
Universidad Nacional de Córdoba

Facultad de Matemática, Astronomı́a y Fı́sica

Relation-Changing Modal
Logics

Thesis presented on December 16, 2013

to obtain

Doctorado en Ciencias de la Computación

Raul Alberto Fervari

Advisor

Dr. Carlos Areces FaMAF, Universidad Nacional de Córdoba, Argentina

Jury

Dr. Javier Blanco FaMAF, Universidad Nacional de Córdoba, Argentina
Dr. Hans van Ditmarsch LORIA, CNRS - Université de Lorraine, France
Dr. Pedro Sánchez Terraf FaMAF, Universidad Nacional de Córdoba, Argentina

Córdoba, Argentina, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Digital de la Universidad Nacional de Córdoba

https://core.ac.uk/display/344694710?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Raul Alberto Fervari: Relation-Changing Modal Logics, c© March 2014.

Contents

Acknowledgments vii
Abstract ix
Resumen xi

i why dynamic modal logics? 1

1 the role of logic in computer science 5

1.1 Computation and Logic . 5

1.2 Which Logic? . 7

2 introducing dynamic logics (by example) 13

2.1 From Basic Modal Logic to the Dynamic Approach 13

2.2 (Really) Dynamic Modal Logics . 14

2.2.1 Hybrid Logics . 14

2.2.2 Memory Logics . 16

2.2.3 Arrow Updates . 17

2.2.4 Sabotage Logic . 18

2.2.5 And More... 19

2.3 This Thesis . 21

ii abstract relation-changing modal logics 23

3 relation-changing modal logics 27

3.1 Changing the Access . 27

3.2 Introducing the Primitives . 29

3.3 Some Model Properties . 31

4 expressive power 41

4.1 Modal Distinctions . 41

4.2 The Right Way to Describe Things . 43

4.3 Comparing Languages . 46

4.4 A More General Perspective . 51

5 the satisfiability problem 53

5.1 Sabotage Logic . 53

5.2 Bridge Logic . 57

5.3 Swap Logic . 61

6 model checking 65

6.1 The Model Checking Problem . 65

6.2 Formula Complexity and Program Complexity 70

7 tableaux 75

7.1 Tableau Calculus . 75

7.1.1 Sabotage . 78

7.1.2 Bridge . 81

7.1.3 Swap . 84

7.2 Combining Procedures . 88

iii

7.3 How to use Tableaux to Compute Interpolants? 89

iii information and knowledge 91

8 dynamic epistemic logics 95

8.1 Going in a New Direction . 95

8.2 Reasoning about Knowledge . 96

8.3 Information Change . 99

8.3.1 A Card Game Scenario . 99

8.3.2 Transforming Models . 101

9 applying relation-changing to del 107

9.1 A Logic with Delete and Copy . 107

9.2 Embedding Action Models in Relation-Changing 114

9.3 Computational Behaviour . 117

9.3.1 Complexity of the FragmentML(cp) 117

9.3.2 Complexity of the FragmentML(J K) 120

iv conclusions 125

10 final remarks 129

10.1 What Have We Done? . 130

10.2 Looking to the Future . 132

Bibliography 133

Index 141

iv

vi

Acknowledgments

Almost four years ago I decided to start my PhD studies, and today I still think it was
a good decision. I arrived at FaMAF in June, 2010 to meet Carlos and start working in
Logic. The first ideas about Swap Logic came at the end of 2010, and later new ideas
developed (which guided me to this thesis). Besides logic, I learned many other things
from the trips I made and the people I met during my PhD studies. And precisely,
this introductory text in my thesis is about people. It is about those who were with
me from the beginning, and other that I have met thanks to the road I decided to take.
I would like to thank all of them.

First, I would like to thank Carlos Areces for his supervision. Thanks for teaching
me so many things. Thanks for all the time he dedicated to this thesis. Also, thanks
for his advice, help and support (specially in moments of panic! :D) during these
years. Thanks for introducing me to a lot of interesting people, and for sharing many
things with me.

I am specially grateful to Guillaume Hoffmann for working with me since he
arrived in Argentina. Thanks for his interest in the topics I was working on, and for
collaborating in various results of this thesis. Thanks also, of course, for all the chats,
drinks, the time we spent in Nancy, and many other things. I am also very grateful to
Mauricio Martel for working with me on the undecidability results, for being available
to travel to Córdoba as many times as needed, and for his enthusiasm.

I would like to give my thanks to Hans van Ditmarsch and François Schwarzen-
truber. Thanks for all the interesting ideas we discussed during my visit to LORIA,
some of them included in the last part of this thesis. Thanks for all the hours of work,
and for sharing new ideas to investigate in the future. A particular thank to Hans for
accepting to be part of my jury.

Thanks to all the people in FaMAF that have heard me complaining about writing
my thesis during several months, specially during lunch time (Pedro, Damián, Franco,
Leti, Silvia, Miguel, and specially Chun), and to Eze, for the chats in the hall. Thanks
to the Logics, Interaction and Intelligent Systems Group (LIIS), our group. Thanks to
Seba (“the philosopher”), for some bibliography and for the Borges quote in the last
chapter. Of course thanks to Javier and Pedro ST for accepting to be part of this thesis
jury.

Thanks to all the people from LORIA who received me in Nancy, specially to the
Argentinian guys (Juan and César). Thanks for making me feel comfortable there, for
the meetings, the food, and for all the time in the music room (even on weekends!).
Thanks to César for receiving me at his home in Nancy, and for finally visiting me in
Córdoba. Thanks to the people I met at ESSLLI’12 (Facu, Nacho, Gustavo, Inari, etc.)
for a great time in Opole.

Besides the people playing an important role in the academic part of my PhD
studies, there are people from the other part, my friends since always. I want to thank
all of them: friends from my town, from the university, and those I have met for

vii

no reason. Also, I would like to give a special thanks to Meli, for many wonderful
moments during the last months :).

Finally, thanks to my family for all their support in every decision I take.

Raul Fervari
Córdoba, Argentina

March, 2014

viii

Abstract

In this thesis we study dynamic modal operators that can change the model during
the evaluation of a formula. In particular, we extend the basic modal language
with modalities that are able to swap, delete or add pairs of related elements of
the domain. We call the resulting logics Relation-Changing Modal Logics. We study
local version of the operators (performing modifications from the evaluation point)
and global version (changing arbitrarily edges in the model). We investigate several
properties of the given languages, from an abstract point of view. First, we introduce
the formal semantics of the model modifiers, afterwards we introduce a notion of
bisimulation. Bisimulations are an important tool to investigate the expressive power
of the languages introduced in this thesis. We show that all the languages are
incomparable among them in terms of expressive power (except for the two versions
of swap, which we conjecture are also incomparable). We continue by investigating the
computational behaviour of this kind of operators. First, we prove that the satisfiability
problem for some of the relation-changing modal logics we investigate is undecidable.
Then, we prove that the model checking problem is PSpace-complete for the six
logics. Finally, we investigate model checking fixing the model and fixing the formula
(problems known as formula and program complexity, respectively). We show that it
is possible to define complete but non-terminating methods to check satisfiability. We
introduce tableau methods for relation-changing modal logics and we prove that all
these methods are sound and complete, and we show some applications.

In the last part of the thesis, we discuss a concrete context in which we can apply
relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use
of the kind of logics that we investigate in this new framework, and we introduce
some examples of DEL. Finally, we define a new relation-changing modal logic that
embeds DEL and we investigate its computational behaviour.

keywords : modal logics, relation-changing operators, dynamic operators, bisimu-
lations, expressive power, complexity, decidability, dynamic epistemic logics.

ix

x

Resumen

En esta tesis investigamos operadores modales dinámicos que pueden cambiar el
modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje
modal básico con modalidades que son capaces de invertir, borrar o agregar pares
de elementos relacionados. Estudiamos la versión local de los operadores (es decir,
la realización de modificaciones desde el punto de evaluación) y la versión global
(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes
introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la
semántica formal de los modificadores de modelo, e inmediatamente se introduce
una noción de bisimulación. Las bisimulaciones son una herramienta importante para
investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró
que todas los lenguajes son incomparables entre sı́ en términos de poder expresivo
(a excepción de los dos versiones de swap, aunque conjeturamos que también son
incomparables). Continuamos por investigar el comportamiento computacional de
este tipo de operadores. En primer lugar, demostramos que el problema de satis-
factibilidad para las versiones locales de las lógicas que investigamos es indecidible.
También demostramos que el problema de model checking es PSPACE-completo para
las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando
la fórmula (problemas conocidos como complejidad de fórmula y complejidad del
programa, respectivamente). Es posible también definir métodos para comprobar
satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau
para las lógicas que cambian las relaciones y demostramos que todos estos métodos
son correctos y completos, y mostramos algunas aplicaciones.

En la última parte de la tesis, se discute un contexto concreto en el que pueden
aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas
(DEL, por las siglas en inglés). Motivamos el uso del tipo de lógicas que investiga-
mos en este nuevo marco, e introducimos algunos ejemplos de DEL. Finalmente,
definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos
su comportamiento computacional.

palabras clave : lógicas modales, operadores de cambio de accesibilidad, opera-
dores dinámicos, bisimulaciones, poder expresivo, complejidad, decidibilidad, lógicas
dinámicas epistémicas.

xi

xii

Part I

W H Y D Y N A M I C M O D A L
L O G I C S ?

Mareos que dan gran jaleo
(Modales que son malas mañas).

from “Amnesia”, Carlos ‘Indio’ Solari.

The first discussions about logic appeared in the 5th century B.C. in the Greek and
Roman antiquity, with a particular interest in sentence analysis, truth and fallacies.
Logic was used in its origins as an instrument to describe elements of the real world,
and to answer the big questions of the universe. There are many evidences of the
use of logic in philosophy, starting by Aristotle’s syllogism, which represents the
introduction of a formal system of thought, or the attempts of Kant and Descartes of
using logic to demonstrate the existence of God, in more modern philosophy. These
two examples, with a large difference of time (from the 4th century B.C. in the first
case, to the 17th and 18th centuries A.D. in the last cases) are not isolated and show
that philosophy has been the main partner of logic for a long time.

But in the 2nd century A.D. Galen already thought in logical constructions to help
formalize mathematics. The link with mathematics became even more relevant with
the work of Leibniz in the 17th century. From Leibniz through Boole, Frege, Cantor,
Hilbert’s attempt to axiomatize mathematics, until the incompleteness theorem of
Gödel, logic and mathematics have lived together and for many years now these two
disciplines have been closely tied.

Leibniz had also another amazing vision: he dreamed with machines capable
to make calculations, to free humans of this task. In the 20th century, Turing and
von Neumann made Leibniz’s dream true. Turing formalized a logical machine
capable of representing any computation, and later von Neumann designed the
logical architecture for a concrete computation machine. These are the origins of
Computer Science, and since then logic became both its foundations, and one of its
most promising areas of application.

1
The Role of Logic in Computer

Science

1.1 C O M P U TAT I O N A N D L O G I C

Computer Science is a discipline which cannot be classified unambiguously as either
an engineering, or a mathematical discipline. From the software development point
of view, computer science is pure engineering: it covers the design, construction and
evaluation of computer systems. In contrast, from a theoretical point of view, it is
possible to understand and explain the fundamentals of this science mathematically.
The field is characterized by this dichotomy: from a practical perspective, the goal is
to solve problems with computer programs; but we would not be able to define what
kind of problems are solvable, or how hard it is to solve a problem, if we do not study
computer science (or, quoting E. W. Dijkstra, computing science1) from a mathematical
perspective.

The design and implementation of a software project is nothing else that the deve-
lopment of a product. First, the users describe their requirements as clearly as possible
to the developers. Then, developers make those requirements more specific, to design
the structure of the software. After that, development starts, i.e., the process of writing
and testing the code. Finally, the end product is delivered to the user. All these
phases that we just described very simply, require to take many decisions: decisions of
planning, how to specify the requirements of the user, which programming language
is more appropriate, how to guarantee quality in the final product, and many others.
It is exactly the kind of tasks that an engineer has to do to build a bridge, a car
engine or a software: she/he has to design, build and maintain the product. This
perspective of computer science is in general well known, and constitutes, perhaps,
the mainstream; but in this thesis, we focus on computer science from a mathematical
perspective. Taking into account the vast number of possible connections between
mathematics and computation, we should be more specific: we will devote ourselves
to Computational Logic.

Computational logic is the use of logic to reason about computation. There is
a large number of applications of computational logic in different areas. Methods
and concepts from logic have a lasting impact in computer science, with unexpected
and effective results. In [Halpern et al., 2001], concrete examples of such impact are
introduced. Let us discuss in detail some of these examples to highlight how deep is
the effect of logic within computer science.

Complexity Theory for instance, investigates the question “How much time and
how much memory space is needed to solve a particular problem?”. This measure is done

1 In his manuscripts, Dijkstra referred to “computing science” instead of “computer science”, arguing that
this science is about studying “how to compute”, not computers.

5

6 CHAPTER 1. the role of logic in computer science

by classifying a problem into complexity classes. Typical examples of complexity
classes are polynomial time, non-deterministic polynomial time, polynomial space,
exponential time, etc. It is possible to give descriptive characterizations of each
of these classes as follows. If the fact that a problem can be defined by using the
expressive power of a logic L ensures that the problem belongs to a complexity class
C, then L characterizes C. This kind of characterizations are one of the goals of the
field of Descriptive Complexity [Immerman, 1995]. Classical complexity classes such
as those mentioned before have natural descriptive characterizations. For instance,
Fagin’s theorem [Fagin, 1974] characterizes the class NP with the existential fragment
of Second-Order Logic. Thus, logic has been an effective tool for answering some of
the basic questions in complexity theory.

Complexity theory is an example of the application of logic in theoretical computer
science. But logic can also be useful in applied computer science. In practice, one of
the main areas of computer science is the study of Databases [Maier, 1983], which is
concerned with storing, querying and updating large amounts of data. Logics and
databases are related since the early 1970s, given that there are logical languages than
can also be seen as Database Query Languages. Indeed, many of the standard query
systems such as SQL (Structured Query Language) or QBE (Query by Example) are
based on first-order logic, and more powerful languages are extensions of first-order
logic with recursion. The impact of logic on databases is one of the most remarkable
examples of the effectiveness of logic in applied computer science.

Logic also helps define the fundamental properties of programming languages,
probably one of the most important tools in the development of software products.
Type Theory [Reynolds, 1985; Reynolds, 1998] is a formal framework for the design,
analysis and implementation of programming languages. Thanks to type theory it
is possible to describe complex concepts such as data abstraction, inheritance and
polymorphism. This framework is based on logics of program behaviour that are
appropriate to reason about programs. It let us present concepts modularly, and verify
properties of programming languages.

Logic is present in other areas of computer science, in which certain kind of
interaction between different objects is necessary, such as distributed computing,
game theory and artificial intelligence. Classical questions that these areas need to
answer are “What do processes need to know about other processes in order to coordinate an
action?” “What do agents need to know about other agents to carry on a conversation?” “What
does a robot need to know in order to open a safe?”. All these tasks require reasoning about
knowledge and belief, a field initially motivated by the philosophy community in the
1950s [von Wright, 1951] and investigated later by Hintikka [Hintikka, 1962]. This
initiates the study of epistemic logics, in which knowledge and interaction between
agents are represented in models of possible worlds, providing a formal framework to
represent the kind of computational systems that we mentioned before.

Finally, Software Verification is probably one of the most classical examples of
computational logic, given that computation and logic are intrinsic parts of the
problem. Computer programs and their behaviour are formalized in some logical
language, and properties are verified on this representation. A particular case is the
Model Checking task [Clarke, 2008]: given a property and one automaton representing
a system, find all the states where the property holds. As we can see, we need some

1.2. WHICH LOGIC? 7

logical language to express properties on automatons, and the language has to posses
some characteristics that makes the task automatizable.

We have listed several cases of computational problems solved with a logical
approach. They are clear examples in which a logical approach directly lead to
advances in computer science. In this thesis, we will investigate a family of logics that
can be used to model dynamic environments. We define languages with a specific
purpose (describe changes in relationships between elements), and we study their
properties. For instance, we investigate what these languages can express, and what
they cannot. We compare them to determine which is more appropriate for different
reasoning tasks. We are also interested in their computational behaviour, for example,
whether their inference tasks are decidable or not. In particular, we want to establish
if the satisfiability problem is decidable or not, i.e., if given a formula we have an
algorithm that answers yes if there is a model for the formula, and no otherwise.
Another interesting question is the exact complexity of the following inference task:
given a formula and a finite model, decide if the formula holds in such model. We
are interested in the computational cost of performing those tasks, classifying them in
complexity classes, such as P, NP, PSpace, etc. We also look for applications of the
kind of languages that we investigate, for instance, to model epistemic scenarios, and
we compare them with other languages already used in the area.

1.2 W H I C H L O G I C ?

We discussed the relation between logic and computation, but we did not say anything
yet about which logic is best suited for the task. For many years, talk about logic
was considered talk about First-Order Logic (FOL) [Enderton, 1972]. This is not a
surprise, given that many mathematicians included figures like Russell, Hilbert and
Gödel, picked this logic for many years to answer the fundamental questions about
mathematics. First-order logic is a language with well known properties, studied in
detail for many years, which is easy to understand and very powerful.

To understand more about the behaviour of FOL, let us introduce in detail the
syntax and semantics of the First-Order Language and some of its properties:

Definition 1.2.1 (First-Order Language). Let REL = {R1, R2, . . .} be a countable set
of relation symbols, FUN = { f1, f2, . . .} a countable set of function symbols, CON =
{c1, c2, . . .} a countable set of constant symbols and VAR = {x1, x2, . . .} a countable set of
variables. We assume that REL, FUN, CON and VAR are pairwise disjoint. To each relation
symbol Ri ∈ REL and each function symbol fi ∈ FUN we associate an arity n > 0. We
call S = 〈REL,FUN,CON,VAR〉 a signature, and we will sometimes focus on relational
signatures where FUN = {}. This is usually not a restriction as we can represent functions
as constrained relations.

The well-formed terms of the first-order language over the signature 〈REL, FUN, CON,
VAR〉 are

TERM := xi | ci | fi(t1, . . . , tn),

where, xi ∈ VAR, ci ∈ CON, fi ∈ FUN of arity n and t1, . . . , tn ∈ TERM. The well-formed
formulas over the signature are

FORM := > | t1 = t2 | Ri(t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃xi.ϕ,

8 CHAPTER 1. the role of logic in computer science

where t1, t2, . . . , tn ∈ TERM, Ri ∈ REL is an n-ary relation symbol, ϕ, ϕ1, ϕ2 ∈ FORM and
xi ∈ VAR. As usual, we take ∨,→,↔ and ∀ as defined symbols.

Turning to semantics, first-order formulas are interpreted on first-order models.

Definition 1.2.2 (First-Order Models and Satisfiability). A first-order model for a signa-
ture S , is a structureM = 〈M, ·M〉 where M is a non-empty set and ·M is an interpreta-
tion function defined over REL ∪ FUN ∪ CON such that ·M assigns an n-ary relation over
M to n-ary relation symbols in REL, an n-ary function n M→ M to n-ary function symbols
in FUN, and an element in M to constant symbols in CON. When the signature is small, we
will simple writeM = 〈M, {RMi }, { fMj }, {cMk }〉 instead ofM = 〈M, ·M〉.

An assignment g forM is a mapping g : VAR → M. Given an assignment g forM,
x ∈ VAR and m ∈ M, we define gx

m (an x-variant of g) by gx
m(x) = m and gx

m(y) = g(y)
for x 6= y. Given a model M and an assignment g for M, the interpretation function ·M
can be extended to all elements in TERM:

xMi = g(xi)
f (t1, . . . , tn)M = fM(tM1 , . . . , tMn).

Finally the satisfiability relation |= is defined as

M |= >[g] always
M |= t1 = t2[g] iff tM1 = tM2

M |= R(t1, . . . , tn)[g] iff RM(tM1 , . . . , tMn)
M |= ¬ϕ[g] iff M 6|= ϕ[g]

M |= ϕ1 ∧ ϕ2[g] iff M |= ϕ1[g] andM |= ϕ2[g]
M |= ∃xi.ϕ[g] iff M |= ϕ[gxi

m] for some m ∈ M.

If a given formula ϕ is satisfied under every assignment forM, we say that ϕ is valid inM
and writeM |= ϕ .

FOL is a well understood and powerful language, but it also has important
disadvantages. On the one hand, sometimes it is not sufficiently expressive. For
example, it is well known that FOL cannot express the transitive closure of a relation,
or the fact that a relation is well founded. On the other hand, and most importantly,
from a computational perspective, FOL is sometimes, too expressive. The next result
is a clear example of this situation:

Theorem 1.2.3. The satisfiability problem for FOL is undecidable.

Proof. There are several proofs for this theorem. In 1936 Church proved that no
recursive function could decide the validity of first-order sentences, and concluded
that there was no decision algorithm for the satisfiability problem of FOL [Church,
1936]. In 1937, Turing formalized Turing machines by means of first-order formulas,
and reduced a particular class of undecidable problems for Turing machines to the
validity problem [Turing, 1937]. In [Berger, 1966], we can find a proof by reducing the
undecidable Tiling problem to FOL satisfiability.

Theorem 1.2.3 establishes that there is no terminating procedure to check satisfia-
bility of a first-order formula, which is one of the main problems for any logic. On

1.2. WHICH LOGIC? 9

the other hand, its model checking problem is decidable and PSpace-complete [Stock-
meyer, 1974; Chandra and Merlin, 1977; Vardi, 1982]. If we only need model checking,
FOL can be a good choice, but in general if we need to model a problem with
a logic having good computational properties, FOL or any more expressive logic
might not be the best alternative. In this case, it is natural to look for new lan-
guages with better computational properties. Modal logics [Blackburn et al., 2001;
Blackburn and van Benthem, 2006] fall into this family of logics: they are logics
designed to talk about relational structures, and that can be adapted according to the
problem we are dealing with. Let us introduce the Basic Modal LogicML:

Definition 1.2.4 (Syntax of Basic Modal Logic). Let PROP be a countable, infinite set of
propositional symbols. Then the set FORM of formulas ofML over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM. Other operators are defined as usual: > is ¬⊥, ϕ ∨ ψ
is defined as ¬(¬ϕ ∧ ¬ψ) and �ϕ is a shorthand for ¬♦¬ϕ.

Now we define the structures where we interpret formulas of the basic modal
language. Models are just labeled directed graphs, which we call Kripke Models.

Definition 1.2.5 (Kripke Models). A Kripke ModelM is a tripleM = 〈W, R, V〉, where
W is a non-empty set whose elements are called points or states; R ⊆W×W is the accessibil-
ity relation; and V : PROP→ P(W) is a valuation. Let w be a state inM, the pair (M, w)
is a pointed model; we usually drop parentheses and callM, w a pointed model.

Figure 1 shows an example of a Kripke model. As we can see, the modelM is a
graph with three elements, {w, v, u}. w is labeled by p, u by p and q, and v has no label.
Formally, M=〈W, R, V〉, where W={w, v, u}, R={(w, v), (w, u), (v, v), (v, u), (u, v)},
and V(p)={w, u}, V(q)={u}.

w

{p}

v

u
{p, q}

M

Figure 1: Example of a Kripke model.

We turn now to semantics. Operators in ML describe local properties of the
models, which means that formulas are evaluated in some specific point. Pointed
models are used for this.

10 CHAPTER 1. the role of logic in computer science

Definition 1.2.6 (Semantics of Basic Modal Logic). Given a pointed modelM, w and a
formula ϕ we say thatM, w satisfies ϕ (notation,M, w |= ϕ) when

M, w |= ⊥ never
M, w |= p iff w ∈ V(p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R,M, v |= ϕ.

A formula ϕ ofML is satisfiable if there exists a pointed modelM, w such thatM, w |= ϕ.

ML has better computational properties than FOL. In fact, its satisfiability
problem is decidable, and its complexity is PSpace-complete. In addition, the model
checking problem is in P. Let us introduce these results in detail. From Definition 1.2.4
it is clear that the language can be seen as an extension of propositional logic. But we
can also show thatML is a fragment of first-order logic. In particular, it is a fragment
of first-order logic with two variables (FOL2), which is decidable [Scott, 1962]. We
can use this result to show the decidability of ML. Notice that a modal model
M = 〈W, R, V〉 can be seen as a first-order model by considering V as the part of the
interpretation function defining the meaning of unary predicate symbols. Semantics
conditions in Definition 1.2.6 are purely first-order. Using these two intuitions, we
can get a pair of mutually recursive functions, which translates formulas fromML to
formulas in FOL2:

Definition 1.2.7 (Standard Translation into FOL2). Consider the signature S = 〈{R} ∪
{Pi | pi ∈ PROP}, {}, {}, {x, y}〉. The standard translation from ML-formulas to
FOL2-formulas over S is defined by two mutually recursive functions as:

STx(pj) = Pj(x), pj ∈ PROP STy(pj) = Pj(y), pj ∈ PROP

STx(¬ϕ) = ¬STx(ϕ) STy(¬ϕ) = ¬STy(ϕ)
STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ) STy(ϕ ∧ ψ) = STy(ϕ) ∧ STy(ψ)

STx(♦ϕ) = ∃y.(R(x, y) ∧ STy(ϕ)) STy(♦ϕ) = ∃x.(R(y, x) ∧ STx(ϕ))

The next theorem establishes that the standard translation returns a formula which
is equivalent to the original.

Theorem 1.2.8. Let ϕ aML-formula, then for any modelM we have

M, w |= ϕ iffM |= STx(ϕ) [x 7→ w] .

It has been proven that the satisfiability problem for FOL2 is decidable [Scott,
1962]. Actually [Grädel et al., 1997] shows that the problem is NExpTime-complete.
From these results we can conclude that the satisfiability problem for ML is also
decidable and its upper bound is NExpTime.

Theorem 1.2.9. Satisfiability problem forML is decidable.

Theorem 1.2.9 tells us thatML has better computational behaviour than FOL for
the satisfiability problem. Let us now turn to the following model checking problem.

1.2. WHICH LOGIC? 11

Given a finite pointed modelM, w and a formula ϕ, determine ifM, w |= ϕ. Again,
the basic modal logicML behaves well for this task. For first-order logic, this problem
is PSpace-complete but forML it is in P. In [Blackburn and van Benthem, 2006] a
polynomial bottom-up labeling algorithm solving the model checking problem for
ML is introduced.

Theorem 1.2.10. Model Checking forML is in P.

Proof. Given a formula ϕ, we label every point in the model with all the subformulas
of ϕ that are true at this point. We label a point w with a propositional symbol p if
and only if w is in the valuation of p. Boolean cases are handled in the obvious way.
The only complex case is for modalities. We label w with ♦ϕ if one of the successors
is labeled by ϕ, and we label it with �ϕ if all the successors are labeled by ϕ. The
pseudo code of the procedure to check diamonds is displayed in Algorithm 1.

Algorithm 1 Model Checking ♦ϕ

procedure MC-♦(ψ)
T ← {v | ψ ∈ label(v)}
while T 6= ∅ do

choose v ∈ T
T ← T \ {v}
for all w s.t. R(w, v) do

if ♦ϕ /∈ label(w) then
label(w)← label(w) ∪ {♦ψ}

end if
end for

end while
end procedure

Once we label a point with ϕ we never duplicate work. The algorithm takes
polynomial time in the size of the input and the model. The algorithm takes

con(ϕ)× nodes(M)× nodes(M)

steps, where con(ϕ) is the number of connectives of the formula, and nodes(M) is
the number of nodes in the model.

We have seen that ML has good computational properties, but as we can see
in Definition 1.2.7 it is a small fragment of FOL. For instance, it is not possible to
express inML that a model has exactly three different elements, because this is not
expressible in FOL2. We introducedML as a particular case of modal logics, but in
fact, there are many modal logics, each of them with its particular properties. InML,
the semantics of ♦ and � involves looking at the successors of the evaluation point.
It means that we can always “move forward”, but we can never “go back”. We can
consider the past operator, denoted by ♦−1 with the following semantics:

M, w |= ♦−1 ϕ iff for some v ∈W s.t. (v, w) ∈ R,M, v |= ϕ.

12 CHAPTER 1. the role of logic in computer science

Clearly, the semantics condition is a first-order formula. The translation ST of
Definition 1.2.7 can be expanded to this new operator:

STx(♦−1 ϕ) = ∃y.(R(y, x) ∧ STy(ϕ)) STy(♦−1 ϕ) = ∃x.(R(x, y) ∧ STx(ϕ))

Again,ML with the past operator is a fragment of FOL2, therefore it is decidable
and its complexity upper bound is NExpTime.

Both ♦ and ♦−1 depend on the accessibility relation: they are called local operators.
It is also possible to add operations to describe unreachable parts of the model, i.e., to
express global properties. The universal modalities were designed for this purpose.
The E operator is an existential quantifier over all the states of the model. Its dual,
the A operator, represents universal quantification. Their formal semantics is the
following:

M, w |= Eϕ iff for some v ∈W,M, v |= ϕ
M, w |= Aϕ iff for all v ∈W,M, v |= ϕ.

The standard translation can be also extended for the universal modality:

STx(Eϕ) = ∃y.(STy(ϕ)) STy(Eϕ) = ∃x.(STx(ϕ))
STx(Aϕ) = ∀y.(STy(ϕ)) STy(Aϕ) = ∀x.(STx(ϕ))

Clearly, the universal modalities increase the expressive power of the language (for
instance, it can talk about isolated parts of a model), but it is still a proper fragment
of FOL2. Hence, theML equipped with E has a NExpTime upper bound. However,
it has a more complex computational behaviour than the other examples: satisfiability
forML + E is ExpTime-complete [Spaan, 1993; Hemaspaandra, 1996].

We can see that modal logics are fragments of FOL with good computational
properties. In some sense, they have a dynamic behaviour. Each time that we evaluate,
for instance, a ♦, ♦−1 or E we are moving to a different state, i.e., to a different pointed
model. But, their dynamic power seems limited. Other operators were specially
introduced to characterize dynamic situations. One of the most classical examples
is Propositional Dynamic Logic, or PDL [Ladner, 1977; Fischer and Ladner, 1979;
Harel, 1984]. This logic was created to represent executions of programs, modeling
the changes of a state after the application of an action. PDL is dynamic in the sense
of representing behaviour, however it never transforms the model. Other dynamic
modal logics directly modify the model while evaluating a formula. For instance,
Public Announcement Logic (PAL) [Plaza, 2007; van Ditmarsch et al., 2007] is a logic
with an operator which deletes those states of the model which do not verify some
property. Clearly, evaluating these operators we get a new model, in which some of
the original states have been removed. This is the kind of languages that interests us
in this thesis. More precisely, we investigate operations which change the accessibility
relation in relational structures.

2
Introducing Dynamic Logics (by

Example)

2.1 F R O M B A S I C M O D A L L O G I C T O T H E D Y N A M I C A P P R O A C H

Modal logics were born originally as a formalism to talk about modes of truth. Their
origins can be attributed to C. I. Lewis [Lewis, 1918], who tried to solve paradoxes of
the implication operator using the concepts of necessity and possibility. But this was
just the beginning. For many years, modal logics have evolved and became a powerful
tool in different areas. They have been used successfully in mathematics and computer
science, in (computational) linguistics, economics, artificial intelligence, knowledge
representation, philosophy, game theory, etc. Modal logics are particularly interesting
because many problems can be modeled using relational structures, i.e. graphs, and
modal languages are particularly appropriate to describe labeled directed graphs.

Necessity and possibility are examples of modes of truth that we can describe
with modal languages. Other natural examples can be found in the literature. For
instance, in Temporal Logics [Prior, 1957] we can capture the modes “eventually in
the future” or “always since some point in the future”. Another classical example are
Epistemic Logics [von Wright, 1951], which formalize the concepts of knowledge and
belief. But, under all these interpretations we are describing properties of the graphs
from a static point of view. Using these modal operators we can navigate and explore
properties of a given structure, but we cannot change the structure itself. If we check
a property of a node, apply some operations and then check again the same property
on the same node, the property is not modified. After any number of applications of
the modal operations, the structure remains unchanged.

Now, a question that we can postulate is:

What happens if we need to model situations in which the graph can change after
the application of some operations?

A first option could be modeling all the possible scenarios in different graphs
obtained by changing the original one, and then use classical modal logics to describe
them. Another option (which will be our approach) is to capture the dynamic behaviour
internally in the language. We should take some care here, because some modal
operators have been devised in the past to model dynamic phenomena, but not in the
sense we just mentioned.

One example which we already mentioned in the previous chapter is Propositional
Dynamic Logic (PDL). This logic is a formal system for reasoning about programs.
Originally, it was designed to formalize correctness specifications and prove that those
specifications correspond to a particular program. PDL is a modal logic that contains
an infinite number of modalities 〈π〉, where each π corresponds to a program. The

13

14 CHAPTER 2. introducing dynamic logics (by example)

interpretation of 〈π〉ϕ is that “some terminating execution of π from the current state leads
to a state where the property ϕ holds”. The structure of a program is defined inductively
from a set of basic programs {a, b, c, . . .} as:

• Choice: if π and π′ are programs, then π ∪ π′ is a program which executes
non-deterministically π or π′.

• Composition: if π and π′ are programs, then π; π′ is a program which executes
first π and then π′.

• Iteration: if π is a program, π∗ is the program that executes a finite number
(possibly zero) of times π.

• Test: if ϕ is a formula, then ϕ? is a program. It tests whether ϕ holds, and if so,
continues; if not, it fails.

The semantics of PDL-formulas is straightforward: diamonds quantify existentially
over the edges of a model, choosing non-deterministically or composing edges,
iterating on the edges, or testing properties. Formally:

M, w |= 〈π〉ϕ iff for some v s.t. (w, v) ∈ Rπ ,M, v |= ϕ

where Rπ either is the accessibility relation Ra corresponding to an atomic program a,
or is defined inductively as:

Rπ∪π = Rπ ∪ Rπ′

Rπ;π = Rπ ◦ Rπ′

Rπ∗ = (Rπ)∗

Rψ? = {(w, w) | M, w |= ψ}.

The expressive power of PDL is high (notice that it goes beyond first-order logic,
as it can express the reflexive-transitive closure of a relation), and PDL can express
some interesting properties. For example the formula

〈(ϕ?; a)∗; (¬ϕ)?〉ψ

represents that the program “while ϕ do a” ends in a state satisfying ψ. The program
inside the modality executes a a finite, but not specified number of times after checking
that ϕ holds, and after finishing the loop ¬ϕ must holds. This captures exactly the
behaviour of a while loop.

Clearly, the language gives us a practical way to deal with the notion of state and
change, but this is a weak notion of dynamic behaviour. Formulas do not change
the model, they only formalize program executions. The purpose of this thesis is to
investigate operations that can change the model while we are evaluating a formula.
We will see in the next section, various concrete examples of this kind of logics.

2.2 (R E A L LY) D Y N A M I C M O D A L L O G I C S

2.2.1 Hybrid Logics

We have seen that modal models are labeled directed graphs. Propositional symbols
act as labels or decorations on the nodes, and modal formulas are able to consult the

2.2. (REALLY) DYNAMIC MODAL LOGICS 15

properties of those labels and access adjacent nodes. Consider now operators that can
change the model. One possibility could be to define an operator that “re–decorates”
nodes in the model. Consider a new operator, that changes the label of the evaluation
point. This is the effect of ↓ in the Hybrid Logic HL(@, ↓) [Blackburn and Seligman,
1995; Areces et al., 2001; ten Cate, 2005; Areces and ten Cate, 2006]. The syntax and
semantics of this language are extensions of the basic modal logic ML. Hybrid
logics involve a special set of propositional symbols called nominals, that act as names
pointing to a unique state in the model.
HL(@, ↓) introduces the operators @ and ↓. @ is called the satisfaction operator and

the formula @n ϕ states that ϕ is true at the unique state where n holds. The down-arrow
binder ↓ binds a given nominal to the current state in the model. Hence, ↓n.ϕ intuitively
means “after naming the current state n, ϕ holds”. HL(@, ↓) is more expressive than
ML. In fact, it is a reduction class of first-order logic [Areces et al., 1999; ten Cate, 2005;
Areces and ten Cate, 2006]. Let us introduce it formally.

Definition 2.2.1 (Syntax of Hybrid Logics). Let the signature 〈PROP,NOM〉 be given,
with NOM ⊆ PROP. The set FORM of formulas ofHL(@, ↓) over 〈PROP,NOM〉 is defined
as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | @n ϕ | ↓n.ϕ,

where p ∈ PROP, n ∈ NOM and ϕ, ψ ∈ FORM.

Syntactically, nominals can appear at the same places as regular propositional
symbols, but they can also appear as parameters of the operators @ and ↓. Models of
hybrid logics are similar to models ofML. However they make each nominal point
to exactly one state.

Definition 2.2.2 (Semantics of Hybrid Logics). A hybrid modelM is a triple 〈W, R, V〉
where W is non empty, R ⊆W ×W and V : PROP→ P(W) is a valuation such that V(n)
is a singleton if n ∈ NOM. LetM be a hybrid model, w a state inM, the semantics of the
hybrid operators is defined as:

〈W, R, V〉, w |= @n ϕ iff 〈W, R, V〉, v |= ϕ for V(n) = {v}
〈W, R, V〉, w |= ↓n.ϕ iff 〈W, R, Vw

n 〉, w |= ϕ,

where Vw
n is defined as Vw

n (n) = {w} and Vw
n (m) = V(m), for m 6= n.

ϕ is satisfiable if for some pointed modelM, w we haveM, w |= ϕ.

Let us discuss an example to show the expressive power of hybrid operators.

Example 2.2.3. The formula ↓n.♦n states “call the actual point n and ensure that n is
reachable in one step”, which forces the current point to be reflexive.

As we can see, HL(@, ↓) is a very powerful language, and the prize to pay is its
high computational complexity. The satisfiability problem of HL(@, ↓) is undecid-
able [Areces et al., 1999] and model checking is PSpace-complete [Franceschet and de
Rijke, 2003].

16 CHAPTER 2. introducing dynamic logics (by example)

2.2.2 Memory Logics

Other dynamic languages have been studied, looking for better computational pro-
perties that those of HL(@, ↓). Memory Logics [Mera, 2009] are modal logics with
the ability to store the current state of evaluation into a set (the memory) and to
consult whether the current state of evaluation belongs to this set. Storing elements is
equivalent to labeling a node as “visited” and later on, we will be able to check if the
current point of evaluation has been visited before. Clearly memory languages are
weaker than hybrid languages, because even though we can remember which states
have been visited, we cannot know which of them we are currently visiting. There are
several memory logics, we will just introduce two of them formally.

Definition 2.2.4 (Syntax of Memory Logics). Given a set PROP, the set FORM of formulas
ofML(r©, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r©ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.
Given a set PROP, the set FORM of formulas ofML(〈〈r〉〉, k©) over PROP is defined as:

FORM ::= ⊥ | p | k© | ¬ϕ | ϕ ∧ ψ | 〈〈r〉〉ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.

We turn now to semantics. Models of memory logics are modal models, but with
an extra set where we store the elements that we visited.

Definition 2.2.5 (Semantics of Memory Logics). A model M = 〈W, R, V, S〉 is an
extension of an Kripke model with a memory S ⊆ W. Let w be a state inM, we inductively
define the notion of satisfiability of a formula as:

〈W, R, V, S〉, w |= k© iff w ∈ S
〈W, R, V, S〉, w |= r©ϕ iff 〈W, R, V, S ∪ {w}〉, w |= ϕ
〈W, R, V, S〉, w |= 〈〈r〉〉ϕ iff 〈W, R, V, S〉, w |= r©♦ϕ.

