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No general approach is available yet to measure directly
the ratio between chromatic dispersion and the nonlinear
coefficient, and hence the soliton number for a given optical
pulse, in an arbitrary guiding medium. Here we solve this
problem using continuum generation. We experimentally
demonstrate our method in polarization-maintaining and
single-mode fibers with positive and negative chromatic
dispersion. Our technique also offers new opportuni-
ties to determine the chromatic dispersion of guiding
media over a broad spectral range while pumping at a fixed
wavelength. ©2020Optical Society of America

https://doi.org/10.1364/OL.399382

Nonlinear propagation of optical pulses in fibers or integrated
waveguides allows widening pulse spectra, which can give rise to
continuum generation (CG). These broadband light sources are
employed in time-resolved spectroscopy owing to their pulsed
nature [1]. In addition, some of the processes that take part in
the CG also find other applications. During the first stage of
pulse spectral broadening, pulses are frequency chirped and,
consequently, can be shortened in either fiber [2] or external
compressors [3]. In a second stage, new frequencies can be pro-
duced through dispersive wave emission (DWE), a mechanism
that can be used for wavelength conversion [4]. Both nonlinear
and dispersive effects generally play an important role in these
phenomena [5]. Intuitively, one could expect that fiber or inte-
grated waveguide properties involved in CG somehow imprint
the output light. Certainly, if information about the guiding
media could be extracted by comparing input and output pulses
and their spectra, then CG would find another promising appli-
cation in this domain. However, a fundamental limitation arises
in the very beginning of this tentative approach. Usually, mea-
surement methods are built on the basis of an analytical model
that connects different experimentally accessible magnitudes.
Unfortunately, the inherent complexity of CG, linked to the
interplay between nonlinearities and dispersion, makes such a
preliminary requirement quite challenging.

Existing techniques to determine the nonlinear coefficient
γ in fibers make apparent this issue. These methods rely on
measurements of the nonlinear phase, through either spectral
analysis [6,7]—recently generalized to obtain both magnitude
and sign of γ in integrated waveguides [8]—or interferometry
[9], which disregards chromatic dispersion. This approxima-
tion can introduce a significant error in some cases, as studied
in Ref. [10]. Contrary to low-power experiments, where dis-
persive processes dominate at any propagation distance, at
high powers, the spectral broadening initially governed by
nonlinear processes makes dispersive effects gradually more
important. Although dispersion can be safely neglected with
(quasi)continuous-wave (CW) pumping, the contributions of
the Kerr effect and electrostriction cannot be separated under
these conditions [11,12]. The Kerr nonlinearity can be isolated,
while dispersive effects are avoided, based on measurements
of polarization-state changes [13]. However, this approach
requires cylindrical symmetry, which prevents its application in
integrated waveguides.

Under specific conditions where the nonlinear Schrödinger
equation (NLSE) can be analytically solved, measurements of
γ can account for dispersion. For example, γ can be extracted
from the spectral resonances produced during the initial
stage of modulation instability [14,15] or by monitoring the
power of idler frequencies obtained through four-wave mixing
(FWM) pumped by tunable CW lasers [16]. In sharp con-
trast to these methods, where the use of analytical results is
preferred over a wider application scope, a hybrid approach
based on frequency resolved optical gating (FROG) and
brute-force fittings to numerical solutions of the NLSE was
also proposed to deal with nonlinear and dispersive effects
simultaneously [17].

Here we propose, what is to our knowledge the first gen-
eral approach to measure the coefficient β2/γ , where β2

is the group-velocity dispersion parameter, in an arbitrary
guiding medium. Note that for a given input pulse, this coef-
ficient provides the soliton number N straightforwardly, since
N2
= T2

0 γ P0/|β2|, with T0 and P0 being the input pulse width
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and peak power, respectively. As we will show, our method relies
on a conservation law of the NLSE, so it is not limited to specific
ranges of β2 or γ values, unlike previous works [6–9,13–16].
In addition, contrary to Ref. [17], the experimental data can be
fitted here to a fully analytical relation between readily accessible
magnitudes, namely, the root-mean-square (rms) spectral width
of the pulse and its intensity autocorrelation. We demonstrate
our technique in polarization-maintaining (PM) fibers and
(non-PM) single-mode fibers with well-known β2/γ values,
in both normal (β2 > 0) and anomalous (β2 < 0) dispersion
regimes. Based on this wide applicability, we anticipate no major
restrictions when applying our method in integrated waveguides
where injection losses have been evaluated properly. Finally,
new opportunities to determine higher-order coefficients,
such as β3/γ , where β3 is the third-order dispersion (TOD)
parameter, are envisaged through a generalization of the present
work.

