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Photovoltaic evaporative chimney as a new alternative to enhance solar cooling
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Abstract

Cooling sector plays a crucial role in the World’s transition towards an efficient and decarbonised energy system. Solar
cooling is an attractive idea because of the chronological coincidence between available solar radiation and cooling needs.
This paper studies the possibility of increasing the efficiency of solar photovoltaic modules by evaporative cooling. This,
combined with the use of a water condensed chiller, will enable an efficient cooling system design as a whole. To achieve
this goal this paper experimentally evaluates the thermal and electrical performance of a Photovoltaic Evaporative
Chimney. A prototype with two photovoltaic modules was built; one of them is used as a reference and the other is
modified in its rear side including the evaporative solar chimney. The system is able to dissipate a thermal power of
about 1500 W with a thermal efficiency exceeding 30% in summer conditions. The module temperature differences reach
8 K, depending on the wind conditions and ambient air psychrometric properties. Regarding the electrical efficiency, the
results showed an average improvement of 4.9% to a maximum of 7.6% around midday in a typical summer day for a
Mediterranean climate.

Keywords: Solar cooling, Solar chimney, Evaporative cooling, PV/T, Cooling Tower, HVAC

1. Introduction

Heating and cooling constitute around half of the Euro-
pean Union’s final energy consumption and is the biggest
energy end-use sector, ahead of transport and electric-
ity. Around 85% of heating and cooling is produced from5

natural gas, coal, oil products and non-RES electricity.
Only 15% is generated from renewable energy, (European-
Commission, 2015). This shows that the heating and cool-
ing sector has a crucial role to play in the World’s transi-
tion towards an efficient and decarbonised energy system10

and in achieving long term energy security. The purpose is
to moderate the heating and cooling demand, to increase
energy efficiency in supply, to maximise the use of renew-
able energy and to reduce the cost of heating and cooling
to affordable levels.15

Although electrically driven chillers have reached a rel-
atively high standard concerning energy consumption, the
installed capacity of air conditioning systems has caused
an increase of the electricity peak demand in the sum-
mer period in many countries. Blackouts and brownouts20

in summer have frequently been attributed to the large
number of conventional cooling systems running on elec-
trical energy. An obvious possibility to counter this trend
is to use the same energy for cooling generation that con-
tributes to creating the cooling demand. Solar cooling is25

an attractive idea because of the chronological coincidence

∗Corresponding author. Tel.: +34966658887; fax: +34965222493
Email address: mlucas@umh.es (M. Lucas)

between available solar radiation and cooling needs. The
grand challenge is to design solar air conditioning systems
in a cost-efficient way. So far, different technical solutions
that combine solar energy and air conditioning have been30

studied.
Solar energy can be converted into cooling using two

main principles. Ghafoor and Munir (2015) presented an
overview of different available and actually installed so-
lar driven technologies used for cooling or air-conditioning35

purposes. In Solar Thermal driven Cooling (ST-C), heat
generated with solar thermal collectors can be converted
into cooling using thermally driven refrigeration or air-
conditioning technologies. Most of these systems use the
physical phenomena of sorption in either an open or closed40

thermodynamic cycle. There are several studies where
these technologies are exposed and they are developed
with flat plate solar collectors or solar vacuum tubes as
solar caption surface. Other technologies, such as steam
jet cycles or other cycles using a conversion of heat to45

mechanical energy and of mechanical energy to cooling
are less significant. Best and Rivera (2015) presented a
review of the performance and development of thermal-
powered cooling systems. In Photovoltaic driven Cooling
(PV-C), electricity generated with photovoltaic modules50

can be converted into cooling using well-known refriger-
ation technologies that are mainly based on vapor com-
pression cycles. In Aguilar et al. (2014) an experimental
study with PV-C is described. Also, in Ji et al. (2008) a
performance analysis of a PV heat pump is shown.55

It is difficult for solar thermal cooling to emerge as a
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Nomenclature

AV Surface area of the water droplets (m2/m3)
Cp Specific heat capacity (J/(kg K))
GT Irradiance (W/m2)
h Specific enthalpy of moist air (J/kga)
hD Mass transfer coefficient (kg/(s m2))
hf,w Specific enthalpy of saturated water liquid at Tw (J/kgw)
hs,w Specific enthalpy of saturated water vapor at Tw (J/kgw)
Impp Nominal current (A)
Isc Short circuit current (A)
k Ross coefficient (K m2/W)
ṁ Mass flow (kg/s)
N Number of cells
Pmpp Module maximum power (W)
Q̇ Cooling power (W)
T Temperature (◦C)
Voc Open circuit voltage (V)
VT Evaporative cooling volume (m3)
Greek symbols
α Temperature coefficient of Isc (%/◦C)
β Temperature coefficient of Voc (%/◦C)
βref Temperature coefficient of ηPV (1/◦C)
γ Temperature coefficient of Pmax (%/◦C)

