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Abstract 

Halide perovskites have generated considerable research interest due to their excellent 

optoelectronic properties in the past decade. To ensure the formation of high quality 

semiconductors, the deposition process for the perovskite film is a critical issue. Vacuum based 

processing is considered a promising method allowing, in principle, also for large areas. One of 

the benefits of vacuum processing is the control over the film composition through the use of 

quartz crystal microbalances (QCMs) that in-situ monitor the rates of the components. In metal 

halide perovskites, however, one frequently employed component or precursor, CH3NH3I, exhibits 

non-standard sublimation properties. Here, we study in detail the sublimation properties of 

CH3NH3I and demonstrate that by correcting for its complex adsorption properties and by 

modeling the film growth, accurate predictions about the stoichiometry of the final perovskite film 

can be obtained.  
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Metal halide perovskite have attracted tremendous attentions as an emerging material for energy 

harvesting due to their outstanding optoelectronic properties, featured as rapid increase in power 

conversion efficiency (PCE) of solar cells from 3.9% to 25.2% in last 10 years 1-3. In this field, 

growing a high-quality film has been one of the most challenging and important issues. This as the 

device performance is directly related to the quality (crystallization, morphology, density of 

defects in the bulk or the surface) of the perovskite film.  The deposition method used to prepare 

the perovskite film has a large influence on its quality and therefore also on the device performance. 

Therefore, the fabrication process for the perovskite films have been extensively studied to 

improve the film and device properties. Perovskite thin film deposition started by using one-step 

spin coating, and was followed by a variety of alternative approaches such as sequential deposition, 

solvent engineering, and solvent assisted vapor process or hybrid process 4-11. Current thin film 

deposition efforts focus on the compatibility with large area and high throughputs. One widely 

accepted processing method in semiconductor industry is thermal vacuum deposition, or 

sublimation. This has been demonstrated successfully in the organic light-emitting diodes (OLEDs) 

industry. The vacuum process is particularly suited for manufacturing optoelectronic devices since 

high purity, uniform and large area films are readily achievable, resulting in high quality and 

reproducible thin-films 12-14. This fact has brought, therefore, many attempts to apply the vacuum 

process to the fabrication of perovskite films. After the first report on vacuum co-deposited halide 

perovskite for solar cell application by M. Liu et al., in 2013, numerous groups reported on 

vacuum-deposited perovskite solar cells15-42. In spite of these achievements, the sublimation of the 

organic ammonium halide salts remains a critical factor in achieving reproducible results. This has 
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been most widely described for one of the archetype precursor, CH3NH3I, (methylammonium 

iodide, MAI). Numerous groups reporting vacuum processed perovskites have described the 

complications of controlling the sublimation of MAI 17-21, 27, 30, 31, 38-43. 

One of the merits of vacuum processing is the control over the deposited film composition via 

in-situ monitoring the rate of the precursors using quartz crystal microbalances (QCMs). A QCM 

allows for very high accuracy in deposition as it provides a sensitivity of less than ~1 Å∙s-1 in real 

time. Compared with other techniques that determine the perovskite film composition, this is the 

only one allowing for a direct control during film growth. In fact, most reports on perovskite thin 

films and their devices report the precursor ratios from the starting solution. It is than assumed that 

this precursor solution ratio is maintained in the final film. This, however, is unlikely due to the 

different solubilities of the precursors in the solvent used. When solvent engineering is used to 

prepare high quality perovskite films, the use of a second solvent further complicates the 

determination of the thin film composition. Post preparation methods to study the composition, 

are not readily available. X-ray photoelectron spectroscopy (XPS) give rather good information 

on the composition, but only at the surface of the film. Energy-dispersive X-ray spectroscopy 

(EDX) can provide bulk information but the quantification of the composition could be challenging 

due to the limiting factors such as complex matrix effects and beam induced damage under electron 

radiation 44-46. Optical analysis of the perovskite films, allows to determine the bandgap and from 

that estimations on the composition have been derived. When comparing reports from different 

groups on the bandgaps for identical compositions (inferred from the precursor solution 

composition) it is clear that differences in the final film composition exist 47-53, Fig. S1.  

