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The instability exhibited by perovskite solar cells when exposed to the environment under illumination is one 

major obstacle for the entry of perovskite technology on the photovoltaic market. In this work, we use the external 

quantum efficiency (EQE) technique to study the photoinduced degradation of two types of solar cells having 

CH3NH3PbI3 as absorber layer, one deposited by spin coating with an n-i-p architecture, and the other deposited by 

evaporation with an inverted p-i-n structure. We also study the effect of different encapsulants to protect the cells 

against atmospheric agents. We find that EQE provides information regarding the areas of the cell most 

susceptible to degradation, in addition to providing an estimate of the optical gap and the Urbach energy of the 

absorbent material. We confirm that the combined action of illumination and the environment markedly 

accelerate the degradation, which is reflected in the deterioration of all the parameters of the cell. The rear part of 

the cell is the first region to suffer the light- induced degradation. On the other hand, the cells deposited by 

evaporation and with a good encapsulation process are highly stable, since after 30 hours of exposure just small 

spectral change is noticed in the red/infrared region of the EQE spectrum. 

 

I. INTRODUCTION 
 

Perovskite solar cells (PSCs) are a promising technology for low-cost and high efficiency photovoltaic devices. 

PSCs have gained significant interest and importance over the past years with independently verified efficiencies  now  

surpassing  25  %,1,2    as  well  as  promising  performance  in  light-emitting  diodes,3 
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photodetectors,4 and lasers.5 PSCs also have significant advantages, such as being processed from different scalable 

processes  like  spray-deposition,6 spin coating,7 and  vacuum  deposition,8 among  others. Unfortunately, many 

perovskite materials have relatively limited operational stability, especially compared to silicon, which is reported to 

have a relative mean degradation of 0.8 % per year.9 It is therefore important to have variety of techniques to study 

degradation mechanisms that limit operational stability. 

Meng et al. have highlighted the need to address the stability issue of PSCs under environmental factors 

including light, temperature, and humidity.10 The stability under illumination at different temperatures was studied 

by Holzhey et al.11 Joshi et al. studied the light-induced degradation under inert atmosphere.12 Christians et al. 

recently demonstrated that, replacing TiO2 with SnO2 as electron transport layer, enables a stable operation for at 

least 1000 h under full spectrum irradiation.13 Several studies demonstrated that the combination of light and oxygen 

is particularly harmful for the performance of PSCs.14 Recent reviews on the subject of degradation of PSCs can be found 

in Refs. 15–17. 

External quantum efficiency (EQE) is a dimensionless parameter calculated as the number of electrons 

that exit the device divided by the number of incident photons, at each wavelength. The photocurrent is the integral 

over the wavelength of the product of the measured EQE with the illumination spectrum, typically AM1.5 global for 

terrestrial solar cells. Therefore, EQE can be used to determine the losses responsible for reducing the measured short 

circuit current density (JSC) from the maximum achievable photocurrent. EQE measurements have been used to study 

the effect of different compositions on the response of PSCs,18 different thicknesses of the electron transport layer,19 

the effect of intermediate layers,20 or the segregation of phases,21 among others. However, only a few studies have used 

EQE measurements to follow the light-induced degradation of PSCs.22 

The focus of this work is to show that the EQE technique permits to elucidate the effect of illumination 

on the performance of PSCs. We study the stability under illumination of three different types of PSCs, one fabricated 

by spin coating and two deposited by  vacuum evaporation. In all  cases, we concentrate on the hybrid perovskite 

CH3NH3PbI3 (MAPI). The devices obtained by spin coating have an n-i- p architecture and are not encapsulated (cells 

type-A). On the other hand, vacuum-deposited PSCs have a p- i-n structure and differ only in the type of 

encapsulation adhesive used to connect an aluminium barrier sheet. In one case, an acrylic glue deposited over the full 

area of the stack is used (samples type-B), whereas in the other case a UV-curable epoxy resin is applied only on the 

bare glass outside of the active device area (samples type-C). 
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Solar cell preparation is described in Sect. 2.1. Degradation under light was carried out as described in Sect. 2.2. 

In Sects. 2.3 and 2.4 we present the experimental methods, current density–voltage (J-V) scans and EQE scans, used to 

explore degradation mechanisms on the three types of samples. In Sec. 3 we discuss the main results, and finally we 

present our conclusions in Sec. 4. 