ηPV Electrical efficiency
ηT Thermal efficiency
Subscripts
1 Water inlet
2 Water outlet
a Air
amb Ambient
cond Condenser
i Air inlet
int Air intermediate
out Air outlet
w Water
wb Wet bulb
Abbreviations
BIPV Building integrated photovoltaics
NTU Number of transfer units
PV-C Photovoltaic driven cooling
PV Photovoltaic cell
PV/T Photovoltaic thermal hybrid solar system
RES Renewable energy source
ST-C Solar thermal driven cooling

competitive solution due to technical and economic rea-
sons. Technical issues are related to the limitation of
the adaptability of the solar thermal cooling technology
to a large spectrum of applications due to the presence60

of important hydraulics (several loops), complexity of the
management between solar resource (cooling and heating
loads) and overheating risk management between summer
and winter seasons (thermal balance of the targeted build-
ing). Besides, sorption technology usually uses cooling65

towers consuming water, chemical treatments and facing
legionella development risks. Regarding to economic as-
pects, the investment cost for solar thermal cooling tech-
nology is still significantly high (3 to 5 times more than
an equivalent reversible heat pump), especially for small70

systems.
According to the International Energy Agency-New gen-

eration solar cooling & heating systems task 53, (Mug-
nier et al., 2015), PV driven compression chillers are the
most promising and close to market solar solutions today75

in the case of small to medium units (<50 kW cooling).
Until recently, it seemed that solar assisted cooling had
best chances for market deployment in cases such as large
buildings with central air conditioning systems, because of
the unique development of solar thermal cooling solutions.80

But, with the huge market increase of the cooling equip-
ment in small residential and small commercial sector, and
the tremendous decrease in the cost of PV modules, the
situation has changed. Recent studies show the great po-
tential of PV cooling, (Fong et al., 2010), but one is still85

far away from what is achievable.
One of the major problems which is currently limit-

ing the state-of-the-art solar cooling is related to the ef-
ficient conversion of solar energy to electricity. The ef-
ficiency of photovoltaic systems depends mainly on the90

cell temperature. The PV module heating reduces its ef-
ficiency dramatically, (Schwingshackl et al., 2013). The
open-circuit voltage decreases significantly with the in-
crease of PV module temperature (-0,45%/oC for crys-
talline silicon), while the short cell circuit current increases95

only between 0,04 and 0,09%/oC (for crystalline silicon).
So, these two effects together reduce the maximum avail-
able power (and consequently the electrical efficiency) be-
tween -0,3 and -0,5%/oC, (Mattei et al., 2006).

Different techniques for reducing PV modules temper-100

ature using cooling systems have been found in the lit-
erature. Some of them work by passing air or water on
the rear surface through channels or ducts, using natu-
ral convection or forced convection by a fan, (Teo et al.,
2012; Kaiser et al., 2014). The cell temperature of these105

PV modules is very much influenced by the capability of
ventilating this channel. In other studies the PV mod-
ule is cooled by spraying water on the top surface of the
module. This method was used and the results showed an
increase in output power in the range of 4 to 10%, (Odeh110

and Behnia, 2009). Part of this increase is due to refrac-
tion of the solar beam in the water layer and the increase
in incident radiation. The module temperature dropped
significantly to about 20% leading to an increase in the
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Figure 1: Evaporative PV Solar Chimney and Air conditioning system scheme proposed. Numerical values are included in the drawing for
reference only and to facilitate the reader’s understanding.

PV module efficiency by 9% with active water cooling, by115

incorporating a heat exchanger at the rear surface of the
module, (Bahaidarah et al., 2013). Sometimes, extracted
thermal energy can then be used for heating purposes such
as producing domestic hot water in photovoltaic–thermal
(PV/T) systems. Reddy et al. (2015) reviewed recent ad-120

vances in hybrid solar photovoltaic/thermal (PV/T) sys-
tems. However, no design has been found in the literature
that combines the cooling of the photovoltaic module with
condensation of an air conditioning system as the system
proposed in this paper.125

The second key component of a PV driven compression
chiller is the refrigeration equipment. Again, the operat-
ing temperature becomes the main variable in determining
the performance of the equipment. Commercially, mainly
air or water condensed chillers are used. Water-cooled130

systems use lower levels of temperature in the refriger-
ation system, so, while maintaining the other operating
conditions, energy consumption and cost equipment per-
formance is lower. The effect of decreasing the condensing
temperature on the power absorbed by the compressor can135

be from 1.8 to 4% per degree Celsius, (Yik et al., 2001),
depending on the cycle under consideration and the refrig-
erant used. The best energy efficiency of water-condensed
systems is associated with the decrease in CO2 emissions
to the atmosphere. Water-condensed cooling systems usu-140

ally work with cooling towers or evaporative condensers.
Evaporative cooling systems are based on the evaporation
of water inside a space, producing lower temperature and
higher humidity. The change from liquid to vapor requires

energy, which is extracted from the air by cooling it and145

increasing its humidity. This brings about a change from
sensitive heat (drop in temperature) to latent heat (in-
crease in water content in the mix of humid air).