Let us assume a single-mode electric field propagating
in a guiding medium in the z direction, E(x , y , z, t)=
(1/2)A(z, T)ẽ(x , y , ω0)e−iω0t e iβ(ω0)z + c.c., where A(z, T)
represents the complex envelope of the field, ẽ(x , y , ω0)
describes the electric-field mode, which is normalized such that
|A(z, T)|2 equals the instantaneous power, ω0 denotes the
mean frequency, β indicates the propagation constant, and T =
t − β1z, with βm = dmβ/dωm

|ω0 , is the time in the retarded
frame. If β(ω)= β0 + β1(ω−ω0)+ (1/2)β2(ω−ω0)

2, then
A(z, T)propagates according to the NLSE [5]:

∂z A=−
α

2
A− i

β2

2

∂2 A
∂T2
+ iγ |A|2 A, (1)

where α is the loss coefficient. Starting from Ref. [18], we derive
the following balance law for Eq. (1):

d

dz
[L−1

NL(z)+L−1
D (z)] =−αL−1

NL(z), (2)

whereL−1
NL(z)= (γ /2)

∫
∞

−∞
|A(z, T)|4dT/

∫
∞

−∞
|A(z, T)|2dT;

L−1
D (z)=(β2/2)

∫
∞

−∞
1ω2
|Ã(z, 1ω)|2dω/

∫
∞

−∞
| Ã(z, 1ω)|2dω,

with 1ω=ω−ω0 and Ã being the Fourier transform of A.
The z-dependent functions LNL(z) and LD(z) represent the
length scales over which nonlinearities and dispersion act at
any propagation distance and generalize the classical lengths
LNL = 1/(γP0) and LD = T2

0 /|β2| [18]. These functions have
been very useful for solving several problems including DWE in
both normal and anomalous dispersion regimes [19,20], shock
waves [21,22], or dynamic control of the pulse chirp [8,23].

In this case, and for the sake of convenience, we integrate
Eq. (2) over the guiding medium length L and write

−(ρ(L)− ρ(0))− α
∫ L

0
ρ(z)dz=

β2

2γ
(µ2(L)−µ2(0)),

(3)

where ρ(z)= (1/2)
∫
∞

−∞
|A(z, T)|4dT/

∫
∞

−∞
|A(z, T)|2dT is

proportional to the intensity autocorrelation at zero time delay,
and µ2(z)=

∫
∞

−∞
1ω2
| Ã(z, 1ω)|2dω/

∫
∞

−∞
| Ã(z, 1ω)|2dω

is the square of the rms spectral width. In the context
of nonlinear applications, typically αL� 1, hence
α

∫ L
0 ρ(z)dz≈ αL(1/2)(ρ(L)+ ρ(0)). Consequently, if

the path-independent quantities 1ρloss = ρ(L)− ρ(0)+

Fig. 1. (a) Spectrum and (b) pulse profiles at the input (dashed
line) and output (solid line) of the 200 m long Nufern PM980-XP
fiber pumped with 188 mW mean power. These results illustrate the
spectrum and pulse evolutions forβ2 > 0.

αL(1/2)(ρ(L)+ ρ(0)) and 1µ2 =µ2(L)−µ2(0) are
defined, then Eq. (3) becomes

−1ρloss =
β2

2γ
1µ2. (4)

Since an intensity autocorrelator, or even an oscilloscope in
the case of relatively long pulses, provides ρ, and since µ2 can
be obtained by means of an optical spectrum analyzer (OSA),
β2/γ can be determined based on a linear fitting of −1ρloss
as a function of 1µ2, according to Eq. (4). Importantly, as
β2 can be accurately measured at low powers using existing
techniques [24], our approach to determine β2/γ can also
reduce the experimental uncertainty of γ in fibers or integrated
waveguides.

Our first proof-of-concept experiment (PoCE) was car-
ried out in a 200 m long PM optical fiber Nufern PM980-XP
with α corresponding to 0.6 dB km−1. A master-oscillator-
fiber-amplifier laser built in the Laboratory of Fiber Optics at
Universitat de València was used as the pump source. This laser
emitted∼40 ps long pulses at 1061 nm and at a repetition rate
of 23 MHz. Both laser and fiber output pulses were coupled into
an OSA and a sampling oscilloscope to monitor their spectra
and temporal power profiles (see Fig. 1) and evaluate −1ρloss
and1µ2.