Therefore, making use of the QCMs in vacuum sublimed perovskites would be advantageous for 

the direct determination of the final film composition. However, this has so far not been achieved 



 4 

quantitatively, due to complications arising from the sublimation of the organic ammonium halides. 

These complications range from uncontrolled working pressure18, 30, 31, to fluctuating deposition 

rate when maintaining the source temperature constant 17, 29, 38. These effect might be alleviated by 

modifying the direction or position of QCM 22, 54, control on the chamber pressure rather than on 

the deposition rate18, 27, 31 and flash-evaporations from pre-formed perovskites from a single 

source55. In addition, there have been attempts to investigate the reason why the organic 

ammonium halides are difficult to control during its sublimation in vacuum conditions. Thermal 

decomposition, uncontrollable impurities and also surface varied adsorption/electronic properties 

have been suggested as the origins of the unusual sublimation behavior of alkylammonium 

halides39, 56-58. Despite these difficulties, perovskite based solar cells with high PCEs were obtained 

using vacuum-based deposition processing of the lead and alkylammonium salts. However, the 

level of compositional control is still much lower compared to typical vacuum processed organic 

films such those used in OLEDs and organic photovoltaics (OPVs).  

In this paper, we study in detail the deposition of MAI and PbI2 as well as the resulting MAPbI3 

perovskite using vacuum sublimation. Using various QCMs we suggest a simple method to 

estimate and control the molar composition of vacuum deposited MAPbI3. The MAI adsorption 

can be characterized as a surface dependent and diffusion driven process. We established the 

kinetic equations for the growth rate of MAI in vacuum, extracted from the QCM. Furthermore, 

considering the surface dependent adsorption of MAI and taking into account geometric factors, 

we show it is straightforward to estimate the composition of MAPbI3 films from the experimental 

QCM data. Using this method of control, we demonstrate all-vacuum-processed perovskite solar 

cells with average PCE exceeding 18%. We believe that this work will foster the general 



 5 

application of vacuum processes to the deposition of perovskite films, promoting their adoption in 

industrial manufacturing.  

 
Figure 1. (a) Schematics of the experimental set up used in the deposition study. (b) Deposition 

rates and rate-ratios from different sensors when only PbI2 is evaporated (c) and when only MAI 

is evaporated. (In the time x-axis, the zero is defined as the moment when the deposition rates 

becomes positive, after pre-heating.) 

 

Fig. 1a shows the experimental set-up used for the deposition study. It includes two temperature 

controlled evaporation sources, used for MAI and PbI2, respectively, with their corresponding 

QCM thickness sensors: MAI sensor (S-MAI), PbI2 sensor (S-PbI2) . These are positioned such 

that the third sensor close to the substrate (S-Sub) detects both MAI and PbI2, whereas the two 

QCMs close to the MAI and PbI2 sources primarily detect sublimed material from either one of 

them (S-MAI only detects MAI, whereas S-PbI2 only detects PbI2). As the geometrical arrangement 

of the QCM sensors is different, their respective tooling factors were determined. When only PbI2 

is evaporated, the deposition rates from S-Sub and S-PbI2 display identical values as demonstrated 

in Fig. 1b and Fig. S2. During the evaporation of PbI2, as shown in Fig. 1b, there is no cross-

reading on the S-MAI. Fig. 1c displays the deposition rates when only MAI is evaporated. As 

described above, the MAI evaporation is challenging in part due to the cross-reading at unintended 

sensors. To alleviate this problem, we used a small shield around the QCM, as indicated in Fig. 1a 
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(Fig. S3), which resulted in negligible cross-reading during the sublimation of MAI on S-PbI2 (see 

red curve in Fig. 1c). Upon heating the MAI source, the monitored deposition rates from both S-

MAI and S-Sub simultaneously increase and after a short time, the MAI rates become constant on 

both S-MAI and S-Sub. This behavior, an initial transient region with fluctuating rates followed by 

a stabilized region is observed repeatedly for different batches of MAI (see Fig. S4). The 

deposition rate fluctuations in the transient region are slightly differed from batch to batch, 

however, for all batches of MAI the rates become constant. Here, the tooling factor determined for 

S-Sub is maintained same from Fig. 1b, to display identical value with S-PbI2 from PbI2 source, 

hence the rates at S-Sub and S-MAI are different.  