This paper studies the possibility of increasing the effi-
ciency of solar photovoltaic modules by evaporative cool-150

ing. This, combined with the use of a water condensed
chiller will enable an efficient cooling system design as a
whole. To achieve this goal we propose to design a new
system that combines evaporative cooling with PV mod-
ules, called Photovoltaic Evaporative Chimney, as a new155

alternative to enhance solar cooling. A Solar Chimney is a
thermo-syphoning air channel in which the principal driv-
ing mechanism of air flow is through thermal buoyancy.
The solar energy causes a temperature rise as well as a
density drop in the air inside the solar chimney. The drop160

in air density causes air within the solar chimney to rise
and be expelled out of the top of the chimney, (Zhai et al.,
2011). Solar chimneys are applied in different fields such
as building ventilation, drying processes, or production of
electricity systems, (Zhou et al., 2010). There are some165

studies about the use of solar chimneys to cool PV mod-
ules by means of an airflow, in the same way described
above, but they do not include evaporative cooling as in
this paper, (Makki et al., 2015). Our group used a solar
chimney as a heat sink of a refrigeration cycle however we170

did not include the possibility of using photovoltaic mod-
ules to drive the cooling unit, (Lucas et al., 2006). The
main objective of this work is to experimentally evaluate
the thermal and electrical performance of a Photovoltaic

3
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Evaporative Chimney prototype for different values of the175

incident solar radiation and different ambient conditions
(ambient temperature and relative humidity).

2. System Description

Figure 2: Prototype of Photovoltaic Evaporative Chimney.

The objectives of the proposed Photovoltaic Evapora-
tive Chimney are two-fold, (see Fig. 1). On the one hand,180

the system seeks to cool the photovoltaic module and, on
the other, to dissipate heat from a refrigeration cycle. To
this end, the solar chimney is divided into two main parts.
Following the path of the airflow; the first section, called
the evaporative cooling zone, has a series of nozzles that185

spray water parallel to the downward airflow. In this sec-
tion the heat and mass transfer between water and air
occurs. As the water descends, a small part evaporates,
cooling the remaining water. This zone works as a small
scale cooling tower. The air that has been in contact with190

water and may have reduced its temperature (it will de-
pend on ambient conditions) then rises up due to buoyancy
force through the second part, called the convective zone.
Therefore, the second section is basically a solar chim-
ney. The photovoltaic module is cooled by the air stream195

flowing through the rear and, consequently, an improved
performance can be obtained. The working hypothesis for
this paper is based on improving the efficiency of photo-
voltaic modules using evaporative cooling. The water used
for cooling the modules will be available to be used for the200

condensation of a refrigeration cycle.

Magnitude Units Value

Maximum Power, Pmpp W 255
Tolerance Pmpp % 0/+3
Dimensions mm 1637 × 992 × 40

Number of cells, N 60
Cell Type 156 × 156 mm Poly-Crystalline Silicon

Module Efficiency % 15.7
Short Circuit Current, Isc A 9.11
Open Circuit Voltage, Voc V 37.49
Nominal Current Impp A 8.44
Nominal Voltage Vmpp V 30.24
Temp. Coeff. of Isc, α (%/◦C) 0.55
Temp. Coeff. of Voc, β (%/◦C) -0.33
Temp. Coeff. of Pmpp, γ (%/◦C) -0.44

Table 1: Specifications Sunrise module SR-P660255.

3. Method

3.1. Experimental setup
The Photovoltaic Evaporative Chimney prototype was

installed on a laboratory roof at the Universidad Miguel205

Hernández (38 ◦16’N), Spain. The basis of the solar instal-
lation consists of two photovoltaic modules Sunrise, SR-
P660255, see specifications on Table 1, arranged as shown
in Fig. 2. The module located on the right was used as ref-
erence (Module 1) and the module on the left was modified210

on the back sice including the evaporative solar chimney
(Module 2). The orientation for the PV modules is true
south (Azimuth angle 0 ◦) and although the experimental
installation is ready to work with 30 ◦, 45 ◦ and 60 ◦ tilt an-
gles, in the present work is fixed at 45 ◦. The study of the215

angle influence is left for a future work. In addition, the
laboratory building is a freestanding building, so the proto-
type will not be affected by shadows of other construction
elements or facilities except late in the afternoon.

