

UNIVERSIDAD DE VALLADOLID

E.T.S.I. TELECOMUNICACIÓN

TRABAJO FIN DE GRADO

GRADO EN INGENIERÍA DE TECNOLOGÍAS ESPECÍFICAS DE

TELECOMUNICACIÓN

Deployment of a GPON-SDN solution in a server
using Docker

Autor:
Don Anil Neupane

Tutor:
Doña Noemí Merayo Álvarez

Don Juan Carlos Aguado Manzano

TÍTULO: Deployment of a GPON-SDN solution in a server using Docker
AUTOR: Don Anil Neupane
TUTOR: Doña Noemí Merayo Álvarez
DEPARTAMENTO: Teoría de la Señal y Comunicaciones e Ingeniería
Telemática

TRIBUNAL
PRESIDENTE: Ignacio de Miguel Jiménez
SECRETARIO: Noemí Merayo Álvarez
VOCAL: Juan Carlos Aguado Manzano
SUPLENTE: Ramón J. Durán Barroso
SUPLENTE: Patricia Fernández del Reguero

FECHA: 23 de Junio de 2020
CALIFICACIÓN:

Este Trabajo Final de Grado ha sido desarrollado por el estudiante dentro de una
movilidad del programa ERASMUS+. Dado que la carga lectiva del proyecto fin de
carrera en su universidad origen es de 30 ECTS, se ha diseñado un programa en la UVa
que también implique la realización de 30 ECTS por un trabajo equivalente (en nuestro
caso, trabajo fin de grado). Esto conlleva a la realización de un trabajo de 30 ECTS (un
cuatrimestre completo) y la presentación del mismo en dos TFGs, en concreto el TFG
para el Grado en Ingeniería en Tecnologías de Telecomunicación (6 ECTS) y el TFG del
Grado en Ingeniería en Tecnologías Específicas de Telecomunicación (12 ECTS). Para
no duplicar esfuerzos se ha incluido todo el trabajo en una única memoria para ambos
TFGs.

Abstract

The research carried out in this Project focuses on the transformation of a GPON network

to an SDN network using the OpenFlow protocol (SDN-GPON). With this we achieve a

dissociation between the control plane in charge of routing the packets and the data plane

in the access network. For this, a Linux-based router has been implemented in the central

computer and several OVS (Open Virtual Switch) virtual switches have been installed that

can use the OpenFlow protocol and communicate with an OpenFlow central controller, in

our case OpenDayLight and ONOS located in the backbone. Through this new SDN

network scenario we will be able to configure and manage services and subscriber profiles

in the access network through OpenFlow. During the project we tried to virtualize most of

the applications we needed using the Docker technology, some of the virtualizations were

forced upon us because of the unforeseen circumstances (Covid-19, unable to access the

labs) but in the end we managed to make it work as much the circumstances allowed us to.

Keywords

SDN (Software-designed networks), GPON (Gigabit-capable Passive Optical Networks),

OLT (Optical Line Termination), ONU (Optical Network Unit), OpenFlow,

OpenDayLight, Open Network Operating System.

Acknowledgement

This work has not been made in complete solitude. Without the support of many

people in my direct and indirect surrounding, this thesis would have never happened. It

was not something I was familiar with and I hope I present something that’s interesting

to read.

First of all I want to thank my supervisor Prof. Noemí who consistently guided me

in the right direction whenever I had trouble finding solutions, I’m also grateful to my

supervisor Prof. dr. Juan Carlos, for his valuable guidance and for sharing their

expertise and even researching new topics which sometimes were also new for him. Both

the professors were always ready to answer any questions I had, and helped a lot with

the proof reading and I am really grateful for that.

Secondly, I want to thank my friends, who, despite not always understanding what

I was talking about, kept listening to my ramblings and reasoning, and helped me to find

where they were wrong. Just by talking to them I made a lot of new breakthroughs. I

especially want to thank Jelle Debuyzere, Robin Spruytte and Thomas Van Giel aiding

me with some of these reasonings.

Finally, I must express my very profound gratitude to my family and all other friends for

providing me with unfailing support and continuous encouragement throughout my years

of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without them. Thank you.

The research developed in this Final Degree Project has been funded by the Ministerio

de Ciencia, Innovación y Universidades in the National Projects ONOFRE-2 (TEC2017-

84423-C3-1-P) and Go2Edge (RED2018-102585-T), by the Consejería de Educación de

la Junta de Castilla y León in the Project ROBIN (VA085G19), and by the European

Regional Development Fund FEDER by means of the Proyect DISRUPTIVE within the

framework of the program Interreg V-A España-Portugal (POCTEP) 2014-2020.

Opinions are the sole responsibility of the author who issues them.

Index

vii

Acknowledgement ... v	

Index of figures ... x	

1	 Introduction ... 1	
1.1	 Motivation ... 1	

1.2	 Objectives ... 2	

	 General Objective ... 2	

	 Specific Objectives ... 2	

1.3	 Stages of the Project ... 3	

	 Analysis stage ... 3	

	 Implementation stage .. 4	

	 Testing Stage .. 4	

	 Reporting stage ... 4	

2	 Methodology and Software tools ... 6	
2.1	 Introduction ... 6	

2.2	 GPON testbed in the Optical Communication laboratory 7	

2.3	 Docker ... 9	

2.4	 SDN (Software Defining Networking) ... 11	

2.5	 OpenFlow standard ... 12	

2.6	 SDN controllers .. 13	

	 OpenDayLight .. 13	

	 Open Network Operating System (ONOS) .. 14	

2.7	 Open Virtual Switch (Open vSwitch – OVS) ... 15	

2.8	 POSTMAN ... 16	

2.9	 IPERF ... 17	

2.10	 Methodology ... 17	

Index

viii

	 Linux Routing programming and a DHCP server 17	

	 Installation of the OVS ... 18	

	 Connection of OVS with controllers (ODL and ONOS) 18	

	 Programming and display of flow tables .. 19	

2.11	 Summary ... 20	

3	 IPERF tests and Initial DOCKER Configuration 21	

3.1	 Introduction ... 21	

3.2	 IPERF and IPERF3 ... 21	

	 TCP Tests .. 23	

	 UDP tests .. 28	

3.3	 Docker introduction and initial configurations ... 32	

3.4	 Conclusion .. 43	

4	 SDN Scenario in the server .. 44	

4.1	 Introduction ... 44	

4.2	 Global Description of the SDN scenario deployed in the server 44	

4.3	 Router and DHCP server deployment .. 48	

	 Programming Linux Kernel Routing and a DHCP server 48	

	 Deployment of the router and DHCP server ... 48	

4.4	 Installation and deployment of the Open vSwitch in the server 59	

4.5	 Installation of OpenDayLight (ODL) in docker ... 67	

4.6	 Connection between the Open vSwitch and ODL .. 69	

4.7	 Configuration of Postman with ODL ... 74	

4.8	 Configuration of flows and meters in ODL with Postman 76	

	 Configuration of normal flows ... 77	

	 Configuration of flows to forward packets for specific ports 80	

	 Configuration of flows from one specific Mac Address 81	

	 Configuration of flows for specific Network Address 83	

Index

ix

	 Configuration of meters in ODL ... 84	

	 Adding a meter to a configured flow .. 86	

4.9	 Tests with flows and meters in ODL .. 87	

	 Test 1: Normal flows created in the OVS ... 87	

	 Test 2: Flow entry for specific ports ... 88	

	 Test 3: Flow entry for specific network address ... 89	

	 Test 4: A flow entry with different meters ... 89	

4.10	 Installation and Configuration of ONOS in docker .. 94	

4.11	 Configuration of flows and meters in ONOS ... 100	

	 Configuration of flows for specific Network Address 101	

	 Configuration of flows for specific Mac Address 105	

	 Configurations of meters .. 106	

	 Configuration of flows with meters .. 107	

4.12	 Tests with flows and meters in ONOS ... 109	

4.13	 Conclusions ... 110	

5	 Conclusions and Future lines ... 112	

5.1	 Conclusions ... 112	

5.2	 Future lines ... 113	

6	 Docker commands Cheat sheet .. 115	

7	 Reference ... 118	

Index of figures

FIGURE	1	:	GENERAL	DIAGRAM	OF	THE	GPON	ACCESS	NETWORK	DEPLOYED	IN	THE	LABORATORY

	..	8	
FIGURE	2	:	THE	WORKFLOW	WHEN	THE	IMAGE	IS	BUILT	FROM	DOCKERFILE	...	10	
FIGURE	3	:	THE	CONTROL	PLANE	REMAINS	IN	THE	HANDS	OF	THE	CONTROLLER	11	
FIGURE	4	:	VERSIONS	OF	OPENFLOW	SUPPORTED	BY	EACH	VERSION	OF	OPEN	VSWITCH	16	
FIGURE	5	:	STRUCTURE	OF	THE	DIFFERENT	SUBNETS	PRESENT	IN	OUR	REAL	NETWORK	

SCENARIO	..	19	
FIGURE	6	:	CURRENT	CONNECTION	BETWEEN	THE	TWO	SERVERS	VIA	OPTICAL	INTERFACE	

ENP6S0F0	..	22	
FIGURE	7	:	MAKING	CHRON	2	A	SERVER	FOR	IPERF	..	23	
FIGURE	8	:	MAKING	CHRON	3	AN	IPERF	CLIENT	..	23	
FIGURE	9	:	TCP	TEST	WITH	IPERF	FOR	2GBPS	..	24	
FIGURE	10	:	TCP	IPERF	TESTS	FROM	1-10GBPS	...	25	
FIGURE	11	:	MAKE	CHRON	2	IPERF3	SERVER	..	26	
FIGURE	12:	IPERF3	CLIENT	SIDE	ON	CHRON	3	...	26	
FIGURE	13	:	STARTING	IPERF	SERVER	FOR	UDP	...	28	
FIGURE	14	:	CLIENT-SIDE	OUTPUTS	IPERF	WITH	UDP	...	29	
FIGURE	15	:	OUTPUT	UDP	1-10GBPS	...	29	
FIGURE	16	:	IPERF3	WITH	UDP	:	MAXIMUM	RATE	..	30	
FIGURE	17	:	UDP	TEST	WITH	IDP-COUNTERS-64	..	31	
FIGURE	18	:	UDP	TEST	WITH	CHUNK	LENGTH	INCREASED.	CHUNK	..	31	
FIGURE	19	:OUTPUT	OF	COMMAND	DOCKER	IMAGES	..	33	
FIGURE	20	:	DOCKER0	NETWORK	WITH	2	CONTAINERS	..	35	
FIGURE	21	:CONTAINER	ONE	WITH	DOCKER0	NETWORK	...	35	
FIGURE	22	:	CONTAINER	2	WITH	DOCKER0	NETWORK	...	35	
FIGURE	23	:CLIENT	SIDE	OF	THE	IPERF	INSIDE	A	CONTAINER	..	36	
FIGURE	24	:SERVER	SIDE	OF	THE	IPERF	INSIDE	A	CONTAINER	...	36	
FIGURE	25:	IPERF3	RESULT	WITH	UDP	(CONTAINERS)	..	38	
FIGURE	26	:	UDP	TEST	WITH	IPERF3	WITH	-L	PARAMETER	...	38	
FIGURE	27	:	DOCKER0	DEFAULT	DOCKER	BRIDGE	...	39	
FIGURE	28	:	DEFAULT	NETWORK	MODEL	OF	DOCKER	CONTAINERS	...	40	
FIGURE	29	:	DOCKER	BRIDGE	BRIDGE_TEST	...	43	
FIGURE	30:	CLASSIC	GPON	SCENARIO	...	47	
FIGURE	31:	NETWORK	TOPOLOGY	WITH	TWO	DOCKER	CONTAINERS	..	48	
FIGURE	32	:	TOPOLOGY	OF	THE	CONNECTION	OF	THE	ROUTER	TO	THE	OLT	..	50	
FIGURE	33	:	CREATION	OF	VLANS	...	52	
FIGURE	34	:	NEW	TOPOLOGY	TO	TEST	THE	ROUTING	AND	DCHP	SERVER.	...	54	

Índice de figuras

xi

FIGURE	35	:	TOPOLOGY	CREATED	TO	TEST	THE	DHCP	SERVER	AND	THE	ROUTER	55	
FIGURE	36:	DHCP	ACK	833	..	55	
FIGURE	37:	DHCP	ACK	806	..	56	
FIGURE	38:	IP	CHECK	ON	THE	806	AND	833	INTERFACES	..	56	
FIGURE	39	:	CONNECTION	BETWEEN	VIRTUAL	INTERFACES	ON	CHRON3	AND	CHRON2	57	
FIGURE	40:	TOPOLOGY	FOR	TESTING	THE	ROUTER	PERFORMANCE	..	57	
FIGURE	41:	CHRON	4	PINGED	FROM	CHRON	2	...	58	
FIGURE	42	:CHRON	2	PINGED	FROM	CHRON	3	...	58	
FIGURE	43	:CHRON	4	PINGED	FROM	CHRON	3.	..	59	
FIGURE	44:	OVS	START	...	61	
FIGURE	45	:	WORKING	OF	OVS	BRIDGE	..	61	
FIGURE	46	:	WRONG	IMPLEMENTATION	OF	THE	VIRTUAL	SWITCH	...	62	
FIGURE	47	:	CORRECT	IMPLEMENTATION	OF	THE	VIRTUAL	SWITCH	..	63	
FIGURE	48	:	DISPLAY	ALL	PORTS	ON	MYBRIDGE	..	63	
FIGURE	49	:	NEWLY	CREATED	OVS	BRIDGE	WITHOUT	ANY	IP	CONFIGURATIONS.	64	
FIGURE	50	:	NEWLY	CREATED	OVS	BRIDGE	WITH	IP	CONFIGURATIONS	..	64	
FIGURE	51	:	CONNECTION	CHECK	THROUGH	THE	BRIDGE	..	65	
FIGURE	52:	FLOW	LISTS	WITH	DIFFERENT	PRIORITY	BEFORE	THE	PINGS	...	65	
FIGURE	53	:	FLOW	STATISTICS	AFTER	THE	PINGS	...	66	
FIGURE	54	:	FIRST	START	OF	THE	OPEN	DAYLIGHT	..	69	
FIGURE	55	:	CONTROLLER	ACCEPTED	BY	THE	SWITCH	...	70	
FIGURE	56	:	FEATURE	INSTALLATION	RESTCONF	..	70	
FIGURE	57:	FEATURE	INSTALLATION	OPENFLOW	PLUGIN	...	70	
FIGURE	58	:	SWITCH	TOPOLOGY	DATA	..	72	
FIGURE	59	:	DISPLAY	FLOW	ENTRIES	IN	ONE	SPECIFIC	NODE	OF	THE	TOPOLOGY	73	
FIGURE	60	:	POSTMAN	HOMEPAGE	..	74	
FIGURE	61	:	POSTMAN	CREATE	NEW	COLLECTION	...	74	
FIGURE	62	:	POSTMAN	COLLECTION	NAME	AUTHENTICATION	..	75	
FIGURE	63	:	POSTMAN	HEADERS	..	75	
FIGURE	64	:	POST	MAN	UPPER	AND	LOWER	BODY	..	76	
FIGURE	65	:	FLOWCHART	DETAILING	PACKET	FLOW	THROUGH	AN	OPENFLOW	SWITCH	77	
FIGURE	66	:	PUT	FLOW	INTO	THE	TABLE	...	79	
FIGURE	67	:	DUMP	ALL	FLOWS	ON	THE	BRIDGE	...	79	
FIGURE	68	:	DIFFERENT	OPTIONS	AVAILABLE	I.E.	PUT,	DELETE	AND	GET	..	84	
FIGURE	69	:	NEWLY	CREATED	METERS	CHECK	ON	THE	VSWITCH	..	85	
FIGURE	70	:	OUTPUT	WITH	DUMP-FLOWS	COMMAND	...	87	
FIGURE	71	:	NORMAL	FLOW	TEST	..	88	
FIGURE	72	:	NORMAL	FLOW	STATISTICS	AFTER	THE	PING	...	88	
FIGURE	73	:	TWO	FLOWS	CREATED	WITH	DIFFERENT	PRIORITY	..	88	
FIGURE	74	:	FLOW	STATS	WITH	DIFFERENT	PRIORITY	...	88	

Índice de figuras

xii

FIGURE	75	:	FLOW	ENTRY	CHECK	FOR	SPECIFIC	PORT	..	89	
FIGURE	76	:	FLOW	ENTRY	FOR	SPECIFIC	NETWORK	ADDRESS	...	89	
FIGURE	77	:	FLOW	STATISTICS	CHECK	AFTER	THE	PINGS	...	89	
FIGURE	78	:	FLOW	ENTRY	WITH	METER	1	...	89	
FIGURE	79	:	PERF3	TEST	WITH	METER	1	(30	MBPS)	..	90	
FIGURE	80	:	FLOW	ENTRY	WITH	METER	2	(50	MBPS)	..	90	
FIGURE	81	:	IPERF3	TEST	WITH	METER	2	(50	MBPS)	...	91	
FIGURE	82	:	FLOW	ENTRY	WITH	METER	3	(100	MBPS)	...	91	
FIGURE	83	:	IPERF3	WITH	METER	3	(100	MBPS)	..	91	
FIGURE	84	:	FLOW	ENTRY	WITH	METER	4	(500	MPBS)	...	92	
FIGURE	85	:	IPERF3	WITH	METER	4	(500	MBPS)	..	92	
FIGURE	86	:	IPERF3	WITH	METER	5	(5	GBPS)	...	94	
FIGURE	87	:DOCKER	CONTAINERS	WITH	ONOS.	..	94	
FIGURE	88	:	ONOS	AUTHENTICATION	...	96	
FIGURE	89	:	ONOS	FRONTPAGE	..	96	
FIGURE	90	:	ENABLING	AN	APPLICATION.	..	97	
FIGURE	91	:	TOPOLOGY	AFTER	THE	CONNECTION	HAS	BEEN	MADE.	..	98	
FIGURE	92	:	APPLICATION	FWD	HAS	BEEN	INSTALLED	..	99	
FIGURE	93	:	CONNECTION	TEST	THROUGH	THE	OVS	BRIDGE	WITH	FWD	APPLICATION	ENABLED.

	..	99	
FIGURE	94	:	ONOS	CORE	REST	API	LIST	OF	AVAILABLE	FEATURES.	...	100	
FIGURE	95	:	ALL	OPTIONS	AVAILABLE	WITH	THE	FEATURE	FLOWS	...	101	
FIGURE	96	:	CREATION	OF	FLOWS	WITH	GUI	...	102	
FIGURE	97	:	DUMP-FLOWS	ON	OVS	...	104	
FIGURE	98	:	CONNECTION	TEST	ON	THE	NEWLY	CREATED	FLOW.	..	104	
FIGURE	99	:	FLOW	ENTRY	FOR	SPECIFIC	MAC	ID	...	105	
FIGURE	100	:	OPTIONS	ON	THE	METERS	FEATURE.	...	106	
FIGURE	101	:	CREATION	OF	METERS	IN	ONOS	..	106	
FIGURE	102	:	CONFIGURATION	OF	A	FLOW	WITH	METER	INTO	IT	...	108	
FIGURE	103	:	CHECK	THE	FLOW	ENTRY	ON	THE	OVS	..	108	
FIGURE	104	:	IPERF	TEST	WITH	METER	1	ENABLED	...	109	

Deployment of a GPON-SDN solution in a server using Docker

 1

1 Introduction

1.1 Motivation

In this Project, the implementation of the SDN (Software Designed Network)

scenario has been carried out in a GPON access network (Gigabit Passive Optical

Network) through the OpenFlow protocol. This access network is located in the Optical

Communications Laboratory (2L007) of the Higher Technical School of

Telecommunications Engineers of the University of Valladolid.