 

Figure 2. (a) Monitored deposition rates from the sensors with increased PbI2 rates under 

constant MAI rate (left) and magnified image (right). (b) Adsorption of MAI and PbI2 converted 

to the unit of 1 2mol s cm− −⋅ ⋅  from in Fig. 2a. 

Fig. 2a shows the deposition rate change from S-Sub with increasing the PbI2 rate during the 

constant MAI rate regime. We recall that the contribution of the PbI2 deposition rates read by S-

Sub and S-PbI2 are equivalent, whereas the rate measured by S-Sub corresponds to the sum of both 

MAI and PbI2. Before the PbI2 evaporation, the MAI rate was maintained at ~0.3 Å∙s-1 at S-Sub, 

and upon the evaporation of PbI2 the S-sub reading increased progressively with increasing PbI2 

rates. As we established that the PbI2 rate on S-Sub and S-PbI2 have a linear correlation, we can 
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deduce the effective MAI rate on S-Sub by subtracting the PbI2 rate from the total. Interestingly, 

we find that the effective MAI deposition rate increases with increasing PbI2 rate and reaches a 

maximum S-Sub reading around 0.8 Å∙s-1 , at a PbI2 rate of ~1.6 Å∙s-1 . Therefore, in the presence 

of PbI2 the adhesion of MAI is increased to a maximum of 2.7 times compared to MAI alone. 

Further increase of the PbI2 rate, up to 13 Å∙s-1 as shown in Fig. S5, resulted in the decrease of the 

MAI rate at S-Sub to ~0.4 Å∙s-1 . When, after the PbI2 deposition at such high rates, we suddenly 

reduce this to zero by closing the shutter above the PbI2 crucible, the MAI rate increases again to 

its former maximum value of ~ 0.8 Å∙s-1 . With longer sublimation of MAI only, its corresponding 

rate from S-Sub gradually decreased to a value of 0.3 Å∙s-1 , which is the same deposition rate as 

before the PbI2 evaporation. This rather slow decrease of the MAI rate upon ceasing to evaporate 

PbI2 is due to the fast diffusion of MAI into the PbI2. In order to allow for a quantitative analysis, 

the adsorption rates of MAI ( MAIr ) and PbI2 (
2PbIr ) are expressed in the unit of 1 2mol s cm− −⋅ ⋅ . The 

adsorbed mass is related to the frequency change of the QCM ( f∆ ) according to the Sauerbrey 

equation59,  

f c m∆ = − ⋅∆  (1)  

The monitored thickness can be readily converted to the frequency change of the QCM, using the 

data provided by the manufacturer of the crystal sensors: in our case 1 Å corresponds to 

0.842 Hzf∆ = − . Where c  is the sensitivity factor for the crystal (0.081 1 2Hz ng cm− −⋅ ⋅ for 6 Mhz 

crystal) and m∆  the adsorbed mass change. Therefore, dividing m∆  by the molar mass will give 

the number of adsorbed molecules per time unit, which is the same as the rate of the adsorbed 

molecules. As displayed in Fig. 2b, MAIr is maximum when it is similar to 
2PbIr . Upon a further 

increase of 
2PbIr , MAIr  decreases. This implies that the adsorption of MAI is highest on the 
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stoichiometric perovskite surface, and with increasing 
2PbIr the surface on the crystal is converted 

into a PbI2 rich perovskite phase on which the MAI adsorption rate is decreased.  