Both PV modules were directly connected to a micro-220

inverter equipment to convert the direct current produced
by the PV modules (24 V) into alternate current (230
V). A grid-tied micro-inverter (APsystems YC500A) with
intelligent networking and monitoring systems to ensure
maximum efficiency, with a nominal power of 500 W, and225

independent electrical connection to the modules was used.
This equipment was selected because it had an indepen-
dent maximum power point control for each module, in
addition for being perfectly adjusted to the technical char-
acteristics of the PV facility. To dissipate the energy pro-230

duced by the PV modules, an electrical resistance of 750
W was installed. An electrical inhibitor was connected be-
tween the electrical production point and the consumption
point, to avoid injecting the electrical energy produced by
the PV modules into the grid. Thus, the whole energy235

produced was self-consumed by the facility. This inhibitor
consisted of an Arduino microcontroller capable of pro-
cessing the information from a clamp ammeter installed
on the main wire and adapting the energy consumption
by using the electrical resistance in order to avoid the en-240

ergy injection into the grid.
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Figure 3: Schematic diagram of the experimental prototype and measurement equipment.

The hydraulic circuit is composed of a network of PVC
pipes, see Fig. 3. A pump (ESPA Mod. Prisma 15 3M),
recirculates water from the tank to the nozzles arranged
linearly in the input section of the solar chimney. The flat245

spray nozzles (Spraying Systems Co. Mod. ProMax Clip-
Eyelet spray angle 110 ◦) atomize the water evenly. The
sprayed water mass flow rate can be changed manually by
means of a balancing valve (STAD DN15). An electrical
heater (1.5 kW) immersed in the tank is used to simulate250

the thermal load of the air conditioning machine. A water
float ball valve is used to automatically fill the tank and
also a filter is included to eliminate all kinds of things that
can be harmful entering the pump.

To experimentally analyze the thermal and electrical255

performance of the Photovoltaic Evaporative Chimney a
series of variables were monitored and recorded. The first
group of sensors are responsible for measuring environ-
mental conditions: ambient air temperature, air relative
humidity, wind speed and wind direction all of them are260

measured with a meteorological station placed on our lab-
oratory roof just beside the experimental facility. A first
class pyranometer installed in the same plane of the PV
modules is used to measure radiation. The variables re-
lated to the thermal performance of the system are: air265

temperature and relative humidity measured at the tran-
sition point between the evaporating section and the con-
vective section and at the output section, air velocity inside
the solar chimney, inlet and outlet water temperatures, wa-
ter mass flow and water consumption. Nine K-type ther-270

mocouples were installed on the rear side of each module
distributed in a matrix form to measure the temperature
of the PV modules. Regarding electrical parameters, volt-
ages of each are directly measured and the currents of each

module are determined from a value of voltage drop pro-275

duced in a shunt resistance, calibrated to the passage of
electric current. A general-purpose data-acquisition sys-
tem was set up to carry out the experimental tests. All
data were monitored with an Agilent 34972 A Data Acqui-
sition Unit with three Agilent 34901 A 20 Channel Mul-280

tiplexer Modules inserted. A specific measurement data
spreadsheet using Benchlink Data Logger 3 was written
and compiled for the system, supporting up to 66 inputs,
with 16 bits A/D, 9600 bauds transmission speed and pro-
grammable gain for each individual channel. The sensors285

used during the experiment are shown in Fig. 3. The speci-
fications of the measuring devices are presented in Table 2.

3.2. Experimental procedure
Before starting the tests, a calibration step of the mea-

surement system was performed. In order to achieve ac-290

curate readings from the 18 thermocouples; it was neces-
sary to calibrate them following a basic calibration process
heating water in a thermo bath. Secondly, although the
two PV modules were acquired as identical, a calibration
process was done to be sure that the measurement of the295

power generated was the same for both modules. This step
led to include a correction curve of the electrical power as
a fetion of radiation to match both. After that, tests were
carried out throughout 2015-2016, both in summer and
winter conditions.300

The experimental procedure starts initiating the circu-
lation of the water flow (500 l/h), and switching on the
electrical heaters (1.5 kW). In order to achieve steady op-
erating conditions for all the variables, including tempera-
tures, a startup period of 30 minutes was considered. From305

that moment, the prototype was working from early morn-
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Measurement Brand - Model Measuring device Measuring range Accuracy

Ambient air temperature E+E Elektronik (EE 21) Capacitive sensor -20 - 80◦C ±0.3◦C
Ambient Air relative humidity E+E Elektronik (EE 21) Capacitive sensor 0-100% ±2%

Air temperature E+E Elektronik (EE 21) Capacitive sensor 0-100◦C ±0.4◦C
Air relative humidity E+E Elektronik (EE 21) Capacitive sensor 0-100% ±2.5%

Wind direction Young (05103L) Balanced vane 0-360◦ ±3◦

Wind Speed Young (05103L) 4-blade helicoid propeller 0-50 m/s ±2.5 m/s
Water temperature Desin (ST-FFH Pt100) 4 wires Pt100/RTD -200-600◦C ±0.05◦C
Module temperature RS K-Type thermocouple -5-1100◦C ±1.5◦C

