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Glossary

B Baryon
BBN Big Bang Nucleosynthesis
BGL Boyd-Grinstein-Lebed
ChPT Chiral Perturbation Theory
CKM Cabibbo-Kobayashi-Maskawa
CLN Caprini-Lellouch-Neubert
DD Direct Detection
DFSZ Dine-Fischler-Srednicki-Zhitnitsky
DFW Duerr-Fileviez Perez-Wise
DM Dark Matter
d.o.f. degree(s) of freedom
EDM Electric Dipole Moment
EFT E�ective Field Theory
EW Electroweak
FF Form Factor(s)
FOP Fileviez Perez-Ohmer-Patel
FSR Final State Radiation
GB Goldstone Boson
GUT Grand Unified Theory
HFLAV Heavy Flavor Averaging Group
HK Hyper-Kamiokande
HQEFT Heavy Quark E�ective Field Theory
IO Inverted Ordering
KSVZ Kim-Shifman-Vainshtein-Zakharov
L Lepton
LCSR Light Cone Sum Rules
LH Left Handed



LNV Lepton Number Violation
LQ Lepto-Quark
LQCD Lattice Quantum Chromodynamics
MOND MOdified Newtonian Dynamics
MSSM Minimal Supersymmetric Standard Model
NMR Nuclear Magnetic Resonance
NO Normal Ordering
NP New Physics
PMNS Pontecorvo-Maki-Nakagawa-Sakata
PQ Peccei-Quinn
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
RF RadioFrequency
RGE Running Group Evolution
RH Right Handed
RHS Right Hand Side
SK Super-Kamiokande
SM Standard Model
SMEFT Standard Model E�ective Field Theory
SQUID Superconducting Quantum Interference Device
SSB Spontaneous Symmetry Breaking
UV Ultraviolet
vev vacuum expectation value
WC Wilson Coe�cient
WET Weak E�ective Theory
WIMP Weakly Interacting Massive Particle
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Preface
“When someone is searching, -said Siddhartha, - then it might

easily happen that the only thing his eyes still see is that

what he searches for, that he is unable to find anything, to let

anything enter his mind, because he always thinks of nothing

but the object of his search, because he has a goal, because he

is obsessed by the goal. Searching means: having a goal. But

finding means: being free, being open, having no goal. You, oh

venerable one, are perhaps indeed a searcher, because, striving

for your goal, there are many things you don’t see, which are

directly in front of your eyes.”
— Siddhartha. Hermann Hesse.

The Standard Model of particle physics (SM) is the best theory that we have so far

to understand the nature. It is a theory that has been built collecting the e�ort from

brilliant physicists who have adapted mathematical concepts and extended the available

theoretical framework by the need of accommodating it to the experimental evidence.

Although the SM describes with high accuracy most phenomena in nature, there is

evidence of physics beyond it, which challenges physicists to seek answers. We will

introduce first some of its Achilles heels that, supported by experimental observations,

denote that the SM cannot be the ultimate theory and forces us to think beyond it:

• The origin of neutrino masses and their nature. Neutrinos are particularly

interesting as, in addition to their unexpected tiny mass, which cannot be

explained in the context of the SM, they are the only neutral fermions in the

SM, allowing them to be their own antiparticles. We will describe their status

and introduce the main mechanisms behind their mass generation in Chapter 1,

their connection between their nature and lepton number will be discussed in

1



2 Preface

Chapter 5, while also in that chapter and in Chapter 6 we will study their interplay

with other open problems such as dark matter or Grand Unified Theories (GUTs).

• The nature of dark matter: Experimental evidence indicates that the universe

is filled by some unknown matter, which several candidates could explain. Dark

matter (DM) will be introduced in Chapter 2, where two of the most appealing

candidates will be presented: weak interacting massive particles and axions.

• Matter-antimatter asymmetry: In the early universe equal amount of matter

and antimatter should have been created; however, here we are. A tiny portion

of matter – about one particle per billion – managed to survive. One of the

conditions required for this asymmetry to occur in the evolution of the universe

is the violation of baryon number. In Chapter 3 and 4 we will introduce theories

where such condition can be satisfied.

• The flavour B-anomalies: Recently, hints of lepton flavour universality violation

have been reported in B meson decays. Puzzled by their possible origin, in

Chapter 9 we perform a global fit to b → c transitions including as input the

most updated values available. For that, we will adopt a bottom-up approach

from an e�ective field theory point of view, presented in Chapter 8. We will show

that, although the fit prefers new scenarios rather than the SM, no preference for

a certain type of new physics is found.

Apart from the topics mentioned above, the SM also leaves without a satisfactory

explanation several concepts that make them less aesthetic and claim for a better

understanding. Among them,

• The symmetries of the SM: The three forces in the SM suggest a common

origin at high energies. The original GUT proposed by Georgi and Glashow

based on SU(5), in spite of its predictive power and beauty, fails to reproduce

the correct mass relations among fermions, unification of gauge couplings and

massive neutrinos, as will be explained in Chapter 6. In that chapter, as well as in

Chapter 7, we present minimal realistic alternatives to the original model and their

interplay with other problems of the SM such as neutrino masses (Chapter 6), the

existence of DM and the strong CP problem (Chapter 7).
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Besides the SM gauge symmetries, there are accidental symmetries such as

baryon and lepton numbers, or combinations of both, which could suggest a

local symmetry behind them. Those will be discussed in Chapter 3. In there, we

will show that, by gauging these symmetries, very appealing connections between

neutrino masses and DM appear as well as rich phenomenology regarding DM,

which naturally arises in some of these models as a prediction of anomaly

cancellation. The fact that the upper bound of these theories is at the multi-TeV

scale makes their phenomenology testable at the current or near future stages

of colliders (LHC), direct detection (Xenon-1T, Xenon-nT...) or indirect detection

(Fermi Lat, HESS, CTA...) DM experiments, as we will show in Chapters 3, 4 and 5.

Particularly interesting are, as we will show, theories for local baryon number,

motivated by the capability of the LHC to detect their hypothetical leptophobic

gauge boson mediator and their consequent low scale phenomenology.

• The strong CP problem: Why does Quantum Chromodynamics (QCD) seem to

preserve CP? A pseudoscalar field called “axion" is an attractive answer. Axions

will be discussed in Chapter 2 and their embedding in GUT theories in Chapter 7,

where we will show that, in their context, the mass of the axion can be predicted.

The aforementioned topics, as shown above, might be deeply connected. The aim of

this thesis is to explore motivated extensions of the SM connecting the di�erent open

problems just presented under the guidance of:

• Simplicity, meaning minimal amount of content to explain the maximum number

of open issues. Nature may be wayward, but having two potential paths towards

an answer, we will bet for the simplest one.

• Predictivity, meaning that the elements in the theory are connected in some

extend. The less freedom the theory enjoys, the more predictive power it has,

therefore becoming more attractive.

• Testability, in the sense that their predictions may be falsified by current or near

future experiments.

The above define the compass we will take for our journey in beyond the standard

model territories, and this thesis is going to be the logbook of that wonderful trip.





1.- Neutrino physics

Neutrino masses are certainly a clear evidence for beyond the Standard Model

physics. The SM of particle physics predicts massless neutrinos: no mass term is

allowed by the symmetries SU(3)c⊗SU(2)L⊗U(1)Y within the matter content of the

theory. The later was believed for a long time, reinforced by the experimental evidence

of lepton flavour number conservation, until in the late 90s several experiments had

reported anomalies in the interaction rates of solar [1] and atmospheric [2] neutrinos.

The well-known solar neutrino problem exhibits a mismatch between the expected

and observed neutrinos coming from the Sun; although the vast majority of neutrinos

emitted by the Sun were supposed to be produced as electron flavour eigenstate

neutrinos, only a third of those were observed at the detectors. This apparent

contradiction was finally resolved by the Sudbury Neutrino Observatory (SNO) in 2001 [3].

Neutrino oscillations were also reported in other experiments based on reactor and

accelerator beam neutrinos [4, 5].

Such phenomenon observed at experiment indicates that the neutrino flavour

eigenstates do not correspond to their mass eigenstates, which would be the case if

they were massless. In this context, there should be a rotation matrix connecting the

mass eigenbasis with the flavour one, since both the charged and neutral lepton mass

matrices, in general, cannot be simultaneously diagonalized, as we will briefly show in

the following.

Let us assume that a Dirac mass term for the neutrinos is violating the lepton flavour

number in the Lagrangian,

− LY ⊃ eL Ye
v0√

2
eR + νL Yν

v0√
2
νR + h.c.. (1.1)

5



6 1. Neutrino physics

where v0 = 246 GeV is the vacuum expectation value (vev) of the SM Higgs boson. It is

well known that any complex matrix (i.e. flavour Yukawa couplings) can be brought to

a positive definite diagonal form by a bi-unitary transformation, particularly the lepton

Yukawa terms in the broken phase, as follows:

− LY ⊃ eL VeLMdiag
e V †eReR + νL VνLM

diag
ν V †νRνR + h.c.. (1.2)

By redefining the leptons in the following way eL,R → VeL,R eL,R and νL,R →
VνL,R νL,R, the mass matrices in Lagrangian are brought to a diagonal form, so that our

fields are now physical states. This rotation, however, analogously to the quark sector,

induces a mixing term in the charged leptonic current from the i`LDµγ
µ`L kinetic

term:

L ⊃ − g√
2
eLW

−
µ γ

µνL → − g√
2
eLW

−
µ γ

µ V †eLVνL︸ ︷︷ ︸
UPMNS

νL. (1.3)

where g refers to the SU(2)L gauge coupling. Therefore, choosing the basis such that

the charged lepton flavour states are diagonal, we can absorbe the rotation matrices in

the neutrino transformation in the matrix UPMNS, the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix, as Eq. 1.3 shows. This matrix is the analogous to the

Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix, VCKM, in the quark sector; it connects

the mass and flavour eigenstates of the neutrinos and it is responsible for the neutrino

oscillations:



νeL

νµL

ντL


 = UPMNS



ν1L

ν2L

ν3L


 , where UPMNS ≡



Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 . (1.4)

Taking into account that the matrix is unitary, it can be expressed as

UPMNS = eiH , where H† = H. (1.5)

On the other hand, any matrix can be decomposed in a symmetric (S) and

antisymmetric (A) part as follows: H = S + A. Then, because of the hermitian

nature of H , S = S∗ and A = −A∗. Now, taking into account the number of degrees
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of freedom (d.o.f.), illustrated in the diagram below, we obtain:

( )S =
N2 �N

2
+N[ [�(2N � 1) ) NIm =

(N � 1)(N � 2)

2

( )[ [N2 �N

2
) NRe =

N(N � 1)

2
}

}

A = (1.6)

where the 2N − 1 account for the d.o.f. we can rotate away by using the freedom of

the lepton global phases. Therefore, for N = 3 (three families of neutrinos) we can

parametrize the UPMNS matrix with NRe = 3 real (Euler) angles and NIm = 1 complex

(CP) phase that can lead to CP violation:

UPMNS =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 e−iδ

0 1 0

−s13 e
iδ 0 c13






c12 s12 0

s12 c12 0

0 0 1


 . (1.7)

Note that, if neutrinos are Majorana (discussed in Sec. 1.1), a global phase redefinition

does not leave the Majorana mass term invariant so that two extra CP violating phases

should be taken into account in this case. 1 The fact that UPMNS 6= I implies that the

flavour states will evolve as a linear combination of mass eigenstates over time. The

later allows us to talk about the conversion probability between flavour states, which

quantum mechanics tells us that is given by,

P (νa → νb) = −4
∑

i<j

Re[U∗aiUbiUajU
∗
bj ] sin2 ∆ij + 2

∑

i<j

Im[U∗aiUbiUajU
∗
bj ] sin 2∆ij ,

(1.8)

where ∆ij = (m2
i −m2

j )L/4Eν , being L the distance at which the neutrino interacts

along its direction of flight, and Eν its energy. From Eq. 1.8, the reader can conclude that

the existence of neutrino oscillations implies the existence of at least two non-degenerate

massive neutrinos. From the experimental data on neutrino oscillations one can extract

the absolute value of the mass di�erences between the three neutrino mass eigenstates.

1These Majorana phases, however, do not enter in the neutrino oscillations. They only enter in processes
where lepton number is violated in two units.
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∆m2
21 [10−5 eV2] ∆m2

3` [10−3 eV2] sin2 θ12/10−1

NO and IO NO IO NO IO
7.42+0.21

−0.20 2.517+0.026
−0.028 −2.498± 0.028 3.04± 0.12 3.04+0.13

−0.12

sin2 θ23/10−1 sin2 θ3/10−2 δ[o]

NO IO NO IO NO IO
5.73+0.16

−0.20 5.75+0.16
−0.19 2.238+0.063

−0.062 2.219+0.062
−0.063 197+27

−24 282+26
−30

Table 1.1: Best fit parameters at ±1σ for the neutrino parameters given by the recent
global analysis from Ref. [8], where ` = 1 for NO and ` = 2 for IO (see main text).

However, notice that Eq. 1.8 does not allow us to predict their absolute mass scale from

neutrino oscillation data, although other experiments set an upper bound for the scale

of neutrino masses [6],

mβ < 1.1 eV at 90% C.L., where m2
β ≡

3∑

j

|Uej |2m2
j , (1.9)

which is suggested to be even stronger by cosmological probes [7],

∑

i

mνi < 0.12 eV. (1.10)

Nevertheless, the later bound depends on the combination of data adopted and could be

weakened depending on the data set considered in the fit. Such ambiguity in the sign

of |∆mij |2 gives rise to two possible non-equivalent hierarchies: normal ordering (NO),

m1<m2<m3, and inverted ordering (IO), m1>m2>m3. 2 We show in Table 1.1 the

results on the neutrino parameters from the most recent global fit analysis in Ref. [8] 3

After this brief introduction on neutrino physics we are aware that, although the

observation of neutrino oscillations clearly brings out the incompleteness of the SM, the

neutrino mass hierarchy, the reason why the neutrino masses is more than one million

times smaller than the mass of the electron, their mass values, together with the key

question whether they are Dirac or Majorana particles are still shrouded in mystery.

2Global fit results on the parameters describing neutrino physics show a preference for the normal
hierarchy, mildly below 3σ [8] when only data from oscillation experiments is taken into account. When
also including cosmological input, such preference increases up to 3.3σ [9].

3See also Ref. [9] for an alternative fit with similar results.
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1.1 Nature of neutrinos: Lepton number

One can distinguish three reasons why the neutrinos are massless in the SM, or in

other words, why B-L is an exact symmetry:

(a) there is no right-handed (RH) lepton field allowing for a Yukawa interaction with

the SU(2)L lepton doublet,

(b) there is only one scalar in the theory: the SM Higgs is a SU(2)L doublet with

hypercharge 1/2,

(c) when referring strictly speaking to the SM we assume a renormalizable theory,

i.e. only dimension 4 interactions are considered in the Lagrangian.

Therefore, the SM matter content and gauge symmetries do not allow for a mass term

in a renormalizable Lagrangian. However, we have discussed that neutrinos must have

mass to account for the experimental hints on lepton flavour oscillations. Hence, we

should expect either (a), (b) or (c) to be incorrect.

Let us start by assuming (a) is false and that the SM contains a RH neutrino,

νR ∼ (1, 1, 0). If so, the SM gauge symmetry group allows for the following interaction

in the Yukawa Lagrangian,

− LY ⊃ Yν `Liσ2H
∗νR + h.c., (1.11)

so that neutrinos will get mass through the Higgs mechanism as well as the rest of the

charged fermions in the SM. Their mass is connected to the electroweak (EW) scale via

the EW spontaneous symmetry breaking (SSB) as follows,

MD
ν = Yν

v0√
2
. (1.12)

Therefore, we would need a Yukawa of order Yν ∼ O(10−12) in order to achieve the

proper mass scale for the neutrinos, fixed by Eq. 1.9, which is absurdly six orders of

magnitude smaller than the electron. This bring us to the puzzling question: Why

neutrinos are so light?
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At this point, some comments are in order. In the physics community, it is common

to hear complains about the smallness of the Yν in the case neutrinos are Dirac particles.

This issue is typically (and wrongly) called a fine tuning problem. It should be therefore

stressed that having a small Yukawa coupling is totally natural in the sense that this

parameter is protected by the chiral symmetry, as well as are the rest of Yukawa

couplings in the Lagrangian. Furthermore, by fine tuning we usually refer to tuned

cancellations between two (or more) terms, which is transversal to our scenario. Said

that, it is fair to also stress that such strong hierarchy between the Yukawa couplings of

the neutrinos and the charged leptons is also present in the quark sector, where there

are 5 orders of magnitude between the Yukawa couplings of the up and top quarks.

Hence, there is nothing wrong about neutrinos being Dirac particles, although aiming to

understand from a theoretical point of view such hierarchy among the fermion masses,

Majorana neutrinos would be appreciated since, as we will see in the following, they

can provide a nice justification for that.

Neutrinos are unquestionably Dirac particles if lepton number is conserved but, as

we will learn in Chapter 3, lepton number is just an accidental symmetry in the SM

renormalizable Lagrangian, in general not guaranteed anymore when new fields are

considered, so that nothing prevents the Lagrangian from having the following bare

mass term,

− L ⊃ 1

2
νTRCMRνR + h.c., (1.13)

allowed by gauge symmetries and Lorentz invariance. Notice that the above interaction

violates lepton number in two units! In this case, one can introduce the following

4-component field,

ΨN = νR + (νR)c, (1.14)

so that neutrinos are their own antiparticles ((ΨN )c = ΨN ), i.e. they are Majorana

particles. Actually, there is no specific need for having RH neutrinos in the theory to

account for neutrino masses. Let us look closer to option (c). As commented in the

Preface, we know that the SM cannot be the ultimate theory for nature. If we think of

it as a part of (up to dimension-4) an e�ective field theory (EFT), we expect the lowest

dimensional operator to dominate the e�ect of new physics (NP), in this case dimension

5 operators. Curiously, it turns out that by taking into account the symmetries and
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particle content of the SM, there is only one possible dimension 5 operator that can be

written down: the so-called Weinberg operator [10],

L = Ld=4SM +
C(5)

Λ
O(5)+

∞∑

n=6

C(n)

Λn−4
O(n) where O(5) = (`cLiσ2H

∗)(HT iσ2`L), (1.15)

which, after SSB, leads to a Majorana mass term for the left-handed (LH) neutrino. That

mass is naturally suppressed by the scale of NP, in that case, the scale where lepton

number is violated in two units (∆L = 2). Indeed, the scenario of a RH neutrino

commented above is naturally included in this approach when the νR is integrated

out! There are two possible topologies that can lead to the Weinberg operator at the

renormalizable level, 4

Topology I:





H ⊗H ∼ (1, 1, 1)︸ ︷︷ ︸
δ+

⊕ (1, 3, 1)︸ ︷︷ ︸
∆: Type-II

`⊗ ` ∼ (1, 1,−1)⊕ (1, 3,−1)

(1.16)

Topology II: `⊗H ∼ (1, 1, 0)︸ ︷︷ ︸
νR: Type-I

⊕ (1, 3, 0)︸ ︷︷ ︸
Σ: Type-III

(1.17)

Those lead to the three possible realizations at tree level of the Weinberg operator, as

represented in Fig. 1.1. In contrast with the tree-level case, there are several realizations of

`L `L

H H

NR

Type-I

`L `L
∆

HH

Type-II

`L `L

H H

ΣR

Type-III

Figure 1.1: Seesaw mechanisms: tree-level realizations of the Weinberg operator. Figure
adapted from Ref. [11].

the Weinberg operator at the quantum level. We will focus on two of them at the 1-loop

level for convenience: the Zee model and the colored seesaw. The following section

4Note that, at the renormalizable level, νR ∼ (1, 1, 0) (Type-I) and ΣR ∼ (1, 3, 0) (Type-III) imply that
assumption (a) is incorrect, while ∆ ∼ (1, 3, 1) (Type-II) implies that the false statement is (b).
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is devoted to discuss the above mechanisms for neutrino masses. We note that these

realizations are usually referred as seesaw mechanisms because of their resemblance

with a seesaw regarding the mass suppression e�ect: the heavier the NP scale, the

smaller the neutrino masses. In Fig. 1.2 we illustrate such analogy.

⇤NP

⇤EW

[M⌫ ]

Figure 1.2: Illustration of the seesaw mechanism: The heavier the NP scale, the more it
pushes the neutrino masses to be small. The EW scale acts as a fixed support.

1.2 Mechanisms for neutrino mass generation ∆L = 2

First, we will discuss the three seesaw mechanisms based on the three possible

tree-level realizations at the renormalizable level of the Weinberg operator and, then, we

will discuss two simple possibilities to generate neutrino masses at the 1-loop level.

1.2.1 Type-I seesaw mechanism

The Type-I seesaw [12–16] mechanism is maybe one of the simplest mechanisms

for neutrino mass generation, since it only requires the addition of a SM singlet νR ∼
(1, 1, 0) to the matter content of the SM. The relevant Lagrangian in this context is

given by,

− LType-I ⊃ `LYνiσ2H
∗νR +

1

2
(νR)cMRνR + h.c., (1.18)

where Yν and MR are 3 × n matrices, being n the number of RH neutrinos that we

include in the theory. We will assume that n ≥ 2 because at least two non-degenerated

neutrinos are needed to account for neutrino oscillations, as previously commented.

Once the theory undergoes SSB, the neutrino mass terms can be identified from the
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above Lagrangian as follows,

− LType-I ⊃ 1

2

(
νL (νR)c

)( 0 MD

MT
D MR

)(
(νL)c

νR

)
+ h.c., (1.19)

where MD = Yν v0/
√

2 is the Dirac mass acquired through the Higgs mechanism, and

we have used the properties on the charge conjugated fields listed in Appendix A. If

[MR]� [MD], 5 the diagonalization of Eq. 1.19 by blocks gives us,

Mν = −MDM
−1
R MT

D +O
(
[MD]3/[MR]2

)
and MN ∼MR, (1.20)

where ν and N are the physical neutrino states. One can easily recognize from the

above expression the analogy with a playground seesaw. Assuming an order one Yukawa

Yν ∼ O(1), a Majorana mass of MR ∼ O(1014) GeV would be needed to generate

the observed neutrino mass scale (see Eq. 1.9). Such upper bound is commonly called

canonical seesaw scale. Sadly, if this is the case and our theory sponsors a high scale

seesaw (order one Yukawa coupling) it will be barely possible to falsify.

1.2.2 Type-II seesaw mechanism

According to the topologies in Eqs. 1.16 and 1.17, for implementing the Type-II

seesaw [16–19] a triplet under SU(2)L with hypercharge 1, i.e. ∆ ∼ (1, 3, 1), is needed:

∆ ≡ σi√
2

∆i =

(
∆+/
√

2 ∆++

∆0 −∆+/
√

2

)
. (1.21)

In this case, the relevant interactions for generating neutrino masses are given by

−LType-II ⊃
(
`TLCiσ2Y∆∆`L + h.c.

)
+M2

∆Tr{∆†∆}+
(
µH†∆iσ2H

∗ + h.c.
)
, (1.22)

where we do not include here the full scalar Lagrangian but only the relevant terms for

understanding the mechanism. Note that in the first Yukawa term we could choose the

lepton charge of ∆ to be −2, so that, if µ = 0, lepton number would be a good global

5In the following, we will refer to the mass scale of the matrix A as [A].
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symmetry of the full Lagrangian. However, if M2
∆ < 0, ∆ gets a vev and lepton number

would be spontaneously broken, leading to the Majoron predicted by the Goldstone

theorem. The later possibility is ruled out as it is the original Gelmini-Roncadelli

model [20]. Let us consider µ 6= 0 instead, which breaks explicitly lepton number in the

Lagrangian from Eq. 1.22. In this context, even if M2
∆ > 0, the spontaneous breaking

of the EW symmetry triggered by the SM Higgs induces the scalar triplet to get a vev,

i.e., 〈∆〉 = v∆/
√

2. Therefore, via the Yukawa interaction in Eq. 1.22, neutrinos get the

following Dirac mass:

Mν =
√

2Y∆v∆. (1.23)

What can we infer from v∆? The triplet ∆ carries EW quantum numbers so that its vev

enters in the EW gauge boson masses in the following way:

M2
W =

g2

2
(v2

0 + 2v2
∆), and M2

Z =
g2

2 cos2 θW
(v2

0 + 4v2
∆). (1.24)

Because of the current constraints on the ρ parameter [21],

ρ ≡ M2
W

M2
Z cos2 θW

=
1 + 2v2

∆/v
2
0

1 + 4v2
∆/v

2
0

< 1.00038+0.00020
−0.0004 , (1.25)

we know that v∆ � v0; particularly, v∆ . 5 GeV. In this limit, and also assuming

M∆ � v0, 6 the minimum conditions of the scalar potential imply,

v∆ ∼ µ
v2

0

M2
∆

, (1.26)

where we can recognize again the seesaw mechanism: the larger the mass of the triplet,

the smaller the neutrino mass, since the vev of the SM Higgs is fixed. Notice that µ,

although being a dimensionful parameter, is protected by the global lepton number as

commented before and parametrizes the strength of lepton number violation. Therefore,

we should expect the mass of the neutrinos to be proportional to µ. In this scenario,

6This is a good assumption since collider bounds for the charged scalars do not allow their mass to be
below the EW scale. Furthermore, the bare mass for ∆ is not protected by any symmetry and, in principle,
is sensitive to any UV correction.
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very striking phenomenology could be produced if the triplet mass scale is relatively

light; see Refs. [22–25] for a detailed study.

1.2.3 Type-III seesaw mechanism

The Type-III seesaw mechanism [26–30] works analogously to the Type-I seesaw but

instead of a singlet, the Weinberg operator is obtained by integrating out a real fermion

triplet ΣR ∼ (1, 3, 0), defined as:

ΣR ≡
σi√

2
ΣiR =

(
Σ0/
√

2 Σ+

Σ− −Σ0/
√

2

)

R

. (1.27)

The relevant Lagrangian in this context reads as,

− LType-III ⊃
(
`L
√

2YΣ ΣR iσ2H
∗ + h.c.

)
+ Tr{ΣT

RCMRΣR}. (1.28)

After SSB, the mass matrix for the neutral fields is equivalent to the mass matrix from

the Type-I seesaw in Eq. 1.19 where now MD = YΣ v0/
√

2,

− LType-III ⊃ 1

2

(
νL (Σ0

R)c
)( 0 MD

MT
D MR

)(
(νL)c

Σ0
R

)
+ h.c., (1.29)

so are the masses of the physical fields:

M ij
ν =

1

2
Y i

ΣM
−1
R Y j

Σv
2
0. (1.30)

Again, a [MR] ∼ O(1014−15) GeV if YΣ ∼ O(1) (or equivalently a tiny YΣ if MR

is light) would be needed to reproduce the proper mass scale. In Eq. 1.30 the flavour

indices are written explicitly for the reader to note that, in the context of a single copy

of ΣR, the Yukawa Y i
Σ is just a vector in the flavour space, so that the rank of the

neutrino mass matrix in Eq. 1.30 is only 1. We need to add, as in the Type-I seesaw, at

least two copies of ΣR in order to achieve realistic neutrino masses. In this scenario,

however, due to the extra presence of the charged fields Σ±, the phenomenology is

much richer. See Refs. [31–33] for studies on the testability of this mechanism at the

LHC.
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1.2.4 Zee model

The Zee model is a 1-loop mechanism to generate neutrino masses, proposed by A.

Zee in Ref. [34]. A mass term can be achieved by adding a charged SU(2)L singlet, δ+ ∼
(1, 1, 1) and a second Higgs doublet, H2 ∼ (1, 2, 1/2), so that the loop responsible for

a neutrino mass term closes as follows:

νLi
eL eR

νLj

〈H0
a〉

〈H0
c 〉

δ+ H+
b

(1.31)

The relevant interactions for this mechanism are given by

− LZee = λ`TLCiσ2`Lδ
+ + `LYcHceR + µH†aiσ2H

∗
b δ

+ + h.c., (1.32)

where Yc are the Yukawa matrices for the two Higgses present in the theory Hc =

(H+
c , H

0
c )T , being a, b, c = 1 or 2 and a 6= b in the above expression. The coupling λ

is an antisymmetric 3 × 3 matrix in the flavor space. Here, the global B-L symmetry

is broken due to the simultaneous presence of the interaction proportional to λ and

the scalar term proportional to µ, i.e. only in the presence of a second Higgs doublet

the lepton number is violated in two units, as desired. The above Lagrangian defines

the interaction vertices in Diagram 1.31. Note that we have three charged scalars and

two neutral ones with mass matrices that, as defined in Eq. 1.32, are not diagonal. By

rotating the charged fields in the SU(2)L doublets an amount of tanβ = v1/v2,

H±1 = cosβ H± + sinβ G± and H±2 = − sinβ H± + cosβ G±. (1.33)

the charged Higgses above, together with the neutral Higgses, are diagonalized. Here,

v1/
√

2 and v2/
√

2 are the vacuum expectation values of the neutral Higgses H0
1 and

H0
2 , respectively, satisfying the relation v2

1 + v2
2 = v2

0 , and the G± are the Goldstone

bosons eaten up by theW± bosons. Furthermore, the charged Goldstones G± decouple
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from δ+ after such rotation. However, the charged Higgses H±1,2 are not physical yet;

there is a remaining mixing with the δ+ in the Lagrangian. These charged fields are

brought to their mass eigenbasis by a rotation with angle θ+,

δ± = cos θ+h
±
1 + sin θ+h

±
2 and H± = − sin θ+h

±
1 + cos θ+h

±
2 , (1.34)

where, in the above equation, θ+ is proportial to the µ parameter. Finally, in the broken

phase we can compute the Majorana mass term generated by the loop in Diag. 1.31:

Mν =
1

8π2

(
λMe

(
Y †1 cosβ−Y †2 sinβ

)
+(Y ∗1 cosβ−Y ∗2 sinβ)MT

e λ
T
)

sin 2θ+Log




m2
h+

2

m2
h+

1


 ,

(1.35)

where Me is the mass matrix for the charged leptons. We note that the neutrino

masses are proportional to the µ though θ+, as expected since µ quantifies the lepton

number violation. Then, when µ is small one can naturally have small neutrino masses

and this parameter is protected by the symmetry. Notice that when we assume the

Zee-Wolfenstein model [34,35], where only one of the Higgs doublets couples to leptons,

the resulting mass matrix has zero diagonal entries. This particular scenario is ruled

out by experiment [36, 37]. However, in the general Zee model for neutrino masses one

has enough freedom to reproduce the values for neutrino mixings and masses. See for

example Ref. [38] for a study of the Zee mechanism.

1.2.5 Colored seesaw

The colored seesaw generates neutrino masses via a loop carrying color inside. It

was proposed by P. Fileviez Perez and M. Wise in Ref. [39]. Its implementation requires a

colored fermion octet, singlet under the EW quantum numbers, ρ8 ∼ (8, 1, 0), together

with the Manohar-Wise field Φ1 ∼ (8, 2, 1/2), which is a second Higgs doublet carrying

color. These fields, following the interactions written below,

− Lcolored ⊃ λ `TLCiσ2Φ1ρ8 +Mρ8Tr{ρT8 Cρ8}+ µ Tr{Φ†1H}2 + h.c. (1.36)

allow for the loop shown in Diagram 1.37, which breaks lepton number in two units.
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νL
ρ8
×

Φ1Φ1

ρ8
νL

〈H0〉〈H0〉

(1.37)

The neutrino mass matrix is obtained by computing the loop in Diagram 1.37:

M ij
ν = λiλj

µ

16π2
v24Mρ8

(
M2

Φ1
−M2

ρ8
+M2

ρ8
ln(M2

ρ8
/M2

Φ1
)

(M2
Φ1
−Mρ8 ,

2 )2

)
. (1.38)

In order to generate more than one massive neutrino, at least two copies of either Φ1 or

ρ8 are needed to break the degeneracy and raise the rank of the neutrino mass matrix,

which otherwise would be 1 since the Yukawa coupling λ in Eq. 1.36 would be just a

vector in the flavour space in that case.

We have presented some of the most relevant mechanisms for neutrino mass

generation and discussed their main features. In their context, neutrinos are Majorana

fermions and ∆L = 2. The tree-level seesaw mechanisms usually require either a heavy

NP scale (high-scale seesaw) or a tiny Yukawa coupling as the Dirac case (low-scale

seesaw). The 1-loop mechanisms, however, enjoy a natural loop suppression that allows

for a less dramatical hierarchy in either the couplings or the mass scales in the particle

content of the theory. On the other hand, if lepton number is conserved or broken in

a unit di�erent and greater than 2, no Majorana term is allowed by symmetries, and

neutrinos are Dirac particles, 7 as shown below schematically:

∆L = 2 ↔ Majorana neutrinos

∆L > 2 ↔ Dirac neutrinos

Therefore, there is a strong connection between the conservation or violation of the

lepton number and the nature of neutrinos, and consequently, their mass generation.

7Notice that we require ∆L > 2 to avoid a Majorana mass term at the radiative level generated by
non-renormalizable operators.
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Part of the chapter based on the work done in 1901.10483.

There is evidence of dark matter (DM) in the universe, as sustained by the following

tokens:

• Galactic rotation curves, which provided the first robust clue for DM. In the

stars, which are basically colisionless objects, the motion of matter around them

is dictated by their gravitational interactions. At distances extending beyond the

galactic center of the star, Newton’s law tells us that the dependence of the circular

velocity on the distance with respect to the center scales as v(r) =
√
GM/r.

However, as observed in the 70s by Vera Rubin et al. [40], 1 and was further studied

and confirmed [43–45], the rotation curves flatten out at these distances, implying

the existence of some missing mass. The later evidences either that the Newton’s

law is not correct and should be modified, i.e. MOdified Newtonian Dynamics

(MOND) 2, or that M(r) ∝ r rather than being constant, i.e. there exists a dark

component concentrated in the halos of massive objects such as stars. See left

panel from Fig. 2.4 for an illustration of this phenomenon.

• Measurements provided by the cosmic microwave background (CMB) anisotropies

allow to determine the DM component in the universe by measuring the angular

scale and heights of the peaks of the power spectrum of temperature fluctuations

1J. Oort in 1932 [41] and F. Zwicky in 1933 [42] were the pioneers in noticing a discrepancy between the
luminous matter and the rotation velocities around the Sun and in the galaxy cluster Coma, respectively,
although their observations did not have a significant impact in the scientific community at that time.

2Recently, Ref. [46] pointed out that MOND-like force struggles to simultaneously explain both the
rotational velocity and vertical motion of nearby starts in the Milky Way.

19
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in the CMB. The CMB fit could also be explained by MOND, [47, 48] although

the quality is notably worse than assuming DM instead. From the anisotropies

we can infer that 85% of the matter density conforming the universe is dark,

and that, according to Planck 2018, the relic abundance of cold DM is Ωh2 =

0.120± 0.001 [7].

• Weak lensing, clustering, galactic dynamics (e.g. Bullet cluster), are alternative

evidences pointing towards the existence of DM.

At the moment, we ignore which kind of matter is filling about a quarter of our universe,

although we are aware from the above hints that it should interact gravitationally. This

leave us with 70 orders of magnitude in viable mass range for seeking a candidate of

DM, as Fig. 2.1 shows. In the first part of this chapter, we will discuss weak interacting

“Ultralight” DM 
non-thermal

“Light” DM 
can be thermal

WIMP Composite DM Primordial  
black holes

10�22eV keV GeV MPl 10M�100 TeV
unitaryty limit

ve
lo

ci
ty

distance

Expectations

Reality

h�vi
increasing

x = MDM/T

lo
g(
Y
/
Y
(0
))

Yeq

?

PQWW

Figure 2.1: Classification of the DM candidates according to their mass scale (not to
scale). In this chapter we will focus on WIMPs (GeV - 100 TeV scale) and axions
(ultra-light non-thermal bosonic DM). Below O(eV) only scalar DM is considered. Image
adapted from Ref. [49].

massive particles (WIMPs) as DM candidates. Cosmological observations suggest that

for scalar DM, Mscalar & 10−22 eV [50], while for fermionic DM, Mferm & 0.7 keV [51].

Note that, since no new mediator has been noticed so far below the Z boson, the mass

of a cold neutral fermion candidate has to be above a few GeVs, which is known as the

Lee-Weinberg limit [52], otherwise such candidate would overclose the universe. There

is also an upper bound on the WIMP DM mass range, called unitarity bound, which

comes from the fact that each partial wave cross-section is limited from above [53].

WIMPs are familiar in the sense that we know how to describe their interactions and

we have a well-defined framework to deal with them. Besides, the matter content of the

SM may have to be enlarged anyway to account for other of its Achilles’ heels, so that

WIMPs could be the missing piece of the puzzle, the cornerstone of an improved version
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of the SM. In the second part of this chapter, we will propose axions as DM candidates.

These particles, apart from being able to generate the observed relic abundance in

the universe, also o�er an elegant answer to the strong CP problem, which will be

introduced along the chapter.

2.1 WIMPs

Let us assume that, apart from the matter we are aware of, our universe is composed

of a more extended particle content. These hypothetical unknown particles, if exist, are

expected to be (a) electrically neutral, (b) stable or with a lifetime longer than the age

of the universe, (c) massive and cold in the structure formation era of the universe,

(d) weakly interacting, otherwise we would have already noticed their interaction with

other SM particles. WIMPs are assumed to be produced in the thermal bath in the

early universe. Their evolution until today is expected to travel through di�erent steps:

For temperatures above their mass, they are supposed to be in thermal equilibrium

with the rest of matter [Fig. 2.2 (a)]. The abundance of such species in equilibrium

is maintained by annihilation into ordinary particles and viceversa. However, as the

temperature of the universe cools below the DM mass, the WIMP pair creation process

is kinematically suppressed so that the equilibrium abundance falls exponentially and

the number density of WIMPs departs from that of the thermal bath [Fig. 2.2 (b)]. At

some point, the annihilation rate is overcome by the expansion rate of the universe

H(T ), which also depends on the temperature, i.e. WIMPs do not find partners for

their pair annihilation within a Hubble time [Fig. 2.2 (c)]. At lower temperatures, the

number density of DM is only diluted by the expansion of the universe, so that the

number density per comoving volume is kept constant. In this way, a relic cosmological

abundance is generated which could account for the observed cosmological abundance

today. It is straightforward to see that the interaction cross-section of WIMPs with

the SM content is a key element for determining the current abundance of DM in the

universe. Surprisingly, the naive contribution of a WIMP at the TeV scale successfully

matches the order of the observed abundance of DM in the universe nowadays. This

is known as the WIMP miracle and it makes a strong argument for WIMPs as DM

candidates. The existence of an interaction rate of the WIMPs with matter also opens a
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(c)Figure 2.2: Evolution of the WIMP DM as the universe cools down.

wide range of attractive ways towards searching for the WIMPs experimentally. Although

their interactions might be very weak, there is a small probability that the WIMP DM

trapped in our galaxy collides with nuclei. Direct Detection (DD) experiments search

for signals of recoiled nuclei as a consequence of a potential interaction with WIMPs

through elastic scattering. WIMP DM could also be detected indirectly in cosmic rays,

since WIMPs are expected to be gravitationally accumulated in massive astrophysical

objects and the annihilation rate is proportional to the square of the WIMP DM density.

Last but not least, WIMPs might leave a track at colliders: even if no visible signatures

are produced at the detectors, one can look for missing transverse momentum in the

colliding events. See Fig. 2.3 for an illustration of the di�erent pathways to detect

WIMP DM according to how it interacts with ordinary matter. Furthermore, it should be

DM

DM

SM

SM

1

DS

ID

DD

Figure 2.3: WIMP DM searches: direct
searches at colliders (DS) -green arrow-,
direct detection (DD) by looking at the
recoiled nuclei due to elastic scattering
-blue arrow-, and indirect detection (ID)
by looking for signatures at the cosmic
rays -yellow arrow-.

stressed that this kind of particles are naturally predicted in many theories for physics

beyond the SM and that the well defined framework of quantum field theory allows us

to compute, in a simple way, their relic density. This list of possibilities makes a strong
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case for WIMPs, becoming perhaps the most appealing possibility among the long list

of DM candidates, and motivates the di�erent experiments to keep looking for their

signatures.

2.1.1 Relic abundance

The evolution of the WIMPs abundance in the universe is described by the

Boltzmann equation, as it determines the evolution of the phase-space density f(x, p, t)

of a given particle species,

L[f ] = C[f ], (2.1)

where L is the Liouville operator, which gives the net rate of change in time of the

particle space density. In the context of a spatially homogeneous and isotropic universe,

it reads as

L[f ] ≡ ∂f

∂t
−H |p|

2

E

∂f

∂E
, (2.2)

where the second term represents the dilution originated by the expansion of the

universe. Here, the Hubble parameter H(T ) in the radiation-dominated era is given

by

H(T ) ≡ ȧ

a
=

√
8πGNρ(T )

3
, (2.3)

where GN is the Newton constant of gravitation, a is the scale factor of the universe,

and ρ is the energy density of relativistic species, defined as

ρ(T ) =
π2

30
ge�(T )T 4. (2.4)

Here, the e�ective relativistic d.o.f. ge� (see Sec. 2.1.1.1 for more details) are given by

ge�(T ) =
∑

i=bosons

gi

(
Ti
T

)4

+
7

8

∑

i=fermions

gi

(
Ti
T

)4

, (2.5)

where gi counts the spin states for all particles and antiparticles, with an additional

factor 7/8 for fermions due to the relative di�erence in Fermi and Bose statistics, being

gγ = 2, for instance. We refer the reader to Ref. [54] for a pedagogic introduction to
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cosmology in the Early Universe. On the other hand, in the right-hand side (RHS) of

Eq. 2.1, we have the collision operator, which parametrizes the number of particles per

phase-space volume that are gained or lost per unit time under collision with other

particles. In order to describe the evolution of the WIMP DM number density, which in

thermal equilibrium is defined as

nDM =

∫
dnDM =

∫
f(E, T )

g d3p

(2π)3
, (2.6)

we will make use of the Boltzmann equation in Eq. 2.1. The previous equation assumes

that the g internal (spin) d.o.f. follow the same distribution f(E, T ), which is the known

Fermi-Dirac or Bose-Einstein distribution. For temperatures above the DM mass, those

distributions can be fairly approximated by

f(E, T ) =
1

e(E−µ)/T + η
, (2.7)

with η = 0, i.e. a Maxwell-Boltzmann distribution. 3 Here µ refers to the chemical

potential of the species. By integrating Eq. 2.1 over the particle momenta and summing

over the spin d.o.f., we get

ṅDM + 3H(T )nDM = −〈σv〉 (nDM 1 nDM 2 − neqDM 1 n
eq
DM 2) , (2.8)

where, for the collision operator, an annihilation of a pair of particles into another pair

has been assumed. The first term in brackets accounts for the depletion of WIMPs due

to annihilation, while the second term describes the creation of WIMPs from the inverse

reaction. Notice that the collision term is characterized by the thermal averaged WIMP

DM pair annihilation cross-section, 〈σv〉, and the square of its number density, which

comes from the WIMP pair annihilation and production. Besides the assumptions

we already adopted, one should further assume that the DM candidate remains in

kinetic equilibrium after decoupling and that the initial chemical potential of the species

considered is negligible (µ = 0) to obtain Eq. 2.8. When the particle named under

label 2 is the antiparticle of the particle labeled by 1, the density of the species is

3In Eq. 2.7, η = 1 for Fermi-Dirac and η = −1 for Bose-Einsten distributions.
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nDM = nDM 1 + nDM 2. Since we are assuming that the chemical potential is negligible,

then nDM 1 = nDM 2, and therefore

ṅDM + 3H(T )nDM = −1

2
〈σv〉

(
n2
DM − (neqDM)2

)
. (2.9)

The above equation describes the evolution of Dirac particles. However, if particles 1

and 2 are identical, then

ṅDM + 3H(T )nDM = −〈σv〉
(
n2
DM − (neqDM)2

)
. (2.10)

with an extra factor of 2 in the RHS of the equation, contrary to the naive expectation.

Hereinafter, we will consider a Majorana WIMP DM candidate for convenience. Let

us write the above expression in a more compact way by introducing the number of

particles normalized to the total entropy density of the universe, Y ≡ n/s. Since the

total entropy per comoving volume is constant,

sa3 = constant ⇒ ṡa3 + 3sa2ȧ = 0 ⇒ ṡ = −3Hs, (2.11)

i.e. s is also diluted by the expansion of the universe. Therefore, Eq. 2.10 can be

rewritten in terms of Y as,

Ẏ = −s〈σv〉
(
Y 2 − Y 2

eq

)
. (2.12)

Taking into account the relation between temperature and time, and introducing now

the variable x = MDM/T , where T is the photon temperature, we can write Eq. 2.12 as

dY

dx
=

1

3H

ds

dx
〈σv〉(Y 2 − Y 2

eq). (2.13)

The entropy density, which is given as a function of the e�ective d.o.f. he�(T ), is

defined as

s = he�(T )
2π2

45
T 3, (2.14)
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where (see Sec. 2.1.1.1 for more details)

he�(T ) =
∑

i=bosons

gi

(
Ti
T

)3

+
7

8

∑

i=fermions

gi

(
Ti
T

)3

. (2.15)

Computing the derivative of the energy density with respect to variable x,

ds

dx
=
ds

dT

dT

dx
= −3he�(T )

2π2

45
T 2 m

x2

(
1 +

1

3

T

he�

dhe�
dT

)

= −3
s

x

(
1 +

1

3

T

he�

dhe�
dT

)
, (2.16)

the evolution equation for WIMPs in Eq. 2.13 can be simplified as

dY

dx
= − s

Hx
〈σv〉(Y 2 − Y 2

eq)

(
1 +

1

3

T

he�

dhe�
dT

)

⇒ x

Yeq

dY

dx
= −neqDM〈σv〉

(
Y 2

Y 2
eq
− 1

)(
1 +

1

3

T

he�

dhe�
dT

)
/H, (2.17)

where in the last row Yeq ≡ neqDM/s. By defining Γ as the probability of annihilation per

unit time for a WIMP, i.e. Γ ≡ neqDM〈σv〉, the Boltzmann equation reads as

x

Yeq

dY

dx
= − Γ

H

[(
Y

Yeq

)2

− 1

](
1 +

1

3

T

he�

dhe�
dT

)
. (2.18)

As commented earlier, for x > 1, the WIMP pair production su�ers from kinematical

suppression and the decoupling from the thermal bath begins. As a consequence,

the ratio Y/Yeq > 1. The factor Γ/H controls the e�ectiveness of annihilations.

When H � Γ, the annihilation freezes out and Y becomes constant, i.e it freezes

in: the species ceases to annihilate, it falls from equilibrium and a cosmological relic

abundance Y (x ≥ xf ) = Yeq(xf ) remains as a consequence. See the right panel from

Fig. 2.4 for an illustration. The temperature at which the decoupling occurs, usually

called freeze-out temperature Tf , or xf from an equivalent perspective, is determined
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Figure 2.4: In the left panel, the di�erence between the expected and the observed
behaviour of the velocity curve of galaxies is shown. In the right panel, we show naively
the typical evolution of the WIMP DM number density in the early universe during the
time of freeze-out (image adapted from Ref. [54]).

approximately by the condition,

H(Tf ) = Γ(Tf ), (2.19)

just as we argued before.

2.1.1.1 E�ective degrees of freedom and Ne�

New light states with non-negligible interactions with the SM could be copiously

produced at high temperatures in the early universe. During the radiation era, they

would contribute to the total energy density of the universe and therefore modify

the predictions for the CMB. Therefore, the observation of the CMB with high angular

resolution, as well as other indirect methods, such as the measurement of the abundance

of light elements in the universe, can impose relevant bounds on the existence of these

light states. To see how those new d.o.f. can be constrained, let us have a closer look

to the previously introduced e�ective relativistic degrees of freedom. In the left panel

from Fig. 2.5 we show the calculation done in Ref. [55] for the e�ective d.o.f. of the

energy density, ge�(T ), and the entropy density, he�(T ) introduced in Eq. 2.5 and 2.15

from the last subsection, respectively. We will assume all species have a common

temperature for most of the history of the universe, so that both he�(T ) and ge�(T )
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Figure 1: The e↵ective degrees of freedom for the energy density (g⇢) and for the entropy density (gs).
The line width is chosen to be the same as our error bars at the vicinity of the QCD transition where we
have the largest uncertainties. At temperatures T < 1 MeV the equilibrium equation of state becomes
irrelevant for cosmology, because of neutrino decoupling. The EoS comes from our calculation up to
T = 100 GeV. At higher temperatures the electroweak transition becomes relevant and we use the results
of Ref. [13]. Note that for temperatures around the QCD scale non-perturbative QCD e↵ects reduce g⇢
and gs by 10-15% compared to the ideal gas limit, an approximation which is often used in cosmology.
For useful parametrizations for the QCD regime or for the whole temperature range see [17].

One of them took the pion decay constant the other applied the w0 scale [10]. 32 di↵erent analyses
(e.g. the two di↵erent scale setting procedures, di↵erent interpolations, keeping or omitting the coarsest
lattice) entered our histogram method [12, 8] to estimate systematic errors. We also calculated the
goodness of the fit Q and weights based on the Akaike information criterion AICc [8] and we looked
at the unweighted or weighted results. This provided the systematic errors on our findings. In the low
temperature region we compared our results with the prediction of the Hadron Resonance Gas (HRG)
approximation and found perfect agreement. This HRG approach is used to parametrize the equation of
state for small temperatures. In addition, we used the hard thermal loop approach [1] to extend the EoS
to high temperatures.

In order to have a complete description of the thermal evolution of the early universe we supplement
our QCD calculation for the EoS by including the rest of the Standard Model particles (leptons, bottom
and top quarks, W , Z, Higgs bosons) and results on the electroweak transition [17]. As a consequence,
the final result on the EoS covers four orders of magnitude in temperature from MeV to several hundred
GeV.

Figure 1 shows the result for the e↵ective numbers of degrees of freedom as a function of temperature.
The widths of the lines represent the uncertainties. The tabulated data are also presented in [17]. Both
the figure and the data can be used (similarly to Figure 22.3 of Ref. [14]) to describe the Hubble rate and
the relationship between temperature and the age of the universe in a very broad temperature range.

We now turn to the determination of another cosmologically important quantity, �(T ). In general the
Lagrangian of QCD should have a term proportional to LQ = 1/(32⇡2)✏µ⌫⇢�Fµ⌫F⇢�, the four-dimensional
integral of which is called the topological charge. This term violates the combined charge-conjugation and
parity symmetry (CP). The surprising experimental observation is that the proportionality factor of this
term ✓ is unnaturally small. This is known as the strong CP problem. A particularly attractive solution
to this fundamental problem is the so-called Peccei-Quinn mechanism [15]. One introduces an additional
(pseudo-)scalar U(1) symmetric field. The underlying Peccei-Quinn U(1) symmetry is spontaneously
broken –which can happen pre-inflation or post-inflation– and an axion field A acts as a (pseudo-)Goldstone
boson of the broken symmetry [19, 20]. Due to the chiral anomaly the axion also couples to LQ. As a

3

T⌫L

T ⇠ me

Time

T

3⌫L + 3e+ + 3e� + �

3e+ + 3e� + �

�

ge↵(T )

he↵(T )

Figure 2.5: On the left panel, the e�ective d.o.f. of the energy density, ge�(T ), and the
entropy density, he�(T ), extracted from Ref. [55]. On the right panel, relativistic particles
contributing to the thermal bath according to the temperature of the universe.

will be approximated by the quantity g(T ). Considering also the hypothetical presence

of new d.o.f., it would be given by

g(T ) = gSM(T ) +
∑

i=new
bosons

gi +
7

8

∑

i=new
fermions

gi. (2.20)

The validity of such approximation for most of the temperatures is also reflected in the

left panel of Fig. 2.5, taken from Ref [55]. 4

Light species in a theory could be, for instance, RH neutrinos νR, as we will see

later in Chapter 5. In the scenarios in which the RH neutrinos are coupled to a new

gauge boson, they could thermalize and contribute to the energy density as follows,

ρ = ργ + ρνL + ρνR

= ργ

(
1 + 3× 7

8

(
TνL
Tγ

)4

+NνR ×
7

8

(
TνR
Tγ

)4
)

= ργ

(
1 +

7

8

(
TνL
Tγ

)4 (
N SM

e� + ∆Ne�

)
)
, (2.21)

4We note that in the calculation of gSM(T ) one needs to take into account the QCD phase transition,
i.e. the threshold between quarks and hadrons as d.o.f.. This transition can be computed via lattice QCD,
as the authors of Ref [55] did.
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where ∆Ne� encodes any departure from the contribution of the LH neutrinos, and

reads as

∆Ne� = NνR

(
TνR
TνL

)4

= NνR

(
g(T dec

νL
)

g(T dec
νR

)

) 4
3

. (2.22)

In the above expression, NνR refers to the number of relativistic RH neutrinos. In the

last equality we have used the conservation of comoving entropy in the plasma, which

also allows us to compute the TνL/Tγ temperature by considering the entropy injection

to the plasma caused by the electron - position annihilation. According to the change in

number of relativistic d.o.f., shown in the right panel of Fig. 2.5, comparing the entropy

per comoving volume before and after the electron - position annihilation, i.e. below

temperatures T ∼ me,

S before e+e− = S after e+e− ⇒ TνL
Tγ

=

(
4

11

) 1
3

. (2.23)

For the active neutrinos we have T dec
νL
≈ 2.3 MeV [56] and g(T dec

νL
) = 43/4 (see

right panel from Fig. 2.5). For the prediction in the SM we will take the recent result

N SM
e� = 3.045 [57]. 5

In order to predict the shift in the e�ective number of neutrino species, ∆Ne�,

one needs to estimate the temperature at which the RH neutrinos decouple from the

plasma. The latter occurs when the interaction rate drops below the expansion rate of

the Universe, according to the decoupling condition from Eq. 2.19,

Γ(T dec
νR

) = H(T dec
νR

), (2.24)

where the Hubble expansion parameter, defined in Eq. 2.3, in this case particularizes to

H(T ) =

√
8πGNρ(T )

3
=

√
4π3GN

45

(
g(T ) + 3× 7

8
× gνR

)
T 2, (2.25)

5The slightly departure from N SM
e� = 3 can be understood by the fact that, for instance, neutrino

decoupling is not fully complete when the electron - position annihilate, and that there are finite
temperature QED corrections that should be considered, among other issues.
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where gνR = 2 is the number of spin states of the RH neutrinos. On the other hand, we

assume that the neutrinos remain in thermal equilibrium with the SM via the following

interaction rate:

ΓνR(T ) = nνR(T )〈σ(ν̄RνR → f̄f) v〉 (2.26)

=
g2
νR

nνR(T )

∫
d3~p

(2π)3
fνR(p)

∫
d3~k

(2π)3
fνR(k)σf (s)v,

where the Fermi-Dirac distribution has been used to determine the number density of

particles in a fermion gas at the thermal equilibrium. According to Eq. 2.7, fνR is given

by,

fνR(k) = (e(k−µ)/T + 1)−1, (2.27)

where the chemical potential µ can be ignored since the particles in the gas are

relativistic, s = 2 p k (1 − cos θ) where p and k are the momenta of the interacting

relativistic particles and θ is the angle between them. For a massless RH neutrino,

nνR(T ) ≡ gνR
∫

d3~k

(2π)3
fνR(k) =

3

2π2
ξ(3)T 3. (2.28)

The measurement of the e�ective number of neutrino species can be used to constrain

theories that have additional light particles that interact with the SM, see for example

Refs. [58–68], including RH neutrinos coupled to a Z ′ and light thermal DM candidates.

Axion-like particles that thermalize in the early Universe can also contribute to the value

of Neff [69–72]. We will use the above results to constrain theories where the lepton

number is a local symmetry in Chapter 5.

2.1.1.2 Freeze out temperature

In order to compute the temperature at which the annihilation of our species freezes

out, first we need to define what do we mean by that. We will adopt the criterium that

a certain species decouples from the plasma when its number density departs from the

equilibrium by an order of magnitude relative to the value at thermal equilibrium, i.e.

∆ ≡ Y − Yeq !
= δ Yeq, (2.29)
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where δ ∼ O(1) parameter. Eq. 2.29 describes then the freeze-out condition. Since

the later is accomplished, we will say that our species has decoupled from the thermal

bath and that, consecuently, it is not in thermal equilibrium with the rest of particles

anymore. As time passes or, in other words, temperature drops, ∆ becomes larger (see

right panel from Fig. 2.4). It is convenient to express the WIMP evolution equation 2.13

as a function of the departure parameter ∆ = Y − Yeq, i.e.

d∆

dx
= −

(
45

π
G

)−1/2 g
1/2
∗ MDM

x2
〈σv〉∆(∆ + 2Yeq)−

dYeq
dx

, (2.30)

where we have encapsulated all the dependence on the relativistic d.o.f. in the parameter

g
1/2
∗ , defined as

g
1/2
∗ (T ) ≡ he�(T )

g
1/2
e� (T )

(
1 +

1

3

T

he�(T )

dhe�(T )

dT

)
. (2.31)

By assuming that we are at the freeze out regime (∆ = δ Yeq),

dYeq
dx

= −
(

45

π
G

)−1/2 g
1/2
∗ MDM

x2
〈σv〉 δ(δ + 2)

δ + 1
Y 2
eq. (2.32)

Taking into account that the equilibrium density Yeq is given by

Yeq =
45 g

4π4

x2K2(x)

he�(T )
, (2.33)

where K2(x) is the second kind of the modified Bessel functions, we obtain the

left-hand side of Eq. 2.32 by di�erentiating the above expression with respect to x,

dYeq
dx

=
45 g

4π4

1

he�(T )

(
d

dx

(
x2K2(x)

)
− x2K2(x)

he�(T )

dhe�(T )

dT

dT

dx

)
. (2.34)

Now, from the recursion relations of the modified Bessel functions,

d

dx

(
xnKn(x)

)
= −xnKn−1(x), (2.35)
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we have
dYeq
dx

= −Yeq
(
K1(x)

K2(x)
− 1

x

d lnhe�(T )

d lnT

)
, (2.36)

and hence, plugging the above result in Eq. 2.32, we get

√
π

45G
g

1/2
∗ MDM〈σv〉

45 g

4π4

K2(x)

he�(T )

δ(δ + 2)

δ + 1
=

(
K1(x)

K2(x)
− 1

x

d lnhe�(T )

d ln T

)
. (2.37)

The above equation allows for the determination of the freeze-out temperature of the

species under consideration as a function of the choice made for the decoupling

condition in Eq. 2.29, i.e the value of δ. Some approximations can be adopted to

further simplify Eq. 2.37: (a) One can neglect the variations in the entropy density, and

assuming that g(T ) ≈ ge�(T ) ≈ he�(T ) as we commented in the subsection 2.1.1.1, we

can simplify g1/2
∗ (T ) in Eq. 2.31 as follows,

g
1/2
∗ (T ) ≈ g1/2(T ), (2.38)

where g(T ) is defined in Eq. 2.20. (b) one can consider that we are in the non-relativistic

limit x� 1, where the modified Bessel functions asymptotically behave as

K2(x) ∼ K1(x) ∼
(

π

2xf

)1/2

e−xf .

In the context of the above assumptions, the freeze-out temperature reads as

xf = ln

[(
45

32π6

)1/2 g MPl MDM〈σv〉√
ge�(T )xf

δ(δ + 2)

δ + 1

]
. (2.39)

2.1.1.3 Relic density

The relic density is defined as the ratio of the actual density of particles of a certain

species and the critical density ρc, which is the density corresponding to a flat universe,

Ω =
ρ

ρc
=
MDM s(T0)Y (T0)

3H2/8πG
, (2.40)
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where T0 refers to the temperature of the universe today, i.e. T0 = θ × 2.7255 K,

and H = h × 100 km Mpc−1s−1. Here h and θ parametrize any possible deviation

from the chosen values. Unfortunately, there is no closed-form analytic solution to

the Boltzmann equation. One should solve numerically Eq. 2.13 to compute the entropy

normalized density Y (T0) at the current temperature, as codes such as MicrOMEGAs [73]

facilitate. In this context,

Ωh2θ−3 =

(
2π2

45

)(
8πG

3H2

)
he�(T0)

(2.7255)3 K3

104(Mpc−1s−1km)2
Y (T0)

∼ 2.7707× 108MDM

GeV
Y (T0),

(2.41)

where he�(T0) = 3.9387 (and T0 = 2.7255 K) [74]. However, there are alternatives

to deal with Eq. 2.13: analytical approximations can be obtained by exploiting the

freeze-out regime of the DM. We can distinguish between two phases, being the

threshold at the temperature at which the species decouples from the thermal bath.

In this regime, the density of the particles in the plasma drops out exponentially so that

it can be neglected in front of the density of the decoupled particles, which travel in

a transparent universe and do not feel interactions anymore. Therefore, neglecting Yeq

from Eq. 2.13 and integrating from xf to x(T0) ∼ ∞,

1

Y0
=

1

Y (xf )
+

(
45G

π

)− 1
2

MDM

∫ ∞

xf

g
1/2
e�

x2
〈σv〉dx, (2.42)

what allowed us to solve analytically the di�erential equation. Neglecting 1/Y (Tf ) in

front of 1/Y (T0), we end up with

Y (T0) =

(
45G

π

) 1
2



MDM

∫ ∞

xf

g
1/2
e� (MDM/x)

x2
〈σv〉dx

︸ ︷︷ ︸
J(xf )




−1

. (2.43)
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The 〈σv〉 is a function of x = MDM/T and, according to Ref. [75], it can be computed

as

〈σv〉 =
x

8M5
DMK

2
2 (x)

∫ ∞

4M2
DM

σ(s− 4M2
DM)
√
s K1

(
x
√
s

MDM

)
ds. (2.44)

The above equation then shows that the larger the annihilation cross-section of the DM

candidate, the smaller the relic abundance, since naively

Ωh2 ∝ 1

〈σv〉 . (2.45)

2.1.1.4 Fermionic DM Annihilation channels

In the previous section we saw that the annihilation cross-section of the DM into the

SM content is a key element in determining the DM contribution to the relic abundance,

as Eq. 2.44 brings out. Among the di�erent kind of WIMP DM candidates, i.e. fermionic

or bosonic DM, we will focus on the former for convenience. 6 In this section we will

classify all tree-level s-channel annihilation diagrams according to their behaviour. 7

This classification, aside from providing a guide on how the di�erent type of channels

contribute to the relic density, will be also useful when studying DM annihilation into

gamma lines.

Let us consider the two possible fermionic DM annihilation channels that are

expected to appear in extensions of the SM, with the most general kind of vertex,

as illustrated in Fig. 2.6. In there, the double line represents either a fermion or a boson

SM current.

• Scalar fermion current: χχJSM/Λ(2) [•]

For the interaction mediated by a scalar boson, shown in diagram (a), let us focus

on the DM current, whose contribution to the amplitude of the interaction can

be written as,

χ(p2)χ(p1)→ vr(p2)us(p1), (2.46)

6In Chapters 4 and 5 we will study a fermionic DM candidate in the context of motivated extensions of
the SM with gauged lepton or / and baryon number.

7We refer the reader to Ref. [76] for a complete classification with both bosonic and fermionic DM.
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Figure 2.6: Fermionic DM annihilation to a SM current (double line) mediated by a scalar
boson (a) and a vector boson (b). The orange, purple, cyan and red represent the scalar,
pseudoscalar, vector and axial vertices, respectively.

where us (vr) are four spinors in the chiral representation for a particle

(antiparticle) with helicity s (r), and are given by

us(p) =

(√
p · σ ξs√
p · σ̄ ξs

)
, and vr(p) =

( √
p · σ ηr

−√p · σ̄ ηr

)
, (2.47)

where ξs and ηr are two basis of two-component spinors, σ = (I, σi) and

σ̄ = (I,−σi), being σi the Pauli matrices. For the square root of a matrix we

take the positive root of each eigenvalue. Taking into account that, in the center

of mass frame ~p1 = −~p2, we have

vr(p2)us(p1) = v†r(p2)γ0us(p1)

=
(
η†r
√
p2 · σ −η†r

√
p2 · σ

)(0 I
I 0

)(√
p1 · σξs√
p1 · σξs

)

=
(
η†r
√
p1 · σ η†r

√
p1 · σ

)(√p1 · σξs√
p1 · σξs

)

= η†r(p1 · σ − p1 · σ)ξs = −2~p1 · ~σ η†rξs, (2.48)

where we have used that the gamma matrices in the chiral representation read as

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi

−σi 0

)
, and γ5 =

(
−I 0

0 I

)
. (2.49)
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Since |~p1| ∝ vχ, in the non-relativistic limit the amplitude for any process where

a DM fermion candidate has a scalar coupling to the mediator will be velocity

suppressed, regardless on the scalar current to which it annihilates.

• Pseudoscalar fermion current: χγ5χJSM/Λ
(2) [•]

On the other hand, a pseudo-scalar interaction, also shown in diagram (a), can be

expressed as:

vr(p2)γ5us(p1) = v†r(p2)γ0γ5us(p1)

=
(
η†r
√
p2 · σ −η†r

√
p2 · σ

)(0 I
I 0

)(
−I 0

0 I

)(√
p1 · σξs√
p1 · σξs

)

= η†r

(√
p1 · σ −√p1 · σ

)( √p1 · σξs
−√p1 · σξs

)

= η†r(p1 · σ + p1 · σ)ξs = 2Eχη
†
rξs ∼ 2MDM η

†
rξs, (2.50)

where in the last term the non-relativistic limit has been assumed.

Focusing now on the interaction mediated by a vector boson, the interactions can

be vector or/and axial, as diagram (b) shows.

• Vector fermion current: χγµχ [•]

The vector DM current is given by vr(~p2)γµus(~p1), and we will split the current

according to the Lorentz indices. For µ = 0,

vr(~p2)γ0us(~p1) = v†r(~p2) γ2
0︸︷︷︸
I

us(~p1) = v†r(−~p1)us(~p1) = 0, (2.51)

which is a general result for a vector current, regardless of the speed of the DM.

Now, taking into account µ = i, where i = 1 . . . 3, the fermion current gives

vr(p2)γius(p1) = v†r(p2)γ0γius(p1)

=
(
η†r
√
p2 · σ −η†r

√
p2 · σ

)(0 I
I 0

)(
0 σi

−σi 0

)(√
p1 · σξs√
p1 · σξs

)

= (
√
p1 · σ σi

√
p1 · σ +

√
p1 · σ σi

√
p1 · σ )η†rξs (2.52)
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In the non-relativistic limit, E
√

1± ~p·~σ
E σi

√
1∓ ~p·~σ

E ∼ Eσi +O(v2
χ), and hence,

vr(~p2)γiu(~p1) ∼ 2MDM η
†
rσiξs +O(v2

χ). (2.53)

• Axial fermion current: χγµγ5χ [•]

For the axial current we have,

vr(~p2)γµγ5us(p1) = v†r(p2)γ2
0γ5us(p1)

= −(
√
p1 · σ

√
p1 · σ +

√
p1 · σ

√
p1σ)η†rξs

= −2MDM η
†
rξs +O(v2

χ), (2.54)

where we have proceeded as in the previous scenarios and applied in the last row

the non-relativistic limit of the DM field. For the axial interaction we do have a

contribution in the longitudinal mode and it is not velocity suppressed. However,

for the transverse modes µ = 1 . . . 3,

v†r(p2)γ0γiγ5us(p1) =
(√

p1 · σσi
√
p1 · σ−

√
p1 · σσi

√
p1 · σ

)
η†rξs

∼ 0 +O(v2
χ). (2.55)

It is remarkable the opposite behaviour of the vector and axial currents for

non-relativistic fields.

Unlike the scalar interactions (diagram a) are independent of the annexed SM current,

in the context of vector interactions the annexed current does matter since the gauge

boson connects the polarizations from both currents. If the annexed current is fermionic

and vectorial, the axial annihilation cross-section is suppressed by the velocity of the

DM. No suppression is expected from the rest of combinations. In summary,

χ

χ

∀ external current

∝ v2
χ ,

χ

χ̄

∝ v2
χ, (2.56)
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where the vertices follow the code color introduced in Fig. 2.6, and the double line

indicates any SM current able to couple to a gauge boson. In Table 2.1 we collect the

results obtained so far.

DM / SM bilinear • φ† Iφ [f̄ I f ] • φ† γ5 φ [f̄ γ5 f ] • f̄γµf • f̄γµγ5f

• χ̄ Iχ 〈σv〉 ∼ v2
χ[v2

χ] 〈σv〉 ∼ v2
χ[v2

χ] × ×
• χ̄γ5χ 〈σv〉 ∼ 1[1] 〈σv〉 ∼ 1[1] × ×
• χ̄γµχ 〈σv〉 ∼ 1[×] 〈σv〉 ∼ 1[×] 〈σv〉 ∼ 1 〈σv〉 ∼ 1

• χ̄γµγ5χ 〈σv〉 ∼ 1[×] 〈σv〉 ∼ 1[×] 〈σv〉 ∼ v2
χ 〈σv〉 ∼ 1

Table 2.1: Classification of the annihilation of fermionic DM (χ) into a SM current
according to their nature: whether they are or not velocity suppressed. In the first
column, the DM bilinears are listed, while the SM bilinears are located in the first row.
The symbol × indicates that the interaction cannot occur.

2.1.2 Detecting WIMPs

The unexpected and striking connection between the observed relic abundance in

the universe (cosmology) and the hypothetical abundance that would be produced by

a WIMP at the EW scale (particle physics) has encouraged the scientific community

to search thoroughly for these candidates. In the last decade, enormous experimental

e�ort has been put on building the devices and working on the techniques needed to

catch any possible track of WIMPs. In this section, the main approaches are briefly

reviewed.

2.1.2.1 Direct detection

If WIMPs exist, they could be filling the halo of the Milky Way. Consequently,

there should be numerous WIMPs crossing the surface of the Earth that could interact

to ordinary matter and a non-zero elastic scattering with nuclei would be reasonably

expected. Although the rate of the interaction can be very weak, WIMPs could be directly

detected by looking at the nuclear recoil generated after the elastic scattering [77].
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The rate of events will be given naively by R ∝ nDM σ〈v〉/MN , where nDM is the

number density of the DM, i.e. nDM = ρ0/MDM, being ρ0 the local density of WIMPs

(near the Earth), 〈v〉 the average velocity of the WIMP relative to the target, and MN

the nucleus mass.

In reality, we do not know how WIMPs are distributed in our galaxy. However,

we can assume that they follow an isotropic isothermal sphere with a given

three-dimensional velocity distribution f(v) normalized to the unity. Hence, more

accurately,
dR

dE
=

ρ0

MDMMN

∫ vmax

vmin

vf(v)
dσ(v)

dE
dv. (2.57)

One must integrate over all possible velocities and possible deposited energies to obtain

the total rate, i.e.

R =

∫ ∞

ET

dR

dE
dE. (2.58)

Note that, although theoretically the velocity could run up to infinity, in reality it is

bounded from above since the DM will escape from the gravitational potential of the

galaxy at a certain speed. Regarding the energy range, one should take into account the

energy threshold ET in the detector resolution and the maximum energy that can be

deposited, which corresponds to θ∗ = π in the following expression

E =
|~q|2

2MN
=
µ2v2

MN
(1− cos θ∗), (2.59)

that quantifies the energy transferred to the nucleus, being ~q the momentum transfer,

θ∗ the scattering angle, and µ = MDMMN/(MDM + MN ) the reduced mass for the

DM-nucleus system. We note that the lower the mass of the DM, the smaller the energy

deposited. Detectors cannot be sensitive to an arbitrarily low mass for the WIMP since

their resolution is limited. On the other hand, they become less sensitive when higher

DM masses are considered because, although the energy deposited in the nuclei is

bigger, WIMPs are more diluted (the number density drops linearly with the DM mass)

so that the scattering becomes less probable. See Fig. 2.7 for a naive illustration of the

detector limits.
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Figure 2.7: Sketch about the sensitivity
of DD experiments (logarithmic scale).
The red shaded area represents
the parameter space that the DD
experiments can access. The lower
mass regime of the DM candidate
su�ers from the energy threshold ET
of the detector, below which they are
insensitive to the recoil generated by
WIMPs-nuclei scattering. On the other
hand, the higher the mass of the
DM, the smaller the ratio of events
since the number of events drops
proportionally to the DM mass.

Generally, DD experiments assume that the DM is distributed in an isotropic

and isothermal sphere with a Maxwellian velocity distribution. Most of experimental

collaborations automatically provide the bounds on the number of events translated

to the DM-nuclei cross-section. In that process, they assume that the cross-section is

dominated by a velocity independent term. The later will be discussed in more detail in

Chapter 4.

Let us focus now on the heart of the elastic scattering: the corresponding

cross-section. It will be determined by the concrete theory beyond the SM containing

⇤QCD ⇤NP

nucleons quarks

Energy

Figure 2.8: Hierarchies of energy scales entering in the EFT approach to DM-nucleon
scattering.

the WIMP. In a very generic way, we can consider all possible interactions between the

DM candidate and the quarks composing the nucleon from an EFT perspective. There
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are two steps that we should mind in the EFT approach, shown in the equation below,

LqDD → LnDD → LNDD, (2.60)

according to the energy scales shown in Fig. 2.8. First, we should take into account

the microscopic interactions at the quark level (LqDD), i.e. DM interacting with quarks.

Then, we should consider the interactions at the nucleon level (LnDD), by connecting

partons and nucleons via the corresponding matrix elements. Finally, the sum of the

nucleon-level interactions should be considered in order to obtain the final nucleus-level

scattering (LNDD). The spin and scalar components of the nucleons must be added

coherently. In the last step, the scattering cross-sections can be di�erentiated in two

groups:

• Spin dependent: those that involve a γ5 in the quark current will probe the

up, down, and strange contributions to the spin of the nucleus. They add to the

nucleus-level operator like

OSD
N =

(〈Sp〉
JN
Op +

〈Sn〉
JN
On
)
〈JN 〉, (2.61)

where JN is the spin of the nucleus, and Sp and Sn are the total spin operators

for protons and neutrons in the target nucleus we are considering. In brackets

〈· · · 〉 the corresponding expectation value.

• Spin independent: those that involve scalar and vector quark currents in their

interactions will not be sensitive to the spin of the nucleus, but to its mass

or charge. The nucleon-level interactions add coherently to the nucleus-level

operator as follows, where A and Z are the mass and atomic numbers of the

nucleon,

OSI
N = ZOp + (A− Z)On. (2.62)

The WIMP-nucleus scattering cross-section can be therefore parametrized as

dσ

dE
=

MN

2v2µ2
(σSI(v)F 2

SI(E) + σSD(v)F 2
SD(E)), (2.63)
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where σSI / SD account for the contribution from the spin independent and spin

dependent parts, respectively, and the form factors FSI(q) and FSD(q) account for

the loss of coherence that the de Broglie wavelength of WIMPs su�ers at higher q.

In Table 2.2 we show, in a similar manner as we did in Table 2.1 for the annihilation

possibilities of the DM, how the di�erent interactions classify under the elastic scattering

with nuclei according to their behaviour. We refer the reader to Ref. [76] for a detailed

derivation of the results shown in Table 2.2, which can be obtained analogously as we

procedeed in the last subsection.

DM / SM bilinear • f̄ I f • f̄ γ5 f • f̄γµf • f̄γµγ5f

• χ̄ Iχ σSI ∼ 1 σSD ∼ q2 × ×
• χ̄γ5χ σSI ∼ q2 σSD ∼ q4 × ×
• χ̄γµχ × × σSI ∼ 1 σSD ∼ v2

• χ̄γµγ5χ × × σSI ∼ v2 σSD ∼ 1

Table 2.2: Classification of the scattering of fermionic DM with a SM fermion current
according to their nature. In the first column, the DM bilinears are listed, while the SM
bilinears are located in the first row. Table adapted from Ref. [76].

Detectors should count for a very low rate of events: they must be capable to

discriminate the background in an extremely precise way, they should be either very

large or take very long counting times in order to increase their sensitivity; last

but not least, they are expected to enjoy a sophisticated shielding to protect the

interesting signals from external noise caused by near events (that is why they are

mostly based deep underground) and also its potentially own radiation. Examples of

DD experiments are, for instance, LUX [78], DarkSide-50 [79] or PandaX-II [80], and

others under construction, for instance, XENON-nT [81]. Nowadays, XENON-1T [82]

leads with the strongest available constraints, as Fig. 2.9 shows. In there, current

bounds on spin-independent DD cross-section are recopiled. 8 Note that they are

already close to the so-called neutrino floor, i.e. the irreducible background from

8The spin-dependent bounds are, in general, weaker, because such cross-sections depend on the spin
of the nucleon, which are quantities that are still not well determined either theoretically or experimentally,
so that there are additional uncertainties involved [85].
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Direct Detection of Dark Matter 32

Figure 12. The current experimental parameter space for spin-independent WIMP-

nucleon cross sections. Not all published results are shown. The space above the

lines is excluded at a 90% confidence level. The two contours for DAMA interpret

the observed annual modulation in terms of scattering of iodine (I) and sodium (Na),

respectively [125]. The dashed line limiting the parameter space from below represents

the “neutrino floor” [117] from the irreducible background from coherent neutrino-

nucleus scattering (CNNS), see Sect. 3.4.

target) are weaker due to their higher threshold and lower exposure.

In a mass range from 1.8 GeV/c2 . mχ . 5 GeV/c2, the most stringent exclusion

limit was placed by DarkSide-50 using a LAr target depleted in 39Ar [126]. The

result from a 0.019 t× y run is a based on using the ionization signal only, which

allowed reducing the analysis threshold to 0.1 keVee. The observed background of

1.5 events/(kg× d× keVee), corresponding to 5.5 × 105 events/(t× y× keVee), can be

attributed to known background sources above ∼1.4 keVnr (corresponding to 8 e−).

Due to their much smaller total target mass and higher backgrounds, the cryogenic

experiments using Ge-crystals with ionization and phonon readout (EDELWEISS,

(Super)CDMS) or scintillating CaWO4-crystals with light and phonon readout

(CRESST) cannot compete in the search for medium to high-mass WIMPs. However,

due to their ability to reach extremely low thresholds well below 1 keVnr, they are very

sensitive to low-mass WIMPs with masses .5 GeV/c2. The Germanium-based detectors

SuperCDMS and EDELWEISS could improve their low-mass sensitivity by operating

the detectors with a high bias voltage, converting the ionization signals into Neganov-

Figure 2.9: Current experimental parameter space for spin-independent WIMP-nucleon
cross-sections. Not all published results are shown. The space above the lines is
excluded at a 90% confidence level. The dashed line limiting the parameter space from
below represents the neutrino floor [83] from the irreducible background from coherent
neutrino-nucleus scattering. Image extracted from the recent Ref. [84].

coherent neutrino-nucleus scattering, below which the DD experiments become neutrino

detectors [83]. We close this subsection by referring the reader to the nice review in

Ref. [85] about direct detection of DM.

2.1.2.2 Gamma lines

Unfortunately, the current DM direct detection bounds tell us that the experimental

sensitivity is close to reach the so-called neutrino floor, making more di�cult to detect

DM in DD experiments. However, there are indirect ways through which DM could

be detected: we can look for its annihilation products. For instance, we can hope to

discover gamma lines, very striking and almost background free signals generated by
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the DM annihilation into gamma rays, i.e.

DM DM→ γγ, γZ, γh,

DM γ

DM γ, Z , h

. (2.64)

In this section we discuss the predictions for gamma lines from DM annihilation in

models where the SM is extended by a new abelian force,

SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)X .