An SDN scenario implies that the control plane and the data plane are separated,

the control plane being separated by software in a controller (in our case, an OpenFlow

controller). OpenFlow is an open standard that allows the creation of different

experimental protocols. In classic routers and switches, the data path (sending data from

one place to another) and the control path (routing decision-making) occurred on the same

computer [1]. Using OpenFlow, the control path can be moved to a controller that will

communicate with the switch or router where the data path still resides using OpenFlow

messages. One of the great advantages of this design is that a single controller could

operate on different switches or routers simultaneously, allowing the connections and

interactions between them to vary depending on the state of the network.

Thanks to this flexibility and real-time control of our SDN-GPON network, we will

be able to offer the end customer the possibility of dynamically managing their contracted

services.

Deployment of a GPON-SDN solution in a server using Docker

 2

1.2 Objectives

 General Objective

The main objective of this Final Degree Project is to deepen the implementation of

OpenFlow in a GPON access network to continue converting the network to an SDN

paradigm in which the data planes and the control planes are separated. For this, services

and requirements of quality parameters will be configured and managed using OpenFlow,

which will require the installation of several virtual switches implemented in different parts

of the GPON network. Specifically, they will be placed before the OLT (Optical Line

Terminal) and after the ONT (Optical Network Terminal) to be able to control and monitor

the entry of any packet into our GPON access network.

When our network is completely SDN and we can control the services and

requirements in real time both upstream and downstream, we will implement a web

interface so that the client dynamically controls their bandwidth in real time. In this way,

a new business model will be introduced for operators in which users may be able to

modify their requirements in real time after paying for the use of said network resources.

This general objective can be broken down into more specific ones:

 Specific Objectives

 By carrying out this study, the following specific objectives needs to be met:

• Analysis of the GPON network topology prior to carrying out the research

for its modification.

• Implementation of a router and DHCP server in an external server.

• Implementation of the SDN layer in the GPON network by installing and

configuring virtual switches in an external server in order to emulate the

OLT side.

• Evolution in the integration of the OpenFlow standard in a GPON network

model.

Deployment of a GPON-SDN solution in a server using Docker

 3

• Communication between the virtual switches and the OpenDayLight and

ONOS controllers for their OpenFlow management.

• Creation of services and requirements management using the OpenFlow

standard in the SDN-GPON implementation.

1.3 Stages of the Project

The methodology to follow for the development of the objectives of the Project

mainly consists of the phases that will be explained below.

 Analysis stage

The purpose of this phase is to learn in a basic way how the main components of

this Project work:

• Analysis of the GPON network topology of laboratory 2L007: study of
the different network components and the connection between them to
implement a router and a DHCP server within said network.

• Analysis of the OpenFlow protocol: study of the basic operation of

this protocol, its different versions and types of existing controllers.

• Analysis of the Open vSwitch: study of its operation, implementation and

configuration, as well as the analysis between its different versions and

functionalities.

• Analysis of the SDN implementation in the GPON network: study of the

inner workings of the OpenDayLight controller, ONOS controller, virtual

switches and communication between them for the dynamic management

of the bandwidth.

• Analysis of the Docker Technology: study of the workings of Docker,

virtualisations with docker, inner workings of networks in docker and

investigate on running the earlier mentioned controllers, ovs and dhcp

server inside a docker container.

Deployment of a GPON-SDN solution in a server using Docker

 4

 Implementation stage

This phase aims to implement the different programs or machines necessary to meet

specific objectives. Before each implementation, the necessary specific analysis will be

carried out.

For this, we will need to optimally manage the Linux operating system, since many

of the implementations are based on commands and utilities specific to this operating

system, such as iptables or vconfig.

 Testing Stage

In this final phase of the project, a test task will be carried out to observe the

performance of the real network thanks to two tools, iperf and Wireshark. With the first

we are going to be able to measure the network speed and the real up and down traffic on

our network. With the second one we will be able to observe the OpenFlow messages and

we will be able to obtain graphs on the performance of TCP communications thanks to

tcptrace, a utility included within Wireshark.

 Reporting stage

In this phase, the project reports are carried out.

Deployment of a GPON-SDN solution in a server using Docker

 5

Deployment of a GPON-SDN solution in a server using Docker

 6

2 Methodology and Software tools

2.1 Introduction

In this chapter, a descriptive analysis of the main components used in this Project

will be carried out, i.e. the GPON access network, the OpenFlow protocol, the

OpenDayLight controller, the ONOS controller, the Docker virtualization tool and the

Open vSwitch. In addition, the methodology used to carry out this work will also be

described.

The GPON access network (from the manufacturer Telnet Redes Inteligentes [2])

is located in the Optical Communications laboratory (2L007) of the Higher Technical

School of Telecommunications Engineers at the University of Valladolid. The main

elements of this network are the OLT (Optical Line Termination) and the ONUs / ONTs

(Optical Network Unit / Terminal) where the OLT provides its services. These services

can be configured in two different ways: by using the visual TGMS interface (TELNET

GPON Management System) or directly, by accessing the OLT via CLI (Command Line

Interface) through its configuration port. However, in this project, we are going to

configure and manage the services and subscriber profiles of residential users (connected

to ONTs) using the OpenFlow protocol [2].

For this part, OpenFlow is a standard that allows the creation of experimental

protocols based on the separation it makes between data path (sending from one place to

another) and control path (decision-making), which allows SDN to be introduced in

networks. These terms would be like the control plane and the data plane. OpenFlow has

several versions and controllers, being version 1.3 and the OpenFlow OpenDayLight [3]

and the ONOS controller will be used in this work. Finally, the Open vSwitch virtual

switch [4] is an open source virtual switch, with various functions currently under

development that allows us to implement an OpenFlow switch transparently to the user

and the network in general. This virtual switch allows connecting to OpenFlow controllers

to be easily and transparently managed by them through the OpenFlow protocol. This new

Deployment of a GPON-SDN solution in a server using Docker

 7

network scenario is the one we want to implement in our GPON real optical access

network.

2.2 GPON testbed in the Optical Communication laboratory

This section of the chapter will describe both the structure and components of the

access network and the different management modes available to the GPON network

deployed in the laboratory.

An access network is a set of elements that allow end users to connect with service

providers, so that they can give said users the services they have contracted.

Our GPON optical access network has a tree topology, where one OLT serves

multiple ONUs / ONTs. In the case of our laboratory network, the OLT serves a total of 4

ONTs on port 0, being expandable up to a maximum of 64 ONTs per port. Since the OLT

has a total of 4 ports, the OLT can support a total of up to 256 ONTs. Other elements of

the network will be the single-mode optical fiber that connects the different optical

components together and the splitters (optical dividers), responsible for dividing the signal

so that each of the ports of the service OLT to various ONUs. The optical fiber deployed

in this testbed can reach 25 km (according to the GPON standard), and the optical splitters

are in a 1: 8 ratio (two are available, although one is currently connected). The general

appearance of the GPON access network is shown in the image in Figure 1.

Deployment of a GPON-SDN solution in a server using Docker

 8

Figure 1 : General diagram of the GPON access network deployed in the laboratory

The components of the access network have been manufactured by the company

TELNET Redes Inteligentes [2], so that compatibility between them is guaranteed.

Depending on the direction that the data takes, one can speak of two different flows or

channels:

• Downstream channel: known as downstream, it is the flow that carries

data from the central office (OLT) to the end users (ONUs). According

to the GPON standard, the maximum downstream rate allowed is 2.5

Gbps and the wavelength is 1490 nm.

• Upstream channel: known as upstream, it is the flow that carries data

from users to the central office (the ONU is the source). According to

the GPON standard, the maximum rate allowed in the upstream is 1.25

Gbps and the wavelength is 1310 nm.

It is important to consider these two channels, since the total sum of the upstream

and downstream rates given to each of the services provided to the different ONTs / ONUs

Deployment of a GPON-SDN solution in a server using Docker

 9

cannot exceed the maximum imposed by the GPON standard. Otherwise, the network will

trigger an error in its configuration and start-up.

2.3 Docker

Docker is a virtualization tool designed to make it easier to create, deploy, and run

applications by using containers [5]. Containers allow a developer to package up an

application with all the parts it needs, such as libraries and other dependencies, and deploy

it as one package. By doing so, thanks to the container, the developer can rest assured that

the application will run on any other Linux machine regardless of any customized settings

that the machine might have that is different from the machine, the code or the application

was written on.

In a way, Docker is a bit like a virtual machine. But unlike a virtual machine, rather

than creating a whole virtual operating system, Docker allows applications to use the same

Linux kernel as the host system that they're running on and only requires applications be

shipped with things not already running on the host computer. This gives a significant

performance boost and reduces the size of the application.

There are two main internal components of docker: images and containers.

2.3.1.1 Images

Images are read-only templates with instructions to create a docker container.

Images can be pulled from the Docker Hub. Docker Hub is very similar to GitHub for the

users who are more familiar with it. Most open source communities including onos, node,

Debian and many others have prebuilt updated docker-images available for the developers

on the Docker Hub.

Instead of using a pre-built images by the organizations a Docker image can also

be created using a Dockerfile. Dockerfile is a simple text file with a set of commands or

instructions. These instructions are executed successively to perform actions on the base

image to create a new docker image. These commands or instructions include installing

packages, dependencies, exposing a specific host port to run the webserver application and

running a script (For example: instruction to run a NodeJS script, if the user is building an

image for NodeJS application).

Deployment of a GPON-SDN solution in a server using Docker

 10

In the scenario where the image is self-built, the workflow looks like it can be observed in

Fig 2.

Figure 2 : The workflow when the image is built from Dockerfile

• Create a Dockerfile and mention the instructions to create a docker image.

• Run docker build command which will build a docker image.

• Now the docker image is ready to be used, use docker run command to create

container.

In this project we will mainly focus on using pre-built images as building your own

images for the complex software tools like SDN controllers and the virtual switches could

use up a lot of time and it is easier and faster to use the pre-built images.

2.3.1.2 Containers

A container is a standard unit of software that packages up code and all its

dependencies, so the application runs quickly and reliably from one computing

environment to another. A Docker image is a lightweight, standalone, executable package

of software that includes everything needed to run an application: code, runtime, system

tools, system libraries and settings. An image becomes a container at runtime. Available

for both Linux and Windows-based applications, containerized software will always run

the same, regardless of the infrastructure of the Docker host [5]. Containers share the

machine’s OS system kernel and therefore do not require an OS per application, driving

higher server efficiencies and reducing costs.

Containers and traditional virtual machines have similar resource isolation and

allocation benefits, but function differently because containers virtualize the operating

system instead of hardware. Containers are more portable and efficient.

Deployment of a GPON-SDN solution in a server using Docker

 11

2.4 SDN (Software Defining Networking)

The basis for the most precise definition of what SDN would be the idea of

programmability. A technology that separates the control plane management of network

devices from the underlying data plane that forwards the network traffic [1].

SDN architectures feature software-defined overlays or controllers that are

abstracted from the underlying network hardware, offering intent-or policy-based

management of the network. This results in a datacenter network that is better aligned with

the needs of application workloads through automated (thereby faster) provisioning, and

programmatic network management.

SDN promises to reduce the complexity of statically defined networks; make

automating network functions much easier and allow for simpler provisioning and

management of networked resources.

At its heart SDN has a centralized or distributed intelligent entity that has an entire

view of the network, that can make routing and switching decisions based on that view.

Typically, network routers and switches only know about their neighboring

network gear. But with a properly configured SDN environment, that central entity can

control everything, from easily changing policies to simplifying configuration and

automation across the enterprise. Figure 3 shows how different switches are controlled by

a single SDN controller.

Figure 3 : The control plane remains in the hands of the controller

Deployment of a GPON-SDN solution in a server using Docker

 12

2.5 OpenFlow standard

OpenFlow is an emerging and open communications protocol that allows the

creation of new protocols thanks to the division it makes between transmitting data from

one point to another and making routing decisions within a switch or router. With

OpenFlow, a part of the data path resides on the same switch, but high-level routing

decisions are made by a controller. Both elements communicate through the OpenFlow

protocol. This methodology, known as SDN, allows greater effectiveness in the use of

network resources than in a conventional network.

In classic routers and switches, the data path (sending data from one place to

another) and the control path (routing decision-making) occurs on the same computer [2].

Using OpenFlow, the control path can be moved to a controller that will communicate with

the switch or router where the data path still resides using OpenFlow messages. One of the

great advantages of this design is that a single Controller could operate on different

switches or routers simultaneously, allowing the connections and interactions between

them to vary, depending on the state of the network.

The basic operation is as follows: an OpenFlow controller, responsible for routing

decisions, connects to an OpenFlow switch or router with several terminals connected on

its different ports. This controller constantly communicates with the switch or router

through the sending of OpenFlow messages, so that it can configure the connections

between the hosts connected to the switch or router based on data that reaches it from there.

For example, imagine two different hosts A and B connected to ports 1 and 2 of a switch

respectively, and that the switch has no configuration set. If host A wants to send

something to host B, in principle it could not due to this lack of configuration. However,

thanks to OpenFlow, the switch can detect that it has a packet on port 1 that must go to

port 2, send a notification to the controller in the form of an OpenFlow message, and

receive in response one or more OpenFlow tables with the necessary configuration for

hosts A and B can communicate without any problem.

On the other hand, there has been talk of setting up OpenFlow tables. An OpenFlow

table is an entity that contains different flows, which are used by the switch to perform

different operations (instructions) if certain conditions are met (match). In the previous

Deployment of a GPON-SDN solution in a server using Docker

 13

example, one of the OpenFlow tables that the controller sends to the switch could be one

with a flow that says that if the input port to the switch of the packet is 1, the packet is sent

through port 2. In addition, they can nest tables and flows with different priority orders, so

that the switch can consider many different parameters when processing the messages that

arrive [6].

2.6 SDN controllers

The OpenFlow controller is the "brain" that dictates to the switch or router what to

do with the incoming and outgoing data, using different types of OpenFlow messages also

known as flow entries. A single controller can manage multiple routers or switches in real

time, allowing you to radically change the connections of a network based, for example,

on parameters such as traffic passing through certain points [6].

Currently there are several types of controllers that differ in the versions of the

OpenFlow standard that they support and in the programming language in which the

different applications available in each of them are written. The OpenDayLight controller

was used for this work [3], as this controller is the one implemented in previous works,

which is a continuation of the research carried out in it. Finally, ONOS [7] controller will

also be used to test the same features similar to the ODL.

 OpenDayLight

The OpenDayLight controller is a versatile driver programmed in Java and

supporting OpenFlow versions 1.0 and 1.3. This controller is not intended exclusively for

the use of OpenFlow, since OpenFlow is just one of several protocols and standards that

are part of Software Defined Networks (SDN), networks that can vary their functionality

by using of different programs [2]. However, in this work we will limit ourselves to using

its OpenFlow aspect.

To allow administration, OpenDaylight offers two APIs. An OSGI (Java) API for

applications in the same address space and an ordinary REST API. The command line is

only for installing packages or features and getting very basic information about the driver,

not the network. Unlike ONOS, the OpenDaylight (DLUX) graphical interface is not very

friendly. In addition to displaying a simple graph with the network topology, the

Deployment of a GPON-SDN solution in a server using Docker

 14

OpenDaylight YANG UI module allows you to interact graphically with the REST API,

making calls to the API and offering information on the data structures it uses. Through

this graphical user interface you can configure the network or obtain detailed information

on the infrastructure [8].

The DLUX GUI features are only available when running the older versions of

ODL (up to the 8th version). For this project we will be looking to work with the latest

versions (11th) so the graphical user interface will be replaced by an application named

Postman.

 Open Network Operating System (ONOS)

ONOS (Open Network Operating System) is an Open Source SDN controller

managed by the Linux Foundation [7]. Among its main goals is to offer a scalable, high

performance controller with support for high availability and compatible with both

traditional devices and OpenFlow devices. It is written in Java and built on Apache Karaf.

It is the most telemarketer-oriented controller but can also be used (and is used)

within data processing centers. It has the support of large companies within the

telecommunications sector. Mainly, from some of the world's largest telemarketers, such

as AT&T, China Unicom, Comcast or Deutsche Telekom [7]. It also has the support of

manufacturers like Huawei, who work closely with ONOS to deploy real scenarios.

It is a well a documented controller. All the information is correctly classified and

updated. It is worth noting the ease of setting up a simple SDN network with ONOS

surpasses that of an ODL controller. Only two applications need to be activated,

org.onosproject.openflow in order to communicate the OpenFlow switches with the

controller, and org.onosproject.fwd to enable reactive forwarding. Reactive forwarding

consists of creating flows dynamically when the controller does not have any specific flow

to handle that traffic (like a normal flow in ODL).

ONOS can be managed through its REST API, command line (CLI) and graphical

web interface. The command line is based on the Apache Karaf CLI and allows you to

manage the main characteristics of the network. For example, it allows you to create,

delete, and modify flows and to manage network devices. Regarding the graphical

Deployment of a GPON-SDN solution in a server using Docker

 15

interface, it is primarily intended to offer a graphical representation of the network

topology and its state [8], in this project the ONOS controller will also be configured via

the user interface provided by the REST API documents.

2.7 Open Virtual Switch (Open vSwitch – OVS)

Open vSwitch, short for OVS, is open source software designed to be used as a

virtual switch in virtualized environments. It is designed to enable massive network

automation, while supporting standard management interfaces and protocols (NetFlow,

sFlow, IPFIX, RSPAN, CLI, LACP, 802.1). Also, it is designed to support a distribution

for multiple physical servers similar to the VMWare's vNetwork switch or the Cisco's

Nexus 1000V [9].

In relation to our project, Open vSwitch is one of the most popular implementations

of OpenFlow and supports this protocol by default. This allows us to implement an

OpenFlow layer on different devices transparently to the user and the rest of the network.

Conceptually, the functions of a switch can be divided into two planes (the control plane

and the data plane). The control plane is the core intelligence of the switch, which is

responsible for discovery, routing, path computation, and communication with other

switches. In this sense, OpenFlow allows us to download the control plane of all the

switches to a central controller that defines the behavior of the network (what is known

today as SDN) [10].

In this way, Open vSwitch becomes a perfect option for our project, since it

combines default support for the different versions of OpenFlow, as it can be seen in Figure

4 [9]. In addition, it is prepared to perform SDN and is light and transparent to the user and

other networks.