 

 

Figure 3. (a) Schematic illustration of the main processes governing the co-deposition of MAI 

and PbI2 in vacuum deposition and (b) the resultant thickness of the grown perovskite film as a 

function of x and t. 

 

To facilitate a more in depth discussion of the co-deposition process as monitored in Fig. 2, it is 

useful to assume that the MAI and PbI2 alternatively come into contact with the surface. This 

simplification allows us to describe the different steps involved in the adsorption of the MAI and 

PbI2 and its subsequent conversion into the perovskite. As we have shown that the adsorption of 

MAI on the bare QCM is not favored, we can reasonably assume that the first step is the deposition 

of PbI2 (depicted as the yellow blocks in Fig. 3a). As in our approximation the two materials hit 

the substrate in an alternating manner, the subsequent step is the adsorption of MAI. The MAI 

primarily adheres on the PbI2 covered areas (as the adsorption on PbI2 is much more efficient than 

on the bare QCM surface), however, the deposition of MAI on PbI2 leads to the formation of the 

perovskite which depends on the diffusion of MAI into the PbI2 and/or partially formed MAPbI3 

perovskite (schematically shown in Fig. 3a as the brown line around the yellow and blue PbI2 and 
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MAI blocks). In this assumption, during the co-deposition of MAI and PbI2 there are 3 different 

surfaces, PbI2, MAI and the resulting MAPbI3 perovskite. To establish the growth kinetics, we can 

start from the general equation for the adsorption rate as follows. 

.adsr Sϕ=   (2) 

where ϕ  is the impingement rate which is the number of molecules striking the surface per unit 

time and area, and S is the sticking probability, { }exp / ( )act BS E k T fσ θ= − . ( σ : condensation 

coefficient, Eact: activation energy for adsorption, kB: Boltzman constant, T: temperature, ( )f θ : 

surface coverage function for probability of finding an adsorption site )60. In the case of the sticking 

of MAI on PbI2, the perovskite is formed by the chemical reaction. Hence, this sticking can be 

characterized as the chemisorption, where the Eact would also related to the activation energy for 

the chemical reaction. Regarding the surfaces, as mentioned earlier, the MAI adsorption rates is 

surface dependent, thus it can be expressed considering the 3 different surfaces separately. 

Modifying eqn (2) then, 

{ }2 2 . .( ) ( ) ( ) ( )MAI MAI i i MAI MAI MAI PbI PbI perov perov
i

r S f S f S f S fϕ ϕθ θ θ θ = = + + 
 
∑  (3) 

Where Si refers to the intrinsic sticking coefficient (or { }exp /act BE k Tσ − ) of MAI on a surface of 

the different materials i (e.g., i = MAI, PbI2 and MAPbI3), and ( )if θ is defined as the fractional 

ratio of coverage by the species i. For example, MAIθ  is the surface area covered by MAI/total 

surface area ( 1i
i
θ =∑ ). The surface area for the different compounds can be assumed to be 

proportional to their respective adsorption rate and their molar mass divided by their density, as 

described below, 



 10 

Area covered by under deposition, , i
i i

i

Mi rθ
ρ

∝   (4) 

Where iM and iρ are the molar mass and density of i, respectively. During co-sublimation of 

both MAI and PbI2, the diffusion flux of MAI, J, should also be taken into account to correctly 

determine the coverage. This is needed as upon the diffusion of MAI into PbI2 the perovskite is 

formed, eliminating MAI and PbI2 from the surface (Fig. 3a), where the J can be represented as a 

function of x and t as shown in Fig. 3b, with respect to the concentration gradient of MAI from 

surface. When taking all these factors into account we can consider two regimes during the 

sublimation: either 
2PbIr  < MAIr  or MAIr  < 

2PbIr  and for both cases we can derive a dependency on 

each other as depicted in Fig. 4 (The derivation is described in detail in the Supporting information).  