A formula ϕ of ML(r©, k©) or ML(〈〈r〉〉, k©) is satisfiable if there exists a model
〈W, R, V, ∅〉 such that 〈W, R, V, ∅〉, w |= ϕ.

In the definition of satisfaction, the empty initial memory ensures that no point
of the model satisfies the unary predicate k© unless a formula r©ϕ or 〈〈r〉〉ϕ has
previously been evaluated there. The memory logicML(〈〈r〉〉, k©) does not have the
♦ operator, and its expressive power is strictly weaker thanML(r©, k©) [Mera, 2009;
Areces et al., 2011]. However, in both cases we have a logic that is strictly more
expressive than the basic modal logic ML. We show this result with a simple
example.

Example 2.2.6. Given a pointed model 〈W, R, V, ∅〉, w, theML(〈〈r〉〉, k©)-formula 〈〈r〉〉 k©
is satisfiable only if w is reflexive. The 〈〈r〉〉 operator remembers the current element but at
the same time looks for a successor. In this case, such a successor has to be in the memory,
but w is the only one belonging to the memory (remember that we started with the empty
memory). Then, the formula is satisfiable if only if w is his own successor. The same effect
can be captured with theML(r©, k©)-formula r©♦ k©.

2.2. (REALLY) DYNAMIC MODAL LOGICS 17

As we mentioned before, memory logics are strictly weaker than hybrid logics.
This is a hopeful result looking for good computational properties. The satisfiability
problem for ML(〈〈r〉〉, k©) is decidable but the one of ML(r©, k©) is not and its
model checking problem is PSpace-complete [Areces et al., 2008; Areces et al., 2009;
Mera, 2009].

The two examples of dynamic logics we presented let us modify the labeling of
nodes: hybrid logics allow to rename the elements of the model and memory logics
mark nodes as already visited. The next examples will introduce logics which can
modify the accessibility relation.

2.2.3 Arrow Updates

Arrow Update Logic (AUL) [Kooi and Renne, 2011a] was defined with the goal of
modeling epistemic scenarios. This is presented as a theory of epistemic access
elimination that generalizes previous works in the field. In [Kooi and Renne, 2011a],
epistemic arrows are eliminated, no new arrows are created. Let us present formally
the language.

Definition 2.2.7 (Syntax of Arrow Update Logic). Given a countable inifite set PROP
of propositional symbols, and a finite set AGT of agent symbols, the set FORM of formulas of
AUL over PROP and AGT is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦a ϕ | 〈U〉ϕ,

where p ∈ PROP, a ∈ AGT, ϕ, ψ ∈ FORM and U ∈ UPD.
We need to define now the set UPD of updates:

UPD ::= (ϕ, a, ψ) | (ϕ, a, ψ), U,

where a ∈ AGT, ϕ, ψ ∈ FORM and U ∈ UPD.

As we mentioned before AUL was defined to modeling epistemic scenarios. For
this reason it was introduced in a multimodal or multiagent framework. The epistemic
interpretation of an arrow labeled by a between the points w and v, is that the agent a
cannot distinguish between the information contained in points w and v. We assume
that each relation is reflexive, symmetric and transitive (it is an equivalence relation).

Definition 2.2.8 (Multiagent Kripke Models). A multimodal modelM is a tripleM =
〈W, R, V〉, where W is a non-empty set whose elements are called points or states; for each
a ∈ AGT, R(a) ⊆ W×W is an accessibility relation (we will often write Ra rather than
R(a)); and V : PROP→ P(W) is a valuation.

Turning to semantics, diamonds represent the knowledge of an agent (♦a ϕ is
interpreted as “agent a considers that it is possible that ϕ”). The semantics of ♦a is
the same we introduced in Definition 1.2.6, but each ♦a has associated a different Ra.
The interest case is the update operator, which modifies the knowledge of the agent.

Definition 2.2.9 (Semantics of Arrow Update Logic). Given a multimodal modelM =
〈W, R, V〉 and w be a state inM, we define the semantics of the update operator as:

M, w |= 〈U〉ϕ iff (M∗U), w |= ϕ
(M∗U) = 〈W, R′, V〉
R′a = {(v, v′) ∈ Ra | ∃(ϕ, a, ϕ′) ∈ U :M, v |= ϕ andM, v′ |= ϕ′}.

18 CHAPTER 2. introducing dynamic logics (by example)

A formula ϕ of AUL is satisfiable if there exists a modelM such thatM, w |= ϕ.

An update U characterizes the set of edges we want to keep in the accessibility
relation. Each (ϕ, a, ψ) ∈ U characterizes a-edges with a source point satisfying ϕ and
a target point satisfying ψ. Let us see an example.

Example 2.2.10. The update 〈(>, a,♦a>)〉 deletes all the a-edges such that the target point
has not successors. After the update we get a model in which we can find dead ends one step
earlier than in the original model.

AUL has been introduced as a multi-agent language to reasoning about belief
changes, by doing arrow eliminations or arrow updates. In [Kooi and Renne, 2011a]
a sound and complete axiomatization for this logics is given, but its computational
behaviour is not investigated in detail. AUL is capable of encoding Public Announce-
ments [Plaza, 2007; van Ditmarsch et al., 2007], the most “classical” logic used in the
epistemic field.

2.2.4 Sabotage Logic

Another clear example of model-changing logics is Sabotage Logic introduced by Johan
van Benthem in [van Benthem, 2005]. Consider the following sabotage game. It is
played on a graph by two players, Runner and Blocker. Runner can move on the graph
from node to accessible node, starting from a designated point, and with the goal
of reaching a given final point. He should move one edge at a time. Blocker, on the
other hand, can delete one edge from the graph, every time it is his turn. Runner wins
if he manage to move from the origin to the final point in the graph, while Blocker
wins otherwise. van Benthem proposes transforming the sabotage game into a modal
logic, by working on models where edges are treated as objects and introducing the
following “cross-model modality” referring to submodels from which objects have
been removed:

Definition 2.2.11 (Syntax of Sabotage Modal Logic). Given a set PROP, the set FORM
of formulas of SML over PROP is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | –♦ϕ,

where p ∈ PROP and ϕ, ψ ∈ FORM.

Definition 2.2.12 (Semantics of Sabotage Modal Logic). Given a modelM = 〈W, R, V〉
and w be a state inM, we inductively define the notion of satisfiability of a formula as:

M, w |= –♦ϕ iff there is v ∈W s.t v 6= w ∧M\ {v}, w |= ϕ.

A formula ϕ of SML is satisfiable if there exists a modelM such thatM, w |= ϕ.

As a modal logic, it is clear that the –♦ operator changes the model in which a
formula is evaluated. As van Benthem puts it, –♦ is an “external” modality that takes
evaluation to another model, obtained from the current one by deleting some state or
transition. Let see an example of the use of –♦ extracted from [van Benthem, 2005].

2.2. (REALLY) DYNAMIC MODAL LOGICS 19

Example 2.2.13. Consider the formula –♦�⊥. It is satisfiable in an irreflexive 2-cycle, but
it fails in a model consisting of a single reflexive point (the basic modal language cannot
distinguish between these two models). In both cases we delete the only successor of the
evaluation point, but after deletion in the reflexive model we get an empty model.

Various sabotage modal logics have been studied [Löding and Rohde, 2003a;
Löding and Rohde, 2003b; Rohde, 2006]. In particular, it has been proved that solving
the sabotage game is PSpace-hard, while the model checking problem of the associated
modal logic is PSpace-complete and the satisfiability problem for a close variant of
this logic is undecidable. The logic fails to have both the finite model property and
the tree model property. A translation of the sabotage modal logic into first-order
logic is also provided.

2.2.5 And More...

There are many other examples of logics with operators that change the structure of
the model. In [Aucher et al., 2009], two logics to reason about modifications of graphs
are introduced, named Global and Local Graph Modifiers. They include an operator [α],
which is a box-like operator where α is a modality that can modify the model. For
instance, given a modelM = 〈W, R, V〉, the formula

[p−ϕ]ψ

stipulates that all the states which satisfy ϕ are removed from V(p), and we evaluate
ψ in the model with the updated valuation. This modality changes the valuation of a
propositional symbol. These languages include also primitives to change the domain
and the accessibility relation. If we write

[nw]ψ

we add a new point to the model, and the evaluation of ψ continues in the model
with the new point as the evaluation point. The formula

[a+(ϕ, ϕ′)]ψ

changes the accessibility relation: ψ is evaluated in a model that results to add a-edges
from ϕ points to ϕ′ points inM.

The logics of graph modifiers include the operators to add and delete states and
edges of the model. An extension including local modifiers is also investigated.
These operators only add or remove the evaluation point in the valuation of some
propositional symbol. In [Aucher et al., 2009] graph modifiers are related with
epistemic logics, showing that the logic with global modifiers generalizes public
announcements. The article also shows that when local modifiers are included, the
resulting logic is undecidable. In [Pucella and Weissman, 2004] these logics have been
studied in a deontic framework, where adding edges represents granted permissions
and deleting edges corresponds to revoking permissions.

Dynamic logics are also used in the field of Natural Language Processing (NLP).
In [Groenendijk and Stokhof, 1991], a system using Dynamic Predicate Logic (DPL)
is introduced to obtain a theory of discourse semantics. The language of DPL is

20 CHAPTER 2. introducing dynamic logics (by example)

composed by n-place predicates, constants and variables. They are interpreted as
we introduced in Chapter 1 for FOL. The models used are ordinary first-order
models, consisting of a domain M of individuals and an interpretation function
·M, assigning individuals to the constants, and sets of n-tuples of individuals to
the n-place predicates. Assignments are used as usual, i.e., as total functions from
the set of variables to the domain. In the dynamic semantics of DPL, the semantic
object expressed by a formula is a set of ordered pairs of assignments 〈h, g〉, that
can be treated as an input-output pair. For instance, the dynamic interpretation of
∃x.φ consists of those pairs of assignments 〈g, h〉 such that there is some assignment
k which differs from g at most in x and which together with h forms a possible
input-output pair for φ. Also, a dynamic conjunction is defined. φ ∧ ψ with input g
may result in output h if there is some k such that interpreting φ in g may lead to k,
and interpreting ψ in k enables us to reach h.

This idea of defining dynamically the semantics of the operators, gives the power
of getting a compositional treatment of sentences, for instance, when some part of the
conjunction depends on the other. With DPL, we can represent the sentence “A man
walks in the park. He whistles.” as

∃x.[walk in the park(x)] ∧ whistle(x)

because the occurrence of x in the predicate whistle is interpreted as in the output of
the existential formula. What is interesting for us is the dynamic component in DPL,
which is that the values of the assignment functions can change after evaluating a
formula.

As a last example we can mention Real-time Logics, which were introduced to model
real-time systems. In [Alur and Henzinger, 1994; Demri et al., 2007], temporal logics
are enriched with the operator x. called the freeze quantifier. This is a quantification in
which x is bound to the time of a particular state. We can explain the behaviour of
the new quantifier with an example. For instance, the typical time-bounded response
requirement that every request p is followed by a response q within 10 time units, can
be expressed by the formula

�x.(p→ ♦y.(q ∧ y ≤ x + 10)).

It can be read as “whenever there is a request p, and the variable x is frozen to the
current time, the request is followed by an answer q at the time y, such that y is
at most 10 more units than x”. Is has been proved in [Alur and Henzinger, 1994;
Demri et al., 2007] that the satisfiability problem for logics augmented with the freeze
quantifier, and interpreted over timed state sequences (sequences of states, each of
which is labeled with a time from a discrete time domain) is ExpSpace-complete.

In this thesis we are interested in some questions about the general behaviour of
model modifiers. More precisely, we are interested in operators which change the
accessibility relation of a model. There are many situations in which this kind of
operators is used. Operators that change the accessibility relation are appropriate to
model scenarios, such as changes in the knowledge of an agent in epistemic logics.

2.3. THIS THESIS 21

2.3 T H I S T H E S I S

The discussion in previous sections gives an intuitive idea of the topic of this thesis.
We aim to study modal operators that allow to change the structure of a graph. In
particular, we are interested in modal logics that modify the accessibility relation of a
model. Part ii is where we introduce several relation-changing logics with local and
global effects. We discuss three modifiers: Sabotage, which deletes edges of the model;
Swap, that turns around edges; and Bridge, which adds new edges to the model. All
of them can work locally, i.e. modifying adjacent edges from the evaluation point, or
globally, changing edges anywhere in the model. In Chapter 3 we motivate the use of
relation-changing logics, and we introduce the primitives. We then give an example
that shows some complex behaviour of this kind of logics: the lack of the tree and finite
model property. Most of these results were previously presented in [Areces et al., 2012;
Fervari, 2012; Areces et al., 2013b].

In Chapter 4 we present a new definition of bisimulation that is appropriate for
the logics we are investigating, and we show that this definition captures exactly the
intended meaning. Then, we show that all the logics introduced are incomparable
in expressive power (comparison between local and global swap is open, but we
conjecture they are also incomparable). Chapter 5 investigates the computational
properties of these logics. We study the Satisfiability Problem in detail, and we prove
that, at least for the local cases, it is undecidable. This is the starting point for
the following chapter, in which we look for other computational tasks that behave
better than satisfiability, such as Model Checking. Based on results from [Areces et
al., 2012] we prove in Chapter 6 that model checking for all these logics is decidable
and PSpace-complete. At the end of the chapter we also study two other problems:
program complexity and formula complexity. Then, in Chapter 7 we introduce Tableau
Methods as we define in [Areces et al., 2013c] for all the logics. Later we investigate two
possible applications for tableau methods: tableaux as a model building procedure,
which combined with model checking gives us a terminate-and-check procedure for
the satisfiability problem, and we discuss how tableaux can be used as a constructive
method to compute interpolants.

In Part iii we show applications of the logics studied in this thesis. First, we
introduce Dynamic Epistemic Logics and then we show how they can be translated to
a relation-changing logic. We study some properties of this new logic, and we explain
the advantages and disadvantages of working in this framework.

Finally, in Part iv we discuss some conclusions and remarks, and we point to
directions of future research.

22 CHAPTER 2. introducing dynamic logics (by example)

Part II

A B S T R A C T
R E L AT I O N - C H A N G I N G

M O D A L L O G I C S

Insisto sobre el carácter inventivo que hay en cualquier lenguaje, y lo
hago con intención. La lengua es edificadora de realidades. Las diversas

disciplinas de la inteligencia han agenciado mundos propios y poseen un
vocabulario privativo para detallarlos. Las matemáticas manejan su lenguaje

especial hecho de guarismos y signos y no inferior en sutileza a ninguno.

from “Palabrerı́a para versos”, Jorge Luis Borges.

In this part of the thesis we will introduce a family of logics defined to represent
dynamic behaviour. In particular, we will investigate logics that can modify the
accessibility relation of a model while we evaluate a formula. We call this family
Relation-Changing Modal Logics.

We will introduce six relation-changing operators: swap, turns around edges of
the model; sabotage (introduced before by van Benthem [van Benthem, 2005]) deletes
edges; and bridge, which adds new edges in the model to unaccessible states. All of
them are introduced in two versions: local, i.e., changing edges from the evaluation
point, and global, i.e., modifying arbitrary edges in the model.

Several relation-changing logics were investigated in previous works. As we
mentioned, van Benthem introduced sabotage logic to formalize sabotage games. More
technical results about sabotage logic were investigated in [Löding and Rohde, 2003b;
Rohde, 2006]. In [Aucher et al., 2009] some relation-changing operators have been
investigated as data structure modifiers. In [Kooi and Renne, 2011a; Kooi and Renne,
2011b], operators which delete edges depending on their pre and postcondition were
introduced. Our goal, is to study relation-changing modal logics from an abstract
point of view, and investigate in detail the consequences of including these kind of
operators in modal logics.

We will start in Chapter 3 by introducing the primitives and showing some model
properties. In Chapter 4 we will introduce the tools to investigate the expressive power
of the languages: bisimulations and Ehrenfeucht-Fraı̈ssé Games. We will use them to
establish what is the relation among the six relation-changing modal logics we defined,
according their expressive power. We will continue by investigating the computational
behaviour of the logics. Chapter 5 is devoted to investigate the satisfiability problem
of relation-changing modal logics, and Chapter 6 is dedicated to the model checking
problem. Finally, we will close this part by introducing tableau methods for these logics.

In this part of the thesis, we will discuss the gains and losses of using relation-
changing operators. We will see that even though it is natural to use these primitives
to model dynamic scenarios, there is a trade-off between their expressive power and
their computational complexity.

3
Relation-Changing Modal Logics

Ya no me digas que se siente. Si no se cambia hoy, no se cambia más...

from “Agua de la Miseria”, Luis Alberto Spinetta.

3.1 C H A N G I N G T H E A C C E S S

Many situations in real life are dynamic. The way in which certain scenario changes
after determined action, different external factors modifying the environment or
simply the impact of time, in a very general way, are dynamic. For instance, every
day, the people living at Córdoba City get up in the morning assuming that a bus
will stop at the same place as yesterday. But, reading the morning news, they find
out that there will be no buses running in the city for a couple of days as a result of
a strike. After two days, as promised, service returns to normality. In this situation,
some factor (the strike) changed the usual scenario, i.e., getting up, going to the stop to
get the bus and arriving at work. After certain time things changed back to normality.

Let us consider now a more interesting scenario where the strike is partial, only
some of the bus lines were affected. This is an instance of the scenario proposed by
Johan van Benthem in [van Benthem, 2005], in which some “malevolent” factor (in this
case the strike) makes the connections from home to work disappear. As van Benthem
proposed, this situation can be modeled as a two player game we can call a sabotage
game. We can represent the bus lines as a graph, where two points are connected if
there is a bus linking one to the other. Dotted lines represent paths where buses were
interrupted by the strike.

Parque SarmientoPlaza España

Plaza San Martı́n

Plaza de las Américas

UNC

Figure 2: Graph representing a strike affecting the bus lines in Córdoba City center.

If we knew in advance about the partial strike, we could plan alternative routes
to arrive to work. We know that some parts of the path from home to work have

27

28 CHAPTER 3. relation-changing modal logics

been sabotaged. If the usual bus stop is cut out from the bus line, we need to find an
alternative from where we can continue our route to work. The situation in which
we need to find an alternative way to go somewhere, can be represented introducing
a “benevolent” factor, who adds edges that did not exist before. These new edges
help us go to a previously isolated part of the graph (for instance, walking) where
the buses work. In the following situation dotted lines are paths traversed by walk
(formally, new edges added to the original model).

Parque SarmientoPlaza España

Plaza San Martı́n

Plaza de las Américas

UNC

Figure 3: Graph representing alternative routes on walk.

It should be clear at this point the kind of dynamic scenarios we are interested in.
What is important is that we can formalize all these situations and represent them in a
dynamic framework. The most obvious way to do this would be by representing the
whole space of possible evolutions as a graph, but this looks unwieldy. Instead, we
can model and get mathematical tools to dynamically manage these situations. We
are not only thinking in simple problems such as strikes in bus services or discovering
a new path: we are thinking in abstract representations of this kind of situations, and
a dynamic framework to deal with them. In this case, we can take some mathematical
objects (graphs), and then design tools to study formal properties in this framework.
Modal languages are suitable to describe properties of graphs, and we can also include
operators that capture the possible evolutions of the graphs. As we explained in
Section 2.2 it is possible to add new operators to handle dynamic behaviour, which
shows us the real power of modal logics:

We can take a problem, think about the most appropriate way to model it and
turn it into a modal logic.

In Chapter 2 we discussed some examples of logics that can be used to model
dynamic scenarios. In what follows, we will focus in situations in which we need to
change the accessibility relation of a model. Modal logics let us explore the internal
properties of the models, by inspecting the properties of the successors of a given
evaluation point. These successors are reachable through the accessibility relation,
which represents the access to the rest of the model. Other model modifiers have been
investigated in previous work, but arbitrarily changing the access has not been studied
yet. Logics with relation modifiers are used in different scenarios, and it is interesting
to study this kind of languages from an abstract perspective to know more about
their behaviour. For instance, in the field of epistemic logics, there are logics with

3.2. INTRODUCING THE PRIMITIVES 29

operators to delete or add edges depending on a condition, which characterizes a set
of states that we would like to connect or disconnect in the model. Some examples
are Arrow Update Logic [Kooi and Renne, 2011a], Graph Modifiers [Aucher et al.,
2009] or Dynamic Epistemic Logics [van Ditmarsch et al., 2007]. In our approach,
we will first study arbitrary relation-changing operations, including new primitives
and investigate their theoretical properties, such as expressive power, complexity of
reasoning tasks, etc. In the next section we will introduce operators to delete, add
and swap edges in a model, and we will start describing some properties.

3.2 I N T R O D U C I N G T H E P R I M I T I V E S

Let us start by introducing the syntax.

Definition 3.2.1 (Syntax of Relation-Changing Modal Logics). Let PROP be a countable,
infinite set of propositional symbols. Then the set FORM of formulas over PROP is defined
as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ∈ PROP, � ∈ {♦, 〈sw〉, 〈sb〉, 〈br〉, 〈gsw〉, 〈gsb〉, 〈gbr〉} and ϕ, ψ ∈ FORM. Other
operators are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

We callML(�) the extension ofML allowing also the � operator, for � ∈ {〈sw〉, 〈sb〉,
〈br〉, 〈gsw〉, 〈gsb〉, 〈gbr〉}.

Formulas of ML(〈sb〉), ML(〈sw〉), ML(〈br〉), ML(〈gsb〉), ML(〈gbr〉), and
ML(〈gsw〉) are evaluated in standard relational models, and the meaning of the
operators of the basic modal logic is unchanged. When we evaluate formulas contain-
ing relation-changing operators, we will need to keep track of the edges that have
been modified. To that end, let us define precisely the models that we will use. In the
rest of this thesis we will use wv as a shorthand for {(w, v)} or (w, v). Context will
always disambiguate the intended use.

Definition 3.2.2 (Models and Model Variants). A modelM is a tripleM = 〈W, R, V〉,
where W is a non-empty set whose elements are called points or states; R ⊆ W×W is the
accessibility relation; and V : PROP→ P(W) is a valuation.

Given a modelM = 〈W, R, V〉, we define the following notations for model variants:

(sabotaging) M−
S = 〈W, R−S , V〉, with R−S = R\S, S ⊆ R.

(swapping) M∗
S = 〈W, R∗S, V〉, with R∗S = (R\S−1)∪S, S ⊆ R−1.

(bridging) M+
B = 〈W, R+

B , V〉, with R+
B = R ∪ B, B ⊆ (W×W)\R.

Let w be a state in M, the pair (M, w) is called a pointed model; we will usually drop
parentheses and callM, w a pointed model.

Model variants are Kripke models in which some updates have been done by
dynamic operations. This notation will be a practical form to present the semantics
of the new operators, and it will be also important later, when we introduce other
constructions such as bisimulations or tableaux.

30 CHAPTER 3. relation-changing modal logics

Definition 3.2.3 (Semantics). Given a pointed model M, w and a formula ϕ we say that
M, w satisfies ϕ, and writeM, w |= ϕ, when

M, w |= ⊥ never
M, w |= p iff w ∈ V(p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= ♦ϕ iff for some v ∈W s.t. (w, v) ∈ R,M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈W s.t. (w, v) ∈ R,M−

wv, v |= ϕ
M, w |= 〈gsb〉ϕ iff for some v, u ∈W, s.t. (v, u) ∈ R,M−

vu, w |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈W s.t. (w, v) ∈ R,M∗

vw, v |= ϕ
M, w |= 〈gsw〉ϕ iff for some v, u ∈W, s.t. (v, u) ∈ R,M∗

uv, w |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈W s.t. (w, v) 6∈ R,M+

wv, v |= ϕ
M, w |= 〈gbr〉ϕ iff for some v, u ∈W, s.t. (v, u) 6∈ R,M+

vu, w |= ϕ.

ϕ is satisfiable if for some pointed modelM, w we haveM, w |= ϕ.

Relation-changing operators can delete, swap around or add new edges. The
formula is then evaluated in the correspondent model variant. Notice that we extend
the basic modal logic with primitives that let us perform these operations in two
versions: local and global. The local version sabotages, swaps or bridges edges to
adjacent nodes, while the global version modifies edges in any part of the model.

The semantic conditions for relation-changing operators look quite innocent but,
as we will see in the next examples, these logics are actually very expressive. Besides
the obvious effects of the modifiers, there are situations in which their semantics
allows us to do something else, for instance, counting the number of accessible edges.

Example 3.2.4. The 〈sb〉 operator has no effect on acyclic models (its behaviour is exactly as
a traditional ♦, as in the leftmost model). But in models containing cycles, 〈sb〉 can count
precisely the number of accessible edges by deleting each of them. In the rightmost model,
after evaluating ♦5>∧ 〈sb〉4�⊥ starting from w′, we first go to some state at depth five, but
with the second conjunct we return to w′ destroying and counting four edges.

w w′

Example 3.2.5. This example is extracted from [Rohde, 2006], and shows the expressivity of
ML(〈gsb〉). Consider the formula [gsb]♦> ∧ 〈gsb〉〈gsb〉�⊥. The first conjunct expresses
that, if an arbitrary edge is deleted, then the evaluation point still has an outgoing edge
regardless of the removed one. The second conjunct says that there are two edges that can be
removed and such that the current position has no longer an outgoing edge. Thus, for any
pointed modelM, w, we haveM, w |= [gsb]♦>∧ 〈gsb〉〈gsb〉�⊥ if and only if the point w
has exactly two distinct successors.

Example 3.2.6. The 〈sw〉 and 〈gsw〉 operators leave reflexive edges unchanged:

3.3. SOME MODEL PROPERTIES 31

w w

〈sw〉ϕ
〈gsw〉ϕ

ϕ

Example 3.2.7. The 〈sw〉 operator can collapse symmetric edges into a single one:

w v w v

〈sw〉ϕ ϕ

We start with the model on the left, where R = {wv, vw} and evaluate 〈sw〉ϕ at w. This
implies evaluating ϕ at v after the relation is updated to R∗vw = (R \ wv) ∪ vw = {vw}, as
shown on the right. This is actually the only situation where evaluating a 〈sw〉 formula leads
to a model variant where the size of the accessibility relation R decreases.

The same happens with the 〈gsw〉 operator, when it swaps a symmetric edge.

Example 3.2.8. The 〈br〉 operator allows us to reach isolated parts of the model:

w

v u t

w

v u t

¬[br]�⊥

Starting from w, which is a point with no successors, by evaluating ¬[br]�⊥ it is possible
to reach an isolated part of the model and continue the evaluation of the rest of the formula.
[br]�⊥ establishes that all the points that have no links from w, have no successors. The
formula is not satisfied, since there is no link from w to t and t has a successor (in the figure
we add the link from w to t, and checking that u is reachable from t).

3.3 S O M E M O D E L P R O P E RT I E S

In this section, we will investigate some classical properties for modal logics. Some
expressivity results are proved by showing that formulas of a certain language can
or cannot enforce models with a determined structure. The Tree and Finite Model
Property are examples of this kind of properties. The tree model property establishes
that every satisfiable formula, is also satisfied at the root of a tree. The finite model
property says that no formula can enforce an infinite model. ML has both properties.
We will investigate what happens when we add relation-changing operators to the
language.

Definition 3.3.1. Given a language L, we say that L has the Tree Model Property if for
all L-formula ϕ satisfiable, ϕ is satisfied in the root of a tree.

Then we can state:

32 CHAPTER 3. relation-changing modal logics

Theorem 3.3.2. ML has the tree model property.

Proof. In [Blackburn and van Benthem, 2006] a construction called tree unraveling is
introduced. This construction was introduced first in [Dummet and Lemmon, 1959]
and used in [Sahlqvist, 1973].

To unravel a model M = 〈W, R, V〉 from a point w, take all finite sequences of
points that start at w, which are reachable via R. Each sequence starting by w and
ending by some v, has exactly the same valuation as v. These sequences form a tree
with one-step extensions of sequences as the tree-successor relation. We call the model
resultant from the tree unraveling ofM as Unr(M). Figure 4 shows an example of a
tree unraveling.

w

v

M

w

ww

www

wv

wwv

wwwv
...

Unr(M)

Figure 4: Example of a model and its tree unraveling

We will prove by structural induction, that for every pointed modelM, w,ML-
formula ϕ and sequence of points αw,M, w |= ϕ iff Unr(M), αw |= ϕ.

ϕ = p: It is trivial, given that w and αw have the same valuation, for all α.

ϕ = ¬ψ and ϕ = ψ ∧ χ: These cases hold by inductive hypothesis.

ϕ = ♦ψ: SupposeM, w |= ♦ψ. Then, there exists v such that R(w, v) andM, v |= ψ.
By inductive hypothesis, there is a sequence β, such that Unr(M), βv |= ψ.
Given the procedure to build the unraveling, some of these sequences β has to
be αw, for some α, because w is a predecessor of v in the original model M.
Hence, Unr(M), αwv |= ψ, then Unr(M), αw |= ♦ψ.

We are interested in the behaviour of the logics introduced in Section 3.2. The
question is: “Adding relation-changing operators, do we increase the expressivity of the
basic modal language?”. We will introduce tools to study expressive power in the next
chapter, but we can get already the first results. As we will see in the following
theorem, by adding any of the relation-changing operators we introduced before, we
lose the tree model property.

3.3. SOME MODEL PROPERTIES 33

Theorem 3.3.3. ML(�) does not have the tree model property, for � ∈ {〈sb〉, 〈gsb〉, 〈sw〉,
〈gsw〉, 〈br〉, 〈gbr〉}.

Proof. We present formulas that ensure that the accessibility relation does not define
a tree. For 〈gsb〉, the result has already been proved in [Löding and Rohde, 2003a],
for 〈sw〉 in [Areces et al., 2013b] and for 〈sb〉 and 〈br〉 in [Areces et al., 2012]. Let us
define some notation that will be helpful in this proof, and in the rest of the thesis:

• �0 ϕ = ϕ,

• �n+1 ϕ = ��n ϕ,

• �(n)ϕ =
∧

1≤i≤n �
i ϕ,

for � ∈ {�, [sb], [gsb], [sw], [gsw], [br], [gbr]}.

Suppose the following formulas hold at some point w in a model:

1. ♦♦> ∧ [sb]�⊥, then w is reflexive;

2. ♦♦> ∧ [gsb]�⊥, same;

3. p ∧�(3)¬p ∧ 〈sw〉♦♦p, then w has a reflexive successor;

4. �⊥∧ 〈gsw〉♦>, then w has an incoming edge.

5. �⊥∧ 〈br〉〈br〉>, then w and some different point v are unconnected;

6. �⊥∧ 〈gbr〉〈gbr〉>, same.

In each case, the formula cannot be satisfied in the root of a tree. We will now
discuss each case in more detail.

1. The formula
ϕ = ♦♦> ∧ [sb]�⊥

is true at a state w in a model, only if w is reflexive.

Suppose we evaluate ϕ at some state w of an arbitrary model. On the one hand,
the “static” part of the formula ♦♦> ensures it is possible to take two steps on
the accessibility relation. On the other hand, the “dynamic” part of the formula
[sb]�⊥ tells us that after taking any accessible edge and eliminating it, it is no
longer possible to go anywhere else. This can only happen if the point w is
reflexive and does not have any other outgoing edges.

2. Similarly, the formula
ϕ = ♦♦> ∧ [gsb]�⊥

(from [Löding and Rohde, 2003a]) is true at a state w in a model, only if w is
reflexive.

34 CHAPTER 3. relation-changing modal logics

3. The formula
ϕ = p ∧�(3)¬p ∧ 〈sw〉♦♦p

is true at a state w in a model, only if w has a reflexive successor.

Suppose we evaluate ϕ at some state w of an arbitrary model. The “static” part
of the formula (p ∧�(3)¬p) makes sure that p is true in w and that no p-state is
reachable within three steps from w (in particular, w cannot be reflexive).

Because 〈sw〉♦♦p is true at w, there should be an R-successor v where ♦♦p
holds once the accessibility relation has been updated to R∗vw. That is, v has to
reach a p-state in exactly two R∗vw-steps. But the only p-state sufficiently close is
w which is reachable in one step. As w is not reflexive, v has to be reflexive so
that we can linger at v for one loop and reach p in the correct number of states.

4. The formula
�⊥∧ 〈gsw〉♦>

is true at a state w in a model, only if w has an incoming edge.

5. The formula
ϕ = �⊥∧ 〈br〉〈br〉>

is only satisfiable in models that have at least two points. These points are
unconnected or the evaluation point has an incoming edge.

6. Similarly, the formula
ϕ = �⊥∧ 〈gbr〉〈gbr〉>

is only satisfiable in models that have at least two unconnected points.

The previous results give us the first intuitions on the expressivity of relation-
changing modal logics. We showed in Theorem 3.3.3 that there are satisfiable formulas
of the six logics that we investigate, which cannot be satisfied at the root of a tree.
This shows that adding operators to change the accessibility relation we obtain more
expressivity. The challenge is to discover how much expressive power we added.
We will explore now, another classical property for modal logics: the finite model
property. This property establishes that every satisfiable formula is satisfied in a finite
model. ML has the finite model property, and it also satisfies a stronger variant: the
bounded model property. It is called “bounded” because besides the finite model
property, we can determine a bound for the finite models. Let introduce the formal
definition.

Definition 3.3.4. Given a language L, we say that L has the Finite Model Property if for
all L-formula ϕ satisfiable, ϕ is satisfied in a finite model.
L has the Bounded Finite Model Property if for all L-formula ϕ satisfiable, ϕ is satisfied

in a finite model, whose size is bounded by a function on the size of the formula.

Then, we can introduce next theorem for the basic modal logic:

Theorem 3.3.5. ML has the bounded finite model property.

3.3. SOME MODEL PROPERTIES 35

Proof (Sketch). A complete proof via selection or filtration can be found in [Blackburn
et al., 2001]. We explain in a few words the argument of the proof via filtrations.
Consider the satisfiability problem for Propositional Logic. We can check if a formula
is satisfiable by inspecting truth tables, which are all the possible assignments of truth
values to the propositional symbols that appear in the formula. If we consider the
whole propositional language, we would need to assign values to an infinite set of
variables, but it is not necessary to give a value to those variables that do not appear
in the formula. Thereby, throwing away the “useless” symbols we need to evaluate a
finite number of propositional variables.

In this case we collapse all the valuations that are equivalent by inspecting just
the symbols in the formula. The filtration method for modal logics follows the same
idea: given a formula ϕ and a modelM, a finite model is defined by collapsing to a
single point all the points inM that satisfy the same subformulas of ϕ. The resulting
model satisfies ϕ if and only if the original one does. The finite model obtained by
filtrations has, at most 2s(ϕ) states, where s(ϕ) is the number of the subformulas of ϕ.
As a result, we have a bound for the size of the finite model.

We will prove that the logics we introduced do not have the finite model property.
As we will see in the following theorem, each of the six logics we are investigating
has formulas that only hold in an infinite model.

Theorem 3.3.6. ML(�) does not have the finite model property, for � ∈ {〈sb〉, 〈gsb〉, 〈sw〉,
〈gsw〉, 〈br〉, 〈gbr〉}.

For each logic we give a formula that forces infinite models. Let first explain one
case in detail and then introduce the rest of the formulas. We start with the case of
ML(〈sw〉).

We will exhibit a formula ϕ, which is a conjunction of several properties that
forces models to have an infinite chain of states. It does so by ensuring that the
propositional symbol s is true only in the evaluation state w (named the spy point),
and false in all the states reachable from w. The spy point sees all the points of
the model, but the rest of the points cannot see the spy. Then, ϕ enforces specific
properties on the model, locating states by their distance to w using formulas of the
form ♦ . . .♦s, after swapping an outgoing edge from w. In this way, it is possible to
enforce seriality, irreflexivity and transitivity on a chain of states. The conjunction of
these three properties can only be satisfied in an infinite model. The intended model
is showed in Figure 5.

Let us see in detail, how each part of ϕ works to get the intended model. Suppose
that ϕ is evaluated at some state w, where ϕ is the conjunction of the following
formulas:

1. s ∧�(9)¬s.
This formula makes s true at state w and false at all states accessible within 9

steps.

2. ♦>.
It indicates that w has a successor.

3. �♦>.
The formula says that every successor of w has some successor.

36 CHAPTER 3. relation-changing modal logics

¬s ¬s ¬s . . .

s

Figure 5: Infinite model forML(〈sw〉).

4. [sw]�¬♦s.
This makes irreflexive every successor of the w. After swapping any outgoing
edge from w and reaching some state v, all the successors of v only see states
that do not satisfy s. Hence v has to be irreflexive, because as it was reached
from w by swapping an edge, now it can see an s-state, precisely w.

5. [sw][sw](¬s → ♦♦♦♦♦s).
This formula tells that from any state v 6= w reachable in two swapping steps,
it is possible to go back to w in five steps. But this is only possible by first
going to w in two steps, then going to v in one step and going again to w in two
steps. Hence all states accessible in two steps from w are also accessible in one.
This makes w a “spy point”, i.e., it is directly connected to every state in the
submodel generated from it.

6. [sw][sw][sw](¬♦s → ♦♦♦(¬s ∧♦♦♦s)).
Finally, it enforces the previous property on the successors of w.

(3), (4) and (6) respectively enforce seriality, irreflexivity and transitivity on a
chain of states starting from w. Hence this chain must be infinite.

Now, we are ready to explore the complete proof of the lack of finite model
property for the six relation-changing modal logics investigated in this thesis.

Proof. (of Theorem 3.3.6). Let us see the formulas that force infinite models in each
case.

1. ForML(〈sw〉), we have the conjunction of the formulas described before.

ϕ = s ∧�(9)¬s (1)
∧ ♦> (2)
∧ �♦> (3)
∧ [sw]�¬♦s (Irr)
∧ [sw][sw](¬s → ♦♦♦♦♦s) (Spy)
∧ [sw][sw][sw](¬♦s → ♦♦♦(¬s ∧♦♦♦s)) (Trans)

As we said in the sketch preceding the proof, ϕ is satisfiable and, every model of
the formula has to be infinite. The model introduced in Figure 5 is one satisfying
ϕ.

3.3. SOME MODEL PROPERTIES 37

2. ForML(〈gsw〉).

ϕ = s ∧�(9)¬s ∧♦>∧�♦> (1)
∧ ��[gsw][gsw]��(s→ ♦♦♦s) (Spy)
∧ �[gsw](♦s→ ��¬s) (Irr)
∧ ���[gsw][gsw][gsw](♦♦♦s→ ♦♦♦(¬s ∧♦♦♦s)) (Trans)

The formula above is also satisfiable and their models are infinite, in a similar
way as forML(〈sw〉). The model in Figure 5 satisfies ϕ.

3. For ML(〈sb〉) we follow the same ideas, but now the enforced models have
also edges from any state to the spy point. In this case, we sabotage these edges
to identify visited states. Figure 6 illustrates the model we want to enforce.

¬s ¬s ¬s . . .

s

Figure 6: Infinite model forML(〈sb〉).

Now we introduce the formula that enforces infinite models as the one in
Figure 6. After that, we describe more in detail how each part of the formula
works.