Deployment of a GPON-SDN solution in a server using Docker

 16

Figure 4 : versions of OpenFlow supported by each version of Open vSwitch

The symbols of Figure 4 means:

• ¾ Not supported.

• yes Supported and enabled by default.

• (*) Supported but missing features, and must be enabled by user.

2.8 POSTMAN

Postman is an API Development Environment that helps people to build, test,

document, monitor and publish documentation for their APIs. Postman users enter data,

the data is sent to a special web server address. Typically, information is returned, which

Postman presents to the user. Postman's features simplify API building and streamline

collaboration.

With Postman all REST queries can be executed. Any type of request can be sent

in Postman. It offers a sleek user interface with which to make HTML requests, without

the hassle of writing a bunch of code just to test an API's functionality.

Postman can run GET, PUT, PATCH, DELETE, and various other request methods

as well, and has utilities to help with developing APIs. Free and paid versions are available

for Mac, Windows, Linux, and as a Chrome app [11].

Deployment of a GPON-SDN solution in a server using Docker

 17

2.9 IPERF

IPERF is an open source tool that can be used to test network performance. Iperf is

much more reliable in its test results compared to many other online network speed test

providers [12]

An added advantage of using IPERF for testing network performance is the fact

that, it is very reliable if you have two servers, both in geographically different locations,

and you want to measure network performance between them.

The operating system does not matter, while you are using iperf. The commands

for using iperf on windows is the same as in linux and another operating system. Normally

in the test environment, iperf client sends data to the server for the test.

2.10 Methodology

In this section of the chapter, a description will be made of the methodology and

steps to be followed for the final achievement of the proposed objectives. Recall that the

objective of the work is the integration of the OpenFlow standard in our GPON model to

implement an end-to-end SDN scenario and thus separate the data plane from the control

plane.

 Iperf tests on the Optical Network cards on the server and Docker

The first step is to use the Iperf technology to test the throughput of the network

cards on the servers, this is necessary so we understand the capacity it holds. After the Iperf

tests, we also need to study the docker configurations, how it works, and als run the

through-put tests inside the docker container to check for differences. Subsequently more

research will be done regarding installation of the softwares like OVS, ONOS, ODL,

DHCP server inside a docker container.

 Linux Routing programming and a DHCP server

The second step to achieve the desired scenario is to program a router on a

computer. To do this, we will use the Linux kernel utility to forward IP packets between

several networks (that is, that our computer acts as a router). We need to perform this task

to control the network that reaches the GPON model. Subsequently, a DHCP (Dynamic

Deployment of a GPON-SDN solution in a server using Docker

 18

Host Configuration Protocol) server will be installed to give the network configuration

parameters to the machines that connect to the Router.

 Installation of the OVS

The third step consisted of installing the OVS, to simulate the implementation of

the SDN layer on the OLT side. To do this, we follow the guide provided by its official

website [13] and then complete the installation.

 Connection of OVS with controllers (ODL and ONOS)

The next step is to configure within the different OVS switches in which direction

or address the controller is located. After specifying this on all the switches, we must

configure the routing tables on the device with OVS and the Router, so that there is

communication between the switches and the controller, even if they are on different

subnets. At the telematic level, a layer 3 subnet (network layer) is defined as all those

devices that are between a router and another router.

In other words, routers divide network space into different networks or subnets. In

Figure 5 we can see how our real experimental network is divided into different subnets.

In this topology we have several subnets, particularly subnets (192.168.0.0/24 and

10.19.59.0/24) between the router and each of the ONTs (although if we add more VLANs

we would have one subnet for each different VLAN); and the subnets of each ONT that is

defined between the ONT itself and the end customer (192.168.x.0 / 24). In this way, if we

divide the network correctly maintaining connectivity between the devices, we will

improve the security and performance of our network. In the GPON network, the OLT is

transparent at the network layer, i.e. it is not a router as such, although it does have certain

network layer functionalities. Therefore, this device does not divide subnets between its

different interfaces.

Deployment of a GPON-SDN solution in a server using Docker

 19

Figure 5 : Structure of the different subnets present in our real network scenario

 Programming and display of flow tables

The next step is to program the flow tables as well as the flows in the OpenDayLight

controller and the ONOS controller instead of doing it manually on each OVS. To do this,

on the OpenDayLight, we will use Postman and on the ONOS its own GUI will be used.

This both utilities allow configuring the flows with a graphical interface friendlier for the

administrator.

OpenFlow 1.3 has several tables in which to introduce our flows. By default, table

0 is used every time we add new flows, although OpenFlow supports up to 255 tables.

Although we use only one table in which we enter all the flows, because our flows only

have two different instructions, some network administrators prefer to add more tables and

dedicate each table to perform a certain action and separate each flow into different tables

logically and according to their behavior.

Each flow will have several fields configured (match, action, instruction ...) that we

will define later in Chapter 4. Since the objective of this investigation is to configure the

services of the GPON network using OpenFlow, we will try to define these services

Deployment of a GPON-SDN solution in a server using Docker

 20

through these OpenFlow flows. Therefore, once the different flows and tables have been

configured, it will be proven that the services and traffic of the GPON network are

managed efficiently and automatically by means of these configured flows. To do this, the

relevant tests will be launched and observed in the real GPON network, the results of which

will be shown in Chapter 4.

For example: different flows could be created on different tables for a specific

packet. A flow entry on table 0 will forward any packet coming from specific NA (for

example:192.168.3.0/24) to table 1, then on the table 1 the packet will be moved on to table

2 if the packet’s destination address is 192.168.4.5, finally in the table 3 then flow entry

could be configured so that specific packet gets outputted through one of the ports on the

switch and eventually even apply a meter to it if it is needed. This method could be used

to apply security measures to the packets passing through an OVS bridge just like it is done

in traditional routers to discard specific packets.

2.11 Summary

In this chapter, the tools that will be used in this Project have been described, as

well as the work methodology to achieve the final objective, that is, implement an SDN

layer using the OpenFlow protocol in a real GPON model. Specifically, the steps to carry

out said implementation have been explained. To do this, we need to implement a router

with DHCP, we need to install a virtual switch, finally, each switch will be connected to

the SDN controllers. With this implementation, flows can be programmed in the

controllers in order to manage the traffic of the different services assigned in each ONT

(user).

Deployment of a GPON-SDN solution in a server using Docker

 21

3 IPERF tests and Initial DOCKER

Configuration

3.1 Introduction

In this chapter we will mainly focus on studying how ifperf works and how we can

use it properly to conduct accurate tests that will be required to troubleshoot any problems

we might face during this project.

After the iperf tests, we will also study the Docker documentation and test the usual

docker commands and explain their working. Docker is the technology that will be used to

virtualize this project and it is necessary to understand its working related to networking

and its efficiency in general.

3.2 IPERF and IPERF3

As we discussed before in Chapter 2, iperf can be used to perform speed test

between remote machines. It works in a client server model. To install the iperf and iperf

3, it can be done with simple command: apt-install -y iperf iperf3.

In this way, Figure 6 shows the current connection and IP configuration that exists

between the two servers where the Iperf tests will be done. During these tests we will check

if the servers are able to give the bandwidth installed on them i.e. 10 Gbps.

To perform these tests, we use the iperf command and the iperf3 command, over

TCP and over UDP. The iperf is older version of iperf3 and during these tests we will also

decide which one of them will be used during the tests after the SDN scenario has been

installed.

Deployment of a GPON-SDN solution in a server using Docker

 22

Figure 6 : Current connection between the two servers via optical interface enp6s0f0

Before going ahead with the test, lets understand some networking concepts related

to speed test.

Network Throughput:

 Transfer rate of data from one place to another with respect to time is called as

throughput. Throughput is considered a quality measuring metric for hard disks, network

etc. Its measured in Kbps (Kilobits per second), Mbps (Megabits per second), Gbps (Giga

bits per second.)

TCP Window:

TCP (Transmission Control Protocol), is a reliable transport layer protocol used for

network communications. How TCP works, is beyond the scope of this project. TCP works

on a reliable manner, by sending messages and waiting for acknowledgement from the

receiver. Whenever two machines are communicating with each other, then each of them

will inform the other about the number of bytes it is ready to receive at one time. In other

words, the maximum amount of data that a sender can send the other end, without an

acknowledgement is called as Window Size. This TCP window size affects network

throughput very badly sometimes. If you increase the Window size a little bit to tune TCP,

it can bring significant difference to the throughput achieved. This will be easier to

understand during the tests. TCP Window Size will be modified during the TCP tests with

-w parameter if necessary.

Deployment of a GPON-SDN solution in a server using Docker

 23

 TCP Tests

3.2.1.1 Iperf2

For these tests we make Chron 2 (Figure 7) our iperf server with the command iperf

-s.

Figure 7 : Making Chron 2 a server for iperf

On the Chron 3 the command iperf -c 192.168.1.1 -t 30 can be typed to make it an

iperf client that needs to connect to the server with IP 192.168.1.1 as it can be seen on

Figure 8.

Figure 8 : Making Chron 3 an iperf client

Deployment of a GPON-SDN solution in a server using Docker

 24

From the output in Figure 8, we can see that we got a speed of 9.35 Gbps. The

speed is in the expected Range of 10Gbps. The output shows some more parameters that

are explained below.

Interval: Interval specifies the time duration for which the data is transferred. This

is specified by adding t followed by any number the user wants the interval to be with the

iperf command on the client (see Figure 8).

Transfer: All data transferred using iperf is through memory and is flushed out after

completing the test. So, there is no need to clear the transferred file after the test. This

column shows the transferred data size.

Bandwidth: This shows the rate of speed with which the data is transferred.

In the next tests, we will be forcing TCP to have certain bandwidth instead of

allowing the system to work at the maximum throughput of 10 Gbps.

The server side remains the same and we can keep it running, we need to change a

few details on the command executed on the client side: iperf -c 192.168.1.1 -t 30 -b

2000m. We are asking the client to only throughput 2Gbps as it can be seen in Figure 9.

Figure 9 : TCP test with iperf for 2Gbps

Figure 9 shows that we received the exact amount of bandwidth we requested. To

test if this works for all instances, we will be running these same tests from 1-10Gbps in

the next steps.

Deployment of a GPON-SDN solution in a server using Docker

 25

Requested BW (Gbps) 1 2 3 4 5 6 7 8 9 10

Received BW (Gbps) 1.0 2.0 0.0 0.0 0.7 1.7 0.0 0.0 0.4 1.4

Figure 10 : TCP iperf tests from 1-10Gbps

From the data in the table above and Figure 10 we can see that the results after the

2 Gbps are not good. It is as if iperf only works efficiently when its executed at its default

max rate (the maximum bandwidth of the optical cards) and not so well when the user

forces what bandwidth it needs to throughput. Even when we tell the client to throughput

10 Gbps by specifying it (which is its maximum Bandwidth), it does not act as intended.

In the next steps we shall be running the same tests done above using iperf3.

3.2.1.2 Iperf3

iPerf3 is a tool for active measurements of the maximum achievable bandwidth on

IP networks. It supports tuning of various parameters related to timing, buffers and

protocols (TCP, UDP, SCTP with IPv4 and IPv6). For each test it reports the bandwidth,

loss, and other parameters. Iperf was originally developed by NLANR/DAST. iPerf3 is

principally developed by ESnet/Lawrence Berkeley National Laboratory [14].

Deployment of a GPON-SDN solution in a server using Docker

 26

The server side with iperf3 remains almost identical to iperf, so it can be started

with command iperf3 -s (see Figure 11).

Figure 11 : make Chron 2 iperf3 server

The client side is also identical with tiny change in the command: iperf3 -s

192.168.1.1 -t 30 as it can be observed in Figure 12.

Figure 12: iperf3 client side on Chron 3

At the maximum rate of 10 Gbps the results were a bit below regarding the previous

reached bit rate, 8.75Gbps (see Figure 12). In the next step we shall try to redo the same

tests done with iperf by indicating the bandwidth starting from 1-10 Gbps.

Deployment of a GPON-SDN solution in a server using Docker

 27

Required BW (Gbps 1 2 3 4 5 6 7 8 9 10

Received BW (Gbps) 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 9.4

Conclusion: The problems we had using iperf when the bandwidth was indicated

has disappeared, using iperf3 is strongly recommended when forcing a specific bandwidth

as the iperf caused some errors that we were not able to fix.

I could not find the exact reasons to why the indicated Bandwidth caused problems

with iperf and not with the iperf3 other than that iperf is multithreaded and iperf3 is single

thread and it is probably the reason behind it. According to a blog on access agility [15]

“iPerf2 was orphaned in the late 2000s at version 2.0.5, despite some known bugs

and issues. After spending some time trying to fix iperf2’s problems, ESnet decided by 2010

that a new, simpler tool was needed, and began development of iperf3.

The goal was to make the tool as simple as possible, so others could contribute to

the code base. For this reason, it was decided to make the tool single threaded, and not

worry about backwards compatibility with iperf2.

Then in 2014, Bob (Robert) McMahon from Broadcom restarted development of

iperf2. He fixed many of the problems with iperf2 and added several new features like

iperf3. iperf2.0.8, released in 2015, made iperf2 a useful tool.

iPerf2’s current development is focused on using UDP for latency testing, as well

as broad platform support.”

After the above quote it can be concluded that iperf2 is only being developed as a

tool for UDP tests and our issue could be related to the TCP bugs that never got fixed.

Deployment of a GPON-SDN solution in a server using Docker

 28

 UDP tests

3.2.2.1 Iperf2

In this section we will be testing the behavior of the infrastructure when we use the

UDP protocol. UDP is a connectionless oriented protocol so it’s not only necessary to

specify the server we are working on, but it is also mandatory to specify the bandwidth.

To start the test on the server side we input the following command: iperf -s -u. The

-u is compulsory to let the client know that it only wants UDP packets. The command and

output can be observed in Figure 13.

Figure 13 : starting iperf server for UDP

On the client side the following command is needed iperf -c 192.168.1.1 -t 30 -b

1000m -u. As it can be seen in the command for the UDP transfer we have to specify to

the client directly that we want to throughput a specific Bandwidth.

In Figure 13 and 14 we can also see that in UDP mode the iperf returns jitter, packet

loss along with the bandwidth.

One important parameter we now have that we did not before is the number of

packets that are lost in communication. It is relevant to note that some websites advises to

use TCP to measure the bandwidth while UDP is advised to use it to measure reliability,

which means that when using TCP in iperf the bandwidth that is returned may not be very

real, because it could be including forwarded packages.

Deployment of a GPON-SDN solution in a server using Docker

 29

Figure 14 : Client-side outputs iperf with UDP

In the next step we test at different Bandwidth starting from 1 Gbps to 10 Gbps.

The outputs can be observed in Figure 15.

Figure 15 : Output UDP 1-10Gbps

Even though the packet loss stays stable around 0.013% the Bandwidth never gets

higher than 2.9 Gbps. It is an improvement compared to the TCP where it went to 0

multiple times but the reason behind the 2.9 Gbps cap needs to be researched further.

3.2.2.2 Iperf3

An important difference between iperf3 and iperf with UDP is that the -u option is

not necessary on the server. A basic configuration shall remain the same:

Server: iperf3 -s

Client: iperf3 -c 192.168.1.1 -t 30 -b 0 -u

Deployment of a GPON-SDN solution in a server using Docker

 30

As seen in the commands we use the option ‘b 0’ which means the iperf3 will check

for the maximum available bandwidth.

Figure 16 : Iperf3 with UDP : maximum rate

There was no packet-loss with iperf3 as it can be seen in figure 16 but the bitrate is

still capped at 2.8 Gbps. In the next steps we will try some measures to improve the

performance of the UDP.

3.2.2.3 Improve the UDP performances.

Solution 1: Try to add a --udp-counters-64bit along with the client-side command:

It makes iperf3 use 64-bit sequence numbers in the test packets rather than 32-bit

sequence numbers. This can be useful in high-packet-rate or long-running tests, which can

overflow a 32-bit sequence number space. There is no effect on TCP or SCTP tests. I do

not believe there would be any significant performance effect [16].

Deployment of a GPON-SDN solution in a server using Docker

 31

Figure 17 : UDP test with idp-counters-64

As we can see in Figure 17, this did not make any difference. I suspect that it is

running the 64bit feature by default.

Solution 2: Increase the chunk length -l:

We run the command iperf3 -l 63k -c 192.168.1.1 -t 30-b 0- u

The command remains almost the same. We added two new parameters:

-l 63k: The chunk length refers to the length of buffers to read or write. Iperf works

by writing an array of len bytes several times. Default is 128 KB for TCP, 8 KB for UDP

and by increasing this from 8K to its maximum value of 63K we can increase our

performance [16]. As we can observe in Figure 18 the performance has improved to

5.70Gbps.

Figure 18 : UDP test with chunk length increased. Chunk

Deployment of a GPON-SDN solution in a server using Docker

 32

After these tests we can conclude that it is better to move forwards with iperf3 and

increase the chunk length during the UDP tests.

3.3 Docker introduction and initial configurations

Developing apps today requires so much more than writing code. Multiple

languages, frameworks, architectures, and discontinuous interfaces between tools for each

lifecycle stage creates enormous complexity. Docker simplifies and accelerates the

workflow, while giving developers the freedom to innovate with their choice of tools,

application stacks, and deployment environments for each project [17].

The docker application has already been installed on the servers (Chron 2 and

Chron 3) where we plan to run several tests. We will not document the steps required to

install docker in a server, but Docker provides a perfectly described instructions to install

it on its official page [17].

After the introduction of the docker technology in Chapter 2, we understand the

concept of images and containers. We will be using the pre-built images from the Docker

Hub and the configurations and tests will be more focused around the containers.

3.3.1.1 Getting familiar with Docker

Before starting there are few commands which will be used more than others during

this project.

• docker images lists the available docker images in the registry of the machine.

• docker run <image-name>: runs the image to start a container.

• docker kill <container-name>: stops a running container

• docker commit <container-name> <new-image-name>: saves the made changes

inside a container to a new docker image

• docker rmi <image-name>: removes the unwanted images.

If the docker has been installed correctly, the docker registry on the machine where

the docker has been installed contains a basic ubuntu image in its images list. We will use

this to test our initial settings. This can also be observed in Figure 19.

Deployment of a GPON-SDN solution in a server using Docker

 33

Figure 19 :output of command docker images

First, we rename the ubuntu image. This is done with the command docker tag

<image-name:tag> <new-image-name:tag>, for example, docker tag ubuntu:15.10

chron3:v1.1.

Note: the tag just means the version of the image, when the image gets updated, we

will give the new image the same name with different tag i.e. v1.2.

After the rename, the old image can be deleted with command docker rmi <image-

name:tag>. We do not delete the base ubuntu image, but this command will be used later

in the project to delete the older versions of the images.

To start a container from the image we run the following command docker run -it

<image-name:tag>, in our case this will be : docker run -it chron3:v1.1.

The -it short for interactive instructs Docker to allocate a pseudo-TTY connected

to the container’s stdin; creating an interactive bash shell in the container. It lets us run

commands like ls, mkdir inside the container.

Optional: we can also give the container a specific name during the start by adding

--name <container-name> to the above command.