We will assume that the SM fermions are charged under the new force, and that they

interact vectorially with the new gauge mediator Z ′. The force will be considered abelian

for convenience, which could be, for instance, local baryon (B) or lepton (L) number,

or linear combinations of them such as B-L.

The fact that no signal has been seen in current DM experiments may be reenforcing

the idea that DM does not couple directly to the SM fields, i.e. that it lives in a Hidden

sector. The definition of Hidden sector encompasses a new set of fields, including a DM

candidate, whose connection to the SM sector is defined mainly by a new gauge force:

The observation of gamma lines depends mainly on two factors:

• The annihilation cross-section must be large (and of course non-zero) in order to

see a signal at gamma ray telescopes.

• The continuum spectrum generated by other physical processes must be

suppressed in order for the gamma line to be distinguishable.

The first condition implies that the theory must be able to predict gamma-lines which

are not further suppressed than their already intrinsic 1-loop suppression, while the

second condition tells us that the background processes must be weaker than the

gamma line, otherwise the signal would be masked by the continuum spectrum of

emitted photons as the naive illustration in Fig. 2.10 shows.

According to Diag. 2.64, the gamma line production is a quantum mechanical

process where electrically-charged fields are expected to participate. In the center of
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E�/MDM E�/MDM

Figure 2.10: In order to detect
gamma lines, since they are quantum
mechanical processes, we need large
cross-sections for the DM DM → γγ,
γZ , γh (left panel), and suppressed
FSR processes, otherwise, as the right
panel shows, the gamma line will not
be distinguished from the continuum.
Figure extracted from Ref. [86].

mass frame, kinematics tells us that the energy of the gamma lines is given by

Eγi = MDM

(
1− M2

i

4M2
DM

)
, where Mi = 0, MZ , Mh, (2.65)

for the DM DM → γγ, γZ, γh annihilation channels, respectively. Therefore, the

observation of a gamma line would allow the determination of the DM mass. However,

in a given model, there might be final state radiation (FSR) processes such as

DM DM→ SM SM γ,
γ

DM

DM

f

f̄

(2.66)

where a photon is emitted from one of the SM fermions coming from the DM

annihilation. These processes may spoil the visibility of the gamma lines. The maximal

energy of the photon in the FSR processes is given by

Eγmax = MDM

(
1− M2

SM

M2
DM

)
, (2.67)

where MSM is the mass of a SM electrically-charged field. We note that those are, in

general, tree level processes and, therefore, they are excepted to rise above the gamma

lines since the later su�er from loop suppression. Thus, when MDM � MSM the

visibility of the gamma line is spoiled if the FSR processes are not suppressed because
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Eγmax ≈ Eγi . Therefore, the relevance of the FSR with respect to the gamma lines will

be crucial in determining whether those can be observed or not.

Let us focus in more detail on the spectrum from the gamma lines and the

continuum generated by FSR processes. The flux for the gamma lines is given by

dΦγ

dEγ
=

nγ
8πM2

DM

d〈σvrel〉
dEγ

Jann ≈
nγ〈σvrel〉
8πM2

DM

dN

dEγ
Jann, (2.68)

where, in the last equality, the narrow width approximation has been applied. Here, nγ

is a multiplicity factor, nγ = 2 (= 1) for the γγ (γZ) annihilation channel. In order

to compute the total flux, we include the cross-sections of both gamma lines and FSR

processes. The J-factor, Jann, encodes all astrophysical assumptions made regarding

the DM distribution. For the gamma line studies we will present in Chapter 4, we will

use the value Jann = 13.9 × 1022 GeV2cm−5 [87, 88] for the numerical analysis, which

is the J-factor used by Fermi-LAT for the R3 region-of-interest. The spectrum function

is given by
dN

dEγ
=

∫ ∞

0
dE0WfinalG(Eγ , ξ/ω,E0), (2.69)

where Wfinal is Wγγ = δ(E0 −MDM) for the annihilation into two photons and

WγZ =
1

π

4MDMMZΓZ
(4M2

DM − 4MDME0 −M2
Z)2 + Γ2

ZM
2
Z

, (2.70)

for the Zγ line. Here, we use a Gaussian function to model the detector resolution,

G(Eγ , ξ/ω,E0), which reads as

G(Eγ , ξ/ω,E0) =
1√

2πE0(ξ/ω)
e
− (Eγ−E0)2

2E2
0(ξ/ω)2 , (2.71)

where ξ is the energy resolution and ω = 2
√

2log2 ≈ 2.35 determines the full width

at half maximum, with the standard deviation given by σ0 = E0ξ/w.
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On the other hand, the DM DM → γ f̄ f processes are described by a three-body

phase space, so that the cross-section is given by

d2〈σvrel〉
dEγdEf

=
1

32π3s
|M|2FSR θ(1− cos2 θfγ). (2.72)

To compute the continuum spectrum of the FSR processes, given by the first equality

in Eq. 2.68, one needs to integrate the di�erential cross-section with respect to the

final energy of the photon Ef , whose kinematic range is determined by the condition

cos2 θfγ ≤ 1, i.e.

E±f = MDM −
Eγ
2
± Eγ

2

√
1 +

M2
f

(Eγ −MDM)MDM
. (2.73)

Whether they can be distinguished from the continuum spectrum will depend on

the features of the model, as well as the nature of the DM candidate. Let us first study

the di�erent possibilities for the nature of the DM candidate regarding its possibility to

predict visible gamma lines:

• Scalar dark matter.

In the scenario where the DM is spinless, φ, the Higgs portal term φ†φH†H ,

where H represents the SM Higgs doublet, is an unavoidable connection to the

SM content. Therefore, the annihilation into two SM fermions mediated by a

scalar is, in general, not suppressed, nor are the FSR processes in this context.

Hence,

GL

DM γ

DM γ, Z , h

∝ 1

(16π)2




FSR

γ

DM

DM

f

f̄



,

Since the FSR processes are tree level amplitudes whereas the gamma lines occur

at the quantum level, the visibility of the gamma line is, in general, spoiled. In the
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case the mediator between the DM and the SM sector is a gauge force, the DM

annihilation into a couple of SM fermions is also velocity suppressed because the

coupling of the gauge boson with the DM is proportional to the DM momentum.

Consequently, the annihilation into gamma lines is also velocity suppressed.

Hence, in the simplest DM scenario with scalar DM, it is imposible to distinguish

the gamma lines from the continuum spectrum. For the study of gamma lines in

scalar DM models see Refs. [89–92].

• Fermionic dark matter. In the context of a fermionic DM candidate, in

general, the Higgses present in the theory can mediate these processes, but these

contributions are not relevant for the study of gamma-lines because they are

both velocity and loop suppressed and, therefore, neglectable (see discussion in

Sec. 2.1.1.4). In the following, we will only consider the cases mediated by the new

vector boson. Focusing on the annihilation mediated by a gauge boson, let us

distinguish between the Dirac and the Majorana nature of the DM candidate.

For a Dirac DM candidate (Ψ), the FSR processes, Ψ̄Ψ→ f̄fγ, are not suppressed

and, generally, the gamma lines generated by the DM annihilation cannot be

distinguished from the continuum spectrum. See Refs. [93, 94] for the predictions

of gamma lines in models for Dirac DM.

For a Majorana DM candidate, however, one has the peculiarity that it couples

to the gauge boson solely in an axial way. In this case, the squared amplitude of

the FSR process reads as

|M|2FSR =
M2
f

M2
Z′
A+ v2B +O(v4), (2.74)

which tells us that the contribution from the FSR processes is suppressed either by

the mass of the Z ′ or the velocity of the DM candidate. The later is a consequence

of the axial-vector suppression of the interaction in the non-relativistic limit of the

DM (see Subsec. 2.1.1.4). See Appendix B for the explicit form of the coe�cients

A and B in the above equation.
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If the theory allows, on the other hand, for non-suppressed amplitudes relevant

for the gamma lines we could hope to observe them since, in this case, they could

be distinguished from the continuum spectrum. For the study of the gamma lines

in models with a Majorana DM candidate see Refs. [95–99].

See also Refs. [100, 101] for the study of gamma lines in other DM models.

Taking into account the two conditions that should be satisfied in order to observe

gamma lines, let us figure out which are the ingredients that a certain theory should

enjoy in order to predict visible gamma lines. For that we will assume a general

Lagrangian with the relevant interactions for our discussion,

L ⊃ g′ χ̄γµγ5χZ
′
µ + g′f̄(nfV γ

µ + nfAγ
µγ5)fZ ′µ + f̄γµ(gfV + gfAγ5)fZµ, (2.75)

where g′ is the gauge coupling associated to the new force, and f are the

electrically-charged fermions participating in the loop from Diag. 2.64. The couplings

nfV/A refer to the interactions between the new mediator and any electrically-charged

fermion, f , of the theory; whereas the couplings gfV/A parametrize how these fermions

interact with the SM Z boson. The subindex V and A refer to the vector and axial

interactions of the gauge boson with fermions, respectively. Note that we are assuming

a theory where the connection between the DM candidate and the rest of the fermions

occurs through the mediator of the new force Z ′, as the following diagram illustrates:

Hidden sector
Z ′

FermionsFermions . (2.76)

Regarding the possible amplitudes relevant for the gamma lines: 9

• DM DM→ γγ

Quantum Electrodynamics (QED) is a vector force: electrically-charged fields

couple vectorially as indicated in the left diagram in Diag. 2.77. Since charge

conjugation is a symmetry of QED, amplitudes with an odd number of vector

currents will be zero. Therefore, we will only expect a non-zero gamma line if

9The complete analytical expressions for the cross-sections are relegated to Appendix B.
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there are electrically-charged fields that couples axially to the new gauge mediator

in the matter sector.

( )

f+

χ γ

χ γ

, ( )

( )

f+

χ γ

χ Z

.

(2.77)

• DM DM→ γZ

In this case, the Z boson admits both vector and axial couplings to charged

fermions. Charge conjugation tells us that the only combinations allowed are the

ones shown in the right diagram from Diag. 2.77, where an even number of vector

currents participate, i.e. combinations of nfV g
f
A or nfAg

f
V . Looking in more detail

at the analytic expression for the cross-section,

σ(χχ→ γ Z) ∝

∣∣∣∣∣∣
∑

f

Nf
c Qf

(
nfV g

f
A + nfAg

f
V (2M2

fC
Z
0 + 1)

)
∣∣∣∣∣∣

2

, (2.78)

we find that the contribution of the vector coupling does not depend on the

fermion mass, while the axial contribution does. Notice that the amplitude

containing the nfV term is proportional to

A ∝
∑

f

Nf
c Qfn

f
V g

f
A, (2.79)

which is zero for any well defined theory (ensured by anomaly cancellation, see

Chapter 3 for more details). Therefore, only the axial coupling nfA will contribute

to the amplitude.

• DM DM→ γh

In this case, symmetries tell us again that the vector coupling nfV is the only

non-zero contribution. However, the e�ective vertex is vectorial and, therefore,

from what we discussed in the Subsec. 2.1.1.4 (see Tab. 2.1), is velocity suppressed.
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Above we have shown that there are certain conditions under which we can have

striking predictions of non-suppressed gamma lines for Majorana DM candidates in the

context of gauge theories. We note that, on the other hand, the DM-nucleon elastic

scattering is also velocity suppressed. Therefore, direct searches will be, in general,

suppressed and close or below the neutrino floor limit. In Table 2.3, we collect the

di�erent combinations of couplings which can lead to non-zero contributions to gamma

lines.

Gamma Lines γγ Zγ hγ

Couplings nfA �
��
�HH
HH

nfV · g
f
A , n

f
A · g

f
V nfV

Table 2.3: Combination of couplings which generates a non-zero e�ective vertex relevant
for the di�erent gamma lines.

We would like to emphasize that, for any vector mediator connecting the fermionic dark

sector with the fermions of the theory, only the theories that accommodate fermions

that couple axially to the new gauge boson will be relevant for detection of gamma

lines, as summarized in Table 2.3. This result has dramatic consequences for anomaly

free theories such as U(1)B−L or U(1)B−3Li (with the addition of 3 RH neutrinos), or

U(1)Li−Lj , in which the mediator only couples vectorially to the fermions of the theory

and, therefore, no relevant gamma line for indirect searches is expected in their context.

2.2 Axions

Axions are pseudoscalar particles highly non-thermally produced that can play the

role of DM. They are the pseudo-Nambu Goldstone bosons (GBs) of a global abelian

group, whose symmetry is respected at the classical level but it is broken at the quantum

level by the chiral color anomaly. Axions were proposed at the end of the 70s as an

elegant solution to the so-called Strong CP problem. In this chapter, we describe

the aforementioned topics following a historical introduction: we will first introduce

the strong CP problem, whose heart is the U(1)A anomaly. Then, we introduce the

Peccei-Quinn symmetry as a solution to it, and the axion as its consequence, followed

by a brief review on the types of models where the Peccei-Quinn mechanism can be
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implemented. At the end, we will explain how axions can play the role of a DM

candidate and di�erent experimental approaches to detect them.

2.2.1 The U(1)A anomaly

Axions arise as a solution to the strong CP problem, which is originated by the

chiral U(1)A anomaly, where A refers to axial. Let us start from the heart of the strong

CP problem, which is deeply related to the well-known U(1) problem [102–104]. In

the massless limit of quarks, the QCD Lagrangian with three flavours (u,d,s) enjoys the

following global symmetries: U(3)L⊗U(3)R ≡ SU(3)L⊗SU(3)R⊗U(1)B ⊗U(1)A,

where the vector U(1)B can be identified with the accidental baryon number (see

Chapter 3). When the quarks condensate, i.e. 〈q̄q〉 6= 0, the axial symmetries are

broken and, according to the Goldstone Theorem, 8 + 1 GBs are expected. Actually,

they are pseudo-GBs since the axial symmetries were already slightly broken explicitly

by the quark masses at the level of the Lagrangian. Experimentally, an octet of light

pseudoscalars was found, confirming the theoretical expectations. However, the ninth

pseudo-GB, η′ has quite larger mass than the octet, manifesting a conflict between

theory and experiment. The solution to this apparent contradiction, known as the

U(1) problem, relies on the fact that U(1)A has never been a good symmetry of

the Lagrangian, although classically it totally fakes it. In order to understand why

U(1)A is anomalous, we will draw on the path integral formalism, following the method

introduced by Kazuo Fujikawa at the end of the 70s [105, 106].

Let us assume without loss of generality a single generation of Dirac fermions

Ψ = ΨL + ΨR. For a general complex Yukawa coupling, the following interaction in

the Yukawa Lagrangian generates the mass for a given fermion in the broken phase,

L ⊃ iΨ̄∂µγµΨ− Ψ̄Mei θY Ψ, (2.80)

where M is a real parameter that defines the mass of the fermion and the angle θY

encodes the imaginary phase of the Yukawa coupling. Such phase violates CP; however,

it can be easily absorbed by a redefinition of the fields performing the following chiral

rotation:

Ψ
U(1)A→ eiαγ5Ψ, so that Ψ̄

U(1)A→ Ψ̄eiαγ5 . (2.81)
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By taking α = θY /2, the Yukawa complex phase θY can be removed from the Yukawa

classical Lagrangian in Eq. 2.80 so that one expects the strong interactions to preserve

CP. Indeed, this is what has been observed experimentally so far and if the above was

true for all kind of gauge theories, probably the axions would had never been born.

However, as we will show in the following, the U(1)A symmetry is not respected at

the quantum level and an extra term in the Lagrangian is induced when performing

such transformation. Let us assume an infinitesimal local chiral rotation parametrized

by α(x), so that the Lagrangian in Eq. 2.80 transforms as,

L U(1)A→ L− ∂µα Ψ̄γµγ5Ψ− 2iαMeiθY Ψ̄γ5Ψ +O(α2). (2.82)

Integrating by parts, one can rewrite the variation of the Lagrangian as follows,

δL = α∂µJ
µ
A − 2iαMeiθY Ψ̄γ5Ψ + ∂µ(α Ψ̄γµγ5Ψ) +O(α2), (2.83)

where JA ≡ Ψ̄γµγ5Ψ, and the last term is a total derivative which, in principle, we

would not expect that contributes to the variation of the action. From the above it

seems that in the limit of massless fermions, i.e. M → 0, the axial current is conserved:

the U(1)A symmetry would be a good symmetry of the classical action and, therefore,

one would naturally expect ∂µJ
µ
A = 0. Let us see what happens at the quantum level.

All physical things we may aim to measure are correlation functions, which are

generated by taking derivatives with respect the sources of the following functional,

called the generating functional,

Z =

∫
DΨ̄DΨDAµeiS+i

∫
Lsources , (2.84)

where we have considered also the possibility that the fermions Ψ are charged under

some gauge force mediated by Aµ. The key point here is that an axial transformation,

unlike the vector one, does not leave the measure invariant; the Jacobian transforms in

a non-trivial way. To see that, let us start expanding the fermion fields in the spinor

basis:

Ψ =
∑

n

anφn, and Ψ̄ =
∑

n

φ†nb̄n, (2.85)
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where an and b̄n are Grassmann variables and carry the anticommuting behaviour of

the fermions. The spinors φn and φ†n are the eigenfunctions of the hermitian operator

(i /D):

(i /D)φn = λnφn, and φ†n(i /D) = λnφ
†
n. (2.86)

Hence, by the spectral theorem, these eigenfunctions are orthogonal, i.e.

φn(x)†φm(y) = δnm δ(x− y). (2.87)

Using the orthogonality condition and the fact that a and b are anticommuting

c-numbers, one can easily show that

DΨ̄DΨ =
∏∏(∑

k

dakdbk

)
=
∏

n

dan
∏

m

dbm. (2.88)

To find how the measure transforms, we should focus on the basis coe�cients. By

applying the chiral transformation to a fermionic field we have

Ψ′ = eiαγ5Ψ =
∑

n

eiαγ5φnan ≡
∑

m

a′mφm. (2.89)

Therefore, the coe�cient a′m, because of the orthonormality conditions in Eq. 2.87,

corresponds to the projection of the Ψ′ onto φm,

a′m ≡ φ†mΨ′ =
∑

n

φ†me
iαγ5φnan ≡

∑

n

Cmnan, (2.90)

where the integration and spinor dependence on x has been implicitly assumed. Now,

due to the properties of Grassmann variables, we know that

da′n =
∂

∂a′n
=
∑

m

∂

∂am

∂am
∂a′n

=
∑

m

∂am
∂a′n

dam, (2.91)

where the Chain’s rule has been applied and, in the last equality, the Grassmann identity

dθ = ∂/∂θ has been used again. Coming back to our measure in Eq. 2.88, it therefore
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transforms as

DΨ̄′DΨ′ =
∏

n

da′n
∏

m

db′m =

(∏

n

∑

i

(
∂ai
∂a′n

)
dai

)
∏

m

∑

j

(
∂bj
∂b′m

)
dbj




= (det C)−2
∏

n

dan
∏

m

dam = (det C)−2DΨ̄′DΨ. (2.92)

The last equality in Eq. 2.92 may be seen clearer in the following way: Given a

Grassmann variable that transforms as θ′ = Aθ, we have that

∫
dnθf(θ′) =

∫
dnθf(Aθ) =

∫
dnθa1...nA1ii . . . Aninεi1...in

= detA

∫
dnθa1...n = detA

∫
dnθf(θ) = detA

∫
dnθ′f(θ′),

where εi1...in is the n-dimensional total antisymmetric tensor, the definition of the

determinant has been used and a dummy index redefinition has been performed.

Therefore, from the above identity it is straightforward to infer that
∫
dnθ =

detA
∫
dnθ′, and the same applies to our basis coe�cients:

∏

n

a′n
∏

m

b′m = (Det C)−2
∏

n

an
∏

m

bm. (2.93)

Thus, we know how the measure transforms, and just to write it in a more convenient

way in the path integral let us use the following identity:

(Det C)−1 = e− log(Det C) = e− log(
∏
i λi) = e−

∑
i log(λi) = e−Tr{logC}, (2.94)

where we have used the fact that the determinant and the trace of a matrix are invariant.

Plugging in the definition of C given in Eq. 2.90,

(Det C)−2 = exp

[
−2i

∫
dx4α

∑

n

φ†n(x)γ5φn(x)

]
. (2.95)
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In the case of Weyl spinors, ΨL
U(1)A→ e−iαΨL and Ψ̄L

U(1)A→ Ψ̄Le
iα, we can expand

them as

ΨL =
∑

anΦLn, and Ψ̄L =
∑

Φ†Rnb̄n. (2.96)

Note that, in their context,

DΨ̄LDΨL = (Det CL)−1(Det CR)−1DΨ̄′LDΨL = (Det C)−1DΨ̄′LDΨL, (2.97)

since

(Det CL)(Det CR) = exp

[
i

∫
d4xα

∑

n

(
−φ†nLφnL + φ†nRφnR

)]
= Det C. (2.98)

The exponents of Eqs 2.95 and 2.98 are ill-defined due to the infinite sum in the spinor

space. We introduce a cut-o� Λ such that

lim
Λ→∞

∑

n

φ̄n(x)γ5 e
−λn/Λφn(x) = lim

Λ→∞

∑

n

φ̄n(x)γ5 e
−(i /D)2/Λφn(x)

= lim
Λ→∞
x→y

Tr
{
γ5 e

−(i /D)2/Λ
}
δ(x− y),

(2.99)

where in the first equality the Dirac equation has been used and, in the second one, we

have applied the orthogonality conditions of the spinorial basis. Notice that the trace

of γ5 is zero, so it is like we are “summing zero infinite times". Now, let us focus on

the operator (i /D)2 = −DµDνγ
µγν . By symmetrizing it, we have

(i /D)2 = −{Dµ, Dν}
2

{γµ, γν}
2

− [Dµ, Dν ]

2

[γµ, γν ]

2
= D2 + gS

σµν

2
GaµνT

R
a , (2.100)

where we have used that the product of a symmetric tensor with an antisymmetric

one is zero and the definition of the field strength tensor Gµν ≡ i[Dµ, Dν ]/gS and

2σµν ≡ i[γµ, γν ]. Here, TRa are the generators in the representation R of the fermion



2.2 Axions 57

Ψ. Taking this into account, we have

Eq. 2.99 = lim
Λ→∞
x→y

Tr
{
γ5 exp

[
−(D2 +

gS
2
σ ·G)/Λ2

]}
δ(x− y)

= lim
Λ→∞
x→y

∫
d4k

(2π)4
Tr
{
γ5 exp

[
−
(
D2 +

gS
2
σ ·G

)
/Λ2

]}
eik(x−y)

= lim
Λ→∞

Tr
{
γ5 exp

[
− gS

2Λ2
σ ·G

]}∫ d4k

(2π)4
ek

2/Λ2
.

(2.101)

Let us focus first on the trace. By expanding the exponential, the first surviving

contribution is the quadratic term in σ ·G:

Tr
{
γ5 exp

[
− gS

2Λ2
σ ·G/Λ2

]}
=

1

2!

g2
S

4Λ4
Tr{γ5(σ ·G)2}+O(Λ−6).

On the other hand, the integral over momentum is divergent. However, we can use the

Heat Kernel regularisation and perform a Wick rotation k0 → ikE0 . In the Euclidean,

the integral can be easily solved:

∫
d4kE

(2π2)4
e−k

2
E/Λ

2
=

iΛ4

16π2
. (2.102)

Taking the limit Λ→∞, only the term O(Λ−4) in the trace expansion survives:

lim
Λ→∞

(
g2
S

8Λ4
Tr{γ5 (σ ·G)2}+O(Λ−6)

)
iΛ4

16π2

= i
g2
S

128π2
Tr{γ5 (σ ·G)2} = − g2

S

16π2

1

2
εαβµνGaαβG

b
µν

︸ ︷︷ ︸
GaµνG̃

µν
a

Tr{TRa , TRb }︸ ︷︷ ︸
TR

,
(2.103)

where TR refers to the Dynkin index of the representation. Here we have used that Gαβa

and σαβ are antisymmetric (extra factor of 4) and that Tr{γ5γµγνγαγβ} = −4iεµναβ .

Therefore, by plugging the above result into Eq. 2.95, and using Eq. 2.92, we finally

obtain how the measure transforms

DΨ̄DΨ→ DΨ̄DΨ exp

[
i
g2
STR
8π2

∫
d4xαGaµνG̃

µν
a

]
, (2.104)
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and hence, we know how the generating functional transforms too,

Z → Z
[
I + α

(
i δS + iδLsources +

∫
g2
STR
8π2

GaµνG̃
µν
a

)
+O(α2)

]
. (2.105)

Taking into account how the Lagrangian transforms under an axial transformation (see

Eq. 2.83), we automatically get the variation of the classical action δS appearing in the

above equation. Finally, the Ward Takahashi identities tell us how anomalous the U(1)A

transformation is:

[δ/δα(x)]Z|α=0 = 0⇒ ∂µJ
µ
A = 2MeiθY Ψ̄γ5Ψ− g2

STR
8π2

GaµνG̃
µν
a . (2.106)

In the anomaly factor there is an extra factor of 1/2 when the U(1)A acts on chiral

fields. In the above derivation, we have assumed that Ψ is charged under SU(3)c for

convenience, but it can be straightforwardly generalized to any other SU(N). Notice

that, from Eq. 2.106 we can infer that even in the context of massless fermions, although

at the classical level a chiral transformation is a good symmetry, it is broken at the

quantum level by the anomaly factor. Therefore, if we choose α = θY /2 to get rid

of the CP phase in the Lagrangian, we will end up with an extra anomalous term

proportional to θY /2. Curiously, this unexpected anomalous factor can be rewritten as

a total derivative term. This will be shown in the following subsection, where we will

discuss whether it is harmless or not.

2.2.2 The Strong CP problem

In the previous subsection, we just realized that redefining the colored fields by a

chiral rotation induces an extra term in the Lagrangian proportional to the parameter

quantifying the axial transformation (see Eq. 2.106). Particularly, when absorbing the θY

in the Lagrangian from Eq. 2.80 by a q → eiθY γ5/2q transformation, 10 the following

term is generated due to the anomalous behaviour of U(1)A at the quantum level:

L ⊃ θY
g2
S

32π2
GaµνG̃

µν
a . (2.107)

10We have particularized to quarks since we will focus in the color anomaly henceforth.
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where G̃µν = εµναβ G
αβ/2 = (λa/2)G̃aµν . In reality, apart from a possible complex

phase in the Yukawa interactions, there is another source of CP violation in the

Lagrangian, allowed by the SM gauge symmetry group,

L ⊃ θQCD
g2
S

32π2
GaµνG̃

µν
a , (2.108)

where θQCD is a dimensionless parameter. The above term was for a long time forgotten.

The reason is that such interaction, as well as that in Eq. 2.107, can be written as a total

derivative of the following current,

Kµ = εµνρσA
ν
a

(
Gρσa − gS

3
fabcAρbA

σ
c

)
, (2.109)

known as the Chern-Simons current and it is well know that, when gauge fields

behave properly and go quickly enough to zero (in order to get finite energies), a

boundary term does not contribute to the action, nor to the equations of motion,

so that one would not expect θQCD to have any physical e�ect. The later holds for

an abelian gauge theory, but non-abelian theories allow for gauge field configurations

called pure-gauges that are equivalent to the null-field configuration, so that one would

expect those to be removed from the functional integral by the well-known gauge-fixing

procedure. However, the redundant configurations are those that can be joined by a

continuous gauge transformation to configurations that are already counted. Pure gauges

are connected to the null-field configuration by gauge transformations that cannot be

smoothly deformed into each other without leaving the pure gauge, so that they should

be taken into account and will then lead to physical e�ects. Such non-continuous

gauge transformations exist in non-abelian gauge theories as a consequence of their

non-trivial and unexpectedly rich vacuum structure. The di�erent equivalent classes of

pure gauge configurations, representing di�erent vacua, are defined and distinguished

by its topological charge:

n ≡ g2
S

32π2

∫
d4xGaµνG̃

µν
a . (2.110)

The configurations that connect by tunneling transitions between vacua of consecutive

topological charges, as naively illustrated in the classical picture from Fig. 2.11 with a
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red string, are called instantons [107,108], and are responsible for rendering the θQCDGG̃

term physical in the Lagrangian. 11 The later is not the only consequence of the existence

Figure 2.11: Classical analogy
to the instanton solutions of
QCD.

of instantons; in the last subsection we obtained that a chiral rotation induces a term

proportional to GG̃ in the Lagrangian, shown in Eq. 2.107, when a chiral rotation of the

quarks is used to remove the Yukawa phase θY from the interactions in Eq. 2.80. Such

term is physical too! Those non-perturbative e�ects of QCD explicitly break U(1)A.

The later was first understood by G. t’Hooft [110, 111] (see Refs. [112] and [113] for an

intuitive interpretation of t’Hooft’s more formal language) in 1976. It explains the large

mass of η′, and tells us that the CP violating phases in the QCD Lagrangian cannot be

removed. Indeed, there is no way to hide those complex phases from both the Yukawa

and the topological term simultaneously, because when redefining the chiral color fields,

a CP violating phase is induced in the Lagrangian that shifts the topological term, and

viceversa, as follows:

LCP(θY , θQCD)↔ LCP(θY − α, θQCD +Nα). (2.111)

unless an unexplained tuning occurs between θY and θQCD contributions. Here N

is defined, taking into account the contribution to the anomaly from the chiral fields

11The reader may be wondering why the analogous (g2/32π2)θEWW
a
µνW̃

µν
a term should not be added

to the Lagrangian since one would also expect instanton e�ects in the non-abelian SU(2)L. However,
in this case, global baryon U(1)B and lepton U(1)L number symmetries render θEW unphysical, playing
exactly the same role as a hypothetical massless quark (it will be explained in the main text). However,
U(1)B and U(1)L are accidental symmetries, as we will discuss in Chapter 3 of the renormalizable SM
Lagrangian that could be broken by higher dimensional operators, so that θEW would become physical if
B + L is violated, as the authors of Ref. [109] realized.



2.2 Axions 61

shown in Eq. 2.106, as

N = 2
∑

ΨL

CΨLTD[RΨL ]×mult[ΨL], (2.112)

where the sum runs over the fermions carrying color. Let us group all QCD CP-violating

phases together in a total phase θ̄ in the topological term, i.e.

L ⊃ Ψ̄LMΨR + h.c. +
g2
S

32π2
(θQCD + θY )︸ ︷︷ ︸

θ̄

GaµνG̃
µν
a , (2.113)

where, in the presence of several quark generations, the Yukawa phase is generalized to

θY = Arg[DetM ], being M the mass matrix of the quarks.

How does θ̄ contribute to the SM phenomenology? Which are its implications? The

most relevant observational consequence of θ̄ are the hadronic electric dipole moments

(EDMs), which can only be generated by CP violating processes. In particular, the

magnitude of the neutron EDM,

LEDM = −dn
2

(Ψ̄niγ5σ
µνΨn)Fµν , where dn = (2.4± 1.0)θ̄ × 10−3e fm, (2.114)

is proportional to θ̄, where dn has been computed with QCD sum rules [114–117].

Classically, an EDM parametrizes how charges are distributed. In particular, the neutron

EDM would be expected to be order O(1) as Fig. 2.12 shows.

Expectations Reality…

Figure 2.12: Classical picture of the neutron. The angle θ̄ parametrizes the neutron
EDM. Figure adapted from Ref. [118]
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Actually, by computing the scalar potential in Chiral Perturbation Theory (ChPT) 12,

V = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
θ̄

2

)
, (2.115)

wheremu, md andmπ are the masses of the up, down quarks and the pion, respectively,

and fπ the pion decay constant. From the above scalar potential we can see that θ̄ 13

also contributes to the masses of the pions, by splitting them in the following way:

m2
π0 = afπ

√
m2
u +m2

d + 2mumd cos θ̄, and m2
π± = afπ(mu +md), (2.116)

which, by experiment, we know that they are pretty similar. This is already giving us a

hint on how small θ̄ is. Indeed, experimental bounds on the neutron EDM [21],

|dn|exp < 0.18× 10−12 e fm at 90 % C.L. ⇒ |θ̄| . 7.5× 10−11, (2.117)

i.e. θ̄ should be extremely small. But, why the neutron EDM is so small? Why does

QCD seem to preserve CP? This is the so-called strong CP problem.

The later could be solved, as it was believed at some point before ChPT ruled out

this possibility [120], by the existence of a massless quark [111]. Imagine that this was

the case and that the up quark was massless. Then, one could redefine it by a chiral

transformation such that all CP violating phases contained in the topological term, i.e.

θ̄, are swallowed by the rotation, i.e.

u
U(1)A→ ei(θ̄/2)γ5u, (2.118)

so that θ̄ would be unphysical and the problem would be solved! Unfortunately or

not, the up-quark is massive. Let us focus on the key point of this trick: in the

presence of a massless quark, the U(1)A symmetry becomes a good symmetry at the

classical level while it is broken in the underlying quantum world. If we want to mimic

such massless quark, we should look for symmetries that behave as the axial one in

the presence of massless fields: a good symmetry at the classical level, broken at the

12See Ref. [119] for a nice review on the topic.
13The CP violating parameter θ̄ is an angle θ ⊂ [0, 2π] as the potential shows.
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quantum level by the chiral anomaly. In the following, we will name symmetries of this

kind as Peccei-Quinn symmetries, U(1)PQ. Spontaneous symmetry breaking complicates

things indeed, since a chiral symmetry automatically breaks in the presence of massive

fermions. However, a broken global symmetry predicts a GB that can be rotated by a

chiral transformation such that

L ⊃ g2
S

32π

(
θ̄ − a

fa

)
GaµνG̃

µν
a + Linta , (2.119)

where fa is the scale at which the U(1)PQ is spontaneously broken. In this context, the

scalar potential in ChPT modifies as follows

V (a) = −m2
πf

2
π

√
1− 4mumd√

mu +md)2
sin2

(
θ̄ − a/fa

2

)
, (2.120)

such that the minimum of this potential is achieved at 〈a〉 = θ̄fa. In other words, the

dynamics of QCD itself solves the strong CP problem since the GG̃ is automatically

stabilized to zero in the presence of such pseudo-GB, 14 named by F. Wilczek as the

axion. 15 The U(1)PQ mechanism, responsible for this success, was proposed by R. Peccei

and H. Quinn [121,122], in 1977 inspired by the massless quark scenario. Immediately later,

S. Weinberg [123] and F. Wilczek [124] realized that, after such symmetry is spontaneously

broken, an axion is born.

By expanding the above potencial around the minimum we find that the mass of

the axion is given by

m2
a ∼

mumd

(mu +md)2
m2
π

f2
π

f2
a

. (2.121)

Note the key feature of the QCD axion: its mass is inversely proportional to the energy

scale where it was born.
14As we will see in the following, the axion is not massless; it takes mass from the QCD potential

due to the instantons, as a consequence of the explicitly broken chiral symmetry at the level of the QCD
Lagrangian.

15Rumours a�rm that the origin of the name comes from the laundry detergent Axion, as an analogy
of its cleaning power when washing out the strong CP problem, and because such problem involves axial
currents.
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Before closing this subsection, let us briefly comment on the other interacting terms

that arise when rotating the axion from the Yukawa Lagrangian, shown in the following

Lagrangian:

Linta = −gaγγ
4
aFµνF̃

µν +
∑

f

gaf (∂µa)fγµγ5f. (2.122)

It contains the axion interaction with photons, generated when the rotated chiral fields

have electric charge and parametrized by the coupling gaγγ , defined below:

gaγγ =
αEM

2πfa

(
E

N
− 1.92(4)

)
, (2.123)

where the second term in Eq. 2.123 is the contribution arising from non-perturbative

e�ects from the axion coupling to QCD and has been computed at NLO in Ref. [125].

The first term in Eq. (2.123) is given by the anomaly coe�cient for the electromagnetic

fields, E, analogous to the N (see Eq. 2.112) for the GG̃ term generated by redefining

the colored fields. In the Lagrangian from Eq. 2.122 one can also identify the interaction

that appears when rotating the fermions because of the local nature of axion, which will

lead to axion-nucleon interactions at low energies.

2.2.3 The electroweak axion

In order to implement the Peccei-Quinn (PQ) mechanism, we need a CP-odd physical

GB in our scalar potential. In the SM, with one Higgs it is unfortunately not possible

since the corresponding CP-odd GB becomes the longitudinal polarization of the Z

boson, accounting for its mass. We need an extra GB, i.e. an extra global symmetry

to break! Let us add one Higgs doublet more and distribute the PQ charges such that,

without loss of generality, one of them interacts only with up-quarks, Hu, and the other

one with down-quarks, Hd, in order to cleverly avoid the severe bounds on flavour

changing neutral currents. Under the following PQ charge assignment:

Hu → eiPQuHu, Hd → e−iPQdHd, dR → eiPQddR, and uR → eiPQuuR,
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we can write down the following Yukawa Lagrangian:

− LPQ ⊃ qL Yu iσ2H
∗
u uR + qL YdHd dR + h.c.. (2.124)

The scalar potential is built upon allowed gauge combinations of the two scalar doublets

and the global PQ symmetry,

VPQ = V (|H0
u|2, |H0

d |2), (2.125)

so that two global symmetries are broken when the neutral scalars get a vev. 16 Eccolo!

After SSB, the CP-odd component of the neutral scalars can be written as a linear

combination of the two GBs of the theory,

H0
u ⊃ vu√

2
eiau/vu =

vu√
2
ei(q âZ+PQuâ), (2.126)

H0
d ⊃ vd√

2
eiad/vd =

vd√
2
ei(q âZ+PQdâ), (2.127)

where â and âZ are the phases of the axion and the GB that will be eaten by the

Z , respectively. The factor q is the contribution related to the EW quantum numbers

and PQi parametrizes the presence of the axion in each of the scalar representations.

Linearizing the kinetic terms of the CP-odd fields, we have

1

2
∂µau ∂

µau =
1

2
v2
u(q2∂µâZ∂

µâZ + 2qPQu∂µâZ∂
µâ+ PQ2

u∂µâ∂
µâ), (2.128)

1

2
∂µad ∂

µad =
1

2
v2
d(q

2∂µâZ∂
µâZ + 2qPQd∂µâZ∂

µâ+ PQ2
d∂µâ∂

µâ). (2.129)

Orthogonality of the GBs requires the following condition,

v2
uPQu + v2

dPQd = 0, (2.130)

16We should remark that the PQ is not automatic in the two Higgs doublet model Lagrangian. Note that
the invariant H†diσ2H

∗
1 term and its hermitian conjugate would break the second global symmetry we

need if the global U(1)PQ was not imposed by hand.
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whereas the normalization of the kinetic terms of the axion demands that

v2
uPQ

2
u + v2

dPQ
2
d = n2

a, (2.131)

where na is the normalization of the CP-odd phase â = a/na. The conditions in

Eqs. 2.130 and 2.131 fix how much part of the axion lives in each of the neutral scalars,

Hu ⊃
vu√

2
e
−i vd

vu
a
v0 , and Hd ⊃

vd√
2
e
i vu
vd

a
v0 , (2.132)

where v0 =
√
v2
u + v2

d . Substituting the above expressions in the Lagrangian in

Eq. 2.124, the reader can see that the axion can be rotated away from the Yukawa

interactions by redefining the quarks in the following way:

uL/R → e
±i vd

vu
a

2v0 uL/R, and dL/R → e
±i vu

vd

a
2v0 dL/R, (2.133)

which, in turn, induces a shift in the topological term proportional to N , according to

Eq. 2.112. The color-anomalous factor N is determined by the group theory properties

of the quarks we are rotating, i.e.

N = 3︸︷︷︸
Nf

× 2

(
vd
vu
× v0

2
× 1

2︸ ︷︷ ︸
uL

+
vu
vd
× v0

2
× 1

2︸ ︷︷ ︸
dL

)
× 2︸︷︷︸
L→R

. (2.134)

In other words, we have transferred the axion from the Yukawa interactions to the

topological term (see Eq. 2.111),

LPQ ⊃
αS
8π

(
θ̄ + 3

(
vd
vu

+
vu
vd

)
a

v0

)
GaµνG̃

µν
a . (2.135)

Because the PQ symmetry is anomalous, the axion can seep into the GG̃ term and,

because of its dynamical nature as a field, is able to wash the strong CP problem out.

This beautiful theory proposed by R. Peccei, H. Quinn, S. Weinberg and F. Wilczek

(PQWW) [121–124], however, is ruled out because, in this context, the axion is too

heavy [126], i.e. the EW scale does not suppress enough the interactions to avoid the
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current experimental limit on the branching ratio B(K+ → π+a) ≤ 4.5 × 10−11 at

90 % C.L. [127]. Yes, it is ruled out because the theory predicts the axion mass as a

consequence of having the PQ scale fa linked to a well-defined scale, v0 = 246 GeV.

See Fig. 2.13 for an illustration. The theory has launched a prediction and, with that,

has been exposed to be falsified. And indeed it has been kicked out by experiment. It

should be stressed how powerful a theory of this kind is, and we welcome the reader

to mull over this in order to value it.

2.2.4 Invisible axion models

As explained in the last section, the original PQWW model is ruled out because the

scale suppressing the interaction between the axion and gluons is not high enough to

avoid the experimental bounds. The reason is that the PQ scale is linked to the EW

scale since the Higgses containing the axion are charged under the EW force so that

their vevs are bounded from their contribution to the gauge boson masses. In order to

weaken the axion interactions and be consistent with experiment, we need to decouple

the PQ scale, fa, from the EW scale. That is the role that the invisible axion models

play. In this section, we introduce the two kind of mechanisms on which the invisible

axion models are based.

2.2.4.1 DFSZ mechanism

In order to decouple the PQ scale from the EW scale, a singlet scalar under the EW

gauge symmetry, S ∼ (1, 1, 0), must be added. In that context, the vev of the singlet

scalar, vS , is not bounded to the EW gauge boson masses and can be arbitrarily large.

Since vS enters in the PQ scale, one can easily avoid the bounds by suppressing the

axion interactions. However, gauge symmetries do not allow a scalar singlet to interact

with the SM quarks so that one cannot use the PQ symmetry to rotate away the axion

and generate the desired aGG̃ term.

The mechanism proposed by M. Dine, W. Fischler and M. Srednicki in 1981 [128],

and one year before by A. Zhitnitsky [129] (although it was overlooked in the literature

at that time), consists of the introduction of an extra mediator, a second copy of the

Higgs boson à la PQWW, that connects indirectly the part of the GB living in the singlet
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Figure 2.13: In the PQWW model, the
mass of the axion is predicted because
the PQ scale is connected with the
EW scale through the vev of the Higgs
doublets where it lives. Unfortunately,
the axion is too heavy to satisfy the
experimental bounds, represented with
a red mesh, and the PQWW model is
ruled out. On the other hand, invisible
axion models successfully decouple the
PQ scale from the EW scale, although
now such scale is totally arbitrary and,
therefore, the axion mass cannot be
predicted in that context unless the
axion is embedded in a theory with a
well-defined scale.

(suppressed by its arbitrarily large vev) and the quark sector via a mixing term in the

scalar potential. The Yukawa Lagrangian relevant for this mechanism is exactly the same

as that from the original PQWW model in Eq. 2.124, up to the extra scalar SM singlet in

the potential,

VDFSZ = V (|H0
u|2, |H0

d |2, |S|2), (2.136)

so that there are in total three global symmetries that will be broken once the neutral

scalar fields acquire a vev. Then, one expects three GBs in this case, which would not

help at all since one would still have the PQWW axion living in the doublets, as before,

and a massless CP-odd field living exclusively in the scalar singlet, with no possible

interaction with quarks. In order to avoid such dangerous scenario, one has to charge

the singlet scalar S under U(1)PQ such that a mixing term between the three scalars,

for instance

VDFSZ ⊃ −µH†uHdS
2 ⇒ −PQu + PQd + 2PQS = 0, (2.137)

is allowed by the G(SM) ⊗ U(1)PQ. Note that the existence of this term imposes a

constrain on the PQ charges, as shown in the RHS of the above equation. Now, because
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of the presence of the mixing term in Eq. 2.137, one of the global symmetries is explicitly

broken. The two remaining symmetries give rise to two GBs after SSB: one of them, a

combination of the CP-odd fields living in the doublets, will become the longitudinal

d.o.f. of the Z boson, and the other GB, a combination of the CP odd fields of all

scalars, including the one suppressed by the arbitrarily large scale, will be our axion, as

we show in the following. After the SSB of the global symmetries in the scalar potential,

the CP-odd component of the neutral scalars can be written as a function of the GBs:

H0
u ⊃ vu√

2
eiau/vu =

vu√
2
ei(qâZ+PQuâ), (2.138)

H0
d ⊃ vd√

2
eiad/vd =

vd√
2
ei(qâZ+PQdâ), (2.139)

S0 ⊃ vS√
2
eiaS/vS =

vS√
2
ei PQS â. (2.140)

By following the approach adopted in the previous scenario, the orthogonality and

normalization conditions fix how the axion is distributed along the CP-odd phases of

the scalars:

Hu ⊃ e
−2i

v2
d
v2
0

a
vS , Hd ⊃ e

2i
v2
u
v2
0

a
vS , and S ⊃ e−i

a
vS . (2.141)

where, as before, v0 =
√
v2
u + v2

d . One can remove the above phases from the Yukawa

Lagrangian with the PQ symmetry, by rotating them away with the following redefinition

of the quarks:

dL/R → e
±i v

2
u
v2
0

a
vS dL/R, and uL/R → e

±i v
2
d
v2
0

a
vS , (2.142)

that generates a shift in the GG̃ term, according to Eq. 2.111:

LDFSZ ⊃
αS
8π

(
θ̄ +N

a

vS

)
GaµνG̃

µν
a , where N = 3× 2

(
1

2
× v2

d

v2
0︸ ︷︷ ︸

uL

+
1

2

v2
u

v2
0︸︷︷︸

dL

)
= 6,

(2.143)

where Eq. 2.112 has been applied to compute the anomalous factor. In this case, the

reader can identify from the topological term that the PQ scale is fa = vS/6. Note that
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the invisible axion models act as a seesaw in the sense that, the larger the vev of the

singlet scalar, the larger the PQ scale and the more suppressed will be the interactions.

In this way, as Fig. 2.13 shows, one can easily avoid the experimental bounds but, on

the contrary, nothing about the axion mass can be inferred.

2.2.4.2 KSVZ mechanism

Another equivalent implementation of the invisible axion models, proposed by

J. Kim [130] and independently by M. Shifman, A. Vainshtein and V. Zakharov [131]

in 1979, is to realize the PQ mechanism by the existence of an axion that does not

couple to ordinary quarks at tree level. In this case, the SM sector remains untouched:

there is only one Higgs doublet, our SM Higgs, interacting with the SM quarks. As the

previous mechanism, a scalar SM singlet needs to be introduced in order to decouple

the PQ scale from the EW scale, but as argued before, due to the gauge symmetries, this

singlet does not interact with the SM quarks so that a aGG̃ term cannot be generated.

But, what if the matter content is enlarged by introducing new color fermions whose

quantum numbers are such that their interaction with the scalar singlet is allowed? This

is the idea of the KSVZ mechanism and its implementation is very straightforward! The

scalar potential in this case enjoys two global symmetries for the neutral fields,

VKSVZ = V (|H0
SM|2, |S0|2), (2.144)

that will be spontaneously broken and will consequently generate two GB. In this case,

since there is no mixing portal, the axion only lives in the singlet scalar. The new color

fermions, that by the symmetries of the Lagrangian are allowed to interact with the

singlet, can be used to rotate away the axion from such interaction and directly generate

a GG̃ term, according to Eq. 2.111: 17

− LKSVZ ⊃ YQQLQR S + h.c.
SSB U(1)PQ→ LKSVZ ⊃

αs
8π

(
θ̄ +N

a

vS
Gµνa G̃aµν

)
.

(2.145)

17Note that in this case the axion couples directly to the colored fermions, so that no mixing term
between scalars is needed. From this perspective, the mechanism is pretty clean.
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The PQ scale can be identified as fa = vS/N , so that one can suppress the axion

interactions to taste since vS is not bounded a priori to any scale. The later saves the

theory from being ruled out but makes it loose their appeal.

As we have seen, both the DFSZ and the KSVZ allow to implement the PQ

mechanism in a realistic way. However, in contradistinction to its precedent PQWW, in

the context of invisible axion models the axion mass cannot be predicted since the vev

of the singlet scalar is not linked to any concrete scale, which leave us with a vast range

of orders of magnitudes to seek for the axion mass. In Chapter 7, we will show how

these invisible axion models can be embedded in a self-consistent theory such that the

predictive power of the PQWW is recovered.

2.2.5 Misalignment mechanism

We motivated the axions from their potential to solve two of the SM problems at

once: the strong CP problem, already discussed in the previous subsections, and the

amount of DM in the universe. Let us see how those curious particles, although having

an extremely light mass, can behave as cold DM candidates. In this subsection we

describe the misalignment method, proposed by several authors in Refs. [132–134] in

1982, which takes profit of the fact that the axion mass, as well as the expansion rate

of the universe, are dynamical parameters which depend on the temperature, or from

another perspective, on the time.

By varying the action in a Friedman-Roberston-Walker (FWR) universe, the equation

of motion for the axion field at the zero momentum mode reads as

ä+ 3Hȧ+m2
aa+O(a2)︸ ︷︷ ︸
V ′(a)

= 0, (2.146)

where we parametrize the axion field initial value by some angle a0 = θ̄0fa. We

should remind the reader that, as we discussed in the previous sections, the axion mass

depends on the temperature; the mass is generated by QCD instanton e�ects, which are

strongly suppressed at temperatures above ΛQCD. In that sense, from ΛQCD < T < ΛPQ

axions can be considered massless. In that regime, the QCD dynamics has not set yet
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θ̄ = 0, so that there is no motivation for any special θ̄0 and the initial value could take

any random value between [0, 2π]. 18

In the early universe, H(T )� ma(T ) so that Eq. 2.146 behaves as an over-damped

harmonic oscillator, with a = faθ̄0, as Fig. 2.14 illustrates. As the universe cools down,

Figure 2.14: Naive illustration of the
misalignment mechanism.

⇡�⇡

H � ma

H ⌧ ma

at a certain temperature that we will label as critical, H(Tc) ∼ ma, Eq. 2.146 becomes

an under-damped harmonic oscillator instead, whose solution is given by

a(t) = A0e
− 3

2
Ht cos(mat) ≡ A0R(t)−3/2 cos(mat), (2.147)

where in the last step, the scale factor R(t) ≡ eH(t) has been introduced for simplicity.

By ignoring the transition regime between the over- and sub- damped oscillators and

matching the solutions from both regimes at Tc, the above equation can be rewritten as

a(t) = θ̄0fa

(
R(Tc)

R(t)

)3/2

cos(mat), (2.148)

so that the axion field oscillates coherently. The energy density restored in these

oscillations is given by

ρa(t) =
1

2
ma(t)a(t)2 =

1

2
ma(t)θ̄

2
0f

2
a

(
R(Tc)

R(t)

)3

cos2(mat)

= ρa(Tc)
ma(t)

ma(Tc)

(
R(Tc)

R(T )

)3

.

(2.149)

18In this section, as well as in Chapter 7, we will assume that the PQ scale is broken before inflation
takes place, i.e. pre-inflationary scenarios.
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The reader might have noticed that once T < ΛQCD and the axion mass settles down,

the energy density scales as R−3, so that, in despite of having a tiny mass, axions behave

as non-relativistic matter! We note that, whereas the ρa ∝ R−3 dependence only holds

in the regime where ma is constant, the axion number density, i.e. the number of

axions per comoving volume, is conserved since na(t) = ρa(t)/ma(t) ∼ R−3.

Assuming that since the axion field began to oscillate there has been no entropy

production, we can compute na/s at Tc and estimate the contribution of the energy

from the axion field oscillations to the relic abundance in the universe, which is roughly

given by [118]

Ωh2 ∼ 0.01 θ̄2
0

(
fa

1011 GeV

)1.19

. (2.150)

Notice that, for an initial misalignment angle of θ̄0 ∼ O(1), the PQ scale is expected to

be of order fPQ ∼ O(1012) GeV. This would set a lower bound for the PQ scale if we

assume that the misalignment mechanism is the only source contributing to the total

relic density observed in the universe. Even if this is the case, there is no problem in

having a scale larger than 1012 GeVs as long as (fa/GeV)θ̄2
0 ∼ 1012 holds.

2.2.6 Direct detection of dark matter axions

Under the motivation pointed out in the previous sections, many laboratory

experiments have been searching axions since their proposal. Colliders were able to

rule out the EW axion but, after the invisible axion models appeared as a way out to

evade these bounds, the hope to experimentally reach such high scales at accelerators

faded out. The situation, however, positively changed when, in 1983, P. Silvike proposed

in Ref. [135] two techniques towards the invisible axion hunt:

• Helioscopes: These experiments aim to detect axions produced in the Sun.

Examples of helioscopes: the one in Brookhaven [136], in Tokyo [137–139], and

CAST at CERN [140].

• Haloscopes: These experiments aim to detect axions from the hypothetical DM

galactic halo. Examples of haloscopes: that in Brookhaven [141, 142], in Florida

U. [143] which later became ADMX, and CARRACK in Japan, among others.



74 2. Dark matter

See Refs. [144, 145] for nice reviews on axion detecting techniques. In Fig. 2.15, extracted

from Ref. [144], we show the current limits imposed by helioscopes, haloscopes and

laboratory experiments on the ma-gaγγ plane, being the later defined in Eq. 2.123.

Because the gaγγ is inversely proportional to the PQ scale, there is a correlation between

gaγγ and ma in the QCD-axion models, shown by a yellow band in this figure. 19 Owing

Figure 2.15: Review of
experimental constraints
in the overall (gaγ , ma)
plane. In gray, laboratory
axion experiments, in blue
bounds from helioscopes,
and in green bounds from
haloscopes. Figure extracted
from Ref. [144] (updated in
2018).

to the fact that we will study DM axions in Chapter 7 we will focus on the second

technique. Haloscopes exploit the coherence e�ects driven by the fact that DM axions

behave as coherent classical fields to detect them. As we have seen in the previous

subsection, DM axions are highly non-relativistic. Therefore, from the dispersion relation

for free axion waves, w =
√
|~pa|2 +m2

a, being ~pa their momentum, the non-relativistic

limit can be taken as follows:

ω = ma

(
1 +

v2

2
+O(v4)

)
⇒ ∆ω

ω
∼ 10−6. 20 (2.151)

Such small relative spread in frequency implies that axions are almost monochromatic.

Besides, in last subsection we have also estimated the axion number density. Unlike

19The rest of the parameter space corresponds to the so-called axion-like particles. Those are pseudo-GBs
arising from the breaking of global U(1) symmetries that are not related with QCD at all, i.e. do not interact
with gluons and their mass is not defined by the QCD instantons. We will not consider axion-like particles
since they do not solve the strong CP problem.

20For a recent determination of the velocity dispersion at the Earth’s position using N -body simulations
see Ref. [146].
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WIMPs, which behave like a dilute gas of particles that eventually bump into a detector,

axions have a much higher number density. They behave as a Bose condensate since

large DM number densities imply macroscopic occupation numbers for each quantum

state [54]. Therefore, it is appropriate to treat a(t) as a coherent classical field, which

taking into account Eqs. 2.148 and 2.149, can be written as

a(t) =

√
2ρa
ma

sin(mat), (2.152)

whose amplitude is determined from ρa(T0) = ma(T0)a(T0)2/2 (being T0 the current

temperature in the universe). In most of the experiments, it is common to assume that

the contribution from axions to the local energy density is 100%, i.e. ρa ∼ ρDM where

ρDM ≈ 0.4 GeV/cm3 [85, 147–149] is the local DM energy density. However, we should

keep in mind that any signal in reality depends on the product ρDM ρ̃a rather than ρDM,

being ρ̃a the fraction of the total local density comprised by ρa.

The coherent oscillations of the DM-axions can be exploited by designing

experiments whose signals are enhanced in the presence of a certain axion mass by

a resonant e�ect. Let us take into account the interacting Lagrangian for axions with

photons and nucleons that will be the basis for DD experiments,

Le�a ⊃ −
gaγγ

4
aFµνF̃

µν +
∑

n

gaNN (∂µa)Ψ̄nγ
µγ5Ψn−aFµν

∑

n

gaD
2

(iΨ̄nσ
µνγ5Ψn)

(2.153)

where we included to the interacting Lagrangian from Eq. 2.122 the dimension 5

term proportional to gaD , responsible for the hadronic EDMs; gaγγ parametrizes the

axion-photon coupling (see Eq. 2.123), and gaNN parametrizes the coupling to nuclear

spins. The later is generated from the transition from gaf interaction in Eq. 2.122

at the quark level to the nucleon level. The framed term in red is proportional to

FµνF̃
µν ≡ 4( ~E · ~B). Therefore, in the presence of a magnetic field, an axion can

be converted into a photon. Such conversion can be resonantly enhanced by using

microwave cavities with a high quality factor Q.

Conventional axion haloscopes consists of a high-Q microwave cavity subjected to a

homogeneous external magnetic field B0, as such produced in the cavity surrounded by
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magnets shown in Fig. 2.16. When the resonant frequency of the cavity ωc matches the

If ma ⇢ !c ±
!c

Q

Figure 2.16: Illustration about the methodology of high-Q microwave cavity experiments.

axion mass, the axion-photon conversion experiments an enhancement proportional to

the quality factor of the cavity. The signal power Ps in the band ma ±ma/Q is given

by

Ps ∝
Q

ma
g2
aγγB0|Gm|2V ρa, (2.154)

where Gm parametrizes the geometry of the cavity resonant mode (see Ref. [144] for

more details) and V quantifies the volume of the cavity. Notice that this kind of

experiments based on axion-photon conversion are actually sensitive to the product

gaγγ
√
ρDM ρ̃a. On the other hand, the signal of the noise is proportional to ma, which

makes this technique less e�cient at heavy axion masses, i.e. high frequencies.

As we just explained, the conventional cavity haloscopes rely on matching the axion

mass with the resonant frequency of the cavity. However, going to lower frequencies

requires larger cavity volumes. In principle there is hope on building high-Q cavities

with large volume but it becomes experimentally challenging to fabricate powerful

magnets of large dimensions to surround them, so that low axion masses are di�cult

to access with such technique. However, what if we decouple the volume of the

detector from the axion frequency/mass? That is the brilliant idea on which experiments

like ABRACADABRA and CASPEr are based. We present them in the two following

subsections before closing this chapter.
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2.2.6.1 ABRACADABRA

A Broad / Resonant Approach to Cosmic Axion Detection with an Amplifying B-field

Ring Apparatus (ABRACADABRA) 21 was proposed at MIT, as the name itself suggests, to

detect cosmic axions. It exploits the modifications induced by the axion in the Maxwell

equations [150, 151]. Indeed, the presence of the axion field and its interaction with

photons modifies the QED Lagrangian in the following way:

LQED = −1

4
FµνF

µν − 1

4
gaγγaFµνF̃

µν , (2.155)

which leads to the new Maxwell’s equations [135] listed below:

∇ · ~E = −gaγγ ~B ·∇a ~∇ · ~B = 0

∇× ~E = −∂
~B

∂t
~∇× ~B =

∂ ~E

∂t
− gaγγ

(
~E ×∇a− ∂a

∂t
~B

)
.

(2.156)

Because the local viral velocity of the DM in our galaxy is about v ∼ 10−3, it will give

small gradients ∇a ∝ v so that we can neglect them in the above equations.

In the presence of a static magnetic field, i.e. ~B0, and neglecting ∇a, there is no

electric field present so that ∂ ~E/∂t ≈ 0. 22 In this context, the Ampere’s law reads

∇× ~B = gaγγ
∂a

∂t
~B0, (2.157)

which, under the presence of an oscillating axion field and a static magnetic field as

shown in Eq. 2.152 generates an e�ective electric current given by

Je�
a = gaγγ

√
2ρDM cos(mat) ~B0. (2.158)

where we have assumed, as ABRACADABRA does, ρ̃a = 1 (otherwise the obtained

bounds of the experiment should be scaled). The above e�ective current in turn

sources a magnetic field oscillating at frequency ma, perpendicular to ~B0, according

21Jesse Thaler, one of the members of ABRACADABRA, is a big fan of playing Scrabble.
22This is known as the Magneto Quasi-Static limit, where either the magnetic induction or the electric

displacement current are neglected. At higher axion masses, i.e. higher frequencies, displacement currents
could be generated.



78 2. Dark matter

to Ampere’s law. Therefore, one can hope to test such oscillating flux, proportional to
√
ρDM (assuming ρ̃a ∼ 1) by using a magnetometer. The later is what ABRACADABRA

does. The static magnetic field is generated by a superconducting wire wrapping a

toroid. The toroidal geometry enjoys the advantage of having the readout region in the

center of it, where there is ideally zero static magnetic field. Furthermore, by introducing

a small GAP in the toroid, the parasitic capacitance e�ects that may generate displaced

currents can be reduced. The geometry of the experiment is shown in Fig. 2.17. The

Figure 2.17: Geometry of the
ABRACADABRA experiment.
Image adapted from Ref. [150].

SQUID

Pick-up coil (Lp)

Je↵
a

�pickup(t)

oscillating magnetic flux can be detected with a superconducting pickup loop in the

hole of the toroid. For a pickup loop radius smaller than the inner radius of the toroid,

the flux is given by

Φpickup(t) = gaγγBmax

√
2ρDM cos(mat)VB, (2.159)

where Bmax is the magnitude of the static field at the inner radius and therefore

depends on the geometric factors of the toroid, as well as the e�ective volume VB ,

which quantifies the volume containing the external magnetic field. Note that the

magnetic flux is proportional to gaγγ , which in turn is inversely proportional to the PQ

scale, so that an extremely sensitive quantum limited field sensor is required to detect it.

ABRACADABRA uses a Super Conducting Quantum Interference Device (SQUID), which is

able to reach magnetic sensitivities of O(10−18) T. ABRACADABRA follows two readout

approaches on the magnetic flux generated by the hypothetical axion field:

• Broadband approach: The magnetometer is untuned. The pickup loop is coupled

directly into the SQUID input and all frequencies are acquired at once. This
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approach has an enormous advantage: it is able to search all frequencies

simultaneously, or at least those not limited by noise. 23 The lower bound on

the signal reach of the broadband approach goes as follows,

gaγγ > [experiment factors]
(ma

t

)1/4
SQUIDnoise, (2.160)

where t is the integration time of the axion classical field. Note that the sensitivity

to gaγγ increases at smaller ma. On the other hand, the noise of the SQUID scales

as SQUIDnoise ∝ 1/ma and dominates below 50 Hz, as the blue line in Fig. 2.18

shows, setting the floor of the experimental reach.

• Resonant approach: The magnetometer is tuned. A resonator is inserted into

the circuit in order to enhance resonantly the signal before the SQUID noise is

introduced. The enhancement of the signal is proportional to the quality factor

Q of the resonator. In this case, the sensitivity to the gaγγ goes as,

gaγγ > [experiment factors]

(
1

mat

)1/4

, (2.161)

which improves with the time spent on each frequency band and worsens for

lower axion masses, since at low frequencies, lower Q factors are required to make

sure that the bandwidth matches the interrogation time. The clear disadvantage

of this approach relies on the choice of a certain frequency to amplify.

In Fig. 2.18 we show the projected bounds for the ABRACADABRA experiment [150,

151]. A prototype detector ABRACADABRA-10 cm has been launched, following a

broadband approach, and the first results appeared in 2018 [152, 153] from the data

taken during a month (July-August from that year). In those, a huge amount of

noise correlated with the vibration of a plate was found below 10 Hz. Although the

reach of the Run-I results is still below the limits from the CAST helioscope, a broad

range of frequencies was successfully accessed and, after technical improvements, the

ABRACADABRA collaboration plans to reach the projected sensitivities. Note that they

23At large frequencies / masses the MQS approximation breaks down and displacement currents would
screen out the signal.
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Figure 2.18: Bounds of the
ABRACADABRA experiment. In
blue (orange) the projected
bounds for the broadband
(resonant) approaches under
some benchmark points for
the experimental factors are
displayed. The red band shows
the QCD axion parameter space.
Other projected sensitivities are
shown shaded in light green.
Published limits from ADMX are
shown in gray. Figure extracted
from Ref. [150].

aim to falsify part of the QCD axion band, including the interesting scale of axions

predicted from Grand Unified Theories, which will be addressed in Chapters 6 and 7.

2.2.6.2 CASPEr

Apart from the coupling mediating the electromagnetic interaction between the

photon and the axion, gaγγ , there are two other couplings through which the axion

could be accessed. Those are the interaction between the axions and nucleons,

Le�a ⊃−
gaγγ

4
FµνF̃

µνa+
∑

n

gaNN (∂µa)Ψ̄nγ
µγ5Ψn) − aFµν

∑

n

i
gaD
2

(iΨ̄nσ
µνγ5Ψn) ,

(2.162)

to which the experiment CASPEr is, in principle, sensitive. The Cosmic Axion Spin

Precession Experiment aims to detect axion DM by using Nuclear Magnetic Resonance

(NMR) techniques [154–156]. The NMR works as follows. In the presence of a magnetic

field, ~B0, the spin states of a fermion split by an amount of gnµNB0 as the left panel

of Fig. 2.19 shows. In the previous expression gn is the nuclear Landé factor and µN

is the nuclear magneton. The spins are polarized in a volume of the sample. Let us

consider now a radiofrequency (RF) magnetic field perpendicular to ~B0, oscillating at a

frequency ωRF. When ~ωRF = gnµNB0, a resonant e�ect allows the RF magnetic field
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|" i
~B0~!RF

~B0

~B1 cos(!RFt)

sample

M

Figure 2.19: Nuclear Magnetic Resonant techniques. On the left panel, the split generated
between the spin states by the external magnetic field. When such GAP matches the
frequency of the RF magnetic field, a resonant phenomenon occurs. On the right
panel, an illustration of the consequences from such resonant e�ect are shown: the
magnetisation of the sample deviates from its initial orientation and precesses.

to flip spins! Under these circumstances, the sample magnetizaton tilts and precesses,

as the right panel of Fig. 2.19 illustrates. A magnetometer located next to the sample

could detect the magnetic field created by such precessing magnetization. These NMR

techniques are very useful for non-invasive imaging and studying of the molecular

structure. Besides, they can be applied to detect DM axions as the CASPEr experiment

does. CASPEr acts as a NMR experiment with no RF magnetic field. Instead, the axion

DM is the responsible for flipping the spins.

The CASPEr experiment splits in two branches according to the coupling they aim to

probe: CASPEr electric and CASPEr wind . Here, we briefly discuss for convenience

the CASPEr electric experiment, led by the Boston university group, which aims to

measure the EDM coupling gaD . Such term in the Lagrangian from Eq. 2.162, framed

in blue, describes at low energies an oscillating nuclear EDM, ~dn(t), generated by a(t)

along the direction of the nuclear spin ~σn:

~dn(t) = gaD a0 cos(mat)~σn = gaD

√
2ρDM
ma

cos(mat)~σn, (2.163)

that interacts with an external electric field ~E. Here, we have also assumed that ρ̃a = 1,

as CASPEr does. The non-relativistic Hamiltonian that describes such interaction is
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given by

HEDM = −~dn(t) · ~E = ~σn · (gaD a0
~E cos(mat))︸ ︷︷ ︸
~E∗(t)

. (2.164)

The reader should be reminded that, according to the modified Maxwell equations

in 2.156, the presence of an electric field perpendicular to ~B0 induces a magnetic field

that will play the role of the RF magnetic field (B1 in the right panel of Fig. 2.19). The

magnetisation, and consequently the amplitude of the NMR signal, will be proportional

to the tilt angle of the spins. The later depends on the amplitude of the EDM, given by

Eq. 2.163. In this context, the magnetization can be written as

M ∝ nP E∗ gaD
ma

√
2ρDM, (2.165)

where n is the spin density, P is the thermal polarization (see Ref. [156]), E∗ is the

e�ective electric field present in the sample. For CASPER electric, a ferroelectric crystal

is used as a sample, since it enjoys a permanent elastic polarization that creates a strong

e�ective internal electric field ~E∗ with which an axion induced EDM can interact.

In Fig. 2.20 the projected bounds for CASPEr electric are displayed. Notice that it

aims to search a wide range of masses and couplings, and that Phases II and III will be

sensitive to the QCD axion band from GUT scales down to the Planck scale, although

those still rely on technical improvements. The ultimate sensitivity limit is given by the

nuclear spin noise of the sample, marked with a red shaded line in the figure.

Figure 2.20: Experimental reach of
CASPEr Electric. The green band is
excluded by astrophysical observations.
Orange, red, and maroon regions show
sensitivity projections in Phase I, II
and III, respectively. The fundamental
quantum sensitivity limit is given by
magnetization noise, shown by the
dashed red line. Figure extracted from
Ref. [156].
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Let us imagine that we are cooking the tasty SM. For that, we add the needed

ingredients, i.e. three families of charged leptons, neutrinos and quarks. We follow

the known recipe by building the most general Lorentz symmetric structures imposing

gauge invariance under SU(3)c ⊗ SU(2)L ⊗ U(1)Y and, on top of that, we season

it by adding the Higgs boson. Voilà! We have ended with the well-known Standard

Model Lagrangian. However, as any good meal, there might be some features emerging

in the final outcome. In this case, surprisingly, some extra symmetries which we did

not ask for arise when building it. Since nobody expected them a priori, they are

Figure 3.1: Global symmetries such as total baryon and lepton number as well as flavour
lepton number and combinations of them emerge unexpectedly from the matter content
and symmetries of the SM. They are called accidental symmetries.

known as accidental symmetries. Those are total baryon (B) and lepton (L) numbers,

and consequently any linear combination of them, as well as lepton flavour number Li.

Particularly, as will be properly addressed in Sec. 3.1, B-L, B − 3Li and Li − Lj are

anomaly free. Leptons in the SM have leptonic charge 1, while quarks have baryonic

charge 1/3, since three of them are needed to give birth to a baryon. Their transformation

83
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under such global symmetries is given by

(`L, eR)→ einL(`L, eR) and (qL, uR, dR)→ einB (qL, uR, dR). (3.1)

Therefore, in the context of the SM, both lepton and baryon numbers are conserved at

the classical level. Notice that at the quantum level, in the SM the SU(2)L instantons

break baryon and lepton number by three units, although such interactions are highly

suppressed. However, they are just global symmetries, and we expect them to be broken

at some scale, as cosmology suggests. 1 Nowadays, we are aware that the SM cannot

be the ultimate theory. For instance, in Chapter 1 we saw that neutrinos are massive

and, therefore, lepton flavour number is violated by neutrino oscillations. From the

low energy perspective, we should think of the SM as a part of an EFT expansion,

i.e. an infinite tower of operators built from the SM material, respecting the SM local

symmetries. These higher dimensional operators are generated by the e�ect of the NP

in the UV, and are in turn suppressed by subsequent powers of the NP scale as follows,

L = LSM +
1

Λ
O∆L=2 +

∑

i

O(6)
i

Λ2
+
∞∑

n=7

∑

j

O(n)
j

Λn−4
. (3.2)

As discussed in Chapter 1, the first and unique dimension five operator in the above

expansion is the Weinberg operator, responsible for the Majorana neutrino mass

generation. Notice that this interaction violates total lepton number in two units, so

that it would be forbidden if lepton number was a good symmetry of the Lagrangian.

Beyond the Weinberg operator, higher dimension e�ective operators violating baryon

or lepton number could be present, such as the dimension-6 operator qqq` [10]. 2

This particular operator mediates the decay of the proton and, if present, predicts the

existence of a great desert between the EW and the NP scales of about thirteen orders

of magnitude. Such enormous energy gap is needed in order to satisfy the existing

experimental bounds on the decay of the proton, which will be later discussed in

1Violation of baryon number is one of the Sakharov conditions [157] for generating the observed
matter-antimatter asymmetry in the universe.

2Those appear in theories like GUTs, where quarks and leptons are forced to live in the same
representations and, therefore, the baryon and lepton number are explicitly broken.
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Chapter 6. Particularly, for the p→ πe+ channel [158],

τp ≥ 1034 yr ⇒ ΛB & 1015 GeV. (3.3)

In other words, these interactions must be suppressed by a scale at least twelve orders

of magnitude larger than the EW scale! This would be very depressing in the sense that

no one would ever hope to falsify these theories, being such scale far away from our

experimental scope.

At this stage, we may be wondering whether the existence of a great desert is really

necessary. Indeed, in QFT anything that is not forbidden will eventually happen. Baryon

and lepton numbers are merely global symmetries and nothing guarantees those to be

respected by non-renormalizable e�ects. However, the non-observation of neutrinoless

double beta decay (∆L = 2), τββ > 1025 years, 3 and the decay of the proton (∆B =

1), τp > 1032 − 1034 years, 4 indicates that the total lepton and baryon numbers

are very good symmetries in nature. So, what if there is no need to suppress such

dangerous interactions? What if the reason we have not seen the proton decaying yet is

because such process is actually forbidden? On the other hand, we need to understand

the breaking of baryon number to account for baryogenesis. What if these baryon

and lepton accidental symmetries are the remnant of some unaccounted local gauge

symmetry that was broken at a certain scale?

In 1973, A. Pais suggested the possibility to gauge baryon number in Ref. [161].

Although he was the pioneer in presenting such brilliant idea, he did not manage to

propose a theory for U(1)B . Other attempts to gauge baryon and lepton numbers

were done in Refs. [162–165], being Ref. [166] the first realistic model on local baryon

number ever proposed. However, this model and further proposals from Refs. [167,

168] are currently (partially) ruled out by experiment, as we will mention later. The

phenomenological study presented in the upcoming Chapters 4 and 5 is based on the

theories proposed in Refs. [169,170] and Refs. [171,172], whose content is introduced along

this chapter.

3For a review on neutrinoless double beta decay see Ref. [159].
4For a review on proton decay in several scenarios for beyond the SM, see Ref. [160].
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3.1 Anomaly cancellation

Symmetries of the classical Lagrangian are not always preserved in the full quantum

theory, as we already noticed along this thesis. Such anomalies lead to explicit violation

of the Ward identities. In the context of global symmetries, the presence of anomalies

does not really constitute a problem. However, if these symmetries are local, the

violation of the Ward identities breaks the consistency of the theory; in the presence of

such anomalous terms, gauge invariance is not further preserved. Therefore, if we aim

to gauge the accidental symmetries previously presented, special care must be taken in

ensuring that the corresponding local theory is consistent.

We saw in Chapter 2 that chiral currents are dangerous because, although being

conserved classically in the limit of massless fermions, they can obtain a non-zero

divergence at the one-loop level when coupled to two gauge currents [102, 173]. Such

anomalous term is known as the chiral anomaly, and we already showed its result in

the context of abelian theories (see Eq. 2.106), which must be generalized to non-abelian

theories if we are aiming to enlarge the SM gauge group.

The relevant Green functions where the above anomaly appears are the three-point

functions involving an axial current, 5 i.e. 〈jAµ jVν jVρ 〉. The later arise in the triangle

graphs shown below, where the roman letters refer to the generators of the SM gauge

group that participates in the current, being X, Y and Z = 1, 2 and 3 for U(1)Y , SU(2)L

and SU(3)c, respectively:

X γµγ5

γν

γρ

Y

Z

+ X γµγ5

γν

γρ

Y

Z

. (3.4)

These diagrams lead to an anomalous term spoiling the Ward identities proportional to

A[X, Y, Z] ≡ Tr{TXL {T YL , TZL }} − Tr{TXR {T YR , TZR }}, (3.5)

5As shown in Eq. 2.106, a two-point correlation function is not enough for generating the anomalous
term regarding the Lorentz structure.
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to which we will refer as anomaly factor. In the above expression, the trace is taken over

all fermionic d.o.f. participating in the triangle diagram. The anticommutator arises as

a consequence of the two possible momentum routings displayed in Diags. 3.4.

As first proved by Adler and Bardeen [174], gauge anomalies are 1-loop exact: 6.

Furthermore, explicit calculations [175, 176] show that, although they can occur also

in box and pentagon one-loop diagrams with an odd number of axial couplings, the

contribution to the anomaly is exactly the same as for the one-loop triangle diagram

introduced above. Therefore, if we ensure through the symmetry group or particle

content of the theory that the coe�cient A[X, Y, Z] from Eq. 3.5 vanishes, we can be

sure about the consistency of the gauge theory.

S
U
(2)

A[13]

A[1],A[2],A[3]

SU(2)

SU(3)

S
U
(2)

A[13]

A[1],A[2],A[3]

SU(2)

SU(3)

U(1)Y SU(2)

SU(3)

A[123]

Figure 3.2: Possible gauge anomalies in the context of the SM gauge group. Anomaly
cancellation of the red framed diagrams is ensured by the choice of hypercharges and
the number of colors in the SM.

In Fig. 3.2, all possible 1-loop triangle combinations among the spin-1 fields in the

SM are listed. Fortunately, most of them vanish for symmetry reasons. In addition,

one must make sure that the gravitational anomaly vanishes too, i.e. A[2], A[3] and A[1],

where the last one is not trivially zero and imposes restrictions among the hypercharges

6This a consequence of the non-renormalization theorem [174]: if the one-loop diagrams are
anomaly-free, all higher-order diagrams are anomaly free.
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of the SM matter content. The cases where only one generator from a non-abelian gauge

group (Pauli matrices and Gell-Mann matrices for SU(2)L and SU(3)c, respectively)

is participating, i.e. A[223], A[322], A[122], A[2], A[3] and A[123], have a null anomaly

factor due to the traceless nature of the SU(N) generators. The triangle diagrams

involving pure non-abelian gauge generators are, in the context of the SM, kind of

special: the SU(3)c gauge group manifests solely vector interactions with the SM

fermion content so that the contributions from LH and RH quarks exactly cancels,

whereas the group SU(2)L is a pseudo-real group since the fundamental representation

behaves as the anti-fundamental one under a gauge transformation. Therefore, in

principle the only non-zero anomaly factors could come from the red framed diagrams

in Fig. 3.2 and the A[1] from the gravitational anomaly.

Starting from the combination of two SU(2)L generators and the hypercharge one,

we have

A[221] = Nf

∑

fL

YfL Tr

{
I
{
σa

2
,
σb

2

}}
, (3.6)

where Nf = 3 is the number of fermion families. We will make use the following

identities about the SU(N) generators,

{T a, T b} =
1

N
δab I + dabc T

c, or alternatively, Tr
{
T a, T b

}
= TR δ

ab, (3.7)

where dabc 7 is a totally symmetric tensor, N is the dimension of the group, and TR

is the Dynkin index of the representation R. Taking into account that the SU(N)

generators are traceless, the anomaly factor reads as

⇒ A[221] = Nf

∑

fL

YfLδa,b mulfL
1

N
= Nf ×

δab
2

∑

fL

YfLmulfL

= Nf ×
δab
2

(
1

6
×Nc +

(
−1

2

))
Nc=3

= 0,

(3.8)

where Nc the number of colours and mulfL is the multiplicity of a given LH fermion

under the rest of the groups in the tensor product conforming the SM gauge symmetry

7The dabc tensor indeed corresponds to the anomaly factor of a pure SU(N) diagram for a given
fermion f entering in the loop, i.e. dabc ≡ 2 Tr{{T a, T b}T c} = Aabcf /2.
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not considered in A[X,Y,Z]. It appears as a consequence of summing over all fermionic

d.o.f. entering in the diagram.