 

Figure 4. PbI2 rate vs MAI rate extracted from Fig. 2b with simulated lines using the derived 
growth equations for the either the MAIr  or 

2PbIr dominant rate regimes. (The equations are 

described in the Supporting information.) 

 

The experimental data points are in good agreement with the fitting curves from the derived 

equations. The values of 12 1 21.4 10MAI mol s cmϕ − − −= × ⋅ ⋅ , 
2

0.50PbIS = and 0.23MAIS =  used for the 
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numerical fitting are physically meaningful. The impingement rate MAIϕ , 1.4×10-12 1 2mol s cm− −⋅ ⋅ , 

is always higher than MAIr . The sticking probability is also similar to the value extracted by another 

simple definition of the probability which is,   

#  of adsorbed moleculeSticking probability
#  of striking molecule

MAI

MAI

r
ϕ

= =    (5) 

For example, when 
2
=0PbIr , the surface of the film will be full of MAI under the constant MAIϕ , 

hence we can estimate the SMAI using eqn (5), with corresponding values of MAIϕ and MAIr . As 

shown in Fig. 4, the MAIr = 0.38×10-12 1 2mol s cm− −⋅ ⋅  results in SMAI = 0.27, which is close to the 

result, SMAI = 0.23, previously calculated by the proposed solutions. 
2PbIS can be estimated in the 

same manner assuming that adsorption of MAI on PbI2 would be dominant in the region where the 

2PbIr is much faster than MAIr . As shown in Fig. 4, when 
2PbIr  reaches the highest value, over 4×10-

12 1 2mol s cm− −⋅ ⋅ , MAIr  approaches ~0.8×10-12 1 2mol s cm− −⋅ ⋅ , resulting in the 
2PbIS = 0.57 from the 

definition in eqn (5), which is also similar to the calculated result from the solutions, 0.50. 

Therefore, our suggested growth model accurately describes the vacuum deposition process for 

MAPbI3 perovskites.  

 
Figure 5. Schematic figure for calibration of the geometric factor, 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
, for MAI 

and PbI2.  
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Considering the enhanced adsorption of MAI with PbI2, it is possible to estimate and control the 

composition of the perovskite film in vacuum co-deposition using the evaporation system 

described in Fig. 1a, as well as in Fig. 5. Since the S-Sub reads both MAI and PbI2, therefore, the 

enhanced adsorption of MAI on PbI2 is already taken into account at the S-Sub. In addition, the 

adsorbed thickness ratio on the S-Sub will be directly proportional to the adsorbed mass ratio, 

which can be simply calculated by dividing their molar mass even without considering the 

Sauerbrey equation. However, one should be aware that S-Sub is off-centered to prevent the 

shadows on the substrate by evaporated materials from the crucible sources. This results in 

different amount of molecules reaching the S-Sub and the substrate, depending on the location of 

the crucibles. To calibrate this difference caused by the geometrical factor, we positioned two glass 

substrates; one is at the normal substrate holder and another is at the sensor by attaching it to the 

sensor head as illustrated in Fig. 5. Afterwards, MAI and PbI2 are separately evaporated and the 

thickness of the evaporated films on the glass substrates is measured as demonstrated in Fig. 5. In 

our case, the ratio of 𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠.𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 is 2.0 and 2.3 for the MAI and PbI2 sources respectively. 

In this correction, we assumed that during the perovskite co-deposition, the different sub-layers 

(e.g. glass, Au-coated QCM, and organic charge transporting layer) have a negligible effect on the 

overall adsorption rate of the perovskite. The different sub-layers will affect the initial growth rate 

for the perovskite, however, once the surface is fully covered by the deposited perovskite, the 

surface dependent growth property can be excluded.  From the work of Olthof and Meerholz it is 

known that after approximately 10 nm of deposition the surface is completely covered with a 

perovskite film58. In view of the final perovskite film thickness we deposit, (usually over 500 nm 

for active layer), we can assume that the surface effect is negligible for the growth rate of the thick 

perovskite. 
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It is important to note that the consideration of the geometric factor enables us to directly control 

the composition of the perovskite by monitoring the actually adsorbed precursor amount. This is 

an important advantage of vacuum deposition as other processes use indirect methods to estimate 

the composition. These range from XPS, EDX or even by assuming complete deposition of the 

precursors from solution. In that method the composition of the film is usually estimated by 

weighing the precursors, which may result in large errors due to the different solubility and coating 

yields of the precursors 61, 62.  