With this step we have started our very first container. Unlike traditional virtual

machines docker container has no resource constraints and can use as much of a given

resource as the host’s kernel scheduler allows. Docker can also enforce hard memory

limits, which allows the container to use no more than a given amount of user or system

memory. For more information regarding memory allocation inside a docker container, we

refer to the official docker pages [17].

Deployment of a GPON-SDN solution in a server using Docker

 34

Once the first container has been started, we need to install a few necessary

packages the base image lacks. This is done with the command [18]:

apt-get install -y net-tools nano iproute2 iputils-ping ifupdown iperf iperf3

These packages are only necessary for the initial tests, more packages like dhcp-

server vlans will be added in the future when needed.

Our initial plan is to repeat the same iperf3 tests (earlier done on the physical server)

inside the containers. We will look if containerizing makes any difference on the

throughputs.

3.3.1.2 Iperf tests inside docker containers

First, we start two containers from the same image by executing the same

commands twice.

docker run -it chron3:v1.1

Upon executing the commands twice on different CLI’s (PowerShell or CMD), two

containers are created on the docker in the same server (CHRON 3). Both will receive

different IP address from the same default “docker0” network (172.17.0.0/16). The

topology can be visualized in Figure 20 and the Ip’s can be observed in Figure 21

(Container 1) and Figure 22 (Container 2).

Deployment of a GPON-SDN solution in a server using Docker

 35

Figure 20 : docker0 network with 2 containers

Figure 21 :Container one with docker0 network

Figure 22 : Container 2 with docker0 network

Morover, in the next step we test the throughput in the containers using iperf.

Deployment of a GPON-SDN solution in a server using Docker

 36

 TCP tests with iperf2

The methodology behind the iperf tests remains the same. Figure 23 (Client:

Container 1) and Figure 24 (Server: Container 2) show the client side and server side of

the tests respectively.

Figure 23 :Client side of the iperf inside a container

Figure 24 :Server side of the iperf inside a container

At the maximum available rate, we get 6.15 Gbps throughput. This is significantly

lower to the test done on the physical servers.

Next we force the TCP to certain bandwidth starting from 1-10Gbps. The results

received on the containers when the iperf client indicates exactly how much it wants to

send is identical to the results received on the Physical Server. The same issues persist, the

bandwidth received after 2 Gbps is not good.

Request Bandwidth 1 2 3 4 5 6 7 8 9 10

Rececived Bandwidth 1.0 2.0 0.0 0.0 0.7 1.7 0.0 0.0 0.4 1.4

In the next step we test if the errors persist with Iperf3 as well.

Deployment of a GPON-SDN solution in a server using Docker

 37

TCP tests with IPERF3

The commands to start a client and the servers remain identical. At the maximum

available rate, the BW is capped at 6.58 Gbps and when the bandwidth is specified the

results are as follows:

Request Bandwidth 1 2 3 4 5 6 7 8 9 10

Rececived Bandwidth 1.0 2.0 3.0 4.0 5.0 6.0 6.2 6.2 6.2 6.3

The results are capped around 6.3 Gbps. The docker bridge seems to be losing

throughput of about 3Gbps when compared to the tests done on the physical servers.

UDP tests with iperf3

A basic configuration shall remain the same:

On the Client: iperf3 -c 172.17.0.4 -t 30 -b 0

On the Server : iperf3 -s

From the result that we can see in Figure 25, that the UDP through put is much

worse than TCP. It is stuck at 760 Mbps.

Deployment of a GPON-SDN solution in a server using Docker

 38

Figure 25: Iperf3 result with UDP (containers)

In the next step we apply the same parameters we applied we applied during the

first tests to improve the performance i.e. increase	the	clunk	length	value	“-l”:	

iperf3 -c 172.17.0.4 -t 30 -b 0 -u -l 63k

Figure 26 : UDP test with Iperf3 with -l parameter

The results of Figure 26 shows that the throughput improved by 300% and it is now

capped at 2.54Gbps. After talking with the mentor, we decided that the bridge networking

is not the best option for the project as the loss in throughput is too huge for the final test,

and we research further into Docker Networking for an alternative.

Deployment of a GPON-SDN solution in a server using Docker

 39

We found out that bridge networking doesn’t allow conenctions between the

containers on the different hosts. If we want to run iperf tests on two containers on different

hosts (Chron2 and Chron 3), we must run the containers on host networking mode so they

have connection to each other, but running them on the host mode also means that we are

just using the physical interfaces, the iperf tests on the physical interfaces have been done

earlier (section 3.2) and the results would be exactly (were) the same, we found no reasons

to include them in this report.

3.3.1.3 Docker Networking

When docker is installed, if the network interfaces are checked, we can see that a

new interface has been created called “docker0” as it can also be seen in Figure 27.

Figure 27 : docker0 default docker bridge

This is because Docker, when installed, creates a Linux bridge to which it by

default connects all containers that are created. This bridge behaves like a multi-level

traditional switch in which a NAT address translation is performed between the Docker

virtual network (default 172.17.0.0/16) and the network your host is connected to.

Figure 28 shows how the network model works when the containers are connected to each

other in a docker.

Deployment of a GPON-SDN solution in a server using Docker

 40

Figure 28 : Default network model of Docker containers

In this way, the containers can connect to the Internet, but are not exposed. This is

because the IP to which external traffic is routed is that of your host machine. To

understand this concept better, you can imagine a private network with a router that does

NAT with Internet. Devices on the internal network can access the Internet thanks to the

public IP from the router, but the Internet is not able to see the devices within the network,

only the router. In this case something similar happens, the private network is the Docker

network and the public IP is the one assigned to the host interface (which, in most cases,

is a private NA, so NAT is done twice, once to translate between the Docker network and

the private network on the host, and another on the router of that private network to a public

address from Internet) [17].

If you want to expose services, you need to tell the container which ports you want

to publish/expose so that when packets destined for those ports reach the host, it produces

a redirect to the container. We will see later when running the SDN controller inside a

container, how this redirection is performed. For example: To run a SDN controller inside

a container with a host port published we add: -p <host-ports-ip>:8181 along the docker

run commands to get access to the controller on the browser (chrome, Firefox etc.).

Deployment of a GPON-SDN solution in a server using Docker

 41

When a container is created without specifying any specific network information,

it automatically receives an IP from the docker0 network as we saw earlier during the Iperf

tests. This also means that the containers created on Chron2 are isolated from Chron3 when

the docker0 network is being used.

In the context of this project, the goal is for an SDN controller to oversee managing

the network, so it is not very useful for Docker to oversee creating the switches and

connecting the virtual machines. The goal is for the OpenFlow switches to be in charge of

routing traffic through controller orchestration. Therefore, Open vSwitch (OVS) switches

need to be added somewhere in the topology. Therefore, Open vSwitch (OVS) switches

should be configured with some other network configuration that is not a docker bridge.

From the above research we can conclude that the docker-bridge network can only

be used for the SDN controller, and a webserver if we build/need one, we will create our

own docker-bridge network instead of using the docker0 in the later steps as the default

bridge has some limitations that a user created bridge wimm not have [19].

We need to look for an alternative if we want to run the OVS and a router inside a

container as it does not seem possible with bridge networking. In comparison to a tradition

virtual machines where NAT is used, docker uses bridge networking.

A bridge provides a host internal network in which containers on the same host

may communicate, but the IP addresses assigned to each container are not accessible from

outside the host. Bridge networking leverages iptables for NAT and port-mapping, which

provide single-host networking. Bridge networking is the default Docker network type

(i.e., docker0), where one end of a virtual network interface pair is connected between the

bridge and the container whereas in a virtual machine hardware level virtualisations takes

place which also means the network components are virtualized so the virtual machines

also receive the IP address from the same network as the host, this is not possible inside a

docker unless we use the host networking.

At this point only other solution available seems to be host networking. If we use

the host network mode for a container, that container’s network stack is not isolated from

the Docker host (the container shares the host’s networking namespace), and the container

Deployment of a GPON-SDN solution in a server using Docker

 42

does not get its own IP-address allocated. For instance, if you run a container which binds

to port 80 and you use host networking, the container’s application is available on port 80

on the host’s IP address. This also means we do not need to run the iperf tests again as the

container is just using the host’s network and the results would be identical to the tests

done on the physical servers. To start a container in host mode we simply add --network

host along with the docker run command [17].

Running a container in host modes womes with risk, if the user is not careful the

changes made inside the container regarding the networking can effect the host.As we are

using the host interface, changing iptales, iproute, default routes means we are also

adjusting the same thing on the physical servers. It is recommended to be careful during

these steps if the project is being run on a device which is also used for other purposes in

the lab.

So, we will be creating our own docker bridge that will be used on the containers

for SDN controllers and we shall use host networking for all the other containers that need

to connect to a different host.

To create a docker bridge of our own we follow the instructions provided by the

official docker pages [17]:

docker network create --subnet 10.1.0.0/16 --gateway 10.1.0.1 --ip-range 10.1.4.0/24

bridge_test

The above command creates our own docker-bridge network named bridge_test

and the rest of the parameters on the bridge are self-explanatory. To start a container using

this bridge networking we just add --network bridge_test along with the docker run

command when we start the container. Just like the “docker0” bridge, this bridge_test has

automatic configured connection to all interfaces on the device and the internet.

To check if the bridge has been created correctly, we can type the command docker

network inspect bridge_test as shown in Figure 29.

Deployment of a GPON-SDN solution in a server using Docker

 43

Figure 29 : docker bridge bridge_test

3.4 Conclusion

In this chapter, we ran iperf tests with iperf2 and iperf3 on the physical servers,

investigated improving the throughput performance and finally did the same tests on the

docker containers. We also did a brief research on docker in general and what type of

networking we shall use in the further steps of this project. We investigated few important

docker commands, created few containers, created our own docker-bridge network. For

more information about docker and docker commands we refer to the official docker

documentation on the website [17].

Deployment of a GPON-SDN solution in a server using Docker

 44

4 SDN Scenario in the server

4.1 Introduction

In this chapter we will carry out an analysis on the state of the art related to SDN

technologies in PON networks, to later describe the implementation of our specific SDN

scenario. Then, the steps to follow to implement our SDN solution will be described

sequentially, from the implementation of a router and DHCP server in a container, to the

configuration of virtual switch (OVS). We will finish with the connection and start-up of

the OVS with the OpenDayLight controller, and ONOS necessary for the configuration

and management of OpenFlow flows. In this way the management and the configuration

of services and data traffic will be implemented in the GPON network using the OpenFlow

protocol.

4.2 Global Description of the SDN scenario deployed in the

server

We propose an SDN-GPON solution that permits to configure a GPON by means

of OpenFlow using an external SDN controller and several OpenFlow switches. The

architectural solution is shown in Fig. 30. To turn legacy OLTs and ONTs into OpenFlow

controllable devices, an SDN hardware abstraction layer must be implemented. Therefore,

we propose to use OpenFlow Virtual Switches (OVS) connected to the OLT and to ONTs,

and an OpenDayLight (ODL) [20] controller (Fig. 30). However, other SDN controllers,

such as ONOS [21]could also be used. In this network scenario, the SDN controller will

be able to dynamically modify services according to real network traffic or user

requirements, allowing a flexible control of the GPON capabilities. Therefore, the SDN

controller belongs to ISPs/Network Operators that provide Internet connections and

services to their customers. Moreover, as GPONs operate in two channels with different

wavelengths, the downstream channel (from the OLT to ONTs) and the upstream channel

(from ONTs to the OLT), the SDN controller has to deal with the traffic in both channels,

Deployment of a GPON-SDN solution in a server using Docker

 45

so that the contracted services of the network subscribers comply with the corresponding

QoS requirements (e.g., guaranteed bandwidth).

Ideally, the OpenFlow switches (OVS) should be integrated inside the OLT and the

ONTs (SDN based OLT/ ONTs). However, as SDN-based OLTs and ONTs are not yet

available, the OVSs can be embedded in an external hardware like Raspberry Pi, Banana

Pi, mini-computer or a computer. One OVS should be implemented in a computer logically

co-located with the OLT (Central OVS, COVS) to emulate the SDN layer of the OLT, and

thus to control the downstream traffic of the entire GPON (Fig. 30). On the other hand, at

the users’ side, an OVS (Remote OVS, ROVS) lies beside each ONT to control the

upstream traffic requirements of each subscriber. These devices will handle a lower

computation load than the COVS, so cheaper devices than computers can be used for

ROVS, like Raspberry Pi, as shown in ONT1 and ONT2 in Fig. 30.

To set an SDN configuration, the ODL controller sends OpenFlow messages to

every ROVS through the conventional GPON channels and to the COVS through a direct

connection. First, the SDN controller sends flow tables to the virtual switches (COVS,

ROVS) to configure the services (Internet, HDTV, VoIP) and their QoS requirements. In

fact, the OpenFlow tables are programmed by the SDN controller (that belongs to

ISPs/Network Operators) and their entries are modified in real-time each time residential

users demand new services or any modification in their QoS requirements. Then, two flows

are created for each service as the GPON operates in two channels: one for managing the

downstream QoS requirements and another for the upstream QoS requirements. The

former flow is created in the COVS and the later in the ROVS. The match instructions and

fields of each flow differ depending on the channel and on the developed functionalities,

as it will be explained in the next sections. For example, if the maximum bandwidth is

going to be controlled by means of SDN, the bandwidth rate assigned to each service (at

both channels) is measured with OpenFlow meters. A meter measures the rate of packets

assigned to it and enables controlling the rate of those packets. Meters are attached directly

to flow entries. In our proposal each meter entry consists of a meter identifier and a meter

band. The meter band specifies the maximum rate associated with that flow (band rate)

and the way to process the packets of the flow (band type). Besides, some band types have

optional arguments (drop, dscp remark) called type specific arguments and we use the drop

Deployment of a GPON-SDN solution in a server using Docker

 46

option. Then, the data rate of each meter band is continuously measured, and if the rate is

larger than the value defined in the band rate drop, packets are discarded, so this choice

can be used to define a rate limiter band. Therefore, to control the maximum bandwidth of

one specific service by means of meters, it is necessary to attach one meter to each flow,

one for the maximum downstream bandwidth and another for the maximum upstream

bandwidth of the service. Then, the band rate defines the maximum bandwidth associated

with the service at both channels (upstream, downstream). Finally, it should be noted that

since residential users are not expected to know the concept of flows and meters, this low-

level process is totally abstracted into higher-level commands that can be understand by

users, such as guaranteed bandwidth levels.

On the client side, GPONs can employ L3-model ONTs, which integrate router

functionalities, and L2-model ONTs, without routing functionalities. L2 ONTs act as

switches and they are transparent for network devices, so that it is necessary to add an L3

element to route the packets towards the residential network and to provide unique IP

address to the different devices connected to the ONT. For the implementation of the

proposed SDN-GPON solution, L2 ONTs are preferred due to flexibility, as they are not

limited by the L3 vendor ONTs routing options. Thus, we deploy OVS and configure flows

differentiated by IP addresses, acting similarly to a router although they are L2. Then,

every ROVS needs a local DHCP server to provide IP addresses to the devices connected

to its associated L2 ONT. First, the global DHCP server of the service providers or network

operators assigns a range of IP addresses to each local DHCP server in the ROVSs, and

then each ROVS assigns IP addresses to each connected device. It is worth noting that the

IP addresses are no longer local to the residential network. Thus, every device will have a

unique IP address in the GPON.

Deployment of a GPON-SDN solution in a server using Docker

 47

Figure 30: Classic GPON Scenario

The purpose of this project is to translate the applications i.e. OVS, Router, DHCP

Server and SDN Controller, previously installed on the central computer to the Server

(Chron2) in order to control the global GPON using both, the 1 Gpbs and the 10 Gbps ports

on the OLT and ONT.

This implementation will be done by using the Docker technology to containerize

the above-mentioned applications, by building Docker images to create a lightweight and

fast bootable version of the applications on the Docker (see Chapter 2 Section 3 for

information regarding Docker images, containerizing and virtualizing).

Therefore, two containers will be created on the Docker as shown in Figure 31. The

first container will serve the function of DHCP server, the OVS and the Router. The second

container will be used as the SDN controller. If the initial tests with two containers

succeeds and the project is on schedule, the next step would be to separate each application

on different containers and run the tests on them.

Deployment of a GPON-SDN solution in a server using Docker

 48

Figure 31: Network Topology with two docker containers

4.3 Router and DHCP server deployment

 Programming Linux Kernel Routing and a DHCP server

The first step to achieve the desired scenario is to program a router on a computer

with Linux. To do this, we will use the Linux kernel utility of forwarding IP packets ([22]

between several networks (that is, that the Chron2 acts as a router). We need to perform

this task to control the network that reaches the GPON model, and not depend on the

School router for the different necessary configurations. Subsequently, a DHCP (Dynamic

Host Configuration Protocol) server will be installed to give the network configuration

parameters to the machines that connect to the central computer

 Deployment of the router and DHCP server

Before everything can be started a docker container must be created to configure

the router and a DHCP server.

The very first step into this process is to download the official Debian image from

the Docker Hub. This can be done by typing the command docker pull Debian [23]. This

Deployment of a GPON-SDN solution in a server using Docker

 49

pulls the latest version of the official Debian image from the Docker hub. The images are

updated frequently [24].

The download image is renamed for convenience. This can be done with the

command: docker tag <old-image-name:tag> <new-image-name>

In this case this would be docker tag debain:latest router:0.1. The image has been

renamed to router and it has 0.1 as its version. The images name can only contain lower

case characters. After the image has been renamed, the old image can be removed with

docker rmi <old image name:tag> command. It can also be left alone as the image can be

used to build controller and other different containers in the future. Refer to Chapter 2

Section 4 about Docker to learn more about Docker images and containers.

To run the image and start a container with right privileges and correct networking

features the following command is needed: docker run -t -i --cap-add SYS_ADMIN --

network host --name=<container-name> --privileged router:0.1

Now on, all the instructions described will be executed inside the container. The

official Debian image that was pulled from the Docker hub does not contain many

packages that will be needed during the installation of the DHCP server and the router

configuration. After the container has been started, the necessary packages can be installed.

For starters the following packets are very compulsory [18]:

• net-tools

• text editor (nano)

• isc-dhcp-server

• iproute2

• iputils-ping

• net-tools

• ifupdown

• vlan

• iperf

• iperf3

Deployment of a GPON-SDN solution in a server using Docker

 50

These are the needed packages that permit us to do the configurations and the tests

in the machine related to the project. There might be need of more but that could be

installed anytime later with the command:

apt install <package-name> -y

Since the central computer has Linux installed, the router will be based on IP packet

forwarding that is already implemented in Linux systems. This can be done in a very simple

way by writing a '1' in the file ip_forward which can be found in the path

/proc/sys/net/ipv4/ip_forward. This makes the central computer behave like a router, that

is, it will be able to forward packets from a subnet (the subnet that connects Chron3 and

Chron2) to the subnet that is going to be connected the OLT (as well as the subnets

implemented behind each ONT), as it can be observed in Figure 32.

