problem considering a

bound in the steam availability. It can be seen that the whole demand never sur-

passes the bound of 200 tn/h.
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is plotted in the same color used in the Gantt chart. The consumption related

to already started sterilization cycles is plotted in a light-gray line. The steam

consumption is only computed in the markers, that represent the global discrete-

time base samples, to ease the visual comprehension straight line that join the

markers are drawn.

4.5.1 Variable duration

In this example, the problem (4.25) is solved, which includes the effects of sterilizers

overlapping instead of constraining the total steam consumption. First, the solution

was tested independently, and then a moving horizon was implemented.

In this case we considered the real plant layout where the sterilization section

has sixteen sterilizers. The heating stage has a minimum default duration of fifteen

minutes and it is increased by five minutes for every concurrent heating stage. The

carts considered are the ones expected to arrive in less than two hours since the

current time, and are gathered in groups between γ = 1 and Γ = 9. Each group

cannot include more than two different references, even though their share the same

recipe (ζ = 2).

The recipes in the same sterilization cycles cannot differ more than five minutes

(δ = 5).

This solution is shown in figure 4.13, where fifteen slots are schedule over the

sixteen autoclaves. The horizontal axis represents the time, and the autoclaves are

represented in the vertical one. Every sterilization cycle appears divided in two parts,

the first one represents the heating stage, and the second one is the maintenance

and the cooling stage aggregated. The color of the rectangles represent the type

of sterilization cycle. In this case there are four different recipes.

The optimizer tries to distribute the heating stage as much as possible to prevent

the interference. This optimization problem is solved in less than a minute.
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Figure 4.13: Gantt chart showing the schedule of several sterilization cycles con-

sidering the extension in the heating stages duration due to concurrent steam con-

sumption

When the moving horizon approach is implemented, the sealing lines are added

to the system and therefore the assignment constraints between carts that have left

one sealing line and some forbidden autoclaves. There are twelve different sealing

lines, every autoclave can receive carts from the closest five sealing lines. Seventeen

different recipes are included in the problem, even though the number of different

references is much bigger.

The problem is solved every fifteen minutes, see figure 4.14. The Gantt chart

represents as gray squares when one autoclave is busy. The current time is shown

with a vertical red line. It is considered that the forecast of carts arrivals made by

the ERP system will have fails, and some error have been introduced on purpose. It

can be seen that the sterilization cycle assigned to the autoclave twelve is postponed

several times, probably because it has assigned one cart that haven’t arrive yet. This

sterilization cycle will not wait longer than the maximum waiting time for every cart

already introduced in the sterilizer.
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(a) Solution obtained at 02:45 am. The optimizer gather the carts in nine different

sterilization cycles

(b) Solution obtained at 03:00 am, fifteen minutes after the solution in 4.14a
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(c) Solution to the schedule at 03:15 am

(d) Solution at 03:30 am

Figure 4.14: Four successive solutions to the scheduling problem considering an

increase in the duration of the heating stages when concurrent steam consumption

occurs
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4.5.2 Integrating control parameters

In this subsection some solutions to problem (4.33), where the operation recipe of

the sterilizers is modified, are shown. The optimizer gathers two hundred carts and

schedule the groups over sixteen autoclaves. Five different recipes are considered.

(a) Blue lines represent the lower

bounds to approximate the relation

temperature set point - maintenance

stage duration for the first reference.

The magenta line is the upper bound

(b) Red lines represent the lower

bounds to approximate the relation

temperature-duration. Cyan line

represent the upper bound

(c) Third example for the profile ap-

proximation with pink lines for the

lower bounds, and a green line for

the upper bound

(d) Representation of the feasible re-

gion (yellow) of operation points for

a sterilization cycle that combines

the references shown in 4.15a and

4.15b. The feasible region is the

area over all blue and red lines and

under magenta and cyan lines

Figure 4.15: Straight lines examples to approximate the feasible operation point

region. In the horizontal axis the temperature set point, and in the vertical axis the

duration required for the maintenance stage

The feasible region for every reference is approximated by three straight lines,

in addition to the upper bound. The figure 4.15 shows the straight lines used to

approximate three of the five references, and the feasible region for one sterilization

cycle that combines carts from the first and the second, 4.15d. The lower bounds
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are computed to approximate the non-linear relation temperature-time. The upper

bound is computed to prevent the operation point chosen to select temperatures

under 100 ◦C or over 130 ◦C.