 

Table 1. Monitored thicknesses and calculated molar ratios of co-evaporated perovskite film under 
4 different conditions  

 Film 1 Film 2 Film 3 Film 4 

Monitored thickness at substrate 
sensor [PbI2 / MAI] (nm) 430 / 104 441 / 145 440 / 183 410 / 237 

Weight ratio of [PbI2:MAI] 
 at substrate sensor 

1 : 0.24 1 : 0.34 1 : 0.42 1 : 0.58 

Calculated molar ratio of PbI2:MAI  
at substrate 

1 : 0.61 1: 0.85 1 : 0.95 1 : 1.45 

(* The thickness of MAI is nominal value, where the same tooling factor was used with PbI2. *The molar ratio at 
substrate calculated from weight ratio divided by molar masses and multiplied by geometric factor, defined as 
𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑇𝑇ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠.𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

) 

 

Based on this method, we fabricated four different perovskite films with a fixed PbI2 rate of 1 

Å∙s-1 , and varying MAI rates as monitored by S-Sub. Again, since the PbI2 rate on S-Sub and S-

PbI2 have a linear correlation, it is able to monitor and control the adsorbed MAI rate on S-Sub by 

subtracting the PbI2 rate from the total on S-Sub. The resulting final thicknesses as deduced from 

S-Sub for PbI2 and MAI are shown in Table 1. Using the previously-described methodology, the 

composition of the co-evaporated films at the substrate was calculated. Film 3 is close to the 1:1 

stoichiometry for PbI2:MAI. The measured thickness and absorbance of the films are in Fig. S6. 
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We used these films to prepare thin film solar cells in the p-i-n configuration according to the 

schematic drawing depicted in Fig.6a. We used an all vacuum process as reported previously 63. 

 

Figure 6. (a) Structure of the fabricated device (b-e) Statistics of the photovoltaic parameters 

 

The solar cells based on film 1 and 2 did not lead to very high power conversion efficiencies 

(PCEs) (Fig. 6b). Those based on film 3 and 4 performed much better, although the devices using 

film 4 showed a larger spreading in particular of the short circuit current density (JSC). The best 

performance in absolute PCE and spreading were obtained for the solar cells employing film 3. 

That is, the perovskite film with an almost stoichiometric composition. Since it is known that the 

best performance is obtained for perovskite films that are close to the ideal stoichiometry, this 

finding further corroborates that the method we developed indeed allows to determine the 

perovskite composition. The origin of wide distribution in JSC and FF in MAI deficient and in 

particular the PbI2 deficient films is not clear but it is speculated that it can be caused by unstable 

perovskite active layer originating from non-stoichiometry.  

In conclusion, we established the growth kinetics of MAPbI3 in a vacuum based sublimation 

process. For this, we positioned the source QCMs in such a way that they selective monitor only 
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one precursor sublimation rate. To monitor the co-deposition of both precursors, a third sensor 

close to the substrate is used. By careful studying the rates on each of these QCMs in different 

sublimation conditions, we have developed a simple model describing the growth kinetics. Using 

this model we are able to control the molar composition of the MAPbI3 in vacuum co-deposition 

process. This is an important step forward as now direct control over the final film composition is 

available whereas previously this had to be obtained off line after film deposition. As mentioned, 

in-situ composition control is extensively used in other vacuum-based processing methods, such 

as OLEDs and we believe this will provide meaningful insights for general application of the 

vacuum process for the fabrication of perovskites films. 
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Experimental 

Deposition study using QCM 

For every deposition study, a new QCM (Fil-Tech, 6 Mhz) was used. The deposition rates were 

controlled and monitored by stored program (VAKSIS) of the evaporator. The precursor materials, MAI 

(Lumtec) and PbI2 (Lumtec) were introduced in the temperature controlled evaporation sources 

(Creaphys) through an inert atmosphere glove box. Before evaporation MAI, the source was heated at 

90 ℃ at ambient pressure for ~20 minutes for out-gassing.  

