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Abstract: We present new kind of microwave phase shifters (MPS) based 
on dispersion of PbS colloidal quantum dots (QDs) in commercially 
available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 
waveguides are implemented by integration of the nanocomposite in a 
silicon platform. When these waveguides are pumped at wavelengths below 
the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 
1550 nm) microwave signal is produced. The strong light confinement 
produced in the ridge waveguides allows an improvement of the phase shift 
as compared to the case of planar structures. Moreover, a novel ridge 
bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 
passive layer is proposed to decrease the propagation losses of the pump 
beam and in consequence to improve the microwave phase shift up to 36.5° 
at 25 GHz. Experimental results are reproduced by a theoretical model 
based on the slow light effect produced in a semiconductor waveguide due 
to the coherent population oscillations. The resulting device shows potential 
benefits respect to the current MPS technologies since it allows a fast 
tunability of the phase shift and a high level of integration due to its small 
size. 

©2015 Optical Society of America 

OCIS codes: (130.5460) Polymer waveguides; (160.4236) Nanomaterials; (230.5590) 
Quantum-well, -wire and -dot devices; (310.2785) Guided wave applications; (350.4010) 
Microwaves. 
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1. Introduction 

Microwave photonics (MWP) [1] enables the broadband, interference-immune and low loss 
transport and processing of radiofrequency and millimeter-wave signals conveyed by optical 
carriers opening the possibility of multiple functionalities which are key in a considerable 
number of application fields such as fiber-wireless communication and 5G networks, radar, 
signal filtering, sensing or instrumentation [2]. Moreover, an additional advantage of MWP 
systems is that they enable to perform RF functionalities, such as fast tunability or 
reconfigurability, that are either complex or not even possible to achieve with conventional 
RF architectures [3]. These potential practical functionalities include as well arbitrary 
waveform generation, tunable and reconfigurable filtering, optoelectronic oscillators, analog 
to digital conversion or beam steering, among others. These complex operations are based on 
basic functions, such as tunable true-time delay (TTD), splitting/combining and phase shifting 
(PS) [4,5] and MWP solutions provide broadband performance and enhanced tunability on 
TTD and PSs. Moreover, the processing of microwave signals using photonic integrated 
circuits (PICs) known as integrated microwave photonics (IMWP) is bringing additional 
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advantages such as compactness, reproducibility and reduced costs of the CMOS foundry 
processes in order to provide a real flexibility to microwave photonic signal processors [5]. 

One fundamental building block of practical MWP functionalities, e.g., beam forming, 
filtering, signal generation, is the microwave phase shifter (MPS) [6]. Despite of the different 
architectures presented in the literature, the use of photonics for processing microwave 
signals may overcome the limitations of electronic PSs, namely frequency-dependent loss and 
dispersion, to enable ultra wideband operation [7,8]. Examples of photonic MPS architectures 
or technologies are the use of stimulated Brillouin scattering (SBS) [9,10] or the SOA based 
implementation [11], whose working principle is based on the slow and fast light 
phenomenon due to coherent population oscillation (CPO) [12]. Besides, silicon on insulator 
(SOI) ring resonators have been used to perform the same functionality in narrowband 
systems [13,14], and fiber Bragg gratings have also been proposed to accurately tune the 
phase-shift (FBGs) [15]. However, although these technologies allow an efficient control of 
the microwave phase shift they also present some drawbacks that may limit their practical 
applications. For instance, SBS based phase shifters require both long fiber sections or high 
pump powers [16], SOA based architectures have distortion and RIN noise limitations while 
the SOI ring and FBG approximations feature a narrowband behavior. 