ϕ = s ∧�¬s ∧♦>∧�♦s (1)
∧ ��(s→ ¬♦s) (2)
∧ [sb][sb](s→ �♦s) (3)
∧ �[sb](s→ ♦¬♦s) (4)
∧ �♦¬s (5)
∧ ��(¬s→ ♦(s ∧ ¬♦s)) (6)
∧ �[sb](¬s→ [sb](s→ ��(¬s→ ♦s))) (7)
∧ ��(¬s→ [sb](s→ ♦♦(¬s ∧ ¬♦s))) (8)
∧ ��(¬s→ [sb](s→ ♦¬♦s)) (Spy)
∧ �[sb](s→ �(¬♦s→ �♦s)) (Irr)
∧ ¬♦〈sb〉(s ∧♦(¬♦s ∧♦♦(¬s ∧♦s ∧♦¬♦s))) (3cyc)
∧ �〈sb〉(s ∧♦(¬♦s ∧♦♦(¬s ∧ 〈sb〉(s ∧♦(¬♦s ∧♦¬♦s))))) (Trans)

The first part of (1) establishes that s holds at the evaluation point and does
not hold at any successor accessible from there in one step (in particular, the
evaluation point cannot be reflexive). The second part of the formula ensures
there is one successor, and each successor sees an s-point.

(2), (3) and (4) ensure that the states accessible in one step from the evaluation
point, have a link back to it. In particular (2) says that each s-point reachable

38 CHAPTER 3. relation-changing modal logics

from the evaluation point in two steps cannot have a successor where s holds
(in particular, this s-point cannot be reflexive).

(5) creates an infinite chain of elements, by ensuring that each successor has an
edge to a point where ¬s is true. The formulas (6), (7) and (8) play the same
role as (2), (3) and (4), but ensuring that states accessible in two steps have a
link back to the evaluation point.

(Spy) creates an spy-point: any point accessible in two steps from the evaluation
point can also be accessible in one. (Irr) and (Trans) enforce irreflexivity and
transitivity respectively, and (3cyc) ensures that there are not 3 elements of the
infinite chain of states that form a cycle.

4. ForML(〈gsb〉) we build a formula that enforces infinite models like the one of
Figure 7. It is similar to the one forML(〈sb〉), except that (2) establishes that in
one step, there is an s-successor which is unique, and (4) is the same as (2) but
in two steps. The s-successor in two steps may be different from the spy point.

¬s ¬s ¬s
. . .

s s s

s

Figure 7: Infinite model forML(〈gsb〉).

We introduce now the formula that can only be satisfied in an infinite model as
the previous one.

ϕ = s ∧�¬s ∧♦> (1)
∧ �(♦s ∧ 〈gsb〉¬♦s) (2)
∧ �♦¬s (3)
∧ ��(¬s→ ♦s ∧ 〈gsb〉¬♦s) (4)
∧ [gsb](♦(♦s ∧♦(¬s ∧ ¬♦s)) → ♦¬♦s) (Spy)
∧ [gsb]�(¬♦s→ �♦s) (Irr)
∧ [gsb]¬♦(¬♦s ∧♦♦(¬s ∧♦s ∧♦¬♦s)) (3cyc)
∧ [gsb][gsb](♦(¬♦s ∧♦♦(¬s ∧ ¬♦s)) → ♦(¬♦s ∧♦¬♦s)) (Trans)

5. ForML(〈br〉) we generate infinite models with other structure. The idea now,
is to create a “bag” of spy points, that are all related among them. Then, we can
control the new edges that are created to some ¬s-state. One of those infinite
models is shown in Figure 8.

3.3. SOME MODEL PROPERTIES 39

¬s ¬s ¬s . . .

s s

Figure 8: Infinite model forML(〈br〉).

The formula which generates such a model is:

ϕ = s ∧ [br]¬s (1)
∧ �[br]¬s (s− connex)
∧ ��s (3)
∧ 〈br〉> (4)
∧ �[br]�¬s (5)
∧ [br]♦> (Ser)
∧ [br][br](s→ �(¬s→ �(¬s→ �¬s))) (Irr)
∧ [br]��[br](s→ ♦(¬s ∧♦♦s)) (Trans)

6. For ML(〈gbr〉) we enforce the same kind of models as for ML(〈br〉), for
instance, model of Figure 8.

ϕ = s ∧�¬s ∧♦>∧��¬s (1)
�♦¬s (2)
��(¬s→ �¬s) (3)
[gbr](♦(¬♦s ∧♦♦s) → ♦♦s) (Spy)
[gbr]�(♦s→ �¬♦s) (Irr)
[gbr]¬♦(♦s ∧♦(¬s ∧♦(¬s ∧ ¬♦s ∧♦♦s))) (3cyc)
[gbr][gbr](♦(♦s ∧♦(¬s ∧♦(¬s ∧♦s))) → ♦(♦s ∧♦♦s)) (Trans)

We showed the lack of the tree and the finite model property for relation-changing
modal logics. We found very simple formulas that cannot be satisfied at the root of a
tree-like model. Enforcing infinite models was more difficult. The main idea to do
this is the use of a spy point technique. A spy point is a state of the model which can
access any other state in the model. In this section, we used different kind of spy
points according to the expressivity of each language. For instance, in the cases of
bridge operators, we were not able to guarantee the uniqueness of a spy point, instead
we use a set of spy points. After that, we follow the same ideas: formulas enforce
serial, irreflexive and transitive models, which implies that the models are infinite.

We have seen that the six logics we are investigating are more expressive than basic
modal logic. However, we have not established their exact boundaries. In the next
chapter we will introduce the appropriate tools to investigate the expressivity of these

40 CHAPTER 3. relation-changing modal logics

languages: bisimulations and Ehrenfeucht-Fraı̈ssé games. We will start by introducing
the notions forML, and we will extend the results to investigate relation-changing
modal logics.

4
Expressive Power

Anything that thinks logically can be fooled by something
else that thinks at least as logically as it does.

from “The Hitchhiker’s Trilogy”, Douglas Adams.

4.1 M O D A L D I S T I N C T I O N S

In previous chapters, we have used different tools to discuss expressive power of
different languages. For instance, we used translations to prove thatML is a fragment
of FOL2, and we did the same for other modal operators. For relation-changing
operators, we proved the lack of some model properties by enforcing certain kind of
structures, to show that the six logics we introduced are more expressive thanML.
All these results say something about the expressive power of the languages, but
if we want to study in detail these languages we need more specific tools. The
expressive power of a language is measured in terms of the distinctions we can draw
with it. For this, bisimulations introduced by van Benthem in [van Benthem, 1984;
van Benthem, 1985] will be helpful.

In modern modal model theory, the notion of bisimulation is a crucial tool. Typi-
cally, a bisimulation is a binary relation linking elements of the domains that have the
same atomic information, and preserving the relational structure of the model. Let us
introduce the notion of bisimulation for the basic modal languageML.

Definition 4.1.1 (ML-Bisimulations). Let M = 〈W, R, V〉, M′ = 〈W ′, R′, V′〉 be two
models. A non empty relation Z ⊆W ×W ′ is anML-bisimulation if it satisfies the follow-
ing conditions. If wZw′ then

(atomic harmony) for all p ∈ PROP, w ∈ V(p) iff w′ ∈ V′(p);

(zig) if (w, v) ∈ R then for some v′, (w′, v′) ∈ R′ and vZv′;

(zag) if (w′, v′) ∈ R′ then for some v, (w, v) ∈ R and vZv′.

Given two pointed modelsM, w andM′, w′ we say that they areML-bisimilar and we
writeM, w -MLM′, w′ if there is anML-bisimulation Z such that wZw′.

The importance of the notion of bisimulation can be seen in the following theorem,
that establishes that bisimulations relate models that are modally equivalent.

Theorem 4.1.2 (Invariance Under Bisimulations). LetM=〈W, R, V〉,M′=〈W ′, R′, V′〉
be two models, w ∈ W and w′ ∈ W ′. If there is anML-bisimulation Z betweenM, w and
M′, w′ such that wZw′ then for any formula ϕ ∈ ML,M, w |= ϕ iffM′, w′ |= ϕ.

41

42 CHAPTER 4. expressive power

Proof. The proof is by structural induction onML-formulas.

ϕ = p: SupposeM, w |= p. Then by definition of |=, w ∈ V(p). But as wZw′ and by
(atomic harmony), w′ ∈ V′(p), thenM′, w′ |= p.

ϕ = ¬ψ: SupposeM, w |= ¬ψ. Then by definition of |=, M, w 6|= ψ. But then, by
I.H.,M′, w′ 6|= ψ thenM′, w′ |= ¬ψ.

ϕ = ψ ∧ χ: Suppose M, w |= ψ ∧ χ. Then M, w |= ψ and M, w |= χ. By I.H.,
M′, w′ |= ψ andM′, w′ |= χ, thenM′, w′ |= ψ ∧ χ.

ϕ = ♦ψ: SupposeM, w |= ♦ψ. Then there is v in W s.t. R(w, v) andM, v |= ψ. By
(zig) we have v′ in W ′ such that R′(w′, v′) and vZv′. By I.H.,M′, v′ |= ψ and by
definitionM, w′ |= ♦ψ. For the other direction use (zag).

Example 4.1.3. This is an example of two models that cannot be distinguished by any for-
mula ofML. Dotted lines represent the relation Z, which defines a bisimulation.

w
M

w′

v′

M′

Z

Z

We have presented bisimulations in a relational perspective, and we showed that
ML cannot distinguish between bisimilar models. But they can also be presented
from a dynamic perspective. Checking whether two models are bisimilar can be recast
in terms of Ehrenfeucht-Fraı̈ssé Games [Ebbinghaus et al., 1984; Sangiorgi, 2009].

Definition 4.1.4 (Ehrenfeucht-Fraı̈ssé Games). Let M, w and M′, w′ be two pointed
models.

An Ehrenfeucht-Fraı̈ssé game EF(M,M′, w, w′) is defined as follows. There are two
players called Spoiler and Duplicator. Duplicator immediately loses if w and w′ do not
agree (they do not satisfy the same propositional symbols). Otherwise, the game starts, with
the players moving alternatively. Spoiler always makes the first move in a turn of the game,
starting by choosing in which model he will make a move.

Spoiler chooses v, a successor of w. If w has no successors, then Duplicator wins. Du-
plicator has to choose v′, a successor of w′, such that v and v′ agree. If there is no such
successor, Spoiler wins. Otherwise the game continues with EF(M,M′, v, v′). If Spoiler
starts by choosing a successor v′ of w′, the same process has to be followed by exchanging the
models where each player has to choose.

The winning conditions for the game EF(M,M′, w, w′) establishes that before
the game begins, Duplicator immediately loses if w and w′ do not coincide in the
propositional symbols. In subsequent rounds, if Duplicator responds with a successor
that differs in the atomic propositions with respect to the point chosen by Spoiler,
Duplicator loses. If one player cannot move, the other wins, and Duplicator wins on
infinite runs of which Spoiler does not win. We also assume that both players always

4.2. THE RIGHT WAY TO DESCRIBE THINGS 43

make a move if they can. Given these conditions, observe that exactly one of Spoiler
or Duplicator wins each game.

Given two pointed modelsM, w andM′, w′ we will writeM, w ≡EF M′, w′ when
Duplicator has a winning strategy for EF(M,M′, w, w′).

Theorem 4.1.5. Given two pointed models M, w and M′, w′ then M, w ≡EF M′, w′ if
and only ifM, w -MLM′, w′.

Proof. For a full proof of this theorem, see [Goranko and Otto, 2005].

For instance, let see Example 4.1.3 starting from w and w′. If Spoiler starts inM,
the only choice to pick a successor is w itself. Then Duplicator can move to v′ inM′

as an answer. If Spoiler picks again w, Duplicator can return to w′. On the other hand,
for any choice that Spoiler can do inM′, Duplicator always has w inM to answer.
In this way we can see that Duplicator has a winning strategy for this game, then
M, w ≡EF M′, w′, which is we expect given thatM, w -MLM′, w′.

Theorem 4.1.2 says that bisimilar models are modally equivalent. This is a very
important result because we can replace a model for a bisimilar one and the logic
will not note it. On the other hand, Theorem 4.1.5 establishes that bisimilarity and
EF-game equivalence are the same. From these two results we can infer than EF-game
equivalence also implies modal equivalence. Now we have an operative way to
check when two models are indistinguishable. However, for relation-changing modal
logics this notion is not enough. Bisimulations as we presented in this section do
not capture the behaviour of the dynamic operators. Fortunately, we do not need to
find new tools to study relation-changing modal logics. In the next section, we will
show that adapting the existent tools, we capture exactly the meaning of all the six
relation-changing modal logics investigated in this thesis.

4.2 T H E R I G H T WAY T O D E S C R I B E T H I N G S

The expressive power of a language can be measured in terms of the distinctions the
language can draw. In terms of models, the question would be: “When should two
models be viewed as modally identical?”. As we already mentioned, in modal logics the
tool to formalize this notion is bisimulation. Previously we defined bisimulations as
relations between states of the models. In logics we introduced in Chapter 3, just
relating elements of the domains is not enough. Because we are studying logics where
a model can change in any moment while we are evaluating a formula, we need to
keep track of the modifications that the model already suffered. For relation-changing
modal logics, bisimulations capture the dynamic behaviour linking states together
with the current accessibility relation. In [Areces et al., 2012; Areces et al., 2013b] we
introduced the following notions of bisimulations:

Definition 4.2.1 (ML(�)-Bisimulations). Let M = 〈W, R, V〉, M′ = 〈W ′, R′, V′〉 be
two models. A non empty relation Z ⊆ (W × P(W2))× (W ′ × P(W ′2)) is an ML(�)-
bisimulation if it satisfies the conditions atomic harmony, zig and zag below, and the cor-
responding conditions for the operators that the considered logic contains. If (w, S)Z(w′, S′)
then

(atomic harmony) for all p ∈ PROP, w ∈ V(p) iff w′ ∈ V′(p);

44 CHAPTER 4. expressive power

(zig) if (w, v) ∈ S then for some v′, (w′, v′) ∈ S′ and (v, S)Z(v′, S′);

(zag) if (w′, v′) ∈ S′ then for some v, (w, v) ∈ S and (v, S)Z(v′, S′);

(〈sb〉-zig) if (w, v) ∈ S then for some v′, (w′, v′) ∈ S′ and (v, S−vw)Z(v′S′−v′w′);

(〈sb〉-zag) if (w′, v′) ∈ S′ then for some v, (w, v) ∈ S and (v, S−wv)Z(v′S′−w′v′);

(〈gsb〉-zig) if (u, v) ∈ S then for some u′, v′, (u′, v′) ∈ S′ and (w, S−uv)Z(w′S′−u′v′);

(〈gsb〉-zag) if (u′, v′) ∈ S′ then for some u, v, (u, v) ∈ S and (w, S−uv)Z(w′S′−u′v′);

(〈sw〉-zig) if (w, v) ∈ S then for some v′, (w′, v′) ∈ S′ and (v, S∗vw)Z(v′S′∗v′w′);

(〈sw〉-zag) if (w′, v′) ∈ S′ then for some v, (w, v) ∈ S and (v, S∗vw)Z(v′S′∗v′w′);

(〈gsw〉-zig) if (u, v) ∈ S then for some u′, v′, (u′, v′) ∈ S′ and (w, S∗vu)Z(w′S′∗v′u′);

(〈gsw〉-zag) if (u′, v′) ∈ S′ then for some u, v, (w, v) ∈ S and (w, S∗vu)Z(w′S′∗v′u′);

(〈br〉-zig) if (w, v) /∈ S, there is v′ ∈W ′ s.t. (w′, v′) /∈ S′ and (v, S+
wv)Z(v′, S′+w′v′);

(〈br〉-zag) if (w′, v′) /∈ S′, there is v ∈W s.t. (w, v) /∈ S and (v, S+
wv)Z(v′, S′+w′v′);

(〈gbr〉-zig) if (u, v) /∈ S, there is u′, v′ ∈W ′ s.t. (u′, v′) /∈ S′ and (w, S+
uv)Z(w′, S′+u′v′);

(〈gbr〉-zag) if (u′, v′) /∈ S′, there is u, v ∈W s.t. (u, v) /∈ S and (w, S+
uv)Z(w′, S′+u′v′).

Given two pointed models M, w and M′, w′ we say that they are ML(�)-bisimilar
and we write M, w -ML(�) M′, w′ if there is an ML(�)-bisimulation Z such that
(w, R)Z(w′, R′) where R and R′ are respectively the relations ofM andM′.

As we have proved forML, bisimulations are important to distinguish when two
models are equal for those languages. The next theorem establishes that two bisimilar
models are not distinguishable for any formula of the corresponding language.

Theorem 4.2.2 (Invariance Under Bisimulations). Let M = 〈W, R, V〉 and M′ =
〈W ′, R′, V′〉 be two models, w ∈ W, w′ ∈ W ′, and let S ⊆ W2, S′ ⊆ W ′2. If there is an
ML(�)-bisimulation Z betweenM, w andM′, w′ such that (w, S)Z(w′, S′) then for any
formula ϕ ∈ ML(�), 〈W, S, V〉, w |= ϕ iff 〈W ′, S′, V′〉, w′ |= ϕ.

Proof. We will see the case for ML(〈sw〉). The proof is by structural induction on
ML(〈sw〉)-formulas. The base case holds by (atomic harmony), and the ∧ and ¬
cases are trivial.

ϕ = ♦ψ: Suppose 〈W, S, V〉, w |= ♦ψ. Then there is v in W s.t. (w, v) ∈ S and
〈W, S, V〉, v |= ψ. By (zig) we have v′ in W ′ such that w′S′v′ and (v, S)Z(v′, S′).
By I.H., 〈W ′, S′, V′〉′, v′ |= ψ and by definition 〈W ′, S′, V′〉, w′ |= ♦ψ. For the
other direction use (zag).

ϕ = 〈sw〉ψ: For the left to the right direction suppose 〈W, S, V〉, w |= 〈sw〉ψ. Then
there is v in W s.t. (w, v) ∈ S and 〈W, S∗vw, V〉, v |= ψ. By (〈sw〉-zig) we have v′

in W ′ s.t. (w′, v′)∈S′ and (v, S∗vw)Z(v′, S′∗v′w′). By I.H., 〈W ′, S′∗v′w′ , V′〉, v′ |= ψ and
by definition 〈W ′, S′, V′〉, w′ |= 〈sw〉ψ. For the other direction use (〈sw〉-zag).

4.2. THE RIGHT WAY TO DESCRIBE THINGS 45

Notice that bisimulations for relation-changing modal logics relate current states
and current accessibility relations of the models. Depending on which operator
we are considering, different zig/zag conditions are added. Zig and zag for ML-
bisimulations are the correspondent conditions to capture ♦: they talk about the
successors of the current state. Conditions for relation-changing modal logics are
the same, but also keeping track of the modifications already done, and changing
the relation according to the semantics of the operators. For instance, 〈sb〉-zig/zag
establish that there are successors of the current states that are related, and delete the
edges that connect them. For 〈sw〉 is the same but swapping edges instead deleting.
Conditions for 〈br〉 require that there exist unreachable points from the current states,
and put edges to them in the accessibility relation. Global cases are similar to local
cases, but without changing the current state.

As we mentioned at the beginning of this chapter, we can define model equiva-
lence in terms of two-player games, where Spoiler and Duplicator make explicit the
modifications on the structure.

Definition 4.2.3 (Ehrenfeucht-Fraı̈ssé Games). Let M, w and M′, w′ be two pointed
models and let � ∈ {〈sb〉, 〈sw〉, 〈br〉, 〈gsb〉, 〈gsw〉, 〈gbr〉}.

An Ehrenfeucht-Fraı̈ssé game EF�(M,M′, w, w′) is defined as follows. There are two
players called Spoiler and Duplicator. Duplicator immediately loses if w and w′ do not
agree. Otherwise, the game starts, with the players moving alternatively. Spoiler always
makes the first move in a turn of the game, starting by choosing in which model he will make
a move. If � ∈ {〈sb〉, 〈sw〉}, the game continues in one of the following ways:

1. Spoiler chooses v, a successor of w in the current model. If w has no successors, then
Duplicator wins. Duplicator has to choose v′, a successor of w′ in the current model,
such that v and v′ agree. If there is no such successor, Spoiler wins. Otherwise the
game continues with EF�(M,M′, v, v′). If Spoiler starts by choosing a successor v′

of w′, the same process has to be followed by exchanging the models where each player
has to choose.

2. If � = 〈sb〉, Spoiler chooses v, a successor of w and deletes the edge wv. If w
has no successors, then Duplicator wins. Otherwise, Duplicator has to choose v′, a
successor of w′ in the current model, such that v and v′ agree and deletes the edge
w′v′. If there is no such successor, Spoiler wins. Otherwise the game continues with
EF�(M−

wv,M′−
w′v′ , v, v′). If Spoiler starts by choosing a successor v′ of w′, the same

process has to be followed by exchanging the models where each player has to choose.

3. If � = 〈sw〉, Spoiler chooses v, a successor of w and swaps around the edge wv. If
w has no successors, then Duplicator wins. Otherwise, Duplicator has to choose v′, a
successor of w′ in the current model, such that v and v′ agree and swaps around the
edge w′v′. If there is no such successor, Spoiler wins. Otherwise the game continues
with EF�(M∗

wv,M′∗
w′v′ , v, v′). If Spoiler starts by choosing a successor v′ of w′, the

same process has to be followed by exchanging the models where each player has to
choose.

If � = 〈br〉, the game continues in one of the following ways:

1. If Spoiler chooses v, a successor of w in the current model, then Duplicator has to choose
v′, a successor of w′ in the current model, such that v and v′ agree. If there is no such

46 CHAPTER 4. expressive power

successor, Spoiler wins. The game continues with EF�(M,M′, v, v′). If Spoiler starts
by choosing a successor v′ of w′, the same process has to be followed by exchanging the
models where each player has to choose.

2. If Spoiler chooses v, an element that is not a successor of w and adds the edge wv, then
Duplicator has to choose v′, a non-successor of w′ in the current model, such that v and
v′ agree and adds the edge w′v′. The game continues with EF�(M+

wv,M′+
w′v′ , v, v′). If

Spoiler starts by choosing a successor v′ of w′, the same process has to be followed by
exchanging the models where each player has to choose.

If the global counterparts are considered, the previous rules can be applied by choosing
u, v, u′, v′ arbitrary elements of the models, instead of starting from the evaluation point. In
such case, the game continues with EF�(M⊗

uv,M′⊗
u′v′ , w, w′), with ⊗ ∈ {−, ∗,+}.

The winning conditions for the game EF�(M,M′, w, w′) are the same that for
ML. Given two pointed models M, w and M′, w′ we will write M, w ≡EF

� M
′, w′

when Duplicator has a winning strategy for EF�(M,M′, w, w′).

Bisimulations, games and Theorem 4.2.2 provide us with tools to investigate the
expressivity of relation-changing modal logics. We can use these tools to compare the
logics among them, and also with others. Definition 4.2.4 formalizes how we compare
the expressive power of two logics.

Definition 4.2.4 (L ≤ L′). We say that L′ is at least as expressive as L (notation L ≤ L′)
if there is a function Tr between formulas of L and L′ such that for every modelM and every
formula ϕ of L we have that

M |=L ϕ iffM |=L′ Tr(ϕ).

M is seen as a model of L on the left and as a model of L′ on the right, and we use in each
case the appropriate semantic relation |=L or |=L′ as required.

We say that L and L′ are incomparable (notation L 6= L′) if L � L′ and L′ � L.
We say that L′ is strictly more expressive than L (notation L < L′) if L ≤ L′ but not

L′ ≤ L.

The ≤ relation indicates that we can embed one language into another. To do
this, we need an equivalence preserving translation from the first language to the
second one. Its strict version is <, that indicates that the second language can express
strictly more than the first one. Incomparability relation says than any of the two
languages cannot be embedded in the other, i.e., they are able to say different things.
These definitions will be used in the next section, which is dedicated to compare the
expressive power of relation-changing languages.

4.3 C O M PA R I N G L A N G U A G E S

We have introduced all the notions that we need to study the expressivity of a
language in the previous section. But also we defined a way to relate different
languages, according to what they are able to describe. This is the work in this section:
we will take a pair of languages, and using the machinery introduced before we will

4.3. COMPARING LANGUAGES 47

be able to say if one of them is more (or equally) expressive than the other one, or if
they are incomparable.

The first case, is to compare relation-changing modal logics with the basic modal
logic. Their lack of tree and finite model property already tells us than they are more
expressive thanML, but in this section we provide a simpler proof of this result. The
proof is direct from definitions: we have to find bisimilar models forML than can be
distinguished by the other logics, given that we can trivially embed ML in any of
them.

Theorem 4.3.1. ML <ML(�), with � ∈ {〈sb〉, 〈gsb〉, 〈sw〉, 〈gsw〉, 〈br〉, 〈gbr〉}.

Proof. First, we have to provide a translation fromML formulas toML(�). This is
trivial, given thatML is a syntactic fragment ofML(�). To proveML(�) �ML
we show two models that are bisimilar inML andML(�) formulas that distinguish
them. Models in Figure 9 are ML-bisimilar: w and w′ agree propositionally (their
valuations are empty), and in each model we can always find bisimilar successors.
The bisimulation Z relates w with all the states ofM′.

w

M M′

w′
. . .

Figure 9: ML-bisimilar models.

Now we have to find anML(�)-formula ϕ, with � ∈ {〈sb〉, 〈gsb〉, 〈sw〉, 〈gsw〉, 〈br〉,
〈gbr〉} such that ϕ holds in one of the models and does not hold in the other one.
Formulas listed below hold atM′, w′ but do not hold atM, w.

1. 〈sb〉♦>. Clearly, after deleting one adjacent edge from w, we have not more
successors, but we have it starting from w′ (we have an infinite chain inM′).

2. 〈gsb〉♦>. Same as for the local case.

3. 〈sw〉♦�⊥. Swapping edges from w, we always keep the same model variant,
and w always has a successor. Starting from w′ by swapping an edge and
returning to it after that, we reach a dead end.

4. 〈gsw〉�⊥. For the global case we can do the same trick as the previous one.

5. 〈br〉>. There are not isolated parts of the model in the leftmost one, but in the
rightmost model we have infinite possibilities to bridge.

6. 〈gbr〉>. We can do the same as for the local version of the operation.

It was easy to see thatML is strictly less expressive than relation-changing modal
logics. Dynamic behaviour obviously brings us unexpected consequences, such as we
have seen in examples of Section 3.2, or the lack of model properties. The challenge
now is to investigate which is the relation between the expressive power of the

48 CHAPTER 4. expressive power

relation-changing modal logics. “Can we embed sabotage in swap?”. “Are local and global
versions of the operators equally expressive?”. “Which languages are incomparable?”. This
is the kind of questions that we want and we are able to answer.

Most of the comparisons have been already studied in [Areces et al., 2012], estab-
lishing that relation-changing modal logics are all incomparable among them. This is
not a trivial result, given that we can expect some kind of connection at least between
the local and the global versions of each operator, but as we will see in the next lemma,
local or global effects allow us to describe different things. Some cases are easy to
check, but there are others in which we need more complex structures to distinguish
two languages.

Lemma 4.3.2. For every pair of pointed modelsM, w andM′, w′ in Figure 10, and for all
corresponding formulas ϕ of the column “Distinct by”, we haveM, w 6|= ϕ andM′, w′ |= ϕ.
Moreover, for all corresponding logics L of the column “Bisimilar for”, we have that (w, R)
and (w′, R′) are in an L-bisimulation, where R and R′ are the accessibility relations of M
andM′ respectively.

Proof. That the pairs of models disagree on the given formulas can be easily verified.
That the models are bisimilar for the given logics is also easily verified in most cases.
Let see some of them in detail.

Consider the following models:

w
M w′ M′

We will check the conditions to show that the two models are bisimilar for
ML(〈sb〉) and forML(〈sw〉). Clearly all the states agree propositionally (their valu-
ations are empty). For zig and zag conditions, we need to check if both have bisimilar
successors, which holds because there are not successors at all. The same happens
with 〈sb〉-zig/zag and 〈sw〉-zig/zag: the lack of successors makes the conditions
true. Now we can prove that ML(�) 6≤ ML(〈sb〉) and ML(�) 6≤ ML(〈sw〉), for
� ∈ {〈gsb〉, 〈gsw〉, 〈br〉, 〈gbr〉}. We have to check now that there are formulas of such
logics that distinguish the two models. The ML(〈br〉)-formula 〈br〉〈br〉> holds at
M′, w′ but not atM, w. Checking 〈br〉-zag, it fails starting from w′ and finding two
states to reach with a new edge, while starting from w we can just reach one. The
same happens with the 〈gbr〉-formula 〈gbr〉〈gbr〉>, which allows us to add two edges
inM′ but this is not possible inM. Formulas 〈gsb〉> and 〈gsw〉> also hold atM′, w′:
it is possible to find in some part of the model an edge to delete or swap respectively,
but not in the first model.

Now let us consider a more complicated case. The two pointed models below
areML(〈gsb〉)-bisimilar: they are the same graph with a different evaluation point.
The graph is a star that has infinitely many ingoing branches, and infinitely many
ingoing-outgoing branches. w is a point located at the end of an ingoing branch, and
w′ is at the end of an ingoing-outgoing branch.

To argue that the two models are bisimilar, it is easy to check the ML(〈gsb〉)-
bisimulation as an Ehrenfeucht-Fraı̈ssé game between Spoiler and Duplicator. If
Spoiler moves to the center of the star, Duplicator can do the same and both situations

4.3. COMPARING LANGUAGES 49

w
. . .

. . .

M

w′
. . .

. . .

M′

become indistinguishable. If Spoiler deletes one of the ingoing edges that has w or w′

as origin, then Duplicator does the same on the other graph, and any further edge
deletion can also be imitated. If Spoiler deletes the outgoing edge that goes from the
center of the graph towards w′, then Duplicator can delete any outgoing edge without
changing the graph, given that there are infinitely many edges of both kinds. The
ML(〈sb〉)-formula 〈sb〉♦�⊥ holds atM′, w′, because it is possible to delete the edge
when we move to the center of the star, and applying ♦ we move back to w′ which
now has no successors. InM, it is not possible to move to a dead end after deleting
an edge, then the formula does not hold.

The rest of the cases together with the previous are showed in Figure 10. In the
third row, the given models are bisimilar forML(〈gsb〉) andML(〈sb〉) because they
are bisimilar for ML, they are acyclic and (for ML(〈gsb〉)) they contain the same
number of edges. In the fourth row, both models areML(〈br〉)-bisimilar since they
are infinite, hence one can add as many links as needed to points that are modally
bisimilar.

The caseML(〈gbr〉) 6≤ ML(〈br〉) remains to be checked. A complex construction
is required for this case and we treat it separately in the following lemma.

Lemma 4.3.3. ML(〈gbr〉) 6≤ ML(〈br〉).

Proof. We give the description of an infinite modelM with two states w and v such
that M, w and M, v are ML(〈br〉)-bisimilar and there is an ML(〈gbr〉)-formula ϕ
such thatM, w |= ϕ andM, v 6|= ϕ.

Let a piece be a part of a model with a finite and non-zero number of states and
some relation between them. Let a collection be the disjoint union of an infinite number
of copies of the same piece. LetM be the disjoint union of all collections obtained
from all possible pieces.

Let w be a state of a piece of the following form: •w → •, and v a state of a piece
of the following form: • ← •v → •.

First, notice that 〈gbr〉�♦> is true at M, w and false at M, v. We will check
ML(〈br〉)-bisimilarity by using Ehrenfeucht-Fraı̈sse games and presenting a winning
strategy for Duplicator.
M, w and M, v are bisimilar for the basic modal logic. We show that after any

〈br〉-move in any model, it is possible to do a 〈br〉-move in the other model that leads
to a modally bisimilar part of the model. Assume Spoiler does a bridge to some part
of the model. As the model is made of pieces of finite size, the evaluation point moves
to a finite connected component. Duplicator only needs to do a bridge to a finite
connected component of the same shape.

50 CHAPTER 4. expressive power

M M′ Distinct by Bisimilar for

w
w′

〈br〉〈br〉>
〈gbr〉〈gbr〉>
〈gsb〉>
〈gsw〉>

ML(〈sb〉)
ML(〈sw〉)

w w′
〈sb〉♦>
〈gsb〉♦>

ML(〈sw〉)
ML(〈br〉)
ML(〈gsw〉)
ML(〈gbr〉)

w w′ 〈sw〉♦♦♦�⊥
♦〈gsw〉♦♦♦�⊥
〈br〉〈br〉>
〈gbr〉6〈gbr〉>

ML(〈gsb〉)
ML(〈sb〉)

w w′ . . .
〈sw〉♦�⊥
〈gsw〉�⊥

ML(〈br〉)
ML(〈gbr〉)

w
. . .

. . .

w′
. . .

. . .

〈sb〉♦�⊥ ML(〈gsb〉)

w w′
〈br〉3>
〈gbr〉3>

ML(〈gsw〉)

w
. . .

w′
. . .

〈br〉> ML(〈gbr〉)

Figure 10: Bisimilar models and distinguishing formulas.

Theorem 4.3.4. For all �1,�2 ∈ {〈sb〉, 〈gsb〉, 〈sw〉, 〈gsw〉, 〈br〉, 〈gbr〉} with �1 6= �2,
ML(�1) and ML(�2), ML(�1) 6= ML(�2) (they are incomparable), except for the
comparisonML(〈gsw〉) andML(〈sw〉).

Proof. Direct from Lemmas 4.3.2 and 4.3.3.

The only comparison we have not obtained, is the caseML(〈sw〉) 6≤ ML(〈gsw〉).
The question is open, but we conjecture that they are also incomparable as for all the
other logics.

Conjecture 4.3.5. ML(〈sw〉) 6=ML(〈gsw〉).

Adding relation-changing operators to the basic modal logic increases its expres-
sive power, but according to the results we just showed, each logic allows to express
different things. In Chapter 3, we have already seen that lack of tree and finite model
properties is proved by enforcing different structures for each relation-changing o-
perator. In this chapter, we proved using standard tools such as bisimulations and

4.4. A MORE GENERAL PERSPECTIVE 51

Ehrenfeucht-Fraı̈sse games that the expressive power of the six logics are all incom-
parable among them, except for the caseML(〈sw〉) andML(〈gsw〉) (we conjecture
that they are also incomparable). In the following chapter we will start to investigate
in detail the computational behaviour of relation-changing modal logics.

4.4 A M O R E G E N E R A L P E R S P E C T I V E

Some work related to the expressive power of the languages introduced in this thesis
remains to be done. We defined a notion of bisimulation which captures exactly the
behaviour of relation-changing operators. For each language, we define bisimulation
as a relation linking states and the updated accessibility relation of the models, and
we proved that two bisimilar models satisfy the same formulas of the corresponding
language. We have specific conditions depending of the operators we are considering,
but the conditions are defined uniformly. It is possible to define a more general notion
of bisimulation which instead of considering particular cases of updates (deleting,
swapping or adding edges) might consider update functions in general. It would
be easy to show that under certain circumstances, we can use the same ideas as for
sabotage, swap and bridge operators to define a proper notion of bisimulation for
each model modifier.

We discussed general results about bisimulation, but the same ideas can be
also applied to particular cases. Other modal modifiers have been investigated, for
instance, in Dynamic Epistemic Logic. In some cases, the languages do not increase
the expressive power ofML: they can be translated toML via reduction axioms. As
a consequence, the notion of bisimulation is the same as forML. However, there are
other cases in which the changes produced by the operator cannot be expressed in
ML. For these languages, we conjecture that we can apply the general techniques as
for relation-changing logics to get a proper notion of bisimulation.

Another interesting problem to investigate is the van Benthem Characterization [van
Benthem, 1977]. The original Characterization Theorem establishes that a FOL-
formula ϕ is equivalent to the translation of an ML-formula if and only if ϕ is
invariant under bisimulations. In [Areces et al., 2013a] it is shown that van Benthem
characterization theorems hold for any modal language which satisfies certain ad-
equacy conditions. It would be interesting to check these adequacy conditions and
investigate characterization for relation-changing modal logics.

52 CHAPTER 4. expressive power

5
The Satisfiability Problem

The Entscheidungsproblem is solved when we know a procedure
that allows for any given logical expression to decide by finitely

many operations its validity or satisfiability. (...) The Entscheidungsproblem
must be considered the main problem of mathematical logic.

from “Grundzüge der theoretischen Logik”, David Hilbert and Wilhelm Ackerman.

A classical problem that has to be investigated when we study logic is the satisfia-
bility problem, i.e., given any formula of the language decide if there is a model which
satisfies the formula. In this chapter we investigate the satisfiability problem for the
local versions of the relation-changing modal logics we introduced. As we showed in
the previous chapter, relation-changing operators increase the expressive power of
ML, but we do not know yet how much. In [Areces et al., 2013b] we already proved
that the satisfiability problem forML(〈sw〉) is undecidable. We follow the same ideas
to get undecidability for the other relation-changing modal logics. We also showed
the lack of the tree and the finite model property for the six logics, which leaves us
in the border of undecidability. We are indeed going to see that we can reduce the
undecidable satisfiability problem ofML(r©, k©) to the one ofML(〈sb〉),ML(〈br〉)
andML(〈sw〉).

First, we translate memory logics models to standard Kripke models. The idea of
the translation is that it forces some constraint in the shape of the models in which
we will evaluate the formulas. The intended models, follow the structure defined for
infinite models of Section 3.3. Then, we translate ML(r©, k©)-formulas to relation-
changing formulas. In the next sections we introduce the translations for the local
versions of sabotage, bridge and swap respectively. The behaviour of swap is quite
different and harder to capture, as we will see in other chapters, constructions for
swap are always harder than for the other operators.

5.1 S A B O TA G E L O G I C

We start by proving that the satisfiability problem for ML(〈sb〉) is undecidable.
First, we provide a translation from formulas of the memory logic ML(r©, k©) to
ML(〈sb〉)-formulas. In order to simulate the behaviour of the operators r© and
k© without having a memory in the model, we impose constraints on the models

where we evaluate the translated formula. Then we prove that aML(r©, k©)-formula
is satisfiable if and only if, the translation of such a formula (in addition to the
constraints we define) is satisfiable.

53

54 CHAPTER 5. the satisfiability problem

Definition 5.1.1. Let s ∈ PROP, we define Conds as the conjunction of the following
formulas:

(1) s ∧�¬s ∧�♦s
(2) ��(s→ ¬♦s)
(3) [sb][sb](s→ �♦s)
(4) �[sb](s→ ♦¬♦s)
(5) ��(¬s→ ♦(s ∧ ¬♦s))
(6) �[sb](¬s→ [sb](s→ ��(¬s→ ♦s)))
(7) ��(¬s→ [sb](s→ ♦♦(¬s ∧ ¬♦s)))
(Spy) ��(¬s→ [sb](s→ ♦¬♦s)).

Let us call s (for spy point) a node satisfying Conds in an arbitrary model. Then,
the point s satisfies the propositional symbol s, and is related with all the states of
the connected component of the model in the two directions. Formula (1) ensures
that the propositional symbol s is satisfied at the evaluation point, and is not satisfied
in any successor. As a consequence, the state s is irreflexive. It also says that all the
successors can see an s-state.

(2) ensures that all the s-states that are accessible in two steps from the evaluation
point, have no successors satisfying s.

(3) ensures that after deleting two edges and reaching an s-state, the property that
all the successors can see an s-state is maintained.

The formula (4) establishes that for all the successors, after deleting an edge and
reaching an s-state, there is a successor which cannot see any s-state (it was the only
successor satisfying s).