Device fabrication 

ITO pre-patterned substrates were cleaned following a standard procedure in which they are 

sequentially cleaned with soap, water, deionized water, and isopropanol in a sonication bath, followed 

by UV treatment for 20 min. All the solar cell layers were prepared by thermal vacuum deposition 

mailto:beom.kim@uv.es
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performed in vacuum chambers evacuated to a pressure of ~10−6 mbar, which were integrated into a 

nitrogen-filled glovebox (H2O and O2 < 0.1 ppm). TaTm, C60 and BCP were sublimed in the same 

vacuum chamber at temperatures ranging from 100 to >300 °C, depending on the material, and the 

precise evaporation rate and deposited film thickness were controlled by the QCM sensors. In general, 

the deposition rate for TaTm and C60 was 0.5 Å/s while the thinner BCP layer was evaporated at 0.2−0.3 

Å/s. For the perovskite deposition, MAI and PbI2 were co-evaporated at the same time. The MAI rate 

was controlled by the substrate sensor, which reads both MAI and PbI2 rates while the PbI2 rate is 

maintained constant which is monitored by the QCM sensor close to the PbI2 source. The MoO3 and 

Ag were evaporated in another vacuum chamber using aluminum boats as sources by applying currents 

ranging from 2.0 to 4.5 A. After TaTm deposition, the substrate was heated at 140 ℃ for 10 minutes, 

according to previous report, Chem. Mater. 2019, 31, 17, 6945-6949.  

 

Characterization 

Absorption  spectra  were  collected  using  a  fiber  optics  based  Avantes Avaspec2048  

Spectrometer.  Characterization of the  solar cells was performed as follows, using two different 

methods for double check.  For the first, the external quantum efficiency (EQE) was measured using 

the cell response at different wavelength (measured with a white light halogen lamp in combination 

with band-pass filters), where the solar spectrum mismatch is corrected using a calibrated Silicon 

reference cell (MiniSun simulator by ECN, the Netherlands). Solar cells were illuminated by the 

halogen lamp in combination with interference filters for the EQE and J–V measurements An estimation 

of the short-circuit current density (JSC) understandard test conditions was calculated by convolving the 

EQE spectrum with the AM1.5G reference spectrum, using the premise of a linear dependence of Jsc 

on light intensity. J–V characteristics of the solar cells were recorded using a Keithley2400 SourceMeter, 

in a −0.2 and 1.2 V voltage range, with 0.01 V steps. Also, the J−V curves were measured again 

illuminated under a Wavelabs Sinus 70 LED solar simulator. The light intensity was calibrated before 
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every measurement using a calibrated Si reference diode equipped with an infrared cut-off filter (KG-

3, Schott). Keithley 2612A SourceMeter was used to record in a −0.2 and 1.2 V voltage range, with 

0.01 V steps and integrating the signal for 20 ms after a 10 ms delay, corresponding to a speed of about 

0.3 V/s.  

 

 

Figure S1. Extracted PL spectrum for (Cs0.05MA0.17FA0.83)0.95Pb(I0.83Br0.17)3 and 
FAPbI3(0.85)MAPbBr3(0.15) perovskite by a digitizer from the references  

 

 

 

Figure S2. Rates from PbI2 sensor vs Substrate sensor extracted from Fig. 1(b) and linear fitting.  
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Figure S3. Photography of the inside of the evaporator. The yellow dashed lines indicate the shield of 
the sensors.  