To overcome those constraints here we proposed a novel technology approach that is able 
to integrate photonic MPS with organic waveguides implemented in silicon platforms. This 
new technology consists of nanocomposites made by the dispersion of colloidal quantum dots 
(QD) in polymers [17]. Such a multicomponent material is emerging as a very suitable 
candidate to develop novel functionalities in photonic devices. The reason comes from the 
fact that nanocomposites combine the singular optical properties of the QDs (room 
temperature emission and band-gap tunability) with the technological feasibilities of 
polymers, i.e. deposition on films by different coating methods, patterning by UV or e-beam 
lithography, among others. Indeed, we have already demonstrated that planar waveguides, as 
depicted in Fig. 1(a), fabricated by the dispersion of PbS QDs in polymethylmethacrylate 
(PMMA) can induce a phase shift over microwave signals carried at 1550 nm when the 
structure is pumped at 980 nm, where the QDs show significant absorption [18]. 
Nevertheless, integrated photonic technology on general and integrated microwave photonics 
in particular requires not only planar structures, but also lateral light confinement structures to 
improve the light-matter interaction in order to design more complex devices and 
functionalities. Among the different patterning techniques, UV photolithography is the most 
appropriate to fabricate 2D waveguides when widths are ranged between 1 and 20 μm. For 
these purposes the epoxy-based negative photoresist SU8 is the most used for 2D 
waveguiding applications because it shows a high refractive index (~1.5) together with low 
propagation losses in the 600-1600 nm range [19]. However, SU8 shows poor chemical 
compatibility with as-synthesized oleate capped QDs because SU8 is typically formulated 
with γ-butyrolactone or cyclopentanone, where oleate-capped QDs are not soluble. 
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Fig. 1. Schematic view of the waveguides studied: a) PMMA based waveguide, b) SU8 
monolayer waveguide and c) SU8 bilayer waveguide. 

In this way, we here propose an appropriate ligand exchange procedure to modify the QD 
surface and make them soluble in SU8 solvents [19]. By means of the ligand exchange 
approach, bidimensional QD-SU8 waveguides were successfully fabricated and used as a 
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novel MPS, as shown in Fig. 1(b). These structures improve the results obtained with QD-
PMMA waveguides published in [18] under the same pumping conditions due to a better 
confinement of the light thanks to the proposed QD-SU8 monolayer waveguide structure. 
Moreover, we have already demonstrated that propagation of light along the waveguides is 
improved depositing passive claddings on the top of the nanocomposite [18,20]. Thus, a novel 
bidimensional waveguide consisting of a bilayer structure composed by a QD-SU8 layer and 
a SU8 cladding layer is also proposed, as shown in Fig. 1(c), to decrease the losses of the 
light and hence to improve the microwave phase shift up to 40°. In addition, the proposed 
structure adds a new flexibility level, as is the waveguide width, to face different on chip 
requirements. Moreover a refractive index model of the PbS-SU8 nanocomposite is 
implemented, where main results are explained by considering the absorption saturation 
produced in the QDs and developing a model able to fit accurately the experimental data. 

2. Waveguide structure and fabrication 

The nanocomposites used in this work are based on the dispersion of PbS QDs in PMMA and 
SU8 matrices. Nanocrystals were synthetized following the method previously reported by 
Yu and Peng [21]. The QD diameter was about 4.5 nm [22], which corresponds to an exciton 
absorption peak close to 1550 nm -see inset of Fig. 2- and hence providing efficient 
absorption at this wavelength [18]. Then, the different QD-polymer nanocomposites 
structures were fabricated on a SiO2/Si substrate (2 μm of SiO2) in order to provide a high 
refractive index contrast in the active material (around 2% respect the SiO2). The filling factor 
(ff) of nanocrystals into the polymer was formulated to be around 10−3 to obtain a good 
compromise between QD excitation and light absorption [17]. The first structure depicted in 
Fig. 1(a) consisted in a planar waveguide composed by a d1 = 3 μm thick PbS-PMMA film. 
This nanocomposite was formulated by dissolving the PbS QDs and PMMA in toluene. 
Afterwards, the planar waveguide was fabricated by spin-coating the PbS-PMMA solution on 
the substrate and post baking the sample at 80 °C and 150 °C for two minutes each [17]. 
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Fig. 2. Real (red solid line) and imaginary (blue solid line) parts of the PbS-SU8 (ff = 0.01) 
refractive index and real (red dashed line) part of the SU8 refractive index. The inset shows the 
absorption spectra of the PbS-SU8 QDs at pump (980 nm) and probe (1550 nm) wavelengths. 

In the second design shown in Fig. 1(b), active straight ridge waveguides were 
implemented by dispersing the PbS QDs in SU8. For this purpose, it was necessary to 
perform a surface modification of the QDs to make them soluble and to allow a good 
dispersion of the nanocrystals in γ-butyrolactone [19]. Then, straight ridge waveguides were 
fabricated upon UV exposure following the standard procedure explained in [23]. A d1 = 2.5 
μm PbS-SU8 film was firstly spin-coated on the nanocomposite and baked in two steps at 65 
°C and 95 °C for two minutes each, respectively. This film was later exposed to the UV 
radiation for three seconds in a MJB4 Suss-Mikrotec mask aligner using a mask consisted in 
consecutive sets of w = 4, 6, 8, 10 and 20 μm wide lines with a 50 and 100 μm separation 
between lines and sets respectively. After illumination, the samples were post-baked at 65 and 
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95 °C for two minutes each, and finally they were developed for one minute. It is interesting 
to remark that the resist lithographic performance was not disturbed by the presence of the 
nanocrystals. 