 
 

II. EXPERIMENTAL METHODS 
 

In this work, to highlight the variability in performance and behaviour of different device architectures, two 

different solar cell structures are studied: a regular n-i-p device not encapsulated (sample type-A) and two inverted p-i-n 

devices with two different encapsulation methods (samples type-B and -C). 

A. Solar cell preparation 
 

Type-A devices have a final structure FTO (380 nm) / compact-SnO2 (20 nm) / MAPI (320 nm) / Spiro- OmeTAD 

(190 nm) / Au (80 nm), where FTO is fluorine-doped tin oxide and Spiro-OmeTAD is 2,2',7,7'- Tetrakis[N,N-di(4-

methoxyphenyl)amino]-9,9'-spirobifluorene. The devices were prepared at the Institute of Advanced Materials, 

University Jaume I, Castelló, Spain. FTO-covered glasses, without any meso-porous layer, were used as substrates. 

All the processes were carried out inside a glovebox with oxygen and water levels below 3 ppm. The substrates were 

partially etched with zinc powder and HCl (2 M) to remove a fringe of FTO. Then, the substrates were cleaned with 

Hellmanex solution and rinsed with Milli-Q water and ethanol, followed by 15 min of sonication in three steps with 

acetone, ethanol, and isopropanol. The SnO2 compact (blocking) layer was deposited onto the substrate by spin-

coating from a colloidal solution. The perovskite precursor solution was spin-coated using toluene as antisolvent, 

followed by heating at 100 °C for 3 min. For the hole transport layer (HTL), a solution of Spiro-OMeTAD was prepared by 

dissolving 72.3 mg of 2,2′ ,7,7′ -tetrakis(N,N ′ -di-pmethoxyphenylamine)-9,9′ -spirobifluorene in 1 ml of chlorobenzene, 

28.8 μL of 4-tert-butylpyridine, and 17.5 μL of a stock solution of 520 mg/ml of lithium bis-(trifluoromethylsulfonyl) 

imide in acetonitrile, as additives. The perovskite film was then coated with the HTL solution by dynamically spin 

coating at 4000 rpm for 30 s. Finally, 100 nm of gold was thermally evaporated on top of the device to form the metal 

electrode contacts. For more details on the preparation of the type-A devices, see the work of Aranda et al.7 

Inverted p-i-n devices, type-B and -C samples, were prepared at the Institute of Molecular Science, Valencia 

University, Paterna, Spain, as described in Ref. 8. The final structure of the devices is ITO / MoO3 (5 nm) / TaTm (10 nm) 

/MAPI (590 nm) / C60 (25 nm) / BCP (8 nm) / Ag, where ITO is indium tin oxide, TaTm is 
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N4,N4,N4′,N4′-tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1′-terphenyl]-4,4′-diamine, and BCP is bathocuproine. In brief, ITO 

prepatterned substrates were cleaned following a standard procedure and transferred to a vacuum chamber evacuated 

to a pressure of 10−6 mbar. The vacuum chamber was equipped with six temperature- controlled evaporation sources 

(Creaphys) fitted with ceramic crucibles. The substrate holder to evaporation source distance was approximately 20 cm. 

The materials were sublimed at temperatures ranging from 60 to 

>300 °C, and the evaporation rate was controlled by separate sensors. In general, the deposition rate for TaTm and 

C60 was 0.5 Å s−1, and 0.2−0.3 Å s−1 for the thinner BCP. For the perovskite deposition, MAI and PbI2 were coevaporated 

by measuring the deposition rate of each material in a different sensor, and obtaining the total perovskite thickness 

in a third one, leading to a 590 nm-thick perovskite. MoO3 and Ag were evaporated in a second vacuum chamber. 

All vacuum chambers are inside inert atmosphere nitrogen gas filled gloveboxes with water and oxygen levels below 

0.1 ppm. The area of the devices is around 5 mm2. Type-B devices were encapsulated by depositing an acrylic glue 

over the full area of the stack and placing a thin aluminium cap on top. For type-C devices, we used “Encapsulation 

Epoxy for Photovoltaics and OLEDs” from Ossila (code E132) to adhere a thin aluminium cap to the free glass surface 

on the edge of the ITO coated glass substrates. The cells were illuminated with UV light for 20 min to ensure the 

curing of the adhesive. The encapsulation processes were carried out in an inert atmosphere glovebox. 

