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Abstract: The reaction times of individuals over consecutive visual stimuli have been studied using
an entropy-based model and a failure machinery approach. The used tools include the fast Fourier
transform and a spectral entropy analysis. The results indicate that the reaction times produced by
the independently responding individuals to visual stimuli appear to be correlated. The spectral
analysis and the entropy of the spectrum yield that there are features of similarity in the response
times of each participant and among them. Furthermore, the analysis of the mistakes made by the
participants during the reaction time experiments concluded that they follow a behavior which is
consistent with the MTBF (Mean Time Between Failures) model, widely used in industry for the
predictive diagnosis of electrical machines and equipment.
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1. Introduction

The literature relates an important number of works on human reaction times to visual stimuli [1–8].
Fast responding is a very common scenario in daily life and in a broad variety of situations in industry [9],
behavioral economics, finances [10], sports [11], and health [12], just to mention just a few examples.

The response time (RT) data have been proven to be correlated to cognitive disorders [8,13,14].
The most commonly diagnosed cognitive disorder in childhood affecting the RT is the Attention Deficit
and Hyperactivity Disorder (ADHD). For instance, ADHD and autism spectrum disorder in children
aged 7–10 years have been studied in reference [15] in order to gain insights into the attentional
fluctuations, related to increased response time variability.

The fast Fourier transform (FFT) has been used to study the intra-individual variability (IIV)
in children with ADHD. For instance, an FFT analysis of response time data in reference [16]
revealed that there is a characteristic periodicity (frequency of 0.05 Hz) in children with ADHD.
Similar studies yielded a periodicity at low frequency (0.03–0.07 Hz) observed in several tasks, namely,
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Sustained Attention to Response Task (SART) [17], the Ericksen Flanker Task [18], and the Go/NoGo
Task [19].

On the other hand, error rates during response time experiments have been intensively studied
in the literature as they retain important information about the neurological disorder under study.
For children with ADHD, a relationship between error rates and the ex-Gaussian parameters of the
response times has been found [20]. Similarly, increased error rates and long response times have been
also found in developing readers and adults during yes/no and go/no-go tasks [21].

In this work, we will apply spectral analysis techniques such as the fast Fourier transform and
entropy of the spectrum in order to get insights into the correlations and patterns in the response times
of a group of individuals over consecutive visual stimuli. We will also perform a failure analysis of the
mistakes made by the individuals while responding to the visual stimuli.

This article is organized as follows. In Section 2, the description of the sample (Section 2.1) along
with the response time experiments (Section 2.2) are included. In Section 3, the methods used for the
data analysis are described. The Results and Discussion are presented in Section 4, and the Conclusions
in Section 5.

2. Description of the Sample and Visual Stimuli Experiments

2.1. Participants

A sample of 190 school-aged children from Valencia (Spain) took part in the computer-based
experiments. The ages ranged from 8 to 10 years. Prior to the experiments, we made sure that
all participants were healthy and had no brain injury, seizures, or any other neurological issue.
The experiments were performed under the authorizations of the school management and the Regional
Authority for Education. We also followed the recommendations of the Secretariat of Education of the
Valencian Community and a protocol approved by the Government of Valencia. We also obtained the
consent of the children’s parents or legal guardians as stated by the Declaration of Helsinki [22].