Figure 32 : Topology of the connection of the Router to the OLT

For our router to act as intended, we must configure the tables and interfaces. It is

recommended to act wisely and carefully when configuring the IP tables using the host

mode, as the container is being run on the host mode, any changes mades inside the

container regarding the networking also means that these changes take place on the

physical server’s configuration. We are going to use the iptables utility [25], although it is

true that it is usually used more as a utility to establish firewall rules, it also helps us to

establish static rules on how we want our kernel to forward packets.

These rules are specified through the command line, using the necessary parameters

that we will see later in this section, and they are usually limited to specifying from which

Deployment of a GPON-SDN solution in a server using Docker

 51

subnet to which subnet we want to take the packages, and if we want to treat them one way

or another. Specifically, we are going to apply two rules:

iptables -t nat -A POSTROUTING -s 192.168.3.0/24 -o enp6s0f0 -j

MASQUERADE

iptables -t nat -A POSTROUTING -s 10.19.59.0/24 -o enp6s0f0 -j MASQUERADE

iptables -A FORWARD -i enp6s0f0 -j ACCEPT

iptables -A FORWARD -o enp6s0f0 -j ACCEPT

In these rules, the different options can be described as:

• The –t option specifies which table this command should refer to. In this case, it

refers to the NAT (Network Address Translation) table. This table is consulted

when an incoming package creates a new connection, and has two possibilities,

PREROUTING (to act on packages as soon as they reach our kernel) and OUTPUT

(to act on the packages that are generated locally before it is routed).

• The –A option specifies which rule we want to add in the table previously specified.

• The –S rule specifies the destination of the packets to which we want to apply the

rule. In this case, we will add the subnet 192.168.3.0/24, and 10.19.59.0/24 since

that will be the subnet in which our machine will be responsible for routing.

• The –o option is the interface by which we want to take out the packages that meet

the above rules. The interface that is connected to the router, that is the interface

enp6s0f0 which has IP address of 192.168.2.2/24.

• The –j rule indicates what to do with packages that match everything specified

above.

Once the routing configurations are completed as shown above, the next step is to

install and configure the DHCP server. The VLANs needs to be configured, so the VLANs

that appear in Figure 33 are added. The first VLAN will have the tag 833 and contain the

subnet 192.168.3.0/24 and the second one will have tag 806 with 10.19.59.0/24 as its

subnet. VLANs are added with vconfig commands [26], that is:

Deployment of a GPON-SDN solution in a server using Docker

 52

vconfig add enp6s0f1 833

vconfig add enp6s0f1 806

Figure 33 : Creation of VLANs

Finally, the address of each virtual interface (192.168.0.1/24 and 10.19.59.1/24) are

added with the commands:

ifconfig enp6s0f1.833 192.168.3.1 netmask 255.255.255.0

ifconfig enp6s0f1.806 10.19.59.1 netmask 255.255.255.0

After the above steps are completed, we must provide IP address to all connected

devices on those interfaces. To provide IP address to the connected devices, the DHCP

server will be used. The DHCP server can be installed with the command apt-get install -

y isc-dhcp-server [27].

After the DHCP server has been installed few files needs to be configured to get

the dhcp server working.

The first file can be found in path /etc/dhcp/dhcpd.conf and few rules needs to be

added to it. In this file we add different subnets to configure, being able to create more.

The features to be configured are the following:

• range (range)

• domain name servers (DNS)

• domain name (domain-name)

• router subnet (router)

• broadcast address (broadcast)

• default lease time (default-lease-time)

• and maximum grant time (max-lease-time)

In fact, the exact configuration of this file is the next:

Deployment of a GPON-SDN solution in a server using Docker

 53

subnet 192.168.3.0 netmask 255.255.255.0 {

range 192.168.3.100 192.168.3.250;

option domain-name-servers 157.88.129.90;

option domain-name "RouterTFGLab7-833";

option routers 192.168.3.1;

option broadcast-address 192.168.3.255;

default-lease-time 600;

max-lease-time 7200;

}

subnet 10.19.59.0 netmask 255.255.255.0 {

range 10.19.59.100 10.19.59.200;

option domain-name-servers 157.88.129.90;

option domain-name "RouterTFGLab7-806";

option routers 10.19.59.1;

option broadcast-address 10.19.59.255;

default-lease-time 600;

max-lease-time 7200;

}

The second file is found in the path /etc/default/isc-dhcp-server and the he

following rules are added to the file:

INTERFACESv4="enp6s0f1.833 enp6s0f1.806 "

With this command, the server is being asked to accept DHCP requests on those

virtual interfaces and the dhcp server is ready. After all the above changes has been made

the DHCP server on the chron2can be started with command service isc-dhcp-server start.

Due to unforeseen circumstances (covid-19) it is impossible to go to the lab and

configure OLT so the DHCP server and routing cannot be tested that way. Therefore, we

decided to alter our topology in order to be able to test the working of the configurations

without any trouble. The altered version of the topology can be found on Figure 34.

Deployment of a GPON-SDN solution in a server using Docker

 54

Figure 34 : New topology to test the routing and DCHP server.

In order to test this configuration, the same VLANs needs to be created on Chron3

and IPTABLE rules regarding the new eno2 connection to Chron4 needs to be added to

the iptables. This can be done the same way as done earlier with the next commands.

On the terminal of Chron 3 we type:

• vconfig add enp6s0f1 833 and vconfig add enp6s0f1 806

• route add -net 192.168.6.0 netmask 255.255.255.0 gw 192.168.2.3

The first command creates the virtual interfaces that will be enabled as DHCP

clients later and the second command adds a static route to the routing table of CHRON3

asking the CHRON3 to use 192.168.2.3 (enp6s0f0) as its gateway to reach the network

192.168.6.0 that connects the CHRON 2 and CHRON 4 to each other. The above

information is easier to visualize when observed together with figure 5.

On the terminal of CHRON2 we type:

• iptables -t nat -A POSTROUTING -s192.168.6.0/24 -o enp6s0f0 -j

MASQUERADE on CHRON 2

The 192.168.6.0/24 will be the subnet that the new interface eno2 will contain. The iptables

rule is like the ones added earlier for the virtual interfaces.

Deployment of a GPON-SDN solution in a server using Docker

 55

4.3.2.1 DHCP Server and DHCP Client tests

In figure 35 we once again repeat the topology that has been adjusted to run the

tests (as previously mention, because we cannot access the labs anymore). To test the

DHCP server, we type on the Chron3 (so it emulates a real device such as the OLT in the

GPON) and send the dhcp server (located in Chron 2) for DHCP request on the interface

enp6s0f1.833 with the command: dhclient enp6s0f1.833

Figure 35 : Topology created to test the DHCP server and the router

Figure 36: DHCP ACK 833

Figure 36 shows that the 833 interface’s request for IP address has been

acknowledged and has been given 192.168.3.100. This is within the range, that was

configured earlier on the dhcp server. Moreover, Figure 37 shows that the DHCP request

from the interface 806 (with the command dhclient enp6s0f1.806) has also been accepted

as dhcp client and given the IP address 10.19.59.100.

Deployment of a GPON-SDN solution in a server using Docker

 56

Figure 37: DHCP ACK 806

To make sure if the IPs are configured, it is done with the command ip -a as it is

shown in Figure 38.

Figure 38: IP Check on the 806 and 833 interfaces

The next step is to check the connection between the Chron 3 and Chron 2 via the

virtual interfaces. The interfaces on the Chron 2 are pinged from Chron 3 as shown in

Figure 39.

Deployment of a GPON-SDN solution in a server using Docker

 57

Figure 39 : Connection between virtual interfaces on chron3 and chron2

To make sure and check if the right interfaces are being pinged, the command

tcpdump -i enp6s0f1.833 can be done on the Chron2.

4.3.2.2 Routing Test

The DHCP server is working as intended, but we must check the performance of

the router. For this, the Gigabit interface eno2 will be used on the Chron2 and Chron 4.

Then, both interfaces are given an IP address with the command:

• On Chron2: Ifconfig eno2 192.168.6.2 netmask 255.255.255.0

• On Chron 4: ifconfig eno2 192.168.6.4 netmask 255.255.255.0

After the ifconfigs, the connection is tested with pings. Then, the three Chron

servers are connected to each other as shown in Figure 40 in order to test the performance.

Figure 40: Topology for testing the Router performance

First, the Chron 4 is pinged from Chron 2 (router) as it is shown in Figure 41 and we can

observe that the connection is working.

Deployment of a GPON-SDN solution in a server using Docker

 58

Figure 41: Chron 4 pinged from Chron 2

To test the complete how the router performs, the Chron 2 will be pinged from

Chron 3 first as shown in Figure 42 and the connection is working as intended.

Figure 42 :Chron 2 pinged from Chron 3

Finally, the Chron 4 server will be pinged from the Chron 3 as it can be seen on

Figure 43 and it can be noticed that the connection is working as intended. Therefore, the

DHCP server and the Router are working perfectly, and we can move on to the next steps

of the project.

Deployment of a GPON-SDN solution in a server using Docker

 59

Figure 43 :Chron 4 pinged from Chron 3.

4.4 Installation and deployment of the Open vSwitch in the

server

The Open vSwitch will be installed on the same container as the DHCP server.

After the container has been started, the necessary packages the switch needs be able to

install and implement the Open vSwitch inside a container will be installed. The list and

steps can be found on the official documentation of the Open vSwitch [28]. All packages

can be installed with one command:

apt-get install -y wget net-tools nano iproute2 iputils-ping ifupdown vlan iperf

iperf3 git curl python-simplejson python-qt4 python-twisted-conch python3.6 automake

autoconf gcc uml-utilities libtool build-essential pkg-config libssl-dev iproute2 tcpdump

It is possible that some packets have been installed in the earlier steps, but this

command will make sure that the latest version are updated. This command downloads and

installs all the dependencies and necessary tools that are necessary to install implement

and test the Open vSwitch. After all the preparations are done, the latest version of open

virtual switch is cloned from the official GIT repository

https://github.com/openvswitch/ovs.git. The link clones the files from the master branch

from the GitHub. During this project the supported version is ovs.2.13. To make the OVS

works properly, we need to make sure the folder “build” exists in the path

“lib/modules/VERSION_KERNEL/build”. The VERSION_KERNEL in the path should

match the output of the command “uname -r”. This was not the case for us, and this

Deployment of a GPON-SDN solution in a server using Docker

 60

problem can be solved by installing the correct Linux-headers with the command: apt-get

install -y ´uname -r´ or just apt-get install -y linux-headers-4.19.0-6-amd64 in this case.

When the correct headers have been installed and the git repository of the OVS has been

cloned, navigating to the folder with the command cd ovs will be the next step.

Running the ./boot.sh will build the configuration script that is then executed

afterwards with the command ./configure --with-linux=/lib/modules/$(uname -r)/build.

Then, the apply the make command and then the make install command. It is recommended

to install the modules (make modules install) if the kernel version was built in the earlier

steps, but the docker container lacking kernels of their own and the need for them to use

the host kernel to be able to run any kernel-based software’s caused unsolvable complexity

in this situation. The user modules can be installed with the command make install.

The kernel modules was primarily thought to be needed to make the meters on the

switch work properly but because the installation process of the kernel module on the

container had few problems and the meters worked fine on the user space, we decided to

move on with the user modules. To make sure if the meter can be configured to work better

than performance achieved during this project, more research needs to be done regarding

kernel module installation of OVS in a Docker Container.

Open vSwitch includes a shell script, and helpers, called ovs-ctl which automates

much of the tasks for starting and stopping ovsdb-server, and ovs-vswitchd. After

installation, the daemons can be started by using the ovs-ctl utility. This will take care to

setup initial conditions and start the daemons in the correct order. Before starting ovs-

vswitchd itself, it is necessary to start its configuration database, ovsdb-server. Each

machine on which Open vSwitch is installed should run its own copy of ovsdb-server.

Before ovsdb-server itself can be started, we must configure a database that it can use [28]:

$ mkdir -p /usr/local/etc/openvswitch

$ ovsdb-tool create /usr/local/etc/openvswitch/conf.db \

 vswitchd/vswitch.ovsschema

The ovsdb-server is then configured to use the database just created with the next

commands:

Deployment of a GPON-SDN solution in a server using Docker

 61

$ mkdir -p /usr/local/var/run/openvswitch

$ ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \

 --remote=db:Open_vSwitch,Open_vSwitch,manager_options \

 --private-key=db:Open_vSwitch,SSL,private_key \

 --certificate=db:Open_vSwitch,SSL,certificate \

 --bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \

 --pidfile --detach --log-file

Once the previous steps are done, the ovs can be finally started with the next

commands and the result is shown in Figure 44.

$ export PATH=$PATH:/usr/local/share/openvswitch/scripts

$ ovs-ctl start

Figure 44: OVS start

For the next steps it is necessary to have a good understanding of how the open

virtual switch works. Virtual switches act as bridges to which different interfaces can be

connected and the packets passing through this bridge then can be managed and

manipulated before getting passed through, as it can be observed in Figure 45.

.
Figure 45 : Working of OVS bridge

Open vSwitch consists two sets of commands, one of which starts with ovs-vsctl

and the other one with ovs-ofctl. The functionality of each of them can be summarized as:

Deployment of a GPON-SDN solution in a server using Docker

 62

• ovs-vsctl: This tool is used for configuration and viewing of switch operations.

Bridge additions/deletions are just some of the options that are available with this

command.

• ovs-ofctl: This tool is used for the administration and monitorization of the

OpenFlow switches. Even if the switch has not been centralized with a controller,

this command can be used to show the current state and table entries when they are

configured in the OVS [29].

As mentioned earlier the two interfaces of the devices where the switch has been

installed can be connected via the bridge which allows the two interfaces to belong of the

same subnet and there is no need for a router between the two interfaces for the packets.

This might seems like an advantage but in our case as the central server, it is a drawback

because the connection of enp6s0f0 interface (this gives us access to the internet from

Chron3) and the virtual interfaces enp6s0f1.833 (supposed to be connected to OLT) will

bypass our router implemented in the server and the network will stop working. This

conflict is also visible on Figure 46.

Figure 46 : Wrong implementation of the virtual switch

This conflict can be avoided by only adding the virtual interfaces to the bridge and

letting the router route the incoming packets on the interface enp6s0f0 to the bridge instead

of adding the interface enp6s0f0 to the bridge. The new workaround to make sure the

packets from Chron 3 destined for the OLT pass through the Router before it passes

through the bridge can be seen on the Figure 47.

Deployment of a GPON-SDN solution in a server using Docker

 63

Figure 47 : Correct implementation of the virtual switch

After the proper study about the virtual switches and bridges the building process

can start. The next lines of commands make the configuration on the Figure 47 possible:

ovs-vsctl add-br mybridge

ovs-vsctl add-port mybridge enp6s0f1.833

ovs-vsctl add-port mybridge enp6s0f1.806

The above configuration creates an OVS bridge (mybridge) and adds the virtual

interfaces 833 and 806 to the bridge. To make sure the ports have been added to the newly

created ovs-bridge, the command ovs-vsctl show can be used to display the result [30]. The

results are shown in Figure 48.

Figure 48 : Display all ports on mybridge

At this point, it is also necessary to understand another important operation of the

bridge that generates the virtual switches, since the bridge has been created but it still lacks

Deployment of a GPON-SDN solution in a server using Docker

 64

any IP configurations, as it can be observed in Figure 49. The IP information needs to be

added to it.

Figure 49 : Newly created OVS bridge without any IP configurations.

At the network level the bridge overrides or replaces the addressing of the

interfaces. This means that we will have to delete the IP configurations on those interfaces

and add the same IP configurations to the bridge. The enp6s0f1.833 and enp6s0f1.806

interfaces are assigned different network addresses i.e. 192.168.3.0/24 and 10.19.59.0/24.

To be able to add two different network interfaces to the same bridge interfaces, it can be

done with the following commands. Firstly, the IP information on the virtual interfaces are

deleted with commands:

ifconfig enp6s0f1.833 0

ifconfig enp6s0f1.806 0

Then the IP deleted from the virtual interfaces needs to be added to the bridge:

ifconfig mybridge 192.168.3.1 netmask 255.255.255.0

ifconfig mybridge:0 10.19.59.8 netmask 255.255.255.0

It can be seen in the Figure 50 that the bridge has two different addresses with same

MAC address. The bridge has replaced the virtual interfaces and can now connect to the

other side of the interfaces.

Figure 50 : Newly created OVS bridge with IP configurations

Deployment of a GPON-SDN solution in a server using Docker

 65

Then, in this case the interfaces are connected to the Chron 3 enp6s0f1 port. To

check the connection a simple ping will suffice, as it is shown in Figure 51.

Figure 51 : connection check through the bridge

For the next part it is recommended to have good understanding about the

OpenFlow switches and OpenFlow entries. The creation and configurations of OpenFlow

entries is one of the actions of SDN controllers but for the purpose of testing and learning

about the flows, they are often created on the switch in the begin. This process will also

help to create default templates that can be later used to create new flow entries using the

SDN controller. Then, the next code shows some flow two examples of flows configured

on the bridge:

ovs-ofctl -O OpenFlow13 add-flow mybridge actions=normal

ovs-ofctl -O OpenFlow13 add-flow mybridge priority=200, actions=normal

In the above commands two flows are created with same actions, normal. It

represents the traditional non-OpenFlow pipeline of the switch. With the action set to

normal the switch forwards the packets from the OpenFlow pipeline to the normal pipeline.

The second flow also has priority=200 added to it, but the first command indicates no

priority, which means that it is assigned the default priority of 32767. Then, the first flow

will be used when the packets passes through this bridge during the packet transfer, since

it has the highest priority. This can be tested by pinging the interfaces and look out for

which flow has been hit. Before doing the connection test with the ping feature, to make

sure the flows have been added, the state of the recently created flows can be printed by

the command ovs-ofctl -O OpenFlow13 dump-flows mybridge which outputs the flow

information and flow statistics. The flow statistics before and after the pings are shown in

Figure 52 and Figure 53.

Figure 52: Flow lists with different priority before the pings

Deployment of a GPON-SDN solution in a server using Docker

 66

Figure 53 : Flow statistics after the pings

It can be seen in Figure 53 that the flow with the maximum priority has been used

because it has the statistics of the packets that went through the bridge using that specific

protocol. In contrast, the flow with the lowest priority (priority=200) has no packets

registered in its statistics.

Furthermore, flows can also be created to manipulate packets received through

specific mac addresses or network addresses (IPs). The next example shows a newly

created flow where the packets entering the bridge through the source mac address

f4:e9:d4:49:02:70 and wanting to reach the destination mac address f4:e9:d4:49:02:72

will be ported out through the port enp6s0f1.833:

ovs-ofctl -O OpenFlow13 add-flow mybridge

dl_src:f4:e9:d4:49:02:70,dl_dst=f4:e9:d4:49:02:72,actions=output:enp6s0f1.833

The flow’s working can be tested by pinging the interface with the above give Mac

address, as it was done earlier to test the priority.