B. Degradation under illumination 
 

The devices were illuminated with  a  tungsten-halogen  lamp.  The  irradiance  was  set  to 100 mW cm-2 

using a calibrated silicon photodiode. To exclude additional degradation induced by heating, such as Au migration from 

the metallic contact23 or crystallization of the hole transport layer (spiro-MeOTAD in type-A devices), the temperature 

of the devices was kept at 40 ± 4 °C. This was achieved by cooling the devices with a fan and illuminating through a 

shadow mask with the area of the cell. The experimental procedure involved the following steps. First, the EQE 

and the dark I-V curves were measured at room temperature. Then, the cell was illuminated and the light I-V curve 

was measured. The beginning of the illumination is t=0 in this experiment; as the measurement of the I-V curve 

takes approximately 1 minute, the first I-V curve is considered as t = 1 min. Without interrupting the illumination, the 

second I-V curve was measured after 3 minutes. Next, the illumination was interrupted and the cell was kept 2 minutes 

in the dark under forced-air convection cooling to recover room temperature. The temperature evolution was measured 

with a platinum resistor attached to the surface of the cell. The EQE curves were always measured at room 

temperature.  After  the  EQE  measurement,  illumination  was  resumed  and  the  illumination  time  was restarted. 

We have found that it takes approximately 3 minutes of illumination for the temperature to stabilize at ~40 °C. 
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C. I-V characterization 
 

The I-V curves were measured with a Siglent SDM 3055 multimeter and a GW-Instek GPD-3303S voltage 

source, in the dark and under illumination with the same tungsten-halogen lamp used for light- induced 

degradation. In all I-V measurements, a voltage sweep from 1.2 to -0.1 V with a scan rate of 60 mV s−1 was used. 

D. External Quantum Efficiency 
 

The basic idea in an external quantum efficiency experiment is to know the ratio between the number of 

photogenerated carriers per incident photons, as a function of the wavelength λ, under short circuit conditions: 

   (1) 

One practical way to deduce this quantity is to measure the short circuit current of a calibrated photodiode with known 

EQE, and then measuring the short circuit current of the unknown device, obtaining its EQE as 

 

  (2) 

In this equation I(λ) is the short circuit current measured at each wavelength, the subscript unk refers to the unknown 

device, while d is for the calibrated photodiode. It is important to note that, since we are dividing by the current of the 

calibrated diode, if the light source used in the experiment does not change between measurements then EQE is 

independent of the lamp used. This is important because the short circuit current density under standard test conditions 

can be derived from EQE as 
 

 
(3) 

In this equation, q is the electron charge and Φ is the photon flux corresponding to the AM1.5 spectrum.24 

The experimental setup that we use is shown in Fig. 1. As it can be seen, we use a Xenon arc lamp as  a  light  source,  

which  goes  through  a  computer-controlled  double  pass  monochromator.  Since  the measurement of a dc 

current can be problematic due to noise, we use lock-in amplifiers together with current/voltage amplifiers to have 

a better signal to noise ratio. The addition of a second reference diode is done in order to correct the measurement by 

small changes in the intensity of the illumination source (that may happen due to temperature variations, for 

example). A comprehensive revision of the EQE technique 
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for different types of solar cells can be found in Ref. 25. In order to measure EQE curves, we used 10 nm steps from 

400 to 850 nm. Each point was measured 10 times, and a waiting time of 5 s was set between different wavelengths. 

Each data point shown in the following figures is the average of 10 measurements, while the error bars correspond to 

the statistical error. In all measurements the temperature was 25 ± 2 °C and no bias light was used. 

 
 
 

 
 

FIG 1. External quantum efficiency experimental set-up. 
 
 
 

III. RESULTS AND DISCUSSION 
 

Type-A devices, fabricated by spin coating and unencapsulated, exhibit a poor stability as depicted in Figure 2. 

Figure 2(a) shows the current density - voltage curves as a function of illumination time. In Fig. 2(b) it can be seen that 

the open circuit voltage (VOC) loses more than 20 % after 180 minutes of illumination. On the other hand, the fill factor 

(FF) remains approximately constant after an initial drop. Figure 2(c) shows that the short circuit current density (JSC) 

decreases by a factor of ~5. As a result, the power conversion efficiency decreases to ~15 % of the initial value (Fig. 

2(d)). Degradation occurs in a short time period because the samples are not encapsulated, and the simultaneous action 

of light and oxygen from the environment degrades MAPI with the formation of PbI2 and other lead salts.14,26 
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FIG. 2. Degradation as a function of time on unencapsulated PSCs obtained by the spin coating method. 