 

  

Figure S4. MAI rates from MAI sensor, Substrate sensor and their ratio with different batches of MAI.   
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Figure S5. Deposition rates from the sensors with increased PbI2 rates under constant MAI rate shown 
in Fig. 1d with full scale 

 

Deriving the growth kinetics: 

Taking into account for eqn (4) and the consideration of the surface that discussed in Fig. 3a, the ( )if θ

, fractional ratio of coverage for the surface area covered by the species i, under the co-deposition of 

MAI and PbI2 can be described as the function of the deposition rate and diffusion flux.  
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According to Fick’s first law of diffusion, J equals to −𝐷𝐷 ∂𝑐𝑐
∂𝑥𝑥

 where D is diffusivity, c is concentration 

and x is position. As shown in Fig. 3b, the thickness of the film can be represented as the distance from 

the substrate to the surface of the film, x, with time. Since we are specifically interested in J at the 

surface to reflect the change of the surface, the concentration can be replaced by the adsorption rate of 

MAI multiplied by time and area. Therefore, if we substitute J by the adsorption rate, and ( )if θ  into 

eqn (S1), then we obtain, 
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As we observed from Fig. 2, we determined that 
2 . 2.7MAI PbI Perov MAIS S S S< < ≈ . Therefore, taking into 

account these sticking probability, the molar mass (159, 461 and 620 g/mol) and the density (2.22, 6.16 

and 4.16 g/cm3) for MAI, PbI2 and perovskite respectively from the reported values 1-3, then eqn (S2) 

can be presented as below, with the substitution of MAIrD A tx
∂ ⋅ ⋅∂  to 'MAIr  for simplicity. 

 

2 2
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We recall that ir and iS are adsorption rate and sticking probability of species i, and , MAIϕ is 

impingement rate of MAI, and 'MAIr  is the diffusion flux of MAI, J, on the surface. The diffusion of 

MAI is fast as deduced when discussing Fig. 2. As a result the diffusion flux J will be limited 

by the slower components, either MAIr  or 
2PbIr  under the co-deposition. Therefore, there are 

two regimes during sublimation either 
2PbIr  < MAIr  or MAIr  < 

2PbIr . When 
2PbIr  < MAIr , J 

will be limited by 
2PbIr , so we can assume that J =

2PbIr , and substituting J into eqn (S3) we 

obtain, 

2 2 2 2
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The solution for MAIr , as function of 
2PbIr , MAIϕ  and S is as below. 

2 2 2 2 2

2 2 20.27 1.03 8.59 0.25 0.52 0.50MAI PbI PbI PbI MAI PbI MAI MAI MAI MAI PbI MAI MAIr r r S r S S r Sϕ ϕ ϕ ϕ= − + + − +  (S5) 

 For MAIr  < 
2PbIr regime, where J is limited by MAIr  hence assuming MAIJ r= then eqn (S3) 

becomes, 



Page S7 

 

2 2

2

( 9.11 ) (1.04 2.07 )
1.04

MAI MAI MAI PbI PbI MAI
MAI MAI

MAI PbI

S r r S r r
r

r r
ϕ

 + + −
=   + 

  (S6) 

from which the solution is the following  

2 2 2 2 2 2

20.005 (104 207 1011 ) 41600 0.52 1.04 5.06MAI PbI PbI MAI MAI MAI PbI PbI MAI PbI PbI MAI MAI MAIr r S S r S r S Sϕ ϕ ϕ ϕ ϕ= + + + − − +  (S7) 

The equations, S5 and S7 are used in Fig. 4 for the simulation.  

 

 

  

Figure S6. Absorbance and thickness of the fabricated perovskite films 

 

 

Figure S7. Recorded deposition rates changes during the MAI+PbI2 co-deposition from different 
sensors with varied estimated compositions.  
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Figure S8. Photovoltaic parameters of the fabricated device measured under halogen lamp with 
corrected JSC by convolving EQE with spectrum of AM1.5G.  
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