Irradiance Kipp&Zonen CM-6B First class pyranometer 0-1400 W/m2 ±1% RD
Water consumption SENSUS MS8100 Volumetric water meter 0-500 l ±1% RD
Water flow rate Kronhe Optiflux 1000 Electromagnetic flowmeter 0-2.5 m3/h ±0.3% RD
Air velocity E+E (EE65) Hot film anemometer 0-10 m/s ± (0.2 m/s+3% RD)

Table 2: Measuring equipment used in the experimental prototype and measurement accuracy.
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Figure 4: Global irradiance in the module plane (July 10, 2015).

ing until late afternoon. UNE-EN 12975-2 “Thermal solar
systems and components - Solar collectors - Part 2: Test
methods” and Standard UNE 13741 “Thermal performance
acceptance testing of mechanical draught series wet cool-310

ing towers” were selected as reference to define stationary
conditions. For a test to be valid, variations in the test
conditions shall be within the following limits during a 10
minutes period. The variations of the circulating water
flow rate shall not be greater than 5%. The maximum315

deviation of the wet-bulb temperature may not exceed its
average value during the test period (±1.5◦C). The same
is valid for the dry-bulb temperature with a deviation of
(±4.5◦C) and water temperatures (±1.5◦C). The wind ve-
locity shall not exceed 7 m/s for one minute and its aver-320

age value during the test period shall not exceed 3.5 m/s.
Global solar irradiance was over 700 W/m2 and deviation
from the mean less than (± 50 W/m2).

4. Results and discussion

Different tests were carried out to evaluate the thermal325

and electrical performance of the Photovoltaic Evapora-
tive Chimney. The results presented in this paper have

Figure 5: Wind velocity (instant and 10 min averaged) and wind
direction (July 10, 2015).

been recorded over a year in different measurement peri-
ods to analyze system behavior in different environmental
conditions that occur in a Mediterranean climate. Accord-330

ing to the experimental procedure and to comprehensively
describe the tests, the results are displayed on three lev-
els: instantaneous measurements (frequency reading 10 s),
averaged measurements (each 10 minutes) and stationary
intervals. First, results of a clear summer day are shown in335

detail and after that the trends that were found for other
operating conditions are displayed.

4.1. Detailed results: measurements during one day
The presentation and discussion of the results is struc-

tured in three parts: first the description of the environ-340

mental conditions, then the analysis of the thermal per-
formance of the system and finally the main results of the
electrical performance will be presented. Starting with the
description of environmental conditions, Fig. 4 shows the
results of irradiance on July 10, 2015. As it can be ob-345

served, it was a day completely clear in which the irradi-
ance exceeded 900 W/m2 at noon. Fig. 5 shows measure-
ments of wind velocity, with an average value throughout

6
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the whole day of 3.03 m/s. We note that the wind veloc-
ity at the start of the day is medium-low and as the day350

progresses its value increases with wind gusts exceeding 6
m/s. This is a very common situation at the site of the
pilot plant due to the influence of thermal winds from the
coast.
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Figure 6: Inlet, Intermediate and Oulet Air Temperature (July 10,
2015).

Figure 7: Psychrometric processes.

Fig. 6 shows the experimental results obtained for air355

temperature in three points: inlet (dry ambient air tem-
perature), intermediate (located just in between the evap-
orative and convective section) and outlet air temperature.
It can be seen that the air temperature drops an average of
about 5 K in the evaporative section ∆Ta,int−i = Tint−Ti.360

In contrast, the air is heated in the convective section act-
ing as a heat sink for the photovoltaic module. It draws
attention to the smallest increase in air temperature in the
convective zone, however it must be emphasized that the
outlet air temperature and relative humidity sensor is lo-365

cated at the midpoint of the outlet section of the convective
chimney. This value can be used to ajust the temperature
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Figure 8: Inlet and outlet water temperature, wet bulb temperature,
water temperature difference and temperature difference related to
the wet bulb temperature (July 10, 2015).

profile in the thermal boundary layer and therefore the
convection heat transfer can be analyzed.

As a low-scale cooling tower, the Photovoltaic Evap-370

orative Chimney cools water by a combination of heat
and mass transfer. Baker and Shryock (1961) developed
a widely used cooling tower theory. They considered a
cooling tower having one square foot of plan area; cooling
volume VT , containing extended water surface per unit vol-375

ume AV ; and water mass flow rate ṁw and air mass flow
rate ṁa. The water is surrounded by the air and the inter-
face is assumed to be a film of saturated air with an inter-
mediate temperature at the water temperature. Thus, the
transfer from the interface to the airstream is proportional380

to the average enthalpy potential (hs,w − h). Assuming a
set of simplifying hypotheses, the steady-state energy and
mass balances on an incremental volumen is:

−ṁw dhf,w = ṁa dha = hD AV VT (hs,w − h) (1)

From the Merkel model, (Haussler et al., 1977), water
temperature decrease depends mainly on the incoming air385

wet-bulb temperature; see air processes on psychrometric
chart, Fig. 7. The system’s thermal efficiency (ηT ) can be
defined as the relation between actual water temperature
reduction, the one existing between sprayed and drained
water, Tw1