Similarly, for the rest of the red framed diagrams,

A[321] = Nf ×
δab
2


∑

fL

YfLmulfL −
∑

fR

YfRmulfR


 ∝

(
1

6
× 2− 2

3
+

1

3

)
= 0, (3.9)

A[13] = Nf


∑

fL

Y 3
fL
mulfL −

∑

fR

Y 3
fR
mulfR


 (3.10)

= Nf

((
−1

2

)3

× 2 +

(
1

6

)3

× 2×Nc + 13 −
(

2

3

)3

×Nc +

(
1

3

)3

×Nc

)
Nc=3

= 0,

A[1] = Nf


∑

fL

YfLmulfL −
∑

fR

YfRmulfR


 (3.11)

= Nf

(
−1

2
× 2 +

1

6
× 2×Nc + 1− 2

3
×Nc +

1

3
×Nc

)
Nc=3

= 0.

Luckily, or rather, as it could not be otherwise, the red framed dangerous factors cancel

individually, rendering the SM a safe and consistent gauge theory. 8 Nevertheless, when

the SM gauge symmetry group is enlarged, nothing guarantees anymore the safeness of

the new theory. Particularly, for an extra abelian gauge group, to which we will refer

as U(1)X , six extra triangle diagrams arise, which contribute to the anomaly factors as

listed below:

• A[22X] ≡ SU(2)

SU(2)

U(1)X

= Nf
δab
2

∑

fL

XfLmulfL= Nf
3

2
(3nB + nL)

!
= 0 .

8Notice that, contrary to the insensitivity of A[X,Y,Z] to the number of families, the consistency of the
SM requires Nc = 3 colors. Notice also that anomalies in the SM are cancelled because of the particular
values of the hypercharges. In other words, anomaly cancellation quantizes the charges of the fermions in
the SM!
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Here, nB and nL represent the charges of the qL and `L fields under the

new force, respectively. Since in the SM there is only one quark and lepton

doublet per family, the anomaly cannot be cancelled unless nL = −3nB ,

which is automatically satisfied when the new force is B-L since, in that

context, qL ∼ (3, 2, 1/6, 1/3) and `L ∼ (1, 2,−1/2,−1). However, for pure

lepton or baryon local theories, new fermions in a non-trivial representation of

SU(2)L would be needed. In both cases, the above anomaly factor reads as

A[22B] = A[22L] = 3/2.

• A[32X] ≡ SU(3)

SU(3)

U(1)X

= Nf
δab
2



∑

fL
colored

XfLmulfL −
∑

fR
colored

XfRmulfR




= Nf
δab
2
nB



∑

fL
colored

mulfL −
∑

fR
colored

mulfR


 = 0.

In this triangle graph only colored fields contribute. In the last row we have

assumed that all quarks are degenerated under the new force. This is, for instance,

the case of baryon number, where nB = 1/3. As we can see from above, this

anomaly factor is zero for all combinations of baryon (and trivially lepton) number

gauge symmetries.

• A[12X] ≡ U(1)Y

U(1)Y

U(1)X

= NfTR


∑

fL

Y 2
fL
XfL − Y 2

fR
XfR


∝ (3nB + nL)

!
= 0 .

As in the previous case, if all quarks (leptons) are degenerated under the new

force, the condition for anomaly cancellation reads 3nB = −nL. Taking into

account that nB = 1/3 (nL = 1) for the baryon (lepton) charge of the SM

quarks (leptons), one can check that in the context of U(1)B−L the above graph
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is anomaly free, while for pure baryon and lepton gauge theories the anomaly

factor gives A[12L] = A[12B] = −3/2.

• A[X21] ≡ U(1)Y

U(1)X

U(1)X

= Nf


∑

fL

YfLX
2
fL
mulfL −

∑

fR

YfRX
2
fR
mulfR


 = 0.

This holds for any new charge common for all leptons or all quarks and would

be equivalent to A[1] in the SM applied only to the quark or lepton sector.

• A[X3] ≡ U(1)X

U(1)X

U(1)X

= Nf


∑

fL

X3
fL
−
∑

fR

X3
fR


 = 3n3

L 6= 0 .

In the quark sector, the multiplicity of LH d.o.f. matches the fields in the RH

sector, so that the anomaly cancellation condition is automatically satisfied when

the new charge is common for all quarks. However, in the context of leptons,

the matter content in the SM is not symmetric and there is a cubic leptonic

charge that does not cancel. This triangle diagram, together with the following

one, requires the enlargement of the matter content by a singlet under the SM

symmetry group charged as the rest of the leptons, in order not to spoil the rest

of anomaly factors. This required d.o.f. νR ∼ (1, 1, 0, nL) can be easily identified

as a RH neutrino. Actually, three copies of νR are needed for cancellation of the

anomalous terms in this diagram and the following one, since Nf = 3.

• A[X] ≡ U(1)X

g

g

= Nf


∑

fL

XfL −
∑

fR

XfR


 = 3nL 6= 0 ,

which also requires the presence of three RH singlets with lepton charge nL.
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The consistency of the theory in the presence of extra gauge symmetries requires

cancellation of the gauge anomalies which, in turn, imposes relations among the fermion

quantum numbers under the new force and, in most of the cases, predicts the existence

of extra matter content. In the context of B-L, three RH neutrinos, one per family,

are required to render the theory anomaly-free. In that sense, U(1)B−L is strongly

connected to neutrino masses, since it is the simplest gauge theory that predicts massive

neutrinos. For local baryon and lepton number theories, the matter content must be

further enlarged to cancel the extra anomaly factors involving the new mediator, all

without spoiling those where the cancellation was already achieved. There are several

options for doing that:

• Adding a sequential family where the new quarks have baryonic charge 1 and the

new leptons have leptonic charge 3. This option, proposed in Refs. [166, 167], is

straightforward in the sense that the structure observed in nature is repeated.

• Adding a mirror family. In this case, the new quarks would have baryon number

-1 and the leptons, lepton number -3. This option was proposed in Refs. [166, 167]

too.

Unfortunately, these solutions are in disagreement with collider constraints because the

new fermions would get mass from the SM Higgs boson and would change the gluon

fusion Higgs production by a factor of 9 [167]. Therefore, both of the above proposals

are currently ruled out. Besides, the LHC bounds on the masses of the new fermions

are stringent, and the theory su�ers from Landau poles for the new Yukawa couplings

in the TeV region.

• Adding a fourth generation of vector-like fermions under the SM gauge group,

as the authors of Ref. [168] proposed, would avoid Landau poles. In this case,

anomaly cancellation requires that the di�erence between the baryon charges of

the new quarks is −1, whereas the di�erence of the leptonic charges for the new

leptons is −3. Unfortunately, in this scenario the new charged leptons modify

drastically the branching ratio of the Higgs into two photons, reducing it about a

factor of 3 [177], so that this proposal is partially ruled out, although the gauged

U(1)B would be still a consistent possibility.
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Let us consider instead, following Refs. [169,171], the introduction of new leptons and

baryons such that their quantum numbers allow for the simultaneous cancellation of

all anomalies listed above and, therefore, define a consistent local theory for baryon or

lepton numbers. Looking at the remaining anomalous triangle diagrams in the context

of pure U(1)B or U(1)L, it is straightforward to realize that at least a non-trivial

representation of SU(2)L must be added in order to cancel A[22,X]. But, of course,

adding a non-trivial SU(2) representation implies the addition of more d.o.f. in order

to compensate their unavoidable contribution to other triangle diagrams where anomaly

cancellation was already satisfied.

3.2 Gauge theories for Baryon and Lepton numbers

Taking into account the comments above, let us specify two simple theories where

a minimal set of anomalons (a total of six extra Weyl d.o.f.) is added in order to cancel

the A[22X] and A[12X] anomalies (in the case of local lepton number, we are already

assuming three generations of νR in the matter content so that A[L] and A[L3] are

zero). As we will see, in both cases, a cold DM candidate arises naturally as a prediction

of the theory.

3.2.1 Model by Duerr, Fileviez Perez and Wise (DFW)

We could start by adding to the SM the simplest non-trivial SU(2)L representation:

a doublet ΨL, charged under the new force. We should keep in mind that this new

field will spoil the rest of triangle graphs. Let us add the correspondent chiral partner,

a RH doublet ΨR, with an opposite U(1)X charge (otherwise the net contribution to

the factor A[22X] would be zero). The extra doublet helps to keep A[23] switched o�

while the choice of charges with flipped signs ensures that A[X21] remains safe. We

will also assume, without loss of generality, that the new fields are colorless. 9 Now, we

should care about the anomaly factors where odd powers of the new force contribute,

i.e. A[X] and A[X3], which require the addition of extra d.o.f.. Particularly, inspired by

9Alternative solutions with the same number of representations can be found for di�erent color quantum
numbers common to the whole new spectra. However, either by cosmological reasons or by making the
theory realistic, in these cases the matter content must be further extended. See Ref. [169] for more details.
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the SM family structure, we can add SU(2)L singlets: ηR, ηL, χL and χR, vector-like

under the SM gauge symmetry and charged under U(1)Y and U(1)X such that the

contribution of the doublet fields in those is cancelled.

The aforementioned fermion content required for anomaly cancellation is listed in

Table 3.1, and corresponds to the theory for local baryon and lepton number proposed

in Ref. [169], to which we will refer as DFW theory.

Fields SU(3)c SU(2)L U(1)Y U(1)X

ΨL = (Ψ0
L,Ψ

−
L )T 1 2 −1/2 X1

ΨR = (Ψ0
R,Ψ

−
R)T 1 2 −1/2 X2

ηR 1 1 −1 X1

ηL 1 1 −1 X2

χR 1 1 0 X1

χL 1 1 0 X2

Table 3.1: Fermionic representations in the DFW model proposed in Ref. [169]. The label
X = B or L, where in the last case 3 copies of νR ∼ (1, 1, 0, 1) must be also added.

The hypercharges of the new fermions in Table 3.1 should satisfy that

Y 2
η + Y 2

χ − 2Y 2
Ψ =

1

2
, (3.12)

imposed by the A[12X] factor. In the following, we will stick to the choice YΨ =

−1/2, Yη = −1, and Yχ = 0 for simplicity. On the other hand, the A[22X] require the

following relation among the new charges:

X1 −X2 = −3, (3.13)

which is crucial for understanding the relevance of these theories. 10

10A[X] and A[X3] are automatically satisfied regardless of the relation between the baryon / lepton
numbers.
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The most general Lagrangian under the G(SM) ⊗ U(1)X gauge symmetry and the

given matter content reads as

L = LSM + LX , where LX = −1

4
BX
µνB

µν,X − sin ε

2
BµνB

µν,X + Lf (3.14)

is the kinetic term of the new mediator, being BX
µν = ∂µZ

′
ν − ∂νZ

′
µ the field strength

tensor of the U(1)X field and ε the parameter quantifying the possible kinetic mixing

with the hypercharge gauge boson from the SM, which will be discussed in detail in

Sec. 4.1.2 from Chapter 4. The interacting Lagrangian reads,

LDFWf = iχL /DχL + iχR /DχR + iηL /DηL + iηR /DηR + iΨL /DΨL + iΨR /DΨR (3.15)

−y1ΨLHηR − y2ΨLiσ2H
∗χR − y3ΨRHηL − y4ΨRiσ2H

∗χL − Yν`Liσ2H
∗νR + h.c.,

where Dµ = ∂µ + igW a
µσa/2 + igY Y Bµ + igXnXZ

′
µ, being Y and nX the U(1)Y

and U(1)X charges, respectively, of the field on which the covariant derivative acts, and

gY , g and gX , and Wµ, Bµ and Z ′µ the strength coupling and the vector bosons of the

SU(2)L, U(1)Y and U(1)X forces, respectively. The last term in the above Lagrangian

should be included when the gauged symmetry is the lepton number.

As Eq. 3.15 manifests, the anomalons are massless fields in this context since no

mass term is allowed by the gauge symmetry.

3.2.2 Model by Fileviez Perez, Ohmer and Patel (FOP)

An alternative to the previous procedure towards an anomaly-free U(1)L,B theory

is to cancel the contribution of the two SU(2)L doublets, needed to account for the

non-zero A[22X] term, by introducing an extra non-trivial SU(2)L representation. The

adjoint representation does not contribute to the A[23] diagram because of its real

nature. If chosen hyperchargeless, it does not enter neither in the diagrams involving

the U(1)Y generator. However, it does enter in the A[22X], but the right choice of

hypercharges can lead to a simultaneous cancellation of all triangle diagrams within

the presence of an extra SM-singlet, charged under the new force. In that sense, this

theory, proposed in Ref. [171], is simpler than the one previously introduced regarding the

number of representations needed for anomaly cancellation. Furthermore, the baryon
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or lepton charges are unambiguously fixed. Note that, as in the previous case, the two

di�erent new baryon or lepton charges di�er in three units.

Fields SU(3)c SU(2)L U(1)Y U(1)X

ΨL = (Ψ+
L ,Ψ

0
L)T 1 2 1/2 3/2

ΨR = (Ψ+
R,Ψ

0
R)T 1 2 1/2 −3/2

ΣL =


Σ0

L/
√

2 Σ+
L

Σ−L −Σ0
L/
√

2


 1 3 0 −3/2

χL 1 1 0 −3/2

Table 3.2: Fermionic representations in the model proposed in Ref. [171]. The label
X = B or L, where in the last case 3 copies of νR ∼ (1, 1, 0, 1) must be also added.

In this context, the Lagrangian corresponds to that given in Eq. 3.14 with now,

LFOPf = iχL /DχL + iTr{ΣL /DΣL}+ iΨL /DΨL + iΨR /DΨR (3.16)

−y1ΨRHχL − y2H
†ΨT

LCχL − y3H
†ΣT

LCΨL − y4ΨRΣLH + h.c.,

where DµΣL = ∂µΣL + ig[W a
µσa/2,ΣL]− i3

2gXΣL for the SU(2)L triplet. We note

that here, as in the previous case, the anomalons are massless, what renders the theory

unrealistic unless a mechanism for their mass generation is implemented.

3.3 Spontaneous breaking of local B and L symmetries

We now understand how anomaly free theories for baryon and lepton numbers can

be promoted to local quantum field theories. In the case of B-L, all extra triangle

anomalies are automatically cancelled by adding three copies of a RH neutrino. Since

the νR ∼ (1, 1, 0, 1) can get a Dirac mass through the Yukawa interaction with the

Higgs boson, there is no phenomenological need to break this symmetry. The reader

may complain about the existence of a massless neutral gauge boson ZBL in such case;

however, it should be stressed the possibility for the B-L generator to acquire mass
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through the Stuckelberg mechanism, thus letting the gauge symmetry untouched. 11

Although the Stuckelberg mechanism constitutes a successful way out to render abelian

anomaly-free theories realistic, this is not the case for pure local baryon and lepton

numbers. In contrast with U(1)B−L, new fermion fields are required in order to ensure

anomaly cancellation in U(1)B and U(1)L. As we have seen in the previous section, the

gauge symmetry does not allow a mass term for these fields in the Lagrangian, whereas

a realistic theory requires them to be massive in order to satisfy the experimental

constraints. The later can be achieved by adding an extra scalar, singlet under the

SM but feeling the new symmetry, which will allow us to understand how baryon and

lepton number local symmetries can be spontaneously broken. In both scenarios, the

later can be achieved by adding a scalar boson SX , singlet under the SM gauge group

and charged under the new force, where X = L or B. This scalar can acquire a vev

via the following scalar potential:

VX = −µ2
X |SX |2 + λX |SX |4 + λHXH

†H|SX |2. (3.17)

The SSB generates a mass term for the anomalons through the following interactions in

the Duerr, Fileviez Perez and Wise model,

− LDFWS = VS + λΨ ΨLΨR SX + λη ηR ηL SX + λχ χR χL SX + h.c.. (3.18)

On the other hand, in the Fileviez Perez, Ohmer and Patel proposal, LS is given by,

− LFOPS = VS + λΨ ΨLΨR SX + λχ χ
T
LCχL SX + λΣ Tr{ΣT

LC ΣL}SX + h.c.. (3.19)

Notice that anomaly cancellation, which constrains the relation among their quantum

numbers under the new force, in both cases accomplishes the following relation,

|∆X| = |Xfield
L −Xfield

R | = 3 (if Majorana |2Xfield
L | = 3) ⇒ SX ∼ (1, 1, 0, 3),

(3.20)

which fixes the charge of the new scalar boson and, consequently, how lepton and

baryon numbers are violated. From the above we can conclude that, in these theories,

11For a review on the Stueckelberg mechanism, see Refs. [178, 179].
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the baryon or lepton number is broken in three units, curiously in the same amount as in

the SM! This is indeed good news for us! By gauging baryon number the gauge symmetry

protects the stability of the proton. However, as previously mentioned, there is evidence

in the universe that requires the violation of baryon number: the matter-antimatter

asymmetry, according to Sakharov’s criterium [157]. For U(1)B , we have seen that we

are actually forced to spontaneously break the local symmetry in order to generate

masses for the enlarged matter sector. Amazingly, the consistency of the theory predicts

such breaking to occur in three units! In other words, the dangerous dimension-6

operators with ∆B = 1 remain forbidden and the proton is stable to any order in

perturbation theory. 12 The previous statement has a strong consequence: there is no

need for a great dessert since no suppression is needed, so that in principle the baryon

force can be broken at the low scale. On the other hand, the theory allows us to

understand the spontaneously breaking of baryon number.

Figure 3.3: The fact that in these simple theories for local U(1)B the baryon number is
broken in three units renders the proton stable so that there is no need to postulate a
great dessert between the EW and the scale of NP. Image adapted from Ref. [180].

Another striking prediction of the spontaneous breaking of U(1)L,B is the existence

of a cold DM candidate. The lightest fermion from the new sector is automatically

stable, and its stability is a consequence of the baryon or lepton gauge symmetry.

When the new force is spontaneously broken, a remnant global symmetry protects the

12The reader may wonder about the allowed 1
Λ12
B
O∆B=3 operators, that could mediate the decay of the

tritium. However, as they are suppressed by twelve powers of the NP scale, ΛB ∼ ΛEW would still be
consistent with the current experimental bounds.
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lightest new fermion from decaying; such symmetry is a Z2 when Majorana fermions are

involved (FOP), while it promotes to a U(1)X in the presence of Dirac fermions (DFW for

X1 6= −X2). This is an unexpected and highly appreciated present from these theories,

given the need to understand the relic abundance in the universe (see Chapter 2 for

more details). It should be emphasized that, in this context, the prediction of a DM

candidate is a pure consequence of requiring anomaly cancellation, and that there is no

need to impose to the theory any discrete symmetry by hand. Finally, it should be also

stressed that in these theories the mass of the DM candidate is determined by the scale

of lepton or baryon number violation, and therefore it is connected to the mass of the

new mediator. As we will see in the following chapters, this connection has dramatic

consequences for such scale.

This class of theories will be discussed in detail in Chapters 4 and 5, being the first

chapter devoted the study of local baryon number and the last one, to gauge theories

involving the lepton number.

3.4 Experimental lower bound on the NP scale

At this point, the reader might be convinced that these theories could exist in nature

being an attractive justification for the existence of the accidental symmetries in the

SM, providing an answer to the DM abundance in the universe that the SM cannot

satisfy, predicting the stability of the proton and allowing us to understand the origin of

dynamical baryon and lepton number violation. In the context of gauged lepton number,

they naturally account for neutrino masses too. Despite that, some skepticism may still

be reflected under thoughts like Would be nice if these theories exist, but if they really do,

would I notice them?. In the scenario where B-L remains as an unbroken local theory,

there are indirect ways to track their unavoidable footprints in the phenomenology, as it

will be later discussed in Chapter 5. However, for the broken gauge theories, regardless

of the new fermions arising as a consequence of anomaly cancellation, there is a clear

representative to look for: a massive gauge boson, Z ′, whose mass will define the

baryon or lepton number violation scale. Surely, the possibility to notice these theories

is closely related to the capacity of our eyes (the current set of experiments we dispose)

to detect such particle, in other words, to achieve such scale.
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Figure 3.4: Summary of
the collider bounds in the
U(1)B−L scenario in the
gBL-MZBL plane. The red
line corresponds to the bound
from LEP [181], while the pink
line corresponds to dilepton
searches at the LHC with√
s = 13 TeV and 36.1 fb−1

[182]. Figure extracted from
Ref. [183].

The experimental bounds on an abelian massive gauge boson depend on the nature

of its interactions with the SM particles. For a Z ′ coupling to leptons, there is a pretty

strong bound coming from the LEP collider [181] ,

MZL

gL
≥ 7 TeV, (3.21)

where gL refers to the coupling associated to a leptophilic abelian gauge boson ZL.

This bound relies on the coupling with leptons, and hence, it can also be applied

to the gauge coupling gBL and boson ZBL from U(1)B−L. Furthermore, dilepton

searches at the LHC can also be used to constrain the U(1)B−L scenario; particularly,

the result from ATLAS for center-of-mass energy
√
s=13 TeV and 36.1 fb−1 of integrated

luminosity [182] is relevant in the region MZBL . 4 TeV. In Fig. 3.4, the LHC and LEP

bounds are shown in the gBL-MZBL plane. As it can be appreciated, if the gauge

coupling is of order one, gBL ≈ 1, the gauge boson must be heavier than 7-8 TeV.

A di�erent and more hopeful scenario takes place when a leptophobic gauge boson

is considered, which would be the case for the generator of U(1)B . When tracking

the outcome signals, jets are not as clean as leptons and, therefore, the bounds placed

by colliders are weaker for a leptophobic gauge boson. Fig. 3.5 shows a collection of

the relevant LHC bounds, placed by both ATLAS and CMS, on a leptophobic gauge

boson ZB which is assumed to interact with the SM quarks according to the following
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coupling:

− L ⊃ 1

3
gB q̄iγµZ

µ
Bqi, (3.22)

where 1/3 is the baryon charge of any quark qi in the SM. According to Fig. 3.5, there
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Figure 3.5: Experimental bounds for the leptophobic gauge boson ZB . Those correspond
to the CMS analyses (8 TeV and 18.8 fb−1 [184], 8 TeV and 19.7 fb−1 [185], 13 TeV and
35.9 fb−1 [186, 187] and 41.1 fb−1 [187], 13 TeV and 36 fb−1 & 27 fb−1 [188], 13 TeV and
18.3 fb−1 [189]), and ATLAS results (13 TeV and 3.6 fb−1 and 29.3 fb−1 [190]). Figure
adapted from Refs. [191, 192].

is full of room for a light ZB boson with a not so-weak coupling to matter! Indeed, if

such light boson exists, the LHC has enough potential to discover it; there is no reason

for waiting years and years aiming to see NP in future colliders because we do already

have the tool to explore in more detail the parameter space where these theories could

live. In order to close the chapter with an optimistic feeling, let us highlight here two

concrete examples of dijet bounds on a leptophobic gauge boson, collected in Fig. 3.6.

The left panel corresponds to the bound placed by ATLAS to a dijet mass distribution

for
√
s = 13 TeV and 29.3 fb−1 in the range 450 < MZB < 1800 GeV [190], while the

right panel shows the statistically combined CMS data from 2016 and 2017 on the limits

in the mass vs. coupling plane for 50 < MZB < 220 GeV [187]. As the reader can

distinguish from both figures, there is a small excess greater than 2σ around MZB = 1

TeV (left panel) and a 2.2 standard deviations from the background-only expectation

in MZB = 115 GeV (right panel). The excess in the left panel arises only when the
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more bins. Wider signals are therefore less a�ected by statistical fluctuations from the data in a single
bin. The results can be used to set limits on models of new phenomena besides that of the Z 0 simplified
model and are applicable when the resonance is su�ciently narrow and the parton distribution function
and non-perturbative e�ects can be safely truncated or neglected, as described in Ref. [28]. These criteria
are often met if the mj j distribution for a signal approaches a Gaussian distribution after applying the
kinematic selection criteria of the resonance analysis, so that 95% of the signal lies within 20% of the
Gaussian mean mass. Models of new resonances with an intrinsic width much smaller than 5% of its
mass should be compared to the results with a width equal to the experimental resolution. For models
with a larger width, the limit that best matches their width should be used. More-detailed instructions can
be found in Appendix A of Ref. [28].

A Bayesian method is applied to the data and simulation of the signal models at a series of discrete masses
to set 95% credibility-level upper limits on the cross-section times acceptance [27] for the signals described
above. The method uses a constant prior for the signal cross-section and Gaussian priors for nuisance
parameters corresponding to systematic uncertainties. The background is re-estimated for each value of
the mass parameter by including the signal shape with a floating normalization in the sliding-window
fit. The expected limits are calculated using pseudo-experiments generated from the fit parameters of
the background-only model and including systematic uncertainties from both the signal and background
models. The uncertainties on the Z 0 signal model include the jet energy scale and the luminosity. The
impact of the jet energy resolution uncertainty is negligible. For the Gaussian model, a constant jet energy
scale uncertainty of 3% is applied in accordance with the measured impact of this uncertainty on the Z 0

samples. The uncertainty in the integrated luminosity is ±2.2%, derived following a methodology similar
to that detailed in Ref. [35]. The systematic uncertainties in the background estimate include the choice
of the fit function and the uncertainty in the fit parameter values, as described above.
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Figure 5: The 95% credibility-level observed and expected upper limits on gq as a function of mZ0 for the Z 0 model
described in the text. The lower-mass part of the limits from Ref. [3] is also shown. Couplings above the solid lines
are excluded. The solid and dashed lines represent the observed and expected limits, respectively, and are obtained
accounting for the scaling of the signal cross-section with g2

q . The di�erent y⇤ selections are described in the text.

Figure 5 shows limits on the coupling to quarks, gq, as a function of the mass mZ0 for the Z 0 model.
Figure 6 shows limits on a possible Gaussian contribution with a width equal to the detector resolution
as a function of the mean mass, mG . In both the Z 0 and Gaussian models, upper limits for masses from
450 GeV to 700 GeV are derived using the distribution with |y⇤ | < 0.3, which is sensitive to the lower
masses. Limits for masses above 700 GeV are derived from the mj j distribution with |y⇤ | < 0.6, except
for Gaussian signals with a width of 10% where only the |y⇤ | < 0.3 distribution is used.

8

19

Figure 7: Pass-to-fail ratio, Rp/f(r(mSD, pT)), defined from the events passing and failing the
N

1,DDT
2 selection. The variable N

1,DDT
2 is constructed so that, for simulated multijet events, Rp/f

is constant at p = 5% and f = 95% (blue). To account for residual differences between data
and simulation, Rp/f is extracted by performing a two-dimensional fit to data in (r, pT) space
(orange). The Rp/f shown is derived for AK8 jets using 41.1 fb�1 of data collected in 2017 and
corresponds to a polynomial in the Bernstein basis of third order in pT and fifth order in r.
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Figure 8: Upper limits at 95% CL on the coupling g
0
q as a function of the resonance mass for a

leptophobic Z0 boson that couples only to quarks. based on the statistical combination of the
2016 and 2017 analyses using AK8 jets. The observed limits (solid), expected limits (dashed),
and their variation at the 1 and 2 standard deviation levels (shaded bands) are shown.

Figure 3.6: Bounds from ATLAS [190] (left panel) and CMS [187] (right panel) on the mass
vs. coupling plane. The plots show an excess around 1 TeV in the left panel and at 115
GeV in the right panel.

background estimation takes into account the concrete U(1)B model while the excess

of the right panel, which was a 2.9σ deviation for 2016, was not confirmed with the 2017

data set, where there is a local deviation of 0.5σ. Although they probably disappear

with patience and more statistics, these bumps illustrate the capacity of our current

detectors to see such class of gauge bosons.

To summarize, experimental bounds on a Z ′ bring hope to still detect local baryon

and lepton number theories at scales close or even below the EW scale. These bounds

provide themselves the answer to the skeptical reader Yes, you can notice them. And it

is not as if these theories were lacking of motivation! They allow one to understand the

origin of the accidental symmetries in the SM, they can predict missing pieces of the SM

puzzle such as neutrino masses or a so-aimed DM candidate. Let us close this chapter

with a spoiler that may increase even more the motivation of the reader: as it will be

addressed in Chapters 4 and 5, in the context of the most motivated theories where the

lightest neutral anomalon plays the role of a DM candidate, the theory has to live at

the low scale. Hence, our answer can be rectified to Yes, you will notice these theories!.

And hopefully this chapter itself exposed enough reasons to convince the reader that

those are perfect candidates to be under the spotlight of the phenomenological and

experimental research.
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Chapter based on the work done in 1810.06646, 1904.01017 and

2003.09426.

In Chapter 3, the possibility of promoting the global symmetries baryon and lepton

number to local theories was discussed. In here, we will focus solely on the first option.

In the SM, the so-called baryon number is an accidental global symmetry at the classical

level which is broken at the quantum level by the SU(2) instantons in three units. In

theories for physics beyond the SM, there are two possibilities for baryon number

violation: 1) Explicit breaking, and 2) Spontaneous Violation. The baryon number is

explicitly broken in theories such as the Minimal Supersymmetric SM (MSSM), where

one can have the so-called R-parity violating terms, or in Grand Unified Theories,

where we have the unification of quarks and leptons in the same representations and

the symmetry is broken at the very high scale MGUT ≥ 1015 GeV. The only way

to understand the spontaneous breaking of baryon number is to think about theories

where the baryon number is a local symmetry. Let us summarize here the main features

of those, discussed in Chapter 3:

• Simple anomaly free theories based on U(1)B can be defined, where the

consistency of the theory predicts the stability of the proton. In the context

of these theories, there is no need to postulate the existence of a great desert

between the EW and the NP scales.

• One predicts the existence of a cold DM candidate in this context. It is protected

by a remnant global symmetry after SSB and its mass is defined by the scale of

the new force.
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• The spontaneous breaking of baryon number at the low scale is possible in

agreement with all experimental bounds in particle physics and cosmology,

without the need of hiding the theory behind a very small gauge coupling.

In this chapter we provide a detailed study of the properties of a leptophobic cold DM

candidate based on a local U(1)B and analyze the strong cosmological implications on

this class of gauge theories.

4.1 Theoretical framework

The aim of this section is to build from the common key features of the motivated

models for local baryon number a simplified model containing the relevant DM

candidate interactions. For that, we should first understand the SSB of baryon number

and the nature of the predicted cold DM candidate.

4.1.1 Spontaneous symmetry breaking

In order to generate masses for the fermions composing the new sector, as discussed

in Chapter 3, a scalar boson SB ∼ (1, 1, 0, nB) with baryon charge nB = 3 has to be

introduced. It should be reminded that nB is fixed by anomaly cancellation, which

requires the di�erence between the two di�erent baryon charges of the anomalons to

be 3 units, as shown in Eq. 3.13. This relation is a key prediction of the theory; the

proton is absolutely stable, and therefore, the symmetry can be broken at the low scale.

The spontaneous breaking of U(1)B (also of the EW gauge group) can be triggered

through the following scalar potential, which is composed of the SM scalar potential

plus that from Eq. 3.17 with X = B:

V = −µ2
HH

†H + λH

(
H†H

)2
− µ2

B|SB|2 + λB|SB|4 + λHB

(
H†H

)
|SB|2. (4.1)

Therefore, in the unitary gauge, the scalar bosons read,

H =
1√
2




0

h+ v0


 , and SB =

1√
2

(sB + vB). (4.2)



4.1 Theoretical framework 105

By taking into account that the vevs are non-zero in the zero temperature vacuum of

the theory, which is required for the theory to be phenomenologically viable [193], the

minimum conditions read as,

−µ2
H + λHv

2
0 + λHB

v2
B

2
= 0, and − µ2

B + λBv
2
0 + λHB

v2
B

2
= 0, (4.3)

which lead to the following vevs,

v2
0 = 2

µ2
BλHB − 2µ2

HλB
λ2
HB − 4λBλH

, and v2
B = 2

µ2
HλHB − 2µ2

BλH
λ2
HB − 4λBλH

. (4.4)

For this solution to be a minimum, according to the conditions stated by the second

partial derivative test,

∣∣∣∣∣∣∣

∂2V
∂〈H〉2

∂2V
∂〈HSB〉2

∂2V
∂〈SBH〉2

∂2V
∂〈SB〉2

∣∣∣∣∣∣∣
∝

∣∣∣∣∣∣∣

2λH λHB

λHB 2λB

∣∣∣∣∣∣∣
> 0, and

∂2V

∂〈H〉2 > 0, (4.5)

and imposing the potential to be bounded from above, we should require that

λH > 0, λB > 0, and λHλB −
1

4
λ2
HB > 0. (4.6)

Furthermore, perturbativity of the couplings appearing in Eq. 4.1 further imposes:

λH ≤ 4π, λB ≤ 4π, and λHB ≤ 4π. (4.7)

After SSB, the mass matrix for the Higgs bosons reads as,

M2
0 =

(
h sB

)



v2
0λH v0vBλHB

vBv0λHB v2
BλB






h

sB


 , (4.8)

which must be diagonalized in order to find the physical states. The latter are given by

h1 = h cos θB + sB sin θB and h2 = sB cos θB − h sin θB, (4.9)
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where the mixing angle, θB , is determined from the rotation that brings the mass matrix

in Eq. 4.8 to its eigenbasis, defined by

tan 2θB =
λHBv0vB

λHv2
0 − λBv2

B

. (4.10)

Collider searches of a new scalar that mixes with the Higgs combined with

measurements of Higgs properties provide constraints on the mixing angle [194, 195].

In our study, the mass of the second Higgs is above the EW scale, and hence, we take

the bound

sin θB ≤ 0.3. (4.11)

The masses of the physical fields (eigenvalues of Eq. 4.8) are given by

M2
h1

= λHv
2
0 + λBv

2
B − (λBv

2
B − λHv2

0)

(
1 +

λ2
HBv

2
0v

2
B

(λHv2
0 − λBv2

B)2

)1/2

,

M2
h2

= λHv
2
0 + λBv

2
B + (λBv

2
B − λHv2

0)

(
1 +

λ2
HBv

2
0v

2
B

(λHv2
0 − λBv2

B)2

)1/2

,

(4.12)

where the expressions listed in Eq. 4.4 were taken into account. The above relations

allow us to rewrite the quartic couplings in the scalar potential as a function of the

Higgs masses and the mixing angle, as follows:

λH =
1

4v2
0

[
M2
h1

+M2
h2

+
(
M2
h1
−M2

h2

)
cos 2θB

]
< 4π, (4.13)

λB =
1

4v2
B

[
M2
h1

+M2
h2

+
(
M2
h2
−M2

h1

)
cos 2θB

]
< 4π, (4.14)

λHB =
1

2v0vB

(
M2
h1
−M2

h2

)
sin 2θB < 4π, (4.15)

where in the last part of the above equations we have imposed the perturbative bounds

on the scalar couplings in the Higgs sector (see Eq. 4.7). Taking these constraints

into account, together with the conditions to ensure the vacuum stability of the scalar

potential stated in Eq. 4.6, restrictions between the masses of the new scalar and the

new mediator, Mh2 and MZB , and the scalar mixing angle θB unavoidably appear. On

the left panel in Fig. 4.1 the allowed parameter space in the Mh2-MZB plane is shown
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Excluded by collider constraints

Excluded by
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Figure 4.1: On the left panel, parameter space in the Mh2–MZB plane allowed by
perturbativity bounds, λH , λB, λHB ≤ 4π, and the condition from Eq. 4.6. Here, the
di�erent colors correspond to the di�erent values for the gauge coupling gB according
to the legend. On the right panel, the available h2 masses as a function of the scalar
mixing angle θB are shaded in orange, as a consequence of the condition from Eq. 4.13.
In gray, the parameter space ruled out by the phenomenological bound on the scalar
mixing angle sin θB ≤ 0.3 is displayed.

for di�erent values of the new gauge coupling gB . As the figure shows, for a given

MZB , i.e. for a certain baryon violation scale, there is an upper bound for the Mh2 ,

which depends on gB . Furthermore, Eq. 4.13 allows us to determine the upper bound

on the new Higgs mass as a function of the mixing angle θB , as the right panel of

Fig. 4.1 shows. Remarkably, for the maximum mixing angle allowed, the second Higgs

cannot be heavier than 3.5 TeV, regardless of the baryon number breaking scale.

Once the theory undergoes SSB, fermions acquire mass through the Yukawa

interactions, and the gauge bosons of the broken symmetries acquire mass from the

covariant derivative of the scalars responsible of breaking such symmetries,

(DµSB)†(DµSB) ⊃ −1

2
g2
Bn

2
Bv

2
BZBµZ

µ
B, (4.16)

where nB = 3 is the charge of the scalar breaking U(1)B . Hence, the mass term of the

new gauge boson is given by

MZB = 3gBvB. (4.17)
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We note that MZB defines the scale of baryon number violation. It couples only to

quarks and to the new baryons from the theory, i.e. we have a leptophobic gauge boson.

4.1.2 Kinetic Mixing

The simultaneous presence of two or more abelian gauge symmetries allows for a

mixing term among their field strength tensors in the Lagrangian. Particularly, in our

case we expect kinetic mixing between the U(1)Y and U(1)B gauge groups, as we

showed in Eq. 3.18 from Chapter 3. This parameter can be constrained by studying the

properties of the Z boson in the SM, see e.g. Refs. [196,197]. The most general Lagrangian

that can be written under the gauge group SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)B involving

the neutral gauge bosons of the theory is given by

L ⊃ −1

4
BµνB

µν − 1

2
Tr { WµνW

µν} − 1

4
B′µνB

′µν − sin ε

2
BµνB

′µν

+
1

8
(gW3µ − gYBµ)(gWµ

3 − gYBµ)v2
0 +

1

2
µ2
B′B

′
µB
′µ (4.18)

−
∑

i

ψiγ
µ
[
gY (Y i

LPL + Y i
RPR)Bµ + gPLT

aWaµ

]
ψi +

gB
3

∑

i

ψiγ
µψiB

′
µ,

where YL/R are the hypercharges of the LH/RH fields interacting with the hypercharge

gauge boson Bµ, µB′ = 3gBvB is the mass term generated after the SSB of U(1)B and

sin ε parametrizes the kinetic mixing between both Abelian gauge bosons Bµ and B′µ,

being B′µ the mediator of U(1)B . 1

There are di�erent paths to bring the kinetic terms in the first line of Eq. (4.18) to

an orthonormal form via a non-orthogonal transformation. For convenience, we choose

a change of basis that does not modify the well-known relation between the neutral SM

gauge bosons. The later can be achieved through the following transformation of the

Bµ and B′µ fields: (
Bµ

B′µ

)
7→
(

1 − tan ε

0 sec ε

)(
Bµ

B′µ

)
, (4.19)

1Note that the charge of the SM quarks under the baryon force is 1/3.
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which renders the kinetic Lagrangian for the gauge bosons orthonormalized and leads

to the following Lagrangian mass terms

L ⊃ 1

8
v2

0

(
gW3µ − gY (Bµ − tan εB′µ)

) (
gWµ

3 − gY (Bµ − tan εB′µ)
)

+
1

2
µ2
B′ sec2εB′µB

′µ, (4.20)

with the mass matrix in the neutral gauge boson basis (W 3
µ , Bµ, B

′
µ):

M2
0 =

1

4




g2v2
0 −gY g v2

0 gY g tan ε v2
0

−gY g v2
0 g2

Y v
2
0 −g2

Y tan ε v2
0

gY g tan ε v2
0 −g2

Y tan ε v2
0 g2

Y tan2 ε v2
0 + 4µ2

B′ sec2ε


 .

(4.21)

Now, by rotating the Wµ
3 and Bµ fields as it is done in the SM,

(
Bµ

W3µ

)
=

(
cos θ0

W − sin θ0
W

sin θ0
W cos θ0

W

)(
Aµ

Cµ

)
, (4.22)

where

cos θ0
W ≡

g√
g2
Y + g2

, and sin θ0
W ≡

gY√
g2
Y + g2

, (4.23)

the photon decouples and we are left with the following mass matrix for the still

unphysical neutral gauge bosons Cµ and B′µ:

M2
0 =

1

4




0 0 0

0 (g2
Y + g2)v2

0

√
g2
Y + g2 gY tan ε v2

0

0
√
g2
Y + g2 gY tan ε v2

0 4µ2
B′ sec2 ε+ g2

Y tan2 ε v2
0


 . (4.24)

The mass matrix in Eq. 4.24 defines ξ,

Cµ = cos ξ Zµ + sin ξ ZBµ,

B′µ = − sin ξ Zµ + cos ξ ZBµ,
(4.25)
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Figure 4.2: Experimental
constraint on the kinetic
mixing, sin ε, as a function of
the ZB mass. We have used
the measurement of the Z
boson mass. Figure extracted
from Ref. [192].

i.e. the angle of the final rotation towards the physical basis, which is given by

tan 2ξ =
2gY

√
g2
Y + g2 tan ε v2

0

4µ2
B′ sec2 ε+ g2

Y tan2 ε v2
0 − (g2

Y + g2)v2
0

, (4.26)

with the following eigenvalues defining their masses:

M2
A = 0, (4.27)

M2
Z,ZB

=
1

8

(
g2
Y sec2 ε+ g2

)
v2

0 +
1

2
µ2
B′ sec2 ε

± 1

8

√(
4µ2

B′ sec2 ε+ (g2
Y sec2 ε+ g2)v2

0

)2 − 16(g2
Y + g2)µ2

B′v
2
0 sec2 ε.

As expected, in the limit ε→ 0 we recover the original masses in the Lagrangian for Z

and ZB .

We can now apply the high precision measurement of the Z boson mass to constrain

the kinetic mixing parameter, sin ε. The mass of the Z boson has been measured to

be [198]
∆MZ

MSM
Z

=
MZ −MSM

Z

MSM
Z

≤ ±2.3× 10−5, (4.28)

where the last number is the one standard deviation uncertainty in the experimentally

measured Z boson mass and it will constrain the shift induced by the kinetic mixing.

In Fig. 4.2 we show this constraint in the MZB vs sin ε plane; as it can be seen, the

kinetic mixing is very constrained and has to be very small. Recently, the CMS [199] and



4.1 Theoretical framework 111

the LHCb [200] collaborations found stronger constraints for this mixing parameter for

MZB ≤ 200 GeV by searching for the direct production of a new gauge boson. Given

its small impact in the phenomenology, we will neglect the kinetic mixing in the rest of

our study.

4.1.3 Towards a simplified model for dark matter

Starting from the model proposed by Duerr, Fileviez, and Wise (DFW) [169], whose

Lagrangian, from Eqs. 3.15 and 3.18, can be written as

LDFW = LSM −
gB
3

(
qLγµZ

µ
BqL + uRγµZ

µ
BuR + dRγµZ

µ
BdR

)

+ iΨL /DΨL + iΨR /DΨR + iχL /DχL + iχR /DχR + iηL /DηL + iηR /DηR

+ (DµSB)†(DµSB)− V (H,SB)− (y1ΨLHηR + y2ΨLiσ2H
∗χR + y3ΨRHηL

+ y4ΨRiσ2H
∗χL + λΨΨRΨLSB + ληηLηRSB + λχχLχRSB + h.c.), (4.29)

where LSM is the Lagrangian of the SM, and V (H,SB), previously discussed (see

Eq. 4.1), contains all the relevant terms for the scalar fields.

As addressed in Chapter 3, anomaly cancellation predicts the existence of new

colorless, electrically neutral and charged fermions. After SSB, the mass matrix of the

new neutral fermions is given by

M0 =
(

Ψ0
L χ0

L

)(MΨ M2

M4 Mχ

)(
Ψ0
R

χ0
R

)
+ h.c., (4.30)

whose mass terms are listed below,

MΨ =
λΨvB√

2
, Mχ =

λχvB√
2
, M2 =

y2v0√
2
, and M4 =

y3v0√
2
. (4.31)

For the charged fields, the mass matrix reads as

M± =
(

Ψ−L ηL

)(MΨ M1

M3 Mη

)(
Ψ−R
ηR

)
+ h.c., (4.32)
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where the entries of the mass matrices are given by

Mη = ληvB/
√

2, M1 = y1v0/
√

2, and M3 = y3v0/
√

2. (4.33)

In this theory there are two potential DM candidates: the neutral field living in the

doublet representation of SU(2)L, Ψ0, and the singlet χ. The pure SU(2)L DM

candidate couples directly to the Z boson and it is excluded by DD constraints (see

Appendix B from Ref. [191]). Hence, we will focus on the scenario where the DM

candidate is a singlet under the SM gauge group. In this limit, our DM is generally a

Dirac fermion 2

χ = χL + χR, (4.34)

with mass Mχ defined by the scale of symmetry breaking, i.e. the scale of baryon

number violation. We will also asume the limit of the Yukawa couplings y2 and y4

being very small because, only in this case, we can avoid large interactions between our

DM candidate and the Z gauge boson.

Excluding χ, the rest of the anomalons do not a�ect the contribution of the DM

candidate to the relic abundance because of their heavier masses. Therefore, we will not

consider them in the Lagrangian of the simplified model, although we will come back to

the electrically-charged anomalons when studying the production of gamma lines, since

they play a key role there. A very peculiar feature of this theory, in contrast with most

of the simplified models for DM in the literature, is that here both the DM candidate

and the new gauge boson get mass from the SSB of the local baryon number. Taking

into account Eqs. 4.17 and 4.31, both masses are related as follows:

Mχ =
λχ

3
√

2gB
MZB . (4.35)

It should be stressed that the DM candidate is connected to the SM through a vector

and a scalar portal, as Fig. 4.3 schematically shows. The vector portal is mediated by the

gauge coupling gB , while the scalar one is controlled by the degree of mixing between

the new and the SM Higgses, given by θB . The vector portal occurs through the kinetic

2As long as X1 6= −X2.
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Figure 4.3: DM portal to the SM through the new vector boson and the mixing between
the new scalar, responsible of the U(1)B breaking, and the SM Higgs.

term of the DM candidate:

LDFW ⊃ iχL /DχL + iχR /DχR

= −gBB2χL /ZBχL − gBB1χR /ZBχR

= −gBχγµ
[
B1 +B2

2
I + γ5

B1 −B2

2

]
χZµB = −gB

2
χ/ZB(B I− 3γ5)χ,

(4.36)

where B = B1 + B2 and the anomaly cancellation condition in Eq. 3.13 has been

applied. 3 We note that, in this case, the DM interacts vectorially and axially with the

new mediator, in contrast with the solely vectorial interaction of the ZB with the SM

quarks:

LDFW ⊃ iQL /DQL + idR /DdR + iuR /DuR = −gB
3
qiZ

µ
Bγµqi, ∀qi ⊂ SM. (4.37)

The scalar portal opens after SSB, when the DM interacts indirectly with the SM content

through the scalar mixing in the broken phase. The term responsible for the DM

mass −LDFW ⊃ λχ χLχR SB + h.c. connects both sectors via the mixing, as Fig. 4.3

illustrates. In the broken phase, one can write a simplified Lagrangian where only the

relevant interactions for the DM candidate are considered:

LsimDFW = −gB
3
qi /ZBqi−

gB
2
χ/ZB(B I−3γ5)χ−

(
λχ√

2
vBχLχR +

λχ√
2
χLχRsB + h.c.

)
.

(4.38)

3The baryon charges of the new sector in this model are given in Table 3.1 taking Xi ≡ Bi.
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Taking into account Eq. 4.9, the mass of the DM given in Eq. 4.31 and the mass of the

ZB from Eq. 4.17, the above Lagrangian can be rewritten as

LsimDFW =− gB
3
qiZ

µ
Bγµqi −

gB
2
χZµBγµ(B I− 3γ5)χ+Mχχχ

+ 3gB
Mχ

MZB

(cos θBh2 + sin θBh1)χχ.
(4.39)

where χ is a Dirac field (see Eq. 4.34). Notice that in total there are six free parameters

characterizing this theory:

Mχ, MZB , Mh2 , θB, B, and gB. (4.40)

Notice also that in the specific case where B = 0, i.e. B1 = −B2, the baryon charges

shown in Table 3.1 are fixed, i.e. B1 = −3/2 and B2 = 3/2. Furthermore, the neutral

nature of the DM allows for the following extra Majorana terms in the Lagrangian,

LDFW ⊃ −λχL χTL CχL S∗B − λχR χTR CχR SB + h.c.. (4.41)

After diagonalizing the corresponding mass matrix, assuming without loss of generality

that λχL � λχR , λχ, we would get a Majorana DM candidate χ = χL + (χL)c. In this

context, we gain the reduction of one d.o.f. (since B is fixed to zero), but we pay the

price of a new mixing angle in the χ masses.

On the other hand, let us start with the alternative realistic model for local baryon

number proposed by Fileviez, Ohmer and Patel (FOP) [171],

LFOP = LSM −
gB
3

(
qLγµZ

µ
BqL + uRγµZ

µ
BuR + dRγµZ

µ
BdR

)

+(DµSB)†(DµSB)− V (H,SB) + iΨR /DΨR + iΨL /DΨL + iTr{ΣL /DΣL}+ iχL /DχL

−y1ΨRHχL − y2H
†ΨT

LCχL − y3H
†ΣT

LCΨL − y4ΨRΣLH − λΨΨRΨLS
∗
B

−λχχTLCχLSB − λΣTr{ΣT
LCΣL}SB + h.c., (4.42)

where DµχL = ∂µχL − i(3gB/2)ZµBχL and DµΣL = ∂µΣL + ig[σa/2Wµ
a ,ΣL] −

igB
3
2Z

µ
BΣL. It is remarkable that this theory only requires four new representations

for anomaly cancellation whose baryonic charges are totally fixed. In this case, the DM
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candidate is genuinely Majorana,

χ = χL + (χL)c, (4.43)

i.e. χ = χc. The scalar boson needed to break the U(1)B is exactly the same as in

the previous model, SB ∼ (1, 1, 0, 3), so it is the SSB mechanism through the scalar

potential. In this context, the anomalons get mass after SSB in the following way:

LFOP ⊃ −1

2
~ϕTCM0 ~ϕ

T −
(

Σ+
R Ψ+

R

)
M±

(
Σ+
L Ψ+

L

)T
+ h.c., (4.44)

where ~ϕ ≡
(

Ψ0
L (Ψ0c)L Σ0

L χL

)
, and the mass matrices are given by

M0 =




0 1√
2
λΨvB −1

2y3v0
1√
2
y2v0

1√
2
λΨvB 0 −1

2y4v0
1√
2
y1v0

−1
2y3v0 −1

2y4v0

√
2λΣvB 0

1√
2
y2v0

1√
2
y1v0 0

√
2λχvB



, and M± =




√
2λΣvB y4

v0

2

y3
v0

2
λΨ

vB√
2


 .

(4.45)

In the following we will adopt the limit of very small Yukawa couplings yi → 0 under

the same motivation from the previous scenario.

Notice that the Majorana mass term in the Lagrangian,

LFOP ⊃− λχ χTLCχLSB + h.c. = −λχ χT
LCχLSB − λ∗χ χ†LC†(χ†L)TS∗B, (4.46)

can be rewritten, by using −C(γµ)T = γµC (see Appendix A), as

LFOP ⊃ −λχ
(
χTLCχLSB + (χc)TLC(χc)LS

∗
B

)

SSB→ λχ
(
vBχ

TCχ+ h1 sin θBχ
TCχ+ h2 cos θBχ

TCχ
)
/
√

2,
(4.47)

where χ is the Majorana DM (see Eq. 4.43) and in the last row from Eq. 4.47, we have

written that Lagrangian in the broken phase. Now, looking at the kinetic term of the χL
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field, one can also rewrite it as a function of the 4-component Majorana field as follows,

LFOP ⊃ i χL /DχL = − i
2

(
−χ /DPLχ+ (χc) /DPRχ

c
)

= − i
2

(
χ /Dγ5PLχ+ (χc) /Dγ5PRχ

c
)

= − i
2

(
χL /Dγ5χL + (χL)c /Dγ5(χL)c

)
= − i

2
χ /Dγ5χ,

(4.48)

where we have used that γ5PL = −PL and γ5PR = PR, and the relation χc γµPRχc =

−χγµPLχ (see Appendix A).

Taking into account the relevant d.o.f. for the study of the DM, the Lagrangian of

the simplified model can be identified as

LsimFOP⊃
3

4
gBχ̄ /ZBγ

5χ− gB
3
q̄ /ZBq +

Mχ

2vB
(sin θBh1 − cos θBh2)χ̄χ− 1

2
Mχχ̄χ,(4.49)

in the FOP case, where the DM mass can be read from Eq. 4.47,

Mχ =
√

2λχvB. (4.50)

It is remarkable that this realization of local baryon number contains only five free

parameters this time,

Mχ, MZB , Mh2 , θB, and gB. (4.51)

In both DFW and FOP models, sin θB . 0.3 is bounded by collider constraints as

Eq. 4.11 states, and the gauge coupling is bounded by perturbativity as follows,

gB <

√
2π

3
, (4.52)

which comes from the largest gauge interaction in this theory:

(DµSB)†(DµSB) ⊃ −9

2
g2
Bs

2
BZ

µ
BZBµ. (4.53)
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Finally, we should emphasize again the connection between the DM candidate and the

leptophobic gauge boson. Because of the perturbative bound on the Yukawa coupling

λχ ≤
√

2π,
MZB

Mχ
≥ 3gB

2
√
π
. (4.54)

The above condition has strong implications in the theory because, as we will see,

together with the cosmological bound on the relic density and the perturbative bound on

the gauge coupling, they impose an upper bound to the scale of baryon number violation

at the few-TeV. Having such small number of free parameters to control the theory and

knowing how they are related allows us to study in great detail the phenomenology of

the DM candidate. We note that the simplified Lagrangian from Eq. 4.49 is also valid for

the Majorana limit of the DFW model up to a couple of small di�erences:

• In this context, the DM candidate has a baryonic charge nχB = −3/2, while in

the Majorana limit of the previous scenario nχB = 3/2. This has only a small

implication in the annihilation of the DM to quarks: in the DFW model the

diagrams interfere destructively while in the FOP model they add constructively.

• Apart from assuming small Yukawa couplings y1, y2, y3 and y4 to avoid large

mixings between the DM candidate and the rest of the anomalons, in the Majorana

limit of the DFW model one has to further assume λχ � λχL < λχR for making

use of the simplified Lagrangian in Eq. 4.49.

In the following, we will study the properties of a Majorana DM candidate based

on the simplified Lagrangian from Eq. 4.49. This scenario will be compared with the

predictions in the Dirac case, being the main di�erence the freedom in the choice of

the total baryon number B. The reasons why we opted for the Majorana nature of the

DM, apart from being more minimal in the sense of number of free parameters and

representations describing the theory where it is embedded, will become clear when

going through the phenomenology of the DM.
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4.2 Phenomenological and cosmological bounds for DM

In this section we present a numerical study of the properties of the DM candidate

and investigate its viability by contrasting the possible parameter space of the theory

based on local baryon number with the existing experimental constraints.

4.2.1 Relic density

As derived in Chapter 2, the contribution to the relic abundance of a certain field

is inversely proportional to its annihilation cross-sections. Having a complete theory as

starting point, i.e. knowing all the Feynman rules of the model, allows us to investigate

in detail the DM annihilation channels of the theory. In this context, the DM can

annihilate as follows:

χ

χ

ZB

ZB

=

χ

χ

ZB

ZB

+

χ

χ

ZB

ZB

+ hi

χ

χ

ZB

ZB

(4.55)

χ

χ

q

q̄

=
hi

χ

χ

q̄

q

+ ZB

χ

χ

q̄

q

(4.56)

χ

χ

hi

hj

=

χ

χ

hi

hj

+

χ

χ

hi

hj

+ hk

χ

χ

hi

hj

(4.57)

χ

χ

ZB

hi

= ZB

χ

χ

ZB

hi

+

χ

χ

ZB

hi

+

χ

χ

ZB

hi

(4.58)

h

χ

χ

W+, Z

W−, Z (4.59)
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i.e.

χχ→ q̄q, ZBZB, ZBh1, ZBh2, h1h1, h1h2, h2h2, WW, ZZ.

Notice that the channels ZBh1, h1h1, h1h2, WW and ZZ are suppressed by the

mixing angle θB . The vertices colored in red denote an axial interaction, which is a

consequence of having a Majorana DM candidate. See Sec. 2.1.1.4 from Chapter 2 for

more details on their implication on velocity suppressed amplitudes.

For the numerical study of the relic abundance we have implemented the model in

LanHEP 3.2 [201] and performed the calculation of Ωχh
2 using MicrOMEGAs 5.0.6

[73]. Moreover, we performed an independent calculation in Mathematica.

Besides the cosmological constraint on the measured relic abundance by the Planck

satellite Ωχh
2 = 0.1197 ± 0.0022 [202], there are other bounds that must be taken

into account. The ZB mediator couples directly to quarks and would appear as a

resonance in dijet searches at the LHC. In our work, we apply the bounds from CMS

and ATLAS, discussed in Section 3.4 from Chapter 3 and present the excluded regions

in the upcoming figures in purple bands. These collider bounds, shown in Fig. 3.5 from

that chapter, have a strong dependence on the coupling gB and disappear for gB ≤ 0.1.

In the upcoming figures, the region shaded in red represents the parameter space ruled

out by the perturbative bound on the Yukawa coupling, λχ <
√

2π. Similarly, in the

following figures, the yellow region will show the parameter space ruled out by the

perturbative bound on the scalar quartic coupling, λB < 4π. In order to proceed with

the numerical analysis, the mass of the second Higgs will be fixed to Mh2 = 500 GeV

and the mixing angle to zero, i.e. θB = 0. 4 We also impose the perturbative bound on

the gauge coupling previously discussed, gB <
√

2π/3 (see Eq. 4.52).

In Fig. 4.4 we show the allowed parameter space by the cosmological, theoretical

and collider bounds for di�erent values of the gauge coupling gB . In order to develop

a better understanding of our results, we show in Fig. 4.5 explicitly which channel from

4The choice of zero scalar mixing can be motivated as follows. In the SM, the EW phase transition
occurs around TEW ≈ 160 GeV. For masses above the TeV scale (which is the region preferred after
considering LHC bounds), we find the DM freeze-out temperature to be xf ≈ 26− 29. Consequently, for
Mχ & 5 TeV the freeze-out temperature is above the EW phase transition, and hence, at the time when
DM freezes out the Higgs field has zero vacuum expectation value and there is no scalar mixing. It is
important to mention that the bounds from the relic density constraint are very similar in the case where
one considers a non-zero mixing angle.
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Figure 4.4: Parameter space allowed by the relic density constraint, LHC bounds
and perturbative bounds for four di�erent scenarios, gB = 0.1 (top-left), gB = 0.3
(top-right), gB = 0.5 (bottom-left) and gB =

√
2π/3 (bottom-right). We takeMh2 = 500

GeV and no mixing angle. The region in blue is excluded by Ωχh
2 ≤ 0.12 and the

region in red (yellow) is excluded by the perturbative bound on the Yukawa coupling λχ
(scalar coupling λB ). The horizontal purple bands are excluded by the LHC bounds on
the leptophobic gauge boson mass. Figure extracted from Ref. [203]

Diagrams 4.55-4.59 dominates the viable parameter space shown in Fig. 4.4. We color

each region depending on the dominant annihilation channel; namely, the one that

gives the largest contribution to the relic abundance at freeze-out. The region in dark

blue corresponds to the area in parameter space where annihilation into quarks is the

dominant channel; this happens near the resonance Mχ ≈ MZB/2, to which we will

refer as resonance region. The rest of the allowed parameter space, as the shape of

these figures show, will be called plateau. In there, the region in light blue is where

the annihilation into ZBZB is the dominant one. This occurs due to the resonance

χχ → h∗2 → ZBZB when Mχ ≈ Mh2/2 ≈ 250 GeV. This resonant behavior can be
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easily appreciated in the upper left panels in Figs. 4.4 and 4.5. In there, one can see that

such resonance is cut close to the diagonal Mχ ≈ MZB , because the ZBZB channel

becomes kinematically closed above. The region in which the h2 h2 annihilation channel
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Figure 4.5: Regions in the Mχ versus MZB plane that satisfy the relic density constraint
Ωχh

2 ≤ 0.12, the colors indicate which annihilation channel is the dominant one. We
fix Mh2 = 500 GeV and θB = 0. The horizontal purple bands are excluded by dijet
searches at the LHC. The region in red (yellow) is excluded by the perturbative bound
on the Yukawa coupling λχ (scalar quartic coupling λB ). Figure extracted from Ref. [203].

is the dominant one is colored in dark green. The latter is velocity-suppressed since at

the freeze-out, vDM ≈ 0.3 (see Eq. 2.151); consequently, this channel is dominant only in

a small region in the parameter space. Once the ZBh2 channel becomes kinematically

open, it becomes the dominant channel, as illustrated by the region in light green.
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As commented at the end of the previous section (see Eq. 4.52), the perturbative

limit on the gauge coupling gB =
√

2π/3 is responsible for the existence of an absolute

upper bound on the symmetry breaking scale, since it constitutes the scenario where

the largest masses for the DM and the ZB can be achieved in consistency with the

cosmological and perturbative bounds on the Yukawa couplings. For Mh2 = 500 GeV

and θB = 0, the upper bound is given by

MZB ≤ 28 TeV. (4.60)

As it can be appreciated, from Figures 4.4 and 4.5, this upper bound on the gauge boson

mass, and therefore on the baryon number violation scale, is defined by the annihilation

into quarks (resonant region), while the upper bound on the DM mass, Mχ ≤ 34 TeV,

is determined by the ZBh2 channel. This bound for MZB is an extreme case in the

sense that assumes the largest possible gauge coupling; in turn, as these figures show,

the lower the gauge coupling the shorter the resonant region. On the other hand, as

Eq. 4.54 shows, the smaller the gauge coupling, the stronger the bound on the ratio

between the MZB and Mχ, so that the upper bound on the ZB given by the plateau

is lowered too. Hence the theory is expected to live at most around the 20 TeV scale.

This striking feature tells us that there is hope to test or rule out this theory in the near

future.

The reader may wonder how the results would be a�ected if the DM candidate was

a Dirac field. In that case, one has an extra free parameter in the theory, entering

in the cross-section of the annihilation channel σ(χ̄χ → ZBZB) ∝ B4. However,

we note that the parameter B cannot be arbitrarily large, otherwise the coupling L ⊃
−gB/2Bχ̄ZµBγµχ would spoil perturbativity. Therefore, the behaviour of the parameter

space satisfying the relic density bound is analogous to the Majorana case up to some

di�erences: since Dirac DM allows for a vector coupling with the leptophobic gauge

boson, the annihilation into quarks do not su�er from velocity suppression. Hence,

depending on the B choice, the resonant region could determine the upper bound on

the baryon number violating scale, although it will still be around O(10) TeV. In Fig. 4.6

we show the branching ratio for the di�erent channels in the zero-mixing case with
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respect to the total thermal averaged cross-section, assuming xf = 24 in the context of

a Dirac (left panel) and Majorana (right panel) DM candidate.
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Figure 4.6: Branching ratios for the di�erent DM annihilation channels when the mixing
angle between the Higgses is θB = 0. For illustration, we use the following values for
the input parameters: MZB = 3 TeV, Mh2 = 1 TeV, gB = 0.5, xf = 24, and B = −1.
On the left panel, Dirac DM has been assumed, while in the right panel, the DM is
Majorana. Figure in the left panel extracted from Ref. [191].

4.2.2 Direct Detection

Our DM candidate can interact with quarks in the nucleon (N ) via exchange of either

a leptophobic gauge boson or one of the physical scalars through the Higgs mixing, as

shown in the diagrams below. In those, the red, blue and green dots represent axial,

vector and mixing suppressed vertices, respectively.

ZB

χ χ

N N

+ h1

χ χ

N N

+ h2

χ χ

N N

(4.61)

These processes with two di�erent mediators do not interfere with each other so that

the spin-independent cross-section between χ and a nucleon can be written as σTOTχN =
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σχN (ZB) + σχN (hi), where

σSIχN (ZB) =
27

8π

g4
BM

2
N

M4
ZB

v2, (4.62)

σSIχN (hi) =
72GF√

24π
sin2 θB cos2 θBM

4
N

g2
BM

2
χ

M2
ZB

(
1

M2
h1

− 1

M2
h2

)2

f2
N , (4.63)

v is the DM velocity, MN refers to the nucleon mass, GF is the Fermi constant and

for the e�ective Higgs-nucleon-nucleon coupling we take fN = 0.3 [204]. We note that

the above expressions are independent of the nucleon matrix elements because protons

and neutrons have a definite baryon number. This allows us to obtain clean predictions

for the elastic scattering since we do not rely on any non-perturbative calculation.

The axial coupling between χ and ZB leads to velocity suppression of the

interaction mediated by ZB , which can be factorized out from that cross-section in

the following way,

σTOTχN = σχN (hi) + σ0χN (ZB)v2. (4.64)

As commented in Chapter 2, DD experiments assume that the leading term in the

cross-section is velocity independent, i.e. σSI = σ0
SI + O(v2). Then, according to

Eq. 2.57 from Chapter 2, the di�erential rate would be given by

dR

dE
=

ρ0

MχMN
σ0
SI

∫ vmax

vmin

vf(v)dv

︸ ︷︷ ︸
v̄

<
dR

dE

DDexp

. (4.65)

In order to apply these bounds also to the velocity suppressed cross-section, we should

take into account that for the scattering mediated by the ZB , σSI = v2σ0
SI, so that the

di�erential rate in this case reads as,

dR

dE
=

ρ0

MχMN
σ0
SI

∫ vmax

vmin

v3f(v)dv

︸ ︷︷ ︸
v̄3

(4.66)

Therefore, we proceed as follows,

σχN (hi) + σ0
χN (ZB)v2

e� ≤ σ
DDexp
χN , (4.67)
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where σ
DDexp
χN is the upper bound on the scattering cross-section given by the DD

experiments, and the e�ective velocity is given by the ratio v3/v, where the averaged

velocity is the velocity of the DM convoluted with a Maxwell-Boltzmann distribution.

We find that ve� ≈ 0.001 c.

102 103 104

M� [GeV]

10�51

10�50

10�49

10�48

10�47

10�46

10�45

10�44

�
S
I

[c
m

2 ]

Xe 1T

Xe nT

⌫

✓B = 0

gB = 0.1 gB = 0.3 gB = 0.5 gB =
p

2⇡
3

102 103 104

M� [GeV]

10�49

10�48

10�47

10�46

10�45

10�44

10�43

10�42

�
S
I

[c
m

2 ] Xe 1T

Xe nT

⌫

✓B = 0.3sin ✓B

Figure 4.7: Predictions for the DD spin-independent cross-section as a function of the
DM mass. In the left (right) panel we present the predictions for θB = 0 (sin θB = 0.3).
All points agree with the measured relic abundance by the Planck satellite Ωχh

2 =
0.1197± 0.0022 [202] and satisfy constraints from the LHC. The solid black lines show
current experimental bounds from Xenon-1T [205, 206], the dashed black line shows the
projected sensitivity for Xenon-nT [81] and the dashed gray line shows the coherent
neutrino scattering limit [83]. Figure extracted from Ref. [203].

In Fig. 4.7 we present the predictions for the spin-independent cross-section for

di�erent values of gB . To select the points displayed there we proceed as follows. First,

we select those points that give the measured relic abundance of Ωχh
2 = 0.1197 ±

0.0022. Then, we remove those points that do not satisfy LHC and/or perturbativity

bounds. This is the reason behind the discontinuities in the scan shown. The left

panel shows the results for θB = 0 and, as expected, due to the velocity suppression

the points with DM mass above the TeV scale lie below the neutrino floor and will

escape detection from future experiments. In contrast, for the maximal mixing allowed,

sin θB = 0.3, all the points that saturate the relic density are ruled out by DD bounds

except for those that lie close to the h2 resonance (Mχ ≈Mh2/2). The later is shown in
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the right panel in Fig. 4.7. For intermediate values of the mixing angle, the predictions

lie in between these two regions, and thus, some of these points will be probed by

future DD experiments, such as Xenon-nT [81].

To complete the discussion, let us refer to the predictions for a Dirac DM candidate in

the context of the simplified Lagrangian shown in Eq. 4.39, where the spin-independent

elastic nucleon-DM cross section is given by

σSIχN =
g2
BM

2
NM

2
χ

4πM4
h1
M4
h2
M4
ZB
v2

0(Mχ +MN )2

×
[
2BgBv0M

2
h1
M2
h2

+ 3fNMχMNMZB sin(2θB)(M2
h1
−M2

h2
)
]2
.

(4.68)

As the above equation reflects, there is no velocity suppression in this case, and therefore

one expects the DD bounds to have a stronger impact in the available parameter

space, being therefore more damaged that the Majorana case. This is an advantage

for considering Majorana rather than Dirac DM.

4.2.3 Gamma Lines

Apart from DD, as discussed in Sec. 2.1.2 from Chapter 2, there are indirect ways

to detect DM. In this section, we will discuss the prediction and observation of gamma

lines. We will argue that the extra fermions required to make the theory anomaly-free

also lead to DM annihilation into photons. Consequently, the photon spectrum will

contain features that could be observed in future telescopes.

In order to predict the cross-sections for χχ→ γγ, γZ, γhi,

f+

χ γ

χ γ, Z

+ f+

χ γ

χ hi

. (4.69)

we need to study the full spectrum of the anomaly-free gauge theories based on U(1)B .

These processes are quantum mechanical and can be predicted only after anomaly

cancellation is understood, i.e. their predictions are model dependent. Since we have
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two beautiful and complete theories behind our DM study, we will now investigate the

gamma line predictions in the context of these models: DFW [169] and FOP [171].

Gamma lines are typically suppressed with respect to other processes contributing

to the continuum of radiated photons, such as final state radiation (FSR) processes,

making it hard to observe them. However, it is possible to have scenarios in which

the processes that contribute to the continuum close to the gamma lines are highly

suppressed so that they become visible. In Sec. 2.1.2 from Chapter 2 we concluded

that in order to distinguish the gamma line from the continuum spectrum, the theory

must contain: (a) a Majorana DM candidate, (b) new electrically charged fields with

a non-zero axial coupling to the new mediator. Both conditions are satisfied in the

context of local baryon gauge theories! Consequently, there is hope to observe the

striking phenomenological signal of gamma lines. 5

4.2.3.1 Predictions for Gamma Lines

The relevant interactions for the DM annihilation into gamma lines are encoded in

the following Lagrangian,

L ⊃ −gBf
(
nfV γ

µ + nfAγ
µγ5
)
fZBµ −

e

sin θW cos θW
f
(
gfV γ

µ + gfAγ
µγ5

)
fZµ,

(4.70)

where f refers to the electrically-charged fermions entering in the loops from

Diagrams 4.69, where the three di�erent possibilities to generate gamma lines are

represented. As discussed in Chapter 2, the annihilation channel to hiγ is velocity

suppressed, so that we will neglect it in the following. On the other hand, the

cross-section for the gamma lines coming from χχ → γγ and χχ → γZ can be

large. Those are listed, together with the suppressed χχ → γhi, in Appendix B. With

this information at hand, let us study the gamma line production in the context of the

two simplest models for local baryon number:

• Model DFW.

In this context, taking into account that electrically-charged fermions with axial

couplings to the ZB are needed, only the charged anomalons Ψ− and η−, defined

5This is another argument for considering Majorana DM versus Dirac DM.
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as Dirac fields in the broken phase:

Ψ− ≡ Ψ−L + Ψ−R, and η− ≡ η−L + η−R (4.71)

will contribute to the DM annihilation into gamma lines:

ZB

γ

γ,Z

= η−
η−

η−
+ Ψ−

Ψ−

Ψ−
. (4.72)

The relevant Lagrangian in this case is given by

LDFW ⊃ eΨ− /AΨ− + e η− /Aη− +
e

tan 2θW
Ψ− /ZΨ−

−e tan θW η− /Zη
− − 3

2
gBΨ− /ZBγ5Ψ− +

3

2
gBη− /ZBγ5η

−, (4.73)

from which one can read the couplings to the ZB gauge boson: nΨ−
V = 0, nΨ−

A =

3/2, nη
−

V = 0 and nη
−

A = −3/2, and the couplings to the Z boson: gΨ−
V = −1

2 ,

gΨ−
A = 0, gη

−

V = sin2 θW and gη
−

A = 0. Note that, in this case, the anomalons

only interact with the Z boson vectorially, so that only the vertex combination in

Diag. 4.72 survives. In the limit where y1 = y2 = y3 = y4 = 0, the masses for

the new electrically-charged fermions, as stated in Eqs. 4.32 and 4.33, read as

MΨ− =
λΨMZB

3
√

2gB
, and Mη− =

ληMZB

3
√

2gB
. (4.74)

The upper bound on MZB derived from relic density constraints defines a global

upper bound for the new charged fermion masses since the Yukawa couplings λΨ

and λη are bounded by perturbativity. Moreover, the perturbative bounds define

an upper bound for each mass of the new mediator. Hence, for a given MZB and



4.2 Phenomenological and cosmological bounds for DM 129

102 103 104

Mχ [GeV]

10−36

10−34

10−32

10−30

10−28

10−26
σ
v

(χ
χ
→

γ
γ

)
[c

m
3
/s

]

gB = 0.1 gB = 0.3 gB = 0.5 gB =
√

2π
3

102 103 104

Mχ [GeV]

10−34

10−32

10−30

10−28

10−26

σ
v

(χ
χ
→

Z
γ

)
[c

m
3
/s

]
CTA Fermi−LAT H.E.S.S.

Figure 4.8: Predictions for the DM annihilation into two photons (left panel) and a
photon and a Z boson (right panel) in the context of Model DFW. We set Mh2 = 500
GeV and θB = 0. The value of MZB is chosen such that every point satisfies Ωχh

2 =
0.1197 ± 0.0022, di�erent colors correspond to di�erent values of the gauge coupling
gB . All points shown pass LHC and direct detection constraints. The regions colored
in yellow are purple show the excluded parameter space by the Fermi-LAT [87, 88] and
H.E.S.S. [207], respectively. The dashed brown line shows the projected sensitivity from
the CTA collaboration [208]. Figure extracted from Ref. [203].

Mχ, the masses of the anomalons are constrained to be in the following range,

Mχ < Mf+ ≤ 2
√
π

3gB
MZB , (4.75)

where f+ symbolizes any of the charged new fermions; the lower bound comes

from ensuring the stability of the DM candidate whereas the upper bound comes

from perturbativity on the Yukawa couplings. We note that the DM candidate and

the anomalons satisfy the same perturbative bound.

In Fig. 4.8 we present the predictions for the DM annihilation into gamma lines

for di�erent choices of gB in the context of DFW model for the two relevant

annihilation channels. All the points shown saturate the relic abundance, and

satisfy collider and DD constraints. From Eqs. (B.2) and (B.4) in Appendix B we
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can see that when the charged fermions have the same mass, the cross-section

vanishes. We have taken the maximum mass splitting by choosing MΨ− =

1.3Mχ (in order to ensure the stability of the DM candidate), and Mη− =

2
√
πMZB/3gB , i.e. the largest value allowed by perturbativity. Additionally,

for each point we check that Eq. (4.75) is satisfied.

• Model FOP.

In this context, the relevant Lagrangian for the gamma lines reads as

LFOP ⊃ −eΣ+ /AΣ+ − eΨ+ /AΨ+ − e

tan θW
Σ+ /ZΣ+ − e

tan 2θW
Ψ+ /ZΨ+

+
3

2
gBΨ+ /ZBγ5Ψ+ − 3

2
gBΣ+ /ZBγ5Σ+, (4.76)

where Σ+ and Ψ+ correspond to the Dirac fields contributing to DM annihilation

into gamma lines, defined as

Σ+ ≡ Σ+
L + (Σ−L )c, and Ψ+ ≡ Ψ+

L + Ψ+
R, (4.77)

ZB

γ

γ,Z

= Σ+

Σ+

Σ+

+ Ψ+

Ψ+

Ψ+

(4.78)

From the above Lagrangian, one can identify the couplings to the ZB boson:

nΨ+

V = 0, nΨ+

A = −3
2 , n

Σ+

V = 0, nΣ+

A = 3
2 , and the couplings to the Z boson:

gΨ+

V = 1
2 , g

Ψ+

A = 0, gΣ+

V = cos2 θW and gΣ+

A = 0. Also in this case the Z boson

has a purely vector interaction with the charged anomalons (see Diag. 4.78). In

this scenario, in the limit where the couplings y1 = y2 = y3 = y4 = 0 the masses

for the new electrically-charged fermions, according to Eq. 4.45, read as

MΨ+ =
λ1MZB

3
√

2gB
, and MΣ+ =

√
2λΣMZB

3gB
. (4.79)
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Figure 4.9: Predictions for the DM annihilation into two photons (left panel) and a
photon and a Z boson (right panel) in the context of FOP model. We set Mh2 = 500
GeV and θB = 0. The value of MZB is chosen such that every point satisfies Ωχh

2 =
0.1197 ± 0.0022, di�erent colors correspond to di�erent values of the gauge coupling
gB . All points shown pass LHC and direct detection constraints. The regions colored
in yellow are purple show the excluded parameter space by the Fermi-LAT [87, 88] and
H.E.S.S. [207], respectively. The dashed brown line shows the projected sensitivity from
the CTA collaboration [208]. Figure extracted from Ref. [203].

In here there is also a global upper bound on the charged fermion masses defined

by the upper bound on the MZB , the gauge coupling gB , and the perturbative

bounds of the Yukawa couplings. Therefore, as in the previous scenario, the

masses of the anomalons must be in the range defined by Eq. (4.75).

In Fig. 4.9 we present our predictions for the DM annihilation into gamma lines

for di�erent choices of gB in the context of FOP model. As in DFW model, the

points satisfy Ωχh
2 = 0.1197 ± 0.0022 and the masses of the anomalons are

chosen to maximize the splitting among them: MΨ+ = 1.3Mχ (for ensuring the

stability of the DM) and MΣ+ = 2
√
πMZB/3gB .

Regarding the gamma lines, the only di�erence between both models is the coupling

of one of the extra fields to the Z boson. Consequently, for the same choice of masses,
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the γγ line (left panel from Figs. 4.8 and 4.9) is the same in the context of both models,

but there are small di�erences for the γZ line (right panels from Figs. 4.8 and 4.9). As

it can be appreciated, for the DFW model the predictions are slightly weaker than for

the FOP model (due to the fact that η−η−Z coupling is suppressed by tan2 θW with

respect to the Σ+Σ+Z coupling, as shown in the Lagrangians from Eqs. 4.76 and 4.73).

The signals displayed in Figs. 4.8 and 4.9 are, unfortunately, in a region that remains

a few orders of magnitude below from the current experimental sensitivity. However,

we would like to remark that these two U(1)B models are two of the most motivated

SM extensions that predict axial interactions between electrically-charged fermions with

the new mediator that allow the predictions for the DM annihilation into gamma lines,

although being small, to be di�erent from zero. Furthermore, as discussed in Chapter 2,

the fact that they predict a Majorana DM is crucial regarding the visibility of the gamma

lines. This is because, from Eq. 2.74, one can see that the FSR process are either velocity

or mass (Mq/MZB ) suppressed in that context. Therefore, in this case, one can hope to

distinguish the gamma lines from the continuum spectrum and that future telescopes

test or rule out these predictions.

4.2.3.2 Gamma Line Spectra

The prediction for the gamma-ray flux is discussed in Sec. 2.1.2 from Chapter 2.

Here we apply it to our results in the context of the DFW and the FOP models for local

baryon number.