(5) says that reaching some state in two steps that does not satisfy s, there is
always an s-state which is reachable and has no successors satisfying s.

(6) ensures that after eliminating the edge from a ¬s-state (which is no longer
accessible from the evaluation point in two steps) to an s-state, the remaining ¬s-states
still have an edge pointing to some state satisfying s.

(7) ensures that all the states reachable in two steps (which do not satisfy s) have
only one successor labeled by s.

(Spy) establishes that states that are accessible in two steps are also accessible in
one step.

Next, we will see an example showing how we will use Conds. The idea is to
pick an ML(r©, k©) model, and add a spy point to satisfy Conds. A model where
M, s |= Conds is illustrated below:

ϕ . . .

s

In this picture, the thick points and lines represent the model of the initial memory
logic formula that can be extracted from the whole model. We introduce some

5.1. SABOTAGE LOGIC 55

properties of the models satisfying Conds, that will be useful in the equisatisfiability
proof.

Proposition 5.1.2. Let M = 〈W, R, V〉 be a model, w ∈ W. If M, w |= Conds, then the
following properties hold:

1. w is the only state inM that satisfies s in the connected component generated by w.

2. For all states v ∈ W such that v 6= w, we have that if (w, v) ∈ R then (v, w) ∈ R,
and if (w, v) ∈ R∗ then (w, v) ∈ R (w is a spy point).

Proposition 5.1.2 enumerates the main properties of the spy point: it is the only
spy point in the connected component, and each time that there is an outgoing edge
to some state of the model, there is also an edge coming back.

Now we introduce the translation fromML(r©, k©)-formulas toML(〈sb〉)-formulas.

Definition 5.1.3. Let ϕ be anML(r©, k©)-formula that does not contain the propositional
symbol s. We define Tr(ϕ) = ♦(ϕ)′, where ()′ is defined as follows:

(p)′ = p for p ∈ PROP appearing in ϕ
(k©)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r©ψ)′ = (♦s→ 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))) ∧ (¬♦s→ (ψ)′).

Boolean and modal cases are obvious. r© is represented by removing the edges
from the spy point to the state we want to memorize and from this state to the spy
point. Notice how the translation behaves: if the point has already been memorized
(¬♦s), then nothing needs to be done and translation continues; otherwise (♦s), we
make s inaccessible using 〈sb〉 and we also delete the arrow from s to the current
point. k© is represented by checking whether there is an edge pointing to the spy
point or not.

Theorem 5.1.4. Let ϕ be a formula of ML(r©, k©) that does not contain the propositional
symbol s. Then, ϕ and Tr(ϕ) ∧ Conds are equisatisfiable.

Proof. We will prove that ϕ is satisfiable if and only if Tr(ϕ) ∧ Conds is satisfiable.
(⇐) Suppose that Tr(ϕ) ∧ Conds is satisfiable, i.e., there exists a model M =

〈W, R, V〉, and s ∈W such that 〈W, R, V〉, s |= Tr(ϕ) and 〈W, R, V〉, s |= Conds. Then
we can define the modelM′ = 〈W ′, R′, V′, ∅〉 where

W ′ = {v | (s, v) ∈ R}
R′ = R ∩ (W ′ ×W ′)
V′(p) = V(p) ∩W ′ for p ∈ PROP.

Let w′ ∈ W ′ be a state s.t. (s, w′) ∈ R and 〈W, R, V〉, w′ |= (ϕ)′ (because
〈W, R, V〉, s |= ♦(ϕ)′). We will prove

〈W ′, R′, V′, M′〉, v |= ψ iff 〈W, R(M′), V〉, v |= (ψ)′,

where v ∈ W ′, M′ ⊆ W ′, ψ ∈ FORM, and R(M′) = R\{(s, t), (t, s) | t ∈ M′}. In
particular, when M′ = ∅ we have that 〈W ′, R′, V′, ∅〉, w′ |= ϕ iff 〈W, R, V〉, w′ |= (ϕ)′.

Then we do structural induction on ψ. We have two base cases:

56 CHAPTER 5. the satisfiability problem

ψ = p : Suppose that 〈W ′, R′, V′, M′〉, v |= p. By definition of |=, v ∈ V′(p), and
this is equivalent to v ∈ V(p) ∩W ′ by definition of V′. Because v ∈ V(p), by
|= we have 〈W, R(M′), V〉, v |= p, and by definition of ()′ this is equivalent to
〈W, R(M′), V〉, v |= (p)′.

ψ = k©: Suppose that 〈W ′, R′, V′, M′〉, v |= k©. By |= we have v ∈ M′, and
by Proposition 5.1.2 and definition of R(M′) we have (v, s) /∈ R(M′) and
〈W, R(M′), V〉, s |= s. Then by |= 〈W, R(M′), V〉, v |= ¬♦s, and by definition of
()′ this is equivalent to 〈W, R(M′), V〉, v |= (k©)′.

Now we prove inductive cases.

ψ = ¬φ: Suppose 〈W ′, R′, V′, M′〉, v |= ¬φ. By definition of |=, 〈W ′, R′, V′, M′〉, v 6|=
φ. By I.H., we have 〈W, R(M′), V〉, v 6|= (φ)′, iff 〈W, R(M′), V〉, v |= ¬(φ)′. Then,
by definition of ()′, 〈W, R(M′), V〉, v |= (¬φ)′.

ψ = φ ∧ χ: Suppose 〈W ′, R′, V′, M′〉, v |= φ ∧ χ. By |=, 〈W ′, R′, V′, M′〉, v |= φ and
〈W ′, R′, V′, M〉, v |= χ. By I.H., 〈W, R(M′), V〉, v |= (φ)′ and 〈W, R(M′), V〉, v |=
(χ)′. Then we have 〈W, R(M′), V〉, v |= (φ)′ ∧ (χ)′. Then by definition of ()′,
〈W, R(M′), V〉, v |= (φ ∧ χ)′.

ψ = ♦φ: Suppose 〈W, R(M′), V〉, v |= (♦φ)′. By definition of ()′, 〈W, R(M′), V〉, v
|= ♦(¬s∧ (φ)′). By |=, there is v′ ∈W s.t. (v, v′) ∈ R(M′) and 〈W, R(M′), V〉, v′

|= ¬s ∧ (φ)′. Then we have 〈W, R(M′), V〉, v′ |= ¬s and 〈W, R(M′), V〉, v′ |=
(φ)′. By I.H., 〈W ′, R′, V′, M′〉, v′ |= φ, hence by |= and Proposition 5.1.2, we have
〈W ′, R′, V′, M′〉, v |= ♦φ.

ψ = r©φ: Suppose 〈W, R(M′), V〉, v |= (r©φ)′. By definition of ()′ and |=,

〈W, R(M′), V〉, v |= ♦s→ 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′)) and
〈W, R(M′), V〉, v |= ¬♦s→ (φ)′.

We will prove each conjunct separately. First, suppose 〈W, R(M′), V〉, v |=
♦s. Then (v, s) ∈ R(M′) (by Proposition 5.1.2). We want to prove that
〈W, R(M′), V〉, v |= 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (φ)′)). By assumption we know (v, s) ∈
R(M′) then (s, v) ∈ R(M′), because in R(M′) we always delete pairs in the
two directions and by Proposition 5.1.2. Then we only need to prove that
〈W, R(M′)−vs, V〉, s |= s∧〈sb〉(¬♦s∧ (φ)′). It is trivial that 〈W, (R(M′))−vs, V〉, s |=
s. Let us see that 〈W, (R(M′))−vs, V〉, s |= 〈sb〉(¬♦s ∧ (φ)′). Because (s, v) ∈
(R(M′))−vs, it suffices to prove 〈W, R(M′)−vs,sv, V〉, v |= ¬♦s ∧ (φ)′. First conjunct
is trivial because (v, s) /∈ R(M′)−vs,sv.

On the other hand, we know that for all t, (t, s) /∈ R(M′) iff (s, t) /∈ R(M′). Then
by I.H., 〈W, R(M′)−vs,sv, V〉, v |= (φ)′ iff 〈W ′, R′, V′, M ∪ {v}〉, v |= φ. Hence, by
|= we have 〈W ′, R′, V′, M′〉, v |= r©φ.

Now suppose the other case, 〈W, R(M′), V〉, v |= ¬♦s. By Proposition 5.1.2, we
know (v, s) /∈ R(M′). By definition of R(M′), we have (s, v) /∈ R(M′). Then
v ∈ M′, and by I.H. we have 〈W ′, R′, V′, M′〉, v |= r©φ.

5.2. BRIDGE LOGIC 57

(⇒) Suppose that ϕ is satisfiable, i.e., there exists a modelM = 〈W, R, V, ∅〉 and
w ∈W such that 〈W, R, V, ∅〉, w |= ϕ.

Let s be a state that does not belong to W. Then we can define the model
M′ = 〈W ′, R′, V′〉 as follows:

W ′ = W ∪ {s}
R′ = R ∪ {(s, w) | w ∈W} ∪ {(w, s) | w ∈W}
V′(p) = V(p) for p ∈ PROP appearing in ϕ
V′(s) = {s}.

By construction ofM′, it is easy to check thatM′, s |= Conds. Then we can verify that

〈W, R, V, M〉, w |= ϕ iff 〈W ′, R′(M), V′〉, s |= Tr(ϕ),

where R′(M) is defined as for the (⇐) direction of the proof.
Again we need to do structural induction. Boolean cases are easy, and it is also

the case for k©. If 〈W, R, V, M〉, w |= ♦ψ, then by construction of M′ it is clear that
w /∈ V′(s) and 〈W ′, R′(M), V′〉, v |= (ψ)′. If 〈W, R, V, M〉, w |= r©ψ, we can delete the
edges (w, s) and (s, w) to simulate the storing of w in the memory (if those pairs are
not in R′ means w ∈ M) and continue by evaluating the rest of the translation ()′

(steps are similar than for the (⇐) direction of the proof).

From the previous theorem, we immediately get:

Theorem 5.1.5. The satisfiability problem ofML(〈sb〉) is undecidable.

We have proved that we can reduce the satisfiability problem ofML(r©, k©) to the
same problem forML(〈sb〉). Based on these results, and given that we can enforce
infinite models withML(〈gsb〉)-formulas, we conjecture that similar constructions
can be done for the global version of sabotage, leaving it as future work.

5.2 B R I D G E L O G I C

In this section, we will reduce the satisfiability problem ofML(r©, k©) to the satisfia-
bility problem ofML(〈br〉). The idea is to simulate the behaviour of r© by keeping
a “spy point” and adding back and forth edges from the state to be remembered
to the spy point. Then, the behaviour of k© is captured by consulting if the current
state points to the spy point. In this case, we will allow multiple spy points which
are unconnected with the rest of the model, but form a connected component among
them. However, the constraints we impose enforce that we always use the same spy
point. Another difference withML(〈sb〉) is that we use a second set of states (called
“bridge points”) between spy points and the rest of the model, also unconnected from
the rest, but connected among them. Because spy points are isolated, we need to add
new edges to reach the rest of the model. If we directly add an edge to an arbitrary
state, when we start the evaluation of a formula, we are introducing some undesired
information (remember that new edges stand for visited states). For that reason we
use bridge points to start the evaluation without introducing unwanted edges.

Next we introduce the conditions to enforce the intended models.

58 CHAPTER 5. the satisfiability problem

Definition 5.2.1. Let s, b ∈ PROP, we define Conds as the conjunction of the following
formulas:

(1) s ∧ [br]¬s
(s− connex) �[br]¬s
(3) ��s
(4) �[br]�¬s
(5) �¬b
(6) 〈br〉(b ∧ [br]¬b

∧ �[br]¬b
∧ ��b
∧ �[br]�¬b
∧ �¬s).

(1) establishes that the evaluation point satisfies s and it is reflexive. (s− connex)
ensures there is no unconnected s-state. (3) ensures that all the successors have only
s-successors. (4) says that there are no edges from ¬s-states incoming to the connected
component satisfying s. (5) ensures that no successor of s satisfies b. Finally, the
formula (6) establishes that there is a totally connected component of states satisfying
b (described exactly as for s) which is unreachable from the s-component.

The idea is to pick an ML(r©, k©) model, and add a cloud of spy points and a
cloud of bridge points to satisfy Conds. A model whereM, s |= Conds is illustrated
below:

. . .

s s

bb

In this picture, the thick points and lines represent the model of the initial memory
logic formula that can be extracted from the whole model.

The next proposition spells out the shape of the models we want to enforce.

Proposition 5.2.2. Let M = 〈W, R, V〉 be a model, w ∈ W. If M, w |= Conds, then the
following properties hold:

1. w ∈ V(s) and V(s) is totally connected (for all v, u ∈ V(s), we have (v, u) ∈ R and
(u, v) ∈ R).

2. If w ∈ V(s) and v /∈ V(s) then (w, v) /∈ R and (v, w) /∈ R.

3. w /∈ V(b) and V(b) is totally connected (for all v, u ∈ V(b), we have (v, u) ∈ R and
(u, v) ∈ R).

4. If w /∈ V(b) and v ∈ V(b) then (w, v) /∈ R and (v, w) /∈ R.

Now we define the translation fromML(r©, k©)-formulas toML(〈br〉)-formulas.

5.2. BRIDGE LOGIC 59

Definition 5.2.3. Let ϕ be anML(r©, k©)-formula that does not contain the propositional
symbols s and b. We define Tr(ϕ) = 〈br〉(b ∧ 〈br〉(¬s ∧ (ϕ)′)), where ()′ is defined as
follows:

(p)′ = p for p ∈ PROP appearing in ϕ
(k©)′ = ♦s
(¬ψ)′ = ¬(ψ)′
(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ ¬b ∧ (ψ)′)
(r©ψ)′ = (¬♦s→ 〈br〉(s ∧♦¬s ∧ 〈br〉(♦s ∧ (ψ)′)) ∧ (♦s→ (ψ)′).

Boolean cases are obvious. ♦ψ is satisfied if there is a successor where ψ holds,
and we also check that this successor does not satisfies s and b. r© is represented by
adding an edge to the state to be remembered and some s-state in the two directions.
In this way we identify visited states by checking if there is an edge to an s-state.

Then we can state:

Theorem 5.2.4. Let ϕ be a formula of ML(r©, k©) that does not contain the propositional
symbol s and b. Then, ϕ and Tr(ϕ) ∧ Conds are equisatisfiable.

A model whereM, s |= Conds ∧ Tr(ϕ) is illustrated below:

ϕ . . .

s s

bb

Proof. We will prove that ϕ is satisfiable if and only if Tr(ϕ) ∧ Conds is satisfiable.
(⇐) Suppose that Tr(ϕ) ∧ Conds is satisfiable, i.e., there exists a model M =

〈W, R, V〉, and s ∈W such that 〈W, R, V〉, s |= Tr(ϕ) and 〈W, R, V〉, s |= Conds. Then
we can define the modelM′ = 〈W ′, R′, V′, ∅〉, where

W ′ = {v | (s, v) /∈ R}
R′ = R ∩ (W ′ ×W ′)
V′(p) = V(p) ∩W ′ for p ∈ PROP.

Let w′ ∈W ′ be a state such that there is a w′′ ∈W s.t (s, w′′) ∈ R and (w′′, w′) ∈ R
and 〈W, R, V〉, w′ |= (ϕ)′ (because 〈W, R, V〉, s |= 〈br〉(b ∧ 〈br〉(¬s ∧ (ϕ)′))). We will
prove

〈W ′, R′, V′, M′〉, v |= ψ iff 〈W, R(M′), V〉, v |= (ψ)′

where v ∈ W ′, M′ ⊆ W ′, ψ ∈ FORM, and R(M′) = R ∪ {(s, t), (t, s) | t ∈ M′}. In
particular, when M′ = ∅ we have that 〈W ′, R′, V′, ∅〉, w′ |= ϕ iff 〈W, R, V〉, w′ |= (ϕ)′.

Then we do structural induction on ψ. We have two base cases:

60 CHAPTER 5. the satisfiability problem

ψ = p: Suppose that 〈W ′, R′, V′, M′〉, v |= p. By |= we have v ∈ V′(p), and this
is equivalent to v ∈ V(p) ∩W ′ by definition of V′. Because v ∈ V(p), by |=
we have 〈W, R(M′), V〉, v |= p, and by definition of ()′ this is equivalent to
〈W, R(M′), V〉, v |= (p)′.

ψ = k©: Suppose that 〈W ′, R′, V′, M′〉, v |= k©. By |= we have v ∈ M′, and
by Proposition 5.2.2 and definition of R(M′) we have (v, s) ∈ R(M′) and
〈W, R(M′), V〉, s |= s. Then by |= 〈W, R(M′), V〉, v |= ♦s, and by definition
of ()′ this is equivalent to 〈W, R(M′), V〉, v |= (k©)′.

Now we prove inductive cases.

ψ = ¬φ and ψ = φ ∧ χ: follow by I.H.

ψ = ♦φ: Suppose 〈W, R(M′), V〉, v |= (♦φ)′. By definition of ()′ we have
〈W, R(M′), V〉, v |= ♦(¬s ∧ ¬b ∧ (φ)′). By |=, there exists v′ ∈ W s.t. (v, v′) ∈
R(M′) and 〈W, R(M′), V〉, v′ |= ¬s∧¬b∧ (φ)′. Then (by |=) 〈W, R(M′), V〉, v′ |=
¬s, 〈W, R(M′), V〉, v′ |= ¬b and 〈W, R(M′), V〉, v′ |= (φ)′. By I.H. we have
〈W ′, R′, V′, M′〉, v′ |= φ, hence by |= and Proposition 5.2.2, 〈W ′, R′, V′, M′〉, v |=
♦φ.

ψ = r©φ: Suppose 〈W, R(M′), V〉, v |= (r©φ)′. By definition of ()′ and |=,

〈W, R(M′), V〉, v |= ¬♦s→ 〈br〉(s ∧♦¬s ∧ 〈br〉(♦s ∧ (φ)′)) and
〈W, R(M′), V〉, v |= ♦s→ (φ)′.

We will prove each conjunct separately. First, suppose 〈W, R(M′), V〉, v |=
¬♦s. Then (v, s) /∈ R(M′) (by Proposition 5.2.2). We want to prove that
〈W, R(M′), V〉, v |= 〈br〉(s ∧ ♦¬s ∧ 〈br〉(♦s ∧ (φ)′)). By assumption and Propo-
sition 5.2.2, we know that if (v, s) /∈ R(M′) then (s, v) /∈ R(M′) (because in
R(M′) we always add pairs in the two directions). Then we only need to prove
〈W, R(M′)+vs, V〉, s |= s ∧ ♦¬s ∧ 〈br〉(♦s ∧ (φ)′). We know s ∈ V(s), then it re-
sults obvious that 〈W, (R(M′))+vs, V〉, s |= s. Then 〈W, (R(M′))+vs, V〉, s |= ♦¬s,
because the evaluation of the translation started at s and adding an edge to
a b-state (that does not satisfy s by Proposition 5.2.2). It remains to see that
〈W, (R(M′))+vs, V〉, s |= 〈br〉(♦s ∧ (φ)′). Because (s, v) /∈ (R(M′))+vs, it suffices to
prove 〈W, R(M′)+vs,sv, V〉, v |= ♦s ∧ (φ)′. On the one hand, the first conjunct is
trivial because (v, s) ∈ R(M′)+vs,sv. On the other hand, we know that for all t,
(t, s) ∈ R(M′) iff (s, t) ∈ R(M′). Then by I.H., 〈W, R(M′)+vs,sv, V〉, v |= (φ)′ iff
〈W ′, R′, V′, M′ ∪ {v}〉, v |= φ. Hence, by |= we have 〈W ′, R′, V′, M′〉, v |= r©φ.

Now suppose the other case, 〈W, R(M′), V〉, v |= ♦s. Then we know (v, s) ∈
R(M′) (by Proposition 5.2.2). By definition of R(M′), we have (s, v) ∈ R(M′).
Then v ∈ M′, and by I.H. we have 〈W ′, R′, V′, M′〉, v |= r©φ.

(⇒) Suppose that ϕ is satisfiable, i.e., there exists a modelM = 〈W, R, V, ∅〉 and
w ∈W such that 〈W, R, V, ∅〉, w |= ϕ.

5.3. SWAP LOGIC 61

Let s and b be states that do not belong to W. Then we can define the model
M′ = 〈W ′, R′, V′〉 as follows:

W ′ = W ∪ {s} ∪ {b}
R′ = R ∪ {(s, s), (b, b)}
V′(p) = V(p) for p ∈ PROP appearing in ϕ
V′(s) = {s}
V′(b) = {b}.

By construction ofM′, it is easy to check thatM′, s |= Conds. Then we can verify that

〈W, R, V, M〉, w |= ϕ iff 〈W ′, R′(M), V′〉, s |= Tr(ϕ),

where R′(M) is defined as for the (⇐) direction of the proof.
Again we need to do structural induction. Boolean cases are easy, and it is also

the case for k©. If 〈W, R, V, M〉, w |= ♦ψ, then by construction of M′ it is clear that
w /∈ V′(s) and w /∈ V′(b) and 〈W ′, R′(M), V′〉, v |= (ψ)′. If 〈W, R, V, M〉, w |= r©ψ,
we can add the edges (w, s) and (s, w) to simulate the storing of w in the memory
(if those pairs are in R′ means w ∈ M) and continue by evaluating the rest of the
translation ()′ (steps are similar that for the (⇐) direction of the proof).

As a consequence of previous theorem, we get:

Theorem 5.2.5. The satisfiability problem ofML(〈br〉) is undecidable.

Both proofs we presented so far, follow the same ideas to prove undecidability for
the satisfiability problem. As we mentioned in the previous section for theML(〈sb〉)
case, we conjecture that we can apply the same techniques to prove undecidability for
the global version (ML(〈gbr〉)). We also leave it as future work.

5.3 S WA P L O G I C

Once more, we will simulate the behaviour ofML(r©, k©), i.e., the ability to memorize
and check states, without having an external memory. What we have instead is the
ability to swap edges in the model. We will build models that contain switches, special
edges whose position – “off” by default, and “on” if the direction of the edge has been
swapped around – will represent whether a point of the model has been remembered
with the r© operator. We will simulate the k© predicate by querying the position of
these switches. Let us introduce the translation fromML(r©, k©) toML(〈sw〉):

Definition 5.3.1. Let ϕ be a formula ofML(r©, k©) that does not contain the propositional
symbols s and sw. Let Tr(ϕ) be the following formula:

(1) s ∧�(4)¬s
(2) ∧ ¬sw ∧ �¬sw ∧ �(♦(sw ∧�⊥) ∧ [sw](sw→ �¬♦sw))
(3) ∧ [sw][sw]����(sw→ �⊥)
(4) ∧ 〈sw〉[sw](¬s ∧ ¬sw → (r©♦♦(s ∧♦ k©))′)
(5) ∧ ♦(ϕ)′.

62 CHAPTER 5. the satisfiability problem

With ()′ defined as:

(r©ψ)′ = (♦sw → 〈sw〉(sw ∧♦(ψ)′)) ∧ (¬♦sw → (ψ)′)
k©′ = ¬♦sw
(ψ⊗ χ)′ = (ψ)′ ⊗ (χ)′ for ⊗ ∈ {∨,∧}
(¬ψ)′ = ¬(ψ)′
(⊗ψ)′ = ⊗(¬s ∧ ψ)′ for ⊗ ∈ {♦, 〈sw〉}
(⊗ψ)′ = ⊗(¬s→ ψ)′ for ⊗ ∈ {�, [sw]}.

In Tr(ϕ), the propositional symbol s is used to refer to the evaluation point, that
will also be a spy point, i.e., a point that has direct access to all the points in the
connected component. sw represents “switch points”, they will be used to encode
memory operators.

The formula (1) ensures that the propositional symbol s is true at the evaluation
point and false at any accessible point between 1 and 4 steps from there. (2) initializes
the switches, represented by edges to states where sw is true.

(3) ensures that switch points can be reached from the evaluation point by a
unique path. Indeed, if this were not the case, then it would be possible to swap
around two edges leading to some switch point, then come back to the evaluation
point in two steps by this new path, and come back to the same switch in two steps,
where the formula (sw ∧ ¬�⊥) would hold.

(4) ensures that the evaluation point is linked to every point of the model except
itself and the switch points. Note that although (k©)′ is true at the evaluation point, the
latter is irreflexive by (1), hence (s ∧♦ k©)′ ensures an edge goes from the evaluation
point to the point where r© occurred.

(5) places the translation of the memory logic formula right after the evaluation
point.

By the definition of (r©ψ)′, the action of remembering a point in a model of ϕ
is done in the corresponding model of Tr(ϕ) by swapping the edge between the
corresponding point and its switch point. In the case where the point has already
been memorized, i.e., (k©)′ = ¬♦sw holds, then nothing needs to be swapped.

It is important that switch points do not have successors and that they have exactly
one predecessor. This ensures that the path taken by (r©ψ)′ correctly comes back to
the same point of the model.

A model of Tr(ϕ) for some ϕ is illustrated below:

ϕ . . .

s

sw sw
sw

In this picture, the thick points and lines represent the model of the initial memory
logic formula that can be extracted from the whole model. For instance, a model of
the formula Tr(r©♦ k©) can be:

5.3. SWAP LOGIC 63

ϕ

s

sw

Then we can state:

Theorem 5.3.2. Let ϕ be a formula of ML(r©, k©) that does not contain the propositional
symbols s and sw. Then, ϕ and Tr(ϕ) are equisatisfiable.

Proof. (⇒) Suppose that ϕ is satisfiable, i.e., there exists a modelM = 〈W, R, V, ∅〉
and w ∈W such that 〈W, R, V, ∅〉, w |= ϕ.

Let sw be a bijective function between W and a set S such that S ∩W = ∅,
and eval a point that is not a member of S ∪W. Then we can define the model
M′ = 〈W ′, R′, V′〉 as follows:

W ′ = W ∪ {s} ∪ S
R′ = R′ ∪ {(eval, w) | w ∈W} ∪ {(w, sw(w)) | w ∈W}
V′(p) = V(p) for p ∈ PROP appearing in ϕ
V′(s) = {s}
V′(sw) = {sw(w) | w ∈W}.

Following the description of Tr(ϕ) given in this section, we can verify thatM′, s |=
Tr(ϕ).

(⇐) For the other direction, suppose Tr(ϕ) is satisfiable, i.e., there exists a model
M = 〈W, R, V〉, and w ∈W such that 〈W, R, V〉, w |= Tr(ϕ). Then we can define the
modelM′ = 〈W ′, R′, V′, ∅〉 where

W ′ = { v | (w, v) ∈ R }
R′ = R ∩ (W ′ ×W ′)
V′(p) = V(p) ∩W ′ for p ∈ PROP.

We can verify that there exists some w ∈W ′ such thatM′, w |= ϕ.

We immediately get:

Theorem 5.3.3. The satisfiability problem ofML(〈sw〉) is undecidable.

As we did for the other operators, we conjecture that similar ideas can be used to
prove the undecidability of the global version of the swap operator.

The technique we use to prove that the satisfiability problem of relation-changing
modal logics is undecidable is a reduction of the satisfiability problem of the memory
logic ML(r©, k©). The key is the fact that we can simulate the memorization of an
element and its membership to the memory by defining a model with spy points and
using relation-changing operators. It looks like the expressive power given by having
dynamic behaviour in the language makes it possible to enforce complex structures

64 CHAPTER 5. the satisfiability problem

such as infinite models or models with spy points. This is the reason we conjecture
we can use the same techniques using the global operators we study in this thesis,
to prove that the logics they give rise are also undecidable (in Chapter 3 we already
proved they can enforce infinite models).

6
Model Checking

The biggest difference between time and space is that you can’t reuse time.

Merrick Furst.

6.1 T H E M O D E L C H E C K I N G P R O B L E M

In Chapter 2 we discussed the computational behaviour of modal logics. ForML, the
satisfiability problem is PSpace-complete. We showed in previous chapter that the sa-
tisfiability problem for the local version of relation-changing modal logics introduced
in this thesis is undecidable. We will now analyze the model checking problem:
given a model and a formula, check if the model satisfies the formula. This task can
be performed in polynomial time for ML. In this section we establish complexity
results for the model checking task in the various relation-changing modal logics
we presented. All the results are established using a similar argument: hardness
proofs are done by encoding the satisfiability problem of Quantified Boolean Formulas
(QBF) [Papadimitriou, 1994] as the model checking problem of each logic. While the
idea behind the encoding is the same for all the logics involved, the encoding needs
to be slightly modified in each case taking into consideration the semantics of the
various relation-changing operators. PSpace-hardness for global sabotage was already
proved in [Löding and Rohde, 2003b; Löding and Rohde, 2003a], but we provide here
a more direct proof. For 〈sw〉, the proof was given in [Areces et al., 2013b], and for
〈sb〉 and 〈br〉, the proof was given in [Areces et al., 2012]

First we will introduce QBF, arguably the most fundamental PSpace-complete
problem. Let us introduce its syntax and semantics.

Definition 6.1.1 (QBF Syntax). Let PROP be a countable, infinite set of propositional
symbols. Then the set FORM of formulas of QBF over PROP is defined as:

FORM ::= x | ¬ϕ | ϕ ∧ ψ | ∃xϕ,

where x ∈ PROP and ϕ, ψ ∈ FORM.

Given that satisfiability depends only on assignments of truth to propositional
variables, QBF models are valuations (functions that assign truth values to the vari-
ables).

65

66 CHAPTER 6. model checking

Definition 6.1.2 (QBF Semantics). Let v : {x1, . . . , xk} → {0, 1} be a valuation, the
relation |=qbf is defined as:

v |=qbf xi iff v(xi) = 1
v |=qbf ¬ϕ iff v 6|=qbf ϕ

v |=qbf ϕ ∧ ψ iff v |=qbf ϕ and v |=qbf ψ

v |=qbf ∃xi ϕ iff v[xi 7→ 0] |=qbf ϕ or v[xi 7→ 1] |=qbf ϕ

The valuation v[xi 7→ n] is defined as v[xi 7→ n](xi) = n and v[xi 7→ n](x) = v(x), for
x 6= xi. ϕ is satisfiable if there is a valuation v such that v |=qbf ϕ.

The satisfiability problem for QBF is PSpace-complete [Papadimitriou, 1994]. We
will use this result to prove that model checking problem for all the relation-changing
logics we introduced in this thesis is PSpace-hard.

Theorem 6.1.3. For � ∈ {〈sb〉, 〈gsb〉, 〈sw〉, 〈gsw〉, 〈br〉, 〈gbr〉}, model checking for any of
the logicsML(�) is PSpace-hard.

Proof. We will reduce the PSpace-complete satisfiability problem of QBF to the model
checking problem of each of these logics. We will give a complete proof for the 〈sw〉
case; for the other operators a similar strategy establishes the result.

- ConsiderML(〈sw〉). Let α be a QBF formula with variables {x1, . . . , xk}. With-
out loss of generality we can assume that α has no free variables and no variable
is quantified twice. One can build in polynomial time the relational structure
Mk showed below. The evaluation point has two successors for each variable in
α, but just one of each kind is labeled by p>.

p1

p>
p1

. . . pk

p>
pk

Mk = 〈W, R, V〉 is built over a signature with one relational symbol and propo-
sitions {p>, p1, . . . , pk}, where:

W = {w} ∪ {w1
i , w0

i | 1 ≤ i ≤ k}
V(pi) = {w1

i , w0
i }

V(p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w, w1
i), (w, w0

i) | 1 ≤ i ≤ k}.

Now we need to translate quantified boolean formulas toML(〈sw〉)-formulas.
The idea is that each time we have an existential formula over a variable xi, we
swap around one of the edges pointing to pi states in Mk. We continue the
evaluation of the rest of the formula at this pi point in the new model variant.
Swapping the p> one, represents that the truth value has to be assigned to 1.
Otherwise, xi is assigned to 0. Other QBF operators are translated in the obvious
way.

6.1. THE MODEL CHECKING PROBLEM 67

Let ()′ be the following linear translation from QBF toML(〈sw〉):

(∃xi.α)′ = 〈sw〉(pi ∧♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

It remains to be proved that α is satisfiable iffMk, w |= (α)′ holds. For a model
M with relation R we define vR : {x1, . . . , xk} as “vR(xi) = 1 iff (w, w1

i) 6∈ R”,
in the present case, iff the link between w and w1

i has been swapped.

Let β be any subformula of α. We will show by induction on β thatM, w |= (β)′

iff vR |=qbf β. The first observation is that R satisfies i) if xi is free in β, then
(w, w1

i) 6∈ R or (w, w0
i) 6∈ R but not both, and ii) if xi is not free in β then

(w, w1
i) ∈ R and (w, w0

i) ∈ R. From here it will follow that Mk, w |= (α)′ iff
v |=qbf α for any v since α has no free variables, iff α is satisfiable.

For the base case, vR |=qbf xi iff (w, w1
i) 6∈ R which implies (from the definition

of Mk) M, w |= (xi)
′. For the other direction, suppose M, w 6|= (xi)

′. Hence
M, w |= ♦(pi ∧ p>) which implies (w, w1

i) ∈ R and vR 6|=qbf xi.

The Boolean cases follow directly from the inductive hypothesis.

Consider the case β = ∃xi.γ. Since no variable is bound twice in α we know
(w, w1

i) ∈ R and (w, w0
i) ∈ R. We have vR |=qbf β iff (vR[xi 7→ 0] |=qbf γ or

vR[xi 7→ 1] |=qbf γ) iff (vR∗
w0

i w
|=qbf γ or vR∗

w1
i w
|=qbf γ). By inductive hypothesis,

this is the case if and only if (M∗
w0

i w
, w0

i |= ♦(γ)′ or M∗
w1

i w
, w1

i |= ♦(γ)′) iff

M, w |= 〈sw〉(pi ∧♦(γ)′) iffM, w |= (∃xi.γ)′.

This shows that the model checking problem ofML(〈sw〉) is PSpace-hard.

- ForML(〈sb〉) andML(〈gsb〉), we use the following modelMk:

p1

p>
p1

. . . pk

p>
pk

Mk = 〈W, R, V〉 is built as for the swap case, but with:

W = {w} ∪ {w1
i , w0

i | 1 ≤ i ≤ k}
V(pi) = {w1

i , w0
i }

V(p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w, w1
i), (w, w0

i),
(w1

i , w), (w0
i , w) | 1 ≤ i ≤ k}

Now we will give the translations from QBF to local and global sabotage logics.
The lack of an edge pointing from the evaluation point to an p> point means
that the corresponding variable has to be assigned to 1, otherwise to 0.

68 CHAPTER 6. model checking

Let ()′ be the following linear translation from QBF toML(〈sb〉):

(∃xi.α)′ = 〈sb〉(pi ∧♦(α)′)
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

From QBF toML(〈gsb〉), we provide the following translation:

(∃xi.α)′ = 〈gsb〉((¬♦(pi ∧ p>) ∨ ¬♦(pi ∧ ¬p>)) ∧♦(pi ∧♦(α)′))
(xi)

′ = ¬♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

In both cases, showing that a QBF formula α is satisfiable if, and only if,
Mk, w |= (α)′ holds can be done similarly to the case ofML(〈sw〉).

- To prove PSpace-hardness forML(〈br〉) andML(〈gsw〉), build the following
Mk:

p1

p>
p1

. . . pk

p>
pk

The modelMk = 〈W, R, V〉 is defined as follows:

W = {w} ∪ {w1
i , w0

i | 1 ≤ i ≤ k}
V(pi) = {w1

i , w0
i }

V(p>) = {w1
i | 1 ≤ i ≤ k}

R = {(w1
i , w), (w0

i , w) | 1 ≤ i ≤ k}

For ML(〈br〉) we use the following linear translation ()′, which puts a new
edge to the corresponding p> point to assign the variable to 1, or to the ¬p>
point to assign 0:

(∃xi.α)′ = 〈br〉(pi ∧♦(α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

ForML(〈gsw〉) we use the following linear translation ()′, following the same
idea as forML(〈br〉) but swapping the corresponding edge and staying in the
same evaluation point (is a global operator):

(∃xi.α)′ = 〈gsw〉(♦pi ∧ (α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

6.1. THE MODEL CHECKING PROBLEM 69

- Finally, to prove PSpace-hardness for ML(〈gbr〉), build the following model
Mk:

p1

p>
p1

. . . pk

p>
pk

Mk = 〈W, R, V〉 is defined as:

W = {w} ∪ {w1
i , w0

i | 1 ≤ i ≤ k}
V(pi) = {w1

i , w0
i }

V(p>) = {w1
i | 1 ≤ i ≤ k}

R = ∅

And consider the following linear translation ()′ from QBF toML(〈gbr〉):

(∃xi.α)′ = 〈gbr〉(♦pi ∧ (α)′)
(xi)

′ = ♦(pi ∧ p>)
(¬α)′ = ¬(α)′
(α ∧ β)′ = (α)′ ∧ (β)′.

We have reduced the QBF satisfiability problem to the model checking problem for
each of the relation-changing modal logics of Definition 3.2.1. Then, model checking
for all of them is PSpace-hard.

Now, we will prove PSpace-completeness for the model checking problem of the
six logics that we are investigating. It remains to show that checking that a formula
holds in a model can be done using polynomial space.

Theorem 6.1.4. Model checking forML(〈sw〉, 〈gsw〉, 〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉) is in PSpace.

Proof. The evaluation of the truth of a formula in a model can be done by a polynomial
space algorithm that follows Definition 3.2.3.

The algorithm works on the same copy of the model, except when dealing with
formulas whose main connector is 〈sw〉, 〈gsw〉, 〈sb〉, 〈gsb〉, 〈br〉 or 〈gbr〉 (i.e., relation-
changing operators). In such cases, by proceeding depth-first among at most |W|
possible choices (i.e., the size of the set of states), the algorithm only allocates as
much additional space as the size of the initial model to store the modified copy.
This memory can be reclaimed once the result of the recursive call is known. The
maximum number of copies of the input model in memory is bounded by the nesting
of relation-changing operators of the input formula. Hence the algorithm runs using
only polynomial space.

With the previous results we get:

Theorem 6.1.5. For � ∈ {〈sw〉, 〈gsw〉, 〈sb〉, 〈gsb〉, 〈br〉, 〈gbr〉}, model checking for any of
the logicsML(�) is PSpace-complete.

70 CHAPTER 6. model checking

The last theorem establishes that model checking for relation-changing modal
logics is as hard as model checking for FOL. The challenge now, is to find lower
complexities for some sub-problems, as it has be done for ML(〈gsb〉) in [Löding
and Rohde, 2003a; Rohde, 2006]. Besides the high expressivity of the languages
introduced in this thesis, it is still possible to find some tractable reasoning tasks, such
as model checking against a fixed model or against a fixed formula. We will study
these problems in the next section.

6.2 F O R M U L A C O M P L E X I T Y A N D P R O G R A M C O M P L E X I T Y

We established the complexity of the combined model checking task, measured as a
function of the length of an input model and an input formula. It is also possible to
consider the task of model checking against a fixed model, measuring its complexity
as a function of the size of an input formula (this is known as the formula complexity).
One can also fix a formula and measure the complexity of model checking as a
function of the length of an input model (known as the program complexity or data
complexity). For many logics, solving these two problems is as hard as solving the
combined model checking problem. This is the case of FOL: it was proved in [Vardi,
1982] that program and formula complexity for FOL is PSpace-complete. On the
other hand, while combined model checking and formula complexity for LTL and
CTL* are PSpace-complete, the program complexity of both logics is NLogSpace-
complete (see [Vardi and Wolper, 1986; Kupferman et al., 2000; Schnoebelen, 2002] for
details).