(a) Current density - voltage curves (J-V); (b) Normalised open circuit voltage and fill 
factor as a function of illumination time; (c) Normalised current densities obtained from the J-V and the EQE curves as a 

function of time; (d) Normalised efficiency as a function of time. 
 
 

In accordance with the decrease in JSC, we observe a decrease in the EQE of the type- A samples, as shown in 

Figure 3(a), with the maximum EQE value dropping from 64 to 20 % in 180 minutes of illumination. The shape of the EQE 

curve also changes, with greater impact in wavelengths above 500 nm, as will become apparent in the analysis of Fig. 4. 

This behaviour may be associated with an increase in the relative levels of PbI2 within the device.22,27 The use of Eq. 

(3) to calculate JSC from the EQE spectrums provides a good agreement with the photocurrent density obtained 

from J-V measurements, as shown in Figure 2(c). The difference that can be seen especially for long illumination 

times, may be due to the fact that J-V and EQE measurements are performed at slightly different temperatures, and 

EQE is measured without a bias light. 
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FIG. 3. Degradation as a function of illumination time studied from external quantum efficiency measurements. (a) EQE spectra for 

the illumination times indicated in the legend; (b) Evolution of the Urbach energy with the illumination time; the line is a guide to 

the eye. 

The EQE curves can also be used to estimate the bandgap energy (EG) of the absorber material of a solar cell.28 

The first derivative of the EQE curves, 𝑑𝑑(𝐸𝐸𝐸𝐸𝐸𝐸)/𝑑𝑑𝑑𝑑, exhibits a sharp peak in the long wavelength region. Performing the 

derivative of the spectra of Fig. 3(a), a peak at 774 nm is observed, corresponding to EG = 1.602 eV. This value agrees 

with the one obtained from the optical transmittance spectrum of a single MAPI layer. The open circuit voltage 

deficit, VOC,def, is defined by EG/q - VOC and is related to the carrier recombination    and     the     absorber     quality.28     

From     the     initial     J-V     curve     of     Fig.     2(a), VOC = 1.034 V and VOC,def = 0.568 V is found for these type-A cells. 

Moreover, an indication of the quality of the absorber material may be given by the width of the Urbach tail, EU. The 

Urbach tails are comprised of electronic states distributed within the band gap, with a density exponentially increasing 

towards the band edges. The EU value for the absorber layer of a solar cell can be calculated from the long-wavelength 

edge of its EQE (near the band edge) using the expression29 

 

 

where ℎ𝜈𝜈 is the photon energy and ℂ is a constant. A fit with Eq. (4) of the EQE curves of Fig. 3(a) give the EU 

values plotted in Fig. 3(b). As can be seen, the Urbach energy tends to increase with the illumination time, in agreement 

with the observed deterioration of all the parameters of the solar cell. 

 
In order to distinguish between humidity and illumination, we used a reference cell from the same batch of 

type- A devices, and having almost identical initial performance. This reference cell was exposed to  
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the environment at the same time that device A was being illuminated, the only difference being that the reference 

device was kept under dark conditions, thus evidencing only the ambient-induced degradation. Figure 4 shows the 

comparison between a cell exposed to light and the environment (Figure 4 (a)) and the reference cell (Figure 4(b)). As 

can be seen, 15 minutes of combined exposure to light and air causes a similar degradation than 30 hours of air 

exposure alone. Taking advantage of the possibility offered by EQE of obtaining spectral information, we can gain 

insight into the behaviour of the different regions of the cell. We can see that in both cases the percentage decrease in 

EQE, relative to the t=0 spectra, have the same profile (right scales). The decay is more pronounced in the red/infrared 

region of the spectra, close to the absorption edge. As infrared light is uniformly absorbed in the device, this region of the 

EQE curve provides information about what is taking place in the bulk and rear surface of the device. Considering the 

structure of type-A devices, this region corresponds to the MAPI layer or the MAPI/Spiro-OmeTAD interface. Since the 

back of these devices is exposed to the ambient, it is reasonable to assume that the degradation should start from 

these layers. Although the back of the cell is partially covered by gold contacts, oxygen / moisture is likely to diffuse 

inward from the edges of the contacts. Also, degradation may well happen first at the grain boundaries, since it 

is in this area where the ingress is easiest. Degradation at interfaces and fairly uniformly within the bulk has been 

previously inferred from wavelength-dependent laser-beam mapping experiments.30 From the comparison of Figs. 4 

(a) and (b) it is clear that the illumination has a pronounced effect accelerating the ambient-induced degradation, as 

already pointed out by other authors.22 

 
  

FIG. 4. External quantum efficiency (left scales) and percentage decrease relative to t=0 (right scales) for different time exposures: 

(a) Cell simultaneously exposed to the environment and illuminated, (b) cell xposed only to the environment. 
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The EQE curves of Fig. 5(a) correspond to a type-B device, exposed to illumination under ambient conditions. 