− Tw2
, and the water temperature’s maximum390

difference, taking the ambient wet-bulb temperature as the
physical limit to the drained water temperature, so:

ηT =
Tw1

− Tw2

Tw1 − Twb
(2)

The data averaged for the whole day offer values of
water temperature difference of 3.2 K and the temperature
difference related to the wet bulb temperature of 9.5 K, see395

Fig. 8. Therefore the averaged efficiency was around 34%,
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reaching values above 37%. The heat dissipated can be
expressed as a function of the water mass flow rate and
actual water temperature reduction, see Eq. (3), and is
also the energy received by the water from the cooling400

machine condenser, see Fig. 9. In addition to the thermal
load from the electrical heater (1500 W), water receives
heat from the pump and due to the temperature difference
from the environment through the walls of the hydraulic
circuit.405

Q̇cond = ṁwCp(Tw1
− Tw2

) (3)

The most widely used parameter to define the thermal
performance of wet cooling tower is the cooling Number
of Transfer Units, NTU. With the help of the NTU, it
is possible to compare the thermal performance of differ-
ent cooling towers or to extrapolate the performance of410

a cooling tower to operating conditions different to those
supplied by the manufacturer or tested. From Eq. (1), the
NTU is defined as:

NTU =
hD AV VT

ṁw
=

∫ 2

1

−dhf,w
(hs,w − h)

(4)

The integral in the Eq. (4) can be solved numerically.
To do that, it is necessary to know the condition line415

of moist air and the evolution of the water properties
throughout the cooling tower. Mohiuddin and Kant (1996)
following Tchebyshev’s numerical integration method, show
the procedure for calculating the cooling tower NTU, de-
fined by Eq. (4), in detail. CTI acceptance test code for420

water cooling towers, suggests this method to determine
the tower characteristic. The calculation procedure is usu-
ally displayed for countercurrent flow. Here, the method
has been adapted for parallel flows, see Table 3. The com-
parison between the results obtained in the prototype and425

those found in the literature for a cooling tower with a
pressure water distribution systems type and with a grav-
ity water distribution system are shown in Fig. 10. As it
can be seen, the cooling capacity of the Photovoltaic Evap-
orative Chimney is of the same order of magnitude as that430

reached in a cooling tower with a splash (gravity) water
distribution system, considering that the packing usually
installed in cooling tower is not included in the prototype
to avoid penalizing the air mass flow rate. The larger heat
and mass transfer area caused by the spray is offset by the435

absence of packing. It must be also taken into account
the change in the arrangement of the flow (countercurrent
and parallel) when comparing the prototype results with
the ones shown in the literature, (Lucas et al., 2009, 2013).

NTU = Cpw
tw1 − tw2

4

4∑
j=1

1

(hsw − h)j
(5)

12 PM  3 PM  6 PM
0

500

1000

1500

2000

2500

3000

Q̇
c
o
n
d

(W
)

Time

0

0.2

0.4

0.6

0.8

1

 η
T

 

 

Q̇cond

ηT

Figure 9: Water Cooling Power and Thermal Efficiency.
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Figure 10: Experimental data of NTU including literature review
data from (Lucas et al., 2009, 2013).
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tw hsw h (hsw − h)
−1
j

tw1 h1
tA = tw1 + 0, 1 (tw2 − tw1) hsw(tA) hA = h1 + 0, 1 (h2 − h1) (hsw(tA) − hA)

−1
j

tB = tw1 + 0, 4 (tw2 − tw1) hsw(tB) hB = h1 + 0, 4 (h2 − h1) (hsw(tB) − hB)
−1
j

tC = tw1 + 0, 6 (tw2 − tw1) hsw(tC) hC = h1 + 0, 6 (h2 − h1) (hsw(tA) − hA)
−1
j

tD = tw1 + 0, 9 (tw2 − tw1) hsw(tD) hD = h1 + 0, 9 (h2 − h1) (hsw(tD) − hD)
−1
j

tw2 h2
4∑

j=1

1

(hsw − h) j

Table 3: Parallel flow NTU Integration.

The next step is to show the graphics related to the440

temperature reached on the back surface of the photo-
voltaic modules. First, Fig. 3 shows the location of each
of the 18 thermocouples installed in the prototype. The
thermocouples responsible for measuring the temperature
of the photovoltaic module without chimney (Module 1)445

are those between T1-T9 and those measuring the mod-
ule temperature with the chimney (Module 2) are those
between T10-T18. It can be verified that the value of the
surface temperature is fairly constant for Module 1. In the
case of Module 2 a different thermal behavior is observed450

as there is a temperature stratification. This effect can
clearly be seen in Fig. 11 where the temperature values
are grouped in triplets by averaging the values of the ther-
mocouples located at the same height on each module (1
to 3, 4 to 6 and so on). It can be seen that the cooling of455

the module with the chimney is very evident in the lower
section with a difference of more than 10◦C between the
two modules at noon. However, this difference is reduced
to about 3.5◦C in the middle section and just 1◦C in the
output section. The module temperature stratification is460

due to heating the air circulating inside the chimney.
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Figure 11: Temperature of the PV modules horizontally averaged.