It has been shown in [Löding and Rohde, 2003a; Rohde, 2006] that the formula com-
plexity and the program complexity ofML(〈gsb〉) are respectively linear and poly-
nomial. We are going to show that these results generalize toML(〈sb〉),ML(〈sw〉),
ML(〈gsw〉), ML(〈br〉) and ML(〈gbr〉). In fact, we extend these results to many
more dynamic operators, granted they behave in a controlled way. As we want to give
a general result that generalizes the particular case of the six logics introduced in this
thesis, we need also to generalize the definition of model variant. We can introduce
a family of model update functions and define the semantics of the operators based
on them. Hence, we can instantiate the results that we will prove in this section with
every operator than can be defined with model update functions.

Let W be the set of states of a model and let f be a function that takes an element
w of W and the current accessibility relation R over W and returns a set of pairs
(v, S), where v ∈ W is the new point of evaluation and S is the new accessibility
relation to be used (here we will exclusively discuss binary accessibility relations and,

hence, f : W × 2W2 7→ 2W×2W2
but, of course, the idea generalizes to modalities of

arbitrary arity). Each different function f defines a relation-changing operator. For
example, 〈sw〉 would be defined by a function f such that f (w, R) = {(v, R\{(w, v)} ∪
{(v, w)}) | (w, v) ∈ R}.

Clearly, the modalities defined in this form do not cover all possible dynamic
modal operators (e.g., dynamic modal operators investigated in different dynamic
epistemic logics [van Ditmarsch et al., 2007] change the set of states in the model, or
the valuation function; see [Areces and Gorı́n, 2010] for an even more general, but
complex framework). But, as we saw, this framework covers van Benthem’s original

6.2. FORMULA COMPLEXITY AND PROGRAM COMPLEXITY 71

sabotage operator and other variants investigated in, for instance, [Rohde, 2006;
Areces et al., 2012; Areces et al., 2013b; Areces et al., 2013c].

Definition 6.2.1 (Model update functions). Let C be a class of models. We say that

F = { fW : W × 2W2 7→ 2W×2W2
| M = 〈W, R, V〉 ∈ C} is a family of model update

functions. We say that C is closed under a family of model update functions F if whenever
M = 〈W, R, V〉 ∈ C, then {〈W, R′, V〉 | fW ∈ F, w ∈W, (v, R′) ∈ fW(w, R)} ⊆ C.

Each dynamic operator is defined on a particular domain W by a certain model
update function fW . Clearly, the class of all pointed models is closed under any family
of model update functions. In the rest of the thesis we will only discuss the class of all
models, and we will pay particular attention to a number of families of model update
functions which can be simply defined. We are talking about the model variants
defined in Chapter 3.

We can now use these basic updating operations over relations and models to
define model update functions, and their respective families. Each of these families
will give rise to a natural dynamic modal operator. For instance, we can define the six
relation-changing modal operators investigated in this thesis:

Fsw = { f sw
W }, where for anyM = 〈W, R, V〉, f sw

W (w, R) = {(v, R∗vw) | wv ∈ R}.
Fgsw = { f gsw

W }, where for anyM = 〈W, R, V〉, f gsw
W (w, R) = {(w, R∗vu) | uv ∈ R}.

Fsb = { f sb
W}, where for anyM = 〈W, R, V〉, f sb

W (w, R) = {(v, R−wv) | wv ∈ R}.
Fgsb = { f gsb

W }, where for anyM = 〈W, R, V〉, f gsb
W (w, R) = {(w, R−uv) | uv ∈ R}.

Fbr = { f br
W}, where for anyM = 〈W, R, V〉, f br

W (w, R) = {(v, R+
wv) | wv 6∈ R}.

Fgbr = { f gbr
W }, where for anyM = 〈W, R, V〉, f gbr

W (w, R) = {(w, R+
uv) | uv 6∈ R}.

To investigate formula complexity and program complexity, we will use the
technique of model unfolding. Say we start with a modelM and a formula ϕ of a
logicML(�):

w

ϕ

Starting fromM, we explicitly build the variants obtained by successive applica-
tions of the relation-changing operator �.

w
ϕ♦

In this unfolded model, we use two distinct relations: one to represent the relations as
they should be in each model variant, and another as the external relation that links
model variants between them. At the syntactic level, we rewrite ϕ into a basic modal

72 CHAPTER 6. model checking

formula ϕ♦ with two classic modalities. Following this idea we reduce the model
checking problem of a dynamic language to the model checking problem of the basic
modal logic, which we have showed in Theorem 1.2.10 is polynomial with respect to
the size of the formula and the model. It can be solved in time O(|ϕ| · |M|), where
|ϕ| is the size of the givenML-formula ϕ and |M| is the size of the given modelM.

We define the following translation from relation-changing modal logics to modal
logic with two modalities:

Definition 6.2.2. Consider the language ML(�F) for some family of model update func-
tions F. Define the following translation from this language to the basic modal language with
two modalities:

(p)♦ = p
(ϕ ∧ ψ)♦ = ϕ♦ ∧ ψ♦

(¬ϕ)♦ = ¬ϕ♦

(♦ϕ)♦ = ♦1 ϕ♦

(�F ϕ)♦ = ♦2 ϕ♦.

The previous translation represents the effect of the relation-changing operators as
a new modality which moves the evaluation point to a different model variant. We
can then apply the model checking algorithm forML to this kind of formulas. Before
we complete the unfolding by constructing the corresponding unfolded model, we
need to introduce a measure of the complexity of relation-changing modal logics.

Definition 6.2.3. The maximum number of nested dynamic modalities is called the dynamic
depth, and is defined as:

dd(p) = 0
dd(¬ϕ) = dd(ϕ)

dd(ϕ ∧ ϕ′) = max(dd(ϕ), dd(ϕ′))
dd(♦ϕ) = dd(ϕ)

dd(�F ϕ) = 1 + dd(ϕ),

with �F the relation-changing operator defined by the family of model update functions F.

Measuring formulas according to the number of nested relation-changing modal-
ities will help us establish some bounds in the size of the unfolded models. The
general idea is that the dynamic depth will be the number of model variants that we
will put in the unfolded model. These models will be constructed using the following
definition of all possible accessibility relations from a model update function:

Definition 6.2.4. Let W be a domain, R ⊆ W2 an accessibility relation, f a model update
function for W, and n a natural number. We define inductively Vars(R, f , n), the set of all
possible relation variants obtained applying n times the function f on the initial relation R
as:

Vars(R, f , 0) = {R}
Vars(R, f , n + 1) = {T | (v, T) ∈ f (w, S), S ∈ Vars(R, f , n), w ∈W}.

Let
Vars(R, f) =

⋃
n<ω

Vars(R, f , n)

be the set of all relation variants obtained applying f on the initial relation R.

6.2. FORMULA COMPLEXITY AND PROGRAM COMPLEXITY 73

We now look into the details of model unfolding. We will introduce the translation
from relation-changing models to static models based on model update functions.
These static models will be used to model check unfolded formulas of Definition 6.2.2.

Definition 6.2.5. LetM = 〈W, R, V〉. Let f : W × 2W2 7→ 2(W×2W2
).

We defineM f ,0 = 〈W ′, {R′1, R′2}, V′〉 as:

W ′ = W × {R}
R′1 = {((s, R), (t, R)) | (s, t) ∈ R}
R′2 = ∅
V′(p) = {(s, S) | s ∈ V(p), S ∈ Vars(R, f)}.

We defineM f ,n = 〈W ′, {R′1, R′2}, V′〉 (for n ≥ 1) as:

W ′ = W ×Vars(R, f , n)
R′1 =

⋃{((s, S), (t, S)) | (s, t) ∈ S, S ∈ Vars(R, f)}
R′2 = {((s, S), (t, T)) | (t, T) ∈ f (s, S), S ∈ Vars(R, f , n− 1)}
V′(p) = {(s, S) | s ∈ V(p), S ∈ Vars(R, f)}.

Finally, we defineM f = 〈W ′, {R′1, R′2}, V′〉 as:

W ′ = W ×Vars(R, f)
R′1 = {((s, S), (t, S)) | (s, t) ∈ S, S ∈ Vars(R, f)}
R′2 = {((s, S), (t, T)) | (t, T) ∈ f (s, S), S ∈ Vars(R, f)}
V′(p) = {(s, S) | s ∈ V(p), S ∈ Vars(R, f)}.

The idea is that a relation-changing model satisfies a formula if and only if after
doing the unfolding of the model and the formula, satisfiability is preserved. It is
easy to check the following, according to the previous definitions:

Lemma 6.2.6. LetM = 〈W, R, V〉, and ϕ a formula. Then

M, w |= ϕ iffM f ,dd(ϕ), (w, R) |= ϕ♦.

Now for the complexity result. We first observe that if a relation-changing operator
can create only a polynomial number of relation variants in one step, then the number
of possible relation variants after n steps is also polynomial:

Lemma 6.2.7. Let f : W × 2W2 7→ 2(W×2W2
). Suppose that for all s ∈ W, S ⊆ W×W,

there exists c > 0 such that | f (s, S)| ∈ O(|W|c). Then there exists d > 0 such that
|Vars(R, f , n)| ∈ O(|W|dn).

In particular, given a modelM, it is possible to buildM f ,n in polynomial time in terms
of n, where n is the number of applications of f inM.

This leads to the general result of formula complexity and program complexity
for modal logics equipped with “polynomial” relation-changing operators:

Theorem 6.2.8. Let L be the basic modal logic equipped with a relation-changing operator
whose semantics is defined by a family F of model update functions such that for all M =
〈W, R, V〉, all s ∈W, and all S ⊆W ×W, | f (s, S)| ∈ O(|W|c).

74 CHAPTER 6. model checking

1. The model checking problem for L with a fixed finite model can be solved in linear time
with respect to the size of the formula (formula complexity).

2. The model checking problem for L with a fixed formula can be solved in polynomial
time with respect to the size of the finite model (program complexity).

Proof. Both parts rely on the complexity of model checking forML (Theorem 1.2.10).

1. Fix a model M = 〈W, R, V〉 with a state w ∈ W. For some input formula ϕ,
build ϕ♦ in linear time with respect to |ϕ|. Then check thatM f , (w, R) |= ϕ♦ in
time linear with respect to

∣∣ϕ♦
∣∣ = |ϕ|.

2. Fix a formula ϕ, with dd(ϕ) = n. For some input model M = 〈W, R, V〉 and
state w ∈W, buildM f ,n in polynomial time with respect to |M| (Lemma 6.2.7).

Then check thatM f ,n(w, R) |= ϕ♦ in linear time with respect to
∣∣∣M f ,n

∣∣∣, i.e., in
polynomial time with respect to |M|.

Observe that the modalities 〈sw〉, 〈gsw〉, 〈sb〉, 〈gsb〉, 〈br〉 and 〈gbr〉 all satisfy the
condition of Lemma 6.2.7, hence Theorem 6.2.8 applies to the corresponding logics.
Moreover, the result extends to the basic modal logic equipped with any combination
of relation-changing operators if each of them satisfies the conditions of the lemma.

A simple example of a relation-changing modal operator that does not satisfy the
conditions of the theorem would be the following “universal-universal modality”,
which can blow up the number of possible relations to 2W2

in just one step:

fW : (s, S) 7→ {(t, T) | T ⊆W ×W, t ∈W}.

Evaluating this “universal-universal modality” consists in considering all models
with domain W, some fixed valuation V and all possible binary relations on W.

7
Tableaux

In solving a problem of this sort, the grand thing is to be able to reason backwards.
That is a very useful accomplishment, and a very easy one, but people do not practise it much.

In the every-day affairs of life it is more useful to reason forwards, and so
the other comes to be neglected. There are fifty who can reason synthetically

for one who can reason analytically... Let me see if I can make it clearer. Most people,
if you describe a train of events to them, will tell you what the result would be. They can put

those events together in their minds, and argue from them that something will come
to pass. There are few people, however, who, if you told them a result, would be able to

evolve from their own inner consciousness what the steps were which led up to that result.
This power is what I mean when I talk of reasoning backwards, or analytically.

-Sherlock Holmes.

from “A Study in Scarlet” , Sir Arthur Conan Doyle.

7.1 TA B L E A U C A L C U L U S

Besides theoretical results with respect to reasoning tasks, we investigate concrete pro-
cedures to implement them. Even though we have already proved that the satisfiability
problem for many of the relation-changing modal logics we introduced is undecidable,
we can define non-terminating procedures for the satisfiability of a formula. Several
decision procedures have been investigated for modal logics, but tableau algorithms
are the best known and most used in implementations. Tableaux for first-order logic
were first introduced in [Beth, 1955] and investigated later in [Smullyan, 1968]. First
results on tableaux for modal logics were introduced in [Fitting, 1972].

A tableau algorithm is a procedure that decides satisfiability of a formula by
exploring the satisfiability of its subformulas. The procedure takes a formula as input,
and decides if it is satisfiable or not. In the case the answer is “yes”, the algorithm
also returns a model for the formula. For this reason tableaux is not just a decision
procedure, it can also be considered as a model building method. For further details
see [D’Agostino et al., 1999].

We present basic definitions for different tableau algorithms for the relation-
changing modal logics we introduced in this thesis, based on the results presented
in [Areces et al., 2013c]. These algorithms will rely on the same data structures and
will only differ in some of their rules.

Definition 7.1.1 (Tableau formulas). Let NOM be an infinite, well ordered set of symbols
we call nominals. A tableau formula is either a prefixed formula, an equational formula
or a relational formula. A prefixed formula is of the form (n, X) : ϕ, with n ∈ NOM,

75

76 CHAPTER 7. tableaux

X ⊆ NOM2, and ϕ a formula of the considered object language. An equational formula is a
Boolean combination of formulas of the form n=̇m or n ˙6=m for n, m ∈ NOM. We also use
the following notation:

nm=̇xy := n=̇x ∧ m=̇y
nm ˙6=xy := n ˙6=x ∨ m ˙6=y

nm∈̇X :=
∨

xy∈X
nm=̇xy

nm /̇∈X :=
∧

xy∈X
nm ˙6=xy.

In particular nm∈̇∅ is a notation for ⊥ and nm /̇∈∅ is a notation for >. A relational
formula is of the form Ṙnm or ¬Ṙnm, with n, m ∈ NOM.

The set X of a prefixed formula (n, X) : ϕ is used to describe the model variant in
which the formula ϕ is to be interpreted. According to the logic we are in, this set is
to be interpreted differently. This is done by fixing a function f that, out of relations
R, S ⊆W ×W yields another relation R′ = f (R, S).

Definition 7.1.2 (Branches and interpretations). A branch is a non-empty set of tableau
formulas. LetM = 〈W, R, V〉 be a model, f : W2×W2 →W2 a relation-changing function
and σ : NOM → W a mapping from nominals to states ofM. Let Xσ = {σ(a)σ(b) | ab ∈
X}, for X ⊆ NOM2.

Given M = 〈W, R, V〉, let M f
Xσ = 〈W, f (R, Xσ), V〉. That is, M f

Xσ is the model M
updated by the relation-changing function f according to a set of pairs of nominals X under
mapping σ.

A branch Θ is satisfiable if there exists a modelM = 〈W, R, V〉 and a mapping σ such
that all the formulas of Θ are satisfiable under modelM and mapping σ. That is, they should
satisfy the following conditions:

• if (n, X) : ϕ ∈ Θ thenM f
Xσ , σ(n) |= ϕ,

• if n=̇m ∈ Θ then σ(n) = σ(m),

• if n ˙6=m ∈ Θ then σ(n) 6= σ(m),

• Boolean combinations of equational formulas are interpreted as expected,

• if Ṙnm ∈ Θ then Rσ(n)σ(m),

• if ¬Ṙnm ∈ Θ then ¬Rσ(n)σ(m).

A branch is unsatisfiable if it is not satisfiable.

Now we have introduced the data structures that will be used, we can define the
calculus formally.

Definition 7.1.3 (Tableau). A tableau calculus is a set of rules such that each rule applies
to a branch and yields one or more branches, under certain conditions. These conditions
are called saturation conditions, and stipulate that no rule can be applied twice on the same
premises, and that no formula can be introduced twice in a branch.

A tableau is a tree in which each node defines a tableau branch, and edges represent
applications of tableau rules. A tableau is expanded as much as possible by the rules of the

7.1. TABLEAU CALCULUS 77

system (i.e., rules are applied whenever possible according to the saturation condition). A
fully expanded branch is called saturated.

A tableau branch is closed if it contains ⊥, otherwise it is open. A tableau is closed if all
branches are closed, otherwise it is open.

Given a branch Θ, ∼Θ denotes the equivalence closure of the relation {nm | n=̇m ∈
Θ}, and we write n̄ for the smallest nominal x such that x ∼Θ n. For X ⊆ NOM2 we
write X̄ = {n̄m̄ | nm ∈ X}. Figure 11 presents the rules common to all the tableau
calculi presented in this chapter. They are the Boolean rules (∧) and (∨), the clashing
rules (⊥atom) and (⊥ 6=), the equational rules (R∼) and (Id), and the unrestricted
blocking rule (ub) [Schmidt and Tishkovsky, 2007]. We use the unrestricted blocking
rule as a way to saturate branches with equational formulas. These formulas can
appear as premises of tableau rules in the calculi we introduce later.

(n, X) : ϕ ∧ ψ
(∧)

(n, X) : ϕ
(n, X) : ψ

(n, X) : ϕ ∨ ψ
(∨)

(n, X) : ϕ (n, X) : ψ

(n, X1) : p
(n, X2) : ¬p

(⊥atom)1

⊥

n ∼Θ m
n ˙6=m

(⊥ 6=)⊥

Ṙnm
(R∼)

Ṙn̄m̄

(n, X) : ϕ
(Id)

(n̄, X) : ϕ
(ub)2

n=̇m | n ˙6=m

1 p ∈ PROP.
2 n and m are two different nominals in the branch.

Figure 11: Common tableau rules.

This result follows easily from the tableau rules:

Lemma 7.1.4. Let Θ be a saturated open branch. If nm∈̇S is in Θ then n̄m̄ ∈ S̄. If nm /̇∈S
is in Θ then n̄m̄ /∈ S̄.

When it comes to adequacy of a tableau calculus, we have to consider two proper-
ties: completeness and soundness. Given a tableau calculus T , let us write T (ϕ) to
refer to a tableau obtained by running T on the input formula (n0, ∅) : ϕ, where n0 is
the smallest nominal in NOM. Then we define:

Definition 7.1.5 (Completeness). A tableau calculus T is complete if for any formula ϕ,
if T (ϕ) is open then ϕ is satisfiable.

Definition 7.1.6 (Soundness). A tableau calculus T is sound if for any formula ϕ, if ϕ is
satisfiable then T (ϕ) is open.

We define models induced from open branches.

78 CHAPTER 7. tableaux

Definition 7.1.7 (Induced Models). Let Θ be an open branch. We define the induced
model for Θ asMΘ = 〈WΘ, RΘ, VΘ〉, where:

WΘ = {n̄ | n ∈ Θ}
RΘ = {(n̄, m̄) | Ṙnm ∈ Θ}
VΘ(p) = {n̄ | n : p ∈ Θ}.

We want to show that the tableau systems we present are sound and complete, i.e.,
that for any formula ϕ, T (ϕ) is open if, and only if, ϕ is satisfiable. Moreover, if T (ϕ)
has an open branch Θ thenMΘ is a model that satisfies ϕ. We present tableau calculi
forML(〈sb〉),ML(〈br〉) andML(〈sw〉) in the next subsections.

7.1.1 Sabotage

Figure 12 introduces rules that, in combination with those in Figure 11, form a
complete and sound tableau calculus for ML(〈sb〉). In this calculus, a formula
(n, S) : ϕ is understood as “ϕ holds at the state referred to by n in the model variant
described by the set of sabotaged pairs S”.

(n, S) : ♦ϕ
(♦)1

Ṙnm
nm /̇∈S

(m, S) : ϕ

(n, S) : �ϕ
Ṙnm

nm /̇∈S
(�)

(m, S) : ϕ

(n, S) : 〈sb〉ϕ
(〈sb〉)1

Ṙnm
nm /̇∈S

(m, S ∪ nm) : ϕ

(n, S) : [sb]ϕ
Ṙnm

nm /̇∈S
([sb])

(m, S ∪ nm) : ϕ

1 m is new.

Figure 12: Tableau rules forML(〈sb〉).

We interpret branches of this tableau calculus with the following relation-changing
function: f : (R, S) 7→ R \ S. This means that a formula (n, S) : ϕ in a branch Θ
should hold in the induced model variant MΘ

S defined as MΘ
S = 〈WΘ, RΘ

S , VΘ〉,
where RΘ

S = RΘ \ S̄.
The rules involve the notation nm /̇∈S. nm /̇∈S specifies that the edge referred to by

the pair of nominals (n, m) should not be deleted in the model variant described by S.
When present as premise of a rule, this condition requires that one of the disjuncts in
nm /̇∈S is present in the branch, which in turn means that either n ˙6=x or m ˙6=y is in the
branch for all xy ∈ S.

The (♦) rule captures the standard meaning of the ♦ connector, but adds a new
constraint that specifies that the successor has not been deleted at this point of the
branch. (�) should also take this into account. For each successor m of n in the
initial model (Ṙnm), and only if the edge between n and m has not been sabotaged

7.1. TABLEAU CALCULUS 79

(nm /̇∈S), ϕ must hold at m in the same model variant. Rule ([sb]) is similar to (�), but
ϕ must hold at m in the model variant where the edge nm is sabotaged. Rule (〈sb〉)
corresponds similarly to (♦).

We will now prove completeness and soundness of the calculus forML(〈sb〉).

Lemma 7.1.8. Let Θ be a saturated, open branch and ϕ an ML(〈sb〉)-formula. If (n, S) :
ϕ ∈ Θ thenMΘ

S , n̄ |= ϕ.

Proof. Let (n, S) : ϕ ∈ Θ. Proceed by structural induction on ϕ.

ϕ = p: By definition, n̄ ∈ VΘ(p), thenMΘ, n̄ |= p andMΘ
S , n̄ |= p.

ϕ = ¬p: By saturation of (Id), n̄ : ¬p ∈ Θ. Since Θ is open, n̄ : p /∈ Θ. By definition,
n̄ /∈ VΘ(p), thenMΘ, n̄ 6|= p andMΘ

S , n̄ 6|= p.

ϕ = ψ ∧ χ and ϕ = ψ ∨ χ: Trivial by inductive hypothesis.

ϕ = ♦ψ: By (♦), Θ contains Ṙnm, nm /̇∈S and (m, S) : ψ. We want to show that
n̄m̄ ∈ RΘ

S . We verify the following:

1. n̄m̄ ∈ RΘ: this is true since Ṙnm ∈ Θ.

2. n̄m̄ /∈ S̄: this is true since (nm /̇∈S) ∈ Θ by Lemma 7.1.4.

Since n̄m̄ ∈ RΘ
S , and (by (Id)) (m̄, S) : ψ ∈ Θ, we haveMΘ

S , n̄ |= ♦ψ.

ϕ = 〈sb〉ψ: We need to show that MΘ
S , n̄ |= 〈sb〉ψ, i.e., there exists x ∈ VΘ s.t.

MΘ
S∪pq, x |= ψ, where p̄ = n̄ and q̄ = x. This can be checked considering (〈sb〉)

instead of (♦) as for the previous case.

ϕ = �ψ: We only consider states x ∈ WΘ such that n̄x ∈ RΘ
S . That is, there exists

a, b such that Ṙab ∈ Θ and n̄x = āb̄, and n̄x /∈ S̄. The condition of rule (�)
(nm /̇∈S) allows to apply it on such pair of nominals.

By (Id), (n̄, S) : �ψ ∈ Θ, i.e., (ā, S) : �ψ ∈ Θ, and also by (R∼), Ṙāb̄ ∈ Θ.

By (�) we have (b̄, S) : ψ ∈ Θ. Now, b̄ = x, so MΘ
S , x |= ψ. Hence for all

x ∈ VΘ such that n̄x ∈ RΘ
S ,MΘ

S , x |= ψ, i.e.,MΘ
S , n̄ |= �ψ.

ϕ = [sb]ψ: We need to show that MΘ
S , n̄ |= [sb]ψ, i.e., for all x ∈ WΘ such that

(n̄, x) ∈ RΘ
S , MΘ

S∪pq, x |= ψ, where p̄q̄ = n̄x. This can be checked considering
rule ([sb]) instead of (�) as for the previous case.

By the previous lemma we get:

Theorem 7.1.9 (Completeness). If T (ϕ) is open, then ϕ is satisfiable.

We now show soundness of the calculus forML(〈sb〉).

Lemma 7.1.10. Let Γ be a set of satisfiable tableau formulas, and ϕ ∈ ML(〈sb〉). If there
is a closed tableau T (Γ′) for Γ′ = (Γ ∪ {¬ϕ}), then ϕ is satisfiable.

80 CHAPTER 7. tableaux

Proof. Let Θ be a satisfiable branch. Following Definition 7.1.2, Θ is satisfied by a
modelM = 〈W, R, V〉 and a mapping σ : NOM→W. We write σ[m 7→ v] to refer to
the mapping equal to σ except, perhaps, σ(m) = v.

Assume that there is a closed tableau T (Γ′) such that Γ′ = (Γ ∪ {¬ϕ}). We will
prove Γ′ unsatisfiable, by induction on the tableau structure.r(⊥atom): If this rule applies, then n : a ∈ Γ′ and n : ¬a ∈ Γ′, for some n, a. Then Γ′

is trivially unsatisfiable.rCommon rules (⊥ 6=), (∧), (∨), (R∼), (Id) and (ub) are easy to check.

It remains to verify, for each remaining rule, that their application to a satisfiable
branch generates at least one satisfiable branch. In the present calculus, all remaining
rules are non-branching.r(♦): Suppose (n, S) : ♦ϕ ∈ T (Γ′). We know that (n, S) : ♦ϕ is satisfiable, then there

is a modelM = 〈W, R, V〉, and a mapping σ : NOM→W ′ s.t.M−
Sσ , σ(n) |= ♦ϕ.

By definition of |=, there exists v ∈W s.t. σ(n)v ∈ R \ Sσ andM−
Sσ , v |= ϕ. The

(♦) rule generates Ṙnm, nm /̇∈S and (m, S) : ϕ, with m new in the branch. We
need to check that the branch containing these three new formulas is satisfiable.
That is, there exists a model and a mapping satisfying them. Let us consider the
mapping σ′ = σ[m 7→ v] and check that the interpretation M, σ′ satisfies the
new branch:

• Ṙnm is satisfied since Rσ′(n)σ′(m), i.e., Rσ(n)v, holds.

• Consider nm /̇∈S. It suffices to check that for all xy ∈ S, σ′(n)σ′(m) 6=
σ′(x)σ′(y), i.e., σ(n)v 6= σ′(x)σ′(y). But σ(n)v = σ′(x)σ′(y) would contra-
dict σ(n)v ∈ R \ Sσ.

• M, σ′ satisfies (m, S) : ϕ sinceM−
Sσ′ , σ′(m) |= ϕ holds.r (〈sb〉): This case is similar to (♦), except that we need to check that the new

tableau formula (m, S ∪ nm) : ϕ is satisfied. This is done considering the new
mapping σ′ = σ[m 7→ v] and observing thatM−

S∪nmσ′ , σ′(m) |= ϕ.

r (�): Suppose (n, S) : �ϕ and Ṙnm are in Θ, and the condition nm /̇∈S holds.
This implies that there exists M = 〈W, R, V〉 and a mapping σ such that
M−

Sσ , σ(n) |= �ϕ, and Rσ(n)σ(m), and there is no pair of nominals xy ∈ S such
that nm = xy. This means that for all v ∈ W s.t. σ(n)v ∈ (R \ Sσ),M−

Sσ , v |= ϕ
and there exists v ∈W s.t. Rσ(n)v. We verify that (m, S) : ϕ is satisfied byM, σ.
Since σ(n)σ(m) ∈ (R \ Sσ), then M−

Sσ , σ(m) |= ϕ. Hence (m, S) : ϕ is satisfied
byM, σ.r ([sb]): This is similar to the (�) case, but we have to show that (m, S ∪ nm) : ϕ
is satisfied byM, σ . This is done by observing that ifM−

Sσ , σ(n) |= [sb]ϕ and
Rσ(n)σ(m) thenM−

S∪nmσ , σ(m) |= ϕ.

From the previous lemma we get the following result:

7.1. TABLEAU CALCULUS 81

Theorem 7.1.11 (Soundness). If ϕ is satisfiable, then T (ϕ) is open.

Example 7.1.12 presents a satisfiable formula ofML(〈sb〉) that showcases most of
the rules in the calculus.

Example 7.1.12. A tableau for ♦♦> ∧ [sb]�⊥ follows:

(1) (n0, ∅) : ♦♦> ∧ [sb]�⊥ initial node
(2) (n0, ∅) : ♦♦> (∧) on (1)
(3) (n0, ∅) : [sb]�⊥
(4) Ṙn0n1 (♦) on (2)
(5) n0n1 /̇∈∅
(6) (n1, ∅) : ♦>
(7) Ṙn1n2 (♦) on (6)
(8) n1n2 /̇∈∅
(9) (n2, ∅) : >
(10) (n1, {n0n1}) : �⊥ ([sb]) on (3) and (4) with trivial

condition n0n1 /̇∈∅
(11) n0=̇n1 | n0 ˙6=n1 (ub)

The rightmost branch soon closes since (�) applies on (10) and (7) with condition
n1n2 /̇∈{n0n1} fulfilled by n0 ˙6=n1, and introduces ⊥. Let us expand the leftmost branch:

(12) n1=̇n2 | n1 ˙6=n2 (ub)

Again the rightmost branch closes by application of (�) with condition n1n2 /̇∈{n0n1}
fulfilled by n1 ˙6=n2. We expand the leftmost branch:

(13) n0=̇n2 | n0 ˙6=n2 (ub)

The right branch above closes by rule (⊥ 6=). The left branch is saturated and open, with
the following induced model:

n0

Adapting the calculus presented previously, we can obtain a sound and complete
tableau method for the global sabotage operations. The corresponding (♦) and (�)
rules are the same ones as for its local version. Rules forML(〈gsb〉) in Figure 13 are
direct adaptations of the rules forML(〈sb〉).

7.1.2 Bridge

Figure 14 presents rules for the tableau calculus corresponding toML(〈br〉) which
should be combined with the common rules of Figure 11. The main difference with
rules for sabotage is that they use as prefix a set of pairs of nominals B to keep track
of edges that have been added to the relation of the original model.

The interpretation function will be f : (R, B) 7→ R ∪ B. This means that a formula
(n, B) : ϕ in a branch Θ should hold in the induced model variant MΘ

B defined as

82 CHAPTER 7. tableaux

(n, S) : 〈gsb〉ϕ
(〈gsb〉)1

Ṙpq
pq /̇∈S

(n, S ∪ pq) : ϕ

(n, S) : [gsb]ϕ
Ṙpq

pq /̇∈S
([gsb])

(n, S ∪ pq) : ϕ

1 p and q are new to the branch.

Figure 13: Tableau rules forML(〈gsb〉).

(n, B) : ♦ϕ
(♦)1

Ṙnm nm∈̇B
(m, B) : ϕ (m, B) : ϕ

(n, B) : �ϕ
Ṙnm (�)

(m, B) : ϕ

(n, B) : �ϕ
nm∈̇B (�2)

(m, B) : ϕ

Ṙnm
(a, B) : ϕ

nm∈̇B
(R⊥)⊥

(n, B) : 〈br〉ϕ
(〈br〉)1

nm /̇∈B
(m, B ∪ nm) : ϕ

(n, B) : [br]ϕ
nm /̇∈B

([br])2

(m, B ∪ nm) : ϕ | Ṙnm

1 m is new.
2 m is already in the branch.

Figure 14: Tableau rules forML(〈br〉).

MΘ
B = 〈WΘ, RΘ

B , VΘ〉, where RΘ
B = RΘ ∪ B̄. The notation nm∈̇B means that the edge

represented by the nominals n and m is one of the edges added since the initial model
in the model variant described by B. When used as a premise of a rule, the condition
nm∈̇B requires that there exists some xy ∈ B such that n=̇x and m=̇y are present in
the branch. nm /̇∈B means that the edge (n, m) has not been added since the initial
model in the variant described by B.

Some rules are more involved in this calculus. The rule (♦), when applied on a
formula (n, B) : ♦ϕ, has to ensure that in the model variant described by B, the state
referred to by the nominal n has a successor where ϕ holds. This model variant has a
relation that is the union of the relation in the initial model and B. This is why (♦) is
a branching rule that either chooses that the edge (n, m) belongs to the initial relation
or to B.

The rule (�) is the standard box rule for the basic modal logic. It is completed by
a (�2) rule that ensures new edges of model variants are taken into account.

The new clash rule (R⊥) ensures that whenever some edge nm is present in a set
of new edges B representing some model variant, the same edge is not present in the
original model, i.e., Ṙnm is forbidden to occur in the branch.

The rule (〈br〉) differs from (♦). This is because the 〈br〉 operator jumps to a state
that should not be accessible from the current state, hence the introduction of nm /̇∈B

7.1. TABLEAU CALCULUS 83

and (m, B ∪ nm) : ϕ to the branch. This last formula, together with rule (R⊥), ensures
that the edge nm is not in the original model.

The rule ([br]) branches when applied to a formula (n, B) : [br]ϕ. It decides, for
every nominal m such that nm /̇∈B, whether (m, R ∪ nm) : ϕ holds, or Ṙnm holds. In
the first case, together with rule (R⊥), it ensures that the edge nm is not in the original
model. In the second case, it ensures the contrary, hence no bridging to m is possible
and ϕ does not need to hold at m.

Completeness and soundness of this tableau calculus can be proved as for the
sabotage tableau calculus.

Example 7.1.13 shows how the rules are used.

Example 7.1.13. Consider the satisfiable formula p ∧♦¬p ∧ [br]p. In the following tableau
we hide the branches that directly close by vacuity of quantification:

(1) (n0, ∅) : p ∧ ♦¬p ∧ [br]p initial node
(2) (n0, ∅) : p (∧) on (1)
(3) (n0, ∅) : ♦¬p
(4) (n0, ∅) : [br]p
(5) Ṙn0n1, (n1, ∅) : ¬p (♦) on (3)
(6) n0=̇n1 | n0 ˙6=n1 (ub)

Left branch closes due to (Id) and (⊥atom). Right branch:

(7) (n1, {n0n1}) : p | Ṙn0n1 ([br]) on (3), n1

Left branch closes by (⊥atom) on (n1, {n0n1}) : p and (n1, ∅) : ¬p. Right branch:

(8) (n0, {n0n0}) : p | Ṙn0n0 ([br]) on (4), n0

Both branches are open and saturated. We have the following two induced models:

n0

p

n1 n0

p

n1

As forML(〈gsb〉) we can adapt the calculus presented previously to get a sound
and complete tableau method for the global operations. The corresponding (♦) and
(�) rules are the same ones as for its local version. Rules forML(〈gbr〉) in Figure 15

are direct adaptations of the rules forML(〈br〉).

(n, B) : 〈gbr〉ϕ
(〈gbr〉)1

pq /̇∈B
(n, B ∪ pq) : ϕ

(n, B) : [gbr]ϕ
pq /̇∈B

([gbr])
(n, B ∪ pq) : ϕ | Ṙpq

1 p and q are new to the branch.

Figure 15: Tableau rules forML(〈gbr〉).

84 CHAPTER 7. tableaux

7.1.3 Swap

Rules for the swap calculus are given in Figure 16, to be used in combination with the
rules in Figure 11.

(n, S) : ♦ϕ
(♦)1

Ṙnm nm∈̇S−1

nm /̇∈S (m, S) : ϕ
(m, S) : ϕ

(n, S) : �ϕ
Ṙnm

nm /̇∈S
(�)

(m, S) : ϕ

(n, S) : �ϕ
nm∈̇S−1

(�2)
(m, S) : ϕ

(n, S) : [sw]ϕ
Ṙnn ([sw])

(n, S) : ϕ

(n, S) : [sw]ϕ
Ṙnm
n ˙6=m

nm /̇∈(S ∪ S−1)
([sw]2)

(m, S∪nm) : ϕ

(n, S) : [sw]ϕ
xy ∈ S
n=̇y

([sw]3)
(x, S\xy∪yx) : ϕ

(n, S) : 〈sw〉ϕ
(〈sw〉)1

Ṙnn Ṙnm
∨

xy∈S(n=̇y ∧ (x, S\xy∪yx):ϕ)
(n, S) : ϕ n ˙6=m

nm /̇∈(S∪S−1)
(m, S∪nm) : ϕ

1 m is new.

Figure 16: Tableau rules forML(〈sw〉).

These rules have to handle the fact that swapping edges in a model can make some
edges of the original model no longer usable (as when using the sabotage modality),
and can make new edges usable (as with bridge). The set S that prefixes formulas
of the calculus has to be understood as the pairs of states that no longer are part of
the relation of the model variant. S−1 contains the edges that should be added to the
model.

The interpretation function for this calculus is f : (R, S) 7→ (R \ S) ∪ S−1. This
means that a formula (n, S) : ϕ in a branch Θ should hold in the induced model
variantMΘ

S defined asMΘ
S = 〈WΘ, RΘ

S , VΘ〉, where RΘ
S = (RΘ \ S̄) ∪ S̄−1.

In this calculus, S is kept irreflexive and asymmetric. Moreover, it will not contain
two different pairs of nominals that refer to the same edge in the induced model. This
guarantees that the names in S can be manipulated by the calculus as expected, in
particular when a swapped edge must be swapped again. nm∈̇S means that nm is no
longer present in the model variant represented by S. nm∈̇S−1 means that nm has
been added to the S model variant.

Let us examine the rules. (♦) is a combination of the (♦) rules for sabotage and
bridge. It satisfies the formula (n, S) : ϕ in a state that is either accessible through the
initial relation or through a new swapped edge (as in the bridge calculus). In the case
of being accessible through the initial relation, the rule ensures that the edge used has

7.1. TABLEAU CALCULUS 85

not been deleted in the current model variant (as in the sabotage calculus). The (�)
rule, as in the sabotage calculus, works with all states accessible from n in the initial
model variant, except when they have been made inaccessible in the current model
variant. The (�2) rule, as in the bridge calculus, ensures that newly accessible states
receive the formula ϕ.

The remaining (swapping) rules deserve more careful explanation. The three rules
that handle formulas of the form [sw]ϕ handle the case of swapping a reflexive edge,
swapping an irreflexive edge that has never been swapped (nor its inverse), and
swapping again an edge. ([sw]) swaps reflexive edges, for which the S set does not
need to be modified since swapping a reflexive edge leaves it unchanged. ([sw]2)
swaps irreflexive edges that have never been swapped before, i.e., usable edges (not
in S) that are not in S−1. This rule ensures that S is irreflexive (n ˙6=m), asymmetric
(nm /̇∈S−1) and that it does not contain two pairs of nominals that refer to the same
edge in the induced model (nm /̇∈S). Finally, ([sw]3) traverses and swaps around edges
of S−1. If n=̇y is in the branch and xy ∈ S then we swap again the link yx and end
up at x. Hence it removes xy from S and adds yx. This preserves the three properties
of the set S (irreflexivity, asymmetry and no-redundant-names).