On the other hand, meters can also be configured with the ovs-ofctl functionality

on the switch with the next command:

ovs-ofctl -O OpenFlow13 add-meter mybridge meter=1, kbps,

band=type=drop,rate=30000

In this way, a meter measures the rate of packets assigned to it and enables

controlling the rate of those packets. Meters are attached directly to flow entries. Any flow

entry can specify a meter in its instruction set the meter measures and controls the rate of

the aggregate of all flow entries to which it is attached [31]. In the above example, a meter

is created with a meter id of 1 and it only lets packets through up to 30 Mbps. Therefore,

if the data rate is higher than 30 Mbps, packets are discarded, and the meter is then called

a limiter because it limits the throughput on the bridge.

Deployment of a GPON-SDN solution in a server using Docker

 67

Even though the flow-entries and meter configurations are handled by the sdn-

controller in the further development of the project, it is highly recommended to create at

least one flow and a meter on the switch to use them as the templates in the future. Not all

default templates available on the official website are compatible with the switch that has

been installed, so testing the configurations by creating the flows using the traditional way

is a good learning experience. In this way, in order that the switch can be controlled by one

controller we have to insert the command:

ovs-vsctl set-controller mybridge tcp:10.1.4.0:6633

This command indicates that we want to establish connection with the OpenFlow

controller located on the given ip address and the switch is ready to be centralized.

4.5 Installation of OpenDayLight (ODL) in docker

The OpenDayLight SDN controller will be installed on a separate container. The

base image Debian is used to build this container as it was used earlier. The container is

started with the command:

docker run -t -i --network <docker-bridge name > --name=<container-name>

<imagename:tag>

To keep the container lightweight only the necessary packages will be installed

when necessary. For starters, the packages wget and tar are installed with the command

apt-get install -y wget tar. The wget lets the user download the opendaylight and tar lets

the user open the tar folder (tape archiver).

The open Daylight releases are named after the elements of the periodic table. The

version used in this project is named Sodium and it is the 11th release. Without prior

knowledge, the flows configuration can be complex to learn, and it is recommended to use

the supported latest releases as the bugs that still exist on the older version might cause

problems in the future. The graphical user interface to create and configure flows on the

ODL is not supported on any versions released after the 8th release (we are currently on the

11th and 12th), however although older versions support the GUI to configure the flows, it

is recommended to adapt to the newer releases and use the POSTMAN application. The

Deployment of a GPON-SDN solution in a server using Docker

 68

very first step is to browse the official Open Daylight website and read through the

documentation regarding the installation and configuration [20]. Then, the tar file can be

then installed with the command:

 wget

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/int

egration/opendaylight/0.11.2/opendaylight-0.11.2.tar.gz

The above-mentioned link is provided by ODL official documentation [20] that

links the user to the installation files of OpenDayLight directly.

This wget combined with the link downloads the tar file of sodium version of

OpenDayLight inside the working folder. It can be seen on the link as 0.11.2, which means

that it is the 11th version and the 11th element of the periodic table i.e. Sodium. After the

download, the tar file needs to be extracted with the command:

Tar -xf opendaylight-0.11.2.tar.gz

Then navigate to the directory with command cd opendaylight-0.11.2 . This is the

directory where all the installations files and other important files along with the startup

script regarding the ODL can be found. The ODL start script will be run here.

On the other hand, the latest version of java needs to be installed on the machine

for the latest version of ODL. The latest version can be installed with command apt install

-y default-jre.

After the latest version of java has been installed, run ./bin/karaf inside the current

directory and the script starts and the Open Daylight will be installed, started and ready to

be configured further, as it can be observed in Figure 54.

Deployment of a GPON-SDN solution in a server using Docker

 69

Figure 54 : First Start of the Open Daylight

4.6 Connection between the Open vSwitch and ODL

The connection between the controller and the OVS can be done in two steps:

• First step: On the OVS command line we set up the IP of the ODL container as its

master. This is done with the command ovs-vsctl set-controller mybridge

tcp:10.1.4.0:6633.

• Second Step: We start the ODL inside the container by navigating to the directory

opendaylight-0.11.2 and running the script ./bin/karaf inside the directory the ODL

has been installed into. This starts the ODL as it can also be seen in Figure 54.

After this process the connection between controller and the switch needs to be

tested by just pinging to each other. If the SDN controller can ping to the interface (host

interface in this case) this means the controller has connected to the OVS and taken over

the functions from the switch. This can be checked by using the ovs-vsctl show command

on the open vSwitch, as it is shown in Figure 55. In this figure the “is_connected” option

is true, which means the controller is now the master of the switch and responsible for

further flows creations and configurations.

Deployment of a GPON-SDN solution in a server using Docker

 70

Figure 55 : Controller accepted by the switch

To be able to configure flows with ODL, some few features need to be installed on

the controller. The list of available features can be seen with feature:list command on the

ODL and the pre-installed features with feature:list -i. Moreover, the search for a specific

feature can be done with feature:list | grep <feature-name>. In this case we only need the

open-flow plugin and the restconf [32], that provides the next functionalities:

• The OpenFlow-plugin provides the following functions: flow management,

group management, meter management and statistics polling

• The restconf allows us to access to the RESTCONF API. The RESTCONF

protocol allows web applications to be used to access data inside a network

element. In this case the Open vSwitch.

The installation of restconf is simple using the command feature:install odl-

restconf-all as it is done in Figure 56.

Figure 56 : feature installation restconf

The OpenFlow plugin can be installed in a similar way with the command:

feature:install odl-openflowplugin-app-lldp-speaker odl-openflowplugin-flow-services-

rest odl-openflowplugin-drop-test as it is done in Figure 57.

Figure 57: feature installation OpenFlow plugin

Deployment of a GPON-SDN solution in a server using Docker

 71

After the installation of these features, it is possible to view the topology and the

current flow entries that have been created on the switch by surfing to the controller IP

address. Normally, when the controller is being run on a virtual machine or in a physical

machine, the switch information and flow configuration could be accessed on any web

browser with the controller ip address. In contrast, in our case the controller is being run

on a docker container and the docker container are isolated, so it needs one host port to be

open. For more information about docker networking and opening ports refer to the

Chapter 2 section about Docker. Then, in order to open one of host port for the docker

container, extra port information is needed during the start process [17]. Then, in the next

example, port 8181 is being opened on the host and the IP that will be used to surf during

the switch configuration is also the port of the host that is connected to the internet. The IP

address 10.1.4.0 will still be used as the controller address on the OVS but to view the

REST API data on the browser, the IP address 10.0.103.73 will be used because this is the

IP on the port/interface that the container will use to be able to launch on the web browser.

Refer to Chapter 2 about Docker on more regarding opening host ports for containers.

docker run -t -i --cap-add SYS_ADMIN --network <docker-bridge-name> --

name=<container-name> -p 10.0.103.73:8181:8181 --privileged <image-name>

Therefore, the OVS still has 10.1.4.0 as its controller and the master but the

container where the odl is installed uses the port with IP 10.0.103.73 to connect to the

outside world so the IP 10.0.103.73 will be used during the flow configurations and other

tests.

Now the connection part has been figured out, the next part is to find out the switch

id or the node id. Most official documents indicate it has the id openflow:1 but this is not

always the case. Therefore, to access to the topology data of the switch the following link

needs to be posted on any browser:

http://10.0.103.73:8181/restconf/operational/network-topology:network-topology/topolo
gy/flow:1

Putting the link on any browser (i.e. google chrome, Firefox, edge) uses the GET

function and outputs the xml-format data of the switch topology, as it can be seen in Figure

Deployment of a GPON-SDN solution in a server using Docker

 72

58. This lets the user to see basic switch information that will be used in the further steps.

If the user is asked for authentication username: admin and password: admin will suffice.

Figure 58 : Switch topology data

The screen capture of the Figure 58 provides many valuable information, such as

the node-id is openflow:269285126111858 and there are two ports connected to this node

(833 and 806 interfaces). The switch labels them as connector 1 and connector 2 in its

database. Regarding each node named with the node id, the information about the flows

that were created during the open vSwitch configuration can be accessed. This is done with

the next command that displays all flow-entries on the switch as the output and it can be

observed in Figure 59.

http://10.0.103.73:8181/restconf/operational/opendaylight-inventory:nodes/node/openflo
w:269285126111858/table/0

Deployment of a GPON-SDN solution in a server using Docker

 73

Figure 59 : Display flow entries in one specific node of the topology

In the screen capture of Figure 59 we can see one of the flows that is currently

running on the switch with flow id: 1 and the related parameters of the flow i.e. priority

:1200, table-id: 0.

On the other hand, the link that was used to access this data restconf/operational/...

means that all data are operational, and they are running on the switch. This tree is read-

only and to add new configurations to the switch, the operational in the link needs to be

replaced by config. Then, the config tree allows the user to PUT, DEL and GET the

information on the switch whereas the operational tree provides read-only feature [32].

Finally, in order to configure the flows and meters we will use the application POSTMAN

[33].

Deployment of a GPON-SDN solution in a server using Docker

 74

4.7 Configuration of Postman with ODL

To be able to configure the flow entries on flow tables, it is very important to have

a good understanding of how POSTMAN works. This part will only cover the installation

and the configuration of the software so it can be used as we intend with the ODL

controller. The application can be downloaded by simply clicking on the download button

on the official website of POSTMAN as it can be seen on Figure 60. The installation

process runs simple and smooth as any other application being installed on a windows

operating system.

Figure 60 : Postman Homepage

After the installation has been successful, a new collection can be created by

clicking on the new option available on the top left corner of the application as seen on

Figure 61.

Figure 61 : Postman create new collection

Deployment of a GPON-SDN solution in a server using Docker

 75

The next step is to choose a name for the collection and select a basic authentication

type, as it is done in Figure 62.

Figure 62 : Postman collection name Authentication

The final step to get the Postman working is to adjust the headers. Postman already

contains some default headers, but two more needs to be added. As seen in Figure 63

Content-Type: application/xml and Accept: application/xml have been added to the

headers. The Content-type tells Postman that the user will send data to the rest API in XML

format and the Accept lets the Postman know that the user is accepting any result it acquires

from the REST API using the GET function in XML format as well.

Figure 63 : Postman Headers

Deployment of a GPON-SDN solution in a server using Docker

 76

After the previous steps, Postman is ready to be used and as it can be noticed in the

Figure 64, we can insert the URL that was used earlier on a browser to GET, PUT, or

DELETE any data to the switch. Together with the field for the link, Postman shows two

bodies as it can be seen in Figure 64. The upper body is where the data that needs to be

inserted to the API is typed, and the lower body is where the GET functions outputs the

data. Basic information such as the time the function takes to execute or status messages

(200 ok, 404 errors) are also visible on the screen capture.

Figure 64 : Post man upper and lower Body

4.8 Configuration of flows and meters in ODL with Postman

Before creating flow entries, it is necessary to understand how a flow entry is built.

Therefore, each flow table entry contains [34] the next components:

• Match fields: to match against packets. These consist of the ingress port and

packet headers, and optionally metadata specified by a previous table.

• Priority: matching precedence of the flow entry.

• Counters: updated when packets are matched.

• Instructions: to modify the action set or pipeline processing.

• timeouts: maximum amount of time or idle time before one flow is expired

by the switch.

Deployment of a GPON-SDN solution in a server using Docker

 77

• Cookie: opaque data value chosen by the controller. May be used by the

controller to filter flow statistics, flow modification and flow deletion. It is

not used when processing packets.

A flow table entry is identified by its match fields and priority, so the match fields

and the priority taken together identify a unique flow entry in the flow table [34]. The

proper working of flow can also be observed in the flowchart available as Figure 65.

Figure 65 : Flowchart detailing packet flow through an OpenFlow switch

In the next steps the user will create some flow entries and send them via postman

to the switch.

 Configuration of normal flows

During the early stages we talked about the operational tree and the config tree to

access the flow data and configure the flows. Operational tree allows us to view the flows

currently running on the switch and config allows the user to configure or add new flows.

Using GET function to output those operational flows on the Postman can be very useful

so those flows created on the switch can be used as templates to create new flows via the

config tree. In order to create a normal flow with XML format using Postman we must

insert some code as the next one:

<flow xmlns="urn:opendaylight:flow:inventory">

 <id>1</id>

Deployment of a GPON-SDN solution in a server using Docker

 78

 <priority>1200</priority>

 <table_id>0</table_id>

 <cookie_mask>0</cookie_mask>

 <hard-timeout>0</hard-timeout>

 <match/>

 <cookie>0</cookie>

 <flags/>

 <instructions>

 <instruction>

 <order>0</order>

 <apply-actions>

 <action>

 <order>0</order>

 <output-action>

 <max-length>0</max-length>

 <output-node-connector>NORMAL</output-node-connector>

 </output-action>

 </action>

 </apply-actions>

 </instruction>

 </instructions>

 <idle-timeout>0</idle-timeout>

</flow>

The above flow, also known as the normal flow entry, does nothing special other

than letting all packets through its port. Its destination is flow 1 in the table 0. It has 1200

priority value and no meters or timeouts associated. The xml-data can be entered in the

upper body on the postman, then the PUT option is selected and the send button will

forward the flow to the switch as it can be observed in Figure 66:

Deployment of a GPON-SDN solution in a server using Docker

 79

http://10.0.103.73:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:269285126111858/t
able/0/flow/1

Figure 66 : PUT flow into the table

To check if the switch accepts the flow, we simply ask for the open-vSwitch to

display its current flows with the command ovs-ofctl -O OpenFlow13 dump-flows

mybridge and we can observe the existing flow (Figure 67) of priority 1200.

Figure 67 : Dump all flows on the bridge

In this case, the switch has accepted the configuration sent from the controller. It is

possible that the switch could be incompatible with templates found on the official ODL

documents, but it could be solved with the creation of a flow entry from the switch itself

like it was done earlier with the command ovs-ofctl -O OpenFlow13 add-flow mybridge

actions=normal. This command creates a flow in the operational tree of the restconfig

which then can be used as a default template for the further creation of flows in the config

tree (See the section about the configuration of the OVS on Chapter3 to learn the difference

between operational and config tree). This process is mentioned again because this is very

important part during the creation of the flows and can cause for huge loss of time if not

done correctly.

Deployment of a GPON-SDN solution in a server using Docker

 80

 Configuration of flows to forward packets for specific ports

The normal flow template is used again as a template and the match and instructions

fields are replaced with the corresponding xml-code. The flow id in the xml-code and the

postman link also needs to be changed accordingly. For example, if the flow id is 2, the

link should look like this:

http://10.0.103.73:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:26
9285126111858/table/0/flow/2

Then, the example of this flow is to send packets from connector 1 to connector 2,

in this case enp6s0f1.833 to enp6s0f1.806 in. Then, the next flow entry forwards any

packets from 833 interface to 806:

<match>

 <in-port>1</in-port>

 </match>

 <cookie>0</cookie>

 <flags/>

 <instructions>

 <instruction>

 <order>0</order>

 <apply-actions>

 <action>

 <order>0</order>

 <output-action>

 <max-length>0</max-length>

 <output-node-connector>2</output-node-connector>

 </output-action>

 </action>

 </apply-actions>

 </instruction>

Deployment of a GPON-SDN solution in a server using Docker

 81

 </instructions>

A similar flow entry needs to be created if we want the packets coming through the

806 interface to be forwarded to the 833 interface. This can be done by creating a new flow

with same input but changing the flow id to 3 in-port to 2 and the output-node-connector

to 1 in the previous template, in the next way:

 <id>3</id>

 <in-port>2</in-port>

 <output-node-connector>1</output-node-connector>

 Configuration of flows from one specific Mac Address

The same template from normal flow is used again, but the match and the action

fields are replaced using the next xml code:

<match>

 <ethernet-match>

 <ethernet-source>

 <address>f4:e9:d4:49:02:72</address>

 </ethernet-source>

 <ethernet-destination>

 <address>f4:e9:d4:48:f7:b2</address>

 </ethernet-destination>

 </ethernet-match>

 </match>

 <cookie>0</cookie>

 <flags/>

 <instructions>

 <instruction>

 <order>0</order>

 <apply-actions>

 <action>

Deployment of a GPON-SDN solution in a server using Docker

 82

 <order>0</order>

 <output-action>

 <max-length>0</max-length>

 <output-node-connector>1</output-node-connector>

 </output-action>

 </action>

 </apply-actions>

 </instruction>

 </instructions>

In the above flow all packets with the MAC source address f4:e9:d4:49:02:72 to

destination f4:e9:d4:48:f7:b2 are forwarded to the connector 1, as the flow instructs the

switch to output/forward the packets intended for that specific MAC address through node-

connector 1. The Switch database saves the connected ports as Connector 1, 2 and so on

in its database. The connector 1 is equivalent to port enp6s0f1.833 in this case. Finally, the

priority can be changed if needed and the hard timeout can be added too. Hard timeout

makes sure that the flow is deleted from the switch after specific amount of time in seconds.

Deployment of a GPON-SDN solution in a server using Docker

 83

 Configuration of flows for specific Network Address

The template from normal flow is used again and the match field and instructions

field are replaced in the xml-code. In fact, the flow applies to any packets destined for the

network address 192.168.3.0/24, as this condition is inserted in the ethernet-match of the

flow below:

<match>

 <ethernet-match>

 <ethernet-type>

 <type>2048</type>

 </ethernet-type>

 </ethernet-match>

 <ipv4-destination>192.168.3.0/24</ipv4-destination>

 </match>

 <cookie>1</cookie>

 <flags/>

 <instructions>

 <instruction>

 <order>0</order>

 <apply-actions>

 <action>

 <order>0</order>

 <output-action>

 <max-length>0</max-length>

 <output-node-connector>1</output-node-connector>

 </output-action>

 </action>

 </apply-actions>

 </instruction>

Deployment of a GPON-SDN solution in a server using Docker

 84

 </instructions>

At this moment the flow instructs the switch to output the packets destined for any

IP’s in the network 192.168.3.0/24 through the node-connector 1 (this is the same node as

in the previous example). However, more instructions like meters and timeouts can be

added in the future to test the working of it in details.

All the flows created earlier can be edited and changed if the priority, timeout or

flow id needs to be changed. The PUT function on the Postman replaces the older one with

the newer flow entry if the link matches. Finally, deleting a flow entry is also possible by

selecting the DELETE option on postman as it can be observed in Figure 68.

Figure 68 : Different options available i.e. put, delete and get

 Configuration of meters in ODL

To create a meter a different link is used on the Postman. The PUT function is still

at work but the link goes as follows:

http://10.0.103.73:8181/restconf/config/opendaylight-inventory:nodes/node/openflow:269285126111858/
meter/1

Then, the corresponding xml-code to create a meter is the next one:

<meter xmlns="urn:opendaylight:flow:inventory">

 <meter-id>1</meter-id>

 <meter-band-headers>

 <meter-band-header>

 <band-id>0</band-id>

 <meter-band-types>

 <flags>ofpmbt-drop</flags>

Deployment of a GPON-SDN solution in a server using Docker

 85

 </meter-band-types>

 <drop-rate>30000</drop-rate>

 <drop-burst-size>30000</drop-burst-size>

 </meter-band-header>

 </meter-band-headers>

 <flags>meter-kbps</flags>

 </meter>

The above meter has been configured with the id “1” and it is limiting any packets

going through it to 30000 kbps (30 Mbps). It is also necessary to check if the switch has

accepted the new meter with the command ovs-ofctl -O OpenFlow13 dump-meters

mybridge and it is shown in Figure 69.