In the upper panels of Fig. 4.10 we present our results for the di�erential spectrum of

DM annihilation into gamma rays for parameters satisfying the correct relic abundance

in Model DFW and di�erent values of the energy resolution ξ = {0.01, 0.05, 0.1}. As
it can be appreciated, the gamma lines can be easily distinguished from the continuum

spectrum because the FSR processes are highly suppressed. However, for gamma ray

telescopes with energy resolution larger than 5% it is impossible to distinguish the

gamma lines between the χχ→ γγ and χχ→ γZ annihilation channels. In the lower

panels of Fig. 4.10 we also show the predictions for the di�erential spectrum of the DM

annihilation into gamma rays for di�erent values saturating the relic abundance in two

di�erent scenarios in the context of the FOP model.
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Figure 4.10: Di�erential spectrum of the DM annihilation into gamma rays for two
di�erent scenarios that satisfy Ωχh

2 = 0.1197 ± 0.0022 [202] in DFW model (upper
panels) and FOP model (lower panels). We set Mh2 = 500 GeV and θB = 0. Lines with
di�erent colors correspond to di�erent energy resolutions ξ = {0.01, 0.05, 0.1}. Figure
extracted from Ref. [203].
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4.3 LHC phenomenology of U(1)B

Nowadays, thanks to the great e�ort of the experimental collaborations at the LHC

we know well the properties of the SM Higgs and the existing experimental constraints

on its decays and production mechanisms. See for instance Ref. [198] for a detailed

discussion. The Higgs boson, however, could open a door to a NP sector. The LHC could

discover new decays and/or production channels for the Higgs boson and, combining

di�erent searches, we could have access to new interactions and discover new particles

with masses below the TeV scale. 6

In this section, we investigate the e�ect of the existence of a new interaction with a

leptophobic gauge boson in the SM Higgs phenomenology, i.e. possible new decays and

production mechanisms. In this case, as discussed in Chapter 3, the leptophobic gauge

boson can be light with mass below the EW scale in agreement with all experimental

bounds and without the necessity to assume a tiny gauge coupling.

4.3.1 Leptophobic Gauge Boson at the LHC

Let us start presenting the decay rate of the leptophobic mediator in the scenario

where it is the lightest particle from the U(1)B sector. The partial decay width of the

leptophobic gauge boson ZB with mass MZB is given by

Γ(ZB → q̄q) =
g2
BMZB

36π

√
1−

4M2
q

M2
ZB

(
1 +

2M2
q

M2
ZB

)
, (4.80)

where Mq is the mass of a given quark. In the left panel in Fig. 4.11 we show the decay

width of ZB for di�erent values of the gauge coupling gB as a function of its mass. In

red, we show the regions that are ruled out by the collider bounds shown in Fig. 3.5 in

Chapter 3. The decay width of the ZB allows us to infer which are the permitted values

for the decay width of the leptophobic gauge boson. Moreover, with this information

of the decay width at hand, we can predict the di�erent cross-sections relevant for

di�erent collider searches. In the right panel in Fig. 4.11, we present contours of ΓZB in

6See Ref. [209] for a report on future studies at the LHC.
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Figure 4.11: Left panel: Decay width of the ZB boson as a function of its mass. The
regions highlighted in red are excluded by searches at the LHC. To the right of the
dashed vertical line the decay channel ZB → tt̄ is open. Right panel: Contour lines
for the decay width of the ZB boson in the gB vs MZB plane. Figure extracted from
Ref. [192].

the gB-MZB plane. From this figure, we conclude that a ΓZB of order GeV is already

mostly excluded.

As Fig. 3.5 from Chapter 3 shows, there is hope to produce this gauge boson at

the LHC with large cross-sections, what makes it possible to study its properties. The

hadronic production cross-section reads as

σ(pp→ XY )(s) =

∫ 1

τ0

dτ
dLppqq̄
dτ

σ(qq̄ → XY )(ŝ), (4.81)

where σ(qq̄ → XY )(ŝ) corresponds to the partonic cross-section and

dLppqq̄
dτ

=

∫ 1

τ

dx

x

[
fq/p (x, µ) fq̄/p

(τ
x
, µ
)

+ fq/p

(τ
x
, µ
)
fq̄/p (x, µ)

]
. (4.82)

In the above expressions, the parameter τ = ŝ/s, where ŝ is the partonic center-of-mass

energy squared, s is the hadronic center-of-mass energy squared, τ0 = (MX +MY )2/s

is the production threshold, and µ is the factorization scale. Let us study the di�erent

partonic cross-sections where the ZB can contribute:
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• Di-quark production,

q̄q → Z∗B → q̄q,
Z∗B

q̄

q

q̄

q

(4.83)

whose cross-section through the leptophobic gauge boson is given by

σ(q̄q → Z∗B → q̄q)(ŝ) =
g4
B

√
ŝ− 4M2

q

972π
√
ŝ

(
2M2

q + ŝ
)

[
(ŝ−M2

ZB
)2 +M2

ZB
Γ2
ZB

] , (4.84)

where we have neglected the quark masses in the initial state.

• Di-boson production, which takes place through the following channels:

q ZB

q̄ Z ,ZB ,W±

q +

q ZB

q̄ Z ,ZB ,W±

q .(4.85)

Taking the quarks to be massless, the cross-section for the process qq̄ → ZBV

where V =Z, W±, ZB is given by

σ(qq̄ → ZBV )(s) =
n g2

B

(
C2
V + C2

A

)

108πs2

[
−2
√
f(s)

+
(M2

V +M2
ZB

)2 + s2

s−M2
V −M2

ZB

log

(√
f(s) + s−M2

V −M2
ZB√

f(s)− s+M2
V +M2

ZB

)]
, (4.86)

where the overall factor n = 1(= 1/2) corresponds to having distinguishable

(indistinguishable) particles in the final state,

f(s) ≡M4
V − 2M2

V (M2
ZB

+ s) + (M2
ZB
− s)2, (4.87)
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and the coe�cients CV and CA correspond to the vector and axial couplings of

the gauge bosons, respectively, which are given by

ZBZ : CV =
g

cos θW

(
1

2
T 3
q −Qq sin2 θW

)
, CA = − g

2 cos θW
T 3
q , (4.88)

ZBW
± : CV =

g

2
√

2
, CA = − g

2
√

2
, (4.89)

ZBZB : CV =
gB
3
, CA = 0. (4.90)

• For the process qq̄ → ZBγ, described by diagrams in Eq. 4.85 but replacing the

EW bosons by a photon, the averaged squared amplitude is given by,

∣∣M(qq̄ → ZBγ)
∣∣2 =

2 e2Q2
q g

2
B[M4

ZB
− 2M2

ZB
t+ s2 + 2t(s+ t)]

27 t(M2
ZB
− s− t) , (4.91)

where Qq corresponds to the electric charge of the quark. In order to compute

the proton-proton cross-section we impose the following cuts on the rapidity and

the transverse momentum:

|η| < 2.5, and pT > 150 GeV. (4.92)

These cuts will be also applied in the channels pp→ ZBq and ZBg.

• For the process qq̄ → ZBg, described by the same feynman graphs as those

shown in Eq. 4.85 but replacing the EW bosons by a gluon. We have

∣∣M(qq̄ → ZBg)
∣∣2 =

8 g2
S g

2
B[M4

ZB
− 2M2

ZB
t+ s2 + 2t(s+ t)]

81 t(M2
ZB
− s− t) , (4.93)

where gS corresponds to the strong coupling in the SM. In here we also make use

of the cuts listed in Eq. 4.92.
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• For the process qg → ZBq, characterized by the following diagrams,

g

q

ZB

q

q
+

g ZB

q q

q , (4.94)

the averaged squared amplitude is given by

∣∣M(qg → ZBq)
∣∣2 =

g2
Bg

2
S

27

M4
ZB
− 2M2

ZB
s+ 2s2 + 2st+ t2

s(s+ t−M2
ZB

)
, (4.95)

and we follow the same procedure as the previous processes, using the cuts from

Eq. 4.92 to compute the proton-proton cross-section.
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Figure 4.12: Production cross-sections at the LHC for center-of-mass energy of 14 TeV in
units of picobarns. We fixed gB = 0.2 for illustration. On the right side of the vertical
axis we show the expected number of events assuming 300 fb−1 for the integrated
luminosity. The regions shaded in gray are excluded by LHC searches for the ZB boson.
Figure extracted from Ref. [192].

In Fig. 4.12 we present our results for the production cross-section for di�erent channels

that involve at least one ZB , fixing the gauge coupling to gB = 0.2. These results

correspond to the LHC with center-of-mass energy of 14 TeV and the number of events
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shown on the right vertical axis corresponds to an integrated luminosity of 300 fb−1.

The model has been implemented in FeynRules 2.0 [210] and the cross-sections

obtained using MadGraph5aMC@NLO - v2.7.0 [211] (at tree-level), we cross-checked

our results in a Mathematica notebook where we use of the MSTW2008 [212] set of

parton distribution functions. From Fig. 4.12 one can see that the dijet cross-section

dominates across the plot, and in the region MZB > 2Mt the process pp → ZB → tt̄

can be large as well. The process pp → ZBq can be significant, since there is a large

contribution from the parton distribution function of the gluon in the initial state. We

note that the pp → ZBγ, ZBq and ZBg channels are relevant for searches in the low

mass regime.

4.3.2 Exotic Decays of the SM-like Higgs

In extensions of the SM with a leptophobic gauge boson [166, 168, 169, 171], its mass

generation comes from the vev of a new Higgs boson charged under U(1)B , and hence,

the models have two Higgs scalars that can mix with each other, as described in Eq. 4.9.

After SSB, the SM-like Higgs (h1) will have the following coupling to the ZB :

h1Z
µ
BZ

ν
B : 2i

M2
ZB

vB
gµν sin θB, (4.96)

where θB is the mixing angle in the scalar sector, defined in Eq. 4.10, MZB = nBgBvB

and nB is the baryon number of the scalar breaking U(1)B . In the context of the

minimal models for local baryon number, i.e. DFW and FOP, nB = 3. Since the

leptophobic gauge boson can be light, the SM-like Higgs can have the following decays

h1 → ZBZB, Z
∗
BZB,

depending on the ZB mass.
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h1

ZB

ZB

h1

ZB

Z∗B

q

q̄

. (4.97)

Notice that the couplings between the SM-like Higgs and SM particles will scale by a

factor cos θB . By computing the total Higgs decay width Γh1 = cos2 θBΓSM + ΓBSM,

where in our case ΓBSM corresponds to the decay into two leptophobic gauge bosons,

we can quantify the impact of these novel decays of the SM-like Higgs. In our study we
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Figure 4.13: Branching ratios for the channels h1 → ZBZB and h1 → ZBZ
∗
B → ZBqq̄.

The left (right) panel corresponds to gB = 0.2 and sin θB = 0.1 (sin θB = 0.05). The
region shaded in red shows the exclusion bounds from the constraint BR(h1 → BSM)
< 0.34. The region shaded in gray corresponds to the exclusion bounds from direct
searches for the ZB boson at the LHC. Figure extracted from Ref. [192].

take the bound sin θB ≤ 0.3 [195], according to Eq. 4.11. Current LHC measurements of

the properties of the SM-like Higgs boson give the following constraint on its branching

ratio into BSM particles [213]

BR(h1 → BSM) < 0.34 at 95% C.L., (4.98)
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Figure 4.14: Exclusion bounds in the gB vs MZB plane. The region shaded in red shows
the exclusion bounds from the constraint on the SM-like Higgs branching ratio BR(h→
ZBZB ) < 0.34, while the blue dashed line corresponds to BR(h1 → ZBZB) = 0.1. The
region shaded in gray is excluded by searches for the ZB at the LHC. The left (right)
panel corresponds to sin θB = 0.1 (sin θB = 0.05). Figure extracted from Ref. [192].

which is obtained assuming the production of the Higgs in the SM. Therefore, we scale

the bound by the ratio between the production cross-section for the Higgs in the SM

with the one in this model, which is given by BR(h1 → BSM) < 0.34×
(
σSM
h1
/σh1

)
=

0.34/ cos2 θB . The width for the new two-body decays, h1 → ZBZB , of the SM Higgs

boson is

Γ(h1 → ZBZB) =
GBM

3
h1

sin2 θB

16
√

2π

√
1− 4x

(
1− 4x+ 12x2

)
, (4.99)

with x = M2
ZB
/M2

h1
and GB = 1/(

√
2v2
B).

The three-body decay, h1 → ZB(p1) q(p2) q̄(p3), is given by

Γ(h1 → ZBqq̄) =
1

(2π)3

1

32M3
h1

∫ pmax
12

pmin
12

dp12

∫ pmax
23

pmin
23

dp23

∣∣A(h1 → q̄qZB)
∣∣2 .(4.100)
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Figure 4.15: Predictions for the associated production cross-section pp → Z∗B → ZBh1

at the LHC with center-of-mass energy of 14 TeV. The gray region is excluded by the
LHC bounds, while the red region is excluded by the bound on the branching ratio of
the new Higgs decays. The scalar mixing angle is fixed to sin θB = 0.3 for this plot.
Figure extracted from Ref. [192].

Neglecting the quark masses we have that

pmin
12 = M2

ZB
, pmax

12 = M2
h1
,

pmin
23 = 0, pmax

23 =
1

p12
(p12 −M2

ZB
)(M2

h1
− p12),

(4.101)

where pij = (pi + pj)
2 and the spin-averaged squared amplitude is given by

∣∣A(h1 → q̄qZB)
∣∣2 =

8

3

g2
B

v2
B

M4
ZB

sin2 θB(
(p23 −M2

ZB
)2 +M2

ZB
Γ2
ZB

)

×
(
p23 +

(p12 −M2
ZB

)(M2
h1
− p12 − p23)

M2
ZB

)
. (4.102)
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In Fig. 4.13 we present the results obtained for the branching ratios for the decay

channels h1 → ZBZB and h1 → ZBqq̄ of the SM Higgs. The latter includes both,

the on-shell and the o�-shell contribution from the ZB . In the region with MZB ≤
Mh1/2 ≈ 62.5 GeV the channel h1 → ZBZB becomes the dominant decay channel

and the Higgs decay width can become of order GeV. In this region, the bound on

BR(h1 → BSM) < 0.34 gives a strong constraint shown by the area shaded in red. The

gray band in this figure corresponds to the exclusion bounds from direct searches for

the ZB boson at the LHC discussed in the last section of Chapter 3.

On the other hand, when MZB ≥ Mh1/2 the two-body decay is kinematically

closed and the three-body decay gives a much smaller contribution to the Higgs width.

In this regime, experiments can search for the associated Higgs ZB production to probe

the existence of these interactions, as we discuss in the following section.

The experimental bound on the branching ratio of Higgs decays to BSM particles

can be translated to the gB vs MZB plane. Nevertheless, we note that this bound

also depends on the scalar mixing. In Fig. 4.14 we present our results for two di�erent

mixing angles. For sin θB = 0.1 this constraint is strong in the region MZB ≤ Mh1/2

and excludes gB & 0.03 for MZB = 25 GeV. In order to relax this bound one needs

to go to very small mixing angles, sin θB < 0.05, as shown in the right panel. It is

important to emphasize that the SM-like Higgs can have a large branching ratio into

two leptophobic gauge bosons in agreement with all current experimental bounds.

4.3.3 Associated production

In the previous section we discussed the possible new Higgs decays due to the

existence of a leptophobic gauge boson. In the scenarios where these Higgs decays are

not allowed or highly suppressed, one can study the associated production:

pp→ Z∗B → ZBh1,
Z∗B

q

q̄

ZB

h1

, (4.103)
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to test the existence of the new h1-ZB-ZB interaction. The cross-section at the partonic

level is given by

σ(q̄q → Z∗B → ZBh1)(ŝ) =
g4
B sin2 θB
144πŝ2

[
ŝ2 − 2ŝ(M2

ZB
+M2

h1
) + (M2

ZB
−M2

h1
)2
]1/2

[
(ŝ−M2

ZB
)2 +M2

ZB
Γ2
ZB

]

×
[
ŝ2 + 2ŝ(5M2

ZB
−M2

h1
) + (M2

ZB
−M2

h1
)2
]
, (4.104)

In Fig. 4.15 we show the numerical predictions for the associated production pp →
Z∗B → ZBh1 in the gB-MZB plane, in the maximal mixing scenario where sin θB = 0.3

and with center-of-mass energy of
√
s = 14 TeV. The region shaded in red is excluded

by the experimental bound on the branching ratio of the SM Higgs into BSM particles

discussed in the previous section. The di�erent colored dotted regions correspond to

the predictions in di�erent ranges: σ < 0.1 fb (blue dots), 0.1 fb < σ < 1 fb (orange

dots), 1 fb < σ < 10 fb (yellow dots), 10 fb < σ < 100 fb (cyan dots), and σ > 100 fb

(purple dots). The production cross-section can easily be in the tens of femtobarns

which is not too far from the pp → Zh1 cross-section of 990.33 fb in the SM [214].

The region shaded in gray is excluded by the collider bounds discussed in Fig. 3.5 from

Chapter 3. The associated cross-section is proportional to sin2 θB . Therefore, although

in Fig. 4.15 we show only the predictions for sin θB = 0.3, one can easily find the

predictions for other mixing angles by properly scaling them. It is important to mention

that the associated production can be significant due to the fact that the gauge coupling

can be large and the mass of the leptophobic gauge boson can be below the EW scale.

Knowing the possible h1 and ZB decays we can show the predictions for the

number of events at the LHC for the following channels:

γγ tt̄, γγ bb̄, γγ jj, bb̄bb̄, bb̄tt̄, and bb̄jj.

The number of events for each of these channels is given by

Nevents(xx̄yȳ) = L × σ(pp→ Z∗B → ZBh1)× BR(h1 → xx̄)× BR(ZB → yȳ).

(4.105)
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In Fig. 4.16 we show the predictions for the expected number of events assuming

that the integrated luminosity is L = 3000 fb−1 as planned for the High-Luminosity

LHC [215], and using the maximal allowed value for the mixing angle sin θB = 0.3. The

gray regions in Fig. 4.16 are excluded by the collider bounds discussed in Fig. 3.5 from

Chapter 3, while the regions in red are excluded by the experimental bound on the

branching ratio of SM Higgs exotic decays.

The Zh1 associated production has been measured at ATLAS [216] and CMS [217],

and a similar technique can be used to make the reconstruction of the processes in

Fig. 4.16. However, in our case the ZB decays only to quarks and then the QCD

background is more challenging. For example, the largest number of events is for the

channel: pp → ZBh1 → jjbb̄. In this case two b jets should have an invariant mass

around the Higgs mass of 125 GeV. Furthermore, the large pT of the Higgs or the gauge

boson can help to discriminate the signal with respect to the background [218].
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Figure 4.16: Predictions for the number of events at the LHC with center-of-mass energy
of 14 TeV assuming that the integrated luminosity is L = 3000 fb−1 and using the
maximal allowed value for the mixing angle sin θB = 0.3. We show the number of
events for the most relevant channels: γγ tt̄, γγ bb̄, γγ jj, bb̄bb̄, bb̄tt̄, and bb̄jj. The
gray region is excluded by the LHC bounds, while the red region is excluded by the
bound on the branching ratio of the new Higgs decays. Figure extracted from Ref. [192].
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4.4 Conclusions

Along this chapter we have studied the main phenomenological features on the

minimal gauge theories for baryon number. In the first part, we have presented a

detailed study on the cosmological and phenomenological features of the possible DM

candidate predicted in these theories, whereas the second part has been devoted to the

analysis of possible signals from theories for local baryon number at colliders. Let us

briefly expose in a clean way the highlights of the results obtained. In the simplest class

of theories where the baryon number is promoted to a local symmetry:

• There is an extra electrically neutral field, χ ∼ (1, 1, 0, nχ), predicted by the

cancellation of gauge anomalies, which can be stable and hence a good cold DM

candidate.

• The mass of the DM candidate is determined by the new symmetry breaking

scale; in this case, the scale of baryon number violation.

• The stability of the DM candidate is a natural consequence of the symmetry

breaking.

• The masses of the fermions required for anomaly cancellation have an upper

bound defined by the new symmetry scale. Among them, the electrically-charged

fermions contribute to annihilation of DM into gamma lines.

• An upper bound on the symmetry breaking scale can be found by applying

cosmological relic density constraints.

We have found such upper bound to be around the O(10) TeV scale, what implies that

these theories should live somewhere below. Furthermore,

• A light ZB leptophobic boson, even below the EW scale, can exist in agreement

with all experimental bounds and without assuming a very small gauge coupling.

The theoretical power of predicting a viable DM candidate and a source of dynamic

baryon number violation, together with the capability of being tested at current or near

future experiments make these theories of local baryon number very attractive and turn

them into strong candidates for physics beyond the SM.





5.- Leptophilic force
Towards the Neutrino-DM connection.

Chapter based on the work done in 1803.07462 and 1905.06344.

The origin of neutrino masses and the nature of the DM in the Universe are two of

the most exciting open problems in particle physics and cosmology, see Chapters 1 and 2

for details. The simplest gauge symmetries we can employ to understand the origin of

neutrino masses are U(1)B−L or U(1)L, where B and L stand for baryon and lepton

numbers, respectively. As discussed in Chapter 1, there is a deep connection between

neutrino masses and lepton number violation. The neutrinos are Majorana fermions

when the B-L (or L) symmetry is broken in two units, or they can be Dirac fermions

when B-L (or L) is conserved or broken in units di�erent (and greater) than two. In

both cases, we can hope to test the mechanism for neutrino masses only if the B-L

(or L) violation scale can be reached at current or future colliders. Unfortunately, in a

large class of models for Majorana neutrino masses based on the seesaw mechanism [12,

16, 219, 220], the canonical seesaw scale can be very large, Mseesaw . 1014 GeV, which

makes the mechanism barely possible to falsify.

In this chapter, we investigate possible connections between the origin of neutrino

masses and the properties of DM candidates in simple gauge extensions of the SM based

on theories where the lepton number is gauged: local B-L or L symmetries. See Fig. 5.1

for an illustration of this connection. We focus on two main scenarios in the context

of B-L theories: (a) Stueckelberg Scenario and (b) Canonical Seesaw Scenario. In the

Stueckelberg scenario, the B-L symmetry remains unbroken, the neutrinos are Dirac

fermions and the gauge boson acquires mass through the Stueckelberg mechanism. In

the Canonical Seesaw scenario the U(1)B−L symmetry is spontaneously broken in

149
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Figure 5.1: Correlation between the
origin of neutrino masses, properties of
cold DM candidate and lepton number
violating (LNV) signatures. Figure
extracted from Ref. [221].

two units using the Higgs mechanism and the neutrinos are consequently Majorana

fermions. In both cases the DM candidate is a vector-like Dirac fermion charged under

the U(1)B−L symmetry. For other studies of gauged B-L with a DM candidate see

Refs. [222–232], and for scenarios that explore a connection between the origin of

neutrino masses and the DM candidate see Refs. [233–238].

We study the simplest theories with gauged lepton number, U(1)L [168, 169, 171,

239], discussed in Chapter 3, where the existence of a DM candidate is predicted from

anomaly cancellation. Models with gauged lepton number have also been studied in

Refs. [240–244]. For the simplest local U(1)L, the lepton number is broken in three

units and the neutrinos are predicted to be Dirac fermions, while the DM candidate is

a Majorana fermion.

In the first part of this chapter, we will study the cosmological constraints on the

relic DM density. In the context of these theories, we will show, as we were told in

Chapter 4 for U(1)B , that the upper bound on the lepton number violating scale is

in the multi-TeV scale. Therefore, one can hope to test these theories for neutrino

masses and DM in the near future. If neutrinos are Majorana, the discovery of lepton

number violating signatures in low energy experiments or at colliders will be striking

signals for NP beyond the SM. In low energy experiments we could discover neutrinoless

double beta decay, and at colliders di�erent signatures with same-sign leptons could be

seen [245]. If neutrinos are Dirac, we find a strong bound coming from the measurement

of the number of e�ective relativistic neutrino species (Ne�) in the early Universe. These

discoveries will be crucial to establish the origin of neutrino masses. Our main results

suggest that one could be optimistic about the possibility to test the di�erent theories

for neutrino masses if there is a simple connection to the properties and origin of DM

candidates.
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5.1 Unbroken local U(1)B−L: Stueckelberg Scenario

The simplest gauge theory where one can understand the origin of neutrino masses

is based on local B-L. As stated in Chapter 3, anomaly cancellation requires three

copies of RH neutrinos. The way lepton number dynamically breaks in this theory, if

it ever does, will determine the nature of neutrino masses. In this section, we present

the possibility of an unbroken local B-L. Consequently, since U(1)B−L is a conserved

symmetry, neutrinos will be Dirac particles in this context.

5.1.1 Theoretical framework

The local gauge symmetry U(1)B−L can remain conserved 1 and the associated

gauge boson can acquire mass through the Stueckelberg mechanism, as discussed in

Chapter 3. Due to the absence of a scalar particle in the B-L sector, it is not possible to

write a mass term for a Majorana fermion charged under U(1)B−L. Therefore, the DM

candidate could be either a scalar φ ∼ (1, 1, 0, nχ) or a Dirac fermion with quantum

numbers,

χ ∼ (1, 1, 0, nχ), (5.1)

corresponding to the gauge groups (SU(3)c, SU(2)L, U(1)Y , U(1)B−L). In the case

where the DM is a scalar field, it is not possible to predict an upper bound for the

mass of the B-L gauge boson. This is because, through the introduction of a Higgs

portal term, φ†φH†H , the DM candidate can be produced and the ZBL boson can

be decoupled. Motivated by the possibility to find an upper bound on the theory and

explore its implications, in here we will discuss the scenario where the DM is a Dirac

fermion. Unfortunately, χ is not predicted in this theory and we have to include it in

order to account for DM. In order to guarantee the stability of the field χ, we should

ensure nχ 6= 1; since such B-L charge allows for χ to mix with the neutrinos and

decay. In addition, nχ cannot be arbitrarily large; perturbativity requires

nχ gBL <
√

4π, (5.2)

1We remind the reader to the fact that this theory, unlike U(1)B or U(1)L, is anomaly free (up to
the inclusion of three copies of RH neutrinos) so that there is no phenomenological need to break the
symmetry since the theory does not predict massless anomalons in this case.
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to be satisfied, which comes from the kinetic term of the DM candidate. For a fermion

DM candidate singlet under the SM gauge group and charged under the B-L force, the

relevant Lagrangian is given by, 2

L ⊃ iχLγ
µDµχL + iχRγ

µDµχR − (Yν`Liσ2H
∗νR +MχχLχR + h.c.)

− 1

2

(
MZBLZ

µ
BL + ∂µσ

)
(MZBLZBLµ + ∂µσ) , (5.3)

which is invariant under the following gauge transformations,

δZµBL = ∂µλ(x) and δσ = −MZBLλ(x), (5.4)

and the σ field decouples from the theory. When the Stueckelberg mechanism is

applied to an Abelian gauge group, the theory is renormalizable and unitary. However,

for non-Abelian gauge groups, violation of unitarity arises at tree-level in the scattering

of longitudinal gauge bosons.

The properties of the DM candidate, χ = χL + χR, are defined by the B-L gauge

interaction. The model contains only four free parameters:

Mχ, MZBL , gBL, and nχ. (5.5)

For the rest of our discussion we fix nχ= 1/3 for simplicity, but the main conclusions

can be applied to any other scenario with a di�erent B-L charge.

5.1.2 Cosmological bounds

In this section we discuss the implication of cosmological bounds like the relic

abundance Ωχh
2 = 0.1200 ± 0.0012 [7] measured by Planck and the current and

projected bounds on the number of e�ective d.o.f. Ne� given by the Planck satellite

mission [7], and CMB Stage-IV [246] experiments, respectively.

2Note that Mχ is a bare mass term in the Lagrangian, not protected by its symmetries.
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5.1.2.1 Relic Density

The annihilation channels of our DM candidate are:

χ̄χ→ e+
i e
−
i , ν̄iνi, ūiui, d̄idi, ZBLZBL,

represented explicitly in the Feynman graphs from below:

χ

χ̄

ZBL

f̄

f

, and (5.6)

χ

χ̄

ZBL

ZBL

=

χ ZBL

χ̄ ZBL

+

χ ZBL

χ̄ ZBL

.

The annihilation cross section for χ̄χ → Z∗BL → f̄f is given by

σχ̄χ→f̄f =
Nf
c n2

fg
4
BLn

2
χ

12πs

√
s− 4M2

f√
s− 4M2

χ

(
s+ 2M2

χ

) (
s+ 2M2

f

)

[
(s−M2

ZBL
)2 +M2

ZBL
Γ2
ZBL

] . (5.7)

Here Nf
c is the color multiplicity of the fermion f , i.e. N c

f = 1(3) for fermions (quarks),

with mass Mf , nf is the B-L charge of the leptons, −1 for leptons and 1/3 for quarks,

s is the square of the center-of-mass energy, and ΓZBL is the total decay width of the

ZBL gauge boson, given by

∑

fi

Γ(ZBL → f̄ifi) =
∑

fi

g2
BLN

fi
c n2

fi

12πMZBL

√√√√1−
4M2

fi

M2
ZBL

(2M2
fi

+M2
ZBL

). (5.8)
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On the other hand, the annihilation cross section for χ̄χ → ZBLZBL is given by

σ(χ̄χ→ ZBLZBL) =
g4
BLn

4
χ

32πE2

ω

v

[
−1− (2 + z2)2

(2− z2)2 − 4v2

+
6− 2z2 + z4 + 12v2 + 4v4

2vω(1 + v2 + ω2)
ln

(
1 + (v + ω)2

1 + (v − ω)2

)]
,

(5.9)

where z, v and ω are defined as

z = MZBL/Mχ, v = p/Mχ, and ω = k/Mχ, (5.10)

being E and p the center-of-mass energy and momentum of the initial particles

respectively, E =
√
s/2 and p =

√
E2 −M2

χ , and k the momentum of the final

particles, k =
√
E2 −M2

ZBL
.

We note that the annihilation channel into fermions is the dominant one, with a

higher contribution from annihilation into leptons due to their larger coupling to ZBL.

Since nχ < 1, the perturbative bound directly applies to the gauge coupling through

the kinetic term of the leptons and is given by:

gBL < 2
√
π. (5.11)

In order to compute numerically the DM relic abundance, Ωχh
2, we use

MicrOMEGAs 5.0.6 [73], implementing the model with the help of LanHEP 3.2 [201].

We cross-check our results with an independent calculation in Mathematica. In Fig. 5.2,

we present our results in the Mχ-MZBL plane for the Stueckelberg scenario. The solid

blue line satisfies the correct DM relic abundance Ωχh
2 = 0.1200±0.0012 [7], while the

region shaded in light blue overproduces it. The latter is then ruled out by cosmology

unless the thermal history of the Universe is altered. The horizontal red (pink) line

corresponds to the LEP [181] (LHC [182]) bound on the mass of the ZBL gauge boson,

which were discussed at the end of Chapter 3 (see Fig. 3.4). The left (right) panel

corresponds to gBL=1.5 (gBL= 2 ) and nχ = 1/3. The solid green line shows current

experimental bounds from Xenon-1T [205] whereas the purple lines show the projected

sensitivity for Xenon-nT [81], which will be discussed in the following subsections.
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Figure 5.2: Results for the DM relic density in the (Mχ, MZBL) plane for the
Stueckelberg scenario. The solid blue line satisfies the correct DM relic abundance,
while the region shaded in light blue overproduces it. For the points that saturate the
relic abundance, we mark in green those that are excluded by Xenon-1T [205] and in
purple those that will be reached by the Xenon-nT [81] experiment. The horizontal red
(pink) line corresponds to the LEP [181] (LHC [182]) bound on the mass of the ZBL gauge
boson. The left (right) panel corresponds to gBL = 1.5 (gBL = 2 ) and nχ = 1/3. The
bounds from Neff are shown by the horizontal black line. Figure extracted from Ref. [183].

The small feature that can be observed in the right panel at around Mχ ≈ 12 TeV

corresponds to the region in parameter space where the χχ → ZBLZBL channel also

contributes to the relic density.

5.1.2.2 Number of e�ective relativistic neutrino species (Ne�)

As discussed in Section 2.1.1.1 from Chapter 2, the RH neutrinos feel the B-L

interaction and they could be thermalized with the SM plasma in the early Universe

and therefore contribute to Ne�, due to their relativistic nature. They can remain in

thermal equilibrium with the SM via exchange of the new gauge boson, in this case

ZBL, as diagram Diag. 5.13 shows. The cross-section for such annihilation process is

given by

σνRνR→f̄f =
g′4

12π
√
s

1

(s−M2
Z′)

2 + Γ2
Z′M

2
Z′

∑

f

Nf
c n

2
f

√
s− 4M2

f (2M2
f + s), (5.12)
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where Z ′ ≡ ZBL and g′ ≡ gBL here.

νR

νR

ZBL

f

f̄

(5.13)

In this study, we focus on heavy mediators T dec
νR
� MZ′ , and hence, we can work in

the limit s � MZ′ . Neglecting the fermion masses, the interaction rate, described in

Eq. 2.26 from Chapter 2, reads as

ΓνR(T ) =
49π5T 5

97200ξ(3)

(
gBL
MZBL

)4∑

f

Nf
c n

2
f , (5.14)

where the sum is taken over all SM fermions that are in thermal equilibrium at the

temperature T . In order to understand the bounds in models where the RH neutrinos

are very light, we use the value for Neff derived from the CMB measurement by the

Planck satellite mission [7],

Ne� = 2.99+0.34
−0.33 ⇒ ∆Ne� < 0.285, (5.15)

adopting the most conservative limit. Moreover, future CMB Stage-IV experiments [246]

are expected to improve this measurement to ∆Ne� < 0.06.

In the left panel of Fig. 5.3 we present our results for the decoupling temperature

of the RH neutrinos, νR, as a function of the ratio MZBL/gBL. In the right panel of

Fig. 5.3 we present the prediction for ∆Neff in the context of U(1)B−L. To obtain the

decoupling temperature we used the relation between the decay rate and the Hubble

parameter given in Eq. 2.19 in Chapter 2. As Fig. 5.3 shows, in theories based on local

lepton number, the bound coming from Planck is stronger than the collider bound

coming from LEP (see Section 3.4 from Chapter 3). Basically, in these theories we find

that MZ′/g
′
> (9− 10) TeV in order to satisfy the Neff bounds. This has implications

for any gauge theory coupled to the SM with very light new particles.
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Figure 5.3: Left panel: The decoupling temperature of the RH neutrinos νR as a function
of MZ′/g

′. Right panel: The e�ective number of extra relativistic species as a function
of MZ′/g

′. The solid black and yellow lines correspond to the prediction for ∆Neff in
the scenarios with U(1)B−L and U(1)L, respectively. The region shaded in purple is
excluded by the CMB measurement by the Planck satellite mission [7]. For comparison,
we show the bound from LEP [181] in red. Figure extracted from Ref. [183].

In our case, the bound on ∆Neff corresponds to

∆Neff < 0.285 ⇒ MZBL

gBL
> 10.33 TeV, (5.16)

and is given by the black line in Fig. 5.2. Indeed, as the figure shows, this bound is

stronger than the LEP bound. As can be seen in the right panel from Fig. 5.2, the upper

bound on the gauge coupling for nχ = 1/3 is gBL . 2, since scenarios with larger

values for the gauge coupling are totally excluded by the bounds on Ne�.

Therefore, taking into account all cosmological and experimental constraints we find

an upper bound on the gauge boson mass, i.e.

MZBL . 22 TeV. (5.17)

as shown in Fig. 5.2. In the scenario we have considered, the projected sensitivity of

CMB Stage-IV for the measurement of Neff will fully probe this model. However, it
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should be noted that the bound coming from ∆Neff can be relaxed by taking the limit

nχ � 1, since this would require gBL � 1 for the DM relic density to be explained.

Even though the bounds on Ne� may change under the choice of a di�erent nχ, it can

be shown that the upper bound on the B-L scale will not go beyond 100 TeV regardless

of the choice of the charge [221]. We will discuss the implications of a di�erent choice

for nχ in the next section. For the case considered here, one can also find an upper

bound on the DM mass, i.e. Mχ . 13 TeV. Then, there is hope to test or rule out this

simple theory for neutrino masses and DM in the near future.

5.1.2.3 Phenomenological bounds

DD experiments aim to measure the nuclear recoil from interaction with a DM

particle. In this model, the only interaction between DM and the nucleon in atoms

occurs via the exchange of a gauge boson,

Nχ→ Z∗BL → Nχ.

The DD spin-independent cross-section is then given by,

σSI =
m2
NM

2
χ

π(mN +Mχ)2

n2
χg

4
BL

M4
ZBL

, (5.18)

where mN corresponds to the nucleon mass. In our case Mχ � mN , and using

the collider lower bound from LEP MZBL/gBL > 7 TeV [181] (see Section 3.4 from

Chapter 3) one finds an upper bound on the elastic spin-independent nucleon-DM

cross section given by

σSIχN < 4.54× 10−44n2
χ cm2, (5.19)

for a given value of nχ.

In Fig. 5.4, we show the predictions for the DD spin-independent cross-section

as a function of the DM mass in the Stueckelberg U(1)B−L scenario. Red points

correspond to gBL = 0 − 0.25, orange points correspond to gBL = 0.25 − 0.5, blue

points correspond to gBL = 0.5− 0.75, green points correspond to gBL = 0.75− 1.0,

pink points correspond to gBL = 1.0 − 2.0 and purple points correspond to gBL =
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2.0−2
√
π. The solid black line shows current experimental bounds from Xenon-1T [205],

the dashed black line shows the projected sensitivity for Xenon-nT [81] and the dotted

black line shows the coherent neutrino scattering limit [83]. In this figure, we also

present the bound coming from ∆Neff . As it can be seen, this is a strong bound,

and it excludes a large region in parameter space that otherwise could be reached by

Xenon-nT. However, some of the points lie below the neutrino floor and hence will

escape detection from future DD experiments.
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Figure 5.4: Predictions for the DD spin-independent cross-section as a function of the
DM mass in the Stueckelberg U(1)B−L scenario with nχ = 1/3. Points with di�erent
colors correspond to di�erent values of the gauge coupling as shown in the legend. All
points shown here satisfy the correct relic density Ωχh

2 = 0.1200± 0.0036. The solid
black line shows current experimental bounds from Xenon-1T [205], the dashed black
line shows the projected sensitivity for Xenon-nT [81], and the dotted black line shows
the coherent neutrino scattering limit [83]. The bounds from Neff are shown by a red
horizontal line, ruling out the parameter space above this line. Figure extracted from
Ref. [183].

Notice that local U(1)B−L theories cannot predict gamma lines since they are

anomaly-free theories, including the RH neutrinos, and there is no electrically charged

field with an axial coupling to the ZBL.
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5.2 Broken U(1)B−L in 2 units

Majorana neutrino masses can be generated through the spontaneous breaking of

the B-L symmetry in two units, i.e. we introduce a new Higgs with quantum numbers

SBL ∼ (1, 1, 0, 2). In this section, we will investigate the di�erent DM scenarios in the

case where the neutrinos are Majorana particles and their masses are generated through

the canonical Type I seesaw. In contrast to the Stueckelberg scenario, these models

predict violation of lepton number.

5.2.1 Theoretical framework

The DM can be a Dirac fermion if we add a pair of vector-like fermionic fields, i.e.

χL ∼ (1, 1, 0, nχ) and χR ∼ (1, 1, 0, nχ), where nχ 6= 1, 3; in order to avoid mixing

with neutrinos and, consequently, the decay of DM. If we allow for non-renormalizable

operators, odd values of nχ will give mixing between the DM candidate and neutrinos,

and hence should be forbidden. The Lagrangian in this case is given by,

L ⊃ iχLγ
µDµχL + iχRγ

µDµχR + (DµSBL)†(DµSBL)

− (Yν`Liσ2H
∗νR + yR ν

T
RCνRSBL +MχχLχR + h.c.). (5.20)

The covariant derivative for χ is given by DµχL = ∂µχL + igBLnχZ
µ
BLχL, and

similarly for χR. The scalar potential is analogous to the potential discussed in Eq. 4.1

in Chapter 4, by replacing the scalar singlet SB charged under U(1)B by SBL, charged

this time under B-L. We stress again that, in this scenario, we have chosen the charge

for SBL such that a Majorana mass term for the neutrinos is generated after SSB.

Therefore, in this context, B-L is violated in two units. 3

After SSB, the B-L gauge boson and the RH neutrinos acquire the following masses,

MZBL = 2gBLvBL, and MR =
√

2 yRvBL. (5.21)

3If the choice of the scalar charge is a di�erent one, one would end up with Dirac neutrinos and a
similar scenario to the one studied in this section with the cosmological constraints from the previous one.
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In this theory, the Majorana neutrino masses are generated through the Type I seesaw

mechanism, discussed in Chapter 1. In this case, the perturbative bound on the gauge

coupling comes from the S†BLSBLZ
µ
BLZBLµ interaction when nχ > 2

√
2 and it is

therefore given by

gBL ≤
√
π

2
. (5.22)

while for nχ ≤ 2
√

2, the upper bound on the gauge coupling is given by Eq. 5.2.

Henceforth, we set the masses of the three RH neutrinos to the same value MR without

loss of generality. Then, the model contains seven free parameters:

Mχ, MZBL , MR, Mh2 , θBL, gBL, and nχ. (5.23)

For the rest of this section we fix the DM B-L charge to nχ=1/3.

5.2.2 Cosmological bounds

The annihilation channels of our DM candidate in this theory are

χ̄χ→ e+
i e
−
i , ν̄iνi, ūiui, d̄idi, N̄iNi, ZBLZBL, ZBLhi,

whose explicit Feynman graphs are the ones shown in Diagrams 5.6 plus the extra

channel opened because of the B-L SSB, shown below:

χ

χ̄

ZBL

ZBL

hi

, (5.24)

where hi=1,2 are the Higgses present in the theory, related with h and sBL analogously

to Eq. 4.9, but with θBL parametrizing this time the mixing between the scalars.



162 5. Leptophilic force

The cross-section of this annihilation channel is given by

σχ̄χ→ZBLhi = c2
i

g4
BLn

2
Sn

2
χ

48πs2

(
1 +

2M2
χ

s

)
(s2 + 2s(5M2

ZBL
−M2

hi
) + (M2

ZBL
−M2

hi
)2)

(s−M2
ZBL

)2 + Γ2
ZBL

M2
ZBL

×
√

(s+M2
ZBL
−M2

hi
)2 − 4M2

ZBL
s

/√

1−
4M2

χ

s
, (5.25)

where ci = (sin θBL, cos θBL) and nS is the B-L charge of the SBL Higgs; in our

case nS = 2. We note that the annihilation into the SM Higgs is mixing suppressed,

indicated by a green vertex in Diag. 5.24. Notice also that this channel will be generically

suppressed since kinematically the enhancement caused by the resonance cannot be

accessed. Here, neutrinos are Majorana fermions, so that the annihilation cross-section

χ̄χ→ Z∗BL → NN is slightly modified with respect to Eq. 5.7:

σχ̄χ→NN =
Nf
c n2

Ng
4
BLn

2
χ

24πs

√
s− 4M2

N√
s− 4M2

χ

(
s+ 2M2

χ

) (
s− 4M2

N

)
[
(s−M2

ZBL
)2 +M2

ZBL
Γ2
ZBL

] . (5.26)

In Fig. 5.5, we show the numerical results for the branching ratios of the thermal

averaged cross-sections for the channels χ̄χ → f̄ifi (solid line), and χ̄χ → ZBLZBL,

χ̄χ → ZBLh2, and χ̄χ → ZBLh1 (dashed lines), for di�erent B-L charges. We have

used cos θBL = 0.9 for the scalar mixing angle, MZBL = 3.5 TeV, gBL = 0.5, Mh2 =

MR = 1 TeV, and we have showed two choices of nχ for illustration. For low values of

the B-L charge, the annihilation channel into two fermions significantly dominates over

the other channels. The annihilation into two gauge bosons χ̄χ → ZBLZBL can be

important when one has large values for the DM B-L charge. However, perturbativity

bounds, i.e. Eq. 5.2, constrain this channel in such a way that the annihilation into

fermions will always dominate over annihilation into two gauge bosons, regardless of

the choice of the B-L charge of the DM candidate. Notice that the DM annihilation

into a pair of gauge bosons shown in Eq. 5.9 is proportional to

σχ̄χ→ZBLZBL ∝ (nχgB)4 1

Λ2
(5.27)
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Figure 5.5: Branching ratios of the thermal averaged cross-sections for the channels
χ̄χ → f̄ifi (solid line) and χ̄χ → ZBLZBL, χ̄χ → ZBLhi (dashed lines) for di�erent
B-L charges. Here we have taken MZBL = 3.5 TeV, gBL = 0.5, cos θBL = 0.9 for the
scalar mixing angle and Mh2 = MR = 1 TeV. In the left panel we show the results for
nχ = 1/3, while in the right panel we show the results when nχ = 2. Figure extracted
from Ref. [221].

so that it saturates when nχ gBL = 2
√
π (see Eq. 5.2). On the other hand, the

annihilation into fermions reaches its climax in the resonant region, where Eq. 5.7

behaves as,

σχ̄χ→f̄f ∝
g4
BLn

2
χ

Γ2
ZBL

∼ 1

Λ2
(5.28)

since Γ2
ZBL
∝ g4

BLn
2
χ as well. Then, in the limit of large nχ, the upper bound of the

theory does not exceed a certain absolute value but, due to the constrain in Eq. 5.2,

gBL � 1, i.e. we would be living in a nightmare scenario of no interest under a

phenomenological point of view.

In Fig. 5.6, we show the allowed parameter space by DM relic density in the

Mχ-MZBL plane for the maximal value of the gauge coupling when nχ = 1/3. The

solid blue line satisfies the correct DM relic abundance Ωχh
2 = 0.1200 ± 0.0012,

while the region shaded in light blue overproduces it. The horizontal red (pink) line

corresponds to the LEP (LHC) bound on the mass of the ZBL gauge boson. We set

MR =Mh2 = 1 TeV, gBL =
√
π/2 and zero scalar mixing angle. In this model, the

DM candidate has no Yukawa interaction with SBL, and hence, there is no Higgs portal
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Figure 5.6: Results for the DM relic density in the Mχ-MZBL plane. The solid blue line
satisfies the correct DM relic abundance Ωχh

2 = 0.1200± 0.0012 [7], while the region
shaded in light blue overproduces it. For the points that saturate the relic abundance, we
mark in green those that are excluded by Xenon-1T [205] and in purple those that will be
reached by the Xenon-nT [81] experiment. The horizontal red (pink) line corresponds to
the LEP [181] (LHC [182]) bound on the mass of the ZBL gauge boson. We fix nχ = 1/3,
MR=Mh2 = 1 TeV, gBL=

√
π/2 and θBL = 0. Figure extracted from Ref. [183].

between the DM and the SM fermions. However, a small value for θBL will only have a

small impact on the calculation of the DM relic density.

Having fixed nχ =1/3, we perform a random scan on the remaining six parameters

in the model. In Fig. 5.7 we present our results, in the left panel we show the points in

the Mχ −MZBL plane that are in agreement with the measured relic abundance. All

points shown satisfy bounds from DD and LEP.

In this model with nχ = 1/3, we find the following upper bounds on the masses of

the B-L gauge boson and the DM candidate

MZBL . 21 TeV and Mχ . 11 TeV.

Clearly, each choice of nχ, and gBL define a theory which is bounded from above.

However, regardless of the value of the B-L charge, and the choice of gBL, we note
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Figure 5.7: Scatter plot of
points with nχ = 1/3 in the
MZBL −Mχ plane that are in
agreement with the measured
relic abundance, Ωχh

2 =
0.1200 ± 0.0036. Points with
di�erent colors correspond to
di�erent values of the gauge
coupling as shown in the
legend. All points shown
satisfy bounds from DD and
LEP [181]. Figure extracted from
Ref. [183].

that there is an absolute upper bound at the multi-TeV scale for the seesaw scale, as

commented before. For completeness of the discussion on the upper bound for the

seesaw scale, we would like to mention that the allowed parameter space from Fig. 5.7

is in agreement with partial-wave unitarity of the S-matrix. It is well known that, from a

naive model-independent study, partial wave unitarity requires that Mχ < 340 TeV [53].

However, in this theory, the partial wave expansion only becomes relevant in regions of

the parameter space which are not allowed by cosmology. Therefore, unitarity of the

S-matrix does not make any influence on the upper bound for the seesaw scale.

These results are crucial to understand the testability of this theory at colliders.

Theories where the B-L gauge symmetry is broken in two units predict Majorana

neutrinos through the Type I seesaw mechanism. Unfortunately, as mentioned earlier,

the canonical seesaw bound is around 1014 GeVs, which is imposible to falsify. However,

motivated by the need of explaining the relic abundance in the universe, when including

DM, as illustrated in Fig. 5.8, the upper bound on the B-L violation is lowered by about

ten orders of magnitude! Therefore, we can hope to test the Type I seesaw mechanism

for Majorana neutrinos and this simple theory for DM in the near future.
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Figure 5.8: Illustration of the e�ect of including DM in the context of local B-L theories.
The bound on the relic abundance indirectly a�ects the seesaw scale by lowering it
about ten orders of magnitude, as discussed along this section.

5.2.3 Phenomenological bounds

The DD spin-independent cross-section, as in the Stueckelberg scenario, is given by

Eq. 5.18. In Fig. 5.9, we show the predictions for the DD spin-independent cross-section

as a function of the DM mass, for the same points as in Fig. 5.7. Red points correspond

to gBL = 0−0.25, orange points to gBL = 0.25−0.5, blue points to gBL = 0.5−0.75

and green points to gBL = 0.75−
√

π
2 . The solid black line shows current experimental

bounds from Xenon-1T [205], the dashed black line shows the projected sensitivity

for Xenon-nT [81] and the dotted black line shows the coherent neutrino scattering

limit [83]. Since we know the maximal value for the gauge boson mass, we can show

the predictions for the DD cross-section in the full parameter space. As can be seen,

the Xenon-nT experiment will be able to probe a large fraction of the parameter space.

5.2.4 Lepton Number Violation at the LHC

The main implication of the results presented in the previous section is that, since

the upper bound on the B-L breaking scale is much smaller than the canonical seesaw

scale, there is hope to test the existence of a new force associated to B-L and observe

lepton number violation at the LHC.

The RH neutrinos can be produced at the LHC through the neutral gauge boson

ZBL, i.e. pp → Z∗BL → NiNi or through the Higgses present in the theory [247–251].
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Figure 5.9: Predictions for the DD spin-independent cross-section as a function of
the DM mass, for the same points as in Fig. 5.7. We perform a random scan on
Mh2 and MR in the range [0.1 − 20] TeV. For the scalar mixing angle we scan over
sin θBL = [0 − 0.3], the maximal value corresponds to the LHC bound on the Higgs
scalar mixing angle [195]. The solid black line shows current experimental bounds from
Xenon-1T [205], the dashed black line shows the projected sensitivity for Xenon-nT [81]
and the dotted black line shows the coherent neutrino scattering limit [83]. This figure
follows the same color coding as the one used in Fig. 5.7. Figure extracted from Ref. [183].

Since the production mechanisms through the Higgses su�er from the dependence on

the mixing angle in the Higgs sector, we focus our discussion on the production through

the B-L gauge boson, shown in Fig. 5.10.

The RH neutrinos could have the following decays:

Ni → e±j W
∓, νjZ, νjh1, νjh2.

Therefore, the lepton number violating signatures can be observed when the RH

neutrinos decay into charged leptons, and one has the following channels with the

same-sign leptons

pp→ Z∗BL → NiNi → e±j W
∓e±kW

∓ → e±j e
±
k 4j. (5.29)
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Figure 5.10: Drell-Yan process for
pp → Z∗BL → NiNi, which
violates lepton number in two
units. In this example, the RH
neutrino Ni decays to e

±
j W

∓.

The number of these events is given by

Ne±j e
±
k 4j = 2× L× σ(pp→ NiNi)× Br(Ni → e±j W

∓)

× Br(Ni → e±kW
∓)× Br(W → jj)2, (5.30)

where L is the integrated luminosity. Here, the factor two is included to discuss

the channels with same-sign leptons without distinguishing the electric charge of the

leptons in the final state. In the above expression, the parton level cross section

σ(pp→ Z∗BL → NiNi) for this process is given by

dσ

dt
=

1

96πs(s− 4M2
q )

2g4
BL

9

[(
s+ t− 2M2

Ni

)2
+ (t− 2M2

q )2 − 2(M2
Ni

+M2
q )2
]

(s−M2
ZBL

)2 +M2
ZBL

Γ2
ZBL

,

where t = (pq − pN )2. The integrated expression reads as

σ(qq̄ → Z∗BL → NiNi) =
g4
BL(s− 4M2

Ni
)(s+ 2M2

q )

648πs
(

(s−M2
ZBL

)2 + Γ2
ZBL

M2
ZBL

)
√
s− 4M2

Ni

s− 4M2
q

.

(5.31)

In the upper-left panel of Fig. 5.11, we show the predictions for the cross section

when
√
s = 13 TeV, and for di�erent scenarios consistent with relic density bounds.

As in the previous sections, we have choosen n = 1/3, and numerical values for Mχ,

MZBL , and gBL which satisfy the cosmological and collider bounds. In the upper-right

panel, we show the number of events assuming a luminosity L = 50 fb−1. We have

reviewed the current LHC bounds and unfortunately they cannot exclude the region

of the parameter space studied here. A more detailed experimental study will help to
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understand the testability of this theory with more luminosity. Similar results are shown

in the middle panels of Fig. 5.11, when
√
s = 14 TeV. However, in this case one expects

a large number of events for the same-sign leptons for RH neutrino masses below 1

TeV. In the lower panels of Fig. 5.11, we show the predictions for the next generation of

proton-proton collider at 100 TeV. In this case one should be able to test most of the

parameter space even when the RH neutrinos are in the multi-TeV region. See Ref. [252]

for the discovery potential of the 100 TeV collider.

We would like to mention that, in a large part of the parameter space, the right

handed neutrino decays can give rise to displaced vertices [251]. This can be understood

as follows. The RH neutrino decays in the following way:

Ni

W , Z

e`, ν`

, ΓN ∼ |V`i|2
M3
R

Λ2
EW

, (5.32)

where |V`i| encodes the neutrino mixing, which according to the Type I seesaw

mechanism (see Chapter 1) is proportional to |V`i|2 ∝Mν/MR. Hence,

ΓN ∝
MνM

2
R

Λ2
EW

∼ Yν
M2
R

ΛEW
⇒ τN ∝

ΛEW

YνM2
R

. (5.33)

Since the seesaw scale has to be at most at the multi-TeV scale ∼ O(102 TeV), the

Yukawa Dirac Yν has to be small in order to reproduce the measured active neutrino

masses. A small Yν , as shown in Eq. 5.33, enhances the lifetime of the RH neutrinos,

which then become long-lived particles. Therefore, as a consequence of having a low

seesaw scale, displaced vertices arise as exotic signatures predicted by the model. For

instance, when the RH neutrino mass is about 400 GeV, the decay length can be

L = (10−3 − 10−1)mm.

This simple study motivates the search of lepton number violating signatures at the LHC

or at future colliders.
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Figure 5.11: On the left panels, production cross section for the RH neutrinos at the
LHC for

√
s = 13 TeV (upper panels),

√
s = 14 TeV (middle panels) and

√
s = 100

TeV (lower panels) in di�erent scenarios consistent with the DM relic density. On the
right panels, the corresponding expected number of events for the scenarios Mχ = 1
TeV, MZBL = 2 TeV, gBL = 0.1 (black), and Mχ = 4 TeV, MZBL = 7 TeV, gBL = 0.9
(orange), assuming a luminosity of L = 50 fb−1 (upper panel), L = 300 fb−1 (middle
panel), and L = 30 fb−1 (lower panel). Figure extracted from Ref. [221].
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5.3 Local U(1)L

There are two simple gauge theories based on U(1)L, introduced in Chapter 3, where

one predicts the existence of a DM candidate from anomaly cancellation: DFW [169] and

FOP [171]. In their context, the DM mass is defined by the U(1)L symmetry breaking

scale and, as we will demonstrate, the scale must be in the multi-TeV scale in order to

satisfy the relic density constraints. In the model DFW proposed in Ref. [169], it has

been shown that one can cancel the anomalies by adding six new representations to the

SM fermionic content plus the three RH neutrinos, and in this context the DM candidate

can be either a Dirac or a Majorana, while in the model FOP proposed in Ref. [171] it

is shown that the theory can be anomaly-free by adding only four representations and

the DM is predicted to be a Majorana fermion. Since the main goal of our study is

to investigate the most generic properties of a DM candidate in these theories, we will

focus on the Majorana case and show the predictions in the context of a simplified

model which describes the most important properties, analogously to the procedure

followed in Chapter 4 for the baryon force. Studies where the DM candidate is directly

coupled only to leptons have been performed in Refs. [253–260].

5.3.1 Theoretical framework

We consider a simple model for leptophilic Majorana DM which can be obtained in

the context of the anomaly-free theories proposed in Refs. [169, 171]. In this context, one

has the SM leptons and the RH neutrinos,

`L ∼ (1, 2,−1/2, 1), eR ∼ (1, 1,−1, 1), νR ∼ (1, 1, 0, 1),

together with the new Higgs needed for SSB, SL ∼ (1, 1, 0, 3), with the leptonic charge

fixed by anomaly cancellation, the DM candidate χL ∼ (1, 1, 0,−3/2) and other fields

needed for anomaly cancellation (anomalons). The explicit extended fermionic sector

for the UV completions of this simplified model is shown in Tables 3.1 and 3.2 from

Chapter 3, based on the models from Refs. [169,171]. As in Chapter 4, we will assume the

limit where the Yukawa couplings in the DFW and FOP Lagrangians, listed in Eq. 3.18

and Eq. 3.17, respectively, are very small.
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The relevant Lagrangian for our discussions is given, after SSB, by the simplified

Lagrangian obtained in Eq. 4.49 from Chapter 4 identifying ZB → ZL and gB → gL,

L ⊃ 3

4
gLχ̄γ

µγ5χZLµ − gL ¯̀γµ`ZLµ − yi χ̄χhi −
1

2
Mχχ

TCχ, (5.34)

where ` = νi, ei, with i = 1, 2, 3, and χ = χc. Note that, this time, only leptons interact

with the new mediator and their charge is +1. In theories where the DM candidate is

predicted by anomaly cancellation, the DM acquires mass through the mechanism of

SSB. This connection has phenomenological implications that will be discussed below.

The Yukawa couplings in the above equation were deriven in Chapter 4 and can be read

from Eq. 4.49,

y1 =
Mχ

2vL
sin θL, and y2 = −Mχ

2vL
cos θL, (5.35)

and the gauge boson mass reads as (analogously to Eq. 4.17 in the context of U(1)B ),

MZL = 3gLvL. (5.36)

Thus, the gauge boson mass, MZL , and the DM mass, Mχ, are defined by the same

symmetry breaking scale vL. This model contains five free parameters:

Mχ, MZL , Mh2 , θL, and gL. (5.37)

In this scenario, the DM charge nχ = −3/2 is predicted by the theory. Note that the

charge of the scalar responsible of the spontaneous lepton number violation is also

predicted! Therefore, in this context, total lepton number is violated in three units and

neutrinos are, consequently, Dirac particles, as discussed in Chapter 1. Hence, similarly

to the Stueckelberg scenario from Sec. 5.1, we will expect the cosmological bounds on

the number of e�ective relativistic neutrino species to play an important role here.

Those are discussed in the next section.
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5.3.2 Cosmological bounds

In this subsection we study the cosmological implications on the theories based

on local U(1)L. As in the previous scenarios, the compatibility with the experimental

bounds will require the theory to live at most at the multi-TeV scale.

5.3.2.1 Number of e�ective relativistic neutrino species Ne�

In the minimal model with one extra Higgs, the active neutrinos in the SM

are predicted to be Dirac fermions. Therefore, as it has been discussed in the

subsection 5.1.2.2 from the previous scenario, there is a bound coming from the CMB

measurement of Neff . In this case, the cross-section for the thermalization of the RH

neutrinos via the ZL gauge boson is given by Eq. 5.12 with Z
′ ≡ ZL and g′ ≡ gL.

Fig. 5.3 also presents the prediction for ∆Ne� in the context of U(1)L. As the figure

shows, for local U(1)L the CMB measurement gives the following bound,

∆Neff < 0.285 ⇒ MZL

gL
> 9.87 TeV. (5.38)

Similarly to the Stueckelberg case, it is stronger than the LEP bound and it is shown by

the solid purple line in Fig. 5.12. We should stress that by adding a new Higgs scalar

with lepton number L = 2, a Majorana mass term can be written for νR and, if these

states are heavy, the bound from Neff would not be relevant.

5.3.2.2 Relic abundance

The annihilation channels for DM in the context of U(1)L are given by:

χχ→ e+
i e
−
i , ν̄iνi, ZLZL, ZLhi, hihj , WW, ZZ,

where hi = h1, h2 are the Higgses present in the theory. Their explicit representation

in Feynman graphs is shown in Diagrams 4.55-4.59 from Chapter 4 but exchanging the

new mediator by ZL and the quarks by leptons. In this model, as well as in U(1)B (see

Chapter 4), the perturbative bound on the gauge coupling comes from the S†LSLZLµZ
µ
L
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coupling and reads as

gL ≤
√

2π/3. (5.39)
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Figure 5.12: Results for the DM relic density in four di�erent scenarios, gL = 0.1
(top-left), gL = 0.3 (top-right), gL = 0.5 (bottom-left) and gL =

√
2π/3 (bottom-right).

We take Mh2 = 1 TeV and no mixing angle. The solid blue line gives the measured DM
relic density Ωχh

2 = 0.1200±0.0012 [7], while the region shaded in blue overproduces
it. The region shaded in gray is excluded by the perturbative bound on the Yukawa
coupling yχ. The horizontal red band corresponds to the LEP [181] bound on the U(1)L
gauge boson mass. The bounds from Neff are shown by the purple region and rule out
a large fraction of the parameter space. Figure extracted from Ref. [183].

In Fig. 5.12, we present our result for the DM relic density and di�erent constraints.

The solid blue line saturates the relic abundance, Ωχh
2 = 0.1200± 0.0012 [7], and the

region shaded in blue overproduces it.
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The four plots have two distinct regions where the correct relic abundance is

achieved. One corresponds to the resonance Mχ ≈ MZL/2 in which annihilation into

SM leptons gives the dominant contribution (resonant region). The second one, to the

right of the resonance, corresponds to the non-resonant region in which the annihilation

channel χχ → ZLh2 gives the dominant contribution to the relic density (plateau).

The appearance of the non-resonant region arises due to the Yukawa interaction with

the scalar h2, and hence, new processes contribute to the DM annihilation channels.

Particularly, compared to the previous theory U(1)B−L, the following new channels

contribute to the relic abundance:

hi

χ

χ

ZL

ZL

,
hi

χ

χ

q̄

q

,

χ

χ

hi

hj

,

χ

χ

ZL

hi

,

χ

χ

ZL

hi

, h

χ

χ

W+, Z

W−, Z

. (5.40)

We note that the non-renonant region is a special feature of models where the DM gets

mass through the SSB of the new force.

The area shaded in gray in Fig. 5.12 shows the excluded parameter space by the

perturbative bound on the Yukawa coupling yχ. This bound gives an upper bound on

the DM mass which, due to the connection with MZL , translates as an upper bound on

the lepton number breaking scale, analogously to the U(1)B theory (see Eq. 4.54).

In this scenario, the new gauge boson is coupled only to leptons at tree-level, and

hence, the LHC bounds given in Fig. 3.4 cannot be applied. Even though the coupling

to quarks can be generated at the one-loop level, 4 the bounds are weaker than the one

coming from LEP [181]. The latter are shown by the solid red line.

The upper left panel in Fig. 5.12 corresponds to gL = 0.1. In this case, the bound

from ∆Neff requiresMZL > 0.99 TeV and the correct relic abundance can be produced

close to the resonance Mχ ≈ MZL/2 for DM masses Mχ ≈ 550 GeV − 2.4 TeV.

In the non-resonant regime, the correct relic abundance can be generated for DM

4For a study including one-loop e�ects see [259].
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masses Mχ ≈ 5.4− 39 TeV. For larger DM masses, the Yukawa coupling, yχ, becomes

non-perturbative. In the lower right panel of Fig. 5.12, we show our results for the

maximal value of gL allowed by perturbativity, gL =
√

2π/3 ≈ 0.84. The bound from

∆Neff requires MZL > 8.25 TeV. The resonant region that saturates the relic density

and satisfies the bounds from LEP and ∆Neff corresponds to Mχ ≈ 4.6 GeV − 10.2

TeV, while the non-resonant region works for DM masses Mχ ≈ 8.9 − 34 TeV. Above

this value, the Yukawa coupling becomes non-perturbative. Therefore, the upper bounds

correspond to

MZL . 21 TeV and Mχ . 34 TeV. (5.41)

5.3.3 Phenomenological bounds

Regarding DD, the χ−N interaction can be mediated by Higgs mixing or the

exchange of a ZL. The latter is not coupled to quarks at tree-level, and hence, this

process is loop suppressed [259]. Moreover, due to the Majorana nature of DM, there

will also be velocity suppression. Hence, we focus on the contribution from Higgs

mixing,

h1

χ χ

p p

+ h2

χ χ

p p

(5.42)

where the total spin-independent cross-section is given by

σSIχN (hi) =
72GF√

24π
sin2 θL cos2 θLm

4
N

g2
LM

2
χ

M2
ZL

(
1

M2
h1

− 1

M2
h2

)2

f2
N , (5.43)

where mN corresponds to the nucleon mass, GF is the Fermi constant, and for the

e�ective Higgs-nucleon-nucleon coupling we take fN = 0.3 [204, 261].

In Fig. 5.13, we present our predictions for the spin-independent cross-section as a

function of the DM mass in the U(1)L scenario. We perform a scan overMh2 = 0.1-20

TeV and apply the LHC bound on the scalar mixing angle sin θL ≤ 0.3 [195]. Green

points correspond to sin θL = 0− 0.025, red points correspond to sin θL = 0.025-0.1,

orange points correspond to sin θL = 0.1-0.2, and blue points correspond to sin θL =
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0.2-0.3. The solid black line shows current experimental bounds from Xenon-1T [205],

the dashed black line shows the projected sensitivity for Xenon-nT [81], and the dotted

black line shows the coherent neutrino scattering limit [83].

As illustrated in Fig. 5.13, for DM masses within reach of Xenon-nT, Mχ < 10 TeV,

this type of experiments will be able to probe scalar mixing angles θL > 0.025, providing

a stronger constraint than colliders on the Higgs mixing angle. In this scenario, there is

no strong correlation between the ∆Neff and DD bounds because the main contribution

to DD is mediated by the Higgses in the theory, while ∆Neff provides a constraint on

the ratio MZL/gL.
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Figure 5.13: Predictions for the DD spin-independent cross-section as a function of the
DM mass in the U(1)L scenario. We scan over Mh2 = 0.1 − 20 TeV and apply the
LHC bound [182] on the mixing angle sin θL ≤ 0.3. All points shown here satisfy the
relic density Ωχh

2 = 0.1200 ± 0.0036. The colored points represent di�erent ranges
for sin θL, as indicated in the legend. The solid black line shows current experimental
bounds from Xenon-1T [205], the dashed black line shows the projected sensitivity for
Xenon-nT [81] and the dotted black line shows the neutrino floor [83]. Figure extracted
from Ref. [183].
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5.4 Conclusions

In this chapter, we have investigated possible connections between the origin of

neutrino masses and the properties of DM candidates in simple gauge theories based

on local B-L or L symmetries. In theories based on B-L, the gauge boson mass

can be generated through the Stueckelberg or the Higgs mechanism. In the Canonical

Seesaw scenario, the B-L symmetry is spontaneously broken in two units via the Higgs

mechanism, the neutrinos are Majorana fermions and, in the simplest model, the DM

is a Dirac fermion. In the case of anomaly-free gauge theories based on U(1)L, the

Higgs mechanism is needed to generate the masses for the new fermions present in

the theory for anomaly cancellation. We studied the simplest theories for local lepton

number where the existence of a DM candidate is predicted from anomaly cancellation.

In this case, the lepton number is broken in three units and the neutrinos are predicted

to be Dirac particles, while the DM candidate is a Majorana fermion.

We showed that the cosmological constraint on the relic DM density implies that

the upper bound on the symmetry breaking scale in these theories, i.e. the scale

for lepton number violation, is in the multi-TeV region. In addition, we demonstrated

that in theories where the neutrinos are Dirac, namely, the B-L Stueckelberg scenario

and the theory based on U(1)L, the cosmological bound on the e�ective number

of neutrino species, ∆Neff , provides a strong bound in the parameter space of the

models. Furthermore, the projected sensitivity to this parameter by the CMB Stage-IV

experiments could fully probe the parameter space that also explains DM. In theories

where the neutrinos are Majorana, namely B-L broken in two units, the cosmological

bound on the lepton number violating scale motivates the search of exotic lepton

number violating signals at the LHC and future colliders. These results allow us to

be optimistic about the testability of the mechanism for neutrino masses in current and

future experiments.
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Chapter based on the work done in 1604.03377 and 1804.07831.

Grand Unified Theories (GUTs) are well motivated scenarios for a UV completion

of the SM. The idea of unification is undeniably attractive. In the context of gauge

theories, it has been already proved to occur along the last century. First, electricity and

magnetism were unified in the Maxwell equations in 1864 [262], proven to be two faces

from the same coin. In the 60’s, Glashow [263], Salam [264] and Weinberg [265] unified

the electromagnetic and weak interactions in the EW theory. The SM is defined by the

tensor product of three di�erent symmetry gauge groups, each of them characterized by

the corresponding strength coupling. What if they would be embedded in a single force?

By looking at the matter content, we have leptons and quarks, which are fermions with

similar patterns of behaviour that di�er in their color and hypercharge. What if they

come from some common representation where they were treated on an equal footing?

Let us look now at the evolution of the strength of the forces conforming the SM, which

is represented by their gauge coupling. As Fig. 6.1 shows, where αi = g2
i /4π, when

letting those evolve with energy, the three forces point to a common strength around

Λ = 1014 GeV, which is peculiarly close to the canonical seesaw scale for neutrino

masses (see Chapter 1) and the experimental bounds on proton decay. This hint on a

unified scale at high energies, together with the beauty and predictive power of a theory

with a unique gauge coupling, motivated physicists to seek for a unified framework

where the SM could be embedded.

The simplest GUT theory where the 15 Weyl d.o.f. of the SM can be embedded

is SU(5). All elementary particle forces (strong, weak, and electromagnetic) are di�erent
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Figure 6.1: On the left, evolution of the SM gauge couplings in the context of the SM
particle content. On the right, the steps towards unification in gauge forces are shown.

manifestations of the same fundamental interaction involving a single coupling strength,

conjectured Georgi and Glashow in 1974 [266]. In their original minimal theory, quarks

and leptons unify in the 5̄ and 10 representations in an anomaly free way, and the

scalar content is composed of the minimal representations needed to break SU(5)

down to QED and QCD. Because of the traceless nature of its generators, the charges of

the SM fermions are predicted and the theory is anomaly free. Besides, the theory also

predicts striking phenomenological signatures such as the decay of the proton, whose

lifetime has a lower bound around 1032−34 years, what in turn defines a lower bound

for the SU(5) scale around ΛGUT ∼ 1014−15 GeV. 1 Such big scale, to which we will

refer as GUT scale, brings us to the hopeless fact that these theories are well beyond

the reach of the current accelerators and predict a great dessert between NP and us. On

the other hand, GUTs are so powerful that, although living in such high energy scale,

its predictability can be the reason to rule them out, as it is the case of the original

SU(5) proposed by Georgi-Glashow (SU(5)GG). The particular reasons that invalidate

this theory are enumerated below:

(i) it does not reproduce the values of the SM gauge couplings at the low scale,

(ii) it predicts a wrong relation between the down quarks and charged lepton masses,

1As we will see along this chapter, this lower bound can be relaxed depending on the class of SU(5)
theory and its predictive power.
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(iii) neutrinos are massless in its context as well as in the SM.

Therefore, one needs to account for the later three aspects in order for the theory to be

compatible with experiment, to which we will refer as realistic.

Conventionally, there are three ways to tackle problem (i), i.e. to achieve a consistent

relation between the charged leptons and down quark masses:

(a) Include higher-dimensional operators suppressed by the Planck scale [267]. Those

allow to correct the relation between the fermion masses, but one has to give up

on the renormalizability of the theory.

(b) Add a new Higgs in the 45H representation [268]. At the renormalizable level, it is

well known that the 45H contains a second Higgs doublet that couples di�erently

to electrons than down-quarks, what allows to correct their mass relation.

(c) Add new vector-like fermions [269]. They can correct the mass relation through

their mixing with the SM fermions.

To solve both problem (ii) and (iii) in each of the above escenarios, extra

representations are needed. In this chapter, we will introduce the SU(5)GG in the

first place, we will discuss the possibilities to generate neutrino masses in the context

of SU(5), and we will propose two simple realistic SU(5) realizations at the end of

this chapter.

6.1 Minimal GUT : SU(5) à la Georgi and Glashow

The 15 Weyl d.o.f. from the SM can be grouped in only two SU(5) representations;

the antifundamental and the antisymmetric: 2

5̄ ∼ (1, 2̄,−1/2)︸ ︷︷ ︸
lL

⊕ (3̄, 1, 1/3)︸ ︷︷ ︸
(dc)L

, and 10 ∼ (3̄, 1,−2/3)︸ ︷︷ ︸
(uc)L

⊕ (3, 2, 1/6)︸ ︷︷ ︸
qL

⊕ (1, 1, 1)︸ ︷︷ ︸
(ec)L

.

2Notice that, unfortunately, SU(5) does not predict the number of families and three copies of the
above representations have to be considered as in the SM.
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Between brackets we write the explicit decomposition according to the SM quantum

numbers. In a matrix form, they can be represented as follows,

5̄=




dc1
dc2
dc3

e

−ν




L




SU(3)c

}
SU(2)L

and 10=
1√
2




0 uc3 −uc2 −u1 −d1

−uc3 0 uc1 −u2 −d2

uc2 −uc1 0 −u3 −d3

u1 u2 u3 0 ec

d1 d2 d3 −ec 0




L

.

(6.1)

We note that the first three rows (three columns) can be identified as SU(3)c indices

and the last two rows (two columns), as SU(2)L indices. The gauge group SU(5) has

rank 4, i.e. a total of four diagonal generators:

T3 =

(
λ3
2 0

0 0

)
, T8 =

(
λ8
2 0

0 0

)
, Tσ3 =

(
0 0

0 σ3
2

)
, and TY =

1

2
√

15

(
−2 I3×3 0

0 3 I2×2

)
,

as well as the SM, where one can recognize the 2 diagonal generators of SU(3)c (T3 and

T8), the diagonal generator of SU(2)L (Tσ3 ) and the equivalent to the U(1)Y generator

(TY ). As the following diagram shows,

Ti =




· ·
· ·
· ·

· · ·
· · ·



, (6.2)

the red block 3× 3 corresponds to the SU(3)c space, while the 2× 2 block in blue, to

the SU(2)L indices. The o�-diagonal blocks, 3× 2 and 2× 3 correspond to generators

both charged under SU(2)L and SU(3)c quantum numbers to which we will refer

as leptoquarks (LQ), since they will mediate interactions between leptons and quarks.

In the following, we will use block matrices to simplify the explicit expression of the

SU(5) representations.
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The scalar content of the SU(5)GG is composed of the minimum amount of scalar

representations required for recovering the SM and to trigger the posterior EW SSB:

SU(5)
SSB I→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

SSB II→ SU(3)⊗ U(1)Q. (6.3)

The first breaking step respects the rank of the gauge symmetries. This can be achieved

by the adjoint representation of SU(5), i.e. by adding a 24H : 3

24H =

(
Σ8 Σ(3,2)

Σ(3̄,2) Σ3

)
+ TY Σ0 =

(
Σ8 − 1√

15
Σ0 Σ(3,2)

Σ(3̄,2) Σ3 + 3
2
√

15
Σ0

)
, (6.4)

whose components have the following SM quantum numbers,

24H ∼ (8, 1, 0)︸ ︷︷ ︸
Σ8

⊕ (1, 3, 0)︸ ︷︷ ︸
Σ3

⊕ (3, 2,−5/6)︸ ︷︷ ︸
Σ(3,2)

⊕ (3̄, 2, 5/6)︸ ︷︷ ︸
Σ(3̄,2)

⊕ (1, 1, 0)︸ ︷︷ ︸
Σ24

. (6.5)

The 24H representation should be broken in the direction of TY in order to recover the

SM. After SSB, it reads as

〈24H〉 =
vΣ

2
√

15

(
−2 I3×3 0

0 3 I2×2

)
. (6.6)

We note that the LQs do not commute with Σ0, while the SU(3)c and SU(2)L

generators do, so that these local symmetries remain unbroken in the first step.

In the second breaking step, the rank is lowered in two units, and this is achieved

by a scalar representation in the fundamental of SU(5), i.e. a 5H whose SU(2)L

component, H1, can be identified with the SM Higgs boson:

5H ∼ (1, 2, 1/2)︸ ︷︷ ︸
H1

⊕ (3, 1,−1/3)︸ ︷︷ ︸
T

=

(
T

H1

)
. (6.7)

3The 24H is written such that 24H = 24aHTa, where Ta are the generators of SU(5). Notice that for
Σ0 the corresponding generator has been explicitly factorized out. Therefore, 〈Σ0〉 = vΣ.
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Taking the above into account, the breaking pattern in Eq. 6.3 can be updated to:

SU(5)
〈Σ0〉→ SU(3)c ⊗ SU(2)L ⊗ U(1)Y

〈H1〉→ SU(3)c ⊗ U(1)Q. (6.8)

Notice that, while in SU(5) the normalization of the hypercharge is well-defined, in

the SM it is arbitrary. The generators of a non-abelian gauge group are normalized

according to

Tr{TaTb} =
1

2
δab, (6.9)

so that the normalization of the corresponding non-abelian gauge coupling is

unambiguously fixed. In contrast, for abelian groups like U(1)Y , there is freedom

in how we define the charge or the gauge coupling. In order to obtain the hypercharges

as normalized in the SM, i.e. electric charge of the electron equal to −1, we will redefine

our U(1) gauge coupling (g1) by imposing gYB = g1TY . Since

TY =

√
3

5

(
1
3 I3×3 0

0 −1
2 I2×2

)
=

√
3

5
B ⇒ gY =

√
3

5
g1 . (6.10)

In this way, the hypercharge operator is embedded in SU(5) and enjoys the right

normalization (3/5)Tr{B2} = 1/2 in its context. Therefore, once we fix one of the field

hypercharges (i.e. Y (dcL) = 1/3), we can predict all the rest. The same can be applied

to the charge operator, which after SSB is given by Q = Tσ3 + B = Tσ3 +
√

3/5TY .

Taking into account the 52 − 1 = 24 generators of SU(5), the gauge content can be

classified as:

V µ
24 ∼ (8, 1, 0)︸ ︷︷ ︸

Gµ

⊕ (1, 3, 0)︸ ︷︷ ︸
Wµ

⊕ (3, 2,−5/6)︸ ︷︷ ︸
V †µ2

⊕ (3̄, 2, 5/6)︸ ︷︷ ︸
V µ2

⊕ (1, 1, 0)︸ ︷︷ ︸
Bµ

,

which, expressed in a matrix form, reads as

V µ
24 = V aµ

24 Ta =

(
Gµ − 1√

15
Bµ V †µ2

V µ
2 Wµ + 3

2
√

15
Bµ

)
.
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In the above expression, the twelve SM generators can be recognized: eight gluons

Gµa=1,··· ,8, the EW bosons Wµ
a=1,···3 and the hypercharge operator Bµ in the diagonal.

In the o�-diagonal blocks we can identify twelve leptoquarks. Those, as we are

commenting in the following, will get mass at the GUT scale through the SU(5) SSB.