The optimizer finds a solution in less than a minute. Some solutions applying

the moving horizon approach can be seen in figure 4.16. As all the carts can

(a) Solution obtained at 02:45 am. The optimizer gather the carts in nine

different sterilization cycles

(b) Solution obtained at 03:00 am, fifteen minutes after the solution in

4.16a
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(c) Solution to the schedule at 03:15 am

(d) Solution at 03:30 am

Figure 4.16: Four successive solutions to the scheduling problem considering an

increase in the duration of the heating stages when concurrent steam consumption

occurs

be gathered in the same sterilization cycle, the optimizer reduces the number of

sterilizers needed.
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4.5.3 Uncertainty in the cart supply

In continuous industrial production exists a vast number of possible causes for un-

certainties in supply lines behavior. In the canning industry case study, the different

properties of the filling liquids and the tuna parts chosen modify the sealing lines

speed. In addition, the release of filled carts and the arrangement of the empty

carts are performed by human operators, which increases the time uncertainty on

the supply to the sterilization section.

On the other hand, the work orders set by the ERP system can be modified by

the operators. This alterations might be motivated by external factors, such as last

minute orders, or by internal ones, v.gr., a mistake when select in the products to

thaw.

Perfect

prediction

Unexpected

arrivals

Overpredicted

number of carts

Delayed

predictions

Early

predictions

Normal

distribution

1000
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Figure 4.17: Solution times for close-loop schedule of two days with different un-

certainty distributions in the arrival of carts. In the vertical axis the time spent in

seconds. In the horizontal axis the different uncertainty distributions used

In summary, there is a huge uncertainty in the arrival of carts to the sterilization

section, in the arrival time instants and in the reference included in every cart. This

unknown possibilities have been taken into account in the real-time scheduling tool

by performing online scheduling (Gupta, Maravelias, and Wassick, 2016); neverthe-

less, how to tackle this uncertainties in discrete fluxes is out of scope of this thesis
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and is not treated here. For more information about how to treat uncertainty,

readers can find details in Li and Ierapetritou (2008) and Gupta and Maravelias

(2019).

In figure 4.17, the time spent by the solver to obtain a solution is compared with

several uncertainty distributions in the arrival of carts.

4.6 Conclusions

Novel approaches to deal with shared resources were presented. Both approaches

are proved suitable to be run in real-time applications.

The control of the batch processes was integrated in the scheduling and a near

closed-loop formulation was developed.

500

100

10

1

0.1

Figure 4.18: Solution times for four different runs of two days close-loop schedule.

In the vertical axis the time spent is represented in seconds. Gurobi 8.1 (green) is

compared with CPLEX 12.9 (orange)

One formulation to tackle a maximum allowable concurrent consumption, with

a variable profile over time using continuous-slot. And one formulation to tackle

variable duration of the tasks to schedule.
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The final scheduling optimization tool has been prepared to be integrated in

the MES system. An interface to read data from the plant database has been

implemented. Therefore, the optimization problem will be updated in real-time to

the actual situation of the sterilization section. See figure 4.18, it can be seen that

the average time spent is less than 10 s.



Main contributions and

conclusions

There is a wide variety of problems in the industrial sector where continuous and

batch process are connected. The main issue in these cases consists in the assign-

ment of tasks to units, and the sequencing of those tasks.

However, even though these problems share the base problem, the broad range

of specific issues inside every industrial environment, makes nearly impossible finding

a common formulation. Every situation has to be studied in advanced to choose

the optimal methodology for every circumstance.

Nevertheless, we can distinguish certain types of problems with common traits

that can be approached in a similar way. In this thesis we have been dealing with

some of these problems. Some have not been treated extensively in the literature

and the solutions offered room for improvement. With this thesis we tried to provide

novel and efficient formulations for them contributing to the development of the

field of Process Systems Engineering and the implementation of principles and aims

of Industry4.0.

In particular, we focused the attention to the integration of maintenance of equip-

ment in RTO problems and in the real-time scheduling of combined continuous-

batch processes, with reference to two relevant industrial case studies: one corre-

sponding to a viscose-fiber plant and other to a tuna canning factory. Even though

we have implemented the solutions to particular industrial cases, the developments
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here described can be easily extended to similar scenarios. The second chapter deals

with scheduling considering degradation in the efficiency of some units. The third

chapter deals with the scheduling of similar tasks that can be processes sharing

the batch units. Finally, the fourth chapter deals with shared resources between

concurrent processes and present two approaches that might be applied depending

on the type of particular problem.