Figure 69 : Newly created meters check on the vSwitch

For the test purposes few more meters with higher drop-rate shall be created. It is

necessary to change the meter id in the xml-code and the link on the postman in order to

create new meters. The meter 2 will have /meter/2 in its link and so on. Five meters have

been created for the test purpose starting from 50 Mbps and going up to 5 Gbps.

Unlike the flow entries, changing data inside a meter cannot be done with the PUT

function. The meter must be deleted with DELETE function on the postman first, if

changes needs to be made on the meter. Once the existing meter has been deleted, we must

change the xml-code and create the new meter with correct the inputs using the PUT

option.

Deployment of a GPON-SDN solution in a server using Docker

 86

 Adding a meter to a configured flow

To add the recently created meter to a flow entry, the following xml-snippet needs

to be added in the instruction field:

<instruction>

 <order>1</order>

 <meter>

 <meter-id>1</meter-id>

 </meter>

 </instruction>

Therefore, a normal flow with meter id “1” will look as follows the meter has been

added to it (in that case the meter that has been configured previously):

<flow xmlns="urn:opendaylight:flow:inventory">

 <id>1</id>

 <priority>32768</priority>

 <table_id>0</table_id>

 <cookie_mask>0</cookie_mask>

 <hard-timeout>0</hard-timeout>

 <match/>

 <cookie>0</cookie>

 <flags/>

 <instructions>

 <instruction>

 <order>0</order>

 <apply-actions>

 <action>

 <order>0</order>

 <output-action>

Deployment of a GPON-SDN solution in a server using Docker

 87

 <max-length>0</max-length>

 <output-node-connector>NORMAL</output-node-connector>

 </output-action>

 </action>

 </apply-actions>

 </instruction>

 <instruction>

 <order>1</order>

 <meter>

 <meter-id>1</meter-id>

 </meter>

 </instruction>

 </instructions>

 <idle-timeout>0</idle-timeout>

</flow>

If the flow has been configured with meter “1” it can also be checked on the open

vSwitch with the command ovs-ofctl -O OpenFlow13 dump-flows mybridge as it can be

observed in Figure 70. This confirms that the normal flow has been configured with meter

‘1’ (actions=meter:1) as it can be observed in Figure 70.

Figure 70 : Output with dump-flows command

4.9 Tests with flows and meters in ODL

In the next steps, we will test the performance of a set of flows and meters. This

will be done step by step in the same order as in the previous section.

 Test 1: Normal flows created in the OVS

Firstly, it is necessary to checked if the switch has accepted the flow entry as it is

shown in Figure 71, in that case a normal flow with priority 1200.

Deployment of a GPON-SDN solution in a server using Docker

 88

Figure 71 : normal flow test

After the flow entry has been confirmed, a test can be done by pinging the other

side of the interface to check the statistics of packets in the flow (Figure 72). In that figure

it can be noticed that the flow entry has been hit and 10 packets passed through the bridge.

Figure 72 : normal flow statistics after the ping

In the next step the priority of a flow entry will be checked. A normal flow has been

created (copy of the first one), but this time the flow has a higher priority of 1800, so we

have two different flows with different priority (Figure 73).

Figure 73 : Two flows created with different priority

The same interface is pinged again to look for changes. After the pings, it can be

seen on Figure 74 that the flow with the higher priority (1800) is being used since packets

are being only transferred through this flow entry.

Figure 74 : Flow stats with different priority

 Test 2: Flow entry for specific ports

In this flow entry, the switch was asked to forward packets from enp6s0f1.833

through the enp6s0f1.806 port. Then, it is necessary to check if the switch has accepted the

flow. After the previous condition has been confirmed, the port is then pinged, and the

results are shown in Figure 75. Therefore, it can be seen on flow the statistics that the flow

Deployment of a GPON-SDN solution in a server using Docker

 89

entry has been hit (there are packets though this flow), so the flow entry configuration is

correct.

Figure 75 : Flow entry check for specific port

 Test 3: Flow entry for specific network address

In the first step we must check if the flow entry has been accepted by the switch

using the command shown in Figure 76.

Figure 76 : Flow entry for specific Network Address

After the flow entry has been conformed, the network 192.168.3.0 is pinged to see

if the flow entry works as intended. Figure 77 confirms that the flow entry works as

intended since the flow permits packets to pass through.

Figure 77 : Flow statistics check after the pings

 Test 4: A flow entry with different meters

As mentioned earlier, five meters have been created on the switch to do several

tests. In the next steps the flow is configured with different meters and the performance of

meters are tested. The drop rate of meters is configured with meter ID 1, 2, 3, 4, 5 with

limited rates of 30 Mbps, 50 Mbps, 100 Mbps, 500 Mbps and 5 Gbps, respectively.

4.9.4.1 Performance of meters of 30 Mbps

The flow entry has been configured with meter with identifier 1 (id) that correspond

with a limited drop rate of 30 Mbps as it can be observed in Figure 78.

Figure 78 : Flow entry with Meter 1

Deployment of a GPON-SDN solution in a server using Docker

 90

The throughput is then tested with a tool named iperf3. To test the through put with

iperf3 we need a client side and the server side. The virtual interface on chron2 will be

used as the client-side to start the iperf and the interfaces on the Chron3 will be used as the

server-side to receive the data sent from the client (Figure 79). Refer to Chapter 3 on more

information regarding the working of Iperf and its configurations.

The meters are not precise as it is still a new technology in development, but it is

working as intended, since the throughput is around 30 Mbps as it is expected from the

first meter (Figure 79.

Figure 79 : perf3 test with Meter 1 (30 Mbps)

4.9.4.2 Performance of meters of 50 Mbps

The flow is then configured with meter 2 of a higher data rate of 50Mbps, as it can

be observed in Figure 80.

Figure 80 : Flow entry with Meter 2 (50 Mbps)

We make sure if the switch has accepted the changes on the flow. After the

conformation we can run the same iperf process again. The meter 2 works as intended

limiting the throughput around 50 Mbps, as this performance can be observed in Figure

81.

Deployment of a GPON-SDN solution in a server using Docker

 91

Figure 81 : Iperf3 test with Meter 2 (50 Mbps)

4.9.4.3 Performance of meters of 100 Mbps

The flow entry is configured with meter 3, related to 100Mbps (see Figure 82). The

iperf is being run on the interface as it can be noticed in Figure 83. Moreover, Figure 83

shows that the throughput is around 100 Mbps as it was configured on the meter 3.

Figure 82 : Flow entry with Meter 3 (100 Mbps)

Figure 83 : Iperf3 with Meter 3 (100 Mbps)

Deployment of a GPON-SDN solution in a server using Docker

 92

4.9.4.4 Performance of meters of 500 Mbps

The flow entry is configured with meter 4, that correspond with a maximum data

rate of 500 Mbps, as it can be observed in Figure 84. The same iperf test is being run again

and Figure 85 shows that meter permits more data through it (790 Mbps) that it is allowed.

The meters start to get more and more inaccurate as the bit rate goes higher.

Figure 84 : Flow entry with Meter 4 (500 Mpbs)

Figure 85 : Iperf3 with Meter 4 (500 Mbps)

Deployment of a GPON-SDN solution in a server using Docker

 93

To check at what point the meters starts to act incorrectly, few more meters are

created using the same methodology as earlier and the results are shown in the table below.

METER (Mbps) IPERF3: RESULTs (Mbps)

30 33.8 Mbps

50 55 Mbps

100 118 Mbps

150 206 Mbps

200 329 Mbps

250 439 Mbps

300 561 Mbps

350 675 Mbps

400 790 Mbps

450 870 Mbps

500 940 Mbps

550 954 Mbps

600 1,10 Gbps

The results are good and precise in the lower bitrate but after 150Mbps they start

getting less and less accurate. If this is related to the switch or the meters being new

technology in general needs to be investigated.

4.9.4.5 Performance of meters of 5 Gbps

The flow entry is configured with meter 5 (5 Gbps). Figure 86 shows that when the

meter is asked to let only 5 Gbps through the bridge, the throughput is capped at 1.14 Gbps.

After multiple tests with higher bitrate meters (up to 10 Gbps) it can be confirmed that the

switch itself does not allow higher throughput than 1.15 Gbps through its bridge. When

there are no meters configured on the switch, the max throughput is still stuck at 1.15 Gbps.

Whether the switch being run on the user space module is the cause behind it needs to be

researched.

Deployment of a GPON-SDN solution in a server using Docker

 94

Figure 86 : Iperf3 with Meter 5 (5 Gbps)

4.10 Installation and Configuration of ONOS in docker

In this step another SDN controller named ONOS (Open Network Operating

System) will be installed inside a container. The same flows and meters will be tested with

this controller. This can later be used to differentiate between the working of two

controllers and which might be optimal and user friendly to be utilized for the future

projects. The new container can also be observed on Figure 87.

Figure 87 :Docker containers with ONOS.

Deployment of a GPON-SDN solution in a server using Docker

 95

Unlike ODL, installation of ONOS inside a docker container is simpler and faster.

The official ONOS developers provide good documentation on the Docker hub to make it

easier for any user that wants to run ONOs inside a container. There are two ways of doing

this process. We can either clone the pre-built ONOS image by the official ONOS on

Docker hub or build our own ONOS image with the information provided by the ONOS

community [21]:

• First Option: It can be done with the command docker pull onosproject/onos. This

command pulls/clones the latest ONOS image and it can be run as any other image

we did earlier to start a container that has ONOS installed into it.

• Second Option: This step can take very long depending on the size of our image

and it is recommended to use the first option if it is available. We build our own

image with the information provided by ONOSPROJECT on Docker hub. To build

an image we need to create a DOCKERFILE and install every packets and software

that is needed. This method was used during the OVS and the ODL installations.

Refer to Chapter 2 on how to build and run an image on Docker [21].

We used the first method to clone the image provided by the ONOS community, the

image can be run to start a ONOS container with the command:

docker run -t -i -d --cap-add SYS_ADMIN --network <docker-bridge-network> --

name=<container-name> -p 8101:8101 -p 5005:5005 -p 830:830 -p

10.0.103.73:8181:8181 --privileged <image-name:tag>

The above command starts a container from of the ONOS image. The IP address

10.0.103.73 is the IP of the host interface, the docker container will use it to surf to the

onos GUI. This works the same as we did with the ODL configurations, i.e. opening the

host port with IP 10.0.103.73 to be able to configure the controller inside a container. The

ONOS is running now and the next step is to surf to its GUI and connect it to our OVS. To

access the ONOS GUI, we surf to the following link on any browser (google chrome,

Firefox etc.):

http://10.0.103.73:8181/onos/ui/#/

Deployment of a GPON-SDN solution in a server using Docker

 96

Upon going to the link, we need to provide the default authentication to access the

onos user interface with username: onos and password: rocks, as it can be observed in the

figure 88

Figure 88 : ONOS authentication

After the authentication succeeds, the following screen shown in Figure 89 appears

on the browser.

Figure 89 : ONOS frontpage

Deployment of a GPON-SDN solution in a server using Docker

 97

The onos GUI has multiple options available, the topology shows the connected

switches, the devices show all connected devices and the applications tab helps us to

activate applications that will be necessary to create flow entries. The next step is to

connect the OVS to the ONOS, and it can be done with two different steps:

1. Step 1: On the OVS command line we set up the IP of the ONOS container

as its master. This is done with the command ovs-vsctl set-controller

mybridge tcp:10.1.4.0:6633. This is like the step that was done during the

ODL connection to the switch.

2. Step 2: We navigate to the Applications option that can be seen on Figure

89 (on the left) and enable OpenFlow application. To enable the OpenFlow

application, we search OpenFlow in the list of all available and installed

application as it can be observed in Figure 90.

Figure 90 : Enabling an application.

In Figure 90 the green tick means that the application has been enabled, and the red

box means it has not been enabled yet. On the same figure we can also see an enable button

on the top right, so selecting the application we need and clicking on the enable button the

selected OpenFlow application is enabled, which will automatically connect the onos

Deployment of a GPON-SDN solution in a server using Docker

 98

controller and the open vSwitch. To check the connection, we click on the topology

functionality that was seen earlier in Figure 89.

On the other hand, in Figure 91, the switch with a specific switch-id has been

connected to the controller and it has few ports connected to it. In this case the ports are

enp6s0f1.833, enp6s0f1.806, eno2 and the internal port of the ovs-bridge. The switch used

OpenFlow protocol 13 and has few flows enabled on it.

Figure 91 : Topology after the connection has been made.

Deployment of a GPON-SDN solution in a server using Docker

 99

Figure 92 : Application fwd has been installed

Once the installation and connection has been enabled, we need to enable one more

application on the ONOS that will allow the connections between the hosts through the

bridge. With ODL this connection was done by creating a normal flow and on the ONOS

we can enable the application named FWD on the applications list as it can be seen in

Figure 92. After the application has been installed, the connection can be tested by pinging

to the other side of the interface connected to the OVS bridge (enp6s0f1.833 on Chron 3).

The connection test is shown in Figure 93.

Figure 93 : Connection test through the ovs bridge with FWD application enabled.

Deployment of a GPON-SDN solution in a server using Docker

 100

After the normal connection has been configured on the bridge the next step is to

create flow entries and test the meters.

4.11 Configuration of flows and meters in ONOS

Unlike ODL, with ONOS it is possible to create flows via the graphical user

interface. Both use the REST API so most of the parameters during the creation and

configuration of flow entries remains the same.

The flow entries will be created using the GUI that is available on the APIDOCS

page. The page to create and view the flows on the onos can be opened with the link

http://10.0.103.73:8181/onos/v1/docs/#/ on any browser such as Google Chrome or

Firefox.

The same authentication is used here (username: onos password: rocks). After the

authentication succeeds, a list of available options appears on the page as it can be seen on

Figure 94. Out of all the available features, only two features with the arrows pointed to

them on Figure 94 will be used. They are used to configure flows and meters.

Figure 94 : ONOS Core REST API list of available features.

Deployment of a GPON-SDN solution in a server using Docker

 101

In the next steps we will use the above features to configure flows and meters with

different parameters.

 Configuration of flows for specific Network Address

Out of the available features on the Rest API Documents we navigate to the flows

by clicking on the it in the Figure 94. Then, we have several options as it can be observed

in Figure 95.

Figure 95 : All options available with the feature FLOWS

The options speak for themselves. GET lets the user get the existing flow or table

data, DELETE lets the user delete them and POST lets the user create a new flow entry.

We select the POST option to start creating a new flow entry, after clicking on the post the

following option appears as seen in Figure 96.

Deployment of a GPON-SDN solution in a server using Docker

 102

Figure 96 : Creation of flows with GUI

The user gets three input fields. The data for this input field are self-explanatory.

The device id is the id of the switch that can be found on the topology table as it was shown

earlier in Figure 91 (of:0000f04da23cb980). The appID is the name of the application that

was enabled in Figure 92 (org.onosproject.fwd). Finally, the stream field will contain the

rules and instruction for the flow the user wants to create.

As it can also be seen on the right side of Figure 96, the REST API also provides

with an example flow that can be used to create a new flow. We use that example flow as

a template for a new flow. Then, to create a flow that is used for the packet’s destination

for IP’s in the Network Address 192.168.3.0/24 the following stream is used:

{ "flows": [{

 "priority": 50000,

 "timeout": 0,

 "isPermanent": true,

 "deviceId": "of:0000f04da23cb980",

Deployment of a GPON-SDN solution in a server using Docker

 103

 "treatment": {

 "instructions": [{

 "type": "OUTPUT",

 "port": "1" }]},

 "selector": {

 "criteria": [{

 "type": "ETH_TYPE",

 "ethType": "2048"},{

 "type": "IPV4_DST",

 "ip": "192.168.3.0/24"

 }] } }] }

With the three input fields being filled, the flow can be uploaded with the button

Try it out! as seen in Figure 96. The flow entry is very similar to the one that was created

with the ODL. For the ONOS controller, the json format is being used because the example

flow that the REST API provides is also on the json format. The flow has 40000 priority

and will forward all data destined for 192.168.3.0 through its port 1(enp6s0f1.833 is saved

as Port 1 in the switch database, this was also mentioned during the flow configurations

with ODL). This flow is very similar to the flow we created with ODL, only the formats

are different, xml format with ODL and json format with ONOS.

To check if the OVS has accepted the flow, similar tests can be done as it was done

during the flow creations with ODL. With the command ovs-ofctl -O OpenFlow13 dump-

flows mybridge, the switch is asked to output all its flows as seen in Figure 97.

Deployment of a GPON-SDN solution in a server using Docker

 104

Figure 97 : Dump-flows on OVS

In this figure, the recently created flow for the network address 192.168.3.0/24 (the

last flow in Figure 97), along with four default flows created by the ONOS are available.

Three of the default flows are created during the initial connection between the OVS and

ONOS. They are necessary for the controller to work. The fourth flow is the flow that is

enabled when we installed the fwd application earlier. The default flows are hidden on the

ODL but ONOS lets the user know by just displaying them along with other flows even

though the users cannot change or delete them. To test if the flow works as it is expected

we ping on the network 192.168.3.0/24. On the last flow of Figure 98 the flow entry is

being hit when the user pings through it, as the n_packets changes from 0 to 4, so the flow

works.

Figure 98 : Connection test on the newly created flow.

Deployment of a GPON-SDN solution in a server using Docker

 105

 Configuration of flows for specific Mac Address

The steps are the same as above, only a few details needs to be changed in the

stream input field, as it is observed in Figure 99.

As seen in this figure 99 the rest of the code remains the same for the mac address

and the source and destination is also inserted according to our device mac address. The

parameters of the flow, the connection and its working tests are very similar to the tests

done with ODL.

Figure 99 : Flow entry for specific MAC id

Deployment of a GPON-SDN solution in a server using Docker

 106

 Configurations of meters

To create a meter via the REST API of the ONOS GUI, we navigate by clicking on

it, to the meters feature on the earlier Figure 94. The options available with the feature

meters in this figure 100 are self-explanatory. GET lets the user view the existing meter,

DELETE lets the user delete it and POST lets the user create a new meter.

Figure 100 : Options on the meters feature.

The Post option on Figure 100 asks the user to fill information in two input fields

with information. The first field asks the user for the switch id and the second one asks the

user for the meter rules and instructions. The REST API docs also provides the user with

a meter example as it can be observed on the right part of Figure 101. This example meter

can be used as a template for our meters.

Figure 101 : Creation of meters in ONOS

Deployment of a GPON-SDN solution in a server using Docker

 107

A typical meter can be created with the following json stream:

{ "deviceId": "of:0000f04da23cb980",

 "unit": "KB_PER_SEC",

 "burst": true,

 "bands": [{

 "type": "DROP",

 "rate": "30000",

 "burstSize": "0",

 "prec": "0" }]}

The above json stream creates a meter that will only allow a throughput of 30 Mbps

on the flow entry where this meter has been added to. For test purpose we will create

multiple meters from 30 Mbps up to 5 Gbps by just replacing the rate in the code. The

meter value and tests will be the same as ODL tests. To check if the meters have been

accepted by the switch the same steps can be followed with the command ovs-ofctl -O

OpenFlow13 dump-meters mybridge.