The relevant terms from the SU(5) Lagrangian for the mass generation of the

bosons and fermions in the theory are given by

LSU(5) ⊃ Tr{Dµ24†HD
µ24H}+ (Dµ5H)†Dµ5H︸ ︷︷ ︸

Gauge boson masses

+ LY︸︷︷︸
Fermion masses

+ µ2
5 5†H5H − α 5†H5HTr{242

H} − β 5†H242
H5H︸ ︷︷ ︸

Higgs boson masses

.
(6.11)

Once the theory undergoes SSB and both 24H and 5H acquire a vev, the masses for the

vector LQs are given by

Tr{(Dµ〈24H〉)†Dµ〈24H〉} =
5

6
g2
GUT v

2
Σ Tr{V †2µV µ

2 } ⇒MGUT =

√
5

6
gGUT vΣ. (6.12)

Here, we used that the covariant derivative for the adjoint representation of SU(5) reads

as Dµ24H = ∂µ24H + igGUT[V
µ

24, 24H ]. Notice that the trace over the o�-diagonal

SU(5) generators has been explicitly written down. The above mass term, i.e. the mass

of the LQs, defines the GUT scale ΛGUT ∼MGUT.

On the other hand, the scalar potential defines as well the masses of the Higgs

bosons. Of special interest are the masses for the bosons in the 5H representation, i.e.

the masses of the colored triplet and the SM Higgs doublet, which can be inferred from

the scalar potential terms from Eq. 6.11 and read as:

M2
H = −µ2

5 +
1

2

(
α+

3

10
β

)
v2

Σ, and M2
T = −µ2

5 +
1

2

(
α+

2

15
β

)
v2

Σ. (6.13)

The Higgs doublet should live at the EW scale, what requires a delicate cancellation

among the µ5 and vΣ terms. Due to the splitting between both boson masses, if such

enormous tuning is applied in the M2
H in Eq. 6.13, the mass of the triplet will remain

at the GUT scale, which is welcome since T ∼ (3, 1,−1/3) does mediate proton decay
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and, as has been previously mentioned, such bounds are pretty aggressive. This huge

splitting in the mass scale of the 5H representation is known as the doublet-triplet

splitting problem, and it constitutes a fine tuning problem of about twelve orders of

magnitude that unfortunately fades the beauty of SU(5).

Finally, the Yukawa Lagrangian LY is given by the terms allowed by the gauge

symmetry with the particle content described above as an input:

− LY = 5̄Y1 10 5∗H + 10Y3 10 5Hε5 + h.c., (6.14)

where, from now on, the implicit notation R1R2 ≡ RTCR2 will be assumed in the

context of GUT theories. After SSB, 〈5H〉 = v5/
√

2 and the above Lagrangian generates

the following charged fermion masses:

Md = MT
e = Y1

v∗5
2
, and Mu = 2(Y3 + Y T

3 )
v5√

2
. (6.15)

where v5 = v0 = 246 GeV. Here we find the first prediction that invalidates SU(5)GG:

charged leptons and down quarks share the same mass matrix at the GUT scale and,

unfortunately, when considering the running to the low scale through the corresponding

RGE equations, the experimental masses of the SM fermions cannot be achieved in this

context. Therefore, we should think about extending the SU(5)GG to make it realistic.

6.1.1 Unification constraints

The Running Group Evolution (RGE) equations for the gauge couplings of the SM

are given by,

1

αi(MZ)
− 1

αi(µ)
=

1

2π
bSM
i ln

µ

MZ
+

1

2π

∑

I

bIi Θ(µ−MI) ln
µ

MI
. (6.16)
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The coe�cients bi in the above expression are determined by the group theory

properties of the representation R in a given gauge group, according to

bi =
1

3

∑

R

S(R)Ti(R)
∏

j 6=i
dimj(R)

︸ ︷︷ ︸
multi(R)

, (6.17)

where i = 1, 2, 3. For a given representation R, S(R) = 1, 2 and −11 for scalar, chiral

fermion and gauge bosons, respectively; Ti(R) is the Dynkin index of R under the gauge

group i; and multi(R) is the multiplicity of R under the rest of the gauge groups in the

tensor product, similarly to that introduced in Eq. 3.8. For the SM fields, bSM1 = 41/10,

bSM2 = −19/6 and bSM3 = −7 (see Table 6.1). While those are at the EW scale, the new

particles I can live in an intermediate scale between MZ < MI < MGUT. We also note

that in order to write the gauge couplings α−1
i as a function of αs and α from QCD

and QED, respectively, one should take into account the proper normalization:

α−1
1 ≡ α−1 cos2 θW

3

5
, α−1

2 ≡ α−1 sin2 θW , and α−1
3 ≡ α−1

s . (6.18)

5̄ 10 V24 5H 24H

lL (dc)L (uc)L qL (ec)L Gµ Wµ H1 T Σ8 Σ3

b1
3
5

2
5

8
5

1
5

6
5 0 0 1

10
1
15rT 0 0

b2 1 0 0 3 0 0 −22
3

1
6 0 0 1

3rΣ3

b3 0 1 1 2 0 −11 0 0 1
6rT

1
2rΣ8 0

B12 −4
5

2
15

8
15 −44

15 −2
5 0 22

3 − 1
15

1
15rT 0 −1

3rΣ3

B23 1 −1 −1 1 0 11 −22
3

1
6 −1

6rT −1
2rΣ8

1
3rΣ3

Table 6.1: Contributions to the Bij coe�cients for SU(5).

By the definition itself of a GUT, the di�erent couplings unavoidably unify at the

GUT scale because they come from the same force. From Eq. 6.16, knowing that

α1(MGUT) = α2(MGUT) = α3(MGUT) = αGUT, and the equivalences from Eq. 6.18, one
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can find the following relations among the low scale inputs [270]:

B23

B12
=

5

8

(
sin2 θW (MZ)− α(MZ)/αs(MZ)

3/8− sin2 θW (MZ)

)
= 0.717, (6.19)

ln
MGUT

MZ
=

16π

5α(MZ)

(
3/8− sin2 θW (MZ)

B12

)
=

184.95

B12
, (6.20)

where Bij = Bi −Bj , being Bi defined as

Bi = bi +
∑

I

bIi r
I , where rI =

ln(ΛGUT /MI)

ln(ΛGUT /MZ)
. (6.21)

In the RHS of the conditions from Eq. 6.19 and 6.20, the following experimental values,

sin2 θW (MZ) = 0.23122, α(MZ) = 1/127.955, and αs(MZ) = 0.1181 at the MZ

scale [198] have been used. The above expressions are required by unification at the

1-loop level. By taking into account the SM particle content, condition 6.19 gives ≈ 0.53,

far from the desired value. Therefore, in the context of the SM, as Fig. 6.1 shows,

unification cannot be achieved.

Let us consider SU(5)GG instead. It contains extra fields with respect to the SM

in the representations 5H and 24H , which may in principle modify the RGE equations.

In Table 6.1, we list the contribution to the running of the gauge couplings of the SM

fields plus the extra fields predicted by SU(5)GG. Notice that we do not consider the

LQ vector bosons because they are at the GUT scale and therefore do not contribute

until then, 4 nor the scalar bosons in the o�-diagonal terms of 24H since they are the

GBs responsible for the mass of the vector LQs. Finally, the singlet living in V24 and

the one living in 24H are not included because they do not modify the running of the

gauge couplings. For SU(5)GG, the unification ratio takes the form:

B
SU(5)
23

B
SU(5)
12

=
BSM

23 + 1
3rΣ3 − 1

6rT − 1
2rΣ8

BSM
12 − 1

3rΣ3 + 1
15rT

∣∣∣∣∣
optimistic

. 0.6, (6.22)

4After ΛGUT they are indeed the responsible fields for making the αi evolve at once as αGUT.



6.1 Minimal GUT : SU(5) à la Georgi and Glashow 189

where the inequality shows that, even adopting the most optimistic scenario (i.e. the

values for the splitting between the representations that allow for the largest possible

ratio), the proper value in Eq. 6.19 cannot be reached.

And here we have bumped into problem (ii)! It is sometimes found in the literature

that unification cannot be achieved in SU(5)GG so that the theory is ruled out. The later

is an abuse of language; the inability of a GUT theory to satisfy Eq. 6.19 and 6.20 reflects

that the experimental values of the SM gauge couplings cannot be reproduced at the

low scale regardless of the unification scale we start the running. But of course the

gauge couplings unify in SU(5), as well as any other GUT theory!

6.1.2 Proton decay

One of the most exciting predictions of GUT theories based on SU(5) is the decay

of the proton. However, we have never seen the proton decaying; actually it is one of

the most stable particles in the universe, being the lower bound on its lifetime around

1032−34 years. See Fig. 6.2 for a collection of some bounds on proton decay channels.

Such prediction has, of course, dramatic implications for the GUT scale.
2
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Figure 6.2: Most relevant bounds on proton decay channels by Super-Kamiokande (SK)
collaboration (in red), and the respective projected bounds by the Hyper-Kamiokande
(HK) collaboration (in orange) and DUNE (in green), extracted from Refs. [158, 271–273].
In darker red we show the preliminary result of Super-K 2020 on the p → π0e+

channel [274].
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In order to estimate the proton decay rate, let us present the interactions that can

mediate such phenomenon. There are several LQs in this theory that can lead to the

decay of the proton, either via a scalar or a vector boson. In the scalar case, one

can always escape from the experimental bounds by assuming a small enough Yukawa

coupling if there is the freedom to do it. The gauge mediated interactions, however, are

clean in the sense that they are mediated by the gauge coupling, which is tightly related

to the GUT scale. We will focus only on these interactions since they are the dominant

contribution to the ∆B = 1 processes. Let us start from the matter kinetic Lagrangian:

L ⊃ i5̄†γ0γµDµ5̄ + iTr{10†γ0γµDµ10}, (6.23)

where the covariant derivatives depend on the representation on which they act: Dµ5̄ =

∂µ5̄ + igGUTV
T

24µ5̄ and Dµ10 = ∂µ10 + igGUT(V24µ10 + 10V T
24µ). From the above

Lagrangian, one obtains the kinetic terms for the SM fermions plus some interacting

terms between fermions and gauge bosons included in the covariant derivatives. The

non-SM interacting terms involve the V µ
2 LQ. Those are given by,

L ⊃ gGUT√
2


(dc)Lγ

µV T
2µiσ2`L︸ ︷︷ ︸

Kinetic 5̄

+ (uc)LV
µ†

2 γµqL − (ec)LγµV
µT

2 iσ2qL︸ ︷︷ ︸
Kinetic 10

+h.c.


 . (6.24)

Explicitly expanding over the SU(2)L components, taking into account that V µ
2 =

(Xµ, Y µ)T where X and Y have electric charges 4/3 and 1/3, respectively, the above

Lagrangian can be written as,

L ⊃gGUT√
2


−(ec)LYµγ

µuL + (ec)LXµγ
µdL − (dc)LXµγ

µeL + (dc)LYµγ
µνL︸ ︷︷ ︸

LQ vertices

+ (uc)LX
†
µγ

µuL + (uc)LY
†
µγ

µdL︸ ︷︷ ︸
Diquark vertices


+ h.c.−M2

GUT(X
†
µX

µ + Y †µY
µ).

(6.25)

As we will see, combination of leptoquark and diquark vertices leads to baryon and

lepton violation, although B-L is conserved. Integrating out the X boson, we end up
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with the following e�ective Lagrangian (for more details on integrating out heavy fields

see Chapter 8),

LXe� ⊃
g2
GUT

M2
GUT

(
(uc)Lγ

µuL (ec)LγµdL − (uc)LγµuL (dc)Lγ
µeL + h.c.

)
, (6.26)

while, on the other hand, if we integrate out Y , we get instead

LYe� ⊃
g2
GUT

M2
GUT

(
(ec)LγµuL (uc)Lγ

µdL − (uc)Lγ
µdL (dc)LγµνL + h.c.

)
. (6.27)

The first term in the Lagrangian from Eq. 6.27 can be rewritten using the Fierz identities

(see Appendix A) in the following way:

(ec)LγµuL (uc)Lγ
µdL ≡ (uc)LγµuL (ec)Lγ

µdL, (6.28)

so that it can be identified with the first interaction from the e�ective Lagrangian of

the X boson. In total, from the above interactions one can recongnize three kinds of

e�ective operators contributing to proton decay, listed below:

O∆B=1
(eci ,dj)

=
g2
GUT

2M2
GUT

c(eci , dj) (ucL)γµuL (ec)iLγµdjL, (6.29)

O∆B=1
(ei,dcj)

=
g2
GUT

2M2
GUT

c(ei, d
c
j) (uc)Lγ

µuL (dc)jLγµeiL, (6.30)

O∆B=1
(ν`,di,d

c
j)

=
g2
GUT

2M2
GUT

c(ν`, di, d
c
j) (uc)Lγ

µdiL (dc)jLγµν`, (6.31)

where some mixing matrices arise when rotating to the mass eigenbasis of the fermions.

Those are encoded in the c coe�cients [275] , defined as 5

c(ecα, dβ) = V 11
1 V αβ

2 + (V1VUD)1β(V2V
†
UD)α1, (6.32)

c(eα, d
c
β) = V 11

1 V βα
3 , (6.33)

c(νl, dα, d
c
β) = (V1VUD)1α(V3VEN )βl, (6.34)

5Notice the two contributions in Eq. 6.32, from the X and Y e�ective Lagrangians, respectively.
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where the V ’s are mixing matrices defined as

V1 = U †CU, V2 = E†CD, V3 = D†CE, VUD = U †D and VEN = E†N. (6.35)

Here, the matrices U , E, D and N define the diagonalization of the Yukawa couplings:

UTCYuU = Y diag
u , DT

CYdD = Y
diag
d , ETCYeE = Y diag

e , and NTYνN = Y diag
ν . (6.36)

Since SU(5) interactions mediate proton (p) decaying into an anti-lepton (¯̀) and a

meson (M ), the decay rate of such process can be parametrized as

Γp→M ¯̀ =
mp

32π

(
1−

(
mp

mM

)2
)2 ∣∣∣∣∣

∑

i

〈M |O∆B=1
i |p〉

∣∣∣∣∣

2

, (6.37)

where O∆B=1
i are precisely the operators mediating ∆B = 1 interactions from

Eqs. 6.29-6.31. In order to compute the matrix elements, we can get rid of the Lorentz

indices from these operators by rewriting them as scalar bilinears:

O∆B=1
(eci ,dj)

=
g2
GUT

M2
GUT

c(eci , dj)(u
cPRdj)(eciPLu), (6.38)

O∆B=1
(ei,dcj)

=
g2
GUT

M2
GUT

c(ei, d
c
j)(u

cPLdj)(eciPRu), (6.39)

O∆B=1
(ν`,di,d

c
j)

=
g2
GUT

M2
GUT

c(ν`, di, d
c
j)(u

cPRdj)(νcPLdi), (6.40)

where the Fierz identities (see Appendix A) have been used again. Plugging in Eq. 6.37

the above operators, we end up with the following expression for the decay rate,

Γp→M ¯̀ = A2
RG
πmp

2

(
1−

m2
p

m2
M

)2(
αGUT

M2
GUT

)2
∣∣∣∣∣
∑

i

ci〈M |`c(q1 q2)L/R q3 L/R|p〉
∣∣∣∣∣

2

(6.41)

where inside the matrix element one can recognize the three-quark operator violating

baryon number, where (q1 q2)L/R ≡ qT1 CPL/R q2, and the ARG accounts for the running

between the GUT scale and Q ∼ 2.3 GeV, where the hadronic matrix elements are
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evaluated: 6

ARG =

(
α3(mb)

α3(MZ)

)6/23( α3(Q)

α3(mb)

)6/25( α3(MZ)

α3(MGUT)

)2/7

. (6.42)

We can particularize the decay rate in Eq. 6.41 to some specific channels which, as

Fig. 6.2 shows, comprise the strongest experimental bounds on proton decay:

Γp→π0e+ =
πmp

2
A2

RG

(
αGUT

MGUT

)4 ∣∣Ve
〈
π0
∣∣(ud)LuR

∣∣p
〉∣∣2 , (6.43)

Γp→K+ν̄ =
πmp

2

(
1−m

2
K+

m2
p

)2

A2
RG

(
αGUT

MGUT

)4

×
(∣∣(V1VUD)11

〈
K+
∣∣(us)RdL

∣∣p
〉∣∣2 +

∣∣(V1VUD)12
〈
K+
∣∣(ud)RsL

∣∣p
〉∣∣2
)
, (6.44)

Γp→π+ν̄ =
πmp

2
A2

RG

(
αGUT

MGUT

)4 ∣∣(V1VUD)11
〈
π+
∣∣(du)RdL

∣∣p
〉∣∣2 , (6.45)

where

Ve =

√(∣∣(V 11
2 + V 11

CKM(V2VCKM)11)
∣∣2 +

∣∣V 11
3

∣∣2
)
, (6.46)

and we have explicitly summed over the three neutrino flavours and used that V

matrices in Eq. 6.35 are unitary. 7 For the matrix elements appearing in the above

expressions we take as an input the results evaluated via Lattice QCD at the scale Q,

given in the recent Ref. [276]:

〈
π+
∣∣(du)RdL

∣∣p
〉

= −0.186 GeV2,
〈
π0
∣∣(ud)RuL

∣∣p
〉

= −0.131 GeV2,
〈
K+
∣∣(us)RdL

∣∣p
〉

= −0.049 GeV2,
〈
K+
∣∣(ud)RsL

∣∣p
〉

= −0.134 GeV2. (6.47)

Note that, although we could fix αGUT/M
2
GUT from the unification conditions, we still

have some freedom in the fermion mixing matrices V , being the only known one the

CKM matrix, VUD ≡ VCKM.
6See Ref. [275] for a more details.
7We note that, when summing over all possible anti-neutrinos, the crossed terms coming from

expanding the modulus squared will disappear due to the orthonormality conditions of the unitary mixing
matrices.
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In the original SU(5)GG, from Eq. 6.15 we can identify YU ≡ 2(Y3 + Y T
3 ), and

realize that YU = Y T
U is symmetric. From the spectral theorem it is well-known that

a symmetric matrix is diagonalized by an orthonormal matrix, so that the matrix U

in Eq. 6.35 is orthonormal up to some complex phase. According to the definition of

the mixing matrices in Eq. 6.36, the one that arises from the diagonalization of the up

quark mass matrix is therefore,

V1 ≡ U †CU = Ieiφ, (6.48)

for theories where the up quark mass matrix is symmetric [275]. This allows us to make

a clean prediction for the proton decay channels into antineutrinos, which applying the

above result to Eqs. 6.44 and 6.45 read as,

Γp→K+ν̄ =
πmp

2

α2
GUT

M4
GUT

(
1− m2

K+

m2
p

)2

A2
RG (6.49)

×
(∣∣V 11

CKM

〈
K+
∣∣(us)RdL

∣∣p
〉∣∣2 +

∣∣V 12
CKM

〈
K+
∣∣(ud)RsL

∣∣p
〉∣∣2
)
,

Γp→π+ν̄ =
πmp

2

α2
GUT

M4
GUT

A2
RG

∣∣V 11
CKM

〈
π+
∣∣(du)RdL

∣∣p
〉∣∣2 , (6.50)

which can be further simplified by rewriting them as

Γp→K+ν̄ =
πmp

2

α2
GUT

M4
GUT

(
1− m2

K+

m2
p

)2

CK , (6.51)

Γp→π+ν̄

Γp→K+ν̄
=

Cπ
CK

(
1− m2

K+

m2
p

)−2

' 20, (6.52)

where

CK = A2
RG

(∣∣V 11
CKM

〈
K+
∣∣(us)RdL

∣∣p
〉∣∣2 +

∣∣V 12
CKM

〈
K+
∣∣(ud)RsL

∣∣p
〉∣∣2
)
' 0.01,

Cπ = A2
RG

∣∣V 11
CKM

〈
π+
∣∣(du)RdL

∣∣p
〉∣∣2 ' 0.1. (6.53)
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This is a wonderful prediction from SU(5)GG: it can cleanly predict the decay rate of

the proton for the decay channels involving antineutrinos. As we will see later, this

peculiar prediction is not common in all extensions of SU(5)GG: for instance, the

introduction of a scalar representation 45H to correct the relation between the charged

fermion masses spoils the symmetric nature of the up-type quark Yukawa coupling.

To close this first part of the chapter, we will comment that SU(5)GG, although

being the simplest and most predictive GUT ever written, apart from not being able to

reproduce the correct charged fermion masses -problem (i)- and the low scale values of

the gauge couplings -problem (ii)-, it predicts massless neutrinos since no mass term

is allowed by the SU(5) symmetry and the particle content considered in its minimal

realization -problem (iii)-, as in the SM. In the next section we present the simplest

possibilities to generate neutrino masses in the context of SU(5).

6.2 Mechanisms for neutrino mass generation in SU(5)

In this section we discuss the implementation of the three seesaw mechanisms

introduced in Chapter 1 in the context of SU(5) (see Diag. 6.54), and two of the

simplest 1-loop mechanisms: the colored seesaw and the Zee model.

5H

5̄

5H

5̄

1

Type-I

5̄

5̄

5H

5H

15H

Type-II

5H

5̄

5H

5̄

24

Type-I and -III

(6.54)

6.2.1 Type-I seesaw

As discussed in Chapter 1, a Dirac mass term can be generated by adding a fermion

singlet under the SM, (νc)L ∼ 1 ∼ (1, 1, 0), which can be straightforwardly generalized

in SU(5) by adding a 1 fermion representation. The addition of a singlet does not spoil

anomaly cancellation of the gauge theory. In addition with the Dirac mass term, we

unavoidably have a Majorana mass term too since it is not forbidden by any symmetry.
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The relevant Lagrangian in this case is given by,

− LType-I ⊃ Y i
ν 5̄i 5H 1 +

1

2
Mν 1 1 + h.c.. (6.55)

The reader may find the above expression familiar; indeed, it corresponds to the Type-I

seesaw Lagrangian described in Eq. 1.18 from Chapter 1. The resulting mass matrix for

neutrinos is given in Eq. 1.19. Notice, however, that the Yukawa coupling Yν in the above

Lagrangian is just a vector, as the explicitly written family index indicates, so that the

neutrino mass matrix will be rank 1 in this case. Therefore, as pointed out in Chapter 1,

in order to generate realistic neutrino masses, at least two copies of νR ∼ 1 are needed.

The implementation of this mechanism with the addition of fermion singlets, in despite

of its simplicity, is not attractive from the perspective that the Majorana mass Mν is a

dimensionful parameter, not protected by the gauge symmetry and therefore exposed to

any UV e�ects.

6.2.2 Type-II seesaw

In the context of SU(5), neutrino masses can also be generated through the Type-II

seesaw mechanism, introduced in Chapter 1. Such mechanism can be implemented by

the addition of a new Higgs representation, the symmetric 15H . This minimal realistic

extension was first proposed in Ref. [277], and further studied in Refs. [278, 279]. The

15H contains the following fields under the SM quantum numbers:

15H = (1, 3, 1)︸ ︷︷ ︸
∆

⊕ (3, 2, 1/6)︸ ︷︷ ︸
∆(3,2)

⊕ (6, 1,−2/3)︸ ︷︷ ︸
∆S

. (6.56)

Inside the 15H representation, ∆ ∼ (1, 3, 1) plays a key role in the implementation of

the seesaw mechanism; it can be identified with the scalar triplet with hypercharge 1

needed for the Type-II seesaw (see Eq. 1.21). The Yukawa Lagrangian in the presence of

15H reads,

− LY ⊃ 5̄ Y1 10 15H + 10 Y2 10 5H ε5 + 5̄ Y∆ 5̄ 15H + h.c., (6.57)
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while from the scalar potential of this SU(5) extension we highlight the following terms:

V ⊃M2
∆15∗H15H +

(
µ̃ 5∗H5∗H15H + λ̃ 5∗H5∗H24H15H + h.c.

)
. (6.58)

The interactions in Eqs. 6.57 and 6.58 lead to the following Lagrangian in the broken

phase,

− LType-II = M2
∆Tr{∆†∆}+

(
Y ij

∆ `TiLCiσ2∆`jL + (µ+ λ vΣ)HT
1 iσ2∆†H1 + h.c.

)
,

(6.59)

where the Type-II seesaw Lagrangian from Eq. 1.22 can be recognized. Once the triplet

∆ in 15H acquires a vev, i.e. 〈∆〉 = v∆/
√

2, the neutrinos get a Majorana mass that,

taking into account Eqs. 1.23 and 1.26, can be written as

M ij
ν ∼

√
2 (µ+ λ vΣ) Y ij

∆

v2
0

M2
∆

. (6.60)

Note that in order to achieve the scale for neutrino masses observed at experiment,

M2
∆/ (µ+ λ vΣ) ∼ O(1013−14) GeV. Note also that we have written explicitly the

family indices in order to point out that, this time, Y∆ is a matrix that can be up to

rank 3. Therefore, in principle, with only one triplet ∆ there is enough freedom to

reproduce the experimental neutrino masses. The addition of the 15H is an attractive

extension of the SU(5)GG theory since it has enough potential to recover unification,

whose conditions predict the LQ ∆S to be at the EW scale. Furthermore, although the

addition of the 15H does not modify the charged fermion masses, a consistent relation

among them could be achieved by allowing for non-renormalizable interactions.

6.2.3 Type-III seesaw

This mechanism, also described in Chapter 1, is mimicked in SU(5) by adding a

fermion representation in the adjoint of SU(5) [27, 28, 280–282]:

24 ∼ (8, 1, 0)︸ ︷︷ ︸
ρ8

⊕ (1, 3, 0)︸ ︷︷ ︸
ρ3

⊕ (3, 2,−5/6)︸ ︷︷ ︸
ρ(3,2)

⊕ (3̄, 2, 5/6)︸ ︷︷ ︸
ρ(3̄,2)

⊕ (1, 1, 0)︸ ︷︷ ︸
ρ0

, (6.61)
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which has the following matrix representation,

24 =

(
ρ8 ρ(3,2)

ρ(3̄,2) ρ3

)

L

+ TY ρ0L.

The 24 contains the key ingredient for the Type-III seesaw mechanism: an

hyperchargeless SU(2)L triplet of leptons. To enlarge the matter content by including a

real representation is not a problem since, as explained in Chapter 3, such representation

does not spoil anomaly cancellation. The relevant interactions for this mechanism are

collected below,

− LType-III ⊃ h1 5̄ 24 5H +M24Tr{242}+ λTr{24224H}+ h.c.. (6.62)

We note that, in this case, since the 24 also contains a fermion singlet ρ0 ∼ (1, 1, 0), the

Type-I seesaw mechanism will inexorably occur together with the Type-III, as illustrated

in Diag. 6.63:

5H

5̄

5H

5̄

24 =

H1

`

H1

`

(ρ0)c

Type-I seesaw

+

H1

`

H1

`

(ρ3)c

Type-III seesaw

. (6.63)

After 24H gets a vev, the above Lagrangian leads to the following interactions,

−LType-III ⊃
1

2
Mρ0ρ

T
0 CPLρ0 +Mρ3Tr{ρT3 CPLρ3}

+ hi1`
T
i Ciσ2PL

(
ρ3 +

3

2
√

15
ρ0

)
H1 + h.c.,

(6.64)

where Mρ0 = M24−λvΣ/(2
√

15) and Mρ3 = M24−3λvΣ/(2
√

15). Notice that these

interactions reproduce the Type-I and Type-III seesaw Lagrangian from Eqs. 1.18 and 1.28

when identifying (ρc0)L ≡ νR and (ρc3)L ≡ ΣR, respectively. The neutrino mass matrix
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in this context, after EW SSB, is given by,

M ij
ν =

1

8

(
hi1h

j
1

Mρ3

+
3

5

hi1h
j
1

Mρ0

)
v2

0 =
1

8

(
1

Mρ3

+
3

5

1

Mρ0

)
v2

0 h
i
1h
j
1. (6.65)

Here we face again the same problem we had when adding a single copy of a singlet or

triplet SU(2)L fermion representations for generating neutrino masses: the rank of the

matrix in Eq. 6.65, which is 1, is not enough to generate two non-degenerate neutrino

masses as needed. This problem can be fixed in a renormalizable way by adding

extra representations that contribute to the neutrino mass matrix in an independent

way. However, since those are needed anyway for solving problem (i), this issue can be

trivially solved, as we will see in the next section.

6.2.4 Colored seesaw

Notice that, in this case, the Manohar-Wise field Φ1 ∼ (8, 2, 1/2) needed to

participate in the 1-loop graphically presented in Diag. 1.37 from Chapter 1 can be

found in 45H , which also helps to correct the charged fermion masses -problem (i)-

and to achieve realistic low scale gauge couplings -problem (ii)-. Together with Φ1,

we would need a color fermion octet ρ8 ∼ (8, 1, 0) to close the loop; particularly

two copies of it in order to predict realistic neutrino masses since, as discussed in

Chapter 1, in the presence of a single copy the mass matrix for neutrinos has rank 1. 8

Notice that, looking at Eq. 6.61, ρ8 is part of the 24 fermionic representation, which

preserves anomaly cancellation (adjoint representation). In the diagram below we show

the implementation of this mechanism in SU(5):

5̄
24
×

45H45H

24
5̄

〈5H/45H〉〈5H/45H〉

(6.66)

8In the same manner, one could duplicate the Φ1 ⊂ 45H instead.
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Considering a 45H together with a 24, we can write down the following terms from the

SU(5) Lagrangian,

−Lcolored ⊃ Yν 5̄ 24 45H +M24Tr{242}
+ 45H 45H (λ15∗H5∗H + λ25∗H45∗H + λ345∗H45∗H) + h.c.,

(6.67)

which after the SU(5) breaking lead to a Lagrangian in the form of the relevant

interactions for the colored seesaw mechanism described in Eq. 1.36. Therefore, the

neutrino mass matrix is given by Eq. 1.38 in the broken phase, where two copies of the

adjoint 24 have to be considered to break the degeneracy (or either two copies of 45H ).

6.2.5 Zee mechanism

In Chapter 1, we showed that the implementation of the Zee mechanism requires

the participation of a singlet charged scalar running inside the loop as in Diag. 1.31. We

remark that, in order to generate Majorana neutrino masses, the lepton number must be

violated in the theory. We realized that in SU(5) this mechanism can be implemented

by adding the antisymmetric 10H representation as Diag. 6.68 shows:

5̄
5̄ 10

5̄

〈45H or 5H〉 〈24H〉

〈5H and 45H〉

10H 5H or 45H
(6.68)

Such representation decomposes in

10H = (1, 1, 1)︸ ︷︷ ︸
δ+

⊕ (3, 2, 1/6)︸ ︷︷ ︸
δ(3,2)

⊕ (3̄, 1,−2/3)︸ ︷︷ ︸
δT

, (6.69)

and contains the required charged scalar δ+ to implement the Zee mechanism. As

discussed in Chapter 1, an extra Higgs doublet is needed to break the degeneracy in the

neutrino mass matrix. This can be solved either by adding a 5′H or a 45H . The relevant
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interactions at the level of SU(5) read as,

−LZee ⊃ λ 5̄ 5̄ 10H + 5̄ (Y ∗1 5∗H + Y ∗2 45∗H ) 10

− 1

6
µ 5H 45H 10∗H + λ24 5H 45H 24H 10∗H + h.c..

(6.70)

where we have chosen the 45H to include the second Higgs doublet for convenience

(see next section). Once SU(5) is spontaneously broken, the above Lagrangian leads to

the interactions in Eq. 1.32. 9 Finally, the neutrino mass matrix is given by Eq. 1.35.

6.3 Minimal realistic SU(5) theories

In the previous section we have learnt that extra representations should be added to

solve the three strikes that rule out SU(5)GG. Now, one could ask: What is the simplest

realistic renormalizable model based on SU(5) ?

Starting from problem (i), we mentioned that at the renormalizable level there are

two possibilities to generate the correct masses for the charged fermions at the low

scale. For each of them, we propose a simple and realistic SU(5) extension.

6.3.1 The Zee-SU(5)

In order to render SU(5)GG realistic, let us add to its particle content a 45H

representation, which contains the following fields:

45H ∼ (8, 2, 1/2)︸ ︷︷ ︸
Φ1

⊕ (6̄, 1,−1/3)︸ ︷︷ ︸
Φ2

⊕ (3, 3,−1/3)︸ ︷︷ ︸
Φ3

⊕ (3̄, 2,−7/6)︸ ︷︷ ︸
Φ4

⊕ (3, 1,−1/3)︸ ︷︷ ︸
Φ5

⊕ (3̄, 1, 4/3)︸ ︷︷ ︸
Φ6

⊕ (1, 2, 1/2)︸ ︷︷ ︸
H2

,

among which there is a second Higgs doublet, H2, that contributes to the fermion

masses when it gets a vev. The Yukawa Lagrangian is modified in the presence of the

9If there is no discrete symmetry 24H → −24H forbidding the last term in Eq. 6.70, as shown in red
in Diag. 6.68, the dimensionful µ parameter from Eq. 1.32 will get an extra contribution proportional to
λ24vΣ.
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45H and reads as,

− LY ⊃ 10 (Y3 5H + Y4 45H) 10 + 5̄ (Y1 5∗H + Y2 45∗H) 10 + h.c.. (6.71)

Because of its tensor structure, the 45H splits the charged lepton and down quark

masses once it gets a vev, 〈45H〉15
1 = 〈45H〉25

2 = 〈45H〉35
3 = v45/

√
2 and 〈45H〉45

4 =

−3v45/
√

2, in the following way,

Mu =
1√
2

(
2
(
Y3 + Y T

3

)
v5 − 4

(
Y4 − Y T

4

)
v45

)
,

Me =
1

2

(
Y T

1 v
∗
5 − 6Y T

2 v
∗
45

)
,

Md =
1

2
(Y1v

∗
5 + 2Y2v

∗
45) ,

(6.72)

where
√
v2

5 + v2
45 = v0 = 246 GeV. The above mass matrices enjoy enough freedom

to reproduce the correct fermion masses at the low scale. Therefore, with the 45H ,

problem (i) is already solved in a renormalizable way.

Regarding problem (ii), let us see what the situation is for the SU(5)GG + 45H .

In Table 6.2 we show the Bij coe�cients (see Eq. 6.21) for the fields in the 45H

representation.

45H

Bij Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 H2

B12 − 8
15rΦ1

2
15rΦ2 −9

5rΦ3
17
15rΦ4

1
15rΦ5

16
15rΦ6 − 1

15rH2

B23 −2
3rΦ1 −5

6rΦ2
3
2rΦ3

1
6rΦ4 −1

6rΦ5 −1
6rΦ6

1
6rH2

Table 6.2: Bij coe�cients of the fields in the 45H . Table adapted from Ref. [283].

In the above table we framed in red those scalar LQs participating in the decay of

the proton. Note that in the 5H there is also the colored triplet mediating ∆B = 1

interactions (see Table 6.1). For the scalar LQs, their contribution to proton decay

is proportional to a combination of the Yukawa couplings in Eq. 6.71. For instance,

the LQ Φ3 ∼ (3, 3,−1/3) mediates proton decay according to the following e�ective
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dimension-6 interactions that arise after integrating it out,

LΦ3
e� ⊃

1

M2
Φ3

(`TLC iσ2Y2 qL)(qTLC(Y4 − Y T
4 )qL) + h.c.. (6.73)

Naively, its contribution to the proton decay width into a neutral pion and a positron is

given by

ΓΦ3
p ∼ Y 2

2 (Y4 − Y T
4 )2

Λ5
QCD

M4
Φ3

, (6.74)

where one can see that either Φ3 is heavy or the combination of coe�cients entering in

Eq. 6.74 is suppressed. In our case, as Fig. 6.3 shows, in order to satisfy the unification

constraints MΦ3 ∼ O(108) GeVs, so that we need a huge suppression in the above

expression to be consistent with proton decay bounds. From Eq. 6.72 one can see

that there is enough freedom to be consistent with both proton decay and unification

constraints: note that, whereas Y1 and Y2 are not constrained since both contributions

are needed in order to correct the charged leptons and down quarks mass relations, in

Mu one could assume a tiny Y4 while being consistent with the up quark masses. The

later basically implies that

Mu ∼ 2(Y3 + Y T
3 )︸ ︷︷ ︸

YU

v5/
√

2, (6.75)

i.e. the mass matrix for the up quarks should be symmetric as in the original SU(5)GG.

The only field in 24H which can help for the unification is Σ3 ∼ (1, 3, 0), as

Table 6.1 shows. As we have seen in Sec. 6.1, even if Σ3 and H1 are at the EW scale the

constraints in Eqs. 6.19 and 6.20 cannot be satisfied because BGG
23 /BGG

12 ≤ 0.6. Since

only the fields with negative contribution to B12 and positive contribution to B23 can

help to achieve unification in agreement with the experiment, the two candidates for

helping in the 45H will be Φ3 and H2. The field Φ1 helps indirectly by also allowing

to increase the GUT scale and consequently suppressing the decay of the proton. In

Table 6.2 we have shaded in green the fields from the 45H that help, and in red those

that do not.
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In the 5H , the triplet can also mediate proton decay, but if we assume that Y4 is

small, we cannot skip the proton decay bound this time since

ΓTp ∼ Y 2
1 Y

2
3

m5
p

M4
T

, (6.76)

and hence, MT & 1012 GeV, and one has the usual doublet-triplet splitting problem in

the splitting of the 5H representation. Now, in the 45H one has the same fine-tuning

problem because the second Higgs H2 must be light in order to have a large vacuum

expectation value needed to correct the fermion masses. As we show in the third panel

from Fig. 6.3, with the splitting of the 45H is enough to satisfy the unification conditions

so that we will assume that there is no mass splitting in 24H , i.e. we will show the

unification constraints in the scenarios where less fine-tuning is needed.

As we discussed in Sec. 6.1.2, the dominant contribution to proton decay will come

from the vector LQs V µ
2 living in V µ

24. For the strongest bounded channel, p → π0e+,

we will assume the most conservative scenario Ve ∼
√

5 (see Eq. 6.46) and for the

second most constrained channel, p → K+ν̄ , we will assume that Mu is symmetric

(see Eq. 6.75). We show in the left panel from Fig. 6.3 the conservative values for the

proton decay lifetime and the experimental bounds at the time of publishing our work,

τp(p → π0e+) > 1.29 × 1034 years [284] from the SK collaboration and the projected

bound from the HK experiment as a function of the Manohar-Wise field mass MΦ1 . We

have updated the figure by including the preliminary result from the SK collaboration

τp(p → π0e+) > 2.4 × 1034 years [274]. In this way we show that the unification can

be realized in agreement with the bounds on the proton decay lifetimes and the fact

that the predictions are not far from the reach of the HK experiment, one could hope

to test this model in the near future.

In the right panel from Fig. 6.3, assuming unification of the gauge couplings at the

one-loop level, we show the allowed values for the masses of the Φ1 ∼ (8, 2, 1/2)

and the unification scale. In this case, we assume that MH2 = 1 TeV and the mass

of Φ3 ∼ (3, 3,−1/3) changes from 108.6 to 108.9 GeV. The green vertical dashed line

represents MΦ1 ≥ 1 TeV, given by the recent study from Ref. [286], where the authors

study from an EFT perspective the possibility to have a light Φ1 in agreement with

all current experimental data. As one can appreciate, the main prediction from the
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Figure 6.3: On the left panel, predictions for the proton decay lifetimes. The blue
line shows the predictions for the decay p → π0e+, while the purple line shows the
predictions for the decay p → K+ν̄ . On the right panel, dependence of the scale
Mφ1 with MGUT dictated by the unification constrains (blue line). The mass of the
Φ3 (implicit) is in the range 108.6 − 108.9 GeV from left to right. In both panels,
the horizontal red dashed line shows the current experimental value on proton decay
lifetime, τp(p → π0e+) > 1.29 × 1034 years [284] from the SK collaboration. The
orange dashed line shows the projected limit on the proton decay lifetime from the
HK collaboration, τp(p → π0e+) > 1.3 × 1035 years [285]. The green vertical line
represents the LHC bound, MΦ1 ≥ 1 TeV [286,287], on the colored octet mass. We have
assumed MH2 = 1 TeV. Image updated with respect to Ref. [283] with the preliminary
bound τp(p→ π0e+) > 2.4× 1034 years [274].

unification of the gauge interactions is that the field Φ1 has to be light and that the

model could be tested in the near future in proton decay experiments. In the case when

the mass of Φ1 is close to the TeV scale one could hope to produce it at the LHC. The

Yukawa interactions for the field Φ1 are given by

− LY ⊃ 2(dc)TLC Y2 Φ†1qL + 4 qTLC(Y4 − Y T
4 )iσ2Φ1(uc)L + h.c.. (6.77)

Notice that one can produce Φ1 with large cross sections through QCD interactions.

The second term in the above equation comes from the interaction 10 10 45H . We note

that, since the second coupling above is antisymmetric, the decays into two top-quarks
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would not be observed. Therefore, one can have exotic signatures such as signals with

one top quark and three light jets. We refer the reader to Refs. [288–305] for a study on

the phenomenological aspects of the colored octets.

Let us address now problem (iii): neutrino masses. Taking into account the

mechanisms introduced in Sec. 6.2, we can classify the di�erent scenarios regarding

the number of representations / d.o.f. that we should consider in order to render the

GUT realistic without giving up on renormalizability. See Table 6.3 for such classification.

The scenarios discussed in Section 6.2 and classified in Table 6.3 can be used as a guide

Ye 6= Y T
d mν 6= 0 Unification Extra field content number of new d.o.f.

45H

Type-I seesaw X 1(×2) 47
Type-II seesaw X 15H 60
Type-III seesaw X 24 69
Zee model X 10H 55

Colored seesaw X 24(×2) 93

Table 6.3: Possible renormalizable extensions of SU(5)GG. By “extra field content” is
understood any extra representation apart from the field content of SU(5)GG + 45H .

to define the simplest realistic model. In the Type II-SU(5) case, one has two extra

Higgses, 15H and 45H [306], or in the Type III-SU(5) scenario, one has 45H and one

extra fermionic 24 representation [281, 307]. We note that, in the later case, there is

no need to consider an extra 24 since the 45H breaks the degeneracy of the neutrino

mass matrix. We will explore this scenario in more detail in Chapter 7. Alternatively,

the neutrino masses could be generated through Type I seesaw and one would have at

least two extra singlets, RH neutrinos, and the extra Higgs 45H . This scenario can be

realistic [308] but one expects naively that the fermionic singlets get mass from above

the GUT scale since their masses are not protected by the SU(5) gauge symmetry. We

will focus on the second simplest option, highlighted in green, which only requires the

addition of the 10H to the SU(5)GG + 45H . In this way, we show the implementation

of the Zee mechanism in a realistic SU(5) GUT.

The 10H (see Eq. 6.69) contains the field needed for the Zee mechanism, and the

only field in there that could help to achieve unification is δ(3,2) ∼ (3, 2, 1/6), but it

mediates proton decay. Sticking to the less possible fine tuning, we will also assume
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there is no mass splitting in the 10H . Notice that here the 45H representation plays

a threefold role: it corrects the charged lepton and down quark mass relations, brings

enough freedom to achieve the proper values of the gauge couplings at the low scale,

and allows for a realistic neutrino mass generation via the Zee mechanism.

In Sec. 6.2, we discussed that the mass matrix for the neutrinos in this context

is given by Eq. 1.35. One can see from Eq. 6.72 that, since Y1 and Y2 cannot be

diagonalized simultaneously, the diagonal elements of the neutrino mass matrix are

not zero even if λ is antisymmetric. Therefore, the model has enough freedom to be

consistent with the experimental values for neutrino masses and mixings. Using the

relation between the charged fermion masses and the Yukawa couplings from Eq. 6.72,

the neutrino mass matrix from Eq. 1.35 can be written as

Mν = λMe

(
ceM

†
e + 3cdM

∗
d

)
+
(
ceM

∗
e + 3cdM

†
d

)
MT
e λ

T , (6.78)

where the coe�cients ce and cd, extracted from the loop calculation, are defined as

ce =
(1− 4 sin2 β)

8π2
√

2v sinβ
sin 2θ+ln




m2
h+

2

m2
h+

1


 , cd =

sin 2θ+

8π2
√

2v sin 2β
ln




m2
h+

2

m2
h+

1


 . (6.79)

The relation in Eq. 6.78 is quite interesting because in SU(5) a relation between the

neutrino masses and the charged fermion masses is not expected. Notice that the

anti-symmetric matrix λ defines this relation and it has only three free parameters.

Working in the basis where Me and Mu are diagonal, using Md = D∗cM
diag
d V †CKM, and

neglecting all phases for simplicity, one finds

Mν = λMdiag
e

(
ceM

diag
e + 3cdDcM

diag
d V T

CKM

)

+
(
ceM

diag
e + 3cdVCKMM

diag
d DT

c

)
Mdiag
e λT .

(6.80)

Here, Dc is the matrix which rotates the dc quarks (see Eq. 6.36), which has only three

parameters in the real case. As one can see the above matrix has enough parameters

to reproduce the values for the fermion mixing angles and masses. Notice that, in this

model, the ratio between the fermion masses cannot be predicted but one can have a
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simple relation between them which can be constrained using the experimental values

for fermion masses and mixings.

6.3.2 SU(5) with minimal scalars

In the last subsection, the problem of wrong charged mass relations arising from the

MT
E = MD prediction has been solved by extending the Higgs sector of the SU(5)GG

with a 45H representation. However, as mentioned in the introduction of this chapter,

such mass relation can also be corrected by adding new vector-like fermions instead. If

we stick to the renormalizable level, this possibility is the simplest regarding the amount

of new d.o.f. involved. Can we achieve a realistic GUT based on SU(5) without extending

the minimal Higgs sector required by the SU(5) breaking?

Let us add, in the spirit of the SM, three copies of vector-like fermions in the

fundamental and anti-fundamental representations of SU(5). The matter content of

this GUT is therefore composed of 10

5̄ =

(
dc

`

)
, 10 =

(
uc Q

Q ec

)
, 5̄

′
=

(
Dc

L

)
, and 5

′
=

(
D

Lc

)
. (6.81)

These new fermions acquire mass from the following terms in the Lagrangian,

− L5 ⊃M5 5̄
′
5
′
+ λ5 5̄

′
24H5

′
+ h.c., (6.82)

which generate the following new fermion masses:

MD = M5 + λ̃5
MGUT√
αGUT

, and MT
L = M5 −

3

2
λ̃5

MGUT√
αGUT

,

where λ̃5 = λ5/
√

25π.

Apart from generating the required splitting among the charged leptons and

down-type quarks masses, the requirement of the realistic gauge couplings at the low

scale still needs to be fulfilled. With three copies in the 5′ and 5̄′ is unfortunately not

enough, since the impact of these representations in the RGE equations is pretty weak

10In the following, we assume that all fermions are LH, so that we will not write explicitly their chirality.
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(see Table 6.1). Furthermore, neutrinos are still massless in this context. Both problems

(ii) and (iii) can be solved by adding the 24 representation (see Eq. 6.62). The relevant

terms for the masses of their fields are listed below,

− L24 ⊃M24 Tr{242}+ λ Tr{24224H}+ h.c., (6.83)

and, after the grand unified symmetry is broken, the mass terms for the fields in the 24

are given by

−L24 ⊃M24

(
Tr{ρ8ρ8}+ Tr{ρ3ρ3}+ 2Tr{ρ(3̄,2)ρ(3,2)}+

1

2
ρ0ρ0

)
(6.84)

+vΣ
λ√
15

(
Tr{ρ8ρ8} −

1

2
Tr{ρ(3̄,2)ρ(3,2)}+

3

15
ρ0ρ0 −

3

2
Tr{ρ3ρ3} − 3

(
9

4

)(
1

15

)
ρρ

)
+ h.c.,

(remember that we are using the simplified notation ΨΨ ≡ ΨTCΨ for Yukawa

interactions). From the above expression one can read the following masses:

Mρ8 = M24 + λ̃
MGUT√
αGUT

, Mρ3 = M24 −
3

2
λ̃
MGUT√
αGUT

,

Mρ(3,2)
= M24 −

1

4
λ̃
MGUT√
αGUT

, Mρ0 = M24 −
1

2
λ̃
MGUT√
αGUT

,

where λ̃ = λ/
√

25π and MGUT =
√

5παGUT/3 v24. Defining m̂24 = Mρ8/Mρ3 , we

note the masses in the 24 can be defined as a function of Mρ3 :

Mρ8 = m̂24Mρ3 , Mρ0 =
1

5
(3 + 2 m̂24)Mρ3 , Mρ(3,2)

= Mρ(3̄,2)
=

1

2
(1 + m̂24)Mρ3 ,

and, in the same spirit as the splitting of the 24, we will write the masses of the new

fermions in the 5′ and 5̄′ as a function of their splitting

MD = m̂5ML,
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since this will be useful to later discuss the gauge coupling unification. The masses of

the SM fermions are given by the following terms,

−Lf ⊃ yi0 5̄i 24 5H + yi1 5̄
′
i 24 5H + yi2 5∗H 24 5

′
i + Y1 5∗H 5̄ 10

+ Y2 5∗H 5̄
′
10 + Yu 10 10 5H +M5̄5 5̄ 5

′
+ λ5̄5 5̄ 24H 5

′
+ h.c.,

(6.85)

whose relevant interactions for achieving a consistent relation between the masses for

charged leptons and down quarks are given by

−L ⊃ EMLE
c +DcMDD +Mρ3ρ

+
3 ρ
−
3 + dc

(
M5̄5 + λ̃5̄5

MGUT√
αGUT

)
D

+e

(
M5̄5 −

3

2
λ̃5̄5

MGUT√
αGUT

)
Ec +

v5√
2

(eY1e
c + dcY1d+DcY2d+ EY2e

c)

+
v5

2

(
yi0eiρ

+
3 + yi1Eiρ

+
3 + yi2 ρ

−
3 E

c
i

)
, (6.86)

where λ̃5̄5 = λ5̄5/
√

15π. We find the following mass matrix for the down-type quarks:

− L ⊃
(
dc Dc

)


Y1

v5√
2

M5̄5 + λ̃5̄5
MGUT√
αGUT

Y2
v5√

2
MD



(
d

D

)
, (6.87)

where the mixing proportional to dc ρ(3,2) and D
cρ(3,2) have been neglected since they

enter in the light neutrino mass matrix. In the case of the charged leptons, their mass

matrix is given by:

− L ⊃
(
ec Ec ρ+

3

)




Y T
1

v5√
2

Y T
2

v5√
2

0

MT
5̄5 −

3

2
λ̃T5̄5

MGUT√
αGUT

MT
L

1

2
y2 v5

1

2
y0 v5

1

2
y1 v5 Mρ3






e

E

ρ−3


 .

(6.88)

The above expressions show that there is enough freedom to have a consistent relation

between the masses of the charged leptons and down quarks. We refer the reader to

Ref. [309] for a detailed study on the role of 5′ and 5̄′ representations in the achievement
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of realistic charged fermion masses at the low scale. Therefore, in the context of this

theory, problem (i) is already solved.

Regarding (ii), let us study what is the role of the new fermions in the RGEs. The

contribution of the new fields to the β-functions is listed in Table 6.4. As it has been

5̄
′
+ 5

′
24

L + Lc D + Dc ρ3 ρ8 ρ(3,2) + ρ(3̄,2)

B1
6
5 rL

4
5 rD 0 0 10

3 r32

B2 2 rL 0 4
3 r3 0 2 r32

B3 0 2 rD 0 2 r8
4
3 r32

B12 −4
5 rL

4
5 rD −4

3 r3 0 4
3 r32

B23 2 rL −2 rD
4
3 r3 −2 r8

2
3 r32

Table 6.4: Bij coe�cients of the new fields from SU(5) with minimal scalars with
respect to SU(5)GG. Table adapted from Ref. [269].

previously discussed, the conditions from Eqs. 6.19 and 6.20 must be satisfied in order

to reproduce the values of the gauge couplings experimentally measured at the low

scale. In the context of this theory, the Bij coe�cients, Bij = Bi−Bj , entering in the

later conditions read as

B12 = BSM
12 −

4

5
r5 −

4

3
r3 −

1

3
rΣ3 +

4

3
r32, (6.89)

B23 = BSM
23 + 2 r5 +

4

3
r3 +

1

3
rΣ3 − 2 r8 −

1

2
rΣ8 +

2

3
r32, (6.90)

where BSM
12 = 109/15, BSM

23 = 23/6 and r5 = rL − rD . We assume that the colored

triplet in the 5H lives at the high scale because it mediates proton decay. We note that

r5 is only a function of the mass splitting m̂5, i.e. r5 = ln m̂5/(lnMGUT − lnMZ).

Since unification is only sensitive to the splitting in mass of the representations, we can

eliminate the overall scales and write the above equations in a simple way:

B12 = BSM
12 −

4

5
r5 −

1

3
rΣ3 −

4

3

ln
(

1
2(1 + m̂24)

)

ln(MGUT)− ln(MZ)
,
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B23 = BSM
23 + 2 r5 +

1

3
rΣ3 + 2

ln(m̂24)

ln(MGUT)− ln(MZ)
− 1

2
rΣ8 −

2

3

ln
(

1
2(1 + m̂24)

)

ln(MGUT)− ln(MZ)
.

Therefore, the relevant parameters for unification are: MGUT, rΣ3 , rΣ8 , m̂5 and m̂24.

In Fig. 6.4 we show in the plane Log10MGUT − Log10m̂24 the parameter space where

unification takes place, or strictly speaking, where the measured values for the gauge

couplings are achieved at the low scale. In the upper panel, we fix rΣ8 = 1, i.e. we

assume the extreme case where the colored octet fermion is at the EW scale, and the

mass of the triplet Σ3 is varied along all its possible mass range. In the bottom panel,

we show the other extreme case where Σ8 is assumed to be at the GUT scale. By

showing these two drastic scenarios composing the edges in between the Σ8 mass can

vary, the reader may get an idea about any possible scenario in this theory.
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Figure 6.4: Allowed parameter space
by the unification of gauge couplings
in the plane Log10MGUT-Log10m̂24.
Every point in the colored area
corresponds to a scenario where the
gauge couplings unify at the high
scale. In the upper panel we show
the constraints on the mass spectrum
when MΣ8 = MZ changing the mass
of Σ3 between the EW and the GUT
scales. In the lower panel we show the
same constraints but in the case when
MΣ3 = MZ , changing the mass of Σ8.
The red horizontal line corresponds to
the current bound on the proton decay
lifetime for the channel p → K+ν̄
[271], while the orange dashed line
corresponds to the projected bound
from the HK collaboration [273]. Figure
extracted from Ref. [269].
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In Fig. 6.4, the parameter space located above the solid red and dashed orange

horizontal lines is excluded because of proton decay constraints. As mentioned in

Sec. 6.1.2, the most relevant decay widths for the decay of the proton are the decay

channels into charged leptons and antineutrinos, which are given by Eqs. 6.43, 6.44

and 6.45. In there we showed that, as in the previous theory, there is an ambiguity in

the prediction of the proton lifetime since the decay width channels depend on some

combination of flavour matrices that are, in general, unknown. Particularly, this is the

case for the channel p → π0e+, which depends on Ve as Eq. 6.43 shows. To illustrate

its e�ect, we plot in Fig. 6.5 the numerical predictions for some possible values of this

matrix, Ve = 0.1, 0.3, and 1. As this figure shows, it is not possible to extract a bound

��→��π� �+

�����-�

�����-�

��
=
���

��
=
���
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=
�
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1036

Figure 6.5: Predictions for the proton
decay lifetime for the channel p →
e+π0 using three di�erent values for
the unknown mixing Ve = V 11

2 =
V 11

3 . The red line shows the current
proton decay lifetime, i.e. τ(p →
π0e+) > 1.6 × 1034 years [158].
The orange dashed line shows the
projected bound on proton decay
lifetime from the HK collaboration, i.e.
τ(p → π0e+) > 8 × 1034 years [273].
Figure extracted from Ref. [269].

from this channel unless some value for Ve is assumed. The width of the band in the

above figure represents the possible values that αGUT can acquire given a certain value

for MGUT. The later depends on the freedom in the absolute mass scales ML and Mρ3

from the 5′ and 24 representations, respectively, to which the unification constraints are

not sensitive and, therefore, they can freely vary. In Fig. 6.6 we show this freedom in

the GUT coupling as a function of the GUT scale for a given value of the free absolute

scales Mρ3 and ML.

Nevertheless, in the context of this theory, the fact that the up-type quark mass

matrix is symmetric, as one can read from Eq. 6.85, allows for a clean prediction of
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Figure 6.6: Allowed
values for the gauge
couplings at the GUT
scale in agreement with
unification for the most
interesting scenarios
which can be allowed
by proton decay. Figure
extracted from Ref. [269].

the proton decay width for the decay channels into antineutrinos [275], as well as the

original SU(5)GG (see discussion in Sec. 6.1.2).

The prediction for the decay width of the proton into antineutrinos is shown in

Fig. 6.7. In the left panel we show the prediction for p → K+ν̄ , which enjoys the

second strongest bound on the decay of the proton, given by the SK experiment, τ(p→
K+ν̄) > 5.9× 1033 years [271]. The right panel shows the prediction for the p→ π+ν̄ .

As before, the band in these figures represents the possible range of variation of αGUT

for a given MGUT. The "cut" on the RHS of the life-time predictions comes from the

upper bound on the GUT scale given by the unification conditions, MGUT ≤ 1015.5 GeV

(see Fig. 6.4). We empashize that, in contrast to other GUT theories where the correction

of the fermion mass relations sacrifices the prediction YU = Y T
U , we find clean channels

which do not depend on any unknown mixing matrix. This allowed us to set an upper

bound on the proton decay lifetime, particularly τ(p→ K+ν̄) . 3.4× 1035 years and

τ(p → π+ν̄) . 1.7 × 1034 years, which are striking results in the sense that there is

hope to test this theory in future proton decay experiments. In Fig. 6.4, we have shown

the parameter space allowed by unification and proton decay constraints as a function

of the mass splittings for the fermionic fields living in the 5, 5′ and 24 representations,

m̂5 and m̂24, but it is also useful to explicitly show the allowed masses for these fields,

as it is done in Fig. 6.8, where we assume the most optimistic caseMΣ3 = MΣ8 = MZ .

As this figure shows, the field responsible for the Type-III seesaw mechanism, ρ3, has a
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Figure 6.7: Predictions for the proton decay lifetime for the channels p → K+ν̄ (left
panel) and p→ π+ν̄ (right panel). The red line corresponds to the current proton decay
lifetime for the di�erent channels, i.e. τ(p→ K+ν̄) > 5.9×1033 years [271] (left panel)
and τ(p → π+ν̄) > 3.9 × 1032 years [272] (right panel). The orange dashed line on
the left panel shows the projected bound on p → K+ν̄ from the HK collaboration, i.e.
τ(p→ K+ν̄ > 2.5× 1034 years [273].

mass at the multi-TeV scale, with an upper bound of Mρ3 ≤ 500 TeV, which allows the

possibility to test the Type-III seesaw mechanism at current or future colliders.

We are left with just one task: to show that it is possible to generate at least two

massive neutrinos in the context of this theory. The relevant Lagrangian for the neutrino

mass generation reads as,

−L ⊃ v5

2
√

2

(
yi0 νi + yi1Ni − yi2N c

i

)
(ρ3 + ξ ρ0)−NMLN

c +
1

2
Mρ0ρ

2
0

+
1

2
Mρ3ρ

2
3 − νM̃5̄5N

c + h.c.,

(6.91)

where ξ = 3/
√

15, M̃5̄5 = M5̄5 − 3λ5̄5MGUT/(2
√

25παGUT), and v5 is the vacuum

expectation value of the SM Higgs. It this theory there is a well-defined hierarchy among

the neutral fermionic sector, imposed by the unification constraints. As Fig. 6.8 shows,

the minimum mass splitting in the 24 required by proton decay bounds is nine orders of

magnitude, which places ρ3 near the EW scale, and ρ0 close to the GUT scale. As also
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Figure 6.8: Allowed masses of the fields ρ3 and ρ8 in agreement with the unification
constraints for the most optimistic case: MΣ3 = MΣ8 = MZ . The white region below
the diagonal line is excluded by the bounds on the proton decay lifetime from the SK
collaboration [271]. Figure extracted from Ref. [269].

shown in this figure, unification conditions grant more freedom for the mass splitting

in the 5 and 5′ representations, and the vector-like fermions could live anywhere in the

great desert. The existent gaps between the di�erent scales from the stablished hierarchy

ρ0

ρ3

ν

N, N c

EW

GUT
Figure 6.9: Hierarchy of the
neutral fermionic fields required
by unification and proton decay
constraints. Diagram extracted
from Ref. [269].

in the neutral fermions, which is shown in Fig. 6.9: Mρ0 �ML �Mρ3 �Mν , allows

for an EFT description at each of the "layers", where one has to take into account the

relevant d.o.f. in order to capture correctly the neglected physics in the UV. According



6.3 Minimal realistic SU(5) theories 217

to the ordering fixed by the consistency of the theory, we first integrate out the heaviest

neutral field ρ0, and its e�ect on the remaining mass matrix for the N and N c fields is

(
Ni N c

i

)(−1
4y

i
1y
j
1 ξ

2 v2
5/Mρ0 −M ij

L

−M ji
L −1

4y
i
2y
j
2 ξ

2 v2
5/Mρ0

)(
Nj

N c
j

)
, (6.92)

where we are neglecting terms of order O(M−2
ρ0

), as well as terms order O (v5/Mρ0) in

front of ML. The e�ect of integrating out the ρ0 is to generate a Majorana mass term

for the SM neutrinos, as represented in a schematic way in the following diagram:

νi νj
=

νi νjρ0

, (6.93)

where × symbolises a tree-level interaction between the fermions, ⊗ represents a mass

term insertion. The N and N c can be written as a linear combination of the new fields

N1 and N2 that diagonalize the above mass matrix:

N = cos θN1 + sin θN2, (6.94)

N c = − sin θN1 + cos θN2, (6.95)

where the mixing angle θ of the rotation is defined as

tan 2θ =
8M ij

LMρ0

(yi2y
j
2 − yi1yj1) ξ2v2

5

. (6.96)

We note that, since MLMρ0 � v2
5 , the mixing angle is θ ∼ π/4, and the masses of

the new fields are ±ML. Note that, since N1 and N2 are Majorana fields, we can

always rotate our fields by a ei
π
2 phase to define positive masses. According to the mass

hierarchy in the neutral fermions, we can integrate N1 and N2 out, which leads to the

following e�ective Lagrangian for the light d.o.f.:

−Lν,ρ3

eff ⊃ −
(
ξ2 yi0y

j
0

v2
5

8Mρ0

)
νiνj +

1

2
Mρ3ρ3ρ3 +

v5

2
√

2
νi
(
yi0 − (yT1 M

−1
L M̃T

5̄5)i
)
νiρ3,

(6.97)
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where we do not include terms of order (MLMρ0)−1 and we neglect corrections to the

ρ3 mass suppressed byML. We note that in the limit θ → π/4, there is no contribution

to the light neutrino mass term from the vector-like leptons; however, we point out that

they do contribute to the e�ective coupling between ν and ρ3, as it is illustrated in

the following diagram, where the reader can clearly see that the integration of the Ni

fields has generated an e�ective vertex for the ρ3 and νi fields, apart from the tree-level

interaction:

ρ3 νi
=

ρ3 νi
+

ρ3 νiNj

. (6.98)

Finally, by integrating out the ρ3, the final seesaw takes place, and one generates a new

contribution to the light neutrinos suppressed by Mρ3 ,

νi νj
=

νi νjρ0

+
νi νjρ3

, (6.99)

and the mass matrix is given by

M ij
ν =

v2
5

4

(
ξ2 yi0y

j
0

Mρ0

+

(
yi0 − (yT1 M

−1
L M̃T

5̄5
)i
)(
yj0 − (yT1 M

−1
L M̃T

5̄5
)j
)

Mρ3

)
. (6.100)

It should be stressed that the term generated by the integration of the neutral fields in

the 5′ and 5̄′ representations plays a key role by breaking the degeneracy between the

ρ0 and ρ3 contributions to the light neutrinos and allows to enlarge the rank of the

matrix. We note that with only the contribution of the 24, the model would predict

two massless neutrinos; thus, the presence of the 5′ and 5̄′ is crucial to guarantee the

consistency of the theory with experiment.
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6.4 Conclusions

We have discussed the simplest non-supersymmetric theories based on SU(5) and

pointed out two simple realistic renormalizable scenarios where one can understand

the generation of neutrino masses and predict the proton decay lifetimes of the proton

decay channels involving antineutrinos.

On one hand, we have seen that one can extend the scalar sector by a 45H to

correct the charged fermion masses. In that context, the minimal renormalizable theory

without gauge singlets corresponds to the case where neutrino masses are generated

at the quantum level through the Zee mechanism. In this model one finds a very

interesting connection between neutrino masses and the charged fermion masses. In

this case the 45H plays a three-fold role: it corrects the relation between charged lepton

and down quark masses, helps towards predicting the correct gauge couplings at the

low scale and generates a mass term for the neutrinos through the Zee mechanism.

We have shown the possibility to have the unification of the gauge interactions in

agreement with the experiments, also with the help of some fields in the 45H . In most

of the allowed parameter space the colored octet present in the theory is light so that

it could give rise to exotic signals at the LHC. We have investigated the predictions

for proton decay showing the possibility to test this model at the Super-Kamiokande

experiment or at the future Hyper-Kamiokande.

On the other hand, we have also showed that we can have a consistent relation

between the charged lepton and down quark masses by extending the SU(5)GG content

in three copies of vector-like fermions 5 and 5′, and the adjoint 24 representation. In

this context, one can generate fermion masses consistently with experiment and predict

an upper bound on proton decay for the channels with antineutrinos: τ(p→ K+ν̄) .

3.4 × 1035 years and τ(p → π+ν̄) . 1.7 × 1034 years. The neutrino masses are

generated through the Type I and Type III seesaw mechanisms, and we find that the

field responsible for the Type III seesaw mechanism must be light, i.e. Mρ3 . 500 TeV.

Both simple theories proposed can be considered as appealing candidates for

unification based on SU(5), as they can be tested in current or future proton decay

experiments.
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Chapter based on the work done in 1908.01772 and 1911.05738.

As we mentioned previously in the second part of Chapter 2, after QCD confinement

the axion mass is given as a function of the Peccei-Quinn scale fa,

ma ∼
mπfπ
fa

, (7.1)

where fπ and mπ are the decay constant and the mass of the pion, respectively. This

relation implies that the axion mass can only be predicted in the context where the

scale fa can be computed. As it has been already pointed out, the invisible axion

models, although providing a useful approach to realize the Peccei-Quinn mechanism

in a realistic way, do not tell us anything about the axion mass. That is because fa is

tied to a singlet scalar whose vev is, in principle, unattached from any given scale, and

therefore can be arbitrarily large. As we introduced in Section 2.2, R. Peccei, H. Quinn,

S. Weinberg and F. Wilczek [121–124] were the pioners to predict the axion mass, by

linking the PQ scale with the EW scale. Unfortunately, in that case, the axion is too

heavy, ma ∼ O(eV), and the original model is ruled out. Following their idea, in order

to propose a realistic SM extension where the strong CP problem and the amount of DM

in the universe can be understood, also able to predict the axion mass, we should find

a theory with a definite mass scale to which we can attach fa. Among the motivated

BSM theories, Grand Unified Theories are the perfect candidates because the GUT scale

can be predicted in their context. See Fig. 7.1 for an illustration.

The connection between the PQ and GUT scales was first pointed out by H. Georgi,

S. Glashow and M. Wise in 1982, in Ref. [310]. In there, they propose a global U(1)PQ
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Figure 7.1: By linking the PQ scale with the GUT scale, the axion mass can be predicted
in consistency with the experimental bounds. Both scales can be connected through the
scalar singlet living in the 24H representation, responsible from the breaking of both
SU(5) and U(1)PQ symmetries.

on top of the original SU(5) gauge symmetry. In order to predict the PQ scale from

unification, the same field that breaks the grand unifying group must simultaneously

break the PQ symmetry. This role is played by the 24H representation, which in the

presence of the extra PQ symmetry becomes complex and allows for a CP-odd field

constituting its imaginary part, as shown below:

24H ⊃
1√
2
|Σ0|eia(x)/vΣ . (7.2)

Here, vΣ is the vev of Σ0, which is the singlet under the SM quantum numbers that

lives in the adjoint representation of SU(5). 1 Moreover, as discussed in Chapter 2, at

least a scalar mixing term (DFSZ) or an extra colored fermion (KSVZ) is needed in order

to generate the desired GG̃ term. H. Georgi, S. Glashow and M. Wise (GGW) opted

for the first possibility and added an extra fundamental representation, 5
′
H [310], which

contains a second Higgs doublet that can mix with both the SM one and the singlet in

the 24H , allowing in this way the successful implementation of the DFSZ mechanism.

The relevant Lagrangian for the PQ mechanism in this simple extension of the original

1See Section 6.1 from Chapter 6 for a brief but more detailed introduction on SU(5).
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SU(5) theory is given by

−LSU(5)
GGW ⊃ 5̄Y5 10 5∗H+10Y10 10 5′H+λ1 5∗H242

H5′H+λ2 5∗H5′HTr{242
H}+h.c., (7.3)

whose expression in terms of the relevant SM fields reads as

−LSMGGW ⊃ d̄
Y5√

2
H0∗
d d+ ū 2(Y10 + Y T

10)H0
u u+

1

2

(
3

10
λ1 + λ2

)
H0∗
d H0

u Σ2
0 + h.c..

(7.4)

In the above equation, the reader can easily identify the canonical two Higgs doublet

model from Eq. 2.124, together with the mixing term in the scalar potential from Eq. 2.136

needed for the implementation of the DFSZ mechanism (see Chapter 2). Once the 24H

gets a vev, the vector LQs acquire a mass proportional to it, as explained in Chapter 6,

and a topological term a(x)GG̃ is generated in the Lagrangian by rotating the part of

the axion living in the Higgs doublets using the PQ symmetry that the quarks enjoy.

Unfortunately, in despite of being able to solve the strong CP problem, this simple GUT

is ruled out by the same reasons as SU(5)GG: neither the SM gauge couplings -problem

(i)- nor the fermion masses -problem (ii)- can be reproduced at the low scale, and

neutrinos are predicted massless -problem (iii)- (see Sec. 6.1 from Chapter 6 for details).

Therefore, in order to construct the simplest realistic GUT able to host an axion, the

aforementioned three points need to be addressed. We will attach ourselves to the

renormalizability of the theory, since the presence of non-renormalizable terms would

destabilize it. We summarize in Table 7.1 the simplest possibilities to achieve that.

The 45H contains enough freedom to modify the RGEs and the charged fermion

masses with respect to the original SU(5)GG predictions as we showed in Chapter 6,

i.e. to solve problems (i) and (ii) (first and last column from Table 7.1). However, the fact

that both 5H and 45H representations must couple to the 5̄ 10 term in the same way

in order to split Me and Md implies that they must carry the same charge under the

PQ symmetry. Then, although a mixing term is allowed in the scalar potential by the

symmetries of the theory, i.e.

VSU(5) ⊃ λ1 45∗H242
H5H + λ2 45∗H 5H Tr{242

H}+ h.c., (7.5)
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Ye 6= Y T
d Mν 6= 0 PQ Unification

45H

1i

10H

15H

24

×

×

×

X

X

X

X

X

5
′
+ 5̄
′

1i

15H

24

X

X

X

×

×

×

Table 7.1: Minimal
renormalizable GUTs
based on SU(5).
The third column
indicates whether the
PQ symmetry leading
to the axion can be
implemented. The fourth
column indicates whether
gauge unification can be
achieved. Table extracted
from Ref. [311].

the 24H must be a singlet under the global PQ and, therefore, the PQ mechanism cannot

be implemented in this case. Nevertheless, still more representations must be included

in the theory to account for neutrino masses. As discussed in Chapter 6, Section 6.2,

neutrinos could acquire mass by adding a couple of fermion singlets through the Type-I

seesaw mechanism. However, the gauge symmetry and field content does not allow

for a realistic PQ charges in this case. Neutrino masses could also be generated at the

quantum level by adding a 10H , as we proposed in Sec. 6.3, but no mixing term for

the DFSZ implementation (see Sec. 2.2.4.1) is generated in that context. Among possible

candidates, the 15H is interesting because it can generate neutrino masses through the

Type-II seesaw mechanism and allows for a mixing term with the SM Higgs and the

singlet in the 24H after SSB via the following term:

VSU(5) ⊃ (λ1 5∗H + λ2 45∗H)(λ3 5∗H + λ4 45∗H)24H15H + h.c.. (7.6)

However, the PQ symmetry defined among the quarks in this case is non-anomalous

and, unfortunately, the PQ mechanism does not work.

Let us consider the 24 representation (see Eq. 6.61) instead, which consists of two

colorless fields, a singlet ρ0 and a triplet ρ3 under SU(2)L, that can generate masses

for the neutrinos through the Type-I and Type-III seesaw mechanisms, respectively, and

three colored fields, ρ8, ρ(3,2) and ρ(3̄,2), which can be used to generate the a(x)GG̃
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term. The later can be realized by rotating the axion from the Yukawa interaction via

these new color fermions à la KSVZ (see Sec. 2.2.4.2). The extension of the SU(5)GG

with a 45H and 24 was proposed in 2010 by P. Fileviez Pérez [281], and constitutes

the simplest realistic renormalizable GUT theory where the KSVZ mechanism can be

implemented when imposing a global U(1)PQ. This theory will be described in the first

section of this chapter.

On the other hand, on top of adding the 45H to render the GUT realistic, one

could further add an extra Higgs doublet à la GGW. This SU(2)L doublet allows for the

implementation of the DFSZ mechanism since, in this case, such scalar is not required

to correct the charged fermion masses so that it can be charged di�erently than 5H

or 45H under PQ. We note that neutrino masses are still not generated in this context

and one is forced to add more representations to solve this issue. The extension of

the SU(5)GG with a 45H and an extra 5
′
H can be considered, on the other hand, the

simplest GUT theory where the strong CP problem is solved via the implementation of

the DFSZ mechanism, and it will be addressed in the second part of this chapter.

As it will be shown along this chapter, in the context of GUT theories, the

axions turn to be not that invisible. For other studies of axions in GUTs see

Refs. [312–315]. In Ref. [314] the authors use a non-renormalizable theory where the same

higher-dimensional operators, needed to correct the relation between fermion masses

and split the particle spectrum, generically could break the PQ symmetry spoiling the

predictions for the PQ scale and axion mass.

7.1 KSVZ mechanism in SU(5)

The simplest realistic GUT theory in the sense of number of representations able

to host an axion is the Adjoint SU(5) [281] ⊗ U(1)PQ, composed of the fields from

the original SU(5)GG plus a 45H and 24 representations. In this theory, the KSVZ

mechanism can be implemented if the di�erent representations are charged under the

PQ symmetry as follows,

5̄→ e−3i PQ10 5̄, 10→ e+i PQ1010, 5H → e−2i PQ105H ,

24H → e−10i PQ1024H , 45H → e−2i PQ1045H , 24→ e+5i PQ1024,
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where the relative PQ charges among all representations are fixed by the consistency

of the theory. Under the above charge assignment, the theory enjoys the Yukawa

Lagrangian described in Eq. 6.71 from Chapter 6, whose interactions allow for a realistic

relation between the charged fermion masses, given by Eq. 6.72 from the same chapter.

On another hand, neutrino masses are generated through the following interactions,

− L ⊃ h1 5̄ 24 5H + h2 5̄ 24 45H + λTr
{

242 24H
}

+ h.c.. (7.7)

Note that this Lagrangian is very similar to that in Eq. 6.64 except for two di�erences:

(a) the 24 mass term, M24 Tr{242}, is forbidden by U(1)PQ in this context, (b) there

is a contribution from the 45H to the neutrino mass matrix analogous to the 5H that

was not considered when discussing the Type-III seesaw mechanism in Sec. 6.2 from

Chapter 6. The neutrino mass matrix will be generated from the Type-I, -III seesaws at

tree level, and colored seesaw at the radiative level (see Eq. 1.38):

Mν = M I
ν +M III

ν +M cs
ν . (7.8)

The di�erent contributions arise from the following interactions:

H0
1,2

ν

H0
1,2

ν

ρ3
+

H0
1,2

ν

H0
1,2

ν

ρ0
+

ν
ρ8

ν

Φ1

H0
1,2H0

1,2

.

The M III
ν in the above equation, given by,

(M III
ν )ij =

1

8

(
(hi1v5 + 3hi2v45)(hj1v5 + 3hj2v45)

Mρ3

+
3

5

(hi1v5 − 5hi2v45)(hj1v5 − 5hj2v45)

Mρ0

)
,

(7.9)
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is modified with respect to Eq. 6.65 due to the contribution from 45H , 2

Because of the presence of a single copy of new fermions (only one 24

representation), the Yukawa couplings are vectors so that one of the neutrinos is

predicted massless. However, as the diagrams show, the Manohar-Wise Φ1 ∼
(8, 2, 1/2) ⊂ 45H together with the colored octet fermion ρ8 ∼ (8, 1, 0) ⊂ 24 can

close a loop carrying color and generate neutrino masses at the radiative level through

the colored seesaw (see Diag. 6.66). Note that, although M cs
ν has rank 1 (see Sec. 6.2),

together with the contribution of the Type-I and -III seesaws there is enough freedom

to embed three massive neutrinos. We refer the reader to Sec. 6.2 from Chapter 6 or,

directly to the original Refs. [281, 316], for the explicit form of the neutrino mass matrix

and other details.

The last term from Eq. 7.7 is the key element for the implementation of the KSVZ

mechanism, as it can be recognized from Eq. 2.145. Once the singlet inside the 24H

acquires a non-zero vev, given by Eq. 6.6, the fermions in the 24 representation acquire a

mass and a Yukawa interaction between the axion and the new fermions is generated, 3

i.e.

L ⊃ λ√
15
vΣ e

i
a(x)
vΣ (7.10)

×
(
−Tr{ρT8 Cρ8}+

1

2
Tr{ρT(3̄,2)Cρ(3,2)}+

3

2
Tr{ρT3 Cρ3}+

1

2
ρT0 Cρ0

)
+ h.c..

We note that, since the Majorana mass term is forbidden by the PQ symmetry, the

masses are only determined by the last term from Eq. 7.7 and therefore the splitting

among the di�erent fields from the 24 is fixed. This allows us to write all masses of the

fields in the 24 as a function of one of them, for instance the triplet ρ3 mass,

Mρ0 =
1

3
Mρ3 , Mρ8 =

2

3
Mρ3 , Mρ(3,2)

= Mρ(3̄,2)
=

1

6
Mρ3 , (7.11)

which can be read o� from the above interactions.
2The second Higgs doublet in the 45H lives in 45H

βγ
α ∼ −3εβγHδ

2 εαδ and 45H
jα
i ⊃ δjiH

α
2 , from

where the factor 3 and 5 in the H2 contribution come from with respect to the 5H case. Note also that
for the singlet ρ0 ⊂ 24, the color indices in the 45H , in contrast with the term involving ρ3, do contribute.