In Fig. 2(a),−1ρloss is shown as a function of1µ2 for a set
of mean powers ranging from 51 mW to 379 mW. The linear
relation between −1ρloss and 1µ2 predicted by Eq. (4) is
observed, which allows measuring β2/γ = (6.3± 0.1) ps2. To
check the precision of our result, we compare the outcome of
our experiment with a result calculated based on a measurement
or nominal value of β2 and γ (see Table 1). In this case, we also
measured the chromatic dispersion of our PM980-XP fiber
using an optical-fiber version of a standard interferometric
technique [24], and obtained β2 = (24± 2) ps2 km−1. Next,
we calculate γ : hereto, we consider the mode field diameter
MDF= (6.6± 0.5) µm, as indicated in the fiber specifications
(at 980 nm), and a reference value for the nonlinear index of
standard fibers, n2 = 2.5× 10−20 m2 W−1 [5]. These values
lead to γ = (4.3± 0.7)W−1 km−1, in line with the results
obtained in Ref. [25] based on FWM experiments. Attending to
these reference values, β2/γ = (5.6± 1.4) ps2 W, which agrees
with our result. Therefore, our first PoCE in PM fiber gives very
strong support to our approach.

In this experiment, the most important experimental source
of error is related to power measurements (an accuracy of 5%
in the power values is considered when fitting the experimental
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Fig. 2. Results of our experiments to determine β2/γ in four
different fibers: (a) PM fiber with β2 > 0 at 1061 nm; (b) (non-PM)
single-mode fiber with β2 > 0 at 1061 nm; (c) PM fiber with β2 < 0
at 1550 nm; and (d) (non-PM) single-mode fiber with β2 < 0 at
1550 nm.

Table 1. Comparison between Our Experimental
Values for β2/γ and Values Obtained Based on Fiber
Specifications and Other Experiments (Details in the
Text)

Fiber
Experimental
β2/γ (ps2 W)

Nominal
β2/γ (ps2 W)

PM980-XP 6.3± 0.1 5.6± 1.4
1060-XP 4.7± 0.2 4.5± 1.1
PM1550-XP −21.7± 0.4 −21± 3
SMF-28 −16.6± 0.2 −18± 3

data). Nevertheless, the main intrinsic source of error in our
approach is due to the approximation made to evaluate the
loss contribution in 1ρloss. Attending to simulations based on
Eq. (1), this error is smaller than 0.1% in this case. Accordingly,
our approach can improve the accuracy of γ measurements,
typically∼5% in short fibers where dispersion can be neglected
and mean powers are measured with much higher accuracy [7],
provided the uncertainty of power measurements and β2 is less
than 5%. If the loss contribution were larger, as may happen in
integrated waveguides, then Eq. (4) would be used to obtain
a first-order approximation of γ and subsequently evaluate∫ L

0 ρ(z)dz numerically by means of Eq. (1). This process could
then be iterated to improve the measurement ofγ .

The second PoCE explored the viability of our method
in a (non-PM) single-mode fiber. In single-mode fibers with
randomly varying birefringence, the evolution of the electric
field (averaged over the polarization states) is also governed
by a NLSE-type equation where A and |A|2 are replaced by
A= (Ax, A y)

T and |Ax|
2
+ |A y|

2, respectively, and γ is rede-
fined as (8/9)γ [5,26]. Therefore, Eq. (4) can also be derived for
these fibers. Here we considered a 200 m long single-mode opti-
cal fiber Nufern 1060-XP withα corresponding to 0.9 dB km−1

(shorter or longer fiber lengths could also be considered).

This fiber was pumped with the same source employed in
our first experiment at several mean powers between 57 mW
and 352 mW. Spectra and pulse profiles were also measured
analogously to the first case. The outcome of this second exper-
iment is presented in Fig. 2(b), where −1ρloss also shows a
linear dependence with respect to1µ2. A linear fitting of these
experimental points leads to β2/γ = (4.7± 0.2) ps2 W.
To determine a reference value for β2/γ , we considered
β2 = (22± 2) ps2 km−1 based on the measurement carried
out in Ref. [27] and we calculated γ = (4.9± 0.8)W−1 km−1

using the nominal value MFD= (6.2± 0.5) µm and the
value of n2 used for the PM980-XP fiber. These values result in
β2/γ = (4.5± 1.1) ps2 W, also in accordance with our experi-
mental value. In this way, we also demonstrated our approach in
(non-PM) single-mode fibers.