 Configuration of flows with meters

Now the flows and meters have been created, the meters can be added to a flow by

adding 2 extra line of code on the flow’s json stream, in the next way:

{

 "type": "METER",

 "meterId": 1

 }

The, a flow-entry with a meter configured into it looks as Figure 102. This figure

shows the json-stream used to configure the flow with the meter added into it and Figure

103 shows that the flow has been configured with meter 1. During the test phase, the same

flow will be used multiple times while only changing the meter ID from 1 to 15 in order

to test the meters’ performance with ONOS and comparing it with ODL.

Deployment of a GPON-SDN solution in a server using Docker

 108

Figure 102 : Configuration of a flow with meter into it

Figure 103 : Check the flow entry on the ovs

Deployment of a GPON-SDN solution in a server using Docker

 109

4.12 Tests with flows and meters in ONOS

The test process of the meters and flows are the same as they were with ODL and

to avoid repeating the same figures and commands in the report only one example will be

shown here.

Figure 104 : Iperf test with meter 1 enabled

As it was the case with ODL earlier, the meter 1 has been enabled with drop rate of

30Mbps. Figure 104 shows the meter is working as intended on the flow.

Finally, the following table summarized the results of different meters with

different drop rates and enabled on the same flow entry.

METER (Mbps) IPERF RESULTS (Mbps)

30 32 Mbps

50 54 Mbps

100 119 Mbps

150 215 Mbps

200 342 Mbps

250 452 Mbps

300 553 Mbps

Deployment of a GPON-SDN solution in a server using Docker

 110

350 666 Mbps

400 789 Mbps

450 851 Mbps

500 954 Mbps

550 1.09 Gbps

600 1.07 Gbps

800 1.15 Gbps

1000 1.10 Gbps

20000 1.10 Gbps

The results are the same as ODL tests, the low bitrate meters are accurate while the

bitrate gets bad as we go higher, but the bitrate starts to get inaccurate after the 150Mbps.

Finally, the maximum throughput of the switch is still capped at 1.10 Gbps as it was the

case with the tests done from ODL controller.

From the tests done with ODL, ONOS and without any controller, the fault seems

to lie on the OVS. The OVS does not meet our bandwidth expectation of 10 Gbps. The

OVS is being run in the user space. Further research needs to be done regarding installing

the kernel modules of OVS inside the docker container to test if the problem persists.

4.13 Conclusions

 In this chapter, we have described the implementation and configuration of a router and

a DHCP server with Linux network utilities, solving the different difficulties of this

installation for our use case. Subsequently, the virtual switch was installed on the

container. Below, we have described the connection of the switch with the ODL controller

following a special routine to avoid the instability of the Open vSwitch utility, being able

to add, modify or remove flows or meters on each switch. Finally, we have described,

configured and tested the Flow entries with different scenarios. The same tests were

repeated with a different sdn -controller named ONOS. The ONOS controller was more

user friendly than the ODL as the onos developers have updated version of onos image on

Deployment of a GPON-SDN solution in a server using Docker

 111

their Docker hub and lets the user configure the flows and meters via the GUI, that is, a

graphical interface.

Deployment of a GPON-SDN solution in a server using Docker

 112

5

Conclusions and Future lines

5.1 Conclusions

In this project we had to adjust our methodology, and objectives because of the

circumstances created by the Pandemic. We managed to make vital changes in time so we

could still keep working on the project. The research done will still be useful when the labs

are accessible, and the real configurations can be implemented and tested.

To achieve the completion, the structure of the GPON access network of the L2007

laboratory of the Higher Technical School of Telecommunications Engineers of Valladolid

has first been analyzed. Subsequently, the different crucial components have been

implemented to convert a conventional GPON access network into an SDN network,

implementing a router to be able to control the network through the routing skills of a

Linux system and using other utilities such as iptables (famous firewall and in general,

packet interceptor) and vconfig (to control VLANs). In addition, we installed virtual switch

in order to emulate SDN functionalities in the OLT. Finally, OpenFlow communication

was implemented between the virtual switch and a central controller (using OpenDayLight

and ONOS) located inside a docker container.

During the development of this work, we had to be aware of the difficulty of the

research work and the challenges that must be faced in order to carry out a project to

success, along with the difficulty of proposing an open source based project still in

development, since many of the functions do not work exactly as detailed in the

documentation or are not yet implemented.

Deployment of a GPON-SDN solution in a server using Docker

 113

5.2 Future lines

The biggest part of the project was completed as further as the docker Technology

allowed. The lack of time still left us with many holes to be filled that could be carried

onto the next project.

First, starting from the top, after thorough research, we found out that Docker

utilizes application level virtualization, and it is used to virtualize an application or a

software, whereas VM’s use hardware level virtualization. However, it gets complex when

we want to virtualize the functions like switching and routing. For these functions to work

properly we have to force the containers into host networking mode, which simply uses

the network configurations of the host machine, so they have access to the Network

interfaces of the host. It is as if there is no virtualization happening here. This subject needs

to be researched more, if the virtualization of a router and ovs are worth it at all.

Secondly, more research needs to be done regarding DHCP server inside a

container. During this project a DHCP server was installed and configured using the host

networking mode but according to documents on the website PI-HOLE [19], it is possible

to deploy a DHCP server inside a container using Docker-bridge when a dhcp-relay agent

is installed inside a router. We did not succeed on this aspect after multiple tries and

decided to move on with the project with the host mode networking to save time. When

we get the DHCP server to work on a docker-bridge, we could also investigate to create a

complete version of the container, that starts its DHCP service automatically on boot. This

should be possible if the docker image for dhcp-server is self-built and accompanied with

a script that creates the VLANS, configures the IP for the VLANS and starts the service

when the command docker run is executed. Creating a script inside a container is not

possible so the script needs to be created along with the image.

Regarding the OVS, we should research on how to install a kernel module of the

OVS inside a docker container. As we know docker containers do not have a kernel of

their own and uses the host’s kernel. We need to look into building an ovs-image that can

utilize the host’s Kernel and run in the background smoothly.

Deployment of a GPON-SDN solution in a server using Docker

 114

For the SDN controllers inside a docker container, it is suggested to stick with the

ONOS controller, it is user friendlier than ODL and the open community updates the

docker images with the latest version frequently on the Docker Hub. The ODL image on

the Docker Hub was updated 3 years ago for the last time and the GUI to configure the

flows are not supported by the newer releases anymore. It seems like the project (docker

image for ODL) has been abandoned and no one in the open community seems to be

interested in taking it further.

Finally, we could look into implementing the configurations as it is, on the real

devices in the laboratory with the GPON network. We could start by testing the 10 Gbps

output of the GPON and if the SDN technology that we have implementd on the docker

containers run smoothly on the real interfaces. If the router works perfectly and the DHCP

server is able to give IP address to every connected ONT(residental users) and if the GPON

works network works in both 1Gbps and 10 Gbps configurations using the developed SDN

implementation the major part of the project goal could be deemed complete and the

project could be further developed.

 When the testing process succeeds future implementations related to OpenFlow

can be carried out, one of them being able to move certain global policies related to

Dynamic Bandwidth Allocation and GPON network resources to the central OpenFlow

controller. In this sense, DBA algorithms dynamically distribute the available bandwidth

in a PON network cycle after cycle based on the real-time needs of each user (connected

to an ONU / ONT) and the priority of their contracted services. Therefore, these types of

algorithms provide a more realistic, flexible and efficient bandwidth distribution in PON

networks.

Deployment of a GPON-SDN solution in a server using Docker

 115

6 Docker commands Cheat

sheet

The basic information regarding docker commands is available on Chapter 2

Section 3.3. This section will however show few of the important Docker commands used

during the creation and configurations of all containers. This will list the commands used

during this project. For more general commands guide refer to the Chapter 2.

docker pull Debian

docker pull ubuntu

clones the latest

debian/ubuntu image

from the Docker hub on

the machine.

docker tag <image-name> <new-image-name> Renames the docker

image with the name we

want.

docker rmi <image-name> removes a docker image

docker run -it –name<container-name> <image-name> Start a docker container

from an image, in

interactive mode with

your own container name

docker kill <container-name> To stop a running

container

docker commit <container-name> <image-name> Save all made changes

inside docker container to

a new docker image.

Deployment of a GPON-SDN solution in a server using Docker

 116

docker network create --subnet 10.1.0.0/16 --gateway

10.1.0.1 --ip-range 10.1.4.0/24 bridge_test

Create your own docker-

bridge network named

bridge_test with NA

10.1.0.0/16

docker run -t -i -d --cap-add SYS_ADMIN --network host --

name=ovs_router_dhcp --privileged <image-name:tag>

Start a docker container

from an image in

privileged most with host

networking and admin

permissions.

service isc-dhcp-server start Once inside the container

start the dhcp-server with

this command

ovsdb-server --

remote=punix:/usr/local/var/run/openvswitch/db.sock \

 --

remote=db:Open_vSwitch,Open_vSwitch,manager_options

\

 --private-key=db:Open_vSwitch,SSL,private_key \

 --certificate=db:Open_vSwitch,SSL,certificate \

 --bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \

 --pidfile --detach --log-file

To configure ovsdb-

server to use database

Deployment of a GPON-SDN solution in a server using Docker

 117

docker run -t -i -d --cap-add SYS_ADMIN --network

bridge_test --name=onos -p 8101:8101 -p 5005:5005 -p

830:830 -p 10.0.103.73:8181:8181 --privileged <image-

name:tag>

To run the onos image

and start a container using

bridge_test network and

publish port 8181 so the

user can access the

controller on web

browser.

Image name in our case

was onos:1.1 but it’s a

subject for change when

the images are updated

after enabling new

applications into them.

docker run -t -i --cap-add SYS_ADMIN --network

bridge_test --name=odl -p 10.0.103.73:8181:8181 --

privileged <image-name:tag>

To run the odl image and

start a container

cd opendaylight-0.11.2

./bin/karaf

Once inside the ODL

container navigate to the

directory and run the

script to start the ODL

 For more information regarding docker commands we refer to the cheat sheet on the

website dockerlabs. [35]

Deployment of a GPON-SDN solution in a server using Docker

 118

7 Reference

[1] M. Cooney, „What is SDN?,” 2019.

[2] A. Amokrane, „Software defined enterprise passive optical network,”

in 10th International Conference on Network and Service Management

(CSNM), Rio de Janeiro, 2014.

[3] Webpage for controller OpenDayLight,” [Online]. Available:

https://www.opendaylight.org/.

[4] Linux Foundation, „Open vSwitch Documentation,” [Online].

Available: http://docs.openvswitch.org/en/latest/. [Geopend 11 Mayo 2018].

[5] D. Foundation, „Get started with Docker,” [Online]. Available:

www.docker.com.

[6] OpenFlow Standard 1.3,” [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

[7] O. N. Foundation, „ONOS,” 2020.

[8] J. K. S. v. d. M. S. W. Andrei Bondkovskii, „Qualitative Comparison

of Open-Source,” Trinity College Dublin, 2016.

[9] The Linux Foundation, „Open vSwitch Documentation,” 2018.

[Online]. Available: http://docs.openvswitch.org/en/latest/. [Geopend 2018].

Deployment of a GPON-SDN solution in a server using Docker

 119

[10

]

P. Göransson, Software defined networks: a comprehensive approach,

2014.

[11

]

Creative Commons BY-SA, „Learning Postman”.

[12

]

S. Pillai, „IPERF: How to test network

Speed,Performance,Bandwidth,” 2013.

[13

]

The Linux Foundation, „Open vSwitch on Linux, FreeBSD and

NetBSD,” 2018. [Online]. Available:

http://docs.openvswitch.org/en/latest/intro/install/general/. [Geopend 26

Abril 2018].

[14

]

S. E. B. A. M. J. P. K. P. Jon Dugan.

[15

]

Z. Kaleem, „iPerf vs iPerf3,” 2017.

[16

]

J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer en K. Prabhu, „iPerf -

The ultimate speed test tool for TCP, UDP and SCTP,” [Online]. Available:

https://iperf.fr. [Geopend 23 Mayo 2018].

[17

]

Docker, „Container-networking,” [Online]. Available:

https://docs.docker.com/config/containers/container-networking/. [Geopend

May 2020].

[18

]

Debian Project, „Debian -- Packages,” 19 07 2019. [Online].

Available: https://www.debian.org/distrib/packages. [Geopend 20 02 2020].

[19

]

Pi-Hole, „Docker DHCP and Network Modes,” 2020.

Deployment of a GPON-SDN solution in a server using Docker

 120

[20

]

O. Project, „OpenDaylight Documentation,” 2020.

[21

]

OnosProject, „onosproject/onos,” DockerHub.

[22

]

E. Nemeth, G. Snyder, T. R. Hein, B. Whaley en D. Mackin, Unix and

Linux system administration handbook, 5th edition red., Boston: Addison-

Wesley, 2018.

[23

]

S. Biradar, „The Ultimate Docker cheatsheet,” [Online]. Available:

http://dockerlabs.collabnix.com/docker/cheatsheet/.

[24

]

Tianon, Paultag, "Dockerhub," Debian, 1 5 2020. [Online]. Available:

https://hub.docker.com/_/debian. [Accessed 02 5 2020].

[25

]

S. Seth en M. A. Venkatesulu, TCP/IP Architecture, Design and

Implementation in Linux, Wiley-IEEE Press eBook Chapters, 2008.

[26

]

„vconfig(8) - Linux man page,” [Online]. Available:

https://linux.die.net/man/8/vconfig. [Geopend 7 Mayo 2018].

[27

]

Internet Systems Consortium, „ISC's open source DHCP software

system,” 2003. [Online]. Available: https://www.isc.org/downloads/dhcp/.

[Geopend 21 Mayo 2018].

[28

]

The Linux Foundation, „Installing Open vSwitch,” 2018. [Online].

Available: http://docs.openvswitch.org/en/latest/intro/install/. [Geopend 26

April 2020].

[29

]

D. C, „Open vSwitch Cheat Sheet”.

Deployment of a GPON-SDN solution in a server using Docker

 121

[30

]

PICA8, „PICA8-Documentation,” [Online]. Available:

https://docs.pica8.com/pages/viewpage.action?pageId=5112035. [Geopend

April 2020].

[31

]

O. N. Foundation, „OpenFlow Switch Specification,” 2012.

[32

]

O. Project, „OpenFlow Plugin Project User Guide”.

[33

]

P. inc.

[34

]

O. N. Foundation, „OpenFlow Switch Specification,” 2012.

[35

]

S. Biradar, „The Ultimate Docker Cheat Sheet”.

[36

]

D. Molloy, Raspberry Pi® a fondo para desarrolladores, Madrid:

Marcombo, D.L., 2017.

[37

]

Z. Hu, „A Comprehensive Security Architecture for SDN,” 18th

International Conference on Intelligence in Next Generation Networks.

[38

]

S. W. e. a. Lee, Design and implementation of a GPON-based virtual

OpenFlow-enabled SDN switch, vol. 34.

[39

]

R. e. a. Gu, „Software defined flexible and efficient passive optical

networks for intra-datacenter communications,” Optical Switching

Networking, vol. 14, p. 289, 2014.

Deployment of a GPON-SDN solution in a server using Docker

 122

[40

]

H. Kahlili, D. Rincón en S. Sallent, „Towards and integrated SDN

NFV architecture for EPON networks,” in Advances in Communication

Networking (LNCS 8846), Cham, 2014.

[41

]

L. Youngsuk, „A design of 10 Gigabit Capable Passive Optical

Network(XG-PON1) architecture based on Software Defined Network

(SDN),” in International Conference on Information Networking (ICOIN),

2015.

[42

]

P. Parol en M. Pawlowski, „Towards networks of the future: SDN

paradigm introduction to PON networking for business applications,” in

Federated Conference on Computer Science and Information Systems,

Krakow, 2013.

[43

]

IEEE, „802.1Q-2011 - IEEE Standard for Local and metropolitan area

networks--Media Access Control (MAC) Bridges and Virtual Bridged Local

Area Networks”. 31 Agosto 2011.

[44

]

„vconfig(8) - Linux man page,” [Online]. Available:

https://linux.die.net/man/8/vconfig. [Geopend 9 Mayo 2018].

[45

]

The Apache Software Foundation, „Versión 2.4 de la documentación

del Servidor de HTTP Apache,” [Online]. Available:

http://httpd.apache.org/docs/2.4/. [Geopend 23 Mayo 2018].

[46

]

Raspberry Pi Foundation, „Raspberry Pi 3 Model B Specifications,”

[Online]. Available: https://www.raspberrypi.org/products/raspberry-pi-3-

model-b/. [Geopend 23 Mayo 2018].

[47

]

„iperf(1) - Linux man page,” [Online]. Available:

https://linux.die.net/man/1/iperf. [Geopend 23 Mayo 2018].

[48

]

G. Combs, „Wireshark,” 1998. [Online]. Available:

https://www.wireshark.org. [Geopend 23 Mayo 2018].

Deployment of a GPON-SDN solution in a server using Docker

 123

[49

]

T. B. O. M. F. T. a. TTPs, „Open Networking Foundation,” 2 Febrero

2015. [Online]. Available: https://www.opennetworking.org/wp-

content/uploads/2014/10/TR_Multiple_Flow_Tables_and_TTPs.pdf.

[Geopend 29 Mayo 2018].

[50

]

Y. U. I. i. OpenDayLight, „OpenDayLight Summit,” 29 Julio 2015.

[Online]. Available:

https://events.static.linuxfound.org/sites/events/files/slides/YANGUI-metz-

malachovsky-sebin-ODL-Summit-final-July29.pdf. [Geopend 30 Mayo

2018].

[51

]

R. 6. YANG, „IETF,” Octubre 2010. [Online]. Available:

https://tools.ietf.org/html/rfc6020. [Geopend 30 Mayo 2018].

[52

]

E. Dai en W. Dai, „Towards SDN For Optical Access Networks,”

Spring Technical Forum Proceedings, 2016.

[53

]

O. Project, „OpenStack,” [Online]. Available:

https://www.openstack.org. [Geopend 8 Junio 2018].

[54

]

I. S. C. i. M. Networks, „Department of Computer Science,” [Online].

Available: http://yuba.stanford.edu/~sd2/Ch_5.pdf. [Geopend 12 Junio 2018].

[55

]

Tianon ; Paultag, "Debian Official Images," 10 05 2020. [Online].

Available: https://hub.docker.com/_/debian.

[56

]

C. R. o. openflowplugin.git, „OpenDayLight,” 18 Septiembre 2013.

[Online]. Available:

https://git.opendaylight.org/gerrit/gitweb?p=openflowplugin.git;f=model/mo

del-flow-base/src/main/yang/opendaylight-meter-

types.yang;a=blob;hb=refs/heads/stable/boron. [Geopend 2018].

Pehrs, 2012.

Deployment of a GPON-SDN solution in a server using Docker

 124

Deployment of a GPON-SDN solution in a server using Docker

 125