3Notice that this matches the mass terms from Eq. 6.85 with M24 = 0 and a complex phase.
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7.1.1 Implementation of the PQ mechansim

Following the method proposed by Fujikawa [105, 106] introduced in Chapter 2, the

coupling to gluons can be written as

L ⊃ α3

8π

a

vΣ
NGaµνG̃

µν
a ≡

α3

8π

a

fa
GaµνG̃

µν
a , (7.12)

where N depends on the chiral fields that have been rotated in order to absorb the

axion field. In our case, the fields contributing to the generation of the GG̃-term, listed

below,

a ρ(3,2)

g

g

+ a ρ(3̄,2)

g

g

+ a ρ8

g

g

(7.13)

according to Eq. 2.112 from Chapter 2, generate the following N :

N = 2× 1

2

(
3× 1
︸ ︷︷ ︸
ρ8

+
1

2
× 2

︸ ︷︷ ︸
ρ(3,2)

+
1

2
× 2

︸ ︷︷ ︸
ρ(3̄,2)

)
= 5. (7.14)

Hence, the relation between the PQ scale fa, defined in Eq. 7.12, and the GUT scale,

defined in Eq. 6.12, is given by

fa ≡
vΣ

N
=
vΣ

5
=

√
6

5παGUT

MGUT

10
. (7.15)

Therefore, once known the unification scale MGUT, from the above relation it is

straightforward to predict the axion mass. Now all we can do is computing the window

for the GUT scale predicted by the Adjoint SU(5).
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7.1.2 Predicting the GUT scale

In order to predict the axion mass, we need to ask to this specific theory which is

the scale where unification can occur. For that, we will take into account the evolution

of the SM gauge couplings, which is given by the RGE equations at the 1-loop level

described in Eq. 6.16 from Chapter 6.

Besides the b-coe�cients from the SM contribution at the EW scale, the rest of the

coe�cients for the intermediate fields, bIi , in this theory are: the colored triplet living in

5H , the scalars in the 24H and 45H , and the fermions in the 24, whose bi coe�cients

are given in Tables 6.1, 6.2 and 6.4 from Chapter 6. For achieving the proper values of

the gauge couplings at the low scale, the unification constraints described in Eq. 6.19

and 6.20 should be satisfied.

As in the theory Zee-SU(5), only the Φ1, Φ3 and H2 fields in the 45H help towards

satisfying the unification constraints. For Φ3 and H2, the lighter they are the larger the

fraction B23/B12 can be. The field Φ1 helps towards unification indirectly since it gives

a negative contribution to B12, which turns into an increase of the GUT scale. The later

is needed to be in agreement with proton decay bounds, as we will show in brief. We

will assume for simplicity that the rest of the scalars in the 45H are at the GUT scale

and, therefore, do not modify the RGE equations. We will also assume that there is no

mass splitting among the fields in the 24H . Under this perspective, the Bij coe�cients

are given by

Bij = bSMij + bH2
ij rH2 + bΦ1

ij rΦ1 + bΦ3
ij rΦ3 +B24

ij , (7.16)

where B24
ij represents the contribution of the fields in the 24. In this case, because

of the presence of the U(1)PQ symmetry, the Majorana mass term for the 24 is not

allowed and, therefore, the mass splitting among the fields in this representation is

fixed, as shown in Eq. 7.11. We note that, since unification constraints do not depend

on the global mass scale of the fields in a given representation, the contribution of the
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24 to the RGE equations is totally fixed. In particular, the B24
ij are explicitly given by

B24
23 = −2

ln(3/2)

ln(MGUT/MZ)
+

2

3

ln(6)

ln(MGUT/MZ)
, (7.17)

B24
12 =

4

3

ln(6)

ln(MGUT/MZ)
. (7.18)

Having then as inputs the masses of the MH2 , MΦ1 and MΦ3 , we can use both

unification conditions (see Eqs. 6.19 and 6.20) to determine the parameter space where

they are satisfied, which we show in Fig. 7.2. In there, the mass of the Φ3 field is

implicitly given by Eqs. 6.20. In the left panel, we show the general parameter space

allowed for all possible values of the second Higgs doublet mass, represented with a

blue shaded area. However, in the following we will assume that MH2 = 1 TeV for our

discussions as shown in the right panel; nonetheless, this assumption is quite general in

the sense that the mass of a scalar doublet does not have a strong impact in the RGEs,

as can be deduced from its b-coe�cients (see Table 6.1) and corroborated in Fig. 7.2. By

only looking at the parameter space allowed by the unification constraints we obtain a

mass window [2× 1014− 1016] GeV for the GUT scale when MH2 = 1 TeV. 4 However,

not the full range is consistent with experiment. On one hand, there is an upper bound

for the GUT scale, which is astonishingly fixed by collider experiments. Note that the

Manohar-Wise field, Φ1 ∼ (8, 2, 1/2), cannot be arbitrarily light since it would get in

tension with experimental constraints on new scalars at the low scale. We will use the

bound MΦ1 > 1 TeV from Ref. [286], as we did in Chapter 6. This bound translates into

an upper bound for the GUT scale: MGUT < 5.5 × 1015 GeV. On the other hand, it is

well-known that proton decay is meanly mediated by the vector LQs of SU(5), whose

mass defines the GUT scale. Therefore, the lower bound on the GUT scale window will

be given by the experimental bounds coming from proton decay experiments.

Regarding predictions on proton decay, as in the other GUTs we have previously

introduced, the most constrained channel, p → π0e+, depends on the unknown

parameter Ve defined in Eq. 6.46. In the left panel of Fig. 7.3, we show the predictions

of the Adjoint SU(5) for this decay channel as a function of the GUT scale for two

di�erent choices of it: Ve = 0.1 and Ve = 1, where MH2 = 1 TeV has been assumed.

4When Mh2 = MGUT, the allowed range for the GUT scale is [3.55× 1014 − 1.41× 1016] GeV.
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Figure 7.2: Left Panel: Predictions for the GUT scale, MGUT, as a function of MΦ1 .
We implicitly show in the blue band all possible values that MH2 can take. The
purple shaded region shows the current LHC bound on the scalar colored octet
Φ1 ∼ (8, 2, 1/2), MΦ1 > 1 TeV [286]. The region shaded in red shows the current
experimental limit on the proton lifetime from the SK collaboration, τ(p → K+ν̄) >
5.9 × 1033 years [271], and the green dashed line shows the projected bound for the
HK collaboration, τ(p → K+ν̄) > 2.5 × 1034 years [273]. When applying the bounds
from proton lifetime we take the most conservative limit which corresponds to taking
Mρ3 = 1015 GeV. The mass of the Φ3 ∼ (3, 3,−1/3) varies between the range
108.4 − 108.63 GeV from left to right. Right Panel: The results from the left panel
are particularized for MH2 = 1 TeV. Figure in right panel extracted from Ref. [311].

The red shaded area shows the parameter space ruled out by the proton decay bound

from the SK collaboration [158], while in green and orange the projected bounds from

HK [273] and Dune [317], respectively, are shown. We also display shaded in purple

the collider lower bound on MΦ1 which determines the upper bound of the GUT

scale, as the figure shows. The error of the blue band can be understood as follows.

Note that, although unification constraints do not depend on the global mass of the

24 representation, the grand unified coupling αGUT does depend on it. Therefore, for a

given GUT scale, one should expect a certain range for the αGUT allowed by the possible

values of the global 24 mass, i.e. Mρ3 as we parametrized them in Eq. 7.11. The fields

in the 24 must be at the seesaw scale or below in order to generate realistic values for

the neutrino masses. The fields ρ0 and ρ3 have two body decays and can decay before
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Figure 7.3: Left Panel: Predictions for the proton decay lifetime for the channel p →
π0e+. The di�erent blue bands show di�erent choices of the magnitude of the unknown
mixing matrix Ve. The width of the blue bands is determined by the allowed values of
αGUT as we vary Mρ3 ⊂ [104.51, 1015] GeV. The red shaded area shows the excluded
parameter space by the bound on the proton decay lifetime, τ(p→ π0e+) > 1.6×1034

years [158], from the SK collaboration. The green dashed line shows the projected bound
on proton decay lifetime from the HK collaboration, i.e. τ(p → π0e+) > 8 × 1034

years [273]. Right Panel: Relation between the GUT scale and αGUT. The blue shaded
region leads to gauge unification, the width of this band is determined by varying from
Mρ3 = 104.51 GeV (left limit determined by the BBN bounds) to Mρ3 = 1015 GeV (right
limit determined by the perturbative bound on the seesaw scale). Here we useMH2 = 1
TeV as in the left panel. Figure extracted from Ref. [311].

Big Bang Nucleosynthesis (BBN), while the colored fields ρ8, ρ(3,2) and ρ(3̄,2) have only

three body decays. Since the masses of the all fields in 24 are related, it is enough to

understand the limit on Mρ8 . Neglecting all SM fermion masses the decay width for ρ8

is given by

Γ(ρ8) ≈ Y 2
t O(1)

48(2π)3

M5
ρ8

M4
T

, (7.19)

where MT corresponds to the mass of the scalar triplet inside the 5H . Here we used

the main decay channel defined by the coupling of T to the third generation quarks.
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Using that the contribution of ρ3 to the neutrino masses is given by

Mν '
O(1)v2

0

Mρ3

, (7.20)

we find that

Γ(ρ8) ≈ Y 2
t

32(2π)3

Mν

v2
0

M6
ρ8

M4
T

. (7.21)

In Fig. 7.4 we present the predictions for the ρ8 lifetime using di�erent MT masses

(MT > 1012 GeV from bounds on the proton lifetime, see Eq. 6.76) and Mν ∼ 0.1

eV (see Eq. 1.10). The region shaded in blue shows the parameter space that leads to

τρ8 > 1 second and it is excluded by a naive bound coming from BBN. Therefore,

104.43 GeV < Mρ3 < 1015 GeV, (7.22)

where the upper bound comes from the perturbativity of the Yukawa coupling in

Eq. (7.20). The window in Eq. 7.22 will define the error band of αGUT for a given

value of the GUT scale, as the right panel of Fig. 7.3 shows.
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10-4
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0.100

1
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100 Figure 7.4: Predictions of the
ρ8 lifetime for di�erent MT

masses, we have MT >
1012 GeV from bounds on
the proton lifetime. The
blue shaded regions shows
the predictions for τρ8 <
1 second and excluded by
a naive bound coming from
BBN. Figure extracted from
Ref. [311].

Unfortunately, the theory can always escape the proton decay bound on p→ π0e+

by assuming a small Ve. However, let us look at the second strongest bound on proton

decay, which applies to the decay channel p → K+ν̄ . In the Adjoint SU(5), as in the

Zee-SU(5) (see Sec. 6.3), we should care about Φ3 ∼ (3, 3,−1/3). This LQ mediates
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proton decay according to the e�ective dimension-6 interactions Lagrangian shown in

Eq. 6.73. In here, as well as in the Zee-SU(5) model, in order to achieve unification

MΦ3 ∼ O(108) as Fig. 7.2 shows. Hence, the empirical fact that the theory must be

consistent with the proton decay bounds indirectly implies an almost symmetric mass

matrix for the up-type quarks since a strong suppression from Y4 is needed. We refer

the reader to Chapter 6 for a detailed explanation. In this context we can make clean

predictions for the proton decay into antineutrinos, which are given in Eq. 6.52. The

later allows us to determine a lower bound for the GUT scale. In Fig. 7.11 we show

the predictions for the proton decay channels p → K+ν̄ and p → π+ν̄ . This figure

shows the same color coding as Fig. 7.3. Taking the later into account, we can conclude

15.0 15.2 15.4 15.6 15.8

1033

1034

1035

1036

15.0 15.2 15.4 15.6 15.8

1032

1033

1034

1035

Figure 7.5: Predictions for the proton decay channels p→ K+ν̄ and p→ π+ν̄ . The blue
bands show the possible range of variation of αGUT, according to Mρ3 ⊂ [104.51, 1015]
GeV. The red shaded areas show the excluded region by the SK constraints, τ(p →
K+ν̄) > 5.9 × 1033 years [271] and τ(p → π+ν̄) > 3.9 × 1032 years [272]. The green
dashed line shows the projected bound by the HK collaboration on the p → K+ν̄
channel, τ(p→ K+ν̄) > 2.5× 1034 years [273]. Figure extracted from Ref. [311].

that the available window for the GUT scale for this Adjoint SU(5) with a global PQ

symmetry is

MGUT = [1015.06 − 1015.74] GeV, (7.23)
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where we have taken the largest window within the error allowed by the strongest clean

bound, i.e. that from the p → K+ν̄ channel. The above window is shown in Fig. 7.2,

where theory and experimental constraints are all displayed together. 5

7.1.3 Axion mass and phenomenology

In order to show our numerical results we will use the following relation between

ma and fa obtained in Refs. [125, 318],

ma = 5.691(51) × 10−6 eV

(
1012 GeV

fa

)
, (7.24)

where the authors have computed an improved expression with respect to that in

Eq. 2.121 from Chapter 2 by combining NLO results obtained in chiral perturbation

theory with recent Lattice QCD results.

As demonstrated in the last subsection, see Eq. 7.23, in Adjoint SU(5) a small range

for the GUT scale and αGUT can be predicted. Because the same field is breaking the

GUT scale and the PQ symmetry, the GUT scale and the axion mass are connected, as

Fig. 7.1 illustrates. This leads to the following prediction for the axion mass:

ma = (2.99− 13.45)× 10−9 eV. (7.25)

where we have taken the largest mass range allowed within the uncertainty of αGUT. In

Fig. 7.6 we show the predictions for the axion mass as a function of the GUT scale.

The blue band shows the parameter space allowed by unification constraints and proton

decay. The red (purple) shaded area shows the excluded parameter space by the proton

decay bound (LHC bound on MΦ1 ). Eq. 7.25 is crucial to understand the testability of

this theory at axion experiments because it tells us the specific range for the axion mass

where a signal could be expected. In the allowed mass window, an initial misalignment

angle of θi ≈ 10−2 [132–134] must be assumed in order for the axion field to saturate

the DM relic abundance ΩDMh
2 = 0.1200± 0.0012 [7].

5In the extreme case Mh2 = MGUT, the allowed range for the GUT scale consistent with experimental
bounds and unification constraints is given by 1015.58 − 1016.02 GeV.
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Figure 7.6: Axion mass as a function of the GUT scale. The blue band shows the
parameter space allowed by unification constraints and proton decay. The red (purple)
shaded area shows the excluded parameter space by the proton decay bounds from SK
(LHC bound on MΦ1 ). The dashed green line gives the projected sensitivity for HK.
Figure extracted from Ref. [311].

We proceed to study the phenomenology of the axion in the predicted mass window.

The coupling between the axion and photons is given by the red framed term in

Eq. 2.153, lead by the e�ective coupling gaγγ given by Eq. 2.123. In this case, E/N=8/3

since we are working with fermions in a complete representation of SU(5). The explicit

value for E is given by,

E = 2× 1

2




(
4

3

)2

× 3 +

(
1

3

)2

× 3

︸ ︷︷ ︸
ρ(3,2)

+

(
4

3

)2

× 3 +

(
1

3

)2

× 3

︸ ︷︷ ︸
ρ(3̄,2)

+ 12 + (−1)2

︸ ︷︷ ︸
ρ3


 =

40

3
,

(7.26)

where the electrically charged fields participating in the gaγγ generation are listed below.

a ρ(3,2)

γ

γ

+ a ρ(3̄,2)

γ

γ

+ a ρ3

γ

γ

. (7.27)
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Figure 7.7: The axion-photon coupling versus the axion mass. The blue line corresponds
to the axion mass prediction in Adjoint SU(5). The regions shaded in blue, orange and
red correspond to the projected sensitivities for Phase I, II and III of the ABRACADABRA
experiment [150] using the broadband approach. The purple lines correspond to the
projected sensitivities for the three di�erent phases in the resonant approach. Figure
extracted from Ref. [311].

As described in Chapter 2, the ABRACADABRA experiment [150] is expected to be

sensitive to the axion to photon coupling for very light axions, ma . 10−6 eV. In

Fig. 7.7 we present the axion to photon coupling together with the projected reach for

ABRACADABRA, as given in Ref. [150]. The regions shaded in di�erent colors correspond

to the projected sensitivity for the broadband operating mode, while the purple lines

show the ones for the resonant operating mode. The blue solid line corresponds to the

prediction in Adjoint SU(5). It is of great interest that the third stage of the broadband

mode will be able to probe a portion of this mass range, while the third stage of the

resonant operating mode could fully probe the predicted mass window.

At low energies, the axion field has also a coupling to the EDM operator for nucleons,

given by the blue framed term in Eq. 2.162, which gives rise to the nucleon EDM [114–117],

dn ≡ gaD a ≈ 2.4× 10−16 a

fa
e · cm, (7.28)
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as Eq. 2.114 states. In the presence of an oscillating axion background field, a(t), this

interaction generates an oscillating nucleon EDM. Thus, when DM consists of the axion

field with ρDM ≈ m2
a a

2
0/2 ≈ 0.4 GeV/cm3 [149] it could lead to an observable e�ect on

nucleons.
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Figure 7.8: The axion coupling to the nucleon EDM versus the axion mass. The blue
band is the prediction in Adjoint SU(5). The width of the band corresponds to the
theoretical error, as given in [115, 116]. The region shaded in purple and red correspond
to the projected sensitivities for Phase II and III of the CASPEr-Electric experiment [156].
The brown dashed line shows the ultimate limit from magnetization noise. Figure
extracted from Ref. [311].

The CASPEr-Electric experiment [154] is expected to probe axions with very low

masses, ma < 10−9 eV, which is the region of interest for theories in which the PQ scale

has a connection to the GUT or the string scale [319]. See Chapter 2, Sec. 2.2 for more

details on the experiment. In Fig. 7.8 we present the predictions for the gaD coupling in

the axion mass window predicted by Adjoint SU(5). The region shaded in purple (red)

corresponds to the projected sensitivity for Phase II (Phase III) for CASPEr-Electric [156],

the latter will be able to probe a part of the mass window predicted by Adjoint SU(5).

The brown dashed line shows the ultimate limit from magnetization noise. As can be

appreciated, these predictions for the axion mass can be probed in the near future.
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7.2 DFSZ mechanism in SU(5)

The Peccei-Quinn mechanism can be implemented à la Dine, Fischler, Srednicki

and Zhitnitsky (DFSZ) [128, 129] in GUT theories through a mixing term that connects

indirectly the axion with the colored fermions of the theory. It can be implemented in

SU(5) enlarging the SU(5)GG by an extra Higgs in the fundamental representation as

Georgi, Glashow and Wise proposed in Ref. [310],

5′H ∼ (1, 2, 1/2)︸ ︷︷ ︸
H3

⊕ (3, 1,−1/3)︸ ︷︷ ︸
T ′

, (7.29)

which contains an extra second Higgs doublet, H3. However, in order to make the theory

realistic, as mentioned in the introduction of this chapter, one needs an extra 45H to

correct the charged fermion masses and predict the observed SM gauge couplings at the

low scale. In the context of the scalar sector of this theory, the mixing term between

the Higgs doublets and the CP-odd phase in 24H reads,

V ⊃ 5′†H 242
H(λ1 5H + λ2 45H) + λ3 5′†H 5H Tr{242

H}+ h.c., (7.30)

which implies that the 5H and 5
′
H must transform di�erently under the PQ symmetry

in order for the 24H to transform non-trivially under U(1)PQ. For the symmetry to be

non-anomalous, each of the doublets must couple to a di�erent Yukawa interaction of

the original SU(5). Since the fermion mass relation between the charged leptons and

down-type quarks must be corrected, the 45H must couple to the 5̄ 10 interaction in

exactly the same way as the 5H . In this context, the SU(5) ⊗ U(1)PQ theory has the

following Yukawa interactions:

LY = 10 Y3 10 5
′
H + 10 (Y1 5∗H + Y2 45∗H) 5̄ + h.c., (7.31)

which, together with the scalar potential needed to implement the DFSZ mechanism,

fixes the charges of the fields under the global PQ symmetry as follows:

Field 5̄ 10 5
′
H 5H 45H 24H

PQ charge α β −2β α+ β α+ β −(α+ 3β)/2
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After SSB, the masses for the charged leptons and down quarks are given by Eqs. 6.72,

whereas the mass of the up quarks in this context is given by the following expression

instead:

Mu =
√

2
(
Y3 + Y T

3

)
v5′ . (7.32)

Notice that, in this case, Mu = MT
u , which has strong implications for the proton

decay channels with antineutrinos, as we are already familiar with from the previous

scenarios. However, this time the symmetric nature of Mu raises from a prediction of

the theory rather than from an empirical (phenomenological) need.

Moreover, an extra representation is needed in order to generate masses for the

neutrinos. There are several options, each of them leading to di�erent mechanisms.

With two copies of a RH neutrino 1i ≡ νci , singlets under SU(5), the Type-I seesaw

mechanism can be implemented (see Sec. 1.2 and Sec. 6.2 for more details). In this

case, the PQ would be fixed to β = −2α if 1 couples to 5H , or β = α/2 if it couples

to 5′H instead. The next option regarding simplicity would be the addition of a scalar

antisymmetric representation 10H and implement the Zee mechanism as presented in

Sec. 6.3. In this scenario, the relevant Lagrangian for the neutrino mass generation is

given by Eq. 6.70, which fixes the PQ charges as follows:

5̄→ eiα 5̄, 10→ e−2iα 10, 5′H → e4iα 5′H ,

24H → e5iα/2 24H , 5H/45H → e−iα 5H/45H , 10H → e−2iα 10H .

See Sec. 6.2 from Chapter 6 for the discussion of other possibilities to generate neutrino

masses in this context.

Coming back to the scalar potential responsible for the implementation of the DFSZ

mechanism, the interactions in Eq. 7.30 written in terms of the SM fields read as

V ⊃ (m2
12 + λH†1H2)H†1H2 +H†3Σ2

0(λa1H1 + λa2H2) + h.c.. (7.33)

Following the approach that we introduced in Chapter 2, let us determine how much

of the axion lives inside each of the scalar representations. After SSB, all neutral fields

acquire a vev and the CP-odd component can be written as a function of the two GBs
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generated by the spontaneous breaking of two global symmetries of the scalar potential:

H0
1 ⊃ v1√

2
ei a1/v1 =

v1√
2
ei(q âZ+PQ1 â), (7.34)

H0
2 ⊃ v2√

2
ei a2/v2 =

v2√
2
ei(q âZ+PQ2 â), (7.35)

H0
3 ⊃ v3√

2
ei a3/v3 =

v3√
2
ei(q âZ+PQ3 â), (7.36)

Σ0 ⊃ vΣ√
2
ei aΣ/vΣ =

vΣ√
2
ei PQΣ â. (7.37)

where â and âZ are the phases of the axion and the EW GB eaten by the Z,

respectively. The q factor is the contribution related to the EW quantum numbers

and PQi parametrizes the presence of the axion in each of the scalar representations.

The terms of the scalar potential fix the following conditions for the PQi charges:

PQ1 = PQ2, and PQ1,2 + 2PQΣ − PQ3 = 0. (7.38)

As done explicitly in Chapter 2, linearizing the kinetic terms we end up with two

conditions,

v2
1 PQ1 + v2

2 PQ2 + v2
3 PQ3 = 0, (7.39)

v2
1 PQ

2
1 + v2

2 PQ
2
2 + v2

3 PQ
2
3 + v2

Σ PQ2
Σ = n2

a, (7.40)

where the first one is due to the orthogonality of the GBs, and the second one is

demanded by the normalization of the kinetic terms, being na the normalization factor

of the CP-odd phase â ≡ a/na. The above conditions fix the presence of the axion in

each of the neutral scalars as follows,

H0
1 ⊃

v1√
2
ei
a
n , H0

2 ⊃
v2√

2
ei
a
n , H0

3 ⊃
v3√

2
e
−i
(
v2
1+v2

2
v2
3

)
a
n
, Σ0 ⊃

vΣ√
2
e
−i
(
v2

2v2
3

)
a
n
,

(7.41)

where v =
√
v2

1 + v2
2 + v2

3 = 246 GeV, and

n ≡ na
PQ1

=

√
v2

1 + v2
2

v3
v

√
1 +

v2
Σ v

2

4v2
3(v2

1 + v2
2)
' v2 vΣ

2 v2
3

. (7.42)
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In the last step from Eq. 7.42, the limit vΣ � v1, v2, v3 has been taken, which is justified

by the fact that MGUT is about 13 orders of magnitude higher than the EW scale. As

expected, Eq. 7.42 brings out that the axion lives predominantly in the Σ0 field.

In the broken phase, the Yukawa Lagrangian from Eq. 7.31 reads as,

LY ⊃ ūRMu uL e
−i
(
v2
1+v2

2
v2
3

)
a
n

+ d̄RMd dL e
−i a

n + ēRMe eL e
−i a

n + h.c., (7.43)

where, by applying the following PQ rotations,

uL/R → e
±i
(
v2
1+v2

2
2v2

3

)
a
n
uL/R, dL/R → e±i

a
2ndL/R, and eL/R → e±i

a
2n eL/R, (7.44)

the axion can be reabsorbed from the Yukawa Lagrangian and the following GG̃ term

is consequently generated (see Eq. 2.111):

L ⊃ α3

8π

a

n

3v2

v2
3

GaµνG̃
µν
a . (7.45)

Comparing the above expression with Eq. 7.12, one can identify the PQ scale as

fa ≡
vΣ

N
=

v2
3

3v2
n ' vΣ

6
. (7.46)

Therefore, in order to predict the mass of the axion in the context of this simple GUT

theory based on SU(5), the GUT scale needs to be determined. As in the KSVZ-SU(5)

scenario described in Sec. 7.1, the GUT scale is fixed by the unification constraints on

the gauge couplings and the experimental bounds on proton decay.

7.2.1 Predicting the GUT scale

This scenario is very similar to the Adjoint SU(5) discussed in the previous section

because Φ1, Φ3 and H2 ⊂ 45H play the key role in achieving unification. 6 Here,

however, there is an extra Higgs doublet, H3, although a significant impact in the RGEs

from the fundamental representation of SU(5) is not expected (see Table 6.1). Fig. 7.9

6In this case we do not have the fermion fields in the 24 contributing to the RGEs, but we note that
their splitting is small and so it is their contribution to the running equations.
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displays the parameter space allowed by the unification conditions shown in Eqs. 6.19

and 6.20 in the context of the simplest realistic GUT where the DFSZ mechanism can

be implemented. Unification constraints determine MGUT as a function of MΦ1 and

the doublet masses MH2 and MH3 , as shown by the blue region in the left panel in

Fig. 7.9. We note that, in this case, there is no problem at all in having a light Φ3 since

it does not mediate the decay of the proton because, in this case, the fields in the 45H

do not interact with the 10 10 in the Yukawa Lagrangian. On the right panel of Fig. 7.9,

we show the relation between MGUT and αGUT. As in the left panel, the region shaded

in blue satisfies the unification constraints as we vary MH2 and MH3 from 1 TeV to

the GUT scale. As in the previous case, the upper bound on the GUT scale is given by

the lightest possible value of the Manohar-Wise Φ1 ∼ (8, 2, 1/2), MΦ1 > 1 TeV [286],

shown by a purple line in Fig. 7.9. Elseways, the lower possible GUT scale is fixed by

proton decay bounds.

Analogously to the Adjoing SU(5) ⊗ U(1)PQ, the most constrained proton decay

channel depends on the unkown Ve factor and, unfortunately, cannot set a lower bound

for MGUT. See Fig. 7.10 for the prediction on the proton lifetime in this channel under

several choices of Ve for illustration. However, for the next strongest bound, p → K+ν̄ ,

the prediction of the proton decay width for the channels involving anti-neutrinos can

be cleanly predicted because Mu = MT
u in this context. The decay rate, together with

that for the p→ π+ν̄ channel, are given by Eq. 6.52. As the reader can notice from this

equation, the relation between the two decay channels into anti-neutrinos is fixed.

In Fig. 7.11, we present the predictions and correlation for both proton decay channels

into antineutrinos. The red shaded area shows the excluded parameter space from SK

bounds for both τ(p→ K+ν̄) > 5.9× 1033 years [271] and τ(p→ π+ν̄) > 3.9× 1032

years [272]. The projected bounds on the decay channel p → K+ν̄ from the HK

collaboration τ(p → K+ν̄) > 3.2 × 1034 years [320] and the DUNE collaboration

τ(p → K+ν̄) > 5× 1034 years [317] are shown with a green and orange dashed lines,

respectively. The purple shaded areas correspond to the parameter space excluded by

collider bounds on the colored doublet MΦ1 > 1 TeV [286], where we have assumed

the MH2,3 = MGUT in order to account for the largest possible range.
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Figure 7.9: Unification constraints in the parameter space. The region shaded in blue
satisfies the unification constraints. The red area corresponds to the parameter space
ruled out by the SK collaboration τ(p → K+ν̄) > 5.9 × 1033 years [271], the green
and orange dashed lines show the projected bounds from the HK collaboration τ(p →
K+ν̄) > 3.2× 1034 years [320] and the DUNE collaboration τ(p→ K+ν̄) > 5× 1034

years [317], respectively. The parameter space excluded by collider bounds on MΦ1 > 1
TeV [286] is colored in purple. Left Panel: In blue, prediction of the GUT scale as a
function of the Φ1 ∼ (8, 2, 1/2) mass. Right Panel: In blue, prediction of the GUT
scale as a function of αGUT. In gray dashed lines we show the sensitivity of di�erent
hypothetical decay widths for the p→ K+ν̄ channels. In both panels the width of the
blue band scans over the possible mass range for the Higgs doublets H2 and H3. Figure
extracted from Ref. [321].

We note that the theory predicts the upper bound on the proton decay lifetime for

the channels with antineutrinos,

τ(p→ K+ν̄) . 3.5× 1037 yr, and τ(p→ π+ν̄) . 1.8× 1036 yr, (7.47)

which expose the theory to be tested in current or future proton decay experiments. We

emphasize that the peculiar feature Mu = MT
u from this theory allows us to predict

the upper bound of the axion mass window.
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lifetime from the decay channel p →
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1.6 × 1034 years [158], while the
green dashed line shows the HK
collaboration projected bound, τ(p →
π0e+) > 8 × 1034 years [273]. The
region shaded in purple is ruled out by
the collider constraints on the Φ1 field,
MΦ1 > 1 TeV [286]. Figure extracted
from Ref. [321].

We show the experimental constraints for proton decay in both of the panels in

Fig. 7.9 as follows: we show in red the excluded region by the bound on p → K+ν̄

from the SK collaboration, τ(p→ K+ν̄) > 5.9×1033 years [271], whereas the projected

bound on the same decay from the HK collaboration, τ(p → K+ν̄) > 3.2 × 1034

years [320] and the DUNE collaboration, τ(p→ K+ν̄) > 5×1034 years [317], are shown

with a green and orange dashed lines, respectively. We remind the reader that with the

45H alone unification can be achieved, as shown in Fig. 7.9, and the splitting in the

5′H helps to increase the parameter space where unification occurs. We find that the

allowed window for the GUT scale is given by

MGUT = (1.12 − 10.45)× 1015 GeV. (7.48)

7.2.2 Axion mass and phenomenology

According to Eq. 7.24, in the context of the fa obtained in Eq. 7.46, and the relation

of the 〈24H〉 with the GUT scale, given by Eq. 6.12, we have that

ma = 5.691(51)× 10−6 eV

(
1012GeV/

MGUT√
αGUT

1

2
√

30π︸ ︷︷ ︸
fa

)
. (7.49)
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Figure 7.11: Correlation between the proton lifetime prediction for the channels p →
K+ν̄ and p → π+ν̄ with respect to the axion mass. The regions shaded in red show
the parameter space excluded by the proton decay bounds from the SK collaboration.
The green and orange dashed lines give the projected bounds from the HK collaboration
and the DUNE collaboration, respectively. The region shaded in purple is the parameter
space ruled out by collider bounds on Φ1 assuming MH2,3 = MGUT. Figure extracted
from Ref. [321].

We note that the decay width of both channels depends on the ratio (αGUT/M
2
GUT) in

exactly the same way as the expression above, allowing then to relate both observables

by

ma ' 4.5/τ1/4(p→ K+ν̄) eV. (7.50)

Therefore, if any of these two decay channels is discovered in proton decay experiments

one can automatically predict the other channel and the axion mass, as shown in

Fig. 7.11. In there, we present the prediction of the axion mass from the lifetime of any

of the proton decay channels into antineutrinos. The white region in Fig. 7.11 shows the
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available window for the axion mass in this model, which is predicted to be

ma = (1.87 − 16.05)× 10−9 eV. (7.51)

On the other hand, the bounds on the axion mass, which we will present in the

following, can constrain the proton decay channels as Eq. 7.50 states. This powerful

correlation is an outcome from having a consistent and self-contained theory as a

framework. Notice that it relates unambiguously several predictions, what allows to test

the theory and make progress if those are successfully noted.

In the following, we study the axion couplings to SM particles in the predicted mass

window. We focus on the axion to photon coupling and the interaction between the

axion and the EDM of the neutron for which there exist experiments that could probe

this scenario. In this work, we consider the case in which the PQ symmetry is broken

before inflation and in order to achieve the correct DM relic abundance we assume an

initial misalignment angle of θi ≈ 10−2 [132–134], as in the KSVZ scenario.

The interaction between the axion and photons can be obtained by rotating the

axion field from the Yukawa terms of the charged fermions is given by the red framed

term in Eq. 2.153, where the e�ective coupling gaγγ is given by Eq. 2.123 with E/N =

8/3 as in the KSVZ-SU(5). 7 In this theory, the fields contributing to the E factor,

which is given by,

E = 2× vΣ

n




(
1

3

)2

× 3× 2

︸ ︷︷ ︸
dL

+

(
2

3

)2 v2
1 + v2

2

v2
3

× 3× 2

︸ ︷︷ ︸
uL

+ (−1)2 × 2︸ ︷︷ ︸
eL


× 2︸︷︷︸

L→R

= 16

(7.52)

are listed below:

a u

γ

γ

+ a d

γ

γ

+ a e

γ

γ

. (7.53)

7This is common when rotating complete representations of SU(5).



248 7. Axions in Grand Unified Theories

We present our results in Fig. 7.12. The solid blue line corresponds to the gaγγ

coupling in the predicted mass window and we show the projected sensitivities of

the ABRACADABRA experiment [150]. The broadband approach in its Phase III, which

corresponds to a configuration with magnetic field of 5 T and a volume of 100 m3, will

be sensitive to a portion of this mass window, as shown by the orange region. This

sensitivity takes into account only the irreducible source of noise in the experiment.

Phase III of the resonant approach, shown by a purple dotted-dashed line, will be able

to cover most of the predicted mass window. The latter assumes that the noise in the

SQUID is much smaller than the thermal noise.
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Figure 7.12: Left panel: The axion coupling to photons as a function of the axion
mass. The blue solid line corresponds to the prediction in the theory considered in
this paper. The region shaded in orange gives the projected sensitivite for Phase III of
the ABRACADABRA [150] experiment using the broadband approach. The purple dashed
(dotted-dashed) line corresponds to Phase II (III) of the resonant approach. Right panel:
The axion coupling to the neutron EDM as a function of the axion mass. The blue band
corresponds to the theoretical error on the gaD ocupling [115]. The region shaded in
red gives the projected sensitivity to Phase III of the CASPEr-Electric [156] experiment.
Figure extracted from Ref. [321].

The DM axion background field induces an oscillating EDM for the neutron, given

by Eq. 7.28 for the fa predicted in this context. The CASPEr-Electric [154,156] experiment
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aims to measure this oscillating nEDM and Phase III of this experiment will probe the

lower portion of the predicted mass window as shown in Fig. 7.12. Experimental limits

have already been found using this search strategy [322]. However, the advanced stage

of CASPEr-Electric we show in Fig. 7.12 relies on technology that is currently under

development. When the projected sensitivities for ABRACADABRA and CASPEr-Electric

are combined, these experiments will be able to fully probe the mass window in Eq. 7.51.

See Chapter 2 for more details on these axion experiments.

One important di�erence between this scenario and the one studied in Section 7.1 is

that here the axion has a tree-level coupling to electrons. However, all the experimental

constraints on this coupling are well above the prediction for the QCD axion with mass

around 10−9 eV. It is important to emphasize that this theory can be fully tested using

the predictions for the axion mass and upper bounds on the proton decay lifetimes.

7.3 Conclusions

The QCD axion remains one of the most appealing candidates for the DM in the

Universe. We have discussed the implementation of the DFSZ and KSVZ mechanisms

in renormalizable grand unified theories based on the gauge symmetry SU(5) since

in their context the axion mass can be predicted. In order to connect the GUT scale

to the Peccei-Quinn scale we require the same scalar field to break both symmetries.

We showed that in the simplest renormalizable models the 5H and 45H Higgses must

couple in the same way to matter and have the same Peccei-Quinn charge.

In the first part of this chapter, we have shown that the same fermionic field, 24,

needed to generate neutrino masses can be used to implement the KSVZ mechanism.

The colored and the electrically-charged fields in the 24 generate the couplings of the

axion to the gluons and the photons respectively, while the rest of the fields generate

neutrino masses through the seesaw mechanism. We have investigated the unification

of gauge interactions taking into account the collider and proton decay constraints and

we have found that the allowed GUT scale is in a small range which allows to predict

the axion mass in the window

mKSVZ
a = (2.9− 13.5)× 10−9 eV.
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We focused on the scenario where the PQ symmetry is broken before inflation and

discussed the predictions for the di�erent axion experiments showing that this theory

could be fully tested in the near future by the ABRACADABRA and the CASPEr-Electric

experiments.

In the second part of the chapter, we presented the minimal realistic renormalizable

GUT theory where the DFFZ mechanism can be implemented, following the idea of

Wise, Georgi and Glashow. The PQ scale is determined by the GUT scale which predicts

the axion mass in the range:

mDFSZ
a ' (2 − 16)× 10−9 eV.

The fact that the mass matrix for up-quarks is symmetric implies that the proton decay

channels with antineutrinos is a function of the known mixings at low energy. In the

DFSZ-theory (and also in the KSVZ-theory for consistency with proton decay bounds),

the upper bounds on the proton decay lifetimes with antineutrinos are given by

τ(p→ K+ν̄) . 4× 1037 yr, and τ(p→ π+ν̄) . 2× 1036 yr.

These theories are unique due to the fact that they can be fully probed by proton

decay experiments such as DUNE or Hyper-Kamiokande and axion experiments such as

ABRACADABRA or CASPEr.

The theoretical framework studied in this article based on SU(5) × U(1)PQ can

be considered as appealing theory where it is possible to understand the unification

of the SM forces, the origin of neutrino masses, DM, the strong CP problem and the

baryon asymmetry through leptogenesis. Furthermore, the lifetime for the proton can

be predicted and exotic signatures at colliders are expected.

It should be remarked that the beauty of these theories relies on their capability to

predict the axion mass together with some correlations among other observables that

arise a a consequence of having a well-defined and consistent theory as a framework.



8.- E�ective Field Theories for b → c

transitions

If the apparent disagreement between the SM predictions for the observables

involving b → c transitions and their experimental values is further confirmed, these

flavour anomalies will become a clear claim for NP a�ecting the weak sector. Keeping

in mind that the SM cannot be the ultimate theory, as we have discussed along this

thesis, we should adopt the perspective of an EFT whose Lagrangian can be written as

an infinite expansion of operators of all possible dimensions,

Le�SM = L4
SM +

∞∑

n=5

Cn
Λn−4

O(n), (8.1)

where Cn are dimensionless quantities that parametrize the strength of each operator,

called Wilson Coe�cients (WCs), and L4
SM is the renormalizable SM Lagrangian. In this

way, any NP e�ect can be parametrized as a function of the terms from the above

expansion, suppressed by the scale of NP Λ. A semi-leptonic decay such as those based

on the transition b → cτ ν̄ can be described by four-fermion operators, so that we will

stick to the most general dimension-6 Hamiltonian at the bottom quark mass scale,

invariant under SU(3)c ⊗ U(1)Q, involving such fermion currents:

He� =
4GFVcb√

2


O

V
LL +

∑

X=S,V,T
A,B=L,R

CXAB OXAB


 , (8.2)

251
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where the operators are classified according to their Lorentz structure and the chirality

of the currents composing the operator, as listed below:

OVAB ≡ (c̄ γµPAb) (τ̄ γµPBν) ,

OSAB ≡ (c̄ PAb) (τ̄PBν) ,

OTAB ≡ δAB (c̄ σµνPAb) (τ̄σµνPAν) . (8.3)

We note that the tensor operators have two currents with the same chirality. This is a

direct consequence of the Dirac-algebra identity γ5σ
µν = − i

2 ε
µναβσαβ , which implies

σµν⊗σµνγ5 = σµνγ5⊗σµν and σµνγ5⊗σµνγ5 = σµν⊗σµν , 1 where ⊗ symbolizes the

contraction between two fermion currents. See also the Fierz identities in Appendix A.

Notice also that the above e�ective Hamiltonian is built from the SM matter fields plus

a RH singlet νR ∼ (1, 1, 0). We will consider the existence of light RH sterile neutrinos

in order to obtain the most general expressions for our study.

Last thing to remark from Eq. 8.2 is the factorization of the SM contribution from

the LH vector current: the normalization of the Hamiltonian in Eq. 8.2 is chosen such

that it matches with the contribution from the integration of the Wµ boson. In this

way, by setting all WCs to zero the SM is recovered. In other words, any non-zero WC

automatically implies NP associated to an UV-mediator whose integration generates at

low energies the corresponding non-renormalizable operator.

8.1 New physics behind the b→ c anomalies

There are in total eleven (tree-level) UV-mediators from di�erent nature (scalars,

vector bosons, LQs) that could generate a non-zero WC in the e�ective Hamiltonian listed

in Eq. 8.2. Those can be found by considering all possible tree-level interactions between

the fermion fields and a generic new mediator, in this case including the sterile RH

neutrino νR ∼ (1, 1, 0) as part of the matter content. In Tab. 8.1 the quantum numbers

under the SM gauge group of the matter fields, expressed as left-chiral fields, are listed.

Let us consider the three point interaction between a couple of fermions, ΨL and ΦL,

and the new mediator: L ⊃ ΨT
LCAΦL for scalar interactions, and L ⊃ ΨLγµA

µΦL

1We will use the convention ε0123 = −ε0123 = −1 along this chapter.
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Field `L QL (uc)L (dc)L (ec)L (νc)L
Q.N. (1, 2,−1/2) (3, 2, 1/6) (3̄, 1,−2/3) (3̄, 1, 1/3) (1, 1, 1) (1, 1, 0)

Table 8.1: Quantum numbers of the matter fields potentially involved in the b → cτ ν̄
transitions according to the SM gauge group: (SU(3)c, SU(2)L, U(1)Y ).

for spin-1 bosons. By imposing to these vertices Lorentz and gauge invariance, the

interactions collected below are allowed, where the fermion lines have been chosen to

reproduce the transition b→ cτ ν̄ .

-Scalar mediators-

Φ =

(
Φ+

Φ0

)
∼ (1, 2, 1/2)

qL uR

C̃SLL

Φ†

LH

`L

eR

dR qL

Φ†

C̃SRL

LH

`L

eR

qL uR

Φ†

C̃SLR

RH

`L

νR

dR qL

Φ†

C̃SRR

RH

`L

νR

S1 ∼ (3̄, 1, 1/3)

qL (`L)c

S†1

LH

C̃SLL − 1
4 C̃

T
LL

(eR)c

uR

qL (`L)c

S†1

LH

C̃VLL

qL

(`L)c

qL (`L)c

S†1

RH

C̃SRR − 1
4 C̃

T
RR

dR

(νR)c

dR (νR)c

S†1

RH

C̃VRR

(eR)c

uR

R2 ∼ (3, 2, 7/6) S3 ∼ (3̄, 3, 1/3) R̃2 ∼ (3, 2, 1/6)

qL eR

R2

LH

C̃SLL + 1
4 C̃

T
LL

uR

`L

qL (`L)c

S†3

LH

C̃VLL

qL

(`L)c

dR `L

R̃2

RH

C̃SRR + 1
4 C̃

T
RR

qL

νR
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-Vector mediators-

Uµ1 ∼ (3, 1, 2/3)

dR eR

Uµ1

LH

C̃VRR

uR

νR

qL `L

Uµ1

LH

C̃VLL

qL

`L

qL `L

Uµ1

RH

C̃SLR

uR

νR

dR eR

Uµ1

RH

C̃SRL

qL

`L

Uµ3 ∼ (3, 3, 2/3) V µ
2 ∼ (3̄, 2, 5/6) Ṽ µ

2 ∼ (3̄, 2,−1/6)

qL `L

Uµ3

RH

C̃VLL

qL

`L

dR (`L)c

(V †2 )µ

LH

C̃SRL

qL

(eR)c

qL (νR)c

(Ṽ †2 )µ

RH

C̃SLR

(`L)c

uR

W
′µ ∼ (1, 3, 0) V µ ∼ (1, 1,−1)

qL qL

W
′µ

LH

C̃VLL

`L

`L

dR uR

V µ

RH

C̃VRR

eR

νR

The WCs to which the previous diagrams contribute are listed below each

interaction. Furthermore, the interactions are also labeled as LH and RH according

to the chirality of the leptonic current involved. In the following, we will show explicitly

how each of the eleven mediators contributes to the e�ective Hamiltonian in Eq. 8.2

when integrated out. However, one last thing should be remarked before starting. In

the diagrams above, the WCs generated by the possible mediators have been labeled

with a tilde. This is because they are di�erent from those appearing in Eq. 8.2 as a

consequence of the hierarchy of scales.

The Hamiltonian in Eq. 8.2 describes b → cτ ν̄ transitions in terms of the WCs

of an EFT framework defined at the b-quark mass scale. The EFT in this range is
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conventionally called Weak E�ective Theory (WET) and is composed of the five lightest

quarks and the three generations of leptons, and ruled by the SU(3)c ⊗ U(1)Q gauge

symmetry. This is a valid approach assuming – as strongly suggested by all available

collider data – that no new d.o.f. exists coupling to this channel with a mass around or

below the b quark. However, our goal is to gain insight into the high-energy structure

of the theory. To that aim, renormalization-group techniques are used to relate the

coe�cients entering in the b → cτ ν̄ transitions at the level of the experiment to those

relevant at the scale of the potential new high-energy d.o.f.. This process involves

several scales and thresholds, as illustrated in Fig. 8.1. Notice that above the EW scale,

ρ0

ρ3

ν

N,N c

EW

GUT⇤NP

SMEFT

WET

O
(3)
`q ,O`edq,O

(1)
`equ,O

(3)
`equ

OVL ,OVR ,OSL ,OSR ,OT

Energy

⇤EW

⇤QCD

C̃i[⇤]

Ci[⇤]

C̃i[⇤]

Ci[⇤]

Figure 8.1: Relevant scales for the study
of the B anomalies. The dashed lines
indicate the thresholds between di�erent
EFTs. The WCs C̃i[Λ] are dimensionless
parameters encoding the NP e�ects, while
the Ci[Λ] are their transcription at the
b-quark scale, taking into account the
di�erent EFT frameworks where they are
defined and the running e�ects between
them.

the Lagrangian has not undergone SSB and, therefore, the fermionic fields should be

expressed in terms of weak eigenstates rather than mass eigenstates. Moreover, the top

quark, the EW gauge bosons and the Higgs boson have to be considered as new d.o.f.

in the theory. The relevant framework at this scale is the full SM including the RH

neutrino, with the addition of the e�ects of NP. In order to relate the physics at the

di�erent scales, one should take into account the gap between the scale where the NP

d.o.f. generate the corresponding e�ective Lagrangian after they are integrated out, and

the bottom quark scale where the b → cτ ν̄ transitions take place at experiment. The

first EFT should be invariant under the SM gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

while the second one corresponds to the WET. Such energy gap will generate the running

of the operators that will determine the relation between the C̃i and the WCs appearing

in Eq. 8.2. For the first gap (ΛQCD − ΛEW), the relation of the WCs in Eq. 8.2 to the

coe�cients at the EW scale is determined by QCD and is known [323–326]. Finally, one
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has to consider the running from ΛEW to ΛNP [327–331]. The corresponding equations

can be solved numerically, but also analytically to very good approximation [332].

From the eleven possible mediators generating relevant contributions to the b→ cτ ν̄

processes, we will start analyzing the spin-0 fields.

8.1.1 R2 ∼ (3, 2, 7/6) scalar leptoquark

According to the quantum numbers of this scalar LQ, the possible interactions

allowed by Lorentz and gauge invariance read as,

− LR2 ⊃ Yeq(ec)TLCR†2qL + Yu`(u
c)TLC(iσ2R

∗
2)†`L + h.c., (8.4)

which can be written in a perhaps more suitable way,

− LR2 ⊃ Yeq eRR†2 qL + Yu` uR (iσ2R
∗
2)† `L + h.c.. (8.5)

where we used the identity (Ψc)L = (ΨR)c (see Appendix A), The fermion fields u, d, e

and ν represent each of the three family members with the same quantum numbers. The

Yukawa couplings from Eq. 8.5 are the matrix elements corresponding to the particular

u, d-type quarks and the e and ν leptons involved in the transition. Therefore, they will

be considered as c-numbers instead of matrices. 2 R2 is a doublet under SU(2)L, so

that it decomposes in two components split by the isospin, i.e. R2 = (R
5/3
2 , R

2/3
2 )T ,

where the super-index refers to the electric charge of the field. In these terms,

− LR2 ⊃ Yeq eR
(
R

5/3
2

∗
uL +R

2/3
2

∗
dL
)

+ Yu` uR (R
2/3
2 νL −R5/3

2 eL) + h.c.. (8.6)

The above Lagrangian explicitly shows that the relevant fields for the b→ cτ ν̄ transition

is going to be R2/3
2 . It is reasonable to assume that its mass is heavier than the energy

scale where such process takes places. Therefore, by solving the equations of motion,

δLR2

δR
2/3
2

= 0 ⇒ R
2/3
2

∗
= − 1

M2
R2

(Yu` uRνL + Y ∗eq dLeR) +O(M−4
R2

), (8.7)

2That is why we will use ∗ instead of †, and the coupling will not be a�ected by the possible
transpositions.
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where the kinetic term of R2 has been omitted since it contributes to higher order

terms in the heavy mass expansion. Substituting this in Eq. 8.6, we obtain the following

e�ective Lagrangian,

LR
2/3
2

e� ⊃ YeqYu`
M2
R2

uRνL eRdL + h.c.. (8.8)

In order to relate the above interactions with the e�ective Hamiltonian presented in

Eq. 8.2, we should reorder the fields by using the proper Fierz identities: 3

LR
2/3
2

e� = −YeqYu`
2M2

R2

(
uRdL eRνL +

1

4
uRσµνdL eRσ

µννL

)
+ h.c.. (8.9)

From the above Lagrangian one can easily identify the non-zero WCs predicted in this

context, C̃SLL = 4C̃TLL, which are besides correlated as a consequence of applying the

Fierz identities at the scale where R2/3
2 is integrated out.

8.1.2 R̃2 ∼ (3, 2, 1/6) scalar leptoquark

This case is very similar to the previous one; we are also dealing with a scalar LQ,

doublet under the SU(2)L gauge group. The allowed interactions with matter for R̃2

are given by

− LR̃2 ⊃ Yd` (dc)TLC(iσ2R̃
∗
2)†`L + Yνq (νc)TLCR̃

†
2 qL + h.c.. (8.10)

Rewritting the above Lagrangian in terms of the two components of R̃2, i.e. R̃2 =

(R̃
−1/3
2 , R̃

2/3
2 )T , and also applying the proper charge conjugation relations,

− LR̃2 ⊃ Yd` dR (R̃
−1/3
2 νL − R̃2/3

2 eL) + Yνq νR (R̃
2/3∗
2 uL + R̃

−1/3∗
2 dL) + h.c., (8.11)

one realizes that the relevant field for our study, i.e. the one that can contribute to

b → cτ ν̄ , is R2/3
2 . Proceeding as before, we end up with the following e�ective

Lagrangian:

LR̃
2/3
2

e� = −Yd`Yνq
M2
R̃2

(νRuL) (dReL) + h.c.. (8.12)

3The Fierz identities that are used in this case, and also in most of the following scenarios are listed in
Appendix A. This also applies to the charge conjugation properties.
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Applying the Fierz identities, one can easily get the convenient form,

LR̃
2/3
2

e� =
Y ∗d`Y

∗
νq

2M2
R̃2

(
uLdR eLνR +

1

4
uLσ

µνdR eLσµννR

)
+ h.c., (8.13)

that allows one to identify the WCs involved. 4 In this case, C̃SRR = 4C̃TRR, which are

related among them by the application of Fierz relations.

8.1.3 S1 ∼ (3̄, 1, 1/3) scalar leptoquark

This case looks in principle simpler since S1 is an EW singlet, however there are

many interactions allowed. The Lagrangian in this case reads as,

−LS1 = Yq` (qL)ciσ2`LS1 + Yeu eR(uc)LS
∗
1 + Ydν dRS

∗
1(νc)L

+ Yud uR(dc)LS1 + Yqq (qL)ciσ2S
∗
1qL + h.c..

(8.14)

After integrating out S1, the relevant interactions for b→ cτ ν̄ transitions are given by,

LS1
e� ⊃

1

M2
S1

(
YeuYq` eR(uc)L (dL)cνL − YdνYq` dR(νc)L (uL)ceL

−Yq`Y ∗q` eL(uL)c (dL)cνL + YdνY
∗
eu (uc)LeR dR(νc)L

)
+ h.c..

(8.15)

Note that S1 mediates proton decay and baryon number conservation would require

Yqq = 0 (S1 cannot be too heavy if needed for accounting on the B-anomalies). Doing

some gymnastics with the Fierz identities and the properties of the charge conjugate

operator, the following e�ective interaction is derived,

LS1
e� =− YeuYq`

2M2
S1

(
uRdL eRνL −

1

4
uRσµνdL eRσ

µννL

)

+
Y ∗dνY

∗
q`

2M2
S1

(
uLdR eLνR −

1

4
uLσµνdR eLσ

µννR

)

−
Yq`Y

∗
q`

2M2
S1

uLγµdL eLγ
µνL +

Y ∗dνYeu
2M2

S1

uRγµdR eRγ
µνR + h.c.,

(8.16)

4We note that the hermitian conjugate in Eq. 8.12 has been used to bring the interactions to the familiar
form of the operators in Eq. 8.3.
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where the reader can recognize by inspection the generation of the following WCs:

C̃SLL = −4C̃TLL, C̃
S
RR = −4C̃TRR, C̃

V
LL and C̃VRR, related as explicitly written down.

8.1.4 S3 ∼ (3̄, 3, 1/3) scalar leptoquark

Here we have an SU(2)L triplet (as in the previous scenario, this field could

contribute to proton decay), whose normalization is fixed by its kinetic term,

S3 =
1

2

(
S

1/3
3

√
2S

4/3
3√

2S
−2/3
3 −S1/3

3

)
, (8.17)

and whose interaction with the matter fields reads

− LS3 ⊃ Yq` (qL)ciσ2S3`L + h.c.. (8.18)

The relevant field in this case is clearly S1/3
3 . Integrating it out, we get

LS
1/3
3

e� =
Y ∗q`Yq`

4M2
S3

(
(dL)cνL eL(uL)c

)
+ h.c., (8.19)

which, rewritten in a more familiar way, as we have done in the previous cases,

LS
1/3
3

e� =
Yq`Y

∗
q`

8M2
S3

(
uLγµdL eLγ

µνL
)

+ h.c., (8.20)

allows us to identify the contribution to the C̃VLL WC.

8.1.5 Φ ∼ (1, 2, 1/2) second Higgs boson

For a Higgs boson, the following interactions are allowed,

−LΦ = Y ∗u (uc)TLC(iσ2Φ∗)†qL + Y ∗d (dc)TLCΦ†qL

+Y ∗e (ec)TLCΦ†`L + Y ∗ν (νc)TLC(iσ2Φ∗)†`L + h.c., (8.21)

from where one can recognize the familiar Yukawa Lagrangian in the SM. In this case

the relevant field is the charged component of the doublet Φ = (Φ+,Φ0)T . In terms of
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isospin components of SU(2)L, the above Lagangian reads as,

− LΦ ⊃ Y ∗u uRΦ+dL + Y ∗e eRΦ+∗νL + Y ∗ν νReLΦ+ + Y ∗d dRuLΦ+∗ + h.c., (8.22)

which leads to the following e�ective Lagrangian after being integrated out:

LΦ
e� ⊃

Y ∗e Y
∗
u

M2
Φ+

(uRdL)(eRνL) +
Y ∗e Yd
M2

Φ+

(eRνL)(uLdR)

+
Y ∗ν Yu
M2

Φ

(uRdL)(eLνR) +
YdYν
M2

Φ

(eLνR)(uLdR) + h.c..
(8.23)

From the above Lagrangian one can identify the contribution to the C̃SLL, C̃
S
RR, C̃

S
LR

and C̃SRL WCs.

All scalar possibilities have been considered, and now we will start with the vector

d.o.f. that can mediate b→ c transitions.

8.1.6 Uµ
1 ∼ (3, 1, 2/3) vector leptoquark

This vector LQ has the following interactions with the matter fields:

− LU1 ⊃ Yq` qLγµUµ1 `L + Yde dRγµU
µ
1 eR + Yuν uRγµU

µ
1 νR + h.c.. (8.24)

Integrating out U1, we get the e�ective interactions listed below,

LU1
e� =

1

M2
U1

(
Y ∗q`Yq` νLγµuL dLγ

µeL + Y ∗q`Yuν eLγµdL uRγ
µνR

+Y ∗q`Yde νLγµuL dRγ
µeR + Y ∗deYuν eRγµdR uRγ

µνR
)

+ h.c..

(8.25)

Applying Fierz identities, we can rewrite the above Lagrangian as follows:

LU1
e� =

1

M2
U1

(
Y ∗q`Yq` uLγµdL eLγ

µνL − 2Y ∗q`Yuν(uRdL)(eLνR)

−2Y ∗deYq` uLdR eRνL + Y ∗deYuν uRγµdR eRγ
µνR) + h.c.,

(8.26)

which contributes to the WCs: C̃VLL, C̃
V
RR, C̃

S
LR and C̃SRL.
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8.1.7 Uµ
3 ∼ (3, 3, 2/3) vector leptoquark

For the colored and SU(2)L triplet vector U3 LQ, the allowed interactions are,

− LU3 ⊃ gq` qLγµUµ3 `L + h.c., (8.27)

which can be written in terms of its EW singlet components as,

−LU3 ⊃ gq`
2

[(
uLU

2/3
3µ +

√
2dLU

−1/3
3µ

)
γµνL+

(√
2uLU

5/3
3µ − dLU

2/3
3µ

)
γµeL

]
+h.c..

(8.28)

Note that this LQ only couples to LH fields. Integrating out the U2/3
3 the following

interactions are obtained,

LU
2/3
3

e� = −
g∗q`gq`

4M2
U3

uLγµdL eLγ
µνL + h.c., (8.29)

which contribute to C̃VLL.

8.1.8 V µ
2 ∼ (3̄, 2, 5/6) vector leptoquark

The possible interactions of this LQ with the matter fields are given by,

− LV2⊃gqe qLiσ2V
µ∗

2 γµ(ec)L + g`d `Liσ2V
µ

2
∗
γµ(dc)L + gqu qLV

µ
2 γµ(uc)L + h.c.,

(8.30)

which, taking into account that V2 = (V
4/3

2 , V
1/3

2 )T , can be rewritten as,

−LV2 ⊃gqe (uL V
1/3

2µ

∗
γµ − dL V 4/3

2µ

∗
γµ)(ec)L + g`d (νL V

1/3
2µ

∗
γµ

− eL V 4/3
2µ

∗
γµ)(dc)L + gqu (uL V

4/3
2µ γµ + dL V

1/3
2µ γµ)(uc)L + h.c..

(8.31)

This LQ also mediates the decay of the proton, and one has to assume Yqu = 0 to

avoid the strong experimental bounds on these ∆B = 1 transitions. Integrating out the

relevant field for the b→ cτ ν̄ transitions, i.e. V 1/3
2 , we have

LV
1/3
2

e� =
g∗`dgqe
M2
V2

uLγµ(ec)L (dc)Lγ
µνL + h.c.. (8.32)



262 8. E�ective Field Theories for b→c transitions

Finally, by applying Fierz identities and charge conjugation properties we get to the

desired form of the e�ective Lagrangian,

LV
1/3
2

e� = 2
g∗`dgqe
M2
V2

uLdR eRνL + h.c., (8.33)

that allows us to identify the solely contribution to the C̃SRL WC.

8.1.9 Ṽ µ
2 ∼ (3̄, 2,−1/6) vector leptoquark

The interaction Lagrangian for this LQ is given by,

−LṼ2⊃g`u `Liσ2Ṽ
µ∗

2 γµ(uc)L+gqν qLiσ2Ṽ
µ∗

2 γµ(νc)L+gqd qLṼ
µ

2 γµ(dc)L+h.c., (8.34)

which can be written in terms of the EW components as,

−LṼ2 ⊃ g`u (νL Ṽ
−2/3∗

2µ − eL Ṽ 1/3∗
2µ )γµ(uc)L + gqν (uL Ṽ

−2/3∗
2µ

− dL Ṽ 1/3∗
2µ )γµ(νc)L + gqd (uL Ṽ

1/3
2µ + dL Ṽ

−2/3
2µ )γµ(dc)L + h.c.,

(8.35)

where we have taken into account that Ṽ2 = (Ṽ
1/3

2 , Ṽ
−2/3

2 )T . Now, by integrating out

the field able to contribute in b → cτ ν̄ , i.e. Ṽ 1/3
2 , and only taking into account those

interactions that are relevant for this process, the e�ective Lagrangian generated reads

as

LṼ
1/3
2

e� ⊃
g`ug

∗
qν

M2
Ṽ2

eLγ
µ(uc)L (νc)LγµdL + h.c.. (8.36)

Rearranging those terms by playing with the Fierz identities and charge conjugation

properties, we end up with the following e�ective Lagrangian,

LṼ
1/3
2

e� ⊃ 2
g`ug

∗
qν

M2
Ṽ2

uRdL eLνR + h.c., (8.37)

where we can identify the contribution to the C̃SLR WC.
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8.1.10 W ′µ ∼ (1, 3, 0) vector boson

This scenario might be more familiar to us, because of the EW Wµ gauge boson.

The interaction Lagrangian is given by,

− LW
′
⊃ gq qLW ′µγµqL + g` `LW

′µγµ`L, (8.38)

which, expanded in terms of its SU(2)L components, reads as

− LW
′
⊃ gq√

2

(
dLW

′−
µ γµuL + h.c.

)
+

g`√
2

(
eLW

′−
µ γµνL + h.c.

)
. (8.39)

Integrating W
′− out we directly obtain an e�ective Lagrangian in the desired form,

LW
′−

e� ⊃ g` gq
2M2

W ′
(uLdL eLνL + h.c.) , (8.40)

so that immediately we can recognize the contribution to the C̃VLL WC.

8.1.11 V µ ∼ (1, 1,−1) vector boson

This SU(2)L and SU(3)c singlet, only charged under U(1)Y , has the following

allowed interactions with matter:

− LV ⊃ gud (uc)Lγµ(dc)LV
µ + gνe (νc)Lγ

µ(ec)LV
µ + h.c.. (8.41)

By using the properties of the charge conjugate operator, the previous Lagrangian can

be rewritten as

− LV ⊃ gud dRγµuRV µ + gνe eRγµνRV
µ + h.c.. (8.42)

After integrating out V , the following e�ective Lagrangian is obtained,

LVe� =
g∗udgνe
M2
V

uRγµdR eRγ
µνR + h.c., (8.43)
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which allows the identification of C̃VRR as the contribution of this mediator.

We are now aware of all possibilities that could be responsible of the so-called

flavour anomalies, i.e. all fields that can contribute to the b→ cτ ν̄ processes. We note

that, although there is for instance no direct contribution to the tensor operator from

any of the mediators, a non-zero tensor WC can be generated by the running from the

NP scale down to the relevant scale for these transitions.

The next step would be to control how the NP e�ects, encoded in the WCs, enter

in the b→ cτ ν̄ transitions. The latter can be easily tackled from an EFT perspective.

8.2 Leptonic transitions

Let us start from the leptonic decay of a pseudoscalar meson (i.e. JP ≡ 0−) into a

pair of leptons. For simplicity and posterior interest, we will specify the calculation to

the process Bc → τ ν̄ . Starting from the hadronic part, parity tells us that only the axial

and pseudoscalar operators of our e�ective Hamiltonian (see Eq. 8.2) will contribute

to this amplitude. Lorentz invariance determines the structure of the outcomes of

the transition matrices. In summary, both possible transitions can be parametrized as

follows by symmetries; first, the axial transition,

〈0|bγµγ5c|Bc(pB)〉 = ipBµfBc , (8.44)

where mB is the mass of the meson Bc, pBµ is its four-momentum, and fBc is the

parameter that encodes the non-perturbativity nature of the transition. The pseudoscalar

transitions can be derived from Eq. 8.44 by applying the axial Ward indentity, therefore

getting,

〈0|bγ5c|Bc(pB)〉 = −i
m2
Bc
fBc

mc +mb
. (8.45)

The amplitude of the Bc → τ ν̄ process shown in Fig. 8.2a and 8.2b 5 for the process

with the LH neutrino in the final state is given by,

5Note that, since we are neglecting the neutrino mass, RH and LH neutrino channels do not interfere.
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Bc(pB)

c

b̄

τ(pτ )

ν̄(pν)

τ(p̂τ )
Bc

ν̄(p̂ν)

Figure 8.2: On the left panel, the leptonic decay of the Bc meson, Bc(pB) →
τ(pτ )ν̄(pν). On the right panel, the same decay from the τ -ν̄ (or Bc) rest-frame.

M=
√

2GFVbcfBcu(pτ )

(
(CSRL − CSLL)

m2
Bc

mc +mb
+(1 + CVRL − CVLL)γµpBµ

)
PLv(pν).

(8.46)

Similarly, the amplitude for the process involving a final RH neutrino,

M=
√

2GFVbcfBcu(pτ )

(
(CSRR − CSLR)

m2
Bc

mc +mb
+ (CVRR − CVLR)γµpBµ

)
PRv(pν).

(8.47)

Hence, computing the squared amplitude of each channel, averaging among the

spins and helicities, and summing both contributions independently we get the total

amplitude of the process. The decay width is generically given by

Γ(B → 1 + · · ·+N) =
1

2MB

∫
dQN |M̄B→1+···+N |2, (8.48)

for a N-body decay, where the N-body phase space is defined as

dQN = (2π)4

∫ N∏

i=1

d3pi
(2π)32Ei

δ


pB −

N∑

j=1

pj


 . (8.49)

Particularly, for a two body decay, it is given by

dQ2(p̂`, p̂ν) =
1

(2π)2

|p̂`|
4mij

d cos θ`dφ, (8.50)

where m2
ij = (pi + pj)

2 = s and p̂i are the momenta in the center-of-mass frame.
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Applying Eq. 8.48 we can compute for our scenario the following branching ratio,

B(Bc → τ ν̄) = τBc
mBcm

2
τf

2
Bc
G2
F |Vcb|2

8π

(
1− m2

τ

m2
Bc

)2

× (8.51)



∣∣∣∣∣1+CVLL−CVRL+

m2
Bc
/mτ

(mb +mc)
(CSRL−CSLL)

∣∣∣∣∣

2

+

∣∣∣∣∣C
V
RR−CVLR+

m2
Bc
/mτ

(mb +mc)
(CSLR−CSRR)

∣∣∣∣∣

2

 ,

where the decay width has been normalized by the total decay width of the Bc: τ
−1
Bc

.

8.3 Semileptonic transitions: The helicity formalism.

In this section we will be dealing with a pseudoscalar meson B

decaying into another meson M . To compute the transition B(pB) →
M(pM , λM )`(p`, λ`)ν̄(pν , λν), where λM,`,ν refers to the helicity of the meson, the

charged lepton and the neutrino, respectively, we will appeal to the helicity amplitude

formalism, which allows the factorization of the amplitude in an hadronic and a leptonic

pieces via a virtual gauge boson V ∗µ acting as a mediator,

B(pB)→M(pM , λM )V ∗µ (q, λ)→M(pM , λM )`(p`, λ`)ν̄(pν , λν), (8.52)

where q is the four-momentum carried by the the virtual mediator, i.e. q2 ≡ (pB +

pM )2 = (pτ+pν̄)2, and λ (= 0,±1, t) its helicity. Figure 8.3 represents the semileptonic

decay mediated by the virtual boson. In the B rest-frame, the kinematics of the decay

can be described by the four-momenta carried by the B-meson (pµB ), the M-meson (pµM ),

and the virtual boson (qµ), which are given by

pµB =




mB

0

0

0



, pµM =




EM

0

0

|~q|



, qµ ≡ pµB − p

µ
M =




q0

0

0

−|~q|



, (8.53)
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Figure 8.3: Visual representation of the relevant kinematical variables. In addition to the
lepton-pair invariant-mass squared q2 = (pτ − pν̄)2, we use as kinematic variables the
three angles φ, θ` and θD , which are defined as follows. Taking as positive z-axis the
direction of the D∗ momentum in the B rest-frame, θτ and θD are the polar angles of
the τ and the final D meson in the τ ν̄ and Dπ rest frames, respectively. The azimuth
φ is the angle between the decay planes formed by τ ν̄ and Dπ. Figure extracted from
Ref. [333].

where

|~q| =
√
λM (q2)

2mB
, q0 =

m2
B −m2

M + q2

2mB
, EM =

m2
B +m2

M − q2

2mB
, (8.54)

being λM (q2) the Källen function, defined as

λM (q2) ≡ λ(m2
B,m

2
M , q

2) = m4
B+m4

M +q4−2m2
Bm

2
M −2m2

Mq
2−2m2

B q
2 . (8.55)

The Hamiltonian presented in Eq. 8.2 can be rewritten as

He� =
GF√

2
Vcb
∑

X

(
Jµh J

X
`µ + JhJ

X
` + Jµνh JX`µν

)
, (8.56)

where we have grouped the fermion currents in the Hamiltonian, factorized in their

hadronic Jh and leptonic J` parts, according to their Lorentz structure. We note that

the chiral projector in the hadronic currents has been explicitly expanded, and that
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those currents contain the information on the WCs. The di�erent NP components of

the above Hamiltonian contribute to the amplitude for the decay B →M(λM )`(λ`)ν̄X

as follows,

M[B →M(λM ) `(λ`) ν̄X=L,R]= (8.57)

=
GF√

2
Vcb
(
〈M |Jµh |B̄〉〈`ν̄|JX`µ|0〉+ 〈M |Jh|B̄〉〈`ν̄|JX` |0〉+ 〈M |Jµνh |B̄〉〈`ν̄|JX`µν |0〉

)

Let us factorize the hadronic and leptonic currents above by letting the polarization

vectors εµ(λ) of the virtual V ∗µ boson play their role, which are defined in the B

rest-frame as

εµ(±) =
1√
2




0

∓1

i

0



, εµ(0) =

1√
q2




|~q|
0

0

−q0



, and εµ(t) =

1√
q2




q0

0

0

−|~q|



.

(8.58)

Inserting the completeness relation of the polarization vectors of the o�-shell vector

boson in each of the amplitudes, i.e.

∑

λ

δλ ε
∗
µ(λ) εν(λ) = gµν with δ0 = δ± = −δt = −1 , (8.59)

the amplitude in Eq. 8.58 can be decomposed according to their Lorentz indices in the

following factorization of hadronic and leptonic tensors:

M[B →M(λM ) `(λτ ) ν̄X=L,R]≡ (GF /
√

2)VcbMλM ,λ`
L,R

= (GF /
√

2)Vcb
∑

Y=L,R

{
(
δY LδXL + CVY X

) ∑

λ

δλH
λM
VY ,λ

Lλ`,XV∓A,λ

+ CSY X HλM
SY

Lλ`,XS∓P + CTY X
∑

λ,λ′

δλ δλ′ H
λM
TY ,λλ′

Lλ`,XT∓T5,λλ′

}
. (8.60)
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The hadronic helicities from the above expression are defined as follows,

HλM
VL
R
,λ ≡ ε∗µ(λ)〈M |c̄γµ(2PL

R
)b|B̄〉, (8.61)

HλM
SL
R

≡ 〈M |c̄(2PL
R

)b|B̄〉, (8.62)

HλM
TL
R
,λλ′≡ iε∗µ(λ)ε∗ν(λ′)〈M |c̄σµν(2PL

R
)b|B̄〉, (8.63)

where the hadronic currents have been expanded. On the other hand, the leptonic

helicities read as, 6

Lλ`,XV∓A,λ ≡ εµ(λ)〈`(λ`)ν̄|τ̄ γµ(2PL
R

)ν|0〉, (8.64)

Lλ`,XS∓P ≡ 〈`(λ`)ν̄|τ̄(2PL
R

)ν|0〉, (8.65)

Lλ`,XT∓T5,λλ′ ≡ −iεµ(λ)εν(λ′)〈`(λ`)ν̄|τ̄σµν(2PL
R

)ν|0〉. (8.66)

Because of the possibility of having NP in b → c transitions suggested by the

experimental evidence, 7 particularly involving only the third generation of leptons, the

two upcoming subsections of this chapter are devoted to the casesM = D,D∗, and the

charged lepton will be identified as the tau lepton, i.e. ` → τ . The procedure followed

here, although particularized to D(∗) is also valid for any pseudoscalar decaying into a

pseudoscalar meson JP = 0− or vector meson JP = 1−, addressed in the first and

second upcoming subsections, respectively. Both processes, however, have their leptonic

part in common, so that they share the leptonic contribution to the amplitude. To tackle

it, it is convenient to express the polarization vectors of the virtual gauge boson in the

V ∗ rest-frame, where they simply read as

εµ(±) = ∓ 1√
2




0

1

∓i
0



, εµ(0) =




0

0

0

−1



, εµ(t) =

1√
q2
qµ =




1

0

0

0



, (8.67)

6We did not specify the helicity of the neutrino since, as it will be shown later, it is fixed by the chirality
of the leptonic current.

7The reader is referred to Chapter 9 for details on the flavour anomalies found in b→ c transitions.
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This can be achieved by boosting the polarization vectors in the B rest-frame, shown

in Eq. 8.58, to the V ∗ rest-frame, with the following boost:

Λ(ω) =




coshω 0 0 sinhω

0 1 0 0

0 0 1 0

sinhω 0 0 coshω



, (8.68)

where coshω = (1− v2
V ∗/c

2)−1/2 = q0/
√
q2, and vV ∗ is the relative motion between

both frames.

Fig. 8.3 also shows the perspective from the V ∗ rest-frame, where we can define

the polar angle θτ as the angle of τ in the τ -ν̄ rest-frame. In there, the four-momenta

of the leptons and that of the virtual gauge boson read as

pµτ =




Eτ

pτ sin θτ

0

pτ cos θτ



, pµν = pν




1

− sin θτ

0

− cos θτ



, and qµ =




√
q2

0

0

−|~q|



, (8.69)

being

pτ = pν =
q2 −m2

τ

2
√
q2

, Eτ =
q2 +m2

τ

2
√
q2

. (8.70)

The leptonic matrix elements from Eq. 8.64-8.66 can be computed as

〈τ(λτ )ν̄|JµτX |0〉 ≡ 〈τ(λτ )ν̄|τ̄ γµ(2PX)ν|0〉 = ū(pτ , λτ )γµ(2PX)v(pν , λX), (8.71)

where PX refers to the chirality projectors X = L,R, and the helicity of the

antineutrino, because of their massless nature, is fixed by the projector: λν = +1/2

for a LH antineutrino and λν = −1/2 for a RH antineutrino. The matrix element in

Eq. 8.71 also applies to currents with di�erent number of Lorentz indices, i.e. J and

Jµν . The four-spinors in the chiral representation for a particle with helicity λτ and an

antiparticle with helicity −λτ , respectively, defined in Eq. 2.47 from Chapter 2 give us
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in this case:

u(pτ , λτ ) =

(√
Eτ − 2λτ pτ χλτ√
Eτ + 2λτ pτ χλτ

)
, and v(pτ , λτ ) =

(
−√Eτ + 2λτ pτ χ−λτ√

Eτ − 2λτ pτ χ−λτ

)
,

(8.72)

where χ(λτ ) are the helicity eigenspinors, given by

χ+ 1
2

=




cos
θτ
2

sin
θτ
2
eiφ


 , and χ− 1

2
=



− sin

θτ
2
e−iφ

cos
θτ
2


 , (8.73)

and the Dirac matrices in this representation are given in Eq. 2.49 from Chapter 2. The

azimuth φ is the angle between the decay planes formed by τ ν̄ and Dπ (see Fig. 8.3).

Now, all material needed for computing the leptonic helicities is on the table.

By making the contraction LλτXV−A,λ ≡ εµ(λ)〈τ̄(λτ )ν̄|Jµ`X |0〉 we obtain the following

leptonic vector helicity ampitudes:

L+,L
V−A,+ =

√
2mτ βτ sin θτ e−2iφ,

L+,L
V−A,− = −

√
2mτβτ sin θτ ,

L+,L
V−A,0 = 2mτβτ cos θτ e−iφ ,

L+,L
V−A,t = −2mτβτ e−iφ ,

L−,LV−A,± =
√

2q2 βτ (1± cos θτ ) e∓iφ ,

L−,LV−A,0 = − 2
√
q2 βτ sin θτ ,

L−,LV−A,t = 0,

L−,RV+A,+ =
√

2mτβτ sin θτ ,

L−,RV+A,− = −
√

2mτβτ sin θτ e2iφ ,

L−,RV+A,0 = 2mτβτ cos θτ eiφ,

L−,RV+A,t = −2mτβτ eiφ ,

L+,R
V+A,± =

√
2q2 βτ (1∓ cos θτ ) e∓iφ ,

L+,R
V+A,0 = 2

√
q2βτ sin θτ ,

L+,R
V+A,t = 0.

while the scalar ones, Lλτ ,XS−P ≡ 〈τ(λτ )ν̄|J`X |0〉, are given by

L+,L
S−P = −2

√
q2βτ e−iφ , L−,RS+P = −2

√
q2βτ eiφ,

L−,LS−P = 0 , L+,R
S+P = 0 , (8.74)
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and finally, by computing LλτXT−T5,λλ′
≡ εµ(λ)εν(λ′)〈τ(λτ )ν̄|Jµν`X |0〉, the following

tensor leptonic helicity amplitudes are obtained:

L+,L
T−T5,+0 =

√
2q2 βτ sθτ e−2iφ ,

L+,L
T−T5,−0 =

√
2q2 βτ sθτ ,

L+,L
T−T5,+− = 2

√
q2βτ cθτ e−iφ,

L+,L
T−T5,0t = −2

√
q2βτ cθτ e−iφ,

L+,L
T−T5,+t = −

√
2q2βτ sθτ e−2iφ ,

L+,L
T−T5,−t =

√
2q2βτ sθτ ,

L−,LT−T5,±0 = ±
√

2mτβτ (1± cθτ ) e∓iφ ,

L−,LT−T5,+− = −L−,LT−T5,0t = −2mτβτ sθτ ,

L−,LT−T5,±t = −
√

2mτβτ (1± cθτ ) e∓iφ ,

L−,RT+T5,+0 = −
√

2q2 βτ sθτ ,

L−,RT+T5,−0 = −
√

2q2βτ sθτ e2iφ,

L−,RT+T5,+− = −2
√
q2βτ cθτ eiφ ,

L−,RT+T5,0t = −2
√
q2βτ cθτ eiφ ,

L−,RT+T5,+t = −
√

2q2βτ sθτ ,

L−,RT+T5,−t =
√

2q2βτ sθτ e2iφ .