The EQE technique allows us to observe the degradation of the different zones of this device, which is fabricated by 

vacuum evaporation and encapsulated with an acrylic glue. Comparing with Fig. 3(a), it is evident that type-B devices 

exhibit a considerable improvement in stability over type-A devices. The degradation takes place in a time scale of 

hours for type-B devices, compared to minutes for type-A. This is due to: i) type-B solar cells are encapsulated, 

avoiding a large incorporation of humidity and oxygen in the active layer; ii) the vacuum evaporation method favours 

homogeneity, reduces the density of defects and eliminates the presence of water and organic solvents; iii) the use of 

passivating layers reduces the interface defects. These differences are essential in obtaining good PSCs.31 In type-A 

devices the MAPI layer was fabricated by spin coating, a method that does not guarantee homogeneity in the 

deposition. Also, evaporation is known to produce layers with a lower defect concentration.32,33 Finally, the 

encapsulant is a fundamental part of any solar device of this type, the absence of which expose the solar cells to 

degradation phenomena. 

 
 

FIG. 5. Light-induced degradation of PSCs obtained by vacuum evaporation; (a) EQE spectra of type-B devices for the illumination 

times indicated in the legend; (b) evolution of the Urbach energy with the illumination time, for type-B (circles) and type-C (stars) 

devices; the lines are a guide to the eye. 

The EQE curves of Fig. 5(a) were also used to estimate EG for the absorber material of this type-B device.28 

The first derivative 𝑑𝑑(𝐸𝐸𝐸𝐸𝐸𝐸)/𝑑𝑑𝑑𝑑 exhibits a sharp peak for 770 nm, corresponding to EG = 1.61 eV. The  open  circuit  

voltage  for  this  device  is  VOC   =  1.059  V,  meaning  an  open  circuit  voltage  deficit VOC,def = 0.551 V for these type-

B cell, slightly lower than the value obtained for type-A devices. The EU value for the absorber layer of this solar cell has 

also been calculated from the long-wavelength edge of its EQE using Eq. (4).29 The EU values are plotted in Fig. 5(b) as 

circles. It can be seen that there is a sharp increase in EU for the first 45 minutes of illumination, followed by a slight  
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increase as the degradation evolves. Moreover, the EU values are lower than those obtained for type-A devices (Fig. 

3(b)), indicating a higher quality for the absorber material. 

As can be seen in Fig. 5(a), the first 45 minutes of exposure produce a detriment in the EQE for 

wavelengths lower than 500 nm, and an improvement for the rest of the spectrum. This initial effect disappears 

after hours of exposure, when the degradation extends to the whole spectrum. To gain insight into the behaviour of 

the different regions of the cell, we present in Fig. 6 the behaviour of this cell after 45 minutes (Fig. 6 (a)) and 10.5 hours 

(Fig. 6(b)) of illumination. In both cases, the right scales correspond to the percentage decrease in EQE, relative to the 

t=0 spectra. The EQE spectrum after the first 45 minutes of illumination (Fig. 6(a)) presents a deterioration in the 

front region of the device of around 8.6 %, but at the same time a gain of ∼6 % in the rest of the device. Although the 

solar spectrum is absorbed throughout the whole cell, the more energetic (or short wavelength, UV) photons are 

absorbed mostly at the front of the device. These energetic photons may cause irreversible damage to the Pb-I2 bonds 

on the perovskite layer.34 The improvement in the rest of the device may be associated with ion migration, specially 

I- species, as suggested by some authors.35 This behaviour would be favoured by the initial increase in temperature when 

the samples are exposed to illumination for the first time. As the exposure time increases (Fig. 6(b)), a 

deterioration of the EQE is observed in the whole range of wavelengths, although the loss in the front region is still more 

important. We recall that in these p-i-n structures the front region of the device corresponds to the MoO3 / TaTm / 

MAPI interfaces. 
 