2.2. Reaction Time Experiments

For the reaction time experiments, a child version of the Attentional Network Test (ANT Child)
was chosen [23]. Every computerized experiment lasted for about 6–7 min in which 166 stimuli
were presented randomly to the participants for 2500 s. The visual stimuli were very simple and
uncorrelated to any cultural background or educational training. The reaction times were recorded by
DMDX [24], a Windows program widely used in the literature [8,25–27]. During each trial, 5 black
fish in a white background and aligned horizontally were presented. The participants were asked to
identify the right direction of the central fish by pressing the “M” key (the fish looking to the right)
or “Z” otherwise. In general, Attention Network Tasks like the one in this work, pursue to assess
three attentional networks: alerting, orienting, and executive control [28], which are closely related
among themselves [29,30]. Alerting network is assessed by changes in reaction time depending on a
warning signal. Orienting is related to changes in the RT depending on where the target appears on
the screen. Finally, the efficiency of the executive control is tested by asking the children to answer
about the direction of an image placed at the center in between neutral, congruent, or incongruent
flankers. The neutral case was when there was only the central fish. The congruent case was where
the surrounding fish were placed in the same direction as the central fish. The third case was where
the surrounding fish were placed in the opposite direction in respect to the central one. In total, our
experiments involved 166 × 190 = 31540 reaction times.
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3. Methodology

For finite duration discrete-time signals
{
x(n)

}N−1
n=0 (which represents the signal to be processed)

with N points of length, the classic method for estimation of the spectrum using the fast Fourier
transform is defined as

X( f ) =

∣∣∣∣∣∣∣
N−1∑
n=0

x(n)e− j2π f n
N

∣∣∣∣∣∣∣ (1)

where f is the instantaneous frequency of the signal to be processed, j is the imaginary unit, and X( f )
is the amplitude spectrum of the vector response times. The spectrum-based analysis is used as a
supplement to the calculation of spectral entropy [31].

The entropy of a discrete-valued random variable attains a maximum value for a uniformly
distributed variable. Considering a discrete random variable Z with M states z1, z2, . . . zM and state
probabilities p1, p2, . . . pM, that is P(Z = zi) = pi, the entropy of Z is defined as

H(Z) = −
M∑

i=1

pi log2(pi) (2)

According to Equation (2), the spectral entropy of the
{
x(n)

}N−1
n=0 signal is a measure of its spectral

power distribution. The concept is based on Shannon’s entropy, which quantifies the amount of
information as well as its coherence. The spectral entropy treats the normalized energy distribution of
the signal in the frequency domain as a probability distribution and calculates its Shannon entropy.
Then, for a signal

{
x(n)

}N−1
n=0 , the power spectrum S( f ) is defined as the square value of Equation (1):

S( f ) = (X( f ))2 (3)

The probability distribution P( f ) is then

P( f ) =
S( f )∑
i S(i)

(4)

where S(i) is the individual energy contribution for each data sample. Then, the spectral entropy, E,
is defined as [31]:

E = −
F∑

f=0

P( f )· log2 P( f ) (5)

Normalizing:

En = −

∑F
f=0 P( f )· log2 P( f )

log2 F
(6)

where F is the total number of frequency points. The denominator, log2 F represents the maximal spectral
entropy of white noise, uniformly distributed in the frequency domain with flat power spectrum.

Once Equation (6) has been obtained, if the Pearson correlation coefficient based on the data
covariance matrix is applied to the result, in order to search for linearity in the uniformity patterns,
the following is obtained:

R(i, j) =
C2

(
En(x),En(y),

)
√

C2
(
En(x), En(x)

)
·C2

(
En(y), En(y)

) (7)

where R(i, j) is the matrix of pairwise covariance calculations between each variable, used to quantify
the spectral content in terms of energy, that is, to quantify the group coherence, as a linearity relationship
in a vector by means of its spectral energy.
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Failures Entropy Based Model

To model the failures of each one of the participants, the use of the mean spectral entropy over the
total sample of 190 participants is proposed, and following the analogy that may exist with the MTBF
(Mean Time Between Failures) model that can be defined in terms of the expected value of the failure
density function, namely f (t):

MTBF :
∫
∞

0
t f (t) dt (8)

Let be Xi j a discrete matrix where (i = 1, . . .M, j = 1, . . .N) correspond to a row, column index
and M and N are the number of rows and columns respectively in the matrix. Then, the mean value
for each row of the discrete matrix is given by