There is only one (〈sw〉) rule but it handles three possibilities of satisfying a swap-
diamond formula similarly to the rules for swap-box formulas. The (〈sw〉) rule can
satisfy a formula (n, S) : 〈sw〉ϕ in three possible ways. First, through a reflexive edge,
having ϕ true at n in the same model variant. In that case S remains unchanged. Or it
satisfies it by adding an irreflexive edge to the initial relation (Ṙnm, n ˙6=m), specifying
that in the model variant S it is not removed nor is a new edge added by swapping
(nm /̇∈(S∪S−1)), and then satisfying ϕ at m in the model variant S ∪ nm. Finally, it
can satisfy the antecedent formula by swapping again a swapped edge, updating S
appropriately. The meaning of the last branch of this rule is to properly maintain the
set S when an edge is swapped more than once. When an edge xy ∈ S is swapped
again, we update S by removing xy and adding yx, instead of adding a new pair of
nominals.

Example 7.1.14 shows the use of the tableau rules.

Example 7.1.14. Consider the formula ¬p ∧ 〈sw〉♦p.

(1) (n0, ∅) : ¬p ∧ 〈sw〉♦p initial node
(2) (n0, ∅) : ¬p (∧) on (1)
(3) (n0, ∅) : 〈sw〉♦p
(4) Ṙn0n0, (n0, ∅) : ♦p | Ṙn0n1, n0 ˙6=n1, (n1, {n0n1}) : ♦p (〈sw〉) on (3)

Let us expand the left branch:

(5a) Ṙn0n1, n0n1 /̇∈∅, (n1, ∅) : p (♦) on (4)
(6a) n0=̇n1 | n0 ˙6=n1 (ub)

The left branch closes by (Id) and (⊥atom), while the right branch is fully expanded and
open, with the following induced model:

n0 n1

p

86 CHAPTER 7. tableaux

Let us go back to line (4) and expand the right branch:

(5b) Ṙn1n2, n1n2 /̇∈{n0n1} | n1n2∈̇{n1n0} (♦) on (4)
(6b) (n2, {n0n1}) : p | (n2, {n0n1}) : p

In the right branch, by n1n2∈̇{n1n0} we have n2=̇n0. Then by (Id) and (⊥atom), we
have a clash. The left branch is open, and n1n2 /̇∈{n0n1} is a notation for n0 ˙6=n1 ∨ n1 ˙6=n2,
with n0 ˙6=n1 already occurring in the branch (line (4), right branch).

(7b) n0=̇n2 | n0 ˙6=n2 (ub)

Left branch closes by (Id) and (⊥atom). Right branch:

(8b) n1=̇n2 | n1 ˙6=n2 (ub)

Both branch are open and saturated and produce the following induced models:

n0 n1

p

n0 n1 n2

p

Now we are going to prove completeness for theML(〈sw〉) calculus. Soundness
can be shown similarly as for sabotage.

Lemma 7.1.15. Let Θ be a saturated, open branch and ϕ aML(〈sw〉)-formula. If (n, S) :
ϕ ∈ Θ thenMΘ

S , n̄ |= ϕ.

Proof. Let (n, S) : ϕ ∈ Θ, we proceed by structural induction on ϕ. Propositional and
Boolean cases are exactly the same that forML(〈sb〉).

ϕ = ♦ψ: We have two cases:

1. Ṙnm ∈ Θ, nm /̇∈S ∈ Θ and (m, S) : ψ ∈ Θ. Since Ṙnm ∈ Θ, we have
(n̄, m̄) ∈ RΘ. On the other hand, since nm /̇∈S ∈ Θ and the branch is
saturated and open, by Lemma 7.1.4, n̄m̄ /∈ S̄. Then n̄m̄ ∈ RΘ

S and (by (Id))
(m̄, S) : ψ ∈ Θ. Hence,MΘ

S , n̄ |= ♦ψ.

2. nm∈̇S−1 ∈ Θ and (m, S) : ψ ∈ Θ. From the fist sentence, by Lemma 7.1.4,
we have n̄m̄ ∈ S̄, hence n̄m̄ ∈ RΘ

S . With the same argument that the
previous item, we haveMΘ

S , n̄ |= ♦ψ.

ϕ = 〈sw〉ψ: (〈sw〉) rule has three branches:

1. Ṙnn ∈ Θ and (n, S) ∈ Θ. In this case n̄n̄ ∈ RΘ
S , and by (Id) (n̄, S) : ψ ∈ Θ,

so we haveMΘ
S , n̄ |= 〈sw〉ψ.

2. In the second branch, the following formulas belong to Θ: a) Ṙnm, b) n ˙6=m,
c) nm /̇∈(S ∪ S−1) and d) (m, S ∪ nm) : ψ. b) holds since we are not in the
previous case. By a) and c) (and Lemma 7.1.4), we have n̄m̄ ∈ RΘ

S . By (Id)
and d), (m̄, S ∪ nm) : ψ ∈ Θ. Hence,MΘ

S , n̄ |= 〈sw〉ψ.

3. In the third branch, there are x, y ∈WΘ, such that y=̇n ∈ Θ and (x, S \ xy∪
yx) ∈ Θ. Then ȳ=̇n̄ ∈ Θ and by definition ȳx̄ ∈ RΘ

S ⊗. But, (x̄, S \ xy∪ yx) :
ψ ∈ Θ, thereforeMΘ

S\xy∪yx, x̄ |= ψ. Then, since this last condition and ⊗,

we haveMΘ
S , n̄ |= 〈sw〉ψ.

7.1. TABLEAU CALCULUS 87

ϕ = �ψ: for all m ∈ WΘ such that Ṙnm and nm /̇∈S ∈ Θ, we have (m, S) : ψ ∈ Θ.
Because Θ is open and saturated, by Lemma 7.1.4 it holds that n̄m̄ /∈ S̄, which
implies n̄m̄ ∈ RΘ

S . Otherwise, if nm ∈ S−1, then also (by definition) n̄m̄ ∈ RΘ
S .

In both cases, we have (m̄, S) : ψ ∈ Θ. Hence,MΘ
S , n̄ |= �ψ.

ϕ = [sw]ψ: the reflexive case is the same as for �. If we have in Θ that Ṙnm, n ˙6=m
and nm /̇∈(S ∪ S−1), then n̄m̄ ∈ RΘ

S . Also we have (m̄, S ∪ nm) : ψ ∈ Θ. On
the other hand, if xy∈̇S and n=̇y are both in Θ, (by definition) ȳx̄ ∈ RΘ

S , and
(x̄, S\xy∪yx):ψ ∈ Θ. With the three cases, we getMΘ

S , n̄ |= [sw]ψ.

By the previous lemma we get:

Theorem 7.1.16 (Completeness). If T (ϕ) is open, then ϕ is satisfiable.

The rules of a sound and complete calculus forML(〈gsw〉) are shown in Figure 17).
Notice that ([gsw]3) and (the last branch produced by) (〈gsw〉) are simpler than ([sw]3)
and (〈sw〉). This is because swapping an already swapped edge in any place is a
generalization of doing it only from the evaluation state.

(n, S) : [gsw]ϕ
Ṙpp

([gsw])
(n, S) : ϕ

(n, S) : [gsw]ϕ
Ṙpq
p ˙6=q

pq /̇∈(S ∪ S−1)
([gsw]2)

(n, S∪pq) : ϕ

(n, S) : [gsw]ϕ
xy ∈ S

([gsw]3)
(n, S\xy∪yx) : ϕ

(n, S) : 〈gsw〉ϕ
(〈gsw〉)1

Ṙpp Ṙpq
∨

xy∈S(n, S\xy∪yx):ϕ
(n, S) : ϕ p ˙6=q

pq /̇∈(S∪S−1)
(n, S∪pq) : ϕ

1 p and q are new to the branch.

Figure 17: Tableau rules forML(〈gsw〉).

All of the logics we considered can force infinite models. As a result, the tableau
calculi not necessarily terminate on all inputs, given that they do not implement
any kind of loop checking. However, tableau methods result helpful for different
purposes. In the next sections, we will see two applications: tableaux as model
building procedure, combined with model checking to obtain a terminate-and-check
procedure for the satisfiability problem, and tableaux as a constructive method to
compute interpolants for a hybrid version ofML(〈sb〉).

88 CHAPTER 7. tableaux

7.2 C O M B I N I N G P R O C E D U R E S

A natural question is whether it is possible to combine these calculi into a unique
calculus that would support modal logic equipped with all the relation-changing
operators at once. We can easily obtain local-global combinations of calculi for
operators of the same kind: ML(〈sb〉, 〈gsb〉),ML(〈br〉, 〈gbr〉) andML(〈sw〉, 〈gsw〉),
by combining the corresponding rules from Section 7.1. However, further combination
seems to require deep changes since every kind of relation-changing logic (sabotage,
bridge, swap) requires distinct rules for the connectors ♦ and �.

Each logic has certain tableau rules that involve enforcing equality between states
of the induced models. In particular, macros of the form nm∈̇S imply equality, and it
is obvious from the semantics of the logics that equational reasoning is unavoidable.
One result of this is that these logics are expressive enough to describe complex
structures. It is indeed possible to find formulas that are only true in models that
contain a serial, irreflexive and transitive series of states, i.e. an infinite quantity of
states.

Nevertheless, we can apply a simple terminate-and-check technique (see [Areces
et al., 2009] for details) to the tableau procedures introduced in Section 7.1. The price
to pay is that the resulting calculi are not complete. The idea is to use tableaux as a
model building procedure, terminate it after a certain, predefined number of steps,
and then do model checking of the input formula on the induced model. If model
checking succeeds, we can answer sat, if not the answer is not-known.

This procedure can be described by the Algorithm 2 for ML(�), with � ∈
{〈sb〉, 〈gsb〉, 〈sw〉, 〈gsw〉, 〈br〉, 〈gbr〉}:

Algorithm 2 Incomplete SAT ϕ

procedure ISAT(ϕ, k ≥ 0)
Build T (ϕ), a tableau with root (n0, ∅) : ϕ, using at most k
applications of the tableau rules per branch.
if T (ϕ) is closed then

return unsat

else
for Θ ∈ T (ϕ) an open branch
compute the correspondingMΘ

ifMΘ, n0 |= ϕ then
return sat

else
return not-known

end if
end if

end procedure

In Section 6.1 we proved that model checking for all logics we investigate is
decidable and PSpace-complete and hence the algorithm always terminates.

Every time the algorithm returns not-known, we can increase the value of the
parameter k and reuse the computations performed with the smaller k. In this way,
we can approximate a solution for satisfiability on this kind of logics.

7.3. HOW TO USE TABLEAUX TO COMPUTE INTERPOLANTS? 89

7.3 H O W T O U S E TA B L E A U X T O C O M P U T E I N T E R P O L A N T S ?

Craig’s Interpolation Lemma [Craig, 1957] is a model theoretic property that has been
investigated for many logics. It establishes that if ϕ → ψ is a validity, then ϕ → θ
and θ → ψ are valid, for some θ in the common language of ϕ and ψ. The formula
θ is called an interpolant. In [Fitting, 1996; Fitting, 2002; Blackburn and Marx, 2003],
the interpolation lemma is proved constructively by showing how to extract an
interpolant from a tableaux proof of the validity ϕ→ ψ. The interpolant is computed
by tableau-based algorithms, adapting tableau rules to keep useful information for
this computation. For HL(@, ↓), tableau formulas contain prefixes, which indicate
in which point of the model the formula has to be evaluated. Together with some
additional information on the polarity of formulas it is possible to systematically
compute an interpolant.

Tableau formulas in Definition 7.1.1 contain prefixes which indicate in which
point of the model the formula has to be evaluated, and also the current model
variant. This syntactic information contained in prefixes is useful information to
construct interpolants. But prefixes are not directly expressible in relation-changing
modal logics. An alternative is to extend relation-changing modal logics with hybrid
operators, and adapt the tableau rules of this chapter to compute interpolants. We
have some preliminary results on how to obtain constructive interpolation for a hybrid
version of sabotage logic (HL(@, ↓)+〈sb〉), but it remains as future work to continue
this investigation.

90 CHAPTER 7. tableaux

Part III

I N F O R M AT I O N A N D
K N O W L E D G E

Todavı́a hay tiempo para imaginar cualquier cosa...

Julio Cortázar.

So far, we have investigated several dynamic operators from an abstract point of
view. We analyzed in detail theoretical properties of this kind of operators, and
we understood their behaviour. However, we are not only interested in an abstract
perspective of relation-changing modal logics. There are several fields that use relation-
changing operators to represent some particular scenarios. For instance, in Dynamic
Epistemic Logics (DEL) [van Ditmarsch et al., 2007], this kind of operators are used to
represent information change for certain agents. In Deontic Logics, dynamic operators
can be used to reasoning about policies (operators perform modifications that stand
for granting or revoking permissions [Pucella and Weissman, 2004]).

In this part, we will move to one of those concrete examples of the use of relation-
changing modal logics. First, in Chapter 8 we will introduce epistemic logic, the logic
of knowledge. We will see how to represent information and knowledge, and we will
discuss what happens if we need to model change of information. We will introduce
some model transformations that are appropriate for this purpose, and we will link
them with the kind of operators that we investigated in the first part of the thesis.

Chapter 9 is dedicated to introduce a new relation-changing modal logic which
embeds some restricted versions of dynamic epistemic logics. We will study some
properties of this logics, such as invariance under bisimulation, the tree model
property and expressive power. Then we will investigate in detail the computational
behaviour of this logic, showing that the satisfiability problem for two different
fragments is decidable. The main contribution of this chapter is the evidence we can
use our experience in relation-changing modal logics in a particular setting, and we
can pick a well behaved logic that suffices for our purposes.

8
Dynamic Epistemic Logics

All significant truths are private truths.
As they become public, they cease to be truth;

they become facts, or at best, part of the public character;
or at worst catchwords.

T. S. Eliot.

8.1 G O I N G I N A N E W D I R E C T I O N

So far, we have studied logics in an abstract context, putting more attention on the
specific properties of the languages than in their applicability to a particular problem.
We investigated ways of using modal logics to represent dynamic situations, by
defining operations that modify directed graphs. Hence any problem that can be
represented as a problem of graph modifications can be cast in our framework. In
particular, we focused on modal logics with modifiers that change the accessibility
relation in a graph. We also mentioned that this kind of languages can be useful to
model some specific problems, such as the strike’s day in Córdoba city we discussed
in Chapter 3. But there are other problems for which relation-changing modal
logics could be appropriate. For instance, in [Aucher et al., 2009] some relation-
changing operators have been investigated as data structure modifiers. In [Kooi and
Renne, 2011a], the arrow update logic (AUL) presented in Chapter 2 is introduced
in an epistemic context. In the field of Epistemic Logics, many operators perform
transformations in the model, which is why we are particularly interested on them.
For instance, in [van Ditmarsch et al., 2007] several operators that remove parts of the
model are introduced. Relation-changing modal logics seems to be an appropriate
tool for reasoning in this context. The challenge is to apply in this particular context,
things we have already learned about relation-changing modal logics. For instance,
we would like to exploit the good properties (such as expressivity) of the kind of
logics we introduced.

The goal of this chapter is to introduce a logical approach to reason about change
of information. It is a logical approach because the main interest is to reason about
change of information, and to distinguish valid from invalid reasoning in this context.
With that motivation in mind, several formalisms have been developed with different
characteristics. Before discussing in detail these formal languages, we need to clarify
what we mean by information. We consider as information something that is relative to
a subject (the agent) who has certain perspective on the world. The knowledge of each
agent is given by the information that is accessible for the agent. For this reason the
concept of information change is closely related with the concept of communication,

95

96 CHAPTER 8. dynamic epistemic logics

the process of sharing information. Communication in this context involves changing
the information that the agents have, i.e., what can they observe of the world. The
truth value of propositions describing the facts of the world that are independent of
the agents, remains unchanged. Dynamic Epistemic Logic is the field which studies
this kind of information change, as an extension of basic epistemic logic.

In this chapter we first formally introduce the different logics that are used for
epistemic reasoning. Then we give some examples of situations that can be modeled
using this class of logics, to see more clearly how these logics work. We discuss the
connections between epistemic reasoning and the logics we investigated in previous
chapters. Finally, we introduce some languages to formally represent information
change, motivating the use of relation-changing modal logics in the epistemic context.

8.2 R E A S O N I N G A B O U T K N O W L E D G E

Epistemic Logic is the logic of knowledge. Hintikka’s book [Hintikka, 1962] was one of
the first works that, following von Wright’s ideas on modal logic [von Wright, 1951],
formalized the concepts of knowledge and belief. Possible world semantics [Kripke,
1963] resulted fruitful to interpret diverse notions as temporal, dynamic, doxastic,
deontic, and in particular, epistemic reasoning. In this way, knowledge and belief were
formalized in a logical framework by using possible world semantics: the information
that some determined agent has is given in terms of the possible worlds that are
consistent with the information of that agent. Knowledge and belief are defined in
terms of the accessibility of the agent to those worlds. We can say, for example, that
an agent knows that ϕ is the case, if ϕ holds in all the worlds accessible to the agent.

Worlds in possible world semantics are nothing else than states in Kripke models
(introduced in Chapter 1), and accessibility is represented by edges between states.
In this chapter we slightly adapt the notation we used previously in the thesis to the
most common notation in the epistemic logic field. Edges in the models are labeled
by an agent symbol, which allows to model the knowledge of multiple agents, and
also the knowledge that agents have of each other. We will use K and K̂ instead of �
and ♦ in epistemic formulas, and we will also change the graphical representation of
the models to the one used in epistemic logics. We will introduce this new notation
with a simple example1. Suppose that there is an agent b who lives in Córdoba.
He has a theory about the weather conditions in both Córdoba and Mendoza: it is
either sunny in Córdoba (represented by the propositional symbol c) or not (¬c), and
it is sunny in Mendoza (represented by m) or not (¬m). There are of course, four
possible combinations of weather in parallel in the two cities, and each of them is a
possible state of the world. This situation is modeled by the modelM in Figure 18.
An edge in epistemic models represents that an agent cannot distinguish between
the two states connected by such edge. In the example, agent b lives in Córdoba,
then he can distinguish if it is sunny there or not, but he cannot see the difference
between the scenario in which it is sunny in Mendoza or not (in the scenario we are
considering the agents have only access to the information they “see” through their
window looking at the sky; no radios, newspapers or internet are available). An edge
from the state w to v labeled with an agent symbol b is read as “in state w, b considers

1 This example is a simplified version of the GLO-scenario introduced in [van Ditmarsch et al., 2007].

8.2. REASONING ABOUT KNOWLEDGE 97

it possible that the state in fact is v”, or “agent b cannot distinguish between states
w and v”. Notice that the previous description refers to an equivalence relation: no
agent is supposed to distinguish w from itself; if w is indistinguishable from v then so
is v from w; and if b cannot distinguish w and v, and cannot distinguish v and t, then
w and t are also the same from agent b. The model in Figure 18, which represents
this scenario is indeed an equivalence relation. This is always the case in epistemic
models, (i.e., we restrict ourselves to the class of models with equivalence relations).
For historical reasons this class is known as the class S5.

c, mw

c,¬mt

¬c,¬m v

¬c, m u

b b

bb

bb

M

Figure 18: Epistemic model representing the weather scenario.

In this example we are modeling an external view of the scenario, without assu-
ming any particular situation. If we are interested in checking internal properties, i.e.,
see which information is accessible for an agent given certain circumstances, we need
to identify the state which represents that situation (the initial state or evaluation
point in an epistemic pointed model). The accessible information from the initial state
corresponds with a particular situation. The actual situation might be that it is sunny
in Córdoba and not in Mendoza. We can see in the model that in that case the agent
knows that it is sunny in Córdoba, but he is uncertain about the weather in Mendoza
(he considers possible worlds where it is sunny in Mendoza and where it is raining
there). We distinguish the initial state in figures with a thick contour.

We introduced a situation that can be modeled using epistemic models, that are
the same structures in which we interpret epistemic formulas. We also described the
intended meaning of the representation via epistemic models, in an informal way.
Now, we introduce formally the epistemic language EL, interpreted on epistemic S5
models. The basic language for knowledge is based on a countable set of propositional
symbols and a finite set of agent symbols. Atomic propositional symbols such as
p, q, r, . . . describe some state of affairs (e.g., in the actual world, in a game, etc.). EL
extends the propositional language with an unary operator for each agent. Ka is a
box-like operator, with a ∈ AGT, the set of agents. Ka ϕ is read as “the agent a knows
that ϕ is the case”. K̂a ϕ is a shorthand for ¬K¬ϕ and is pronounced as “the agent a
considers it is possible that ϕ”. Sometimes we refer to modalities instead of agents.

98 CHAPTER 8. dynamic epistemic logics

We can also introduce some notation to talk about the knowledge of a group of
agents. For any group B ⊆ AGT, we write EB ϕ and we say “everybody in B knows
ϕ”, which is defined as

EB ϕ =
∧

b∈B

Kb ϕ.

Analogously to K̂, ÊB ϕ is a shorthand for ¬EB¬ϕ and it is read as “at least one
agent in B considers ϕ as a possibility”.

Some examples of epistemic formulas and their meaning are:

1. p ∧ ¬Ka p: “p is true but a does not know it”.

2. ¬KbKc p ∧ ¬Kb¬Kc p: “agent b does not know whether agent c knows p”.

3. Ka(p→ EB p): “agent a knows that if p is true, then everybody in B knows it”.

We introduced the language and some informal examples which clarify the kind of
information that we are able to represent with epistemic logics. We now move to the
formal semantics, first defining the models in which we evaluate epistemic formulas.

As we discussed for the weather example, epistemic models are Kripke models
with multiple accessibility relations, one for each agent in the language. We also
mentioned that in epistemic logics, we usually focus in a particular class of models
that have certain properties, which are appropriate for the corresponding reasoning.
This class is S5, i.e., the class of models such that all their accessibility relations are
equivalence relations.

Definition 8.2.1 (S5 Models). The class of models S5 is the class of allM = 〈W, R, V〉,
where R is a family of relations contained in W2, such that for all R′ ∈ R, R′ is reflexive,
symmetric and transitive (it is an equivalence relation).

Given a pointed modelM, w the semantics of the new operator is defined as

M, w |= Ka ϕ iff for all v ∈W s.t. (w, v) ∈ Ra,M, v |= ϕ.

The satisfiability definition establishes that an agent a knows an assertion ϕ in
some state w of the model M, if and only if such assertion holds in all the states
that a considers possible from w. For instance, in Figure 18 we have that if it is
sunny in Córdoba (i.e., w is any of the two possible worlds on the left of the figure)
thenM, w |= Kbc ∧ ¬Kbm ∧ ¬Kb¬m: agent b knows that it is sunny in Córdoba, but does
not if it is sunny in Mendoza or not. Agent b also knows about his/her ignorance:
M, w |= Kb¬Kbm.

As is usual in modal logics, it is interesting to know what are we able to say in the
language. For instance, in epistemic logics we are interested to know how much can
two epistemic states differ, without affecting the knowledge of any agent. To address
this problem, we use the notion of bisimulations such as it is expected.

The logic EL is a generalization of the basic modal logicML with multiple agents.
The notion of bisimulation is exactly the same, but relating elements according to the
different accessibility relations. It is easy to see that EL cannot distinguish bisimilar
models using this notion. States that are linked by a bisimulation represent the same
knowledge.

8.3. INFORMATION CHANGE 99

As we mentioned, epistemic logic is a classical language to talk about knowledge.
Because in this thesis we are particularly interested in investigating logics to represent
dynamic behaviour, it results natural to continue in this direction. In the next section,
we introduce the notion of information change, by discussing some examples and
investigating languages that are appropriate to represent it. The main goal is to find
connections between this kind of languages and the relation-changing modal logics
we investigate.

8.3 I N F O R M AT I O N C H A N G E

Dynamic epistemic logics (DEL) are extensions of EL to model changing knowledge.
DEL involves information change due to communication. The propositional infor-
mation related to each state remains unchanged, but the agent’s information about
the states is changed. There are various examples of dynamic epistemic logics that fit
with the kind of languages we are investigating. In these logics, information change
is modeled with changes in the accessibility relation associated to the agents. For
instance, remember that “indistinguishability” is represented in epistemic models
as an edge linking two states. Hence, deleting an edge is the way in which we can
differentiate two states.

8.3.1 A Card Game Scenario

Consider the scenario where two agents, named Ann and Bob (represented by the
agent symbols a and b, respectively) have each a given card. The face side of the cards
can be red or white. Both agents can only see their own card and they are ignorant
about the other agent’s card. There are four possibilities: both cards are white, both
cards are red, Ann has a red card and Bob has a white card, or the opposite. These
four possibilities are modeled by four states in a model. States are labeled with
propositional symbols which indicate each situation. For instance, ra, wb represents
the state in which Ann has a red card and Bob has a white card. Let us suppose
that the initial state is ra, rb (both agents have a red card). All this information is
represented in Figure 19 (notice that an agent cannot have a red and a white card
simultaneously, it means that if a state is labeled by the symbol ra, then ¬wa holds at
such state).

States in the model are connected by edges labeled with the agent symbols a or b.
An a-edge (respectively b-edge) connecting two states means that Ann (respectively
Bob) cannot distinguish the two states that are connected. Each state has a reflexive
edge, because no state can be distinguished from itself. Ra and Rb are equivalence
relations, as we required for epistemic models. There are no a-edges between states
in which Ann has different cards: she can distinguish states at the top part of the
figure (she has a red card) from those at the bottom (she has a white card). Bob can
distinguish states at the leftmost side of the model from those at the rightmost side.
Remember this is exactly what we wanted to model, Ann and Bob only know their
own cards, but are ignorant about the other card.

Suppose that Ann reveals to Bob that she has a red card. States where Ann has
a white card disappear. This situation is represented in Figure 20. Bob is now fully

100 CHAPTER 8. dynamic epistemic logics

ra, rbw

wa, rbt

ra, wb v

wa, wb u

a, b a, b

a, ba, b

bb

a

a

M

Figure 19: Epistemic model for a situation in which two agents have a red o a white
card.

informed. He knows that Ann has a red card (Kbra), and they both know that they
know she has a red card (Kb(Kbra ∧ Kara) ∧ Ka(Kbra ∧ Kara)), but Ann is still ignorant
about Bob’s card (Karb ∧ Karb). He knows he has a red card (Kbrb). Notice that there is
no edge labeled by b linking different states. Hence the “indistinguishability” relation
for Bob is as small as possible, meaning that he has as much information as there is to
have.

ra, rbw ra, wb v

a, b a, b

a

M′

Figure 20: Epistemic model after Ann tells Bob she has a red card.

Notice also that we have not yet represented in the language the fact that Ann told
Bob about her card.

Suppose now that Bob puts his card face down on a table and leaves the room.
When he comes back, there are two possible situations: Ann saw his card or she did
not see his card. Consider the scenario in which Ann did not see Bob’s card. Bob lost
some information: now he is uncertain about Ann’s knowledge. Figure 21 shows this
situation, in which edges for Bob appeared again. Even though Bob still knows that
Ann has a red card, he is not completely informed. He does not know if Ann knows
the colour of his card.

All these situations that we introduced informally can be logically described.
As we can see, we started with a model modeling a scenario and we represent

8.3. INFORMATION CHANGE 101

ra, rbw

ra, rbt

ra, wb v

ra, wb u

a, b a, b

a, ba, b

bb

a

M′′

Figure 21: Ann might have seen Bob’s card.

the information change by transforming the model. Dynamic Epistemic Logics are
extensions of EL which allow to describe this kind of information change.

8.3.2 Transforming Models

Several languages have been defined to represent information change. We will discuss
two main approaches: Public Announcement Logic (PAL) and Action Model Logic
(AML). The second one is perhaps the most common approach in DEL, and it is
sometimes identified with DEL.
PAL was introduced in [Plaza, 2007] (first published in 1989), as an extension

of EL with the operator [!ϕ] which communicates some common information to the
agents (〈!ψ〉ϕ is a shorthand for ¬[!ψ]¬ϕ.) The formula [!ψ]ϕ is read as “after ψ is
(truthfully) announced, ϕ is the case”. It means that ψ is revealed to all the agents
(the announcement is public), then ϕ is evaluated. Announcements are represented
by removing the access to states of the model where the fact announced does not hold.
We introduce the formal semantics of PAL:

M, w |= [!ψ]ϕ iffM, w |= ψ impliesM|ψ, w |= ϕ,

whereM|ψ = 〈W ′, R′, V′〉 is defined as follows:

W ′ = {w ∈W | M, w |= ψ}
R′a = Ra ∩ (W ′ ×W ′)
V′(p) = V(p) ∩W ′.

After making an announcement, the model is transformed to a new one and
evaluation of the rest of the formula continues in the new model. Agents cannot
access anymore information which contradicts the announcement: the knowledge of
the agents has changed. Notice that the propositional information contained in states
(the valuation) does not change. The only information affected is the knowledge that

102 CHAPTER 8. dynamic epistemic logics

the agents have of this information. This is the idea of communication. Let us see an
example to explain how public announcements work.

Example 8.3.1. Consider the situation modeled in Figure 19. Consider now, the formula
[!ra]Kbra. The formula says “after it is announced that Ann has a red card, Bob knows that
Ann has a red card”. The announcement [!ra] removes from the modelM states where Ann
does not have a red card. The resulting model is modelM′ of Figure 20: in all the remaining
states Ann has a red card. All the b-edges reach states in which Ann has a red card, then
Kbra holds.

The model obtained in Figure 20 is the result of deleting the states which contradict
the announcement. If we consider w as the initial state, it would suffice to delete
the access to the states that do not hold the announcement, such as is introduced
in [van Benthem and Liu, 2007] for Preference Upgrade. Let us take a look to the model
M′ of Figure 22, in which we maintain the states but we remove the edges that
allow the agents access to such states. In this way, we get a bisimilar model to the
one in Figure 20, i.e., a model which represents the same knowledge of the agents.
This seems to be an evidence that we can move to a relation-changing framework to
represent informative events.

ra, rbw

wa, rbt

ra, wb v

wa, wb u

a, b a, b

a, ba, b

a

a

M′

Figure 22: Ann tells Bob she has a red card, only removing edges.

The logic of public announcements is very simple and it is a good example to
show the kind of languages we investigated in this thesis. Many situations can be
modeled using public announcements, and it is clear that what is interesting is the
notion of model transformation, such as the logics we investigated in Part ii of this
thesis.
PAL is not the only language to model informative events. Another interesting

example is Action Model Logic (AML) introduced in [Baltag et al., 1998]. The main
idea in AML is that events which provoke changes in the information can be modeled
as the information itself. Given a situation such as the one in which Ann has a red
card, we can provide a Kripke model to represent it. In epistemic models, we model
information contained in the states, and what the agents are able to distinguish or
not. We can use the same idea to represent information-changing events.

8.3. INFORMATION CHANGE 103

Let us consider again the scenario in which Bob leaves the room and when he
returns he does not know if Ann saw his card or not. There are three possible
situations: Ann saw Bob’s card and it is red (she learns rb), Ann saw the card and
it is white (she learns wb) or she did not see the card (she learns nothing new, we
can represent this by >). Ann can distinguish these particular situations, but Bob
cannot. We can define a model to represent this scenario: one state for each possible
proposition that Ann could learn, and b-edges between them representing that all the
situations mentioned before are indistinguishable for Bob. This model will be used to
update the model representing the current scenario. Models used to represent events
are called action models. Let us introduce them formally.

Definition 8.3.2 (Action Models). Let L be any logical language for certain sets of propo-
sitional and agent symbols PROP and AGT, respectively. An Action Model E is a structure
E = 〈E,→, pre〉, where E is a non-empty set whose elements are called action points; for
each a ∈ AGT,→ (a) ⊆ E×E is an equivalence relation (we will often write→a rather than
→ (a)); and pre : E → L is a precondition function. Let e be an action point in E , the pair
(E , e) is a pointed action model; we usually drop parentheses and call E , e an pointed action
model.

Preconditions are functions which assign a formula of certain language L to each
action point. The precondition establishes the circumstances under which the action
can be executed. For instance, Ann can reveal that she has a red card, only if effectively
she has a red card. Using the same criteria as for epistemic models, action models
belong to the class S5. Figure 23 shows how to represent with action models the
situation in which Ann might have seen Bob’s card.

>e

rbd wb f

a, b

a, ba, b

b b

b

E

Figure 23: Action model representing that Ann might have seen Bob’s card.

Action models in AML appear as modalities, extending the basic epistemic logic
EL.

Definition 8.3.3 (Action Model Logic Syntax). Let PROP be a countable, infinite set of
propositional symbols and AGT a finite set of agent symbols. The set FORM of formulas of
AML over PROP and AGT is defined as:

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ψ | Ka ϕ | [α]ϕ,

104 CHAPTER 8. dynamic epistemic logics

where p ∈ PROP, a ∈ AGT, ϕ, ψ ∈ FORM and α ∈ ACT. The set of actions ACT is defined
as follows:

ACT ::= E , e | α ∪ β,

with E , e an action pointed model such that for all d ∈ E , the precondition pre(d) is an
AML-formula constructed in a previous stage of the inductively defined hierarchy, and
α, β ∈ ACT. As usual, 〈α〉ϕ is a shorthand for ¬[α]¬ϕ.

Action modalities indicate that some update has to be executed to the epistemic
model. This is done by a model transformation called product update, between action
models and epistemic models. Let us introduce the formal definition of the product
updates, together with the full semantics for AML.

Definition 8.3.4 (Semantics of AML). Given an epistemic pointed model M, w with
M = 〈W, R, V〉, an action pointed model E , e with E = 〈E,→, pre〉, and an AML-formula
ϕ we say thatM, w satisfies ϕ (notation,M, w |= ϕ) when

M, w |= [α]ϕ iff for allM′, w′ s.t. M, wJαKM′, w′ we haveM′, w′ |= ϕ
M, wJE , eKM′, w′ iff M, w |= pre(e) andM′, w′ = (M⊗E), (w, e)
Jα ∪ βK = JαK∪ JβK.

where (M⊗E) is defined as 〈W ′, R′, V′〉, with:

W ′ = {(v, d) ∈W × E | M, v |= pre(d)}
((v, d), (u, f)) ∈ R′a iff (v, u) ∈ Ra and d→a f
V′(p) = {(v, d) | v ∈ V(p)}.

The updated model is constructed by a product update. For each state in the origi-
nal epistemic model, it is determined which actions can be executed. Preconditions in
the actions do the work: an action can be executed at some state if its precondition
holds at that state. The new model consists of a set of pairs (w, e), where w is an
epistemic state and e is an action. (w, e) establishes that w is the resulting state after e
is executed. Information in the states does not change: the valuation of a pair (w, e)
follows the valuation of w. The new accessibility relation is constructed as follows.
Two states which are indistinguishable to an agent should remain indistinguishable
after the execution of the action. Also, two indistinguishable states in the updated
model were indistinguishable in the original one. van Benthem characterizes product
updates as having perfect recall, no miracles, and uniformity [van Benthem, 2001]:

• Perfect recall: if there is an a-edge connecting two states (w, e) and (v, d) in the
updated model, then there is an a-edge between the states w and v in the original
epistemic model.

• No miracles: if two epistemic states w and v are connected by an a-edge, then
they are connected after executing the same action (i.e., (w, e) and (v, e)).

• Uniformity: if two states (w, e) and (v, d) are linked in the updated model by an
a-edge, then two states u and t are linked by an a-edge if and only if (u, e) and
(t, d) are linked (actions e and d produce the same result).

8.3. INFORMATION CHANGE 105

Figure 25 shows how the epistemic model M′ is updated by the action model
E , both in Figure 24. Remember that we are modeling the scenario in which Bob is
uncertain about whether Ann has seen his card or not. As expected, the obtained
model after the product contains the same information thatM′′ of Figure 21, which
models the same situation.

ra, rbw ra, wb v

a, b a, b

a

M′

>e

rbd wb f

a, b

a, ba, b

b b

b

E

Epistemic Model Action Model

Figure 24: Epistemic model to be updated with the corresponding action model.

Notice that M′ has two states and E has three states, but the product only has
four. The reason is that some states do not satisfy the condition for the update of
Definition 8.3.4. For instance, the pair (w, f) is thrown away becauseM′, w 6|= pre(f)
(remember that an agent cannot have a white card and a red card at the same time).
This is the case also for v and d.

ra, rb(w, e)

ra, rb(w, d)

ra, wb (v, e)

ra, wb (v, f)

a, b a, b

a, ba, b

bb

a

(M′ ⊗ E)

Figure 25: The model resulting of the update E toM′.

106 CHAPTER 8. dynamic epistemic logics

AML is a generalization of PAL from a different perspective, in which action
models are involved. In fact, we can represent public announcements in this frame-
work. Consider an action model with a single state whose precondition is some
formula ϕ. If we use this action model to update an epistemic model, the resulting
product only contains the states of the epistemic model which satisfy ϕ. This is the
effect of announcing ϕ: states contradicting the announcement are removed.
AML has been investigated in different contexts. Belief revision, mathematical

puzzles, computer security and game theory are just a few applications of AML.
Results concerning the complexity and succinctness of these logics have been in-
vestigated. In [Lutz, 2006] it is shown that PAL has the same complexity than EL
but it is exponentially more succinct (over the class of all models). In [French et al.,
2013] several other succinctness results for some extensions of EL (over the class of
models S5) are provided. On the other hand, NExpTime-completeness for AML is
established in [Aucher and Schwarzentruber, 2013].

9
Applying Relation-Changing to

Dynamic Epistemic Logics

The problem that we thought was a problem was, indeed, a problem,
but not the problem we thought was the problem.

Mike Smith.

Dynamic epistemic logics are particular cases of relation-changing modal logics.
As we showed in the previous chapter, agent’s knowledge can be represented by their
accessible information, and changing the access results in information change. For this
reason, communication of certain announcements or the execution of actions (which
produces changes of information) can be modeled as modifications to the accessibility
relation of a model. The only difference between DEL and the relation-changing
modal logics we studied in this thesis, is that in DEL we give some meaning to the
model (information) and formulas (knowledge), while relation-changing modal logics
are more abstract, and we investigate them from a purely mathematical point of view.
We are interested in what they have in common, applying the experience acquired in
Part ii.

We will introduce in this chapter a new relation-changing modal language which
embeds DEL. This new language is an extension of the basic modal logicML with
two operators: J K is a modality which removes edges of a model under certain
circumstances, and cpp̄ is an operator that creates different copies of the model and
labels each copy with exactly one of the propositional symbols p of the sequence
p̄. Clearly this language (we named it ML(cp, J K)) is an example of the relation-
changing modal logics we investigate in this thesis. We will show that we can encode
a restricted version of AML within ML(cp, J K), and we will investigate some
properties of the new language.

9.1 A L O G I C W I T H D E L E T E A N D C O P Y

We have investigated several primitives to change the accessibility relation. We defined
operators to delete, swap around and add edges in a model, both locally and globally,
but we have not yet combined them. In this section we introduce ML(cp, J K), a
language which can delete edges and create copies of a model. The main difference
between J K and sabotage operators is that JπK deletes all the edges characterized by
the path expression π. Next, we introduce the formal syntax ofML(cp, J K).

Definition 9.1.1 (Syntax). Given PROP, an infinite and countable set of propositional
symbols, and AGT, a finite set of agents, let us define the set FORM ofML(cp, J K)-formulas,
together with a set PATH of path expressions.