Fig. 12 shows the rise of the module temperature (Tm−
Tamb) with respect to the irradiance on the two modules
installed in the pilot plant. In order to contextualize the
results of our facility with those available in the litera-465

ture, they are compared with the work of Nordmann and
Clavadetscher (2003). The authors analyzed the effect of

Figure 12: Experimental data of temperature difference between
cell and ambient temperature including literature review data from
(Nordmann and Clavadetscher, 2003; Kaiser et al., 2014).
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the elevated cell-temperature on the annual performance
of PV systems of different mounting (freestanding, roof-
mounted and integrated PV façades) from different geo-470

graphic locations. As it can be seen, the results of Module
1 match with freestanding systems results which usually
allow a free airflow around the modules as it might be ex-
pected. In addition, a comparison is included with the re-
sults of the work of Kaiser et al. (2014). They provided an475

open air channel beneath the module and study the influ-
ence of the air gap size and the forced convection induced
by the building ventilation system on the cell temperature
of a BIPV configuration. The results show that the tem-
perature of the Module 2 is similar to that of a module480

with a ventilation of about 5.5 m/s (Level 3 in Fig. 12),
despite the averaged outlet air velocity in the prototype is
about 2.2 m/s. This is due to the coupled effect between
ventilation and air cooling achieved in the evaporative sec-
tion for the operating conditions shown.485

There are two possibilities to model the thermal per-
formance of a PV module. The operating temperature can
be correlated by variables that themselves depend on this
temperature; where an iteration procedure is necessary for
the relevant calculation (the implicit form), or by a cor-490

relation that may be solved directly (explicit form). One
of the most common explicit expressions employed links
the operating temperature with the ambient temperature
and the incident solar irradiance, (the slope of the linear
correlation of the results in Fig. 12), Ross (1976):495

Tm = Tamb + k GT (6)

The constant k in Eq. (6) (known as the Ross coef-
ficient) denotes the temperature rise above ambient with
increasing solar irradiance. Several authors studied the
Ross coefficient in different PV configurations from free-
standing (k = 0.021 K m2/W) to façade-integrated trans-500

parent PV’s (k = 0.046 K m2/W) or installed on a sloped
roof poorly ventilated (k = 0.056 K m2/W), Skoplaki et al.
(2008). For the data measured from the prototype, the av-
erage value of Ross coefficient is (k = 0.025 K m2/W) in
the case of Module 1 (corresponding with literature val-505

ues) and (k = 0.016 K m2/W) in Module 2. This shows
the good level of cooling that has achieved the proposed
design.

In the next paragraph the results related to the elec-
trical performance of the prototype in terms of its main510

operating variables are discussed: current and voltage,
power produced by each module and efficiency obtained.
In Fig. 13 instant voltage and current for each photovoltaic
module are shown throughout the test period. What makes
the difference and indicates which module is being more515

efficient is the current production, this being higher in the
Module 2. Fig. 14 shows the electrical power produced
and the efficiency of each module (10 min averaged value).
The results show an average value of 12.6% efficiency for
the Module 1 and 13.2% for the Module 2. This means520

Figure 15: Averaged percentage difference in efficiency and wind
velocity. Green shaded areas are stationary intervals.

an average improvement of 4.9% to a maximum of 7.6%
around midday. As shown in the graph the efficiency dif-
ference is reduced in the afternoon, which is justified by
a higher level of wind and a minor temperature difference
between modules.525

Fig. 15 is used to appreciate more clearly the rela-
tionship between increased efficiency achieved and wind
speed. As it can be seen, as the wind increases the level
of improvement achieved is reduced. When the level of
the wind increases, heat transfer to the environment also530

increases in the module without chimney. This leads to a
smaller temperature difference between modules and thus
a smaller efficiency difference. In the figure, also, the in-
tervals that meet the stationarity conditions described in
the methodology are shown as green shaded areas. These535

stationary intervals are employed in the next section to de-
scribe what happens in different environmental conditions.

4.2. Results for different ambient conditions
This section shows the results of seven tests conducted

under different environmental conditions in which have540

been stationary conditions. While the total number of
tests performed was much higher, not always stationary
conditions were reached. Therefore, this section only shows
the averaged results that met the stationary conditions de-
scribed in the methodology section. First, Fig. 16 shows545

the main environmental variables (ambient temperature
and irradiance) and the values of the module tempera-
tures to see a summary of the measurement conditions at
a glance.