The last sample, shown in Fig. 1(c), is proposed to decrease the light losses travelling 
through the structure and consists in a ridge bilayer waveguide composed by a PbS-SU8 
nanocomposite and a SU8 passive cladding layer. In these conditions, the light can propagate 
through the cladding without limitation of the QDs absorption and in consequence the signal-
to-noise-ratio (SNR) is improved. A similar structure was firstly proposed in planar 
waveguides in [20], but here it is the first time where it is performed in patterned structure. 
The fabrication procedure followed the process used to implement QD-SU8 ridge 
waveguides, but the initial steps consisted in two spin coatings, first the PbS-SU8 
nanocomposite and then the SU8. The thickness of both films were d1 = d2 = 2 μm. Finally, 
waveguides with a thickness d1 + d2 = 4 μm were well defined when the process was over. 

Figure 2 plots the real (left axis) and imaginary part (right axis) of the PbS-SU8 composite 
refractive index calculated with the method explained in [17]. The real part is close to that of 
the SU8 (red dashed line) and the imaginary part follows the absorption curve of the PbS (see 
inset in the figure), which it is around ~10−5 at 1550 nm and increases for shorter wavelengths 
up to ~2·10−4 at 980 nm. 

3. Experimental set-up and principle of operation 

The setup used to perform the measurements is shown in Fig. 3. Initially, a 1550 nm 
continuous-wave (CW) laser is electro-optically modulated with a microwave tone (10 MHz - 
25 GHz) generated by a vector network analyzer (VNA), part of a light component analyzer 
(LCA). Then, the generated optical double-side band signal at the optical LCA module is 
mixed together with a 980 nm CW pump laser, from a tunable laser source, at a wavelength 
division multiplexer (WDM). At the output of the WDM the two mixed beams are injected 
into the waveguide (WG) with the aid of a tapered fiber [24]. At the output edge of the WG 
sample, light is collected with another lensed fiber and pumped into the WDM in order to 
separate the optical beams and photodetect the modulated 1550 nm signal under interest. Also 
the 980 nm is measured only for control issues. Afterwards, the amplitude and phase of the 
detected electrical signal are captured by the electrical LCA module or VNA, where the 
scattering parameter S21 which relates the detected and generated MW signals is calculated. 
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Fig. 3. Measurement laboratory setup. OPM: optical power meter, RF: radiofrequency, TLS: 
tunable laser source, PD: photodetector, TF: Tapered Fiber tip, WG: waveguide, LCA: light 
component analyzer. 

The working principle of the phase-shifter is based on the saturable absorption of the QDs 
when they are pumped below their band-gap, where the nanocrystals show strong absorption, 
as shown in inset of Fig. 2. Therefore, when the light at 980 nm excites the QDs it is expected 
to affect the group index of the signal travelling at 1550 nm, producing a phase change (Δφ) 
in the microwave signal that can be expressed as: 
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 ,gkL n L
c

ϕ ΩΔ = Δ = Δ  (1) 

being k the wave vector of the signal, L the length of the waveguide, Ω the angular frequency, 
c the speed of light and Δng the group refractive index variation. 

4. Experimental characterization of the PbS-SU8 QDs waveguides 

Samples with the structure shown in Figs. 1(a)-1(c) where tested as MPS by characterizing 
the microwave signal with the set-up explained in the last section. In order to make a 
comparison between the different structures, the pump and signal powers inside the 
waveguide were fixed to 3.64 and 1.6 mW respectively. 
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Fig. 4. a) Phase shifting at 25 GHz suffered by the MW signal for different waveguides with 
different widths and lengths and b) normalized RF amplitude response as a function of the 
microwave frequency for different waveguides structures with length 6 mm when they are 
pumped by the 980 nm laser under the highest output power. c) Phase shifting as a function of 
the microwave frequency and d) amplitude responses as a function of the microwave 
frequency in the 20 μm wide 6 mm long SU8 bilayer waveguide by pumping with the 980 nm 
laser for different coupled powers to the input edge of the structure normalized to the smallest 
pump power trace. 