107

108 CHAPTER 9. applying relation-changing to del

FORM ::= ⊥ | p | ¬ϕ | ϕ ∧ ϕ′ | ♦a ϕ | JπKϕ | cpp̄ ϕ,

where p̄ ∈ PROP+ does not appear in any occurrence of cp in ϕ, a ∈ AGT, ϕ, ϕ′ ∈
FORM, and π ∈ PATH.

PATH ::= a | π; π′ | ϕ?,

where a ∈ AGT, π, π′ ∈ PATH and ϕ is a Boolean formula.

JπKϕ is a kind of sabotage operator and its intuitive meaning is that ϕ holds after
having deleted all edges that appear in a path that matches π. We define Jπ � π′Kϕ
as a shorthand for JπKJπ′Kϕ. The operator cpp̄ ϕ means that ϕ is true in the model
obtained by replicating the initial model. We define the semantics in detail.

Definition 9.1.2 (Models). A multimodal (or multiagent) model M is a triple M =
〈W, R, V〉, where W is a non-empty set; R ⊆ AGT×W2 is an accessibility relation; (given
a ∈ AGT, we will often write Ra to refer to the set {(w, v) ∈ W2 | (a, w, v) ∈ R}); and
V : PROP→ P(W) is a valuation.

We represent a path as a sequence w0a0w1a1 . . . wn−1an−1wn where wi are states
and ai are agents. Let us now define the set PMπ of π-paths in the modelM by induc-
tion on π. PMa contains paths representing a-edges. PMπ;π′ contains concatenations of
a π-path and a π′-path. In such a concatenation, the last state w of the π-path has
to be the first state of the π′-path. PMϕ? contains paths of length 0, made of one state,
which satisfies ϕ.

Definition 9.1.3 (Paths). Let M = 〈W, R, V〉 a multiagent model and π ∈ PATH. We
define the set of π-paths PMπ ofM inductively as follows:

PMa = {wau | (w, u) ∈ Ra}
PMπ;π′ = {SwS′ | Sw ∈ PMπ and wS′ ∈ PMπ′ }
PMϕ? = {w | M, w |= ϕ}.

Let a ∈ AGT, we define edgesa(P) that is the set of a-edges of the path P. Formally:

edgesa(P) = {(a, w, u) | wau is a subsequence of P}.

Paths are introduced to characterize modifications we can do to a model. As we
did in previous chapters of the thesis, models with some modifications are called
model variants.

Definition 9.1.4 (Model Variants). Given a model M = 〈W, R, V〉 and a π-path, we
define the model variant where we delete all edges in the accessibility relation that belong to a
π-path as

MJπK = 〈W, RJπK, V〉,

where
RJπK = R \

⋃
a∈AGT,P∈PMπ

edgesa(P).

9.1. A LOGIC WITH DELETE AND COPY 109

Let p̄ ∈ PROP+, we defineM p̄ = 〈Wp̄, R p̄, Vp̄〉, where

Wp̄ = W × {1, . . . , | p̄ |} (we call wi to each (w, i))
R p̄ = {(a, wi, vj) | (a, w, v) ∈ R ∧ i, j ≤| p̄ |}
Vp̄(p̄(i)) = {wi ∈Wp̄ | i ≤| p̄ |}
Vp̄(p) = {wi ∈Wp̄ | w ∈ V(p)} if p /∈ p̄.

Now we are ready to define the semantics of the operators introduced in Defini-
tion 9.1.1.

Definition 9.1.5 (Semantics). Given a pointed model M, w and a formula ϕ we say that
M, w satisfies ϕ, and writeM, w |= ϕ, when

M, w |= p iff w ∈ V(p)
M, w |= ¬ϕ iff M, w 6|= ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ andM, w |= ψ
M, w |= ♦a ϕ iff for some v ∈W s.t. (w, v) ∈ Ra, M, v |= ϕ
M, w |= JπKϕ iff MJπK, w |= ϕ

M, w |= cpp̄ ϕ iff M p̄, w1 |= ϕ.

ϕ is satisfiable if for some pointed modelM, w we haveM, w |= ϕ.

Figure 9.1 shows how cpp̄ works, replicating the original model and tagging
each copy with a particular propositional symbol of the sequence p̄. For each state,
successors of the original model are preserved, even among different copies.

...

p̄(1)

p̄(2)

p̄(n)

copy of frame ofM

copy of frame ofM

copy of frame ofM

Figure 26: Semantics of copy operator.

We will discuss some examples to show the behaviour of the new operators J K
and cp. First, we will see a concrete example of the operator which replicates the
model, and next we will see how the delete operator acts.

Example 9.1.6. Let us consider the following modelM:

p q q qa a bw

110 CHAPTER 9. applying relation-changing to del

Evaluating the formula cpp1 p2
♦a♦a♦b>, we first get the following model, in which we repli-

cate the original one in two copies: one satisfying p1 and another satisfying p2:

p, p1 q, p1 q, p1 q, p1
a a b

p, p2 q, p2 q, p2 q, p2
a a b

w1

a a ba a b

Next we have to evaluate ♦a♦a♦b>. Notice that this formula is satisfied at w in the original
model. cpp1 p2

does not introduce new information about successors: each copy of a successor
in the original model is also a successor in the new model. It means that modal information
remains unchanged, then ♦a♦a♦b> holds at w1 in the new model.

Now, let us see some properties of J K. We start by showing an example of the
non-commutativity of the operator.

Example 9.1.7. Let us consider the following modelM:

a b cw

We will show that changing the order in which deletions are performed, changes the effects of
the deletions. Consider the formula Jb; cKJa; bK♦a>. After evaluating Jb; cK, we get the model

aw

When we evaluate Ja; bK, no deletions are done (the current model has no a-edges followed by
b-edges), then ♦a> holds at w.

On the other hand, if we consider the formula Ja; bKJb; cK♦a>, after evaluating Ja; bK we
get:

cw

Jb; cK does not remove edges, and the formula ♦a> does not hold at w.

The previous example shows that J K is not commutative. Remember that we
define Jπ � π′K as JπKJπ′K. Hence, � is no commutative. On the other hand, notice
that if π = ϕ?; a; ψ? and π′ = ϕ′?; a′; ψ′?, the order of the deletions does not matter:
edges deleted by π are independent of those deleted by π′ and viceversa (remember
that ϕ, ϕ′, ψ and ψ′ are Boolean formulas). Hence, in these cases, we can assume
commutativity. We will continue investigating the behaviour of the new relation-
changing language. A first property we will prove is that J K is self-dual.

9.1. A LOGIC WITH DELETE AND COPY 111

Proposition 9.1.8 (Self-duality). Let M be a model, ϕ be an ML(cp, J K)-formula and
π ∈ PATH. Then

M, w |= ¬JπK¬ϕ iffM, w |= JπKϕ.

Proof. Let supposeM, w |= ¬JπK¬ϕ. By |= we haveM, w 6|= JπK¬ϕ, iffMJπK, w 6|=
¬ϕ. Then, we have MJπK, w |= ¬¬ϕ, iff (by |= and double negation) M, w |=
JπKϕ.

Now let us see how J K can be useful to make announcements.

Example 9.1.9. Let us consider again the example introduced in the previous chapter. Sup-
pose we are modeling a card game scenario, and we have the following modelM, where Ann
and Bob are both uncertain about the other agent’s card.

ra, rbw

wa, rbt

ra, wb v

wa, wb u

a, b a, b

a, ba, b

bb

a

a

M

Now consider that Ann reveals to Bob she has a red card. We modeled this with a public
announcement, removing all the states where Ann does not have a red card. As we mentioned
in Chapter 8, this can also be modeled by removing access to such states. Evaluating the
formula Jb;¬ra?KKbra, we capture the same meaning that we captured in Figure 22. We are
removing only b-edges, and composing it with ¬ra? we remove all the b-edges pointing to
states which are not labeled by ra. Then, according to the definition of |=, we are removing all
the edges associated with paths in PMb;¬ra?, i.e., all the edges (w, v) ∈ Rb such thatM, v 6|= ra.

ra, rbw

wa, rbt

ra, wb v

wa, wb u

a, b a, b

a, ba, b

bb

a

a

M

112 CHAPTER 9. applying relation-changing to del

Notice that incoming b-edges to ¬ra-states are removed as we did in the previous chapter,
but we do not remove outgoing b-edges from ¬ra-states. The resulting models are bisimilar
(states where ra does not hold are no longer accessible). After executing Jb;¬ra?K, Bob knows
that Ann has a red card (Kbra).

In the first part of this thesis, we investigated in detail several relation-changing
modal logics. We investigated some model properties, we introduced bisimulations,
and we studied reasoning tasks. An important conclusion after investigating them,
is that having relation-changing operators we can increase expressive power. Some
nice computational properties are lost, in exchange, such as the tree model property
and decidability. In this section we investigate in detail the new relation-changing
operators. We will show that with the new definitions, which impose restrictions over
which edges are modified, we can get enough expressive power for our purposes and
good behaviour.

Now, we will discuss some more general properties of the whole language. A
classical notion we introduce to investigate the expressive power of the languages is
bisimulation. For the relation-changing modal logics we defined in Chapter 3, we
needed to introduce new conditions to capture the behaviour of the new operators.
Relation-changing operators increase the expressive power of the basic modal logic,
and new distinctions can be drawn. ForML(cp, J K), the new conditions required do
not specify dynamic behaviour. Paths deleted via J K traversing a particular state are
characterized by the information in successors of such point, and also the predecessors.
For instance, consider the formula Ja; aK♦a> and the following model:

w

a a

M

The formula does not hold atM, w because we delete all the paths matching two
consecutive occurrences of an a-edge. On the other hand, the formula holds in the
following model:

w′

a

M′

We have thatM′, w′ |= Ja; aK♦a> because there is no path in the model matching
two consecutive a-edges, and hence no edge is removed. Notice that this is the
case because deletions depend on the information specified by the full path, i.e., the
information that is before and after states. The new conditions for bisimilarity only
have to talk about information in the past. We need to add to Definition 4.1.1, the
same conditions added in [Blackburn et al., 2001] for the operator ♦−1:

(zig−1) if (v, w) ∈ Ra then for some v′, (v′, w′) ∈ R′a and vZv′;

(zag−1) if (v′, w′) ∈ R′a then for some v, (v, w) ∈ Ra and vZv′.

9.1. A LOGIC WITH DELETE AND COPY 113

We use the notation -ML(cp,J K) when we refer to bisimulations for the language
ML(cp, J K).

Without loss of generality we will assume that all delete operators have the form

Jϕ1?; a1; ϕ2?; a2; . . . ; an−1; ϕn?Kψ,

where ϕi? are arbitrary Boolean formulas, and ai ∈ AGT (we can introduce >? and
join successive Boolean formulas by conjunction, when necessary to transform any
formula into this normal form). It will be useful to prove the next lemma, which
establishes that bisimulation preserves paths.

Lemma 9.1.10. Let M = 〈W, R, V〉 and M′ = 〈W ′, R′, V′〉 be two models, w ∈ W and
w′ ∈ W ′, such thatM, w -ML(cp,J K) M′, w′. Let π = ϕ1?; a1; ϕ2?; a2; . . . ; an−1; ϕn? be
arbitrary. Then, for all P ∈ PMπ such that P = w0a0 . . . wai . . . wn, there is some P′ ∈ PM′π ,
with P′ = w′0a0 . . . w′ai . . . w′n and for all j ∈ {1, . . . , n} we have M, wj -ML(cp,J K)
M′, w′j.

Proof. Given some P ∈ PMπ , we need to find some P′ ∈ PM′π satisfying the lemma.
Let us construct such P′.

Suppose P = w0a0 . . . wai . . . wn. Notice that we have the subpath waiwi+1, which
means (w, wi+1) ∈ Rai . Because M, w -ML(cp,J K) M′, w′, by (zig) there is some
w′i+1 such that (w′, w′i+1) ∈ R′ai

and M, wi+1 -ML(cp,J K) M′, w′i+1. For this reason,
M, wi+1 |= ψ if and only ifM′, w′i+1 |= ψ, for all ψ (in particular ϕi+1). Then, wi+1 is
a good choice in order to construct P′. We can repeat this process to build the subpath
w′aiw′i+1 . . . w′n. In order to choose wi−1, we can proceed in the same way but using
(zig−1), and repeating the process until we reach w′1. Putting all together, we have
constructed the right P′.

For the other direction use (zag) and (zag−1).

Another interesting property is that replicating bisimilar models with the operator
cp, we get bisimilar models.

Lemma 9.1.11. Let M = 〈W, R, V〉 and M′ = 〈W ′, R′, V′〉 be two models, w ∈ W and
w′ ∈W ′. ThenM, w -ML(cp,J K)M′, w′ impliesM p̄, w1 -ML(cp,J K)M′

p̄, w′1.

Proof. We have to define a bisimulation Z ⊆ Wp̄ ×W ′ p̄. Because M, w -ML(cp,J K)
M′, w′, we define:

Z = {(vi, v′i) | vi ∈Wp̄, v′i ∈Wp̄, i ∈ {1, . . . , | p̄ |} s.t. M, v -ML(cp,J K)M′, v′}.

(atomic harmony) holds because viZv′i if and only if v and v′ satisfy (atomic
harmony) in the original models, and vi and v′i are both labeled by the symbol p̄(i).
For (zig), suppose we have vjZv′j and (vj, uk) ∈ (R p̄)a. Then we know (v, u) ∈ Ra.
Because M, v -ML(cp,J K) M′, v′, by (zig) there is some u′ such that (v′, u′) ∈ R′a.
Hence, we have (v′j, u′k) ∈ (R′ p̄)a. (zag) is straightforward.

Now we can prove thatML(cp, J K)-bisimilar models satisfy the same formulas.

Theorem 9.1.12 (Invariance under bisimulation.). For all ML(cp, J K)-formula ϕ, we
haveM, w -ML(cp,J K)M′, w′ impliesM, w |= ϕ iffM′, w′ |= ϕ.

114 CHAPTER 9. applying relation-changing to del

Proof. The proof is by structural induction. LetM = 〈W, R, V〉 andM′ = 〈W ′, R′, V′〉,
such thatM, w -ML(cp,J K)M′, w′.

Boolean and modal cases are the same as for ML. It remains the prove the
inductive cases for J K and cp.

JπKϕ: SupposeM, w |= JπKϕ, thenMJπK, w |= ϕ,MJπK = 〈W, RJπK, V〉, RJπK = R \⋃
P∈PMπ ,a∈AGT edgesa(P). Because M, w -ML(cp,J K) M′, w′, by Lemma 9.1.10

there is P ∈ PMπ iff there is some P′ ∈ PM′π . Hence MJπK, w -ML(cp,J K)
M′

JπK, w′, and by I.H.M′
JπK, w′ |= ϕ. As a result,M′, w′ |= JπKϕ.

cpp̄ϕ: SupposeM, w |= cpp̄ ϕ. Then we haveM p̄, w1 |= ϕ. BecauseM, w -ML(cp,J K)
M′, w′, by Lemma 9.1.11 we haveM p̄, w1 -ML(cp,J K)M′

p̄, w′1. Hence, (by I.H.)
M′

p̄, w′1 |= ϕ. Therefore,M′, w′ |= cpp̄ ϕ.

The notion of bisimulation forML(cp, J K) is stronger than bisimulation forML,
i.e., new distinctions can be drawn. However, the new conditions do not describe any
dynamic behaviour, they only characterize subpaths that are back of evaluation points.
Hence, we only need the same conditions as for the logicML + ♦−1 (ML(♦−1)). This
establishes that properties that are not expressible inML(♦−1) are not expressible in
ML(cp, J K). A direct consequence is the following theorem:

Theorem 9.1.13. The languageML(cp, J K) has the tree model property.

Proof. In Chapter 3 we showed the tree model property for ML by unraveling the
original model. In [Blackburn and van Benthem, 2006] it is proved that any modelM
is bisimilar to Unr(M). It is possible to do the same forML(♦−1) [Blackburn et al.,
2001]. We can encode ♦−1 by adding an accessibility relation to the model, consisting
in turning around existing edges and interpreting a new modality symbol on this
new relation. Once we have encoded the inverse relation, we can unravel the model
as forML getting a bisimilar model. Hence,ML(♦−1) has the tree model property.
Because bisimilarity conditions for ML(♦−1) and ML(cp, J K) are the same, from
Theorem 9.1.12 we have thatML(cp, J K) has the tree model property.

9.2 E M B E D D I N G A C T I O N M O D E L S I N R E L AT I O N - C H A N G I N G

In the previous section we defined a new relation-changing language with operators
to delete edges and to replicate a model. Our goal is to show that we can define DEL
in terms of a relation-changing modal logic, such as those we investigate in Part ii. To
do that, we pick a restricted version of AML and we embed it inML(cp, J K). The
constraint we impose on AML-formulas is that preconditions of the actions in action
models, are Boolean formulas.

Definition 9.2.1 (From AML toML(cp, J K)). Let E = 〈E,→, pre〉 be an action model
with E = {α1, . . . , αn}. We define the translation Tr from AML formulas toML(cp, J K)-
formulas as:

Tr([E , α1]ϕ) = pre(α1)→ cppα1 ...pαn
JρKJσKTr(ϕ),

where

9.2. EMBEDDING ACTION MODELS IN RELATION-CHANGING 115

ρ ≡ ⊙
αi∈E,a∈AGT

a; (pαi ∧ ¬pre(αi))?

σ ≡ ⊙
αi ,αj∈E,a∈AGT

pαi ?; a; pαj ? if αi 6→a αj.

Let us discuss how the translation works, and why it is encoding action models.
We use

⊙
as the generalization of the shorthand � introduced previously. Even

though we showed in Example 9.1.7 that � is not, in general, commutative, we always
delete paths of size 1 (i.e., paths of the shape wav). Then, as we mentioned at the
end of the same example, the order of the deletions is irrelevant. The antecedent
pre(α1) is exactly the same clause as for model updates (considering the pointed action
model E , α1 as the desired update). Then we start with the model transformation. For
each action αi ∈ E, we consider a propositional symbol pαi . cppα1 ...pαn

replicates the
original model as many times as actions in E. This operation generates the cartesian
product W × E. However, the modelM⊗E does not consider the whole cartesian
product. To cut the unwanted part of the model we introduce JρK. In Example 9.1.9
we simulate an announcement by removing the edges pointing to states contradicting
the announcement. For action models we do something similar: ρ characterizes all
the edges we introduced by the previous cppα1 ...pαn

pointing to pαi -states which do not
satisfy the corresponding pre(αi). In the same way that it is done in AML product
updates, we remove all arrows pointing to those states. Once we have constructed the
domain, it remains to restrict the obtained accessibility relation. This is done by JσK.
Remember that ((v, d), (u, f)) ∈ R′a in M⊗E if and only if (v, u) ∈ Ra and d →a f .
The first part trivially holds in the translation, because cp does not introduce edges
between copies of elements that were not related in the original model. JσK deletes all
the a-edges (wi, wj) such that in the action model there is no a-edge from αi to αj, for
all a ∈ AGT.

The obtained model is notM⊗E , but it is bisimilar according to Definition 4.1.1,
which is the notion used in AML. As a result, they represent the same information
for the agents. Example 9.2.2 shows the encoding applied in a concrete scenario.

Example 9.2.2. This is an example that shows how ML(cp, J K) works encoding AML.
Below we can see an epistemic modelM in the first column, an action model E in the second
one, and the correspondent model after evaluating [E , α1] atM, w.

p ¬pa, b

a, ba, b

w v p

>

b

a, b

a

α1

α2

p

p ¬p

b

a, b

a

b

a, b

a, b

(w, α1)

(w, α2) (v, α2)

Epistemic Model Action Model Updated Model

116 CHAPTER 9. applying relation-changing to del

Now we will see that applying the translation Tr, we get the same updated model (modulo
AML-bisimulation). We spell out each step of the transformation by evaluating each part
of the translation. The first step replicates as many copies of the original epistemic model, as
actions belonging to the domain of the action model. This is done via a copy operation.

pα1 , p

pα2 , p pα2 ,¬p

a, b

a, b

a, b

a, b

a, b

a, b

pα1 ,¬p

a, b

a, b

a, ba, b

Next, evaluating JρK (defined as in Definition 9.2.1), we remove all the edges pointing
to states where at the same time pα1 holds and pre(α1) doesn’t hold (removed edges are
represented by dashed arrows).

pα1 , p

pα2 , p pα2 ,¬p

a, b

a, b

a, b

a, b

a, b

a, b

pα1 ,¬p

a, b

a, b

a, b a, ba, b

a, b

Last, we need to evaluate JσK. This removes those edges that have been added by the copy
operation, but are not connected in the original action model. Thereby, we remove all the
undesirable access, obtaining a model which is bisimilar to the updated model presented at the
beginning of this example (the state labeled by {pα1 ,¬p} is not longer accessible).

9.3. COMPUTATIONAL BEHAVIOUR 117

pα1 , p

pα2 , p pα2 ,¬p

ba, b

a, b

a

b

b
a

a, b

a, b

pα1 ,¬p

a, bb
a, b

a

a, b pα1 , p

pα2 , p pα2 ,¬p

b

a, b

a

b

a, b

a, b

pα1 ,¬p

a, bb

a, b

We have seen a concrete application of the language introduced in this chapter:
relation-changing modal logics to encode dynamic epistemic logics. This introduces
even more evidences that some well known logics, such as dynamic epistemic logics,
can be investigated in the relation-changing framework. It is clear that we cannot
embed the entire logic AML (with action preconditions allowing modal formulas)
because we do not allow modal expressions into J K. It remains as future work to
extendML(cp, J K) with modal deletions. The trade-off is the good behaviour of the
considered language: for instance, we have already seen thatML(cp, J K) has the tree
model property. In the next section we investigate more about the computational
behaviour of this language. The main results are about decidability and computational
complexity of the satisfiability problem for two fragments ofML(cp, J K).

9.3 C O M P U TAT I O N A L B E H AV I O U R

In this section, we start to study the satisfiability problem of two fragments of the
logic ML(cp, J K). First, we will consider the fragment without deletions, i.e., the
basic modal logicML extended with cp. We will provide a PSpace-algorithm to solve
its satisfiability problem. This algorithm, together with the lower bound provided
byML gives us PSpace-completeness for the language. After that, we will consider
ML extended with J K. We will define reduction axioms from this language toML +
�−1. Finally we will discuss bounds for the full languageML(cp, J K).

9.3.1 Complexity of the FragmentML(cp)

In this subsection, we study the fragment ofML(cp, J K) where only the operators
�a and cpp̄ are allowed. This fragment is denoted byML(cp).

Let Σ be an arbitrary set of sequences of propositional symbols. We define the
translation TrΣ that maps formulas ϕ ∈ ML(cp) to formulas ofML as follows:

TrΣ(p) = p
TrΣ(¬ϕ) = ¬TrΣ(ϕ)
TrΣ(ϕ ∧ ψ) = TrΣ(ϕ) ∧ TrΣ(ψ)
TrΣ(�a ϕ) = �a(

∧
where pi is the first propositional symbol of a sequence in Σ pi → TrΣ(ϕ))

TrΣ(cpp̄ ϕ) = TrΣ\{ p̄}(ϕ).

118 CHAPTER 9. applying relation-changing to del

We define by induction:

M{ p̄}∪Σ := (MΣ) p̄
M∅ := M.

Actually, the definition ofMΣ does not depend on the order in Σ.

Theorem 9.3.1. For all ϕ ∈ ML(cp), let Σ(ϕ) the set of all sequences of propositional
symbols appearing in copy operators in ϕ. We have:

M, w |= ϕ iff MΣ(ϕ), wΣ(ϕ) |= TrΣ(ϕ)(ϕ),

where wΣ(ϕ) is the state corresponding to the evaluation point after | Σ(ϕ) | consecutive cp
operations are applied from the point w.

Proof. The proof is by induction on the structure of ϕ ∈ ML(cp).

ϕ = p : M, w |= p if and only ifM∅, w |= Tr∅(p) (by definition ofM∅ and Tr) if
and only if (by definition of Σ(ϕ))MΣ(p), w |= TrΣ(p)(p)

ϕ = ¬ψ and ϕ = ψ ∧ χ : Are trivial by inductive hypothesis.

ϕ = �aψ : By definition of |=, M, w |= �aψ iff for all v such that (w, v) ∈ Ra,
M, v |= ψ. Σ(�aψ) = Σ(ψ). By I.H., we haveMΣ(ψ), vΣ(ψ) |= TrΣ(ψ)(ψ). This is
the same asMΣ(�aψ), vΣ(�aψ) |= TrΣ(�aψ)(ψ). But we haveMΣ(�aψ), wΣ(�aψ) |=
�a(

∧
where pi is the first propositional symbol of a sequence in Σ(�aψ) pi → TrΣ(ψ)), (because

vΣ(�aψ) is an arbitrary copy of the successors of w), if and only ifMΣ, wΣ(�aψ) |=
TrΣ(�aψ)(�aψ).

ϕ = cpp̄ψ : M, w |= cpp̄ψ iff M p̄, w1 |= ψ. By I.H., (M p̄)Σ(ψ), wΣ(ϕ) |= TrΣ(ψ)(ψ).
Because the definition ofMΣ (which does not depend on the order of Σ), and p̄ /∈
Σ(ψ) (because in each occurrence of cpp̄, p̄ is fresh), we haveMΣ(ψ)∪{ p̄}, wΣ(ϕ)

|= TrΣ(ψ)\{ p̄}(ψ). Hence, by definition MΣ(ψ)∪{ p̄}, wΣ(ϕ) |= TrΣ(ψ)∪{ p̄}(cpp̄ψ),
which is the same thatMΣ(cpp̄ψ), wΣ(ϕ) |= TrΣ(cpp̄ψ)(cpp̄ψ).

We will show the upper bound for the class PSpace, by providing a tableau-based
algorithm which uses polynomial space. Notice that the algorithm takes as argument
aML-formula, a set of sequences of propositional symbols and a set of formulas. At
the end, we use the previous result to complete the proof.

Theorem 9.3.2. The following problem is in PSpace:

• input: a formula ϕ ∈ ML; Σ a set of sequences of propositional symbols;

• output: yes iff there exists a modelM such thatMΣ, wΣ |= ϕ.

Proof. We adapt the standard tableau method for ML (see [Goré, 1999]) in or-
der to obtain a PSpace procedure for our problem, shown in Algorithm 3. ν
is called a modal valuation over a set of formulas Γ if and only if ν ⊆ PROP ∪
{♦aψ | ♦aψ or ¬♦aψ in modal depth 1 in Γ} We define the relation |= to say that
a valuation satisfies a formula as:

9.3. COMPUTATIONAL BEHAVIOUR 119

ν |= p iff p ∈ ν
ν |= ♦a ϕ iff ♦a ϕ ∈ ν
ν |= ¬ϕ iff ν 6|= ϕ
ν |= ϕ ∧ ϕ′ iff ν |= ϕ and ν |= ϕ′.

A valuation c is called a copy valuation for a set Σ of sequences of propositional
symbols, if and only if c contains exactly one propositional symbol in each sequence
of Σ. Notice that, given a modal valuation ν and a copy valuation c, ν ∪ c is a modal
valuation.

Algorithm 3 Satisfiability for the fragmentML(cp)
procedure SAT(ϕ, Γ, Σ)

choose some modal valuation ν over Γ ∪ {ϕ}
for all copy valuation c over Σ do

if ν ∪ c 6|= ∧
γi∈Γ γi then

return unsat

end if
end for
if for no copy valuation c we have ν ∪ c |= ϕ ∧∧γi∈Γ γi then

return unsat

end if
for all ♦aψ ∈ ν do

if SAT(ψ, {¬χ | ¬♦aχ ∈ ν}, Σ) =unsat then
return unsat

end if
end for
return sat

end procedure

The procedure takes three arguments: a formula ϕ, a set of formulas Γ and a set
of sequences of propositional symbols Σ. The set Γ acts as an auxiliar set, used to
abstract subformulas of ϕ. Valuations treat formulas as propositional symbols, in
which a formula belongs to a valuation if the formula has to be interpreted as true.
The algorithm is the standard tableau algorithm used to check satisfiability forML,
adapted to manage a set of sequences Σ, which represents possible copies of a model.
As forML, the algorithm takes only polynomial space.

We will show some examples of how the algorithm works with some particular
inputs.

Example 9.3.3. Let us consider the formula ϕ = ♦a¬p1 and the set Σ = {p1}. Let us run
SAT(ϕ, ∅, Σ). In the first call, the valuation must be ν = {♦a¬p1}. The only possible copy
valuation is c = {p1} (because it has to make true exactly one symbol in each sequence).
Intermediate checks are trivial (given that Γ = ∅). There is no copy valuation which contra-
dicts ♦a¬p1, then the execution of the algorithm continues by calling SAT(¬p1, ∅, Σ). Now,
ν = ∅, and c = {p1}, then the algorithm fails checking ν ∪ c |= ¬p1 (because c contains
p1). Therefore the algorithm returns unsat.

120 CHAPTER 9. applying relation-changing to del

Example 9.3.4. Now, let us consider the same formula, but with Σ = {p1 p2}. Again, we
have one unique sequence but composed now by two propositional symbols. Hence, we run
SAT(ϕ, ∅, Σ). In the first call, the valuation must be ν = {♦a¬p1}. In the second step, we
have two possible copy valuations: c = {p1} and c = {p2} We have seen in the previous
example what happens if we consider c = {p1}, then let us choose the other option. In the
recursive call SAT(¬p1, ∅, Σ), we have ν ∪ c |= ¬p1, with ν = ∅ and c = {p2}. With this
input, the algorithm reaches its last instruction and returns sat.

From previous result, we can state the complexity of the satisfiability problem for
the fragmentML(cp):

Theorem 9.3.5. Deciding whether a formula inML(cp) is satisfiable is PSpace-complete.

Proof. PSpace-hardness follows from PSpace-completeness of the satisfiability prob-
lem for ML. In order to prove completeness, we can use Theorem 9.3.2, testing
whether there exists a model M such that MΣ(ϕ), wΣ(ϕ) |= TrΣ(ϕ)(ϕ). This can be
done (by Theorem 9.3.1) by invoking

SAT(TrΣ(ϕ)(ϕ) ∧∧pi , where pi is a first atomic proposition of a sequence in Σ(ϕ) pi, ∅, Σ(ϕ)).

We will continue investigating the complexity of the satisfiability problem for
ML(cp, J K) in the next section. We will not get an upper bound for this, but we will
prove that the problem is decidable.

9.3.2 Complexity of the FragmentML(J K)

We will show that the fragment without the copy operator (ML(J K)) can be translated
into basic modal logic with past operator ♦−1 (we notate this logic asML(♦−1)).

Without loss of generality we will assume that all delete operators have the form

Jϕ1?; a1; ϕ2?; a2; . . . ; an−1; ϕn?Kψ,

where ϕi? are arbitrary Boolean formulas, and ai ∈ AGT. We will introduce reduction
axioms to get aML(♦−1)-formula. Notice that the macros we define below (delπ

i ’s)
introduce ♦−1 operators. Because we will use delπ

i ’s in reduction axioms, intermediate
steps introduce ♦−1. For this reason reduction axioms are from ML(J K,♦−1)-
formulas toML(♦−1)-formulas, withML(J K,♦−1) the languageML(J K) extended
with ♦−1. We will then conclude that for any ML(J K)-formula, we can get an
equivalentML(♦−1)-formula.

First, let us define the macros ♦i,j and ♦−1
i,j , for a fixed π = ϕ1?; a1; . . . ; an−1; ϕn.

♦i,j =

> j < i
♦ai ϕi+1 i = j
♦ai (ϕi+1 ∧♦i+1,j) i < j

♦−1
i,j =

> j < i
♦−1

ai
ϕi i = j

♦−1
aj

(♦−1
i,j−1 ∧ ϕj) i < j

Then we define the formula delπ
i as follows:

delπ
i = ♦−1

1,i−1 ∧ ϕi ∧♦i,n−1.

9.3. COMPUTATIONAL BEHAVIOUR 121

Informally delπ
i means “the current world is at position i in a path that matches

π = ϕ1?; a1; ϕ2?; a2; . . . ; an−1; ϕn? and that is going to be deleted”.
For instance, formulas delπ

1 , . . . , delπ
n are defined as:

delπ
1 = ϕ1 ∧ (♦a1 ϕ2 ∧ (♦a2 ϕ3 . . . ∧♦an−2(ϕn−1 ∧♦an−1 ϕn) . . .))

delπ
2 = ♦−1

a1
ϕ1 ∧ ϕ2 ∧ (♦a2 ϕ3 . . . ∧♦an−2(ϕn−1 ∧♦an−1 ϕn) . . .)

. . .
delπ

n−1 = ♦−1
an−2

(♦−1
an−3

(. . . (♦−1
a1

ϕ1 ∧ ϕ2) ∧ ϕ3) . . .) ∧ ϕn−1 ∧♦an−1 ϕn

delπ
n = ♦−1

an−1
(♦−1

an−2
(. . . (♦−1

a1
ϕ1 ∧ ϕ2) ∧ ϕ3 . . .) ∧ ϕn−1) ∧ ϕn

Next lemma clarifies the meaning of deli:

Lemma 9.3.6. Let M = 〈W, R, V〉 be a model, w ∈ W and π = ϕ1?; a1; ϕ2?; . . . ; ϕn? a
path expression. Let i be such that 0 ≤ i ≤ n, then

M, w |= delπ
i iff there is some P ∈ PMπ s.t. P = w1a1w2 . . . wn, wi = w

and for all wj ∈ P we haveM, wj |= ϕj.

Proof. The proof is by induction on the length of π:

π = ϕ1?: M, w |= delπ
1 if and only if M, w |= ϕ1 (by definition of delπ

i). But
PMϕ1? = {v | M, v |= ϕ1} (all the paths are singletons satisfying ϕ1), then

w ∈ PMϕ1?.

π = ϕ1?; a1;ϕ2?; . . . ;ϕn?: Suppose M, w |= delπ
i . By definition of delπ , we have

M, w |= ♦−1
1,i−1 ∧ ϕi ∧♦i,n−1. Now, we know:

1. M, w |= ϕi.
2. M, w |= ♦−1

1,i−1, then by definition of ♦−1
i,j we have M, w |= ♦−1

ai−1
(♦−1

1,i−2 ∧
ϕi−1). By definition of |=, there is some v ∈ W such that (v, w) ∈ Rai−1 and
M, v |= ♦−1

1,i−2 ∧ ϕi−1. Let us define π1 = ϕ1?; a1; ϕ2?; . . . ; ϕi−1?. Then, by
definition of delπ

i , we haveM, v |= delπ1
i−1, and by I.H., there is a path P1 ∈ PMπ1

such that P1 = w1a1 . . . wi−1, with wi−1 = v and for all wj ∈ P1, M, wj |= ϕj
(0 ≤ j ≤ i− 1).
3. M, w |= ♦i,n−1, then by definition of ♦i,j we have M, w |= ♦ai (ϕi+1 ∧
♦i+1,n−1). By definition of |=, there is some t ∈ W such that (w, t) ∈ Rai

and M, t |= ϕi+1 ∧ ♦i+1,n−1. Let us define π2 = ϕi+1?; ai+1; . . . ; ϕn?. Then, by
definition of delπ

i , we haveM, t |= delπ2
i+1, and by I.H., there is a path P2 ∈ PMπ2

such that P2 = wi+1ai+1 . . . wn, with wi+1 = t and for all wj ∈ P2, M, wj |= ϕj
(i + 1 ≤ j ≤ n).

Notice that π = π1; ai−1; ϕi?; ai; π2. It remains to choose P = P1ai−1wiaiP2 and
we have what we wanted.

Next, we introduce the reduction axioms which transformML(J K,♦−1)-formulas
intoML(♦−1)-formulas.

122 CHAPTER 9. applying relation-changing to del

Definition 9.3.7. Let ϕ=JπKθ be anML(J K,♦−1)-formula, with π=ϕ1?; a1; ϕ2?; . . . ; ϕn?.
We define the formula Tr(ϕ) as theML(♦−1)-formula resulting of apply repeatedly the fo-
llowing reduction axioms to the formula ϕ (we will assume that ♦aψ is written as ¬�a¬ψ,
and similarly by ♦−1).

(1) JπKp ↔ p, p ∈ PROP
(2) JπK¬ψ ↔ ¬JπKψ
(3) JπK(ψ ∧ ψ′) ↔ (JπKψ ∧ JπKψ′)
(4) JπK�aψ ↔ �aJπKψ, if a /∈ π

(5) JπK�−1
a ψ ↔ �−1

a JπKψ, if a /∈ π
(6) JπK�aψ ↔ (

∧
i∈{1,...,n−1 | ai=a} ¬delπ

i → �aiJπKψ)∧
(
∧

i∈{1,...,n−1 | ai=a}(delπ
i → �ai (delπ

i+1 ∨ JπKψ)))

(7) JπK�−1
a ϕ ↔ (

∧
i∈{1,...,n−1 | ai=a} ¬delπ

i → �−1
ai

JπKψ)∧
(
∧

i∈{1,...,n−1 | ai=a}(delπ
i → �−1

ai
(delπ

i−1 ∨ JπKψ))).

Notice that the resulting formula only contains �a and �−1
a , and does not contain

J K. We will prove that the reduction preserves equivalence, discussing each reduction
axiom separately. First, we will show that reduction axiom (1) preserves equivalence.

Lemma 9.3.8. LetM = 〈W, R, V〉 be a model, w ∈ W. Let p ∈ PROP be a propositional
symbol and π ∈ PATH arbitrary, then

M, w |= JπKp iffM, w |= p.

Proof. SupposeM, w |= JπKp. By definition of |=, we haveMJπK, w |= p. Because JπK
keeps the same valuation in the model variant, w ∈ V(p). Then (by |=),M, w |= p.

Next, we will see the distributivity of J K with respect to ∧.

Lemma 9.3.9. Let M = 〈W, R, V〉 be a model, ψ, ψ′ be two ML(J K,♦−1)-formulas and
π ∈ PATH such that π = ϕ1?; ai; ϕ2?; . . . ; an−1; ϕn?. Then

M, w |= JπK(ψ ∧ ψ′) iffM, w |= JπKψ ∧ JπKψ′.

Proof. SupposeM, w |= JπK(ψ ∧ ψ′). Then, by definition of |=,MJπK, w |= (ψ ∧ ψ′),
which meansMJπK, w |= ψ andMJπK, w |= ψ′. Applying again definition of |=, we
haveM, w |= JπKψ andM, w |= JπKψ′, iffM, w |= JπKψ ∧ JπKψ′.

Now we prove that in certain cases, J K and �a commute.

Lemma 9.3.10. Let M = 〈W, R, V〉 be a model, ψ be a ML(J K,♦−1)-formula and π ∈
PATH such that π = ϕ1?; ai; ϕ2?; . . . ; an−1; ϕn? . If ai /∈ π, then

M, w |= JπK�ai ψ iffM, w |= �aiJπKψ.

Proof. SupposeM, w |= JπK�ai ψ. Applying definition of |= twice, we have that for
all v such that (w, v) ∈ (RJπK)ai , MJπK, v |= ψ. We assume ai /∈ π, then (w, v) ∈
(RJπK)ai iff (w, v) ∈ Rai , then we have for all v such that (w, v) ∈ Rai ,MJπK, v |= ψ, iff
for all v such that (w, v) ∈ Rai ,M, v |= JπKψ. Hence by |=,M, w |= �aiJπKψ.

Finally, we prove the equivalence preservation of axiom (6). A property similar to
Lemma 9.3.10 holds for �−1

ai
too.