With regard to the aims of the thesis mentioned in the introduction, the main

contributions have been:

� We have studied the problems of incorporating maintenance due to fouling

in continuous operating plants in RTO, modeling an evaporation plant and

developing a procedure for deciding the optimal operation. A self-optimizing

version of the solution has been implemented in the factory providing good

and consistent results

� We have studied the problems of optimally scheduling the operation of a set of

continuous plants, incorporating maintenance operations, providing efficient

scheduling formulations able to deal with the complexity of an industrial case

� We have studied the problem of incorporating a explicit consideration of the

effect of uncertain variables into the scheduling formulations, generating two-

stage optimization ones

� We have studied the problems of operation of plants with continuous lines

followed by parallel batch units, proposing the use of real-time scheduling,

developing formulations and codes able to deal with an industrial scale problem

� We have developed efficient scheduling formulations in continuous time deal-

ing with limited shared resources

� We have elaborated a novel formulation to tackle variable batch times that

depends on shared resource consumption synchronization

� We have proposed solutions of that problems that integrates the operation of

the scheduling and control of batch units, improving the overall performance

of the system
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� We have validated the methods and algorithms with industrial data and we

have studied its industrial implementation.

There are other points that may be worth mentioning at this stage:

Current simulation and modeling tools offers a high potential to improve the

knowledge of the systems. In these simulators, undesirable scenarios can be per-

formed and study how the system reacts. They can be used to train the operators.

Different working policies can be compared without altering the production sched-

ule.

In the current global situation, industries try to reduce environmental footprint

while keeping a competitive position in market. Management departments are

searching for efficiency in the use of resources. Mathematical programming tech-

niques, which assure obtaining an optimal operation, rise as the best options for

the scheduling problems.

To obtain the optimal schedule, the optimization problem has to include, not

only the supervision layer details, but some from the control or planning layers.

Depending on the system, it will be suitable to implement the global optimization

problem as a MINLP problem. However, in most cases, some details have to be

linearized to be included in a MILP problem that will be solved faster.

In the last years, the algorithms efficiency have been improved either for NLP

problem as to MILP ones. The solvers are able to be used for real-time tools.

However, the solving time seek to solve one real-time optimization problem depends

on the application that it will have, but human factors have to be taken into account

which may exclude some solutions, v.gr. for the optimization of a week work, one

optimization that take hours could seem admissible, but not for someone waiting

for the answer.

A global scheduler will provide the operators with a powerful tool to control the

production quality or load.
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When the final product is intended to be implemented in a real industrial site, the

tool used to model the system has a significant weight. Industrial applications have

to be robust and easy to use. Industrial sector tends to move their management

systems to the cloud. High level multipurpose languages offers a powerful tool to

interface with these on-line environments.

As a result of the work performed in the thesis, several papers were presented

in international conferences and published in indexed peer reviewed journals:

♦ Palaćın, Carlos G., Méndez, Carlos A., and de Prada, Cesar (May 2019).

“Slots Startup Synchronization with Shared Resources Dependency.” In:

Chemical Engineering Transactions 74, pp. 1321–1326.

♦ Palaćın, Carlos G., José Luis Pitarch, Christian Jasch, Carlos A. Méndez, and

Cesar de Prada (Feb. 2018). “Robust integrated production-maintenance

scheduling for an evaporation network.” In: Computers & Chemical Engi-

neering 110, pp. 140–151. issn: 0098-1354.

♦ Pitarch, José Luis, Carlos G. Palaćın, Cesar de Prada, Bernhard Voglauer, and

Gerhard Seyfriedsberger (2017). “Optimisation of the resource efficiency in

an industrial evaporation system.” In: Journal of Process Control 56, pp. 1–

12. issn: 0959-1524.

♦ Palaćın, Carlos G., Carlos Vilas, Antonio A. Alonso, José Luis Pitarch, and

Cesar de Prada (2020). “Integration of sterilization dynamics with shared

resources in the production scheduling.” In: . (under review)

� Palaćın, Carlos G. and Cesar de Prada (Jan. 2019). “Optimal Coordination

Of Batch Processes with Shared Resources.” In: IFAC-PapersOnLine. 12th

IFAC Symposium on Dynamics and Control of Process Systems, including

Biosystems DYCOPS 2019 52(1), pp. 826–831. issn: 2405-8963.