 

FIG. 6. External quantum efficiency (left scales) and percentage decrease relative to t=0 (right scales) for type- B cells (a) after 45 

minutes of illumination, and (b) after 10.5 hours of illumination, in both cases under ambient conditions. 
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One of the ways to reduce the degradation effects discussed here, such as the incorporation of oxygen and 

water molecules, is with better encapsulation. Figure 7 shows the behaviour of type-C devices. 
 

 
FIG. 7. Degradation as a function of time for type- C PSCs obtained by the vacuum evaporation method  

(a) current density-voltage curve (J-V), the characteristic parameters of the cell are indicated in the legend; (b) EQE for different 
illumination times, the short circuit current densities obtained from Eq. (3) are indicated in the legend. 

 
 
 

Type-C devices were exposed to direct sunlight for the measurement of the I-V curve. The irradiance of 100 

mW/cm2 was measured with a Kipp & Zonen CMP6 pyranometer. Figure 7 (a) allows us to obtain the electrical 

parameters, from which we can determine the fill factor and the efficiency of the device. Observing the values obtained 

for this type of cell, we are in the presence of a good cell with an efficiency of 16.1 %. Using again the EQE technique, 

Fig. 7 (b) shows that in this device there is a general improvement in charge collection. The external quantum efficiency 

is around 72 % for 400 nm, and reaches almost 100 % for 500 nm. This is an indication of better surface passivation 

and a much lower recombination rate compared to the other devices. The EQE technique shows a much more stable 

device to the exposure of light and the environment; after 30 hours of exposure, the first spectral changes are hardly 

observed in the red/infrared region of the spectra. This degradation is only appreciable by the EQE technique, since 

the J-V curves are almost identical, being the decrease of the current density of 2.8 %. The JSC values obtained from 

Eq. (3) agree well with the value measured from the J-V curve, cross validating the results. The EU values of type-C 

device, obtained fitting with Eq. (4) the EQE curves of Fig. 7(b), are plotted in Fig. 5(b) as stars. It can be seen 
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that EU remains low even when the sample is illuminated under ambient conditions, meaning that the encapsulant 

used for this device effectively reduces the degradation. The values obtained for EU, around 14.8 meV, are within the 

range of values calculated from data available in the literature.28,36,37 

There are several reasons for the enhanced stability of the evaporated and encapsulated devices compared 

to type-A devices. The absence of residual solvents will reduce the ionic mobility in the perovskite film, and the smooth 

perovskite film allows for the use of thin charge extraction layers that therefore do not need to be oxidized. But 

probably the main reason is the absence of water, which is known to form an equilibrium (acid-base) reaction with 

the methylammonium cations. Upon proton transfer from the MA to the water molecules, the resulting methylamine 

escapes as a gas which leads to the disintegration of the perovskite and the formation of PbI2. As the bandgap of 

PbI2 is larger than that of the perovskite, the formation of it near a charge extracting interface would lead to an 

energy barrier for charge extraction that would be observed as a decrease in the fill factor of the solar cells. 

Therefore, we believe that the higher purity of the evaporated materials and the absence of water and organic 

solvents for thin-film formation contribute to the improved stability of these devices. 

 
 

IV. CONCLUSIONS 
 

The EQE technique has been used to observe the spectral changes that occur in the different regions of 

perovskite photovoltaic devices when exposed to the environment and to illumination with an irradiance of 100 

mW/cm2. Type- A devices, which are not encapsulated, show a rapid drop in their efficiency when exposed to light 

under ambient conditions. On the other hand, when exposed to the environment only, the decay of the EQE occurs 

much more slowly, losing ∼20 % of its initial value in 30 hours. The fact that the same type of sample loses an equal 

amount of EQE in 15 minutes when illuminated and exposed to the environment, confirms that light  accelerates  the 

degradation of the device. Type- B devices  show a substantial improvement in stability compared to type- A, 

exhibiting even an increase in part of the EQE spectrum in the first minutes of illumination. These devices are 

prepared by vacuum evaporation with an inverted p-i-n architecture, and are encapsulated. In the case of type- C 

devices, with an improvement in the encapsulant, the stability is remarkable and after 30 hours of exposure just a small 

spectral change is noticed in the red/infrared region of the spectrum. This confirms that encapsulation is extremely 

important in PSCs, reducing the effects of degradation due to the incorporation of oxygen and water molecules present 

in the environment. 
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