9.3. COMPUTATIONAL BEHAVIOUR 123

Theorem 9.3.11. Let M = 〈W, R, V〉 be a model, w ∈ W, and let JπK�ai ψ be an
ML(J K,♦−1)-formula with π = ϕ1?; a1; ϕ2?; . . . ; ϕn?, such that ai ∈ π. Then

M, w |= JπK�ai ψ iffM, w |= δ ∧ δ′

where
δ =

∧
k∈{1,...,n−1 | ak=ai} ¬delπ

k → �akJπKψ

δ′ =
∧

k∈{1,...,n−1 | ak=ai}(delπ
k → �ak (delπ

k+1 ∨ JπKψ)).

Proof. Let us suppose that M, w |= JπK�ai ψ. Then, by definition of |=, we have
that for all v ∈ W such that (w, v) ∈ (RJπK)ai , MJπK, v |= ψ. We will check the two
conjuncts δ and δ′ separately (for the other direction of the iff, we can assume the two
conjuncts together and use the same steps):
1. Suppose M, w |= ∧

k∈{1,...,n−1 | ak=ai} ¬delπ
k . By definition of |=, we have M, w 6|=∨

k∈{1,...,n−1 | ak=ai} delπ
k . It means that there is no P∈PMπ satisfying Lemma 9.3.6,

such that w ∈ P, hence no deletions have been done traversing w. Then for all
v ∈ W, (w, v) ∈ Rai iff (w, v) ∈ (RJπK)ai . Because we have for all v ∈ W such that
(w, v) ∈ (RJπK)ai ,MJπK, v |= ψ, then for all v ∈W such that (w, v) ∈ Rai ,MJπK, v |= ψ.
Therefore, we have for all v ∈ W such that (w, v) ∈ Rai , M, v |= JπKψ, then (by |=)
M, w |= �aiJπKψ.
2. Suppose now for some arbitrary k,M, w |= delπ

k , where k ∈ {1, . . . , n− 1 | ak = ai}.
By Lemma 9.3.6 it means that there is a path traversing w that has been deleted.
We also know MJπK, w |= �ak ψ by assumption and k = i, then for all v ∈ W such
that (w, v) ∈ (RJπK)ak , MJπK, v |= ψ. Then, for all u ∈ W such that (w, u) ∈ Rak ,
either MJπK, u |= ψ or u ∈ P, with P ∈ PMπ , and u is at position k + 1 (because
w is at position k = i), i.e., M, u |= delπ

k+1 (by Lemma 9.3.6). Therefore, M, w |=
�ak (delπ

k+1 ∨ JπKψ).

The next theorem establishes that we can reduceML(J K,♦−1)-formulas according
to axioms of Definition 9.3.7, obtaining an equivalentML(♦−1)-formula.

Theorem 9.3.12. Let M = 〈W, R, V〉 a model, w ∈ W and ϕ a ML(J K,♦−1)-formula.
Then

M, w |= ϕ iffM, w |= Tr(ϕ).

Proof. The proof is a direct corollary of Lemmas 9.3.8 to 9.3.10, Theorem 9.3.11, and
the similar properties for �−1

ai
.

We have proved that the reduction axioms from Definition 9.3.7 preserve equiva-
lence of formulas. It means that we can transformML(J K) formulas intoML(♦−1)-
formulas. Then, next Theorem follows:

Theorem 9.3.13. The satisfiability problem forML(J K) is decidable.

Summing up, in this chapter we discussed a relation-changing modal language
which embeds a restricted version of AML. This language includes an operator
to delete edges (J K) and an operator to replicate models (cp). The main difference
between J K and sabotage operators we investigated previously in this thesis, is
that deletions done by J K depend of a parameter π (called path expression) which
characterizes the edges to be removed. Path expressions can describe the label of

124 CHAPTER 9. applying relation-changing to del

the edges, properties satisfied by states (only Boolean properties) and composition of
edges. Because we do not allow modal characterization of states, the embedding from
AML toML(cp, J K) only allows Boolean preconditions in action models.

We investigated some properties of the languageML(cp, J K). First, we showed
that we need the same conditions as for the ♦−1 operators to give an appropriate
notion of bisimulation for the new language. The reason is we need to differentiate
states according what paths traverse them, then we need to check conditions back
and forth. We prove Theorem 9.1.12, which says that bisimilar models (according
to the definition we just mentioned) satisfy the same ML(cp, J K)-formulas. We
also investigated the computational behaviour, by inspecting two fragments of the
language separately. First, we provided a PSpace algorithm which checks satisfiability
for formulas in the fragment ML(cp) (the language without J K), concluding that
the satisfiability problem for ML(cp) is PSpace-complete. Secondly, we defined
an equivalence preserving translation from the fragmentML(J K) toML(♦−1) via
reduction axioms, showing decidability of the satisfiability problem for ML(J K).
These reduction axioms possibly generate formulas of exponential size (in the size of
the original formula), then we were not able to provide an upper bound yet.

There are several open questions about the language we introduced in this chap-
ter. For instance, we obtained separate results for two fragments of the language
ML(cp, J K), but it would be interesting to know what is the computational behaviour
of the combined fragments. Given that we can embed a restricted version of AML
intoML(cp, J K), we can get next result:

Theorem 9.3.14. The satisfiability problem forML(cp, J K) is NExpTime-hard.

Proof. We embed a restricted version of AML intoML(cp, J K), and the satisfiability
problem of AML is NExpTime-hard [Aucher and Schwarzentruber, 2013]. This proof
includes the full language (allowing modal preconditions in action models), but the
encoding of the tiling problem only uses Boolean formulas in action preconditions.
Hence, the satisfiability problem ofML(cp, J K) is also NExpTime.

The previous theorem gives us a lower bound for the satisfiability problem of
ML(cp, J K). The upper bound of the problem is still open, even though we conjecture
it is decidable.

Another interesting direction of research would be to define concrete procedures to
check satisfiability (e.g., tableaux), and to investigate other reasoning tasks, such as the
model checking problem, formula complexity and program complexity. In addition,
we have not yet discussed the relationship betweenML(cp, J K) and other relation-
changing operators, such as those introduced in the first part of this thesis (sabotage,
swap and bridge) and others (arrow updates, graph modifiers, etc.). Finally, it would
be interesting to extend the definition of path expressions to allow nested deletions
and modal formulas, to embed the full AML language with modal preconditions.
We would like to explore the computational behaviour of this extended language in
the future.

Part IV

C O N C L U S I O N S

Un cronopio encuentra una flor solitaria en medio de los campos. Primero
la va a arrancar, pero piensa que es una crueldad inútil y se pone de rodillas a su lado y

juega alegremente con la flor a saber: le acaricia los pétalos, la sopla para que baile,
zumba como una abeja, huele su perfume, y finalmente se acuesta debajo de la flor

y se duerme envuelto en una gran paz. La flor piensa: ‘es como una flor’.

from “Historias de Cronopios y de Famas”, Julio Cortázar.

Now is when the end of the thesis starts and, in consequence, it is when new questions
arise. Time for finishing a thesis is limited, but the work we have done opens many
paths of research. It is time to make a balance of what we have learned so far, and
what it would be interesting to explore in the future.

We have introduced several modal languages to represent dynamic behaviour. We
focused on a particular kind of logics which let us change the accessibility relation.
We have applied some classical techniques from modal logics to prove these results,
such as spy point techniques or proofs based on bisimulation. We explored different
properties of these languages: expressive power, computational behaviour of reasoning
tasks, and the existence of algorithms to perform these reasoning tasks. We have
observed that the high expressive power we obtained by using dynamic operators
has a vast impact on the cost of reasoning about these languages. The connection we
established between the languages we introduced and other languages investigated in
other fields, such as epistemic, doxastic or deontic logics is important. It gives us a
clear direction to follow in the future.

We still have work to do, and we will discuss new lines of investigation. The
challenge is to exploit the experience we gained with this kind of languages in different
contexts. In Chapter 10 we will brush up what we have done and what we foresee for
the future.

10
Final Remarks

El porvenir es tan irrevocable como el rı́gido ayer.
No hay una cosa que no sea una letra silenciosa

de la eterna escritura indescifrable cuyo libro es el tiempo.
Quien se aleja de su casa ya ha vuelto.

Nuestra vida es la senda futura y recorrida.
Nada nos dice adiós. Nada nos deja. No te rindas.

La ergástula es oscura, la firme trama es de incesante hierro,
pero en algún recodo de tu encierro puede haber un descuido, una hendidura.

El camino es fatal como la flecha. Pero en las grietas está Dios, que acecha.

from “Para una versión del I King”, Jorge Luis Borges.

We started this thesis by discussing the criteria to be used when picking a logic
in a determined scenario. In Part i we pointed to one particular question: “Why do
we choose dynamic modal logics?”. Before going in this direction, we briefly discussed
why logic was born in philosophy, became well known in mathematics and now, is
extremely tied to computer science. In Chapter 1 we discussed several examples of
the use of logic to reason about computation, i.e., Computational Logic. One example
is the use of logic in complexity theory to give descriptive characterizations of the
complexity classes (e.g., NTime, NP, PSpace, ExpTime, etc.). Another example is logic
applied in databases theory. Several logical languages can be seen as Database Query
Languages, such as SQL (Structured Query Language) or QBE (Query by Example),
which are based on first-order logic. Also, we mentioned that logic can be used to
reason about program behaviour in type theory, and to reason about knowledge
and belief in epistemic logics. Finally, we discussed applications of logic in software
verification, perhaps the most common use of logic in computer science. As we
can see, depending of the problem we need to solve, we can pick the logic that is
better suited for that. This is the reason why we talk about logics (plural) instead of
logic. We introduced first-order logic just to emphasize why other logics can be more
appropriate than first-order for our purposes. If we define our own languages we are
able to adapt them to our needs. For instance, we can restrict ourselves to fragments
with the desired properties.

In Chapter 2, we started to discuss the main problem we attacked in this thesis:
representing dynamic behaviour. This is the chapter which motivated our work, by
introducing several languages that capture dynamic behaviour. These languages
are ancestors of the operators that we introduced in Part ii. We discussed various
approaches and we motivated why we are particularly interested in this kind of
operators. We noticed that even though dynamic operators have been investigated
already in the past, in this thesis we would focus on the behaviour of those which
modify the accessibility relation, from an abstract point of view. Our main purpose is

129

130 CHAPTER 10. final remarks

to analyze the behaviour of certain kind of modifications, and the advantages and
disadvantages of the use of these languages.

10.1 W H AT H AV E W E D O N E ?

Part ii is dedicated to analyzing relation-changing modal logics from an abstract
point of view. We investigated different logical aspects of these languages, mostly
from a computational perspective. We chose a set of primitives as representatives
of the family of all possible relation-changing operators and we studied in detail
each of them separately. We also studied the relationships among them. The main
contributions of our work have been, on the one hand, particular results for the six
logics we introduced and, on the other hand, general results that can be applied to a
bigger family of logics. We learned much about the behaviour of these six relation-
changing modal logics, and we can use this experience to establish more general
results.

In Chapter 3 we introduced the formal syntax and semantics of six relation-
changing modal logics: sabotage, swap and bridge, each of them in a local and
global version. Each language is a syntactic extension of the basic modal logicML
with a dynamic operator. Semantics is based on Kripke models and model variants,
which are operations which modify the model capturing the behaviour of the new
syntactic operators. We introduced “ad hoc” model variants for each operator, but
clearly it would be easy to define modal variants based on generic update functions.
We observe that, even though the semantics conditions look innocent, the operators
capture complex behaviour resulting in a high increase in expressive power. Indeed,
we showed that two classical model theoretical properties for modal logics are lost:
the tree and the finite model property. For the tree model properties, in most
cases we defined formulas that enforce loops, and for bridge operators we enforced
unconnected components. Formulas to force infinite models are more complex. In
order to achieve that, we use a classical tool to prove expressiveness results in logic:
the spy point technique. The idea is to characterize a state which has a global view of
the rest of the model (the “spy point”), and use it to describe the properties we want
to impose in the model.

We showed that the relation-changing modal logics we introduced are more
expressive thatML by proving they lack the tree and the finite model property. In
Chapter 4 we obtained more expressivity results. The main tool used in modal logic
to investigate expressive power is bisimulation. Bisimulations are relations that link
states of models according to their behaviour. If two states in two models are linked
by a bisimulation, then they must satisfy the same formulas. This is called invariance
under bisimulation. In [Areces et al., 2012; Areces et al., 2013b] we introduced an
appropriate definition of bisimulation for each operator, capturing their meaning. We
proved in [Areces et al., 2013b] thatML(〈sw〉) is a proper fragment of FOL and we
conjecture that the same arguments can be applied for the other five logics. However,
they all capture different fragments: they are all incomparable in expressive power
except the case for the two swap operators. We know thatML(〈gsw〉) 6≤ ML(〈sw〉),
but the other direction is still open. Nevertheless, we conjecture that they are also
incomparable.

10.1. WHAT HAVE WE DONE? 131

Another challenge has been to establish computational bounds. We explore in
Chapter 5 the satisfiability problem of these logics. We attacked the problem in two
different ways: by encoding the undecidable N×N tiling problem, and by encoding
the undecidable satisfiability problem for the memory logicML(r©, k©). The second
approach gave better results, and we applied it to the local version of the logics. In
order to encodeML(r©, k©), we use once more a spy point technique to simulate the
capability to memorize elements without a memory. This is one of the hardest results
in this thesis: it required to enforce some constraints in the shape of the models, and a
different machinery to simulate memory operators with each of the relation-changing
operators. We conjecture that similar proofs can be carried out for the global versions
of the relation-changing operators.

The satisfiability problem is not the only reasoning task we have investigated.
In Chapter 6 we proved complexity results for the model checking problem. We
reduced the PSpace-complete satisfiability problem for Quantified Boolean Formulas
(QBF) to the model checking problem of relation-changing modal logics. This proves
PSpace-hardness for the six model checking problems. The encoding is in general,
fairly uniform, requiring minor modifications to adapt it to each different operator.
We simulate truth assignments to QBF variables with the position of the edges in
a Kripke model, and changes in their truth values are simulated by changes in the
accessibility relation. We also considered the task of model checking against a fixed
model, measuring its complexity as a function of the size of an input formula (formula
complexity), and fixing a formula and measuring the complexity of model checking as
a function of the length of an input model (program or data complexity). We proved
that formula complexity for the six logics is linear with respect to the size of the
formula, and program complexity is polynomial with respect to the size of the finite
model. Interestingly, we were able to prove these results for a large family of relation-
changing logics. We defined relation-changing operators in terms of update functions
(i.e., functions that transform the accessibility relation). For any logic, if we have that
the update functions associated with its operators result in only polynomially many
possible models in each step, our formula and program complexity results apply.

Clearly, including relation-changing operators (at least the six we investigated in
this thesis) results in some reasoning tasks turning intractable. However, it is possible
to define concrete procedures whose termination is not guaranteed. In Chapter 7

we defined tableau methods to check satisfiability of relation-changing modal logics.
This work was first published in [Areces et al., 2013c]. These methods are complete
and sound, but they may not terminate. Tableaux formulas in the calculi we defined,
contain prefixes, which are quite different to prefixes in other tableau methods (e.g.,
forML, HL(@, ↓), etc.). In our tableaux, prefixes provide the information about the
evaluation point and also the model variant where the formula is been executed. For
this reason, we had to defined different rules for each logic (except for the local an
global version of the same modifier). For instance, sabotage prefixes keep a record
of the deleted edges. As it has been the case in several results, swap operators have
been the hardest to be investigated. We have to consider some special cases such as
when the swapped edge is a loop (do not provoke change at all) or when the swapped
edge has been swapped before. The rules for each logic are very different, and it
seems hard to find an uniform framework that would allow combination to define

132 CHAPTER 10. final remarks

a tableau calculi for a logic with more than one relation-changing operator (we can
only combine the local and the global version of the same operator).

Our results gave us experience investigating operators which can modify the
accessibility relation of a model. Other operators which fall in this class but which have
been designed for a determined purpose have been investigated in previous works.
One example are the operators of information change in Dynamic Epistemic Logics
(DEL). It resulted natural to investigate connections between these operators and
the operators we defined. The first question which arose was: “Is it possible to encode
dynamic epistemic logics with some variant of the six logics we introduced?”. Chapter 8

is devoted to introduce DEL and to discuss why relation-changing is important in
this field. In DEL, models represent information and knowledge of agents, and
dynamic operators are used to model communication, i.e., the way in which agents’
knowledge is modified. We define a new relation-changing language to work in this
field. The language we defined in Chapter 9 is more expressive than ML, but its
computational behaviour is better than the one for the six relation-changing modal
logics we investigated before.

10.2 L O O K I N G T O T H E F U T U R E

As we already pointed out in the different chapters, several questions are still open.
This thesis addressed many questions about relation-changing modal logics. But of
course time is limited and there are some interesting directions to follow in the future.

We conjecture, for example, thatML(〈sw〉) andML(〈gsw〉) are incomparable in
expressive power, and that the logicML(cp, J K) is decidable. Also, we mentioned
that the proof of undecidability of the satisfiability problem for the local operators
can be adapted for the global. It would be interesting to finish these results to have a
complete picture of the results introduced in this thesis.

Concerning expressive power, we would like to define a more general notion
of bisimulation which instead of considering particular cases of updates (deleting,
swapping or adding edges) might consider update functions in general (similar
to the ones we used for our model checking results). The same ideas can also
be applied, for instance, to Dynamic Epistemic Logics. For PAL and AML, it
suffices with the notion of bisimulation of the basic modal logicML. If we extend
the language with more expressive operators, it would be possible to introduce
update conditions in the same way we did for relation-changing modal logics. We
also mentioned in Chapter 4 that it would be interesting to investigate van Benthem
Characterization for relation-changing modal logics. We can start by checking if
results introduced in [Areces et al., 2013a] can be used for relation-changing modal
logics. Another interesting property we started to investigate is Craig’s Interpolation
Lemma. We studied the constructive method provided in [Fitting, 1996; Fitting, 2002;
Blackburn and Marx, 2003] to follow the same ideas in relation-changing modal logics,
but this is left as future work.

Bibliography

[Alur and Henzinger, 1994] R. Alur and T. Henzinger. A really temporal logic. Journal
of ACM, 41(1):181–204, 1994. Cited on page 20.

[Areces and Gorı́n, 2010] C. Areces and D. Gorı́n. Coinductive models and normal
forms for modal logics (or how we learned to stop worrying and love coinduction).
Journal of Applied Logic, 8(4):305–318, 2010. Cited on page 70.

[Areces and ten Cate, 2006] C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn,
F. Wolter, and J. van Benthem, editors, Handbook of Modal Logics, pages 821–868.
Elsevier, 2006. Cited on page 15.

[Areces et al., 1999] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity
for hybrid logics. In J. Flum and M. Rodrı́guez-Artalejo, editors, Computer Science
Logic, number 1683 in Lecture Notes in Computer Science, pages 307–321, Madrid,
Spain, 1999. Springer. Proceedings of the 8th Annual Conference of the EACSL,
Madrid, September 1999. Cited on page 15.

[Areces et al., 2001] C. Areces, P. Blackburn, and M. Marx. Hybrid logics: characteri-
zation, interpolation and complexity. The Journal of Symbolic Logic, 66(3):977–1010,
2001. Cited on page 15.

[Areces et al., 2008] C. Areces, D. Figueira, S. Figueira, and S. Mera. Expressive power
and decidability for memory logics. In Logic, Language, Information and Computation,
volume 5110 of Lecture Notes in Computer Science, pages 56–68. Springer Berlin /
Heidelberg, 2008. Proceedings of WoLLIC 2008. Cited on page 17.

[Areces et al., 2009] C. Areces, D. Figueira, D. Gorı́n, and S. Mera. Tableaux and model
checking for memory logics. In Automated Reasoning with Analytic Tableaux and
Related Methods, volume 5607 of LNAI, pages 47–61, Oslo, Norway, 2009. Springer
Berling / Heidelberg. Proceedings of Tableaux09. Cited on pages 17 and 88.

[Areces et al., 2011] C. Areces, D. Figueira, S. Figueira, and S. Mera. The expressive
power of memory logics. The Review of Symbolic Logic, 4(2):290–318, 2011. Cited on
page 16.

[Areces et al., 2012] C. Areces, R. Fervari, and G. Hoffmann. Moving arrows and
four model checking results. In L. Ong and R. Queiroz, editors, Logic, Language,
Information and Computation, volume 7456 of Lecture Notes in Computer Science, pages
142–153. Springer Berlin Heidelberg, 2012. Cited on pages 21, 33, 43, 48, 65, 71,
and 130.

[Areces et al., 2013a] C. Areces, F. Carreiro, and S. Figueira. Characterization, de-
finability and separation via saturated models. Theoretical Computer Science, 2013.
Cited on pages 51 and 132.

133

134 BIBLIOGRAPHY

[Areces et al., 2013b] C. Areces, R. Fervari, and G. Hoffmann. Swap logic. Logic
Journal of IGPL, 2013. Cited on pages 21, 33, 43, 53, 65, 71, and 130.

[Areces et al., 2013c] C. Areces, R. Fervari, and G. Hoffmann. Tableaux for relation-
changing modal logics. In P. Fontaine, C. Ringeissen, and R. Schmidt, editors,
Frontiers of Combining Systems, volume 8152 of Lecture Notes in Computer Science,
pages 263–278. Springer, 2013. Cited on pages 21, 71, 75, and 131.

[Aucher and Schwarzentruber, 2013] G. Aucher and F. Schwarzentruber. On the com-
plexity of dynamic epistemic logic. In Proceedings of TARK 2013, Chennai, India,
January 2013. Cited on pages 106 and 124.

[Aucher et al., 2009] G. Aucher, P. Balbiani, L. Fariñas Del Cerro, and A. Herzig.
Global and local graph modifiers. Electronic Notes in Theoretical Computer Sci-
ence (ENTCS), Special issue Proceedings of the 5th Workshop on Methods for Modalities
(M4M5 2007), 231:293–307, 2009. Cited on pages 19, 25, 29, and 95.

[Baltag et al., 1998] A. Baltag, L. Moss, and S. Solecki. The logic of public announce-
ments, common knowledge and private suspicions. In I. Gilboa, editor, TARK 1998,
pages 43–56, Evanstin, IL, USA, July 1998. Morgan Kaufmann. Cited on page 102.

[Berger, 1966] R. Berger. The undecidability of the domino problem. Memoirs of the
American Mathematical Society, 66:72, 1966. Cited on page 8.

[Beth, 1955] E. W. Beth. Semantic entailment and formal derivability. Mededellingen
van de Koninklijke Nederlandse Akademie van Wetenschappen Afdeling Letterkunde N.
R., 18(13):309–342, 1955. Cited on page 75.

[Blackburn and Marx, 2003] P. Blackburn and M. Marx. Constructive interpolation
in hybrid logic. Journal of Symbolic Logic, 68(2):463–480, 2003. Cited on pages 89

and 132.

[Blackburn and Seligman, 1995] P. Blackburn and J. Seligman. Hybrid languages.
Journal of Logic, Language and Information, 4:251–272, 1995. Cited on page 15.

[Blackburn and van Benthem, 2006] P. Blackburn and J. van Benthem. Modal logic:
A semantic perspective. In Handbook of Modal Logic. Elsevier North-Holland, 2006.
Cited on pages 9, 11, 32, and 114.

[Blackburn et al., 2001] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, vol-
ume 53 of Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, Cambridge, 2001. Cited on pages 9, 35, 112, and 114.

[Chandra and Merlin, 1977] A. Chandra and P. Merlin. Optimal implementation of
conjunctive queries in relational databases. In Proceedings of 9th ACM Symposium
on Theory of Computing, pages 77–90, 1977. Cited on page 9.

[Church, 1936] A. Church. A note on the Entscheidungsproblem. Journal of Symbolic
Logic, 1:40–41, 1936. Cited on page 8.

[Clarke, 2008] E. M. Clarke. The birth of model checking. In O. Grumberg and
H. Veith, editors, 25 Years of Model Checking, volume 5000 of Lecture Notes in Com-
puter Science, pages 1–26. Springer, 2008. Cited on page 6.

BIBLIOGRAPHY 135

[Craig, 1957] W. Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. Journal of Symbolic Logic, 22:269–285, 1957. Cited
on page 89.

[D’Agostino et al., 1999] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga. Hand-
book of tableau methods. Kluwer Academic Publishers, 1999. Cited on page 75.

[Demri et al., 2007] S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in
constraint LTL: Decidability and complexity. Information and Computation, 205(1):2–
24, January 2007. Cited on page 20.

[Dummet and Lemmon, 1959] M. Dummet and E. Lemmon. Modal logics between
s4 and s5. Zeitschrift für mathemathische Logik und Grundla-gen der Mathematik, 5:250–
264, 1959. Cited on page 32.

[Ebbinghaus et al., 1984] H. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer-Verlag, 1984. Cited on page 42.

[Enderton, 1972] H. Enderton. A mathematical introduction to logic. Academic Press,
1972. Cited on page 7.

[Fagin, 1974] R. Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In R. M. Karp, editor, SIAM-AMS Proceedings, volume 7, pages 43–73,
1974. Cited on page 6.

[Fervari, 2012] R. Fervari. The expressive power of swap logic. In Proceedings of
ESSLLI Student Session, Opole, Poland, 2012. Cited on page 21.

[Fischer and Ladner, 1979] M. Fischer and R. Ladner. Propositional dynamic logic of
regular programs. J. Comput. Syst. Sci., 18(2):194–211, 1979. Cited on page 12.

[Fitting, 1972] M. Fitting. Tableau methods of proof for modal logics. Notre Dame
Journal of Formal Logic, 13(2):237–247, 1972. Cited on page 75.

[Fitting, 1996] M. Fitting. First-order logic and automated reasoning (2. ed.). Graduate
texts in computer science. Springer, 1996. Cited on pages 89 and 132.

[Fitting, 2002] M. Fitting. Interpolation for first order s5. Journal of Symbolic Logic,
67(2):621–634, 2002. Cited on pages 89 and 132.

[Franceschet and de Rijke, 2003] M. Franceschet and M. de Rijke. Model checking
for hybrid logics. In Proceedings of the 3rd International Workshop on Methods for
Modalities (M4M, pages 109–123, 2003. Cited on page 15.

[French et al., 2013] T. French, W. van der Hoek, P. Iliev, and B. Kooi. On the succinct-
ness of some modal logics. Artificial Intelligence, 197:56–85, 2013. Cited on page
106.

[Goranko and Otto, 2005] V. Goranko and M. Otto. Model theory of modal logic. In
P. Blackburn, F. Wolter, and J. van Benthem, editors, Handbook of modal logic, pages
249–329. Elsevier, 2005. Cited on page 43.

136 BIBLIOGRAPHY

[Goré, 1999] R. Goré. Tableau methods for modal and temporal logics. Handbook of
tableau methods, pages 297–396, 1999. Cited on page 118.

[Grädel et al., 1997] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for
two-variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. Cited
on page 10.

[Groenendijk and Stokhof, 1991] J. Groenendijk and M. Stokhof. Dynamic predicate
logic. Linguistics and Philosophy, 14(1):39–100, 1991. Cited on page 19.

[Halpern et al., 2001] J. Y. Halpern, R. Harper, N. Immerman, P. G. Kolaitis, M. Y.
Vardi, and V. Vianu. On the unusual effectiveness of logic in computer science.
Bulletin of Symbolic Logic, 7(2):213–236, 2001. Cited on page 5.

[Harel, 1984] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic. Vol. II, volume 165 of Synthese Library, pages 497–
604. D. Reidel Publishing Co., Dordrecht, 1984. Extensions of classical logic. Cited
on page 12.

[Hemaspaandra, 1996] E. Hemaspaandra. The price of universality. Notre Dame
Journal of Formal Logic, 37(2):174–203, 1996. Cited on page 12.

[Hintikka, 1962] J. Hintikka. Knowledge and Belief. An Introduction to the Logic of the
Two Notions. Cornell University Press, Ithaca, NY, 1962. Cited on pages 6 and 96.

[Immerman, 1995] N. Immerman. Descriptive complexity: A logician’s approach to
computation. Notices of the American Mathematical Society, 42, 1995. Cited on page
6.

[Kooi and Renne, 2011a] B. Kooi and B. Renne. Arrow update logic. Review of Sym-
bolic Logic, 4(4):536–559, 2011. Cited on pages 17, 18, 25, 29, and 95.

[Kooi and Renne, 2011b] B. Kooi and Bryan Renne. Generalized arrow update logic.
In K. Apt, editor, TARK, pages 205–211. ACM, 2011. Cited on page 25.

[Kripke, 1963] S. Kripke. Semantical analysis of modal logic I. Normal propositional
calculi. Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, 9:67–96,
1963. Cited on page 96.

[Kupferman et al., 2000] O. Kupferman, M. Vardi, and P. Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the ACM, 47(2):312–
360, 2000. Cited on page 70.

[Ladner, 1977] R. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM J. Comput., 6(3):467–480, 1977. Cited on page 12.

[Lewis, 1918] C. Lewis. A Survey of Symbolic Logic. University of California Press,
1918. Republished by Dover, 1960. Cited on page 13.

[Löding and Rohde, 2003a] C. Löding and P. Rohde. Model checking and satisfiability
for sabotage modal logic. In P. Pandya and J. Radhakrishnan, editors, Proceedings of
Foundations of Software Technology and Theoretical Computer Science, 23rd Conference,
volume 2914 of Lecture Notes in Computer Science, pages 302–313. Springer, 2003.
Cited on pages 19, 33, 65, and 70.

BIBLIOGRAPHY 137

[Löding and Rohde, 2003b] C. Löding and P. Rohde. Solving the sabotage game is
PSPACE-hard. In Mathematical Foundations of Computer Science 2003, volume 2747

of Lecture Notes in Computer Science, pages 531–540. Springer, Berlin, 2003. Cited
on pages 19, 25, and 65.

[Lutz, 2006] C. Lutz. Complexity and succinctness of public announcement logic. In
Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, editors,
AAMAS, pages 137–143, Hakodate, Japan, 2006. ACM. Cited on page 106.

[Maier, 1983] D. Maier. The theory of relational databases. Number v. 1 in Computer
software engineering series. Computer Science Press, 1983. Cited on page 6.

[Mera, 2009] S. Mera. Modal Memory Logics. PhD thesis, Universidad de Buenos Aires
Facultad de Ciencias Exactas y Naturales Departamento de Computación, and UFR
STMIA - Ecole Doctorale IAEM Lorraine Département de Formation Doctorale en
Informatique, 2009. Cited on pages 16 and 17.

[Papadimitriou, 1994] C. Papadimitriou. Computational Complexity. Addison-Wesley,
1994. Cited on pages 65 and 66.

[Plaza, 2007] J. Plaza. Logics of public communications. Synthese, 158(2):165–179,
2007. Cited on pages 12, 18, and 101.

[Prior, 1957] A. Prior. Time and Modality. Oxford University Press, 1957. Cited on
page 13.

[Pucella and Weissman, 2004] R. Pucella and V. Weissman. Reasoning about dynamic
policies. In I. Walukiewicz, editor, FoSSaCS, volume 2987 of Lecture Notes in Com-
puter Science, pages 453–467. Springer, 2004. Cited on pages 19 and 93.

[Reynolds, 1985] J. C. Reynolds. Three approaches to type structure. In H. Ehrig,
C. Floyd, M. Nivat, and J. W. Thatcher, editors, TAPSOFT, Vol.1, volume 185 of
Lecture Notes in Computer Science, pages 97–138. Springer, 1985. Cited on page 6.

[Reynolds, 1998] J. C. Reynolds. Theories of programming languages. Cambridge Uni-
versity Press, 1998. Cited on page 6.

[Rohde, 2006] P. Rohde. On games and logics over dynamically changing structures. PhD
thesis, RWTH Aachen, 2006. Cited on pages 19, 25, 30, 70, and 71.

[Sahlqvist, 1973] H. Sahlqvist. Completeness and correspondence in the first and sec-
ond order semantics for modal logic. In S. Kanger, editor, Third Scandinavian Logic
Symposium, pages 110–143, Uppsala, 1973. North-Holland Publishing Company
1975. Cited on page 32.

[Sangiorgi, 2009] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM
Transactions on Programming Languages and Systems (TOPLAS), 31(4), 2009. Cited
on page 42.

[Schmidt and Tishkovsky, 2007] R. A. Schmidt and D. Tishkovsky. Using tableau to
decide expressive description logics with role negation. In ISWC/ASWC, volume
4825 of Lecture Notes in Computer Science, pages 438–451. Springer, 2007. Cited on
page 77.

138 BIBLIOGRAPHY

[Schnoebelen, 2002] P. Schnoebelen. The complexity of temporal logic model checking.
In P. Balbiani, N. Suzuki, F. Wolter, and M. Zakharyaschev, editors, Advances in
Modal Logic 4, pages 393–436. King’s College Publications, 2002. Cited on page 70.

[Scott, 1962] D. Scott. A decision method for validity of sentences in two variables.
Journal of Symbolic Logic, 27:377, 1962. Cited on page 10.

[Smullyan, 1968] R. Smullyan. First-Order Logic. Springer-Verlag, 1968. Cited on
page 75.

[Spaan, 1993] E. Spaan. Complexity of Modal Logics. PhD thesis, ILLC, University of
Amsterdam, 1993. Cited on page 12.

[Stockmeyer, 1974] L. Stockmeyer. The complexity of decision problems in automata theory
and logic. PhD thesis, MIT, Cambridge, Mass., 1974. Cited on page 9.

[ten Cate, 2005] B. ten Cate. Model theory for extended modal languages. PhD thesis,
ILLC, University of Amsterdam, 2005. ILLC Dissertation Series DS-2005-01. Cited
on page 15.

[Turing, 1937] A. Turing. On computable numbers, with an application to the
‘Entscheidungsproblem’. Proceedings of the London Mathematical Society 2nd. series,
42:230–265, 1937. Cited on page 8.

[van Benthem and Liu, 2007] J. van Benthem and F. Liu. Dynamic logic of preference
upgrade. Journal of Applied Non-Classical Logics, 17(2):157–182, 2007. Cited on page
102.

[van Benthem, 1977] J. van Benthem. Modal Correspondence Theory. PhD thesis, Uni-
versity of Amsterdam, Amsterdam, The Netherlands, 1977. Cited on page 51.

[van Benthem, 1984] J. van Benthem. Modal correspondence theory. Handbook of
Philosophical Logic, 2:167–247, 1984. Cited on page 41.

[van Benthem, 1985] J. van Benthem. Modal logic and classical logic. Bibliopolis, 1985.
Cited on page 41.

[van Benthem, 2001] J. van Benthem. Games in dynamic-epistemic logic. Bulletin of
Economic Research, 53(4):219–48, 2001. Cited on page 104.

[van Benthem, 2005] J. van Benthem. An essay on sabotage and obstruction. In
D. Hutter and W. Stephan, editors, Mechanizing Mathematical Reasoning, volume
2605 of Lecture Notes in Computer Science, pages 268–276. Springer, 2005. Cited on
pages 18, 25, and 27.

[van Ditmarsch et al., 2007] H. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic
Epistemic Logic. Kluwer, 2007. Cited on pages 12, 18, 29, 70, 93, 95, and 96.

[Vardi and Wolper, 1986] M. Vardi and P. Wolper. An automata-theoretic approach to
automatic program verification (preliminary report). In LICS, pages 332–344. IEEE
Computer Society, 1986. Cited on page 70.

BIBLIOGRAPHY 139

[Vardi, 1982] M. Vardi. The complexity of relational query languages. In H. Lewis,
B. Simons, W. Burkhard, and L. Landweber, editors, Symposium on Theory of Com-
puting, pages 137–146. ACM, 1982. Cited on pages 9 and 70.

[von Wright, 1951] G. H. von Wright. An Essay in Modal Logic. Amsterdam, North-
Holland Pub. Co., 1951. Cited on pages 6, 13, and 96.

140 BIBLIOGRAPHY

Index

M |= ϕ, 8

DEL, 99

assignments
x-variant, 8

first-order, 8

bisimulations
-ML, 41

-ML(�), 44

-ML(cp,J K), 112

-ML(♦−1), 112

bounded finite model property, 34

dynamic depth, 72

EF game
EF(M,M′, w, w′), 42

EF�(M,M′, w, w′), 45

Duplicator, 42, 45

Spoiler, 42, 45

embedding, 114

expressivity
<, 46

≤, 46

6=, 46

�, 46

finite model property, 34, 35

formula complexity, 70, 73

interpretation
first-order, 8

language
SML, 18

AML, 103

AUL, 17

ML, 9

EL, 97

HL(@, ↓), 15

ML(cp, J K), 107

ML(cp), 117

ML(J K), 120

PAL, 101

PDL, 14

memory logics
ML(r©, k©), 16

ML(〈〈r〉〉, k©), 16

QBF, 65

relation-changing modal logics
ML(〈br〉), 29

ML(〈gbr〉), 29

ML(〈gsb〉), 29

ML(〈gsw〉), 29

ML(〈sb〉), 29

ML(〈sw〉), 29

model checking
basic modal logic, 10

relation-changing modal logics, 66,
69

models
S5, 98

action, 103

first-order, 8

induced, 78

Kripke model, 9

memory, 16

model update functions, 71

model variant, 29, 108

multiagent, 17, 108

paths, 108

program complexity, 70, 73

reduction axioms, 122

satisfiability
|=qbf, 65

action models, 104

arrow update, 18

basic modal logic, 10

delete and copy, 109

first order, 8

hybrid logics, 15

141

142 INDEX

memory logics, 16

past operator, 11

public announcement, 101

sabotage game, 18

sabotage, swap, bridge, 30

universal modality, 12

signature
first-order, 7

relational, 7

spy point, 39

standard translation ST, 10, 12

tableaux
bridge, 81

sabotage, 78

swap, 84

tree model property, 31, 32, 114

tree unraveling, 32

validity
first order, 8

	Acknowledgments
	Abstract
	Resumen
	Why Dynamic Modal Logics?
	The Role of Logic in Computer Science
	Computation and Logic
	Which Logic?

	Introducing Dynamic Logics (by Example)
	From Basic Modal Logic to the Dynamic Approach
	(Really) Dynamic Modal Logics
	Hybrid Logics
	Memory Logics
	Arrow Updates
	Sabotage Logic
	And More...

	This Thesis

	Abstract Relation-Changing Modal Logics
	Relation-Changing Modal Logics
	Changing the Access
	Introducing the Primitives
	Some Model Properties

	Expressive Power
	Modal Distinctions
	The Right Way to Describe Things
	Comparing Languages
	A More General Perspective

	The Satisfiability Problem
	Sabotage Logic
	Bridge Logic
	Swap Logic

	Model Checking
	The Model Checking Problem
	Formula Complexity and Program Complexity

	Tableaux
	Tableau Calculus
	Sabotage
	Bridge
	Swap

	Combining Procedures
	How to use Tableaux to Compute Interpolants?

	Information and Knowledge
	Dynamic Epistemic Logics
	Going in a New Direction
	Reasoning about Knowledge
	Information Change
	A Card Game Scenario
	Transforming Models

	Applying Relation-Changing to DEL
	A Logic with Delete and Copy
	Embedding Action Models in Relation-Changing
	Computational Behaviour
	Complexity of the Fragment ML (cp)
	Complexity of the Fragment ML ("474A771 "574B779)

	Conclusions
	Final Remarks
	What Have We Done?
	Looking to the Future

	Bibliography
	Index