Figure 4(a) shows the phase shift recorded at the output edge of the different sample 
structures at 25 GHz for waveguide lengths of 2 and 6 mm. In all the measured cases, the 
phase shift increases with the waveguide length, but the curve deviates from the linear 
behavior predicted by Eq. (1) because of the attenuation of the pump beam along the 
structures, which prevents a uniform excitation of the nanocrystals [17]. The phase shift 
measured with the planar PbS-PMMA waveguide (blue symbols) is clearly improved by the 
ridge PbS-SU8 structure reaching 30 ° at the waveguide length of 6 mm. This is due to the 
fact that the ridge waveguides allow a better confinement of the light that leads to a power 
density increase and with it a higher light absorption by the nanocrystals. 
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However, this proposed waveguide suffers from high attenuation due to the absorption of 
the QDs, and the SNR results very weak for long waveguides. Nevertheless, the light 
attenuation is significantly reduced inducing an improvement in the SNR, as can be seen in 
Fig. 4(b), when a passive layer is deposited onto the active material [20]. Considering 
coupling losses of 10 dB, the total optical power losses estimated between the input and the 
end edge of the QD-SU8 bilayer waveguide were around 21 and 34 dB for the widest/smallest 
and the thinnest/longest waveguide respectively. However, the PMMA based waveguide 
structure losses are estimated around 33-44 dB (2 dB lower for the SU8 monolayer 
waveguides) because light can travel through the cladding, in the SU8 bilayer case, without 
absorption losses. In this way the proposed SU8 bilayer waveguides produced the better 
results. Green empty square, pink square and bright blue triangle symbols of Fig. 4(a) plot the 
phase shifts obtained with this waveguide structure for waveguide widths of 20, 10 and 8 μm 
respectively. The narrower the width, the higher the phase shifting due to the better 
confinement of the light, reaching a value of 36.5 ° for the thinner waveguide. Once the 
behavior of the phase shifter waveguide is established, its magnitude can be easily tuned by 
means of the pump power and the microwave frequency regarding a broadband operation. 
Figure 4(c) plots the phase shifting as a function of the microwave frequency in a 20 μm wide 
and 6 mm long SU8 bilayer waveguide for different pump powers. In this case, the phase shift 
increases with the microwave frequency according to Eq. (1) and also for growing pump 
powers, reaching saturation above 2 mW due to the saturation of the PbS QD absorption. 
Additionally, could be observed in Fig. 4(d) that the ripples in the amplitude response for 
different pump powers are lower than 0.5 dB. Moreover, there is a clear improvement of the 
RF amplitude signal for higher pump powers, proving that QDs are being saturated by the 
pump rather than the signal. The constant slope of phase shift at Fig. 4(c) implies a constant 
time delay in relation to those microwave frequencies. Therefore, the application of this phase 
shifter as true-time delay (TTD) device is straightforward from the proposed implementation 
principles and it would be considered for further investigation. 

In this case, the phase shifting value obtained could be improved modifying the 
characterization set-up to obtain an enhanced confinement of the light and a higher excitation 
of the QDs on the PbS-SU8 material. In this case different strategies are being considered for 
further investigation. First, a dual light pumping from both sides of the waveguide sample 
could be interesting in order to improve light confinement and nanostructure excitation, but 
considering that a major concentration of QDs established a trade-off on the phase shifting 
[17]. Furthermore, it is possible to pump the nanostructures from the surface of the waveguide 
in order to provide a uniform excitation along the complete length of the structure [17,25]. 
This strategy imposes a higher complexity of the experimental set-up in the case of the dual 
light pumping, and requirements of high power lasers in the case of the surface pumping, 
because the excitation area is very large under these pumping conditions and hence the pump 
power density very low and usually insufficient to pump properly the nanocrystals. A second 
strategy could consist of improving the design of the sample in order to provide a major 
concentration of QDs together with low propagation losses. In this regard, we have recently 
demonstrated [26] a new two-dimensional waveguide consisting of a quantum dot-polymer 
sandwich-type structure. This structure is able to propagate the pump beam along PMMA 
claddings and to improve the efficiency of excitation about 100-fold compared with a similar 
one formed by dispersing homogeneously the QDs in the polymer. However, the application 
of this design with SU8 claddings is not straightforward and the appropriate technology to 
deposit the PbS QDs packed layer between the SU8 claddings together with keeping the 
lithographic properties is under investigation. Ultimately, these strategies that collect new 
experimental techniques and novel technological structure will allow an enhancement in 
excitation of QDs in a confined structure, and therefore translate into a significant phase 
shifting improvement. 
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5. Refractive index model for the PBs-SU8 QDs 