Xmean(i) =
1
N

N∑
j=0

X(i, j) (9)

where N and i are the total number of points and the row index, respectively. Substituting Equation (9)
in Equation (1) and applying the power spectrum, we have

Pmean( f ) =

∣∣∣∣∣∣∣
N−1∑
t=0

Xmean(t)e− j2π f t
N

∣∣∣∣∣∣∣
2

(10)

Performing the probability distribution (according to Equation (4)) of Equation (10) and applying
the spectral entropy, we have

E = −
F∑

f=0

Pmean( f )∑
i Pmean(i)

· log2

(
Pmean( f )∑
i Pmean(i)

)
(11)

The Equation (11) describes the proposed algorithm for the failures process in the experiment
described in Section 2 and whose result is associated with the discrete MTBF machinery failures model:

MTBF =
K∑

i=1

EiP(Ei) (12)

where K is the number of points in the vector E1, E2, E3, . . .EK, a discrete random variable with
probability function P(Ei).

4. Results and Discussion

As a first analysis and to have a measure of the behavior of the response times throughout the
entire data, the calculation of the mean value of the RTs to each stimulus over the sample of 190 children
is performed. In other words, we construct a response time vector 166 (the number of items in the
experiments) values of length, in which each component corresponds to the average response time of
each visual stimulus over the sample of 190 participants. The results are shown in Figure 1 with open
circles. This time, the mistakes made by the participants while responding to the visual stimuli are not
considered. This variable will be analyzed later.
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characteristic pattern in the response at a frequency of 0.05 Hz (every 20 s) vs. a frequency of 0.075 
Hz (13.3 s) in children taken as control sample [16]. 

Figure 1. Mean reaction time over the sample of 190 participants versus the item ordering number.

For the purpose of completing the data of response time over consecutive stimuli for each
participant, interpolations have been applied. Specifically, we have chosen an interpolation method in
the framework of the reproducing kernel Hilbert space (RKHS) formalism, which has been successfully
applied in references [32–37] to represent the potential energy surface (PES) of small molecular systems.
We decided to use this interpolation method as it shows several advantages over other methods,
for instance, they are generic and parameter-free and for the interpolation at each point, the whole
dataset is considered. By using the whole dataset, this method can retain any pattern manifested in the
response time data over the consecutive stimuli.

This redensification of the data (upsampling) has been performed in order to increase the spectral
resolution and to make the frequency spectrum look better visually. The original values are kept
as well as their frequencies so that this process does not affect the original data. The results of the
averaged RTs over the sample of 190 participants using this interpolation procedure are also presented
in Figure 1 with a solid red line.

The fast Fourier transform (FFT) technique has been applied to the response times of each
participant in order to obtain the spectrum. Figure 2 shows the average spectrum over the sample of
participants. The average spectrum shows some frequency peaks, indicating that there are frequencies
that are repetitive throughout the sample of all participants, which can result in a common spectral
pattern. The main frequency of the spectrum is at 0.1 item−1, which means that there is a common
pattern every 10 items. The corresponding period of the pattern would be approximately 7.5 s,
considering a mean value over the participants of 750 ms within the first 10 items (Figure 1). Studies of
intra-individual variability in children have found that children with ADHD show a characteristic
pattern in the response at a frequency of 0.05 Hz (every 20 s) vs. a frequency of 0.075 Hz (13.3 s) in
children taken as control sample [16].
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Figure 2. Mean fast Fourier transform (FFT) over a sample of 190 participants.

To complement the FFT results, the spectral entropy for the entire data sample is calculated.
This calculation involves a spectral matrix of dimension 166 × 190 (166 reaction times for each of the
190 participants), which is evaluated to determine if there is a similar distribution in the frequency
spectrum of each participant (Equation (3)), what would imply a common reaction time against a
common visual stimulus. To find out if there is a linear similarity relationship, the pairwise correlations
across entire sample of students (190) are calculated. The correlation algorithm used was based on the
Pearson correlation coefficient.