� Palaćın, Carlos G., Pablo Riquelme, and Cesar de Prada (2019). “Scheduling

óptimo de procesos Batch de duración interdependiente.” spa. In: Universi-

dade da Coruña, Servizo de Publicacións, pp. 560–567. isbn: 978-84-9749-

716-9.
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� Palaćın, Carlos G., Cesar de Prada, and José Luis Pitarch (2018). “Ayuda al

operario en la distribución óptima de carga entre equipos equivalentes.” In:

Universidad de Extremadura.

� Palacin, Carlos G., José Luis Pitarch, Cesar de Prada, and Carlos A. Méndez

(2017). “Robust multi-objective scheduling in an evaporation network.” In:

2017 25th Mediterranean Conference on Control and Automation (MED).

IEEE, pp. 666–671.

� Palaćın, Carlos G., José Luis Pitarch, Cesar de Prada, and Carlos A. Méndez

(2017). “An Efficient Way to Tackle Uncertainty in the Scheduling of a Con-

tinuous Evaporation System.” In: 27th European Symposium on Computer

Aided Process Engineering. Ed. by Antonio Espuña, Moisès Graells, and

Luis Puigjaner. Vol. 40. Computer Aided Chemical Engineering. Elsevier,

pp. 1411–1416.

� Palaćın, Carlos G., José Luis Pitarch, Gloria Gutiérrez, and Cesar de Prada

(2017). “Aproximación de modelos algebráicosmediante ALAMO y ECOSIM-

PRO.” in: Servicio de Publicaciones de la Universidad de Oviedo.

� Pitarch, José Luis, Carlos G. Palaćın, Alejandro Merino, and Cesar de Prada

(2017). “Optimal Operation of an Evaporation Process.” In: Modeling,

Simulation and Optimization of Complex Processes HPSC 2015. Ed. by Hans

Georg Bock, Hoang Xuan Phu, Rolf Rannacher, and Johannes P. Schlöder.

Springer International Publishing: Cham, pp. 189–203. isbn: 978-3-319-

67168-0.

� Pitarch, José Luis, Carlos G. Palaćın, Cesar de Prada, Marc Kalliski, and

Christian Jasch (2017). “Online Decision Support for an Evaporation Net-

work.” In: Servicio de Publicaciones, pp. 575–581.

� Palaćın, Carlos G., José Luis Pitarch, and Cesar de Prada (2016). “Planifi-

cación y distribución óptima de cargas en un sistema de evaporadores industri-

ales.” In: XXXVII Jornadas de Automática. Comité Español de Automática

de la IFAC(CEA-IFAC), pp. 801–806. isbn: 978-84-617-4298-1.
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� Palaćın, Carlos G., José Luis Pitarch, and Cesar de Prada (2015b). “Opti-

mización en tiempo real de sistemas estacionarios en EcosimPro.” In: XXXVI

Jornadas de Automática. Comité Español de Automática de la IFAC(CEA-

IFAC), pp. 502–508. isbn: 978-84-15914-12-9.

� Palaćın, Carlos G., José Luis Pitarch, and Cesar de Prada (2015a). “Efficient

modelling and real-time optimisation of stationary systems: Application to an

evaporation process.” In: Proceedings of SIMUL, pp. 6–11.

In addition, the developments of this thesis have been applied in different case

studies belonging to both European projects: Real-time Monitoring and Optimiza-

tion of Resource Efficiency in Integrated Processing Plants (MORE) and Improved

energy and resource efficiency by better coordination of production in the process

industries (CoPro). Both intended for a reduction in the resource consumption by

the European process industry, reducing the climate footprint, and leaded by Dr.

Sebastian Engell, full professor.

Future work In this thesis, the problem of integrating some control parameters

in the schedule has been solved linearizing the non-linear optimal control problem.

However, this is neither always possible, nor the real optimal solution. In order to

incorporate non-linearities to the schedule, while keeping a reasonable solving time,

advance techniques have to be applied.

For example, decomposition methods, where the duality problem is exploited to

reduce the complexity of some constraints by dividing the initial problem into two

optimization problems. This path can be followed to, for example, incorporate the

temperature set point optimization problem in the scheduling.

On the other hand, including uncertainty in discrete decisions is a current topic,

with a high importance to the upcoming Industry4.0. Robustness studies of the

solutions obtained against changes in the production demands or the market, is

highly valuable. There are plenty studies currently to include statistics techniques

in the scheduling optimization problems.
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y distribución óptima de cargas en un sistema de evaporadores industriales.”
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