So far, our experiments have been realized in the normal
dispersion regime. Note that β2 > 0 can be inferred from
the positive sign of the line slopes observed in Figs. 2(a) and
2(b). To test our approach also in the anomalous dispersion
regime, we repeated our measurement in a PM1550 fiber
and a single-mode SMF-28 fiber pumped at 1550 nm. In
this case, the experiments were realized in Brussels Photonics
Laboratories at Vrije Universiteit Brussel using a Pritel PM
femtosecond fiber laser emitting ∼7 ps long pulses at a rep-
etition rate of 60 MHz, and a FROG instrument (Coherent
Solutions HR150) to characterize the pulse profiles. The
results of our third PoCE with a 20 m long Nufern PM1550-
XP fiber with α corresponding to 1 dB km−1 are plotted in
Fig. 2(c). To produce appreciable pulse changes over the rela-
tively short fiber length considered here, average powers ranging
from 6 mW to 35 mW were employed. Furthermore, aux-
iliary fiber was required between the fiber under test (FUT)
and the FROG device, which induced additional compres-
sion of the ps pulses and, as a result, an enlargement of ρ(L).
Consequently, the output pulses measured by means of the
FROG setup were numerically propagated backwards along
the auxiliary fiber to obtain ρ(L) (leading to a reduction
of about 32% in 1ρloss). On one hand, the experimental
points in Fig. 2(c) fit very well to a line with a negative slope,
which indicates β2 < 0, as expected. On the other hand,
the linear fitting provides β2/γ = (−21.7± 0.4) ps2 W.
Attending to Ref. [28] and the specifications of the fiber,
β2 = (26± 2) ps2 and MFD= (10.1± 0.4) µm, and thus,
γ = (1.3± 0.1)W−1 km−1, where the same n2 value as in
the previous experiments is considered. According to these
reference values, β2/γ = (−21± 3) ps2 W, in line with the
value obtained in our measurement. To complete our study in
the anomalous dispersion regime, measurements in a 200 m
long single-mode fiber Corning SMF-28 with α corresponding
to 0.2 dB km−1 at mean powers from 1 mW to 3.4 mW were
also performed. The evolution of the pulse spectrum and tem-
poral profile corresponding to this experiment can be seen in
Fig. 3. It is worth comparing the pulse compression observed
in Fig. 3(b) for β2 < 0, with the pulse broadening shown in
Fig. 1(b) for β2 > 0. The results of this fourth PoCE are plotted
in Fig. 2(d) and yield β2/γ = (−16.6± 0.2) ps2 W (in this
case, the reduction in 1ρloss due to the auxiliary fiber being
about 6% because significantly larger1ρloss values are achieved
and the additional increase in ρ(L) is much smaller compared
to the third experiment). The fiber specifications indicate
β2 = (21± 2) ps2 and MFD= (10.4± 0.5) µm, and thus,
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Fig. 3. (a) Spectrum and (b) pulse profiles at the input (dashed
line) and output (solid line) obtained with 200 m long SMF-28
fiber pumped with 3.4 mW mean power. These results illustrate the
spectrum and pulse evolutions forβ2 < 0.

γ = (1.2± 0.1)W−1 km−1 for the n2 value used throughout
this work. These values indeed correspond to those used to char-
acterize a SMF-28 fiber in the modeling of the experiments in
Ref. [29]. So, we can expect β2/γ = (−18± 3) ps2 W, which
is also in excellent agreement with our result and thus proves
our method in the anomalous dispersion regime. (An improved
experimental arrangement enabling direct connection of the
FUT to the measuring equipment would eliminate any require-
ment for numerical corrections, thus increasing even further the
reliability of the technique.)

The measurements of β2/γ reported here and the gener-
alization of Eq. (2) and L−1

D for guiding media where TOD
becomes important enough (e.g., fibers pumped close to their
zero dispersion wavelength) makes our approach promising
to obtain β3/γ based on pulse spectral asymmetries [18,20].
As such, one could obtain chromatic dispersion over the wave-
length range spanned by the nonlinearly broadened spectrum,
while pumping with a narrow-band pulse at a fixed wavelength.
Further extensions to multimode guiding media might also be
possible.

In conclusion, we have experimentally demonstrated that CG
allows measuring β2/γ in any single-mode fiber with a simple
setup. Relying on an exact property of the equation that governs
nonlinear pulse propagation, our method can also be applied
in integrated waveguides. Moreover, in guiding media where
chromatic dispersion has been precisely determined using other
techniques, our method can rigorously remove fundamental
error sources when measuring γ . Finally, our approach could
give access to chromatic dispersion over a wide spectral range
without the need to use tunable lasers or broadband sources that
cover the wavelength range of measurement, and might also
offer new ways for characterizing multimode guiding media.
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