L+,R
T+T5,±0 = ∓

√
2mτβτ (1∓ cθτ ) e∓iφ ,

L+,R
T+T5,+− = L+,R

T+T5,0t = −2mτβτ sθτ ,

L+,R
T+T5,±t = −

√
2mτβτ (1∓ cθτ )e∓iφ .

(8.75)

where cθτ (sθτ ) refer to cos θτ (sin θτ ). The hadronic part depends on the meson we

are dealing with. A pseudoscalar meson JP = 0−, D for instance, has a single helicity

state, corresponding to the 0 helicity state. Therefore, we will omit the label of the

meson helicity in that case, in order to distinguish it from the 0 helicity state of the

vector meson JP = 1−, D∗ for instance, whose helicity states are λD∗ = −1, 0, 1.

8.3.1 B → Dτν̄

Let us parametrize the hadronic matrix elements exploiting their Lorentz structure.

Lorentz invariance and parity impose the axial and pseudoscalar matrix elements to

vanish, so that observables involving B → D transitions will be only sensitive to the

vector combination CVLX +CVRX , scalar combination CSLX +CSRX and tensor WCs. On

the other hand, they also demand a certain structure for the hadronic matrix elements,

which can be factorized in kinematical variables and pure hadronic inputs named as

form factors, as follows:

〈D|c̄γµb|B̄〉 =

[
(pB + pD)µ −

m2
B −m2

D

q2
qµ

]
F1(q2) + qµ

m2
B −m2

D

q2
F0(q2) ,
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〈D|c̄ b|B̄〉 =
m2
B −m2

D

mb −mc
F0(q2) ,

〈D|c̄σµνb|B̄〉 = −i(pBµ pDν − pDµ pBν)
2FT (q2)

mB +mD
,

〈D|c̄σµνγ5b|B̄〉 = −εµναβ pαB pβD
2FT (q2)

mB +mD
. (8.76)

The form factors F0(q2), F1(q2) and FT (q2) appearing in the D matrix elements are

described in the last section of this chapter.

Contracting these hadronic matrix elements with the polarization vectors of the

virtual boson according to Eq. 8.60, the following hadronic helicity amplitudes are

obtained:

HV,0(q2) ≡ HVL,0(q2) = HVR,0(q2) =

√
λD(q2)

q2
F1(q2) ,

HV,t(q
2) ≡ HVL,t(q

2) = HVR,t(q
2) =

m2
B −m2

D√
q2

F0(q2) ,

HS(q2) ≡ HSL(q2) = HSR(q2) ' m2
B −m2

D

mb −mc
F0(q2) , (8.77)

HT (q2) ≡ HTL+− = HTL0t = −HTR+− = HTR0t = −
√
λD(q2)

mB +mD
FT (q2) .

Finally, following Eq. 8.60, the reduced amplitudes, decomposed in helicity states and

lepton chiralities for the B → Dτν̄ process are obtained:

M+ 1
2

L = −2
√
q2 βτ e−iφ

{
mτ√
q2

[
ÃLt + cos θτ ÃL0

]
+ ÃLS − 2 cos θτ ÃLT

}
,

M−
1
2

L = 2
√
q2 βτ sin θτ

{
ÃL0 −

2mτ√
q2
ÃLT

}
,

M+ 1
2

R = −2
√
q2 βτ sin θτ

{
ÃR0 −

2mτ√
q2
ÃRT

}
,

M−
1
2

R = −2
√
q2 βτ eiφ

{
mτ√
q2

[
ÃRt + cos θτ ÃR0

]
+ ÃRS − 2 cos θτ ÃRT

}
,(8.78)
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where the transversity amplitudes Ã are combinations of WCs and hadronic helicity

amplitudes, as listed below:

ÃL0 =
(
1 + CVLL + CVRL

)
HV,0 , ÃR0 =

(
CVLR + CVRR

)
HV,0 ,

ÃLt =
(
1 + CVLL + CVRL

)
HV,t , ÃRt =

(
CVLR + CVRR

)
HV,t ,

ÃLS =
(
CSRL + CSLL

)
HS , ÃRS =

(
CSRR + CSLR

)
HS ,

ÃLT = 2CSLLHT , ÃRT = 2CTRRHT . (8.79)

To compute the three body decay, which is illustrated in the following diagram from

the B rest-frame perspective:

B

θτ
D(p̂D)

τ(pτ )

ν̄(pν)

we can reduce dQ3 given in Eq. 8.49 to the following factorization:

dQ3 =
dq2

2π
dQ2(pD, q)dQ2(p̂τ , p̂ν) =

1

16

1

(2π)3

|~q|
mB

(
1− m2

τ

q2

)
dq2 d cos θτ . (8.80)

Applying this result to Eq. 8.48 we obtain the di�erential distribution of the decay

B → Dτν̄ ,

dΓ(B → Dτν̄)

dq2 d cos θτ
=

3

4
ND(q2)

{
J0(q2) + J1(q2) cos θτ + J2(q2) cos2 θτ

}
, (8.81)

with the normalization N (∗)
D (q2), which will be also applicable to the D∗ decay mode,

given by

N (∗)
D (q2) ≡ G2

FV
2
cb

192m3
Bπ

3
q2 λ

1/2

D(∗)(q
2)

(
1− m2

τ

q2

)2

. (8.82)

The coe�cient functions of the di�erent angular dependences are given by

J0(q2) =
∣∣∣ÃL0 −

2mτ√
q2
ÃLT
∣∣∣
2

+
m2
τ

q2

∣∣∣ÃLt +

√
q2

mτ
ÃLS
∣∣∣
2

+ (L � R) ,
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J1(q2) =
2m2

τ

q2
Re

[(
ÃL0 −

2
√
q2

mτ
ÃLT
)(
ÃL∗t +

√
q2

mτ
ÃL∗S

)]
+ (L � R) ,

J2(q2) = −
(

1− m2
τ

q2

) (
|ÃL0 |2 − 4 |ÃLt |2

)
+ (L � R) . (8.83)

The linear term in the θτ distribution given in Eq. 8.81 can be accessed via the

forward-backward asymmetry, traditionally defined as

ADFB =
1

dΓ/dq2

[ ∫ 1

0
−
∫ 0

−1

]
d cos θτ

d2Γ

dq2d cos θτ
=

1

2

J1(q2)

J0(q2) + 1
3J3(q2)

. (8.84)

Finally, integrating Eq. 8.81 over cos θτ , one obtains the q2 di�erential

distribution [334], where the dependence on the WCs has been explicitly shown:

dΓ

dq2
(B → Dτν̄) =

ND(q2)

{(
|1 + CVLL + CVRL|2 + |CVLR + CVRR|2

)[
(HV,0)2

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
(HV,t)

2

]

+
3

2
(HS)2

(
|CSRL + CSLL|2 + |CSRR + CSLR|2

)
+ 8

(
|CTLL|2 + |CTRR|2

)
(HT )2

(
1 +

2m2
τ

q2

)

+3 Re
[
(1 + CVLL + CVRL) (CSRL + CSLL)∗ + (CVLR + CVRR) (CSRR + CSLR)∗

] mτ√
q2
HSHV,t

−12 Re
[
(1 + CVLL + CVRL)CT∗LL + (CVRR + CVLR)CT∗RR

] mτ√
q2
HTHV,0

}
. (8.85)

8.3.2 B → D∗τ ν̄

For the process B → D∗τ ν̄ , exploiting Lorentz invariance and parity, the hadronic

matrix elements can be parametrized as

〈D∗|c̄γµb|B̄〉 = −i εµνρσ εν∗(λM ) pρB p
σ
D∗

2V (q2)

mB +mD∗

〈D∗|c̄γµγ5b|B̄〉 = (mB +mD∗)A1(q2)

(
ε∗µ(λM )− qµ

(ε∗(λM ) · q)
q2

)

+qµ(ε∗(λM ) · q)2mD∗

q2
A0(q2)
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− ε∗(λM ) · q
mB +mD∗

A2(q2)

(
(pB + pD∗)µ − qµ

m2
B −m2

D∗

q2

)
,

〈D∗|c̄γ5b|B̄〉 = −(ε∗(λM ) · q) 2mD∗

mb +mc
A0(q2) ,

〈D∗|c̄σµνb|B̄〉 = εµνρσ
{
−ερ∗(λM )(pB + pD∗)

σT1(q2)

+2
(ε∗(λM ) · q)

q2
pρB p

σ
D∗

(
T1(q2)− T2(q2)− q2

m2
B −m2

D∗
T3(q2)

)

+ε∗ρ(λM )qσ
m2
B −m2

D∗

q2
(T1(q2)− T2(q2))

}
, (8.86)

where the form factors A0(q2), A1(q2), A2(q2), V (q2), T1(q2), T2(q2) and T3(q2)

are defined in the last section of this chapter. Notice that the contribution of the

scalar current proportional to (CSLX +CSRX) is absent because of parity constraints. In

this case, performing the contraction with the polarization vectors of the virtual vector

boson in the B rest-frame as Eq. 8.60 dictates, the next hadronic helicity amplitudes are

obtained:

HV,±(q2) ≡ H±VL,±(q2) = −H∓VR,∓(q2)

= (mB +mD∗)A1(q2)∓
√
λD∗(q2)

mB +mD∗
V (q2) ,

HV,0(q2) ≡ H0
VL,0

(q2) = −H0
VR,0

(q2)

=
mB +mD∗

2mD∗
√
q2

[
−(m2

B −m2
D∗ − q2)A1(q2) +

λD∗(q
2)

(mB +mD∗)2
A2(q2)

]
,

HV,t(q
2) ≡ H0

VL,t
(q2) = −H0

VR,t
(q2) = −

√
λD∗(q2)

q2
A0(q2) ,

HS(q2) ≡ H0
SR

(q2) = −H0
SL

(q2) ' −
√
λD∗(q2)

mb +mc
A0(q2) ,

HT,0(q2) ≡ H0
TL0t(q

2) = H0
TL+−(q2) = −H0

TR0t(q
2) = H0

TR+−(q2)

=
1

2mD∗

[
−(m2

B + 3m2
D∗ − q2)T2(q2) +

λD∗(q
2)

m2
B −m2

D∗
T3(q2)

]
,

HT±(q2) ≡ H±TL±0(q2) = ±H±TL±t(q
2) = ∓H∓TR∓t(q

2) = −H∓TR∓0(q2)

=
1√
q2

[
±(m2

B −m2
D∗)T2(q2) +

√
λD∗ T1(q2)

]
. (8.87)
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Those, contracted with the leptonic part of the amplitude according to Eq. 8.60, give

rise to the following reduced amplitudes involving LH neutrinos:

M+1,+ 1
2

L = −
√
q2 βτ sin θτ e−2iφ

{
mτ√
q2

(
AL‖ +AL⊥

)
− 2 (ALT ‖ +ALT ⊥)

}
,

M+1,− 1
2

L = −
√
q2 βτ (1 + cos θτ ) e−iφ

{
AL‖ +AL⊥ −

2mτ√
q2

(ALT ‖ +ALT ⊥)

}
,

M0,+ 1
2

L = − 2mτ βτ e−iφ

{
ALtP + cos θτ

[
AL0 −

2
√
q2

mτ
ALT 0

]}
,

M0,− 1
2

L = 2
√
q2 βτ sin θτ

[
AL0 −

2mτ√
q2
ALT 0

]
,

M−1,+ 1
2

L =
√
q2 βτ sin θτ

{
mτ√
q2

(AL‖ −AL⊥)− 2 (ALT ‖ −ALT ⊥)

}
,

M−1,− 1
2

L = −
√
q2 βτ (1− cos θτ ) eiφ

{
AL‖ −AL⊥ − 2

mτ√
q2

(ALT ‖ −ALT ⊥)

}
,(8.88)

whereas those involving RH neutrinos are given by

M+1,+ 1
2

R = −
√
q2 βτ (1− cos θτ ) e−iφ

{
AR‖ +AR⊥ − 2

mτ√
q2

(ART ‖ +ART ⊥)

}
,

M+1,− 1
2

R = −
√
q2 βτ sin θτ

{
mτ√
q2

(AR‖ +AR⊥)− 2 (ART ‖ +ART ⊥)

}
,

M0,+ 1
2

R = −2
√
q2 βτ sin θτ

[
AR0 −

2mτ√
q2
ART 0

]
,

M0,− 1
2

R = −2mτ βτ eiφ

{
ARtP + cos θτ

[
AR0 −

2
√
q2

mτ
ART 0

]}
,

M−1,+ 1
2

R = −
√
q2 βτ (1 + cos θτ ) eiφ

{
AR‖ −AR⊥ − 2

mτ√
q2

(ART ‖ −ART ⊥)

}
,

M−1,− 1
2

R =
√
q2 βτ sin θτ e2iφ

{
mτ√
q2

(
AR‖ −AR⊥

)
− 2 (ART ‖ −ART ⊥)

}
. (8.89)
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In the above expressions, the AL,Rλ denote the transversity amplitudes, which are

the projections of the total decay amplitude into the explicit polarization basis. The

contribution from the RH neutrino transitions to the angular coe�cients is equivalent to

that from the LH neutrino ones, i.e. (L→ R), up to a sign that depends on the relation

between RH and LH leptonic transversity amplitudes. In the SM, the decay B → D∗τ ν̄

can be described by a total of four transversity amplitudes that correspond to one

longitudinal (A0) and two transverse (A⊥,‖) directions, and a time-like component (At)
for the virtual vector boson decaying into the τ ν̄ pair. However, with the inclusion of RH

neutrinos, we must distinguish the left and right chiralities of the leptonic current; thus,

we get in total eight amplitudes: AL,R0,⊥,‖,t. Now, in presence of the NP operators given

in Eq. 8.3, the (axial)vector contributions can be incorporated in the above mentioned

eight transversity amplitudes, modified by the presence of the new WCs. Nevertheless,

the (pseudo)scalar and tensor operators induce eight further amplitudes (four for each

neutrino chirality): two (pseudo)scalar amplitudes AL,RP and six tensor transversities

AL,RT 0,T ⊥,T ‖. Thus, with the most general dimension-6 Hamiltonian in Eq. 8.2, the

decay B → D∗(→ Dπ)τ ν̄ can be described by a total of sixteen tranversity amplitudes,

which are defined as:

AL0 = HV,0 (1 + CVLL − CVRL),

AL‖ = (HV,+ +HV,−) (1 + CVLL − CVRL)/
√

2,

AL⊥ = (HV,+ −HV,−) (1+CVLL+CVRL)/
√

2,

ALt = HV,t (1 + CVLL − CVRL),

ALP = HS (CSRL − CSLL),

ALT0 = 2HT,0 C
T
LL,

ALT‖ =
√

2 (HT,+ −HT,−) CTLL,

AL,RT⊥ =
√

2 (HT,+ +HT,−) CT,RLL ,

AR0 = HV,0(CVLR − CVRR),

AR‖ = (HV,+ +HV,−) (CVLR − CVRR)/
√

2,
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AR⊥ = (HV,+ −HV,−) (CVLR + CVRR)/
√

2,

ARt = HV,t(C
V
LR − CVRR),

ARP = HS(CSRR − CSLR),

ART0 = −2HT,0C
T
RR,

ART‖ = −
√

2 (HT,+ −HT,−)CTRR, (8.90)

which are combinations of the WCs and the hadronic helicities. Here, the abbreviated

form AL,RtP has been introduced to allow for more compact expressions.

AL,RtP =
(
AL,Rt +

√
q2

mτ
AL,RP

)
. (8.91)

To compute the full four-body decay amplitude B → D∗τ ν̄ → (Dπ) τ ν̄ , we need

to describe the propagation and the decay of the vector boson D∗ to the Dπ final state.

The D∗ → Dπ amplitude can be parametrized in the form

MλD∗
D∗→Dπ = gD∗Dπ εµ(λD∗) p

µ
D , (8.92)

with an e�ective coupling gD∗Dπ that can be determined from the total decay width,

Γ(D∗ → Dπ) = C
λ3/2(m2

D∗ ,m
2
D,m

2
π)

192πm5
D∗

|gD∗Dπ|2 , (8.93)

where C = 1, 1
2 for a final π±, π0, respectively. The dependence of the e�ective

amplitude 8.92 on the momentum and polarization vectors fixes the angular structure

of the three possible helicity amplitudes:

M0
D∗→Dπ = −gD∗Dπ |~pD| cos θD and M±1

D∗→Dπ = ± 1√
2
gD∗Dπ |~pD| sin θD ,

with |~pD| = λ1/2(m2
D∗ ,m

2
D,m

2
π)/(2mD∗) being the three-momentum of the D meson

in the D∗ rest-frame.
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The propagation of the D∗ can be described through a Breit-Wigner function. Since

the decay width of the D∗ is much smaller than its mass, we can use the narrow-width

approximation,

1

(m2
Dπ −m2

D∗)
2 +m2

D∗Γ
2
D∗

ΓD∗�mD∗−−−−−−−→ π

mD∗ΓD∗
δ(m2

Dπ −m2
D∗) , (8.94)

and write the decay probability of the process B → (Dπ) τ ν̄ in the form

|M[B → (Dπ) τ(λτ ) νX ]|2 =
1

2
G2
F |Vcb|2

π

mD∗ΓD∗

× δ(m2
Dπ −m2

D∗)

∣∣∣∣∣∣
∑

λD∗

MλD∗ ,λτ
X MλD∗

D∗→Dπ

∣∣∣∣∣∣

2

,

(8.95)

whereMλD∗ ,λτ
X are the reduced amplitudes defined in Eqs. 8.88 and 8.89. Notice that

the dependence on gD∗Dπ cancels out from this expression.

The four-body angular distribution can be computed in a similar way as in the

B → Dτν̄ case, but now taking into account that B decays into four fields. As before,

the four-body phase-space can be reduced to a product of two body phase spaces,

dQ4 =
dq2

2π

dm2
Dπ

2π
dQ2(pDπ, q)dQ2(p̂D, p̂Dπ)dQ2(p̂τ , p̂ν), (8.96)

where p̂Dπ = −~q, p̂D and p̂τ are defined in the B, Dπ and τ ν̄ rest-frames, respectively,

and are given by

|p̂Dπ|=

√
λ(m2

B,m
2
Dπ, q

2)

2mB
, |p̂D|=

√
λ(m2

Dπ,m
2
D,m

2
π)

2mDπ
, |p̂τ |=

q2 −m2
τ

2
√
q2

. (8.97)

Here, the angle θD is defined, taking as positive z-axis the direction of the D∗

momentum in the B rest-frame, as the polar angle of the final D meson in the Dπ

rest-frame. See Fig. 8.3 for a visual representation of this angle.

The di�erential decay distribution of the transition process B(pB) →
D∗(pD∗) τ(pτ ) ν̄(pν̄), with D∗(pD∗) → D(pD)π(pπ) on the mass shell, can be
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expressed in the form [335]:

d4Γ(B → D∗τ ν̄)

dq2 d cos θτ d cos θD dφ
=

9

64π
ND∗(q2)B(D∗ → Dπ)

×
{
Is1 sin2 θD + Ic1 cos2 θD

+
(
Is2 sin2 θD + Ic2 cos2 θD

)
cos 2θτ

+ (I3 cos 2φ+ I9 sin 2φ) sin2 θD sin2 θτ

+ (I4 cosφ+ I8 sinφ) sin 2θD sin 2θτ

+ (I5 cosφ+ I7 sinφ) sin 2θD sin θτ

+
(
Is6 sin2 θD + Ic6 cos2 θD

)
cos θτ

}
. (8.98)

The interferences among the unobservable helicity amplitudes of the intermediate D∗

meson generate the di�erent dependences on θD appearing in the above expression. As

Eq. 8.98 shows, the vector meson D∗ in the final state provides additional observables

compared to the previous case. The angular coe�cients Ii’s are functions of q2 that

encode both short- and long-distance physics contributions. They can be written in

terms of the hadronic form factors as,

Ic1 = 2
(

1 +
m2
τ

q2

)(
|AL0 |2 + 4 |ALT 0|2

)
− 16mτ√

q2
Re{AL0ALT 0

∗ }+
4m2

τ

q2
|ALtP |2 + (L � R) ,

Is1 =
1

2

(
3 +

m2
τ

q2

)(
|AL⊥|2 + |AL‖ |2

)
+ 2

(
1 +

3m2
τ

q2

)(
|ALT ⊥|2 + |ALT ‖|2

)

−8
mτ√
q2

Re{AL⊥ALT ⊥
∗

+AL‖ALT ‖
∗ }+ (L � R) ,

Ic2 = −2
(

1− m2
τ

q2

)(
|AL0 |2 − 4 |ALT 0|2 + (L � R)

)
,

Is2 =
1

2

(
1− m2

τ

q2

)(
|AL⊥|2 + |AL‖ |2 − 4

(
|ALT ⊥|2 + |ALT ‖|2

)
+ (L � R)

)
,

I3 =
(

1− m2
τ

q2

)(
|AL⊥|2 − |AL‖ |2 − 4

(
|ALT ⊥|2 − |ALT ‖|2

)
+ (L � R)

)
,

I4 =
√

2
(

1− m2
τ

q2

)
Re{AL0AL‖

∗ − 4ALT 0ALT ‖
∗

+ (L � R)} ,



282 8. E�ective Field Theories for b→c transitions

I5 = 2
√

2
[

Re{
(
AL0 − 2

mτ√
q2
ALT 0

) (
AL⊥
∗ − 2

mτ√
q2
ALT ⊥
∗ )− (L � R)}

−m
2
τ

q2
Re{AL∗tP

(
AL‖ − 2

√
q2

mτ
ALT ‖

)
+ (L � R)}

]
,

Ic6 =
8m2

τ

q2
Re{AL∗tP

(
AL0 − 2

√
q2

mτ
ALT 0

)
+ ( L � R )} ,

Is6 = 4 Re{
(
AL‖ − 2

mτ√
q2
ALT ‖

)(
AL⊥
∗ − 2

mτ√
q2
ALT ⊥
∗ )− (L � R)} ,

I7 = −2
√

2
[

Im{
(
AL0 − 2

mτ√
q2
ALT 0

) (
AL‖
∗ − 2

mτ√
q2
ALT ‖
∗ )− (L � R )}

+
m2
τ

q2
Im{AL∗tP

(
AL⊥ − 2

√
q2

mτ
ALT ⊥

)
+ (L � R)}

]
,

I8 =
√

2
(

1− m2
τ

q2

)
Im{AL0

∗AL⊥ − 4ALT 0
∗ALT ⊥ + (L � R)} ,

I9 = 2
(

1− m2
τ

q2

)
Im{AL‖AL⊥

∗ − 4ALT ‖ALT ⊥
∗

+ (L � R)} . (8.99)

The angular analysis of a four-body final state, namely B → D∗(→ Dπ)τ ν̄ , further

allows us to construct a multitude of observables that can be extracted from data

[335–342].

Measuring this four-dimensional distribution is obviously a major experimental

challenge, since the subsequent τ decay involves one (τ → ντ + hadrons) or two

(τ → ντ ` ν̄`) additional neutrinos, making di�cult to reconstruct the τ direction.

However, one can study di�erent angular observables by properly integrating one

variable or a set of them.

Performing the angular integrations in Eq. 8.98, one easily obtains the di�erential

distribution with respect to q2, given by

dΓ

dq2
≡ Γf =

1

4
ND∗ B(D∗ → Dπ) (3Ic1 + 6Is1 − Ic2 − 2Is2) , (8.100)
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which written explicitly in terms of the di�erent WCs takes the following form:

dΓ(B → D∗τ ν̄)

dq2
= ND∗(q2)B(D∗ → Dπ)

×
{(∣∣1 + CVLL

∣∣2 +
∣∣CVRL

∣∣2 +
∣∣CVLR

∣∣2 +
∣∣CVRR

∣∣2
)(

1 +
m2
τ

2q2

)(
H2
V,+ +H2

V,−
)

+
(∣∣1 + CVLL − CVRL

∣∣2 +
∣∣CVLR − CVRR

∣∣2
)[(

1 +
m2
τ

2q2

)
H2
V,0 +

3

2

m2
τ

q2
H2
V,t

]

−4 Re
[(

1 + CVLL
)
CV ∗RL + CVLR C

V ∗
RR

](
1 +

m2
τ

2q2

)
HV,+HV,−

+
3

2

(∣∣CSRL − CSLL
∣∣2 +

∣∣CSRR − CSLR
∣∣2
)
H2
S

+8
(∣∣CTLL

∣∣2 +
∣∣CTRR

∣∣2
)(

1 +
2m2

τ

q2

)(
H2
T,+ +H2

T,− +H2
T,0

)

+3 Re
{(

1 + CVLL − CVLR
) (
CS∗RL − CS∗LL

)
+
(
CVLR − CVRR

) (
CS∗RR − CS∗LR

)} mτ√
q2
HSHV,t

−12 Re
[(

1 + CVLL
)
CT∗LL + CVRR C

T∗
RR

] mτ√
q2

(HT,0HV,0 +HT,+HV,+ −HT,−HV,−)

+ 12 Re
[
CVRLC

T∗
LL + CVLR C

T∗
RR

] mτ√
q2

(HT,0HV,0 +HT,+HV,− −HT,−HV,+)

}
. (8.101)

Di�erential distributions with respect to a single angle, which can be obtained by

integrating two angles at a time, are also of special interest. These are

d2Γ

dq2 d cos θ`
=

3

8
ND∗ B(D∗ → Dπ)

[
(Ic1 + 2Is1 − Ic2 − 2Is2) + (Ic6 + 2Is6) cos θ` + (2Ic2 + 4Is2) cos2 θ`

]
(8.102)

d2Γ

dq2 d cos θD
=

3

8
ND∗ B(D∗ → Dπ)

[
(3Is1 − Is2) + (3Ic1 − Ic2 − 3Is1 + Is2) cos2 θD

]

=
3

4
Γf
[
FD

∗
T sin2 θD + 2FD

∗
L cos2 θD

]
(8.103)

d2Γ

dq2 dφ
=

1

8π
ND∗ B(D∗ → Dπ)

[
(3Ic1 + 6Is1 − Ic2 − 2Is2) + 4I3 cos 2φ+ 4I9 sin 2φ

]

=
1

2π
Γf
[
1 +A3 cos 2φ+A9 sin 2φ

]
. (8.104)
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In the following we define several observables constructed from the coe�cients of

various angular dependences. The distribution with respect to cos θD in Eq. 8.103

provides the longitudinal and transverse polarization fractions for the D∗ meson,

defined as [335, 338]

FD
∗

L =
3Ic1 − Ic2

3Ic1 + 6Is1 − Ic2 − 2Is2
, and FD

∗
T =

2(3Is1 − Is2)

3Ic1 + 6Is1 − Ic2 − 2Is2
, (8.105)

which satisfy that FD
∗

L + FD
∗

T = 1. The angular coe�cients I3 and I9 can simply be

extracted by measuring the terms proportional to cos 2φ and sin 2φ in Eq. (8.104),

A3 =
IN3
Γf

, and A9 =
IN9
Γf

, (8.106)

respectively, where INi ≡ ND∗ B(D∗ → Dπ)Ii. Furthermore, we define several

asymmetries starting with the well-known forward-backward asymmetry, defined as

AD∗FB =
1

Γf

[ ∫ 1

0
−
∫ 0

−1

]
d cos θ`

d2Γ

dq2d cos θ`
. (8.107)

The coe�cients I4 and I5 in Eq. (8.98) can be extracted with the two angular

asymmetries:

A4 =
1

Γf

[ ∫ π
2

−π
2

−
∫ 3π

2

π
2

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

[ ∫ 1

0
−
∫ 0

−1

]
d cos θ`

d4Γ

dq2d cos θ`d cos θDdφ
,

A5 =
1

Γf

[ ∫ π
2

−π
2

−
∫ 3π

2

π
2

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

∫ 1

−1
d cos θ`

d4Γ

dq2d cos θ`d cos θDdφ
. (8.108)

One can further define the following two observables,

A7 =
1

Γf

[ ∫ π

0
−
∫ 2π

π

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

∫ 1

−1
d cos θ`

d4Γ

dq2d cos θ`d cos θDdφ
,

(8.109)

A8 =
1

Γf

[ ∫ π

0
−
∫ 2π

π

]
dφ
[ ∫ 1

0
−
∫ 0

−1

]
d cos θD

[ ∫ 1

0
−
∫ 0

−1

]
d cos θ`

d4Γ

dq2d cos θ`d cos θDdφ
,
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which are non-vanishing only if NP induces a complex contribution to the amplitude.

This holds true for the coe�cient A9 as well. These asymmetries are simply related to

the angular coe�cients INi as follows:

A4 =
2

π

IN4
Γf

, A5 =
3

4

IN5
Γf

, AD∗FB =
3

8

IcN6 + 2IsN6

Γf
, A7 =

3

4

IN7
Γf

, A8 =
2

π

IN8
Γf

.

Finally, the total branching ratio can be decomposed in terms of the τ polarization,

giving rise to another observable: the lepton polarization asymmetry, defined as

PD(∗)
τ =

dΓλτ=1/2/dq
2 − dΓλτ=−1/2/dq

2

Γf
, (8.110)

whose definition is also aplicable in the context of the decay B → Dτν̄ .

Notice that the above quantities are functions of q2. We define the q2-integrated

observables, labeled with a bar, as follows,

Ō ≡ 1

Γ

∫ q2
max

q2
min

dq2O[q2] Γf [q2], (8.111)

where Γ is the total decay width.

8.4 Hadronic Form Factors

This final section is devoted to the form factors (FF) parametrizing the hadronic

part of the B → D(∗) transitions. The determination of these FF requires

non perturbative methods. Lattice QCD (LCQD) calculations provide information at

zero-recoil (maximal q2), and even lately non-zero recoil calculations of the FF have

been released for B → D. At low q2, information on the FF can be extracted

through QCD light-cone sum rules (LCSR). To extrapolate the FF from zero-recoil along

the whole q2 range, a certain parametrization must be used. There are two main

approaches followed in the literature: The Boyd-Grinstein-Lebed (BGL) [343–345] is

a model independent parametrisation that uses QCD dispersion relations, analyticity,

unitarity and crossing-symmetry to parametrize the FF. On the other hand, the
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Caprini-Lellouch-Neubert (CLN) parametrization [346] exploits Heavy Quark E�ective

Field Theory (HQEFT) [347, 348] to parametrize the FF. Recently, the community has

been intensively debating about the most adequate way to parametrise the relevant

hadronic FF due to the relevance of hadronic uncertainties in the determination of

|Vcb| [349–356], and it has been suggested that the accuracy of the usually adopted

CLN parametrisation [346] has been probably overestimated at the current experimental

precision. However, for studying the anomalies in b→ c transitions, such precision is of

less relevance since we are mostly dealing with ratios, reducing the overall FF sensitivity.

For our study, we parametrize the FF following a Heavy Quark Expansion beyond the

original CLN parametrization as it will be described in the following. In the heavy

quark limit all FF either vanish or reduce to a common functional form, the Isgur-Wise

function ξ(q2) [357]. Thus, it is convenient to factor out ξ(q2) by defining [353]

ĥ(q2) = h(q2)/ξ(q2) . (8.112)

The leading Isgur-Wise function can be more conveniently expressed in terms of the

kinematical parameters

ω(q2) =
m2
B +m2

D(∗) − q2

2mBmD(∗)
and z(q2) =

√
ω(q2) + 1−

√
2√

ω(q2) + 1 +
√

2
. (8.113)

The variable ω(q2) is the inner product of the B and D(∗) velocities, so that ω = 1

corresponds to the zero-recoil point, q2
max = (mB − mD(∗))2, where ξ(q2

max) = 1.

Although q2 in semileptonic B decays ranges from m2
τ to (mB −mD(∗))2, the FF can

be continued analytically in the q2 complex plane [350]. However, they have a cut

at q2 = (mB + mD(∗))2. The conformal mapping z(q2) encodes in a very e�cient

way the analyticity properties of the FF, transforming the cut in the q2 plane into the

boundary of the circle |z| < 1 [358], so that a perturbative expansion in powers of z(q2)

has an optimized convergence. See Fig. 8.4 for an illustration. In this case, the origin

of the circle generated by the conformal transformation in Eq. 8.113 is chosen at the

point of maximum recoil ω = 1. In the original CLN parametrization, the Isgur-Wise

function is expanded up to z2 and its slope and curvature parameters are constrained

by spin-symmetry relations, whereas in here, we let them to be independent parameters.
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|z| < 1

C q2

z[q2]

m2
⌧ ! = 1 ! <�1

Im[z]

Re[z]

Figure 8.4: Conformal
mapping of the q2 complex
plane to a unit disk. The cut
in the q2 plane is mapped
to the boundary of the disk
|z| = 1. The origin z = 0
corresponds to the point of
maximum q2, i.e. ω = 1.

Besides, as recently Refs. [359, 360] have pointed out the phenomenological necessity to

include orders higher than z2 in this expansion, we will consider the ξ(q2) up to O(z4)

corrections,

ξ(q2) = 1− ρ2 [ω(q2)− 1] + c [ω(q2)− 1]2 + d [ω(q2)− 1]3 +O([ω − 1]4) (8.114)

= 1− 8ρ2z(q2) + (64c− 16ρ2) z2(q2) + (256c− 24ρ2 + 512d) z3(q2) +O(z4) ,

described through the parameters ρ2, c and d, which are assumed to be independent.

The functions ĥ(q2) introduce corrections of order ΛQCD/mb,c parametrized by

the subleading Isgur-Wise functions χ2,3(ω), η(ω). Furthermore, we include ΛQCD/m
2
c

corrections to those functions ĥ(q2) that are protected, because of Luke’s theorem, from

1/mc,b corrections, i.e. those that do not vanish at zero recoil:

hi(1) = 1 +O(1/m2
c/b) i = +, V, A1, A3, S, P, T and T1

hi(1) = O(1/mc, 1/mb) i = −, A2, T2 and T3.

The 1/m2
c corrections are introduced by the subleading l1,2(ω) functions, via the

parameters {l1(1), l2(1)}, respectively. These functions also include the corrections

of order αs.
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The FF appearing in the D matrix elements, following HQEFT, can be parametrized

as

F1(q2) =
1

2
√
mBmD

[
(mB +mD)h+(q2)− (mB −mD)h−(q2)

]
,

F0(q2) =
1

2
√
mBmD

[
(mB +mD)2 − q2

mB +mD
h+(q2)− (mB −mD)2 − q2

mB −mD
h−(q2)

]
,

FT (q2) =
mB +mD

2
√
mBmD

hT (q2) , (8.115)

while the D∗ helicity amplitudes, for the B → D∗ amplitude, involve the functions

V (q2) =
mB +mD∗

2
√
mBmD∗

hV (q2),

A1(q2) =
(mB +mD∗)

2 − q2

2
√
mBmD∗(mB +mD∗)

hA1(q2),

A2(q2) =
mB +mD∗

2
√
mBmD∗

[
hA3(q2) +

mD∗

mB
hA2(q2)

]
,

A0(q2) =
1

2
√
mBmD∗

[
(mB +mD∗)

2 − q2

2mD∗
hA1(q2)− m2

B −m2
D∗ + q2

2mB
hA2(q2)

− m2
B −m2

D∗ − q2

2mD∗
hA3(q2)

]
,

T1(q2) =
1

2
√
mBmD∗

[
(mB +mD∗)hT1(q2)− (mB −mD∗)hT2(q2)

]
,

T2(q2) =
1

2
√
mBmD∗

[
(mB +mD∗)

2 − q2

mB +mD∗
hT1(q2)− (mB −mD∗)

2 − q2

mB −mD∗
hT2(q2)

]
,

T3(q2) =
1

2
√
mBmD∗

[
(mB −mD∗)hT1(q2)

−(mB +mD∗)hT2(q2)− 2
m2
B −m2

D∗

mB
hT3(q2)

]
. (8.116)

We refer the reader to Ref. [353, 359] for the explicit expressions of the ĥ as a function

of the parameters described above. Notice that the main di�erence to the latter article

is the introduction of the z3 term in the leading Isgur-Wise function, that renders the

fit compatible with the extrapolation of the recent LQCD data [349, 361] to large recoil.
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Chapter based on the work done in 1904.09311 and 2004.06726.

Signals of lepton flavour universality violation have been appearing since the last

decade in the flavour sector, attractively suggesting NP. They have been observed in the

B-meson semileptonic decays to particles involving the second generation of quarks,

what enters in the scope of the B-factories: BaBar, Belle and the LHCb experiment.

The certainty that the SM cannot be the ultimate theory, the lack of NP signals in the

recent years, together with the possibility to explore such phenomena at the current

experiments make understandable the great attention that these discrepancies have

caught from a thirsty scientific community. Particularly interesting are the anomalies

related to b→ c transitions; in there, the e�ect of NP competes with the SM contribution

coming from a charged W boson exchange, which tells us that the NP is rather light or

strongly coupled to the SM. In this context, it is convenient to study the ratios

RD(∗) ≡ B(B → D(∗)τ ν̄)

B(B → D(∗)` ν̄)
, (9.1)

where ` = e, µ refers to the light lepton modes. Those are particularly clean

observables since the leading hadronic uncertainties, as well as the controversial

|Vcb| component of the CKM matrix are factorized out. Fig. 9.1 shows the di�erent

experimental measurements of these ratios that have been published since 2012 by

several experimental collaborations. These results lead to the following world average,

Rave
D = 0.340± 0.027± 0.013, and Rave

D∗ = 0.295± 0.011± 0.008 , (9.2)
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Figure 67: Measurements of R(D) and R(D∗) listed in Table 92 and their two-dimensional
average. Contours correspond to ∆χ2 = 1, i.e., 68% CL for the bands and 39% CL for the
ellipses. The black point with errors is the average of the SM predictions for R(D∗) and R(D)
obtained from Refs. [584–586]. The prediction and the experimental average deviate from each
other by 3.08σ. The dashed ellipse correspond to a 3σ contour (99.73% CL).

180

Figure 9.1: Measurements
on the RD(∗) ratios up to
Spring 2019, together with
the averaged value from
the SM predictions and
the world average from
HFLAV. Image extracted
from Ref. [362].

performed by the Heavy Flavour Averaging Group (HFLAV) [362], with −0.38 correlation,

also shown in Fig. 9.1 in a red elipse. The HFLAV averaged results deviate at the 3.1σ

level from the arithmetic average of the SM predictions [350, 352, 353, 356] quoted by

HFLAV: RSM = 0.299 ± 0.003 (1.4σ) and RSM
D∗ = 0.258 ± 0.005 (2.5σ) [362]. Using

the more updated FF [359], introduced in Sec. 8.4 from the previous chapter and further

discussed in this chapter, we get

RSM
D = 0.302± 0.004, and RSM

D∗ = 0.258 + 0.006
− 0.005 , (9.3)

which slightly increases the tension to 3.2σ. The climax of these discrepancies

was reached a few years ago, after both Belle [363, 364] and the LHCb [365]

collaborations updated their analysis and the discrepancies added up to 4.0σ from

the SM predictions [366]. This tension, however, was relaxed with the subsequent

measurements, being the cherry on top the most recent measurement by Belle [367],

released in Moriond 2019, which reported a value closer to the SM prediction (only 2.1σ

from it), that softened the claim of physics beyond the SM.

Anomalies have also been observed in other observables involving b→ c transitions.

The recent measurement of the longitudinal polarization of the D∗− meson in B0 →
D∗−τ+ν̄ reported by Belle,

F̄D
∗

L = 0.60± 0.08± 0.04, (9.4)
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di�ers from its SM prediction by 1.6σ [368]. Besides, the recent LHCb measurement [369]

of the Bc → J/Ψ ratio,

RJ/ψ ≡
B(Bc → J/ψ τν̄τ )

B(Bc → J/ψ µν̄µ)
= 0.71± 0.17± 0.18 , (9.5)

also deviates from the SM predictionsRSMJ/ψ ≈ 0.25–0.28 [370–381] in the same direction

as its predecessors. There is also the measurement of the τ -polarisation of the B → D∗

semileptonic decay from Belle [382],

P̄D∗τ = −0.38± 0.51+0.21
−0.16, (9.6)

which is still compatible with the SM prediction but could also allow for modifications

within its large uncertainties.

In summary, there is experimental evidence of deviations from the SM predictions

in some observables involving b → c transitions, which curiously seem to point to a

common direction. This tension, if further confirmed and stretched, could be crucial to

gain a better insight into the laws describing nature, and thus it needs to be understood.

In this chapter, we present a general study to b → c transitions from an EFT

bottom-up perspective by performing a global fit to the most general dimension-6

Hamiltonian and all available experimental data on such processes. 1 We take as our

starting point the most general e�ective Hamiltonian describing b → c semileptonic

transitions, i.e. Eq. 8.2 from Chapter 8, up to four well-motivated assumptions that we

name in the following:

• NP only enters in the third generation of leptons.

This assumption is motivated by the absence of experimental evidence of

deviations from the SM in tree-level transitions involving light leptons. We refer to

the phenomenological analysis of b→ c(e, µ)ν̄(e,µ) transitions made in Ref. [359]

which constrains potential e�ects to be negligible in the present context.

1A caveat must be done here regarding the experimental measurements taken as inputs of the fit. The
ratios RD(∗) have been updated along the writing of the two references on which this chapter is based.
The experimental values used in each fit will be specified, being all of them in the last fit that we have
presented the most updated values at the time of writting this thesis.
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• The CVRL WC is lepton-flavour universal.

This statement can be derived [383–385] by assuming the Standard Model E�ective

Field Theory (SMEFT) [386, 387], which is the appropriate e�ective theory in the

presence of a sizeable energy gap above the EW scale under the condition of

a linear EW symmetry breaking. The fact that no new states beyond the SM

have been found so far up to an energy scale of approximately 1 TeV, and that

measurements of the Higgs couplings are all consistent with the SM expectations

support this scenario. In this context, taking into account our first assumption,

we take CVRL = 0, which will therefore reduce the d.o.f. of our fit. As we will

see later in this chapter, when the assumption of linear breaking is relaxed, a

non-universal CVRL coe�cient can be generated [385].

• Only LH neutrinos are considered.

In the EFT framework used to parametrize the semileptonic decays based on

b→ c transitions, we do not consider the possibility of having light RH neutrinos.

We stick to the matter content of the SM.

• All WCs are CP-conserving and, therefore, real.

The later has been assumed for convenience since, as will be commented later, the

quality of the fit results was not significantly improved by relaxing this assumption

whereas, by halving the number of WCs to fit, numerous degenerated minima

were avoided. We refer the reader to the following references, Ref. [388–392],

where possible CP-violating contributions have been studied.

Along this chapter our study gains generality as we relax some of the above assumptions.

In this way, we get a better understanding of their particular e�ect on the results of

the global fit. The first part of the chapter is devoted to the study of b→ c transitions

under the four assumptions just mentioned, while in the second and third part, the

second and third assumptions are relaxed, respectively. Conclusions are drawn at the

end.
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9.1 Global fit to b→ c transitions: SMEFT

Let us remind the starting point of the upcoming study: the most general

dimension-6 Hamiltonian built from the SM matter content respecting Lorentz

invariance, the gauge symmetry at the bottom quark scale, i.e. SU(3)c ⊗ U(1)Q,

and the four assumptions listed before,

Hb→cτ ν̄e� =
4GF√

2
Vcb
[ (

1 + CVLL
)
OVLL+CSLROSRL+CSLLOSLL+CTLLOTLL

]
+h.c., (9.7)

where the operators are defined according to their chirality, indicated by the chiral

projector PX=L,R acting on the quark current, 2

OVLL = (c̄ γµPLb) (τ̄ γµνL) , OSXL = (c̄ PXb) (τ̄ νL) , OTLL = (c̄ σµνPLb) (τ̄σµννL) ,

and the WCs in the above Hamiltonian are parametrizing any NP signal, in such a way

that we can recover the SM by setting all of them to zero.

9.1.1 Fit independent analysis

The first step towards the understanding of these phenomena is to study in a

totally fit-independent way the dependence of the currently accessible observables, i.e.

RD(∗) , P̄D
∗

τ and F̄D
∗

L , on the individual WCs. Such dependence is shown in Fig. 9.2.

We abstain from including the J/ψ observable in our study because the hadronic

uncertainties are not at the same level as for the observables related to B → D(∗)

transitions and the experimental error is large. As Fig. 9.2 shows, a positive vector WC

CVLL would help shifting the predictions of the ratios RD(∗) closer to their experimental

values. Since the CVLL enters in the EFT in the same way as the contribution from

the W gauge boson, we will refer to a non-zero CVLL as a global modification of the

SM. Fig. 9.3, which reflects the correlation between the ratio observables RD and RD∗ ,
corroborates that an enhancement of the SM contribution would be enough to achieve

the consistency between theory and experiment in the context of these observables.

In spite of this, special attention must be drawn to the recently measured longitudinal

2We note that, since there are not RH neutrinos in the theory, the lepton currents have a fixed chirality.
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Figure 9.2: Individual contributions of the WCs involving LH neutrinos. The solid
(dashed) lines show the parameter space allowed by the constraint B(Bc → τ ν) <
10% (30%), whereas the fainted lines show the predictions without taking into account
this constraint. Figure extracted from Ref. [393].
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Figure 9.3: Correlation
between ∆RD and ∆RD∗
as a function of the WCs.
The experimental central
value is denoted by a black
cross and the 1σ, 2σ and
3σ uncertainties by yellow
rings. Figure extracted from
Ref. [393].

polarization F̄D
∗

L since neither a shift of CVLL, nor any other individual contribution of

WCs, would help to improve the theoretical prediction with respect to its experimental

value. The reader may notice that scalar WCs CSRL and CSLL could be good candidates

when positive and negative contributions, respectively, are achieved. Unfortunately,

these possibilities are forbidden by the indirect constraint on the branching ratio of the
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leptonic decay:

B(Bc → τ ν̄τ ) = τBc
mBcm

2
τf

2
Bc
G2
F |Vcb|2

8π

(
1− m2

τ

m2
Bc

)2

×
∣∣∣∣∣1 + CVLL − CVRL +

m2
Bc

mτ (mb +mc)
(CSRL − CSLL)

∣∣∣∣∣

2

, (9.8)

which was computed in Chapter 8 (see Eq. 8.52). Although there is no explicit

measurement of this quantity, and it is not expected to be measured in the foreseeable

future, this decay has been indirectly constrained by the total lifetime of the Bc

meson [388, 394, 395], giving an upper bound of 30 − 40%. A more stringent 10%

bound can be obtained from LEP data at the Z peak as recently pointed out by the

authors of Ref. [396], which might become even stronger if the full L3 data is included

in the analysis [397]. The later bound has been used lately in the literature, sometimes

even pushed down to 5%. However, there are some caveats that must be taken into

account: (a) It assumes the probability of a b quark hadronising into a Bc meson to be

the same at LEP (e+e−), the Tevatron (pp̄) and LHCb (pp), which exhibit very di�erent

transverse momenta. This is known to be a bad approximation in the case of b-baryons,

see Ref. [398]. (b) It makes use of the SM theoretical prediction for B(Bc → J/Ψ τ ν̄).

See Ref. [391] for a more detailed discussion.

It is remarkable that the above constraint restricts two particular combinations of

WCs, the so-called axial CA ≡ CVRL − (1 +CVLL) and pseudoscalar CP ≡ CSRL −CSLL
combinations. Note that under the assumption of CVRL = 0, the axial and vector

coe�cients match. Conveniently, the pattern of dependences in Eq. 9.8 is also found in

the observables involving the D∗ meson. The later are also sensitive to the tensor WC,

which is however absent in the leptonic Bc decay. The common set of WCs describing

Bc → τ ν̄ and the D∗ observables allows us to extend our fit-independent study by

looking at the simultaneous e�ect of several WCs. In this way, we can get a more

realistic overview since the later approach, although providing a fair intuition of their

main e�ect on the observables, is hiding possible interferences and correlations among

the di�erent WCs.
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Figure 9.4: Allowed regions at 1σ from FD
∗

L (blue), RD∗ (green), PD∗τ (gray grid) and
the q2 distribution of Γ(B → D∗τ ν̄τ ) (red), together with the region satisfying the
bound B(Bc → τ ν̄τ ) < 10% (orange). Figure extracted from Ref. [393].

Fig. 9.4 shows the region for the WCs entering in B → D∗ observables we consider,

i.e. RD∗ , P̄D
∗

τ and F̄D
∗

L , allowed by their experimental values within the 1σ level. The

permited phase-space is represented in the CVLL−CP plane for di�erent values of CTLL.

As the figure shows, there is no overlapping region at 1σ, as the study of individual

WCs was already suggesting. In fact, the 1σ range for FD
∗

L cannot be reached by any

combination of NP parameters in this setup, when only imposing B(Bc → τ ν̄) ≤ 10%

or even 30%, and at the same time requiring a positive shift in RD∗ . Agreement can

presently be achieved, however, at the 2σ level. A confirmation of the present central

value with higher precision could indicate inconsistency between experimental data and

the theoretical assumptions made in our approach, since no kind of NP can apparently

resolve the tension at 1σ.

9.1.2 Global Fit

Let us now contrast the previous ideas with the information obtained from a global

fit. In this subsection, we will first provide some details about the fit structure, then

the results of the global fit will be presented, together with the predictions for some

observables in their context. The results obtained will be interpreted at the end.
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9.1.2.1 Fit structure

In order to seek for the most favourable scenarios given the available experimental

data, one can minimize the so-called Chi square function, which is built from the

di�erences between the theoretical predictions (fth) and their experimental values (fexp):

χ2(yi) = F T (yi)V
−1 F (yi) , F (yi) = fth(yi)− fexp , Vij = ρijσiσj , (9.9)

where the matrix V contains the information about the uncertainties (σi for the

observable i), and the correlation (ρij ) between the quantities (i and j), and the

yi are the free inputs we are fitting, that in our case correspond to the four WCs

{CVLL, CSRL, CSLL, CTLL}, and the ten FF parameters {ρ2, c, d, χ2(1), χ′2(1), χ′3(1),

η(1), η′(1), l1(1), l2(1)}, described in Section 8.4 from Chaper 8. The uncertainty of a

parameter yi is determined as the shift ∆yi in that parameter where the minimization

of χ2|yi=ymin
i +∆yi

, varying all remaining parameters in the vicinity of the minimum,

leads to an increase of ∆χ2 = 1.

Our χ2 splits in four parts which are uncorrelated between each other. Those are:

χ2 = χ2
R
D(∗)

+ χ2
dΓ/dq2 + χ2

FD
∗

L︸ ︷︷ ︸
χ2

exp

+ χ2
FF︸︷︷︸

χ2
theo

. (9.10)

They can be classified in two main groups: χ2
exp and χ2

theo. The later contains the

information on the hadronic FF. As explained in the last section of Chapter 8, the

FF can be described by ten parameters (listed above) following a HQEFT approach

beyond the CLN parametrization [346], including corrections of order αs, ΛQCD/mb,c

and partly Λ2
QCD/m

2
c , mostly following Refs. [353, 359]. Those ten parameters are fitted

to the inputs from LQCD [349, 361, 399, 400], LCSR [401] and QCD sum rules [402–404]

(see Ref. [359] for details). Their fitted values are given in Table 9.1, while the

corresponding correlation matrix is listed in Table 11 from Ref. [393]. In this sense, such

fit renders the FF independent of the NP scenario considered, since it does not rely

on experimental data. Thus, in our χ2, the FF will be treated as pseudo-observables

with the model-independent fitted values listed in Table 9.1 as “experimental" inputs.

In this way, we are taking into account the propagation of the error associated to these
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ρ2 c d χ2(1) χ′2(1)

1.32± 0.06 1.20± 0.12 −0.84± 0.17 −0.058± 0.020 0.001± 0.020

χ′3(1) η(1) η′(1) l1(1) l2(1)

0.036± 0.020 0.355± 0.040 −0.03± 0.11 0.14± 0.23 2.00± 0.30

Table 9.1: Inputs used to determine the FF in the HQET parametrization as in [353]. The
first three parameters determine the leading Isgur-Wise function, while the last seven
enter in the 1/mc,b and 1/m2

c corrections. Table adapted from Ref. [393].

quantities.

On the other hand, the χ2
exp splits in three parts, corresponding to the three class

of observables we use in our analysis:

• The ratios RD(∗)

As mentioned at the beginning of this chapter, BaBar, Belle and LHCb have

published di�erent experimental measurements for RD(∗) . We use in the fit

the results averaged by the HFLAV collaboration [398]. Because the analysis we

present in this part of the chapter was performed along 2019, at first we used in

the global fit the averaged results:

Ravg
D = 0.407± 0.039± 0.024, and Ravg

D∗ = 0.306± 0.013 ± 0.007 ,

with a correlation of −20%, what did not include the most recent measurement

from Belle [405]. When we were about to publish our analysis, a preliminar result

was released in Moriond 2019 [406], which slightly shifted the average towards the

SM predictions. When being aware of this information, we repeated the global fit

including the new average, so that the e�ect of the latest measurement is tangible

by contrasting the results from both fits.

As mentioned above, these ratios are advantageous both theoretically and

experimentally, as they allow for the cancellation of uncertainties, specifically

the CKM factors and leading FF uncertainties on the theoretical side.
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• Di�erential distributions of the decay rates Γ(B→ D(*) τ ν̄)

Belle and BaBar have also released data on the measured q2 distributions for

B → D(∗)τ ν̄ [363, 407], which provide complementary information on b →
c transitions that has not been exploited in the literature, with the exception

of Refs. [388, 408–410]. The reported binned values are listed in Table 9 from

Ref. [393].

Since the global normalizations of these distributions are already implicitly

included in RD(∗) , they are not independent d.o.f. in the fit. This can be taken

into account either by introducing a free normalization factor for the distributions

as in Ref. [388] or by normalizing the di�erential binned distributions in the

following way:

Γ̃(B → D(∗)τ ν̄)bin ≡
Γ(B → D(∗)τ ν̄)bin∑

all bins

Γ(B → D(∗)τ ν̄)bin
, (9.11)

which keeps the information about the shape of the distribution, independently

of the global normalization. The treatment of systematic uncertainties and

correlations follows Ref. [388]. The expressions for the semileptonic B → D(∗)τ ν̄

di�erental distributions are given in Eqs. 8.85 and 8.100 from Chapter 8.

• The longitudinal polarization fraction F̄
D∗

L

A measurement of the D∗ longitudinal polarization fraction, defined in Eq. 8.105

from Chapter 8, has been recently announced by the Belle collaboration [368].

Being normalized to the total rate, this observable also enjoys the advantages of

the other ratios. To study the implications of this measurement, we perform one

fit including F̄D
∗

L and one without it.

Besides the semi-leptonic processes included in the fit, as commented earlier, the

pure leptonic decay Bc → τ ν̄ is crucial in determining the direction of potential NP

e�ects. In our fits, we will compare the results obtained when imposing the upper

bounds 10% and 30% on the later branching ratio. These bounds are implemented

in the χ2 as a Heavyside Theta function, whose contribution is zero for parameter

combinations where these limits are obeyed and infinity for those where they are not.
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9.1.2.2 Fit results

Let us start discussing the SM scenario, which corresponds to all the WCs set to

zero. In this context,

χ2
SM/d.o.f. = 65.5/57, (9.12)

where the denominator indicates the number of d.o.f. considered in the fit. It

corresponds to a naive confidence level (C.L.) of ∼ 20%. We note that the limit

from the Bc lifetime is irrelevant in the SM fit. The apparent good quality of the fit,

i.e. χ2
SM/d.o.f. < 1, might be surprising in comparison with the discrepancy claimed

in the RD(∗) measurements. In fact, the normalized value of the χ2 is misleading as

an indicator of the quality of the fit. The reason is that the systematic uncertainties

added to the dΓ/dq2 distributions are chosen to be maximally conservative, so that

the corresponding χ2 contribution is reduced. For instance, the contribution from

the q2-distributions is χ2
SM,dΓ ∼ 43 for, again naively, 54 d.o.f., which illustrates

such phenomenon. Considering instead the contribution from RD(∗) , indeed we

do reproduce the well-known puzzle, i.e. we obtain χ2
SM,R

D(∗)
= 22.6 for 2 d.o.f.,

corresponding to a 4.4σ tension. These observations imply that also NP scenarios should

not be judged simply by their absolute χ2 vs. d.o.f., but by the relative improvement of

their χ2 with respect to the one obtained in the SM as an indicator of their quality.

Considering the four relevant WCs in Eq. 9.7 and not including F̄D
∗

L as an input,

the global fit gives a total of three minima, described in Table 9.2: a global minimum

with χ2
Min 1 = 34.1 for 53 d.o.f.; and two local minima, with χ2

Min 2 = 37.5 and

χ2
Min 3 = 58.6, being the later highly disfavoured by the di�erential distributions in q2.

The local minima are not very deep, resulting in complications in the determination

of the uncertainties for the WCs at these points. We mark with a symbol † such

uncertainties that, before reaching the ∆χ2 = 1, fall into another minimum.

Since the WCs enter each observable bilinearly, there is a degeneracy between a set

of WCs and a mirror minimum with

CV
′

LL = −2− CVLL 3, and C
′
i = −Ci, for Ci = CSRL, C

S
LLC

T
LL. (9.13)

3Notice that the coe�cient of the LH vector operator is (1 + CVLL).
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Min 1 Min 2 Min 3 Min 1 Min 2 Min 3

B(Bc → τ ν̄) 10% 30%

χ2
min/d.o.f. 34.1/53 37.5/53 58.6/53 33.8/53 36.6/53 58.4/53

CVLL 0.17+0.13
−0.14 0.41+0.05

−0.06 −0.57+0.23
−0.24 0.19+0.13

−0.17 0.42+0.06
−0.06 −0.54+0.23

−0.24

CSRL −0.39+0.38
−0.15 −1.15+0.18

−0.08 0.06+0.59
−0.19 −0.56+0.49

−0.17 −1.33+0.25
−0.08 −0.14+0.69

−0.18

CSLL 0.36+0.11
−0.35 −0.34+0.12

−0.19 0.64+0.13
−0.49 0.54+0.10

−0.46 −0.16+0.13
−0.22 0.81+0.12

−0.58

CTLL 0.01+0.06
−0.05 0.12+0.04

−0.04 0.32+0.02
−0.03 0.01+0.07

−0.05 0.12+0.04
−0.04 0.32+0.02

−0.03

Table 9.2: NP parameters for the minima obtained from the χ2 minimization and
1σ uncertainties. There are, in addition, three corresponding sign-flipped minima, as
indicated in Eq. 9.13. In the first three columns, the constraint B(Bc → τ ν̄) ≤ 10%
has been applied, whereas in the last three columns, such constraint has been relaxed
to 30%. Table from Ref. [393].

Actually, this discrete degeneracy is just a remnant of the continuous rephasing

invariance that the complex WCs enjoy in the context of the observables entering in

the fit. Since the two sets of WCs give the same χ2 and the same predictions, in the

following we will only discuss one of them, particularly the scenario with smaller |CVLL|.
When adding the longitudinal polarization to the global fit, the overall structure

for the best two minima remains, although the available parameter space for the NP

parameters is slightly reduced. Nevertheless, strickingly, the less favoured local minimum

disappears. The results for the NP parameters at the minima obtained when including

F̄D
∗

L , which will be refered under the label “b", can be found in Table 9.3.

Min 1b Min 2b Min 1b Min 2b

B(Bc → τ ν̄) 10% 30%

χ2
min/d.o.f. 37.6/54 42.1/54 37.6 /54 42.0/54

CVLL 0.14+0.14
−0.12 0.41+0.05

−0.05 0.14+0.14
−0.14 0.40+0.06

−0.07

CSRL 0.09+0.14
−0.52 −1.15+0.18

−0.09 0.09+0.33
−0.56 −1.34+0.57

−0.08

CSLL −0.09+0.52
−0.11 −0.34+0.13

−0.19 −0.09+0.68
−0.21 −0.18+0.13

−0.57

CTLL 0.02+0.05
−0.05 0.12+0.04

−0.04 0.02+0.05
−0.05 0.11+0.03

−0.04

Table 9.3: NP parameters
for the minima obtained
from the χ2 minimization
including F̄D

∗
L and their

1σ uncertainties. There
are, in addition, the
corresponding sign-flipped
minima, as indicated
in Eq. 9.13. Table from
Ref. [393].



302 9. Global fit to b→ c transitions

Graphically, the results of the fit for the scenarios with and without F̄D
∗

L are

represented in Fig. 9.5. In both cases the FF parameters reproduce their input

distributions up to very small shifts; that is why we do not report them in the following.
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Figure 9.5: WCs for the minima obtained in the global fit with and without including the
F̄D

∗
L polarization. On the left (right) panel, B(Bc → τ ν̄) < 10% (30%). See Tables 9.2

and 9.3 for their explicit values. Figure extracted from Ref. [393].

There are important correlations between the NP parameters obtained from the

fit, which are illustrated in the two-dimensional plots from Fig. 9.6 for the di�erent

scenarios: with and without F̄D
∗

L and for 10% and 30% upper bounds on B(Bc → τ ν̄).

The contours shown in that figure are relative to the global minimum. We note that

the distributions for, especially, the scalar parameters are highly non-gaussian. This

asymmetry can be understood from the way that the upper limit on B(Bc → τ ν̄)

is implemented in the fit. In addition, since only their sum and di�erence enter in

B → D and B → D∗ decays, respectively, these parameters are furthermore highly

correlated. The non-gaussianity is also a consequence from the fact that the first two

minima overlap to some extent.

As we commented before, we used the HFLAV average for the ratios RD(∗) from

Eq. 9.11 as input for our fit. Including the new average shown in Eq. 9.2 instead, we

found again qualitatively similar solutions to the previous case, as the comparison of

the numerical results in Tables 9.3 and 9.4 reflects. In the later, the results from the

fit including the new HFLAV average are shown. For simplicity, we present only the

solutions with B(Bc → τ ν̄) < 10%; increasing this limit results again essentially in

larger ranges for especially the scalar WCs, although the new global minimum now does

saturate this limit, so also the central values change.
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Figure 9.6: Allowed regions for all possible combinations of two WCs for di�erent
scenarios: Blue areas (lighter 95% and darker 68% C.L.) show the minima without F̄D

∗
L

and with B(Bc → τ ν̄) ≤ 30%. The yellow lines display how the 95% C.L. bounds
change when B(Bc → τ ν̄) ≤ 10%. The dashed lines show the e�ect of adding the
observable F̄D

∗
L for both B(Bc → τ ν̄) ≤ 30% (purple) and for ≤ 10% (orange). Figure

extracted from Ref. [393].

Min 1b Min 2b

χ2
min/d.o.f. 37.4/54 40.1/54

CVLL 0.09+0.13
−0.11 0.35+0.04

−0.07

CSRL 0.14+0.06
−0.67 −1.27+0.66

−0.07

CSLL −0.20+0.58
−0.03 −0.30+0.12

−0.51

CTLL 0.007+0.046
−0.044 0.091+0.029

−0.030

Table 9.4: Minima and 1σ uncertainties
obtained from the global χ2 minimization,
including the (at that time preliminary)
Moriond-19 result measured by Belle on
the RD(∗) ratios [406] and the F̄D

∗
L

polarization [368], using B(Bc → τν) <
10%. There are, in addition, the
corresponding sign-flipped minima, as
indicated in Eq. 9.13. Table from Ref. [393].
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9.1.3 Predictions

In Fig. 9.7 the predictions for the ratios RD(∗) in the context of the scenarios

studied in the previous section at their di�erent minima are represented. In blue,

the SM prediction is shown, while the experimental central value of the ratios and its

uncertainty are shown in a gray solid line and bands of the same color, respectively.

0.25

0.3

0.35

0.4

0.45

Figure 9.7: Predictions for RD (higher numerical values) and RD∗ (lower numerical
values) for the minima obtained in the fit, both with and without including F̄D

∗
L ,

with B(Bc → τ ν̄) ≤ 10% and ≤ 30%. The experimental values are represented by
the horizontal black lines, with their corresponding uncertainties (grey bands). The
blue lines show the SM predictions, RD = 0.300+0.005

−0.004 (upper blue line) and RD∗ =

0.251+0.004
−0.003 (lower blue line). Figure extracted from Ref. [393].

The predictions for the integrated angular observables within their 1σ uncertainty

are displayed in Fig. 9.8. In red bars we show the predictions for F̄D
∗

L . Notice that,

although being included in the scenarios “b" of the fit, still the F̄D
∗

L predictions are

not compatible with experiment within 1σ; however, they are closer to the experimental

value as one would expect. In yellow, we show the predictions for P̄D∗τ , defined

in Eq. 8.110, whose experimental value was not included in the fit due to its large

uncertainties. Indeed, as the figure shows, all predictions of PD∗τ are compatible with

the experimental value at less than 1σ. To complete our study, we also show the

predictions for other accessible observables that have not been measured yet, such as

the forward-backward asymmetries ĀDFB (purple) and ĀD∗FB (green), defined in Eq. 8.84
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Figure 9.8: Predictions of the integrated observables for the di�erent minima without
(Min 1, Min 2 and Min 3) and with (Min 1b, Min 2b) the inclusion of F̄D

∗
L in the fit. The

shaded areas show the experimental results at 1σ where applicable. On the left (right)
panel, a bound of B(Bc → τ ν̄) ≤ 10% (30%) has been applied. Figure extracted from
Ref. [393].

and 8.110 from Chapter 8, respectively; and the τ polarization for the D meson, P̄Dτ
(blue), described in Eq. 8.110 from the same chapter.

For completion, the integrated angular observables obtained when updating the fit

to include the last Belle measurement on the ratios RD(∗) released in Moriond-19 are

also shown in Fig. 9.9.
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Figure 9.9: Predictions of the
integrated observables for the
two minima obtained in the fit
including F̄D

∗
L and the (at that

time) preliminary Belle result,
with a bound of B(Bc →
τ ν̄) ≤ 10% and 30%. The SM
predictions are shown in the first
column. Figure extracted from
Ref. [393].

To close this section, we show the q2 dependence of the angular observables at

the 1σ level in the context of the global (red) and local (yellow) minima obtained when

including the F̄D
∗

L measurement and the Moriond-19 measurement of the ratios in the
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fit, assuming the more conservative upper bound of 30% for B(Bc → τ ν̄). In blue, the

SM prediction is shown.
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Figure 9.10: Predictions and 1σ uncertainty on the q2 dependence of the B → D(∗)τ ν̄
observables, for the solutions of the fit including the Moriond-19 result and F̄D

∗
L . An

upper bound of B(Bc → τ ν̄) ≤ 30% has been adopted. The predictions of Min 1b,
Min 2b and the SM are represented by a red, yellow and blue band, respectively. Figure
extracted from Ref. [393].

9.1.4 Interpretation of the results

Let us analyze the results obtained so far. From those not including F̄D
∗

L , the

following information can be extracted:

• The reduction of the global χ2 by 31.4 (31.7) for 4 NP parameters implies a strong

preference of NP compared to the SM, taking the present data set at face value

and B(Bc → τ ν̄) ≤ 10% (30%).

• There is no absolute preference of a single WC in the sense that for the global

minimum each individual WC is compatible with zero within at most 1.1σ.

• On the other hand, considering scenarios with only a single WC present, there

is a clear preference for CVLL: removing the other three WCs increases χ2 only
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by 1.4, corresponding to 0.14σ. Hence, Min 1 is well compatible with a global

modification of the SM, that is, CVLL being the only non-zero coe�cient.

• The other two minima are numerically further away from the SM; instead of a

single dominant contribution, there are several sizeable WCs whose contributions

partly cancel each other in some observables. These minima also imply di�erent

values for the fitted observables: Min 2 corresponds to a slightly worse fit

for both, RD(∗) and their q2 distributions, while Min 3 fits RD(∗) perfectly,

but is essentially already excluded by the (rather coarse) measurements of the

distributions available.

• All minima saturate the constraint B(Bc → τ ν̄) ≤ 10% (30%). Relaxing the

upper bound allows for a larger splitting between the two scalar WCs, and the

contribution of the scalar operators gets enlarged. This constraint is consequently

the main argument at low energies disfavouring a solution with only scalar

coe�cients. Any such solution would require a lower value for RD∗ by about 2σ.

• Having solutions with relevant contributions from all WCs illustrates the

importance of taking into account scalar and tensor operators in the fit.

• The fit results for the FF parameters reproduce their input values displayed in

Table 9.1 up to tiny shifts. This implies that the uncertainties of the experimental

data with tauonic final states are large compared to the hadronic uncertainties.

Di�erently stated, while the ranges obtained for the NP parameters are obtained in

fits varying all FF parameters simultaneously with the NP ones, they are essentially

determined by the experimental uncertainties at the moment.

• Generalizing the fit to complex WCs does not improve the minimal χ2 value,

but opens up a continuum of solutions. Hence, complex WCs can explain

the anomalies as well as real ones, but they do not o�er any clear advantages

regarding the fit quality, so they have not been considered here for simplicity. It

should be mentioned, however, that in specific models the option of complex

WCs can open up qualitatively new solutions, as for example the model

proposed in Ref. [389], where only the coe�cients CSLL, C
T
LL (CSLL ∼ CTLL)
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are present, requiring a non-vanishing imaginary part in order to accommodate

the experimental data. This fact implies correlations with new observables like

electric dipole moments, which can then be used to di�erentiate this model from

solutions allowing for real coe�cients [411].

• As discussed above, for each minimum given in Table 9.2 there is a degenerate

solution, see Eq. 9.13.

Including the recent measurement of the longitudinal polarization F̄D
∗

L in the global

fit, the above statements hold up to the following di�erences:

• Still there is no clear preference for a single WC. In this context, the central values

for the scalar coe�cients are smaller for the global minimum, such that the bound

from the Bc lifetime is not saturated even in the 10% case. As a consequence,

the minimum does not change when allowing for larger values of B(Bc → τ ν̄);

only the allowed parameter ranges increase.

• The second local minimum (previously referred to as Min 3) disappears.

Finally, considering the updated average of the ratios RD(∗) released in Moriond 2019,

we observe that again all individual coe�cients are roughly compatible with zero at 1σ.

CVLL alone also still provides an excellent fit to all the data, now with a smaller central

value of ∼ 0.08. Interestingly, the fit with only CTLL is improved by the new results,

although this does not correspond to any concrete UV complete scenarios.

It is not straightforward to compare our fit with the results from other analyses

in the literature, because we are including the information from the q2 distributions

that has been ignored in most of the previous fits, as commented earlier. Besides that,

some works include additional observables such as RJ/ψ or slightly di�erent bounds

on B(Bc → τ ν̄). Nevertheless, comparing the findings of previous fits with our results

is quite enlightening since it illustrates the relevance of the additional observables we

are considering. Generic fits to the RD(∗) world averages in Eq. (9.11), with the e�ective

Hamiltonian of Eq. 9.7 [331, 337, 353, 359, 388, 390, 391, 395, 409, 410, 412–430], have shown

the existence of many possible solutions, some of them involving only one or two WCs.

Including the B(Bc → τ ν̄) upper bound reduces the number of allowed possibilities,
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but several di�erent scenarios remain still consistent with the data. These solutions

can be easily reproduced when the q2 distributions are dropped from our fit. However,

most of them lead to di�erential distributions in clear conflict with the BaBar and Belle

measurements. While a sizeable NP contribution to some WC can easily generate the

needed enhancement of the B → D(∗)τ ν̄ rates, it tends to distort the shape of the

di�erential distributions in a way than can no-longer accommodate the data, similarly

to what happens for Min 3. Once the full experimental information on RD(∗) (rates

and binned distributions) is taken into account, the χ2 minimization only gives the

three solutions shown in Table 9.2, and when including F̄D
∗

L in the fit, the number of

solutions is further reduced to two.

Looking at the collection of results obtained in the global fit and reminding us what

we have learnt from the fit-independent analysis, we can conclude that NP is strongly

preferred compared to the SM. In contrast, for the global minimum, each individual WC

is compatible with zero at 1σ; 4. Hence, there is no preferred direction for NP that

could explain the so-called flavour anomalies for b → c transitions. In addition, under

the assumptions that CVRL is flavour universal and there are no RH neutrinos, it is not

possible to find agreement between all experimental measurements at 1σ regardless of

the form of the UV theory behind. This potential incompatibility would suggest one of

several possibilities:

1) One of our theoretical assumptions is incorrect and the SMEFT cannot be applied

at the EW scale. This could happen if one or several of the following cases

apply: (a) There is an insu�cient gap between the EW and the NP scale, i.e.,

there are new d.o.f. close enough to the EW scale to invalidate an EFT approach.

(b) The EW symmetry breaking is non-linear, changing also the character of the

observed Higgs-like particle. In that case CVRL could contribute to the fitted

observables, because it would no-longer be necessarily flavour universal. (c) There

are additional light d.o.f. like RH neutrinos [431–433], yielding additional operators.

4This apparent contradiction can be understood by looking at Fig. 9.6 there are strong correlations
among the WCs. For instance, as the panel in the left-up corner shows, it is not possible to set both the
vector and tensor WCs to zero simultaneously.
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Note that we also assumed the semi-leptonic decays with light leptons to be free

from NP. However, the corresponding constraints are so strong that even relaxing

this assumption would not significantly change our analysis [359].

2) An unidentified or underestimated systematic uncertainty in one or several of the

experimental measurements.

In any case, the upcoming experimental studies of not only the LHCb collaboration,

but also the Belle II experiment, which started to take data, will hopefully resolve this

question soon.

9.2 Global fit to b→ c : Including CV
RL

We will first explore the possibility that the EW symmetry breaking is not linearly

realized, i.e. CVRL is not flavour universal so that it could modify the predictions for

the b → c observables. The aim of relaxing this initial assumption we made in the

previous fit is to study whether this allows us to find agreement among all experimental

measurements in the context of a consistent theoretical framework.

Going back to the fit-independent analysis of the D∗ observables, we find that, in

this case, overlap between all observables at 1σ can be found. This is illustrated in

Fig. 9.11, for di�erent benchmark values of CVLL and CTLL, in the CVRL-CP plane.

Figure 9.11: Allowed regions at 1σ from F̄D
∗

L (blue), RD∗ (green), P̄D∗τ (gray grid) and
the q2 distribution of Γ(B → D∗τ ν̄) (red), together with the region satisfying the bound
B(Bc → τ ν̄) < 10% (orange), with CVRL 6= 0.
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In this case, the fit has an extra d.o.f. with respect to the previous one, CVRL, and

the number of minima is doubled (plus their sign-flipped counterparts), as shown in

Fig. 9.12. The F̄D
∗

L measurement has been included in this fit. These four minima,

together with the value of the NP parameters in their context, are numerically listed in

Table 9.5.

Min 4 Min 5 Min 6 Min 7

χ2
min/d.o.f. 32.5/53 33.3/53 37.6/53 38.9/53

CVLL −0.91+0.10
−0.09 −0.85+0.20

−0.10 0.14+0.14
−0.12 0.35+0.08

−0.08

CVRL 1.89+0.19
−0.22 −1.58+0.23

−0.22 0.02+0.21
−0.24 0.34+0.18

−0.18

CSRL −0.44+0.12
−0.45 −0.33+0.52

−0.16 0.10+0.15
−0.59 −0.68+0.54

−0.14

CSLL −1.34+0.49
−0.12 0.56+0.23

−0.54 −0.12+0.65
−0.15 −0.92+0.58

−0.11

CTLL −0.22+0.10
−0.11 0.19+0.10

−0.10 0.01+0.09
−0.07 −0.02+0.08

−0.07

Table 9.5: Minima with their 1σ uncertainties obtained from the global χ2 minimization,
including F̄D

∗
L and B(Bc → τ ν̄) < 10% in the fit while allowing for CVRL 6= 0. There

are, in addition, the corresponding sign-flipped minima, as indicated in Eq. 9.13. Table
from Ref. [393].

The doubling of minima can be understood qualitatively in the following way: B →
D is dominated by the combination of WCs corresponding to the vector coupling

CV ≡ 1 + CVLL + CVRL, while B → D∗ is dominated by the axial-vector coupling

CA ≡ CVRL− (1 +CVLL). Their rates are correspondingly roughly given by |CV,A|2. For
CVRL = 0 we have CV = −CA, and the only remaining discrete symmetry is the Z2

symmetry in the WCs, the second solution being eliminated by our choice CVLL > −1.

With a finite coe�cient CVRL, these two solutions become four ({CA = ±|CA|, CV =

±|CV |}), since now |CA| 6= |CV |; two of those are again eliminated by our choice for

CVLL, leaving two solutions per minimum with CVRL = 0. This degeneracy is broken by

interference terms, notably Re(CAC∗V ) in B → D∗, but also the interference with scalar

and tensor operators. Nevertheless, this approximate degeneracy explains the doubling

of solutions for finite CVRL.

Comparing these minima with the ones previously obtained, listed in Table 9.3,

we find that the previous global minimum, Min 1b, remains a solution of this more
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general fit, now called Min 6. Furthermore, Min 1b doubles into an extra local minimum

in this case, which enjoys a significant contribution from CVRL that compensates the

change in CVLL with respect to Min 1b results. The new global minimum, called Min 4,

and the close-lying Min 5 improve the agreement of the fit with the data significantly.

However, in these scenarios, the SM coe�cient is almost completely cancelled and its

e�ect replaced by several NP contributions. These are hence fine-tuned scenarios, and

should be taken with a grain of salt.

-2 -1 0 1 2
-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

-0.2

0.0

0.2

0.4

0.6

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0
-1.4

-1.2

-1.0

-0.8

-0.6

Figure 9.12: Allowed regions in the CVRL − CVLL plane, for the global fit including F̄D
∗

L ,
restricting B(Bc → τ ν̄) ≤ 10%. Lighter and darker blue areas show regions with
95% and 68% CL, respectively. Left: All four minima shown in the chosen parameter
convention with CVLL > −1, relative to the global minimum. Center: the two minima
with CVLL ∼ −1, without restricting CVLL > −1, see text. Right: the two minima with
|CVRL,LL| < 1, relative to Min 6. Figure extracted from Ref. [393].

In accordance with the above reduction for χ2
min, and looking at the fourth panel

of Fig. 9.11 where the result of the global minimum Min 4 has been assumed for the

fixed WCs, we observe that, in this case, it is possible to have an overlap of all the

bands. However, it is still not possible to reach the central value for the longitudinal

polarization fraction, and as mentioned above, one should be aware that this scenario

corresponds to a fine-tuned combination of parameters.
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9.3 Global fit to b→ c : Including νR

From the previous section we have realized that, by allowing for a non-flavour

universal CVRL, although consistency between theory and experiment can be found at

the 1σ level, the fit proposes scenarios that, even fine-tuned, would not be able to

provide a satisfactory answer if the statistics is improved and the central value does not

change.

At this stage, there is only one assumption left that we could relax; let us assume

that light RH neutrinos can play a role in our EFT. This statement is well-motivated by

the fact that neutrinos have a tiny mass which, as we have already discussed several

times along this thesis, cannot be explained within the SM matter content. A RH d.o.f.

could provide mass to the SU(2)L neutrino that the SM contains. Even though the

origin of this mass, the nature of neutrinos and their embedding in a UV-completion

of the SM remain as big question marks, as discussed in Chapter 1, we will assume

the existence of a νR ∼ (1, 1, 0), a sterile neutrino, a�ecting our EFT at low energies.

The RH singlet comprises the simplest ingredient for neutrino masses and it is further

motivated by consistent gauge theories involving the lepton number (see Chapters 3

and 5). In the literature, light RH neutrinos have been suggested as a possible way to

evade the current phenomenological constraints on the EFT operators containing νL

fields, see Refs. [334, 340, 415, 431–444]. Besides, the existing limits from the neutrino

sector do not constrain significantly the scale of νR operators beyond what is probed

in b → cτ ν̄ transitions. In order not to disrupt the measured B → D(∗)τ ν̄ invariant

mass distributions, we will assume light RH neutrinos, mνR . O(100) MeV, which is

also consistent with other cosmological and astrophysical limits. Although this neutrino

mass range is not specially motivated with respect to other mass scales, it is motivated

by our aim: to study whether light RH neutrino could modify our conclusions about the

anomalies so far.