The refractive index change can be explained with the slow light effect due to coherent 
population oscillations that takes places in a semiconductor when it is pumped by a strong 
field [27]. This effect produces a variation in the group velocity of the probe beam given by: 
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where P is the carrier power, Psat the carrier saturation power, τs the carrier lifetime, Γ the 
confinement factor of the mode, η the coupling efficiency and g0 the modal gain without 
saturation related to the gain (g) of the waveguide by: 
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In these conditions the light of the carrier beam follows the propagation equation: 

 ( ) ,
dP

g P
dz

α= − ⋅  (4) 

where α represents the losses at 1550 nm. Finally, the parameter g0 is proportional to the 
pump power (Pp) [20] that also follows the propagation equation: 

 .P
P P

dP
P

dz
α= − ⋅  (5) 

Thus, the change of the refractive index in the waveguide can be simulated solving 
together the Eqs. (2)-(5). The confinement factor (Γ) and the absorption losses (α and αP) in 
the waveguide are estimated by analyzing the modes supported by the structure, which are 
calculated through the effective index method in the complex plane [28]. 

The former parameters are obtained from the imaginary part of the effective refractive 
index of the modes (4·π·Im(Neff)/λ). The later parameter is calculated integrating the mode 
overlap in the active region respect the entire mode area. In this way the algorithm found 
solutions of modes not only confined in the active, but also in the cladding layers. By 
considering a ff = 0.1% at λ = 980 nm, losses are found to be around 13 cm−1. At λ = 1550 nm 
losses are reduced to 0.8 cm−1 because this wavelength is longer than that corresponding to 
the PbS quantum dot effective band-gap and the fundamental mode shows a confinement in 
the active region of around 65%. 
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Fig. 5. Phase shift as a function of the pump power. Symbols correspond to experimental 
values and the red continuous line to the model output data. 

Symbols of Fig. 5 show the experimental phase shifts as a function of the pump power 
fitted by the output data of the above described model (red line). Clearly, the model may 
reproduce nicely the experimental results. The parameters used were g0 = 0.022·PP, τs = 3.1 
ps, Γ = 0.65, αp = 25 cm−1, Psat = 100 mW and αs = 6 cm−1. Higher losses considered in the 
fitting are attributed to the scattering of light in the polymer [19,25]. 

6. Conclusions

In this work a novel approach to implement a MPS based on a PbS-SU8 nanocomposite is 
reported, which is used to fabricate waveguides integrated into silicon platforms. For this 
purpose it was necessary to perform the appropriate ligand exchange to disperse the QDs 
homogeneously in the SU8 matrix. When PbS QDs are pumped below their absorption band-
gap they are able to modify the group refractive index of an optical carrier at 1550 nm, 
producing in consequence a shift in the phase of the microwave signal. Moreover, 
lithographic properties of SU8 enable to define ridge patterns necessary to improve the 
confinement and the integration level. These PbS-SU8 waveguides exhibits a clear 
improvement of the phase shifting as compared to the value obtained for planar structures. 
Furthermore, a novel bilayer ridge structure consisting of a bottom PbS-SU8 nanocomposite 
and a top SU8 passive cladding is proposed to alleviate the pumping losses of the waveguide 
and in consequence to improve the phase shift up to 36.5 ° under current proposal. 
Nevertheless, we are currently working in other strategies to reach higher shifts. A first 
approach would be to increment the pump conditions to achieve a higher excitation of the 
QDs, and a second one to develop a novel technology able to deposit a PbS compact layer 
between two SU8 claddings. Then, we expect that such a novel structure together with the 
enhancement of the excitation conditions would improve the phase shifting in future 
investigations. Finally, to explain the experimental results a theoretical model able to 
reproduce the experimental data is proposed. The potential advantages of the proposed 
structures rely on a high level of integration and a continuous and fast tunability with the 
pump power and microwave frequency together under broadband operation. 
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