Figure 3 shows the results of the correlation matrix calculated from the spectral entropy values
over all participants. The graph includes a first group of 11,026 correlation pair values greater than 0.9
(corresponding to a 61.41% of the total number of pairs). This group involves a set of 149 participants
with a very similar pattern of frequency distribution. There is a second group of 6441 correlations
values (35.87%) ranging between 0.5 and 0.9 and involving 114 participants presenting certain similar
characteristics. Finally, a third group with 33 participants presented less distinctive similarities,
with 528 correlations pairs values under 0.5 (2.94%).

It should be taken into account that the analysis based on entropy involves correlation pairs.
Therefore, there are participants who appear in several associative groups since they can present linear
relationships to a greater or lesser extent according to their correlation coefficient. In consequence,
the sum of the values 149, 114 and 33, respectively, is greater than 190 participants.

As is well known, the entropy measures the degree of organization of a system. In accordance with
this, there is an increase in the measured energy (power spectrum) that results from the interactions of
the associations. The latter are represented in this case by a quantitative variable such as the correlation,
and by a random or deterministic change in the system, represented in this case by the visual stimuli.
Each associative state shown in Figure 3 is the result of each of these individual interactions for each
participant, which is quantified by Pearson’s correlation coefficient.

For the analyzed case, this behavioral relationship measured through the entropy and show in
Figure 3, provides an idea of the collective behavior in relation to independent characteristics of the
group as it shows the intrinsic linear relationship between the response times of various individuals
without sharing knowledge among them. This suggests some regularity and a certain common pattern
for certain group characteristics in a population.

Figure 4 shows the mean spectral entropy as a function of time and over the sample of participants.
This quantity says about the coherence of the individuals’ responses along the course of the experiments.
In this respect, this quantity is proportional to the probability that participants make mistakes while
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responding to the consecutive visual stimuli. It can be seen in Figure 4 that the spectral entropy values
start from a point of instability because the participants begin to adapt during the experimental process;
then, it follows a stationary behavior given that the participants are adapted to the visual stimuli
showing a stable response time; then, at the end, they begin to visualize transient values and peaks in
the entropy values, which is due to the fact that the participants have been running the process for a
certain time and a dependent variable such as “fatigue” can influence the results.

This result is in a good qualitative agreement with the failure modelling using Mean Time Between
Failures (MTBF), widely used in industry for the predictive diagnosis of electrical machines and
equipment. The mean time between failures is the arithmetic mean of the time between failures of a
system. MTBF is typically part of a model that assumes that the failed system is repaired immediately
as part of a renewal process [38].

Figure 5 illustrates a schematic representation of this model, where three stages are manifested.
In the first stage, the machine is in the test period, when failures can occur randomly depending on
the conditions and operating regimes. The second stage includes the stability period of the machine,
when it has already passed the trial period and has adapted to the working conditions and regimes.
Finally, the third stage refers to the period of overuse of the machine, time after the hours that
the manufacturer guarantees for its proper functioning have passed, with which the failures can
increase again.

Figure 3. Spectral entropy correlation pairs grouped by intervals of association as a function of the pair
index value within each group.
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5. Conclusions

Reaction times from visual stimuli experiments have been analyzed using a machinery failure
approach and a spectral analysis. Results from the spectral analysis through the Fourier transform
show that the participants have patterns in the responses along a series of visual stimuli, where the
fundamental frequency for these experiments locates at 0.1 item−1, that is, every 10 items (every
around 7.5 s). Similarly, the correlation analysis based on the spectral entropy showed that there
are correlations among the reaction time series of the participants who carry out the experiments
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independently and without exchanging information. This result can be rationalized by considering
that the participants form a system or a collective whose responses are not independent from one
another. On the other hand, the analysis of the mistakes made by the participants while responding
to the visual stimuli shows that they follow a behavior consistent with the MTBF model used in the
industry for the predictive diagnosis of electrical machines and equipment.
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version of the manuscript.
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