If neutrino masses are neglected, the two chiralities do not interfere and, therefore,

the decay probability becomes an incoherent sum of the LH and RH neutrino

contributions:

Γ(B → cτ ν̄) = Γ(B → cτνL) + Γ(B → cτνR) (9.14)
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By extending the SM matter content to an extra RH singlet, new interactions unavoidably

appear. In this context, the number of WCs of the e�ective Hamiltonian is doubled. In

Chapter 8, in Eq. 8.2, the most general Hamiltonian describing the relevant interactions

for b→ cτ ν̄ transitions was introduced, and it will be the basis of the study presented

in this section.

9.3.1 Fit-independent analysis

As we previously did for the LH coe�cients, let us study the e�ect of the WCs

involved in the RH neutrino lepton currents on the observables we are interested in.

In Fig. 9.13, the dependence of the observables on the individual RH neutrino WCs is

displayed, together with their experimental values within their 1σ uncertainty, shaded

with a yellow band.
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Figure 9.13: Individual contributions of the WCs involving RH neutrinos. The solid
(dashed) lines show the parameter space allowed by the constraint B(Bc → τ ν̄) <
10% (30%), whereas the fainted lines show the predictions without taking into account
this constraint. Figure extracted from Ref. [333].

As the reader can see, because of the absence of the W contribution in the RH

sector, the expressions for the D and D∗ observables enjoy explicitly more symmetry

than before. For instance, in Fig. 9.13, we can see how the e�ect of vector and scalar

WCs is degenerated when switched on individually. Comparing the contributions of

the RH neutrino WCs with the LH ones, shown in Fig. 9.2, both behave similarly in

the sense that vector WCs, as Fig. 9.14 also shows, constitute a perfect remedy for the

discrepancies in the ratios RD(∗) but for F̄D
∗

L , in contrast, the prediction deviates even
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more from its experimental value. Scalar contributions would also help towards lowering

the tension of these observables but they are strongly constrained by the B(Bc → τ ν̄)

decay, similarly to the scenario with LH neutrinos. That is why we should in general

expect a better agreement between theory and experiment when such bound is relaxed,

although as we will see this is not always the case. So far, from the contributions of

⨯
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Figure 9.14: Correlation between
∆RD and ∆RD∗ , where the
dependence on the individual
RH neutrino WCs is displayed
according to the legend. The
experimental central value is
denoted by a black cross, whereas
in yellow bands we show the 1-, 2-
and 3-σ uncertainties.

individual RH neutrino WCs, one can conclude that no agreement can be found at 1σ,

likewise the previous case. Apparently, even doubling the number of free parameters in

our EFT, the experimental value for F̄D
∗

L together with the Bc → τ ν̄ decay keep theory

and experiment from being compatible at the 1σ level. Notice that such incompatibility

disappears when the F̄D
∗

L measurement is taken at 2σ, as Fig. 9.13 shows in brown

bands. Let us study whether the interferences between several WCs, as well as the

addition of both LH and RH contributions help towards achieving a consistent scenario

for the charged current flavour anomalies.

9.3.2 Global Fit

For the global fit we follow the same procedure obeyed when only considering LH

leptonic currents with the following di�erences:

• We updated the average of the ratios to the numbers published by HFLAV in

summer 2019 [362],

Rave
D = 0.340± 0.027± 0.013 and Rave

D∗ = 0.295± 0.011± 0.008 . (9.15)
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• In spite of its big uncertainties, P̄D∗τ was included this time in the fit. The reason

is that in this case the number of free variables is doubled and this constrain

helped to stabilize the fit.

9.3.2.1 Standard Model

First of all, let us look at the SM scenario in this context. Very similar to the previous

case, up to the above modifications, by setting all the WCs to zero the χ2 for the SM,

with now 59 d.o.f., is given by

χ2
SM/d.o.f. = 52.87/59, (9.16)

corresponding to a 69.95% probability (p-value, defined below). As in the previous

case, we should take the normalized χ2 with a grain of salt, since we know that the

inclusion of multiple inputs with large uncertainties, in our case the di�erential q2

distributions of the semileptonic decays, reduce considerably the absolute χ2 value and

can lead to misleading conclusions. The overestimation of the quality of the fit can be

understood, in exactly the same way as we argued in the first section of this chapter,

by looking at the split contributions of the fit inputs. Considering only the contribution

of the q2 distributions we find that χ2
SM(q2 distributions)/d.o.f. = 36.77/56, while

χ2
SM(RD(∗) , F̄D

∗
L , P̄D∗τ )/d.o.f. = 16.1/4, corresponding to a 2.98σ tension for the later.

Taking into account only the χ2 value of RD(∗) we obtain 13.36 for 2 d.o.f., recovering

the well-known 3.2σ tension. As a fair indicator of the fit quality, let us define the

SM-pull, which is a statistical measure that quantifies the goodness of the fit. It is

defined as the probability in units of σ corresponding to the di�erence ∆χ2
i ≡ χ2

SM−χ2
i ,

assuming that ∆χ2
i follows a χ

2 distributed function with ∆ni ≡ nSM−ni d.o.f., where
the label i refers to the ith scenario. The translation from probability to σs is done

by associating such probability to the one corresponding to a Pull number of standard

deviations in a normal distribution with ∆ni d.o.f.,5 i.e. [423, 445]

PullSM ≡ prob(∆χ2
i ,∆ni)[σ] =

√
2 Erf−1

[
CDF(∆χ2

i ,∆ni)
]
, (9.17)

5A probability of (68.3%, 95.5%, 99.7%) equals to (1σ, 2σ, 3σ), respectively.
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All: CVLL+ All RH neutrino WCs

Min. Br χ2/d.o.f. CVLL CVLR CVRR CSRR CSLR CTRR

All[1]
10% 37.26/53 −0.36+0.34

−0.64†
1.10+0.46

−0.50 0.031+0.14
−0.17 −0.03+0.18

−0.60 −0.29+0.31
−0.53 −0.105+0.066

−0.084

30% 36.42/53 −0.50+0.41
−0.49†

1.34+0.25
−0.60 0.204+0.298

−0.020 −0.22+0.27†

−0.27 −0.92+0.22†

−0.15 −0.123+0.069
−0.077

All[2]
10% 38.86/53 −0.13+0.10

−0.82 −0.09+0.29
−0.27 −0.69+0.64†

−0.44 0.34+0.37
−0.56†

−0.030+0.74
−0.18†

−0.006+0.239†

−0.082

30% 38.54/53 −0.15+0.21
−0.86 −0.15+0.31†

−0.17†
−0.69+0.70

−0.42 0.59+0.38†

−0.41 −0.24+0.61
−0.13†

0.007+0.114
−0.087

Table 9.6: NP parameters for the Scenario “All", described in the text.

where CDF(∆χ2
i ,∆ni) ≡ 1 − p(∆χ2

i ,∆ni) is the χ2-cumulative distribution function

evaluated at ∆χ2
i for ∆ni d.o.f.. The probability is given by the p-value, which also

characterizes the goodness of the fit, defined as

p(χ2
min, n) ≡

∫ ∞

χ2
min

dz χ2(z, n) , (9.18)

where χ2(z, n) is the χ2 probability distribution function with n d.o.f..

9.3.2.2 General cases

As previously mentioned, by adding RH neutrinos, the set of operators increases

from 5 to 10. The large number of free parameters makes it di�cult to perform a global

fit to the full basis of operators. Let us cleverly use the information extracted from the

previous fits for this multitudinous case.

Since the best scenario involving LH currents was a global modification of the SM,

i.e. a positive CVLL contribution, being the rest of LH neutrino WCs compatible with

zero, let us only consider CVLL together with all RH neutrino WCs in this new fit. We will

label this scenario as "All". The results of the fit in this context are listed in Table 9.6.

Imposing the bound B(Bc → τ ν̄), two minima are found. By shifting the WCs up

to 1.2σ, the global minimum becomes compatible with a solution in which the only

non-vanishing WCs are CVLR and CTRR. As Fig. 9.13 shows, both CVLR and CTRR help to

reproduce the experimental value of RD,RD∗ and P̄D
∗

τ . For F̄D
∗

L it is a combination

of several operators that helps. In the local minimum, the dominant contribution comes

from CVRR. Since both minima saturate the B(Bc → τ ν̄) ≤ 10% constraint, we relaxed
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it to 30% and found, as expected, that the value of the χ2/d.o.f. slightly improves in this

case, whereas the scalar WCs are further away from the SM limit.

In both cases one can see that most of the WCs have large uncertainties. This can be

understood from the fact that a large set of variables to fit allow for larger correlations

among them, which in turn allows wider ranges for the WCs considered. The global

and local minima have in fact quite close values of χ2/d.o.f., and the χ2 distribution in

the region between them is rather flat. Thus, when evaluating their 1σ variations, one

minimum falls often into the other one, as indicated by the † symbol.

One can also wonder which would be the most preferred scenario by the

experimental data when NP only a�ects the currents involving a RH neutrino. We

refer to this scenario as “νR", and their results are shown in Table 9.7. Here, CVLL is

switched o� so that one would expect CVLR and CTRR to dominate again in the fit.

Indeed, by shifting all the WCs within their 1σ uncertainties, the global minimum is

νR: All RH neutirno WCs

Min. Br. χ2 CVLR CVRR CSRR CSLR CTRR

νR[1]
10% 38.54/54 0.52+0.13

−0.16 0.06+0.15
−0.22 0.04+0.35

−0.66 −0.35+0.72
−0.16 −0.057+0.080

−0.058

30% 38.33/54 0.47+0.16
−0.20 0.10+0.21

−0.23 0.28+0.24
−0.97 −0.59+0.80

−0.17 −0.054+0.081
−0.058

νR[2]
10% 39.05/54 0.07+0.30

−0.30†
0.42+0.11

−0.21 −0.32+0.74
−0.21 0.10+0.20†

−0.68 0.004+0.080
−0.088

30% 38.80/54 0.12± 0.30 0.38+0.13
−0.20 −0.57+0.57†

−0.28 0.33+0.20†

−0.48†
−0.006+0.081

−0.091

Table 9.7: NP parameters for the Scenario “νR", described in the text.

compatible with a solution in which the only non-zero coe�cient is CVLR. In that sense,

CVLR plays a similar role as the CVLL in the previous scenario, which acted modifying

the SM contribution. In the local minimum, the main contributions to the observables

are coming from CVRR. By relaxing the B(Bc → τ ν̄) bound up to 30%, as one could

already expect, the χ2 slightly improves.

9.3.3 Scenarios involving all possible UV-mediators

Let us now focus on the di�erent motivated scenarios presented in the first section

of Chapter 8. Those arise by integrating out each of the single NP mediators that could

contribute to the b → cτ ν̄ transitions involving RH leptonic currents. By doing that,
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there are six scenarios to consider where only small subsets of operators at the mb scale

are generated, so that the number of free parameters to fit is considerably reduced. As

we showed in Chapter 8, in some cases, when integrating out the UV mediator, LH

neutrino WCs are also unavoidably generated. For these scenarios we will consider both

the solely RH contribution together with the more general case where both RH and LH

neutrino WCs participate. In the context of these particular scenarios, one, two or four

WCs are generated, being the rest zero. This allows us to have a better control on the

numerics of the fit and even study in a fit-independent way the di�erent scenarios,

allowing for a global and better overview of the situation.

From what we learnt in Chapter 8 about the possible UV mediators, V µ, R̃2 and Ṽ µ

do not contribute to any LH operator. We will refer to those as genuine RH scenarios.

In the scenarios involving R̃2 and S1, where scalar and tensor couplings arise at the

NP scale, the renormalization-group running between ΛNP ∼ 1 TeV and the scale mb

generates the factor r ≈ 2. Except the scenario involving Ṽ µ
2 , the rest of them have

been also studied at Ref. [433].

Within each scenario we will perform a standard χ2 fit to the data. There are 60

experimental d.o.f., 4 corresponding to RD(∗) , F̄D
∗

L and P̄D∗τ , and 56 to the binned q2

distributions. Therefore, the number of d.o.f. of our fits is 60−NWC − 1 = 59−NWC,

where NWC is the number of WCs entering in the fit. All solutions resulting from our

fits will present up to three flipped minima with degenerate χ2 values. The first flipped

minimum is obtained by reversing the sign of the LH neutrino WCs while keeping the

RH neutrino WCs untouched:

CV
′

LL = −2− CVLL , CX
′

iL = −CXiL , CX
′

iR = CXiR , (9.19)

for X = S, V, T and i = L,R, except for CVLL. The second flipped minimum is

obtained reversing only the RH coe�cients,

CX
′

iL = CXiL , CX
′

iR = −CXiR , (9.20)

for X = S, V, T and i = L,R, and the last one flipping both left and right WCs,

CV
′

LL = −2− CVLL , CX
′

iL = −CXiL , CX
′

iR = −CXiR , (9.21)
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for X = S, V, T and i = L,R, except for CVLL. From now on, we will only discuss the

closest minimum to the SM scenario.

In Fig. 9.15, the first row represents the parameter space allowed by the di�erent

measurements within their 1σ of the observables considered in the fit in the RH neutrino

WCs plane. In here, LH neutrino WCs are switched o�. In the second row, the same

predictions are displayed but this time fixing the LH neutrino WCs to their central values

of the minimum obtained in the fit (see Table 9.8). In the last row, we show the genuine

scenarios which only depend on a single RH neutrino WC.

As one can see from this figure, there is no overlap at the 1σ level between

all observables, regardless of the values taken by the WCs. When considering the

experimental value of FD
∗

L at 2σ, agreement can be found in most of them, but in the

scenario involving the second Higgs doublet, where the compatibility is spoiled by the

bound on the B(Bc → τ ν̄) decay.
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Spin 0

R̃2 ∼ (3, 2, 1/6): CSRR = 4rCTRR

Scen. Min. Br. χ2/d.o.f. CTRR

R̃2 - 10% 44.20/58 0.054+0.009
−0.011

Φ ∼ (1, 2, 1/2)

Scen. Min. Br. χ2/d.o.f. CSRR CSLR CSRL CSLL

Φ

Φ[1]
10% 49.93/57 0.46+0.05

−0.18 −0.06+0.19
−0.07 - -

30% 44.49/57 0.297+0.074
−0.096 −0.673+0.091

−0.053 - -

Φ[2]
10% 49.93/57 0.06+0.07

−0.19 −0.46+0.18
−0.05 - -

30% 44.49/57 0.673+0.053
−0.091 −0.297+0.096

−0.074 - -

Φ + LH -
10% 43.56/55 0.0± 0.3 0.0± 0.3 0.21+0.03

−0.11 −0.11+0.07
−0.08

30% 40.03/55 0.00± 0.45 0.00± 0.45 0.407+0.032
−0.137 −0.329+0.146

−0.080

S1 ∼ (3̄, 1, 1/3): CSRR = −4rCTRR, and CSLL = −4rCTLL

Scen. Min. Br. χ2/d.o.f. CVRR CTRR CVLL CTLL

S1 - 10% 39.21/57 0.422+0.071
−0.126 0.022+0.032

−0.037 - -

S1 + LH - 10% 39.06/55 0.367+0.68
−1.41†

0.004+0.048
−0.055†

0.034+0.11
−0.70 0.010+0.037

−0.041

Spin 1

Uµ1 ∼ (3, 1, 2/3)

Scen. Min. Br. χ2/d.o.f. CVRR CSLR CVLL CSRL

Uµ1 - 10% 39.39/57 0.39+0.07
−0.08 −0.1+0.2

−0.5 - -

Uµ1 + LH - 10% 39.37/55 0.38+0.60
−1.40 −0.01+0.56

−0.54 0.007+0.10
−0.65 −0.03+0.07

−0.45

Ṽ µ
2 ∼ (3̄, 2,−1/6)

Scen. Min. Br. χ2/d.o.f. CSLR

Ṽ µ
2 - 10% 47.32/57 0.418+0.097

−0.125

Ṽ µ ∼ (1, 1−, 1)

Scen. Min. Br. χ2/d.o.f. CVRR

V µ - 10% 39.50/58 0.370+0.051
−0.059

Table 9.8: NP parameters for all scenarios considered, toghether with their χ2.
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Figure 9.15: Fit-independent plots for the UV-motivated scenarios displaying the regions
allowed at 1σ. On the first row, only the RH neutrino WCs shown are switched on,
whereas on the second row the corresponding LH neutrino WCs are fixed to their best-fit
values. In the third row we show the genuine scenarios for RH neutrino currents. The
dashed orange line shows the more relaxed bound B(Bc → τ ν̄) ≤ 30%, and the red
grid shows the parameter space consistent with the experimental measurement of F̄D

∗
L

at 2σ. Figure extracted from Ref. [333].
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In order to parametrize the quality of the scenarios, the Pull with respect to the SM

is computed, together with the p-value, defined in Eqs. 9.17 and 9.18. Both are shown in

Fig. 9.16.

Figure 9.16: Pull and p-value of the di�erent scenarios discussed.

Fig. 9.17 also includes the pull applied to the di�erent pieces of the χ2, namely

χ2[RD(∗) ] the ratios contribution, χ2[dΓ/dq2] the contribution from the q2-di�erential

distributions, and χ2[Pol] the contribution from the integrated polarization observables

P̄D∗τ and F̄D
∗

L , in order to quantify how preferred the scenarios are regarding

these particular class of observables. Negative bars in this figure indicate that the

corresponding χ2 scenario is worse than the SM one, representing a disfavorable case.

Figure 9.17: Specific pulls regarding the di�erent contributions to the χ2 from the
q2-di�erential distributions, the integrated polarization observables, and the ratios.



324 9. Global fit to b→ c transitions

9.3.4 Predictions

Given the results obtained by the global fit, let us analize what are the predictions

of the observables we can access at experiment.

The predicted values of the di�erent observables within each fitted scenario are

given in Fig. 9.18 and in Table 9.9, where the numerical predictions are marked either

with a green tick (3) if they agree with the experimental value at 1σ or with a red cross

(7) if they do not. All minima are in agreement with all experimental observables at the

2σ level.

Figure 9.18: Predictions for the fitted observables, normalized to their measured values,
with their 1σ experimental uncertainties shown as orange bands. For these predictions
B(Bc → τ ν̄) ≤ 10% is taken. The green and red regions indicate the predictions
arising from each NP scenario that are in agreement or not with the experimental value,
respectively, at the 1σ level. The labels within brackets specify the minimum within a
given scenario. The numerical values of these predictions are listed in Table 9.9. Figure
adapted from Ref. [333].

As discussed in Chapter 8, the three-body di�erential distribution in B → Dτν̄ and

the full four-body angular analysis of B → D∗τ ν̄ → (Dπ)τ ν̄ provide a multitude of

observables that could be experimentally accessible. The presence of neutrinos in the

final state makes the measurement troublesome, compared to the case of well-known

neutral-current transitions like B → K∗µµ̄. Nevertheless, measuring the distribution of

the secondary τ decay, some information on the angular coe�cients Ji and Ii, defined

in Eqs. 8.81 and 8.98, could be obtained in the near future. As it can be seen from their

explicit analytic expressions in Eqs. 8.83 and 8.99, these q2-dependent functions can
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be very sensitive to the NP WCs present in the theory. In this section, we provide the

predictions of such observables in some relevant NP scenarios considered in this work.

Fig. 9.19 shows the predictions for the forward-backward asymmetries AD(∗)
FB defined

in Eqs. 8.84 and (8.107), the lepton polarization asymmetries of Eq. 8.110 and the

longitudinal D∗ polarization FD
∗

L defined in Eq. 8.105, as functions of q2. For simplicity

we have illustrated the four NP scenarios with largest pulls with respect to the SM.

Notice that the scenario coming from the Vµ integration, which contains the single WC

CVRR, will always give the same predictions as the SM scenario for the forward-backward

asymmetries, F̄D
∗

L (q2) and the angular coe�cients Īi(q2). Therefore, this scenario is

only included in the τ polarization asymmetries. Error bands in these plots correspond

only to the uncertainties arising from the fitted WCs. These uncertainties have been

obtained by minimizing the χ2, imposing Oi = Oi,min+∆Oi,min, and taking the value of

the observable Oi for which χ2 = χ2
min + 1. Other smaller errors such as FF parameters

or additional inputs are not taken into account. Therefore the SM predictions, plotted

as dotted black lines, do not present any uncertainties.

From these plots, we can see that scenarios with a larger number of WCs also have

larger uncertainties (Scenario All), as expected. The forward-backward asymmetry ADFB
could be useful to distinguish the scenario generated by R̃2 from the SM, but the large

uncertainties make di�cult to discriminate it from other scenarios or to di�erentiate the

SM from scenarios coming from Uµ1 , V
µ and S1. A precise measurement of AD∗FB would

allow to distinguish Scenario All and the Scenario R̃2 from the rest of NP scenarios,

which partly overlap with the SM prediction. A similar situation occurs for F̄D
∗

L , where

clear di�erences manifest at low values of q2 while the di�erent scenarios considered

tend to overlap at high q2. The τ polarizations PD(∗)
τ are useful to distinguish Scenario

Vµ from the SM, since these are the only observables that are sensitive to a single shift

in CVRR. Moreover, in Scenario All, PDτ and PD∗τ exhibit a quite di�erent dependence

on q2 compared to the other scenarios, which could be exploited to distinguish it at low

q2 values. In the high q2 region, PD∗τ also allows to discriminate Scenario All from the

other possibilities.
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Figure 9.19: Dependence on q2 of AD(∗)
FB , PD(∗)

τ and FD
∗

L , for the best-fit scenarios.
Figure extracted from Ref. [333].

In Fig. 9.20 we plot the B → D∗τ ν̄ angular coe�cients, as functions of q2,

normalized by the decay width, i.e.

Īi(q
2) =

ND∗(q2) Ii(q
2)

Γf (q2)
(9.22)

where the angular coe�cients Ii(q2) are given in Eq. 8.99 from Chapter 8. The CP-odd

quantities I7, I8 and I9 are identically zero in our case, because we have only considered

real WCs in our fits. It is interesting to notice that despite the large uncertainties,

Scenario All can be easily distinguished from the SM predictions and from other minima

(for instance looking at Ī1s or Ī5). However, being able to distinguish other scenarios

would be more complicated, unless the current errors on the WCs are sizable reduced.

There is always an overlap between the SM predictions, Scenario S1 and Scenario Uµ1 .

The scenario coming from R̃2 is close to the ones generated by Uµ1 , S1 and the SM
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Figure 9.20: Īi (see Eq. 9.22) for di�erent scenarios. Same colour legend as in Fig. 9.19.
Figure extracted from Ref. [333].

predictions, but it is still possible to distinguish it looking at low (Ī1s, Ī5) or high (Ī2s,

Ī2c, Ī3 and Ī4) q2 values.
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Scenario B(Bc → τ ν̄) RD RD∗ F̄D
∗

L P̄D∗τ
Experiment - 0.340± 0.027± 0.013 0.295± 0.011± 0.008 0.60± 0.08± 0.04 −0.38± 0.51+0.21

−0.16

All[1]
10% 0.339± 0.030 3 0.295± 0.014 3 0.494+0.025

−0.045 3 0.06+0.43
−0.45 3

30% 0.338± 0.030 3 0.295± 0.014 3 0.510+0.014
−0.043 3 0.08+0.32

−0.46 3

All[2]
10% 0.338± 0.030 3 0.296± 0.014 3 0.472+0.023

−0.044 7 −0.20+0.67
−0.30 3

30% 0.338± 0.030 3 0.296± 0.014 3 0.488+0.032
−0.0503 −0.24+0.64

−0.28 3

νR[1]
10% 0.341+0.029

−0.028 3 0.296± 0.013 3 0.474+0.010
−0.024 7 −0.42+0.13

−0.07 3

30% 0.341+0.029
−0.028 3 0.296± 0.013 3 0.489+0.011

−0.048 7 −0.47+0.15
−0.05 3

νR[2]
10% 0.339± 0.030 3 0.296± 0.014 3 0.471+0.012

−0.033 7 −0.401+0.094
−0.064 3

30% 0.340± 0.030 3 0.295± 0.014 3 0.484+0.015
−0.045 7 −0.45+0.13

−0.07 3

V µ 2.5% 0.343± 0.012 3 0.294± 0.010 3 0.462± 0.004 7 −0.377+0.031
−0.033 3

Φ[1]
10% 0.353+0.028

−0.027 3 0.2638+0.0034
−0.0049 7 0.4662+0.0039

−0.0057 7 −0.5028+0.0051
−0.0035 3

30% 0.348+0.028
−0.027 3 0.2699+0.0032

−0.0058 7 0.4792+0.0041
−0.0064 7 −0.5144+0.0056

−0.0032 3

Φ[2]
10% 0.353+0.028

−0.027 3 0.2638+0.0034
−0.0049 7 0.4662+0.0039

−0.0057 7 −0.5028+0.0051
−0.0034 3

30% 0.348+0.028
−0.027 3 0.2699+0.0032

−0.0058 7 0.4792+0.0041
−0.0064 7 −0.5144+0.0056

−0.0032 3

Φ + LH
10% 0.353± 0.028 3 0.2708+0.0032

−0.0052 7 0.4815+0.0041
−0.0068 7 −0.442+0.005

−0.026 3

30% 0.340± 0.028 3 0.2866+0.0030
−0.0081 3 0.5125+0.0044

−0.0126 3 −0.356+0.006
−0.066 3

Uµ1 2.2% 0.335+0.027
−0.017 3 0.2966+0.0043

−0.00423 0.4611+0.0056
−0.0070 7 −0.364+0.048

−0.050 3

Uµ1 + LH 2.0% 0.334± 0.029 3 0.297± 0.013 3 0.4609+0.0059
−0.0083 7 −0.38+0.77

−0.16 3

R̃2 7.6% 0.361+0.022
−0.021 3 0.2748+0.0066

−0.0059 3 0.4522± 0.0050 7 −0.4800+0.0078
−0.0076 3

S1 4.6% 0.335+0.021
−0.011 3 0.297± 0.011 3 0.468+0.007

−0.011 7 −0.377+0.033
−0.058 3

S1 + LH 4.3% 0.328+0.026
−0.025 3 0.299± 0.012 3 0.471+0.014

−0.013 7 −0.38+0.77
−0.12 3

Ṽ µ
2 7.3% 0.359+0.028

−0.027 3 0.2629± 0.0036 7 0.4644± 0.0043 7 −0.5012± 0.0039 3

Table 9.9: Predictions for the fitted observables in the di�erent minima, and their
experimental values. Table adapted from Ref. [333].

9.3.5 Interpretation of the results

From the last section, together with the results of the fit collected in Tables 9.6, 9.7

and 9.8, the following conclusions can be extracted:

• In general, it is di�cult to reproduce the experimental value of the longitudinal

D∗ polarization within its 1σ range. From Fig. 9.18 and Table 9.9 we can see that
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the only solutions reproducing all the experimental values (marked with a 3) are

the scenario All with either a 10% (Min[1]) or a 30% (Min[1] and Min[2]) upper limit

on B(Bc → τ ν̄), and the scenario Φ with LH neutrino WCs with a 30%.

• All solutions exhibit pulls between 1.2 and 3.7 with respect to the SM fit, showing

a clear preference for NP contributions.

• The largest pull with respect to the SM fit is obtained in the scenario with Vµ,

which only contributes to the CVRR coe�cient. Notice that CVRR plays a similar

role than CVLL in the observables involving b → c transitions. Therefore, the

preference of the fit for this scenario can be easily understood, since a SM-like

modification was the best fit solution in absence of RH neutrinos [393].

• Scenarios generated by Φ, R̃2 and Ṽ2, involving only scalar (and tensor) operators,

have the largest χ2 value. As Table 9.9 and Fig. 9.18 show, scenarios with Φ and

Ṽ2 fail badly reproducing the experimental value of RD∗ .

• Scenarios generated by Φ, R̃2, Ṽ2 and Min[2] from Scenario νR, are disfavoured

by the q2 di�erential distributions of the B → D(∗) decay with respect to the

SM, as the corresponding PullSM in Fig. 9.17 shows.

• Those solutions further away from the SM (larger pulls) present higher p-values,

as Fig 9.16 shows.

• In scenarios with several operators, the best fits correspond to solutions where

all WCs but one are compatible with zero. The non-zero WC is typically CVRR
(Scenarios Uµ1 and S1).

• When scenarios with and without LH neutrino operators are compared, the fit

indicates a preference for solutions with all LH neutrino WCs compatible with

zero within 1σ.

9.4 Conclusions

In this chapter we presented a global fit to b → c transitions taking the available

experimental information at face value. As a theoretical framework we adopted an EFT
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approach based on the most general Hamiltonian relevant for such processes under

the assumptions that NP enters only in the third generation of leptons, that there is a

sizeable gap between NP and the EW scale, that the EW symmetry breaking is linearly

realized, and that there are no light RH neutrinos entering in our EFT study. We also

assumed that the WCs are real, although we relaxed this assumption and did not find

an improved description of the data. In contrast to the previous works, we considered

the q2 distributions measured by Belle and BaBar on the B → D(∗)τ ν̄ decays.

We observed that the preferred scenario for the global fit can be interpreted as

a global modification of the SM; that is, none of the fitted WCs are required to be

non-zero for the global minimum. However, a strong improvement in the χ2 is found

for such minimum with respect to the SM scenario. The later can be understood by

taking into account the large correlations between the WCs. Taking also into account the

model-independent results obtained when studying the individual contributions of the

WCs, together with the scenario for the D∗ observables, we observe that F̄D
∗

L cannot

be accommodated within 1σ for any combination of WCs. In other words, if the central

values of the experimental measurements were sharpened, no NP would be able to

explain such discrepancies. The later would force us to conclude that either the current

experimental values are not the ultimate ones and they will eventually approach the SM

predictions with more statistics, or that one of our initial assumptions is not correct.

To disentangle this dilemma, regarding the first possibility, we should still wait for

more statistics and data. The second option, however, can be further explored, what

motivated us to relax some of the initial assumptions. First, we considered a non-zero

CVRL in our fit, i.e. we allowed for a non-linear breaking of the EW symmetry. However,

although having an extra d.o.f., the scenarios consistent with all the experimental

measurements at 1σ are very fine tuned.

Given the circumstances, we decided to relax one more assumption and include a

light RH neutrino in our EFT, expecting that more d.o.f. could allow for a successful

fit to the given experimental data. For the RH case, the best scenario involves vector

coe�cients, likewise the previous case. Among all scenarios analysed, the vector boson

V µ seems to be the preferred option, in terms of the pulls from the SM hypothesis.

The next two possibilities are the scalar leptoquark S1 and the vector leptoquark Uµ1 ,

switching on the RH neutrino couplings only, which can also provide good agreement



to the data. However, it is important to note that none of these three possibilities can

generate values of the longitudinal D∗ polarization within its current 1σ experimental

range; they can only reach agreement with the F̄D
∗

L measurement at the 2σ level.

Interestingly, the F̄D
∗

L data can only be explained at 1σ in very few cases, namely,

with all RH neutrino operators plus the SM-like contribution, i.e. Scenario All, or with

a scalar boson Φ, switching on both νL and νR operators and with a relaxed upper

limit of 30% on B(Bc → τ ν̄). However, these scenarios are not the best choices in

explaining the RD(∗) measurements in terms of pulls. Nevertheless, they do reduce the

RD(∗) deviation significantly, and bear very important information about simultaneous

agreement of all observables considered in this work. Due to the large uncertainty of

the current PD∗τ measurement, all scenarios are compatible (within ±1σ) with it. The

RD measurement is also easily accommodated in all the NP scenarios that have been

analysed. Measurements of additional observables such as polarizations and angular

distributions could help to disentangle the dynamical origin of the current anomalies. In

particular, we have displayed the information contained in the three-body and four-body

angular distributions of B → Dτν̄ and B → D∗(→ Dπ)τ ν̄ , respectively, and their

sensitivity to the di�erent NP scenarios analysed. The experimental measurement of

these distributions is of course very challenging because of the presence of undetected

neutrinos, and one would need to further analyse the decay products of the τ in order

to recover the accessible information.

Said that, and before closing this chapter, some ideas must be stressed. In this

work we analyzed the NP parameter space able to explain the current anomalies in

b → cτ ν̄ data, i.e. disregarding the possibility that these anomalies could originate in

underestimated systematic uncertainties or statistical fluctuations. As we are all aware,

this field is highly dynamical and probably the particular numeric results of the global

fits performed here become at some point obsolete. However, this statement does not

extend to the main results of this chapter and its preceding Chapter 8. The study

about how NP enters in b → c transitions can be applied to constrain any NP d.o.f.

a�ecting such processes. Besides, this material can be easily generalized and therefore

applied to other semileptonic decays involving pseudoscalar to pseudoscalar mesons, or

pseudoscalar to vector mesons.





Final remarks

These pages have been added after the thesis was submitted, and have not been

evaluated (and are not pretended to be). However, after the suggestion of some members

of the committee about including some final conclusions, I decided to rather add some

personal thoughts about the results of the thesis and make a global overview. Along

these four years of exploring beyond the Standard Model territories, my impression is

that is hard to find something simpler and more elegant than the SM we already have to

complete our knowledge and still be consistent with experimental data. It seems that,

the more precision and energy range we gain experimentally (more powerful spyglasses

we construct), the further the awaited new physics is pushed away from us. That

is also the impression I get when looking at arXiv every morning. But it should be

there, somewhere! There is undeniably evidence for its existence, and this is indeed a

motivation for the whole community to look for it. But where to look?

The evidence of new physics (the neutrino oscillations, the matter excess in the

evolution of the universe, the existence of dark matter and dark energy, the strong CP

problem, maybe the flavour B anomalies) teaches us a lesson: we should not think

anymore about the SM as a renormalizable and complete theory, but as the lowest

terms of an infinite tower of higher dimensional operators suppressed by subsequent

powers of the scale where new physics becomes relevant. E�ective Field Theories are a

magnificent tool to figure out information about the new land everyone is searching for,

but it is as useful as dangerous. It is based on the degrees of freedom available at our

energies (on the material from our home) and follows at least the forces we are familiar

with, although it might respect a larger set of symmetries that we are not aware of.
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The least suppressed and therefore first e�ect in the EFT expansion that we are

supposed to notice are processes violating the lepton number in two units, for instance,

Majorana neutrino masses. Are neutrino masses a prediction of such expansion?

That was recently pointed out by Steven Weinberg during one of his talks. 6 It is

not a bijection, but the observation of neutrino oscillations is indeed an encouraging

argument in favour of it. Next dimension of operators predict baryon number violation,

particularly the decay of the proton. Those dangerous interactions would be compatible

with experiment if the scale of new physics is about 1015 GeV, also know as the GUT

scale. Grand unified theories are beautiful candidates to bet on. The evolution of

couplings points there, so does the canonical Type-I seesaw mechanism, the mass of

the axion would fit nicely in such scales too... I personally like these theories because

of their simplicity which translates into a powerful ability for launching predictions.

Without thinking on it twice, they would be the natural bet when contrasting the EFT

expansion built from the symmetries in the SM with experiment. However, it is hard (at

least for me) to admit that the relevant scale for new physics is that far from our energy

reach...

Those were my thoughts before I fell in love with local baryon number. I consider

myself very fortunate for having worked in motivated models able to produce testable

predictions along my PhD, and I have fallen in love with any single work I was involved

in with my collaborators. However, once my supervisor Pavel asked me, Clara, if

you had to make a choice, what theory from those you’ve worked in would you bet

on?. It took me three seconds to answer: local baryon number. The fact that by

promoting a symmetry in the Lagrangian that we are already very familiar with, baryon

number, to a local symmetry and sticking to the simplest matter content to making it

consistent with gauge invariance, a Majorana dark matter candidate is naturally predicted

is priceless. The fact that the need of a mass term for the anomalons forces U(1)B to be

spontaneously broken in three units and allows one to understand how baryon number

can be dynamically violated. We may not be observing the proton decay because is

highly suppressed by a huge scale that we will never reach in our lifetimes, but because

it is actually forbidden. Local U(1)B forbbidds the decay of the proton at any order

in theory of perturbations. Let us now allow the DM to annihilate to the SM content

6This was his talk on September 29 2020 at the All Things EFT seminar.
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or the new scalar in the theory, and surprise! We find that cosmological observations

force the scale of baryon number violation to be, at most, a few TeVs. Is this a problem

with collider searches? Double surprise, there is full of room for a new mediator with a

reasonable large gauge coupling to be discovered at our LHC. The new Higgs has exotic

properties and our current experiments have enough potential to discover it. I mean,

what else do we need to fall in love with such theory?

I previously qualified the EFTs as a useful and a dangerous tool, a double-edged

sword. It allows you to infer elegantly and very smartly information from the distant

new physics, and in my view it is a very proper way to proceed towards the unknown.

However, once you fit your EFT to a certain set of new physics data, how can you

proof which is the new land completing the SM lying behind it? I will rephrase here

some thoughts pointed out by Goran Senjanović at a recent conference 7 about the

value of having a complete and self-consistent theory as a candidate. Such frameworks,

like SU(5) or U(1)B,L, make correlated predictions about di�erent observables, which

allow these theories to be tested or falsified. In this way, we can make progress towards

dismantle the next theory completing the SM.

New physics might be terribly ugly, hidden in some complicated theory with tens

of representations and a large tensor product of special unitary groups spontaneously

breaking to others, we do not know. I honestly hope that we find new physics in a

shiny island that overwhelms us with its beauty and simplicity. On the meanwhile, I am

convinced we should try harder, learn more from what the SM and the experimental

data we have can teach us from abroad, because undoubtedly what we are observing is

impregnated with the new physics footprints.

7The conference was the Snowmass workshop on 9th July 2020.





A.- Fierz and charge conjugation identities

A.1 Fierz identities involving chiral fermions
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A.2 Charge conjugation identities

Taking into account the properties listed below of the charge conjugation operator,

C = iγ0γ2 (in Dirac representation only), C† = C−1 = CT = −C, CTγµC = −γTµ ,

which acts on a fermion as Ψc ≡ CΨ̄T , the following identities can be derived:

i ΨCPLφ
C=φ̄PLΨ,

ii ΨCγµPLφ
C=−φ̄γµPRΨ,

iii ΨCσµνPLφ
C=−φ̄PLσµνΨ.

337





B.- Gamma lines

B.1 Cross Sections for the Gamma Lines

For relevant interactions for the DM annihilation into gamma lines, which can be

written as

L ⊃ −g′f
(
nfV γ

µ + nfAγ
µγ5
)
fZ ′µ −

e

sin θW cos θW
f
(
gfV γ

µ + gfAγ
µγ5

)
fZµ, (B.1)

where f are the charged fermions of the theory interacting with Z ′. The annihilation

cross section for the di�erent annihilation channels mediated by the new gauge boson

Z ′ are given by:

• Cross section for the χχ→ γγ annihilation.
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• Cross section for the χχ→ γZ annihilation:

σvχχ→γZ =
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• Cross section for the χχ→ γh annihilation:
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where the A.C. indicates that the anomaly cancellation conditions have been applied

(see Chapter 2). Here, α = e2/4π, CA0 = C0(0,M2
A, s;Mf ,Mf ,Mf ) is the

Passarino-Veltman loop function as defined in Ref. [446] and nχ is the dark matter

charge under U(1)X , and Z ′ the corresponding mediator. In order to predict the

cross-sections for these quantum mechanical processes we need to use the interactions

of the new fields required for anomaly cancellation.

B.2 Final State Radiation

The amplitude squared of the processes contributing to the final state radiation can

be written as an expansion on the velocity,

|M|2FSR =
M2
q
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A+ v2B +O(v4), (B.6)

where A and B coe�cients are given by
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Lepton Flavor Universality tests through angular observables of B → D(∗)`ν decay

modes, 1907.02257.

[336] M. Duraisamy and A. Datta, The Full B → D∗τ−ν̄τ Angular Distribution and CP

violating Triple Products, JHEP 09 (2013) 059 [1302.7031].

[337] M. Duraisamy, P. Sharma and A. Datta, Azimuthal B → D∗τ−ν̄τ angular

distribution with tensor operators, Phys. Rev. D90 (2014) 074013 [1405.3719].

[338] D. Becirevic, S. Fajfer, I. Nisandzic and A. Tayduganov, Angular distributions of

B̄ → D(∗)`ν̄` decays and search of New Physics, Nucl. Phys. B 946 (2019) 114707

[1602.03030].

[339] R. Alonso, A. Kobach and J. Martin Camalich, New physics in the kinematic

distributions of B̄ → D(∗)τ−(→ `−ν̄`ντ )ν̄τ , Phys. Rev. D 94 (2016) 094021

[1602.07671].

[340] Z. Ligeti, M. Papucci and D. J. Robinson, New Physics in the Visible Final States of

B → D(∗)τν , JHEP 01 (2017) 083 [1610.02045].

[341] D. Hill, M. John, W. Ke and A. Poluektov, Model-independent method for measuring

the angular coe�cients of B0 → D∗−τ+ντ decays, JHEP 11 (2019) 133

[1908.04643].

[342] J. Aebischer, T. Kuhr and K. Lieret, Clustering of B̄ → D(∗)τ−ν̄τ kinematic

distributions with ClusterKinG, JHEP 04 (2020) 007 [1909.11088].

https://doi.org/10.1007/JHEP06(2018)067
https://doi.org/10.1007/JHEP06(2018)067
https://arxiv.org/abs/1804.05852
https://arxiv.org/abs/2004.06726
https://doi.org/10.1103/PhysRevD.99.035015
https://arxiv.org/abs/1810.06597
https://arxiv.org/abs/1907.02257
https://doi.org/10.1007/JHEP09(2013)059
https://arxiv.org/abs/1302.7031
https://doi.org/10.1103/PhysRevD.90.074013
https://arxiv.org/abs/1405.3719
https://doi.org/10.1016/j.nuclphysb.2019.114707
https://arxiv.org/abs/1602.03030
https://doi.org/10.1103/PhysRevD.94.094021
https://arxiv.org/abs/1602.07671
https://doi.org/10.1007/JHEP01(2017)083
https://arxiv.org/abs/1610.02045
https://doi.org/10.1007/JHEP11(2019)133
https://arxiv.org/abs/1908.04643
https://doi.org/10.1007/JHEP04(2020)007
https://arxiv.org/abs/1909.11088


370 Bibliography

[343] C. Boyd, B. Grinstein and R. F. Lebed, Constraints on form-factors for exclusive

semileptonic heavy to light meson decays, Phys. Rev. Lett. 74 (1995) 4603

[hep-ph/9412324].

[344] C. Boyd, B. Grinstein and R. F. Lebed, Model independent determinations of anti-B

—> D (lepton), D* (lepton) anti-neutrino form-factors, Nucl. Phys. B 461 (1996) 493

[hep-ph/9508211].

[345] C. Boyd, B. Grinstein and R. F. Lebed, Precision corrections to dispersive bounds on

form-factors, Phys. Rev. D 56 (1997) 6895 [hep-ph/9705252].

[346] I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of

B̄ → D(∗)`ν̄ form-factors, Nucl. Phys. B530 (1998) 153 [hep-ph/9712417].

[347] M. Neubert, Heavy quark symmetry, Phys. Rept. 245 (1994) 259 [hep-ph/9306320].

[348] A. V. Manohar and M. B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys.

Nucl. Phys. Cosmol. 10 (2000) 1.

[349] MILC collaboration, B → Dτν form factors at nonzero recoil and |Vcb| from
2+1-flavor lattice QCD, Phys. Rev. D92 (2015) 034506 [1503.07237].

[350] D. Bigi and P. Gambino, Revisiting B → D`ν , Phys. Rev. D 94 (2016) 094008

[1606.08030].

[351] D. Bigi, P. Gambino and S. Schacht, A fresh look at the determination of |Vcb| from
B → D∗`ν , Phys. Lett. B769 (2017) 441 [1703.06124].

[352] D. Bigi, P. Gambino and S. Schacht, R(D∗), |Vcb|, and the Heavy Quark Symmetry
relations between form factors, JHEP 11 (2017) 061 [1707.09509].

[353] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Combined analysis of

semileptonic B decays to D and D∗: R(D(∗)), |Vcb|, and new physics, Phys. Rev.

D95 (2017) 115008 [1703.05330].

[354] F. U. Bernlochner, Z. Ligeti, M. Papucci and D. J. Robinson, Tensions and

correlations in |Vcb| determinations, Phys. Rev. D96 (2017) 091503 [1708.07134].

https://doi.org/10.1103/PhysRevLett.74.4603
https://arxiv.org/abs/hep-ph/9412324
https://doi.org/10.1016/0550-3213(95)00653-2
https://arxiv.org/abs/hep-ph/9508211
https://doi.org/10.1103/PhysRevD.56.6895
https://arxiv.org/abs/hep-ph/9705252
https://doi.org/10.1016/S0550-3213(98)00350-2
https://arxiv.org/abs/hep-ph/9712417
https://doi.org/10.1016/0370-1573(94)90091-4
https://arxiv.org/abs/hep-ph/9306320
https://doi.org/10.1103/PhysRevD.92.034506
https://arxiv.org/abs/1503.07237
https://doi.org/10.1103/PhysRevD.94.094008
https://arxiv.org/abs/1606.08030
https://doi.org/10.1016/j.physletb.2017.04.022
https://arxiv.org/abs/1703.06124
https://doi.org/10.1007/JHEP11(2017)061
https://arxiv.org/abs/1707.09509
https://doi.org/10.1103/PhysRevD.95.115008, 10.1103/PhysRevD.97.059902
https://doi.org/10.1103/PhysRevD.95.115008, 10.1103/PhysRevD.97.059902
https://arxiv.org/abs/1703.05330
https://doi.org/10.1103/PhysRevD.96.091503
https://arxiv.org/abs/1708.07134


Bibliography 371

[355] B. Grinstein and A. Kobach, Model-Independent Extraction of |Vcb| from
B̄ → D∗`ν , Phys. Lett. B771 (2017) 359 [1703.08170].

[356] S. Jaiswal, S. Nandi and S. K. Patra, Extraction of |Vcb| from B → D(∗)`ν` and the

Standard Model predictions of R(D(∗)), JHEP 12 (2017) 060 [1707.09977].

[357] N. Isgur and M. B. Wise, WEAK TRANSITION FORM-FACTORS BETWEEN HEAVY

MESONS, Phys. Lett. B237 (1990) 527.

[358] C. Bourrely, B. Machet and E. de Rafael, Semileptonic Decays of Pseudoscalar

Particles (M →M ′`ν`) and Short Distance Behavior of Quantum Chromodynamics,

Nucl. Phys. B189 (1981) 157.

[359] M. Jung and D. M. Straub, Constraining new physics in b→ c`ν transitions, JHEP

01 (2019) 009 [1801.01112].

[360] M. Bordone, M. Jung and D. van Dyk, Theory determination of B̄ → D(∗)`−ν̄

form factors at O(1/m2
c), Eur. Phys. J. C 80 (2020) 74 [1908.09398].

[361] HPQCD collaboration, B → Dlν form factors at nonzero recoil and extraction of

|Vcb|, Phys. Rev. D92 (2015) 054510 [1505.03925].

[362] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of

2018, 1909.12524.

[363] Belle collaboration, Measurement of the branching ratio of B̄ → D(∗)τ−ν̄τ relative

to B̄ → D(∗)`−ν̄` decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015)

072014 [1507.03233].

[364] Belle collaboration, Measurement of the branching ratio of B̄0 → D∗+τ−ν̄τ

relative to B̄0 → D∗+`−ν̄` decays with a semileptonic tagging method, in 51st

Rencontres de Moriond on EW Interactions and Unified Theories, 3, 2016,

1603.06711.

[365] LHCb collaboration, Measurement of the ratio of branching fractions

B(B̄0 → D∗+τ−ν̄τ )/B(B̄0 → D∗+µ−ν̄µ), Phys. Rev. Lett. 115 (2015) 111803

[1506.08614].

https://doi.org/10.1016/j.physletb.2017.05.078
https://arxiv.org/abs/1703.08170
https://doi.org/10.1007/JHEP12(2017)060
https://arxiv.org/abs/1707.09977
https://doi.org/10.1016/0370-2693(90)91219-2
https://doi.org/10.1016/0550-3213(81)90086-9
https://doi.org/10.1007/JHEP01(2019)009
https://doi.org/10.1007/JHEP01(2019)009
https://arxiv.org/abs/1801.01112
https://doi.org/10.1140/epjc/s10052-020-7616-4
https://arxiv.org/abs/1908.09398
https://doi.org/10.1103/PhysRevD.93.119906, 10.1103/PhysRevD.92.054510
https://arxiv.org/abs/1505.03925
https://arxiv.org/abs/1909.12524
https://doi.org/10.1103/PhysRevD.92.072014
https://doi.org/10.1103/PhysRevD.92.072014
https://arxiv.org/abs/1507.03233
https://arxiv.org/abs/1603.06711
https://doi.org/10.1103/PhysRevLett.115.111803
https://arxiv.org/abs/1506.08614


372 Bibliography

[366] HFLAV web page collaboration, https://hflav.web.cern.ch, .

[367] Belle collaboration, Measurement of R(D) and R(D∗) with a semileptonic

tagging method, 1904.08794.

[368] Belle collaboration, Measurement of the D∗− polarization in the decay

B0 → D∗−τ+ντ , 1903.03102.

[369] LHCb collaboration, Measurement of the ratio of branching fractions

B(B+
c → J/ψτ+ντ )/B(B+

c → J/ψµ+νµ), Phys. Rev. Lett. 120 (2018) 121801

[1711.05623].

[370] A. Yu. Anisimov, I. M. Narodetsky, C. Semay and B. Silvestre-Brac, The Bc meson

lifetime in the light front constituent quark model, Phys. Lett. B452 (1999) 129

[hep-ph/9812514].

[371] V. V. Kiselev, Exclusive decays and lifetime of Bc meson in QCD sum rules,

hep-ph/0211021.

[372] M. A. Ivanov, J. G. Korner and P. Santorelli, Exclusive semileptonic and nonleptonic

decays of the Bc meson, Phys. Rev. D73 (2006) 054024 [hep-ph/0602050].

[373] E. Hernandez, J. Nieves and J. M. Verde-Velasco, Study of exclusive semileptonic

and non-leptonic decays of Bc - in a nonrelativistic quark model, Phys. Rev. D74

(2006) 074008 [hep-ph/0607150].

[374] T. Huang and F. Zuo, Semileptonic Bc decays and charmonium distribution

amplitude, Eur. Phys. J. C51 (2007) 833 [hep-ph/0702147].

[375] W. Wang, Y.-L. Shen and C.-D. Lu, Covariant Light-Front Approach for Bc

transition form factors, Phys. Rev. D79 (2009) 054012 [0811.3748].

[376] A. Issadykov and M. A. Ivanov, The decays Bc → J/ψ + ¯̀ν` and

Bc → J/ψ + π(K) in covariant confined quark model, Phys. Lett. B783 (2018) 178

[1804.00472].

[377] W.-F. Wang, Y.-Y. Fan and Z.-J. Xiao, Semileptonic decays Bc → (ηc, J/Ψ)lν in the

perturbative QCD approach, Chin. Phys. C37 (2013) 093102 [1212.5903].

https://arxiv.org/abs/1904.08794
https://arxiv.org/abs/1903.03102
https://doi.org/10.1103/PhysRevLett.120.121801
https://arxiv.org/abs/1711.05623
https://doi.org/10.1016/S0370-2693(99)00273-7
https://arxiv.org/abs/hep-ph/9812514
https://arxiv.org/abs/hep-ph/0211021
https://doi.org/10.1103/PhysRevD.73.054024
https://arxiv.org/abs/hep-ph/0602050
https://doi.org/10.1103/PhysRevD.74.074008
https://doi.org/10.1103/PhysRevD.74.074008
https://arxiv.org/abs/hep-ph/0607150
https://doi.org/10.1140/epjc/s10052-007-0333-4
https://arxiv.org/abs/hep-ph/0702147
https://doi.org/10.1103/PhysRevD.79.054012
https://arxiv.org/abs/0811.3748
https://doi.org/10.1016/j.physletb.2018.06.056
https://arxiv.org/abs/1804.00472
https://doi.org/10.1088/1674-1137/37/9/093102
https://arxiv.org/abs/1212.5903


Bibliography 373

[378] X.-Q. Hu, S.-P. Jin and Z.-J. Xiao, Semileptonic decays Bc → (ηc, J/ψ)lν̄l in the

"PQCD + Lattice" approach, 1904.07530.

[379] D. Leljak, B. Melic and M. Patra, On lepton flavour universality in semileptonic

Bc → ηc, J/ψ decays, 1901.08368.

[380] K. Azizi, Y. Sarac and H. Sundu, Lepton flavour universality violation in

semileptonic tree level weak transitions, 1904.08267.

[381] C.-T. Tran, M. A. Ivanov, J. G. Körner and P. Santorelli, Implications of new physics

in the decays Bc → (J/ψ, ηc)τν , Phys. Rev. D97 (2018) 054014 [1801.06927].

[382] Belle collaboration, Measurement of the τ lepton polarization and R(D∗) in the

decay B̄ → D∗τ−ν̄τ with one-prong hadronic τ decays at Belle, Phys. Rev. D 97

(2018) 012004 [1709.00129].

[383] V. Cirigliano, J. Jenkins and M. Gonzalez-Alonso, Semileptonic decays of light

quarks beyond the Standard Model, Nucl. Phys. B830 (2010) 95 [0908.1754].

[384] R. Alonso, B. Grinstein and J. Martin Camalich, SU(2)× U(1) gauge invariance

and the shape of new physics in rare B decays, Phys. Rev. Lett. 113 (2014) 241802

[1407.7044].

[385] O. Catà and M. Jung, Signatures of a nonstandard Higgs boson from flavor physics,

Phys. Rev. D92 (2015) 055018 [1505.05804].

[386] W. Buchmuller and D. Wyler, E�ective Lagrangian Analysis of New Interactions and

Flavor Conservation, Nucl. Phys. B268 (1986) 621.

[387] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in

the Standard Model Lagrangian, JHEP 10 (2010) 085 [1008.4884].

[388] A. Celis, M. Jung, X.-Q. Li and A. Pich, Scalar contributions to b→ c(u)τν

transitions, Phys. Lett. B771 (2017) 168 [1612.07757].
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Resum

El Model Estàndard és la teoria que utilitzem per a descriure el món subatòmic de les

partícules. Consta de tres famílies de 15 camps Weyl que interaccionen entre ells seguint

un patró marcat per les forces de la cromodinàmica quàntica (QCD), representada per la

simetria SU(3)c, i la interacció feble, representada per SU(2)L⊗U(1)Y , on els nombres

quàntics de l’última corresponen a la hipercàrrega. Després que el Higgs, camp que

necessitem per donar-li massa als fermions de la teoria, adquireix un valor d’expectació,

la simetria es trenca espontàniament, donant pas a l’electrodinàmica quàntica (QED),

mentre que QCD roman inalterada. Hui en dia és la millor teoria que la comunitat

científica disposa, ja que pot explicar un alt percentatge dels fenòmens que ocorren a

la natura a nivell microscòpic. No obstant això, aquesta teoria té també els seus punts

febles; certes evidències experimentals queden fora del seu abast, així com aspectes

estètics als quals no se’ls pot atorgar una explicació satisfactòria. L’objectiu d’aquesta

tesi és esbrinar aquells terrenys desconeguts mitjançant extensions del Model Estàndard

que permeten entendre l’existència simultània d’aquests al context d’un marc teòric

ben definit. Els models teòrics que proposem permeten una perspectiva més completa

de la natura i, a més de ser compatibles amb els experiments, són simples des d’un

punt de vista minimalista, capaços de donar prediccions, quotes per als paràmetres

o correlacions entre observables. Sobretot, destaquen per ser falsables, és a dir, amb

prediccions que estan a l’abast dels experiments que disposem en l’actualitat o d’aquells

que es plantegen construir en un futur pròxim. A continuació, enumerem alguns

dels fets experimentals, junt amb altres fets d’una índole més estètica, que posen en

evidència les limitacions del Model Estàndard:
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• Els neutrins tenen massa. Les simetries locals i el contingut de partícules del

Model Estàndard no permeten que els neutrins siguen massius. No obstant això,

experimentalment s’han observat oscil·lacions al sabor dels neutrins, fet que implica

que almenys dues generacions de neutrins han de tindre una massa no-degenerada.

A més, aquestes masses són, sorprenentment, de l’ordre de l’eV, és a dir, un milió de

voltes més menudes que la massa de l’electró. Aquestes partícules són les úniques

transparents sota les forces del Model Estàndard, i segons com prenen la massa podem

classificar la seua natura com Majorana o Dirac, la qual està íntimament lligada a la

violació del número leptònic. Si aquest últim es trenca en dues unitats, els neutrins

seran Majorana, mentre que si el número leptònic es conserva o es trenca en un

número d’unitats major que dos, els neutrins seran Dirac. Si són Majorana, hi ha tres

tipus de mecanismes a nivell arbre que permeten generar un terme de massa per als

neutrins: els mecanismes de balancí del tipus I, II i III; encara que també existeixen

alternatives a nivell quàntic que generen un terme de massa comptant amb la supressió

natural dels bucles, com el mecanisme de Zee o el del balancí amb color. Al Capítol 1

hem presentat una breu introducció a la física de neutrins parlant amb detall el que

s’ha comentat en aquest paràgraf.

• Asimetria de matèria respecte a l’antimatèria. El Model Estàndard no pot explicar

l’excés de matèria respecte a l’antimatèria del nostre univers. D’acord amb A. Sakharov,

tres condicions s’han d’acomplir per tal de donar lloc a aquesta asimetria, essent una

d’elles la violació del número bariònic.

• Un 25% del nostre univers està compost de matèria fosca. La velocitat de rotació

galàctica, entre altres observacions cosmològiques, manifesta l’existència d’un excés de

matèria respecte a l’observada (i esperada) a l’aurèola de les galàxies. L’adjectiu “fosca”

ve del fet que, malgrat manifestar interaccions gravitatòries, no sembla interaccionar

electromagnèticament, és a dir, és matèria que “està" però que no veiem. De la llarga

llista de candidats de matèria fosca, en aquesta tesi ens hem centrat en les partícules

massives d’interacció feble (WIMPs) i axions. Ambdós candidats s’han presentat al

Capítol 2 d’aquesta tesi. Les primeres són atractives per la seua familiaritat: disposem

de la mecànica quàntica de camps, un marc teòric definit per tractar amb interaccions

entre partícules, el qual podem aplicar tant a les partícules del Model Estàndard
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com a qualsevol partícula hipotètica i de comportament semblant a les anteriors que

puga fer de candidata de matèria fosca. Curiosament, entre un ordre de massa del

GeV-TeV, aquest tipus de partícules prediuen l’abundància de densitat relíquia estimada

experimentalment. Els axions, d’altra banda, són candidats de matèria fosca altament

no-tèrmics. A l’inici de l’evolució de l’univers, aquestes partícules no tenien massa, ja

que els efectes dels instantons, responsables de donar-li-la, estaven fortament suprimits.

Aleshores, s’esperaria un desaligneament inicial arbitrari respecte a l’angle zero de

l’amplitud del camp axiònic. A temperatures pròximes a la massa del protó, l’axió

adquireix massa i comença a oscil·lar cap al centre del potencial, és a dir, cap al valor

fixat per la dinàmica de QCD: el de zero violació de CP. La densitat d’energia dissipada a

aquestes oscil·lacions es comporta com matèria no-relativista sota l’evolució de l’univers,

la qual contribueix a la densitat relíquia i podria explicar la seua existència. No obstant

això, a part del seu potencial com candidats de matèria fosca, els axions van nàixer

com una solució atractiva al problema fort de CP.

• Problema fort de CP. Teòricament, QCD prediu violació de CP proporcional a una fase

provinent de dos orígens diferents al seu Lagrangià. Sorprenentment, a l’experiment

no s’ha observat aquest fenomen i els límits experimentals ens diuen que dita fase

hauria de ser l’ordre de 10−10. Dit en altres paraules, QCD sembla preservar sense cap

mena d’explicació la simetria CP, fet que es coneix com el problema fort de CP. Aquesta

tensió entre el que u esperaria teòricament i l’experiment, conseqüència del caràcter

anòmal de les transformacions quirals en presència d’una teoria no-abeliana amb una

estructura del buit no trivial, es pot solucionar afegint una partícula pseudoescalar que,

mitjançant una simetria al Lagrangià que es comporte com la quiral en presència de

fermions no-massius, permeta compensar, de manera natural (per la mateixa dinàmica

de QCD), la contribució de la fase responsable de la violació de CP als observables on

participa. La simetria que genera aquestes partícules s’anomena Peccei-Quinn (PQ), i

aquestes partícules s’anomenen axions. Aquests són bosons pseudo-Goldstone a causa

de la seua xicoteta massa generada per efectes instantónics, la qual és inversament

proporcional a l’escala PQ. Els axions s’han presentat a aquesta tesi a la segona part del

Capítol 2. El mecanisme original enllaça, mitjançant un model de dos doblets de Higgs

i la imposició d’una simetria global PQ, l’escala en què es trenca la simetria PQ amb
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l’escala electrofeble, la qual no és prou pesada per suprimir les interaccions entre l’axió

i la matèria del Model Estàndard i és la raó per què aquest model està descartat. Es

van proposar alternatives realístiques de la implementació d’aquest mecanisme sota el

nom de models d’axions invisibles, els quals eviten els límits experimentals mitjançant

el desacoblament de l’escala PQ amb l’electrofeble, amb la introducció d’un escalar

transparent (singlet) a les forces del Model Estàndard, podent ser aquesta escala PQ

arbitràriament gran. Segons com aquest desacoblament s’implemente, podem distingir

dos tipus de mecanismes: el mecanisme DFSZ, on aquest singlet escalar que conté

l’axió suprimit per l’escala arbitràriament gran interactua amb els quarks indirectament

a partir d’un terme de mescla amb els dos doblets de Higgs al potencial escalar, i el

mecanisme KSVZ, on l’escalar en aquest cas no actua a nivell arbre amb els quarks del

Model Estàndard, sinó amb nous fermions de color la redefinició dels quals permet,

d’igual manera, la resolució del problema fort de CP. La contrapartida és que, en

principi, aquests models no permeten predir la massa de l’axió (ja que no prediuen

l’escala PQ), donant peu a desenes d’ordres de magnitud a l’espectre de masses on

buscar-los.

• Què ens poden contar les simetries accidentals del Model Estàndard? Al Lagrangià

del Model Estàndard, a conseqüència de les simetries locals que imposem i donat

el seu contingut de camps, apareixen inesperadament simetries globals relacionades

amb el número leptònic (L) i bariònic (B) de les partícules, les quals es coneixen com

a simetries accidentals, ja que emergeixen per accident a la teoria. Ja hem vist que

el número leptònic està intrínsecament relacionat amb la natura dels neutrins. El

número bariònic està relacionat amb el decaïment del protó entre altres, el qual està

fortament acotat pels resultats experimentals i que, juntament amb la no-observació

d’oscil·lacions de neutrons, la no-observació del fenomen de decaïment doble beta,

o altres fenòmens de transició del número bariònic i leptònic, sembla suggerir que

aquests es conserven, almenys de forma pertorbativa, a la natura. Com a excepció

de l’anterior estan els instantons (efectes no-pertorbatius) els quals medien processos

altament suprimits a temperatures baixes de trencament de número bariònic i leptònic

en tres unitats. No obstant això, sabem que el Model Estàndard no pot ser la teoria

definitiva, i si expressem qualsevol teoria de nova física des del punt de vista de
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l’escala baixa a partir d’una expansió efectiva d’operadors, res ens garanteix a priori

que aquestes simetries vagen a ser respectades en presència d’aquests nous operadors

no-renormalitzables. I si la raó per què el protó no decau és perquè no pot fer-ho?

I si aquestes simetries accidentals són el remanent d’una versió local que ha sigut

trencada (o encara continua vigent) a una certa escala? Abans hem comentat que

un dels ingredients necessaris per a explicar l’asimetria de matèria-antimatèria és la

violació del número bariònic. Com mostrem al Capítol 3, la cancel·lació d’anomalies a

les teories més senzilles on el número leptònic i/o bariònic són promoguts a simetries

locals prediu que aquest s’ha de trencar en tres unitats, predient com a conseqüència

l’estabilitat del protó a tots els ordres en teoria de pertorbacions. A més, aquestes teories

també prediuen un candidat de matèria fosca del tipus WIMP, el qual interacciona amb

les partícules del Model Estàndard mitjançant el bosó abelià associat a la nova força.

Aquesta última predicció és també conseqüència de la cancel·lació d’anomalies, és a

dir, de la pròpia consistència de la teoria, i la seua estabilitat està garantida per la

simetria remanent després de la ruptura espontània del número leptònic i/o bariònic.

Al Capítol 4 mostrem que el límit cosmològic de la densitat relíquia es tradueix en una

quota superior per a l’escala de violació del número leptònic i/o bariònic de l’ordre dels

20 TeVs. L’últim implica que aquestes teories han de viure per davall d’eixa escala, pel

que podem aspirar a accedir-hi, si no ara, en un futur pròxim. En el cas del número

bariònic local, els límits experimentals permeten que aquest trencament espontani de

simetria ocórrega a una escala sorprenentment baixa sense haver-hi de desacoplar la

teoria sota l’elecció d’un acoplament de nova força excessivament menut. El darrer

ens dóna esperança de detectar un bosó leptofòbic als col·lisionadors de partícules,

junt amb el Higgs necessari per a trencar espontàniament el número bariònic (en el

cas del número leptònic els límits experimentals són més severs a escales baixes). I

per remarcar la bellesa d’aquestes teories, direm que disposen de nous fermions també

predits per la cancel·lació d’anomalies que gaudeixen d’una interacció axial amb el nou

bosó. Aquest fet, junt amb la possibilitat de tindre un candidat de matèria fosca del

tipus Majorana predit de forma natural en aquest tipus de teories, permet l’observació

de línies de fotons, que són senyals genuïnes de la matèria fosca, l’observació de les

quals permetria conéixer la massa d’aquesta, com expliquem al Capítol 2. En el cas

que promoguem el número leptònic a simetria local, com mostrem al Capítol 5, la
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cancel·lació d’anomalies prediu l’existència de tres neutrins de quiralitat dextrogira, de

manera que automàticament podem formar un terme de massa Dirac al Lagrangià a

través de la interacció amb el Higgs, igual que la resta de fermions del Model Estàndard.

En el cas del número leptònic local pur, com que aquest es trenca en tres unitats, els

neutrins són partícules de Dirac. L’existència de partícules lleugeres com els nous

neutrins han de ser consistents amb la cosmologia: aquests interaccionen mitjançant

el bosó de la força leptònica amb la resta de matèria, de manera que en algun punt

de l’evolució de l’univers, segons la seua ràtio d’interacció, es poden haver desacoblat

de la resta del bany tèrmic, contribuint aleshores a la densitat d’energia. Aquesta

hipotètica contribució es quantifica amb el paràmetre Ne� i, a partir de les mesures

cosmològiques, es trasllada en límits sobre la massa del nou bosó. A les teories que

presentem que involucren número leptònic total, mostrem que el paràmetre de fases de

la teoria podria ser falsejat per les projeccions dels futurs límits en Ne�. Un poc divers

és el cas en què promoguem a simetria local la combinació B-L. En aquest escenari,

a part dels tres neutrins de quiralitat dextrogira que poden adquirir massa a través del

mecanisme de Higgs, cap altre camp es necessita per cancel·lar anomalies. Com que

B-L és una teoria abeliana, existeix la possibilitat que mai s’haja trencat, ja que el bosó

corresponent pot adquirir massa a partir del mecanisme de Stuckelberg. En aquest

context, els neutrins serien partícules Dirac i els límits cosmològics de Ne� aplicarien

també, igual que en el cas que B-L es trenque en una unitat superior a dos. Tanmateix,

si la simetria es trenca espontàniament en dues unitats, els neutrins serien Majorana,

i la seua massa estaria relacionada amb l’escala de violació del número leptònic. El

mecanisme del balancí de tipus I posa una quota superior a l’escala d’aquesta massa

de l’ordre de 1014 GeV, la qual queda prou lluny de l’abast dels nostres experiments.

En aquest cas, malgrat que la teoria no prediu de forma natural un candidat de matèria

fosca, si el considerem mitjançant l’addició d’un parell de camps fermionics singlets

sota el Model Estàndard (de natura vectorial), la pròpia consistència de la teoria fixa una

quota superior on podria viure i l’escala del balancí es redueix almenys uns nou ordres

de magnitud, cosa que ens dóna la possibilitat de detectar als experiments actuals

senyals de violació leptònica i la fenomenologia típica d’un mecanisme de balancí que

ocorre a escales baixes, com per exemple vèrtex desplaçats.
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• Per què hi ha tres forces diferents? Les tres semblen convergir a energies altes. . .

Açò últim suggereix un origen comú d’aquestes a una escala que anomenarem escala

de gran unificació. Les teories de gran unificació (GUTs) ofereixen una perspectiva

molt atractiva i un poder predictiu admirable, malgrat viure usualment a escales altes

i malauradament inaccessibles experimentalment. La teoria més senzilla on el Model

Estàndard es pot incloure és SU(5), la qual prediu, entre altres coses, el decaïment

del protó, fet que obliga a l’escala GUT a viure per damunt dels 1015 GeVs donada

l’agressivitat dels límits experimentals. Aquesta teoria es capaç d’agrupar els 15 camps

Weyl del Model Estàndard en sols dues representacions i explica la quantització de les

càrregues elèctriques dels camps del Model Estàndard. Malgrat la seua senzillesa, el

model original està descartat pel seu poder predictiu, particularment per les següents

raons: no pot predir relacions realistes entre les masses dels fermions (prediu la mateixa

matriu de massa per als leptons carregats que per als quarks tipus baix a l’escala

de GUT, la qual cosa no permet reproduir els valors experimentals a l’escala baixa);

tampoc és capaç de predir els valors correctes dels acoblaments de les forces del Model

Estàndard a baixes energies, ni massa per als neutrins. A aquesta tesi, concretament

al Capítol 6, proposem dues de les alternatives renormalitzables més simples que

permeten la resolució dels tres problemes anteriorment mencionats. En una d’elles,

Zee-SU(5), les masses dels fermions carregats i l’evolució dels acoblaments per tal que

unifiquen a l’escala GUT s’ha aconseguit amb la introducció de la representació escalar

45H , la qual també participa, junt amb el singlet carregat de la representació 10H , a

la generació a nivell bucle de la massa dels neutrins mitjançant el mecanisme de Zee.

Aquesta teoria prediu l’existència d’un doblet de Higgs amb color (a la representació

adjunta de SU(3)c) lleuger, amb una quota superior d’uns 105 GeV. Per una altra

banda, proposem una GUT basada en SU(5) que, a part del contingut original, conté

tres generacions més de fermions de natura vector en la fonamental i antifonamental de

SU(5), 5 i 5̄, i una representació 24 fermiònica, sense ampliar el contingut escalar de

la teoria original i de manera consistent amb la cancel·lació d’anomalies. Els nous

fermions en la 5 i 5̄ permeten assolir masses realistes per als fermions carregats

del Model Estàndard mitjançant l’efecte de mescla amb aquests. Per altra banda, el

mecanisme de balancí de tipus I i III permet generar massa per a dues generacions de

neutrins, a partir dels nous camps sense color de la 24. També mostrem que aquesta
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teoria disposa d’escenaris consistents amb les condicions d’unificació. La teoria prediu

un neutrí sense massa, un triplet fermiònic per sota els 500 TeVs (responsable de

generar la massa dels neutrins a partir del mecanisme de balancí de tipus III), i una

quota superior per als canals de decaïment del protó que involucren antineutrins d’uns

τ(p→ K+ν̄) . 3.4× 1035 anys i τ(p→ π+ν̄) . 1.7× 1034 anys, els quals romanen

prop de les projeccions d’experiments com DUNE, Super- i Hyper-Kamiokande. La

possibilitat de predir una quota superior per al decaïment del protó és conseqüència

que en aquest model la massa dels quarks amunt és simètrica, ja que no ha fet falta

afegir una representació escalar extra per corregir les masses dels fermions carregats.

A més, una de les qualitats d’aquestes teories és la capacitat de predir la seua escala: els

límits experimentals sobre el decaïment del protó junt amb els límits de col·lisionadors

de partícules (que indirectament actuen sobre l’escala de GUT imposant una quota

inferior sobre la massa del Higgs de color que viu a la 45H , peça clau per satisfer

les condicions d’unificació), permeten fixar una finèstra concreta per l’escala de GUT.

Si aprofitem aquesta qualitat i afegim una simetria PQ a SU(5) podem predir la

massa de l’axió! La teoria SU(5)⊗ U(1)PQ permet enllacar els models d’axió-invisible

amb l’escala de GUT mitjançant el singlet escalar que viu a la 24H , responsable,

per una banda, de definir l’escala GUT, i per altra, la massa de l’axió. Al Capítol 7

proposem la teoria basada en SU(5) més senzilla que prediu la massa de l’axió a

través del mecanisme KSVZ, y la corresponent amb el DFSZ. Al context d’aquestes

teories, l’axió resulta no ser tan “invisible”, ja que les prediccions per a la seua massa es

troben a l’abast d’experiments d’axions com ABRACADABRA i CASPER. Les prediccions

per a la massa de l’axió són mKSVZ
a ' (2.9 − 13.5) × 10−9 eV, i mDFSZ

a '
(2 − 16)× 10−9 eV, al context del mecanisme KSVZ i DFSZ, respectivament.

Altrament (i en particular d’una manera més clara a la teoria que implementa el

mecanisme DFSZ), la teoria prediu una forta correlació entre el decaïment del protó i

la massa de l’axió, de manera que els experiments de decaïment del protó actuarien

en aquest context com experiments de recerca d’axions. Per tant, experiments com

Super-Kamiokande, Hyper-Kamiokande o DUNE s’afegirien a la llista d’“ulls” capaços

de veure els axions predits a aquestes teories. A més, aquestes prediccions permeten

correlacions sòlides entre la vida mitjana del protó, la massa de l’axió i la seua interacció
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amb els fotons i els nucleons. Les quotes per al decaïment del protó predites al context

d’aquestes teories en canals que involucren als antineutrins són: τ(p → K+ν̄) .

4× 1037 anys, i τ(p→ π+ν̄) . 2× 1036 anys.

Aquestes dues propostes basades en SU(5) es poden considerar teories atractives on és

possible entendre la unificació de les forces del Model Estàndard, l’origen de la massa

dels neutrins, la matèria fosca, el problema fort de CP, i es podria entendre l’asimetria

matèria - antimatèria a través del mecanisme de leptogènesis.

• Anomalies relacionades en sabor! Recentment, experiments que estudien transicions

semileptòniques de b a c han suggerit la violació universal del número leptònic en una

direcció comú, la qual cosa entra en conflicte amb les prediccions del Model Estàndard.

Al Capítol 9 presentem un ajust global a transicions b a c tenint en compte les dades

experimentals disponibles hui en dia i partint del Hamiltonià de dimensió-6 més general

sota les següents assumpcions: la nova física entra solament en la tercera generació

de leptons, hi ha una finestra energètica suficientment gran entre l’escala electrofeble

i la nova física que assegura la validesa de la teoria efectiva del Model Estàndard,

no hi ha graus de llibertat lleugers a part dels del Model Estàndard (particularment,

no considerem un neutrí de quiralitat dextrogira de massa menuda), i assumim que

els coeficients de Wilson del nostre Hamilonià són reals. Al Capítol 8 presentem el

marc teòric de teories efectives que ens permet inferir informació del tipus de nova

física a partir de les simetries i graus de llibertat a l’escala baixa. A l’ajust incloem

els valors experimentals dels quocients RD i RD∗ (disponibles al 2017), així com les

distribucions en moment transferit, q2. Els primers són observables molt nets a causa

de les cancel·lacions que la seua definició de quocient gaudeix, mentre que les segones

són interessants perquè no han sigut considerades en la gran majoria de referències a

la literatura i observem que juguen un paper clau en reduir el número de solucions

de l’ajust global. També considerem l’efecte de la recent mesura sobre la polarització

longitudinal FD
∗

L anunciada per Belle a una segona versió de l’ajust, la qual cosa ens

permet quantificar el seu impacte mitjançant la comparació dels resultats d’ambdós.

Observem als resultats que l’ajust, malgrat preferir configuracions de nova física respecte

al Model Estàndard, no es decanta per una direcció de nova física preferent, observació

que s’accentuà quan vam actualitzar els quocients R(D(∗)) amb la nova mesura de
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Belle. Si ajustem els coeficients de Wilson per separat, la solució preferida és, no

obstant, la del coeficient vectorial, el qual és proporcional a la contribució del Model

Estàndard. A més, no es pot trobar un escenari consistent amb totes les mesures

experimentals considerant 1σ d’incertesa a les últimes, independentment de la nova

física que es considere. Açò ens motivà a relaxar les nostres assumpcions inicials

per tal de veure si es podia assolir un panorama consistent amb una teoria més

general. La consideració de coeficients de Wilson complexes no suposa una millora

notable a la qualitat de l’ajust, mentre que sí que implica un augment quantitatiu al

número de solucions, la qual cosa complica considerablement l’anàlisi. Permetent que el

trencament de la simetria electrofeble siga no-lineal implica la presència d’un coeficient

de Wilson extra al nostre ajust. Aquesta llibertat afegida permet aconseguir escenaris on

els diferents observables són compatibles, però a costa d’uns paràmetres de nova física

altament sincronitzats. Si relaxem una altra de les nostres hipòtesis inicials i considerem

neutrins lleugers de quiralitat dextrogira, el nombre de coeficients de Wilson a ajustar

es dobla. A aquest últim ajust, també vam incloure el valor experimental de la

polarització del tau, PD
∗

τ , ja que, malgrat la seua gran incertesa, permet reduir la

nova llibertat introduïda a l’ajust. A més, hem particularitzat els resultats per a

diferents escenaris motivats per l’ajust previ i pels possibles camps de nova física que

poden mediar interaccions rellevants per a les transicions b a c, tant en neutrins de

quiralitat dextrogira com levogira. Malgrat doblar el número de coeficients de Wilson a

ajustar, continuem observant una certa discrepància entre les prediccions dels diferents

observables que participen en l’ajust tenint en compte 1σ de la seua incertesa, la qual

només es resol en un parell d’escenaris molt particulars. Concloem que per a comprovar

si la discrepància és d’origen teòric (amb les implicacions corresponents al relaxar

cadascuna de les assumpcions) o experimental (implicant l’última que les pròximes

mesures dels observables involucrant transicions semileptòniques b a c s’aproximaran

eventualment a la predicció del Model Estàndard) necessitem més estadística.

Al llarg d’aquesta tesi s’han presentat teories motivades pel fet de donar múltiple

resposta als problemes oberts del Model Estàndard. Hem explorat la interconnexió

de diferents camps dins la física de partícules, sempre buscant el marc més senzill

que pot descriure de manera satisfactòria ambdós i explotar les conseqüències de les
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connexions entre aquests. Les extensions del Model Estàndard que hem proposat a

aquesta tesi tenen en comú la seua capacitat predictiva: la seua estructura ben definida

i completa permet llançar prediccions correlacionades entre els seus observables que,

per una banda, exposen la teoria a ser falsada per l’experiment en un futur pròxim, i

per altra, permeten progressar cap a una teoria que complete el Model Estàndard.
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