In order to see the influence of the evaporative chim-550

ney on the module temperature, Fig. 17 shows the rela-
tionship between the temperature of both modules. It
can be checked that in the case of module temperatures
above 30◦C, usually spring-summer conditions, the pres-
ence of the chimney leads to a cooler module. This effect555

is amplified as the temperature of the module increases.
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Figure 16: (a) Ambient Temperature; (b) Irradiance; (c) Temperature Module 1; (d) Temperature Module 2.
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However, for module temperatures below 30◦C, usually in
winter conditions, the temperature is quite similar. This is
because the psychrometric process of the air into the evap-
orative section may result in warmer air. There are even560

days as 03/01/2015, where the temperature of Module 2
is higher than Module 1. To explain in detail the differ-
ence between the temperatures of the modules, this is an-
alyzed as a function of the two most influential variables.
On the one hand, the difference between the velocity of565

air inside the chimney and wind velocity is selected since
heat dissipation by convection at the back of the mod-
ules is dominated by the air velocity. On the other hand
the possibility that the air temperature inside the chim-
ney is different from the ambient air is considered due to570

the psychrometric transformation undergone by the air in
the evaporative section. Thus the temperature difference
between the intermediate point (start of the convective
section) and the ambient temperature is selected. Experi-
mental results show that in cases where the air velocity in575

the chimney is higher than the wind (vout-vwind > 0) and
in cases where the difference between the ambient tem-
perature and intermediate temperature is postive (Tamb-
Tint > 0); the difference between the temperatures of the
modules increases. In quantitative terms it is observed580

that the difference between measured velocities may be
between -1.5 m/s in the case of high wind and get up to
2 m/s in cases where there is low wind. The differences
between air temperatures ranging from 4 K air-heating
in winter conditions, to 8 K air-cooling in July measures.585

With this, averaged differences between modules up to 8
K in the most favorable cases are achieved.
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Figure 17: Module 1 and module 2 Temperature Comparison.

Thermal efficiency is used to analyze what happens in
the evaporative section. Fig. 18 shows water cooling ther-
mal efficiency at different wet bulb temperatures. It can590

be observed that the higher the wet bulb temperature, the
higher the efficiency, the same occurred in Lucas et al.
(2006). As shown in Fig. 18, the efficiency achieved by
the system in the measurements made during July exceeds
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Figure 18: Experimental thermal efficiency for different wet bulb
temperatures.
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Figure 19: Experimental efficiency measured in the prototype. Ex-
perimental correlation based on the traditional linear expression for
the PV electrical efficiency.
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30%. For these levels of thermal efficiency, it is noted that595

the outlet water temperature is about 6 K under dry ambi-
ent temperature in July. This is one of the key factors in a
comparison to evaluate the benefits of Water-Cooled Sys-
tems vs. Air-Cooled Systems for Air-Conditioning appli-
cations because the lower the condensation temperature,600

the better the performance. The experimental uncertainty,
calculated according to ISO Guide, (ISO, 2004), with a
level of confidence of 95% and using sensor specifications
shown in Table 2, showed a value of 6.39% and 2.53%
for the averaged efficiency and cooling power, respectively.605

Fig. 18 shows the uncertainty bars in the mean value of
each test.

Fig. 19 shows the relationship between the modules
temperature and the electrical efficiency. The correlation
obtained from the experimental data is included, assuming610

the traditional linear expression for the PV electrical effi-
ciency, Eq (7). The module’s electrical efficiency (ηPV,ref)
at the reference temperature Tref and the efficiency correc-
tion coefficient for temperature (βref) are normally given
by the PV manufacturer. However, in this work βref is de-615

duced from the experimental measurements (see Fig. 19);
the estimated values are ηPV,ref = 0.157 and Tref = 25◦C;
and the calculated value for βref = 0.0090 1/◦C. The ex-
perimental uncertainty showed a value of 2.51% for the
electrical efficiency with a level of confidence of 95%.620

ηPV = ηPV,ref [1 − βref (Tm − Tref)] (7)

In the following paragraph, the coupling between the
thermal and electrical results is discussed. Fig. 20 shows
the percentage improvement obtained in the electrical ef-
ficiency of the module with the evaporative chimney with
respect to the one that has not been modified. The in-625

dependent variables selected to show the improvement are
those which determine the heat transfer in the module. On
the one hand, the difference between ambient and inter-
mediate air temperature is the main variable affecting the
efficiency improvement. The greater this difference is, the630

greater the difference in temperature of the modules and
consequently the difference between the electrical efficien-
cies thereof. On the other hand, the influence of convective
flow through the difference between the air velocity inside
channel and wind speed has been considered. Again, the635

greater this difference is, the greater the improvement of
the efficiency. Fig. 20 uses a grayscale to show the differ-
ent ranges of the difference between the air velocity inside
channel and wind speed. In view of the results it has been
found that the air velocity inside the chimney is affected640

by the momentum added by the water mass flow at the
inlet section, rather than the effect of air buoyancy. On
average the level of exhaust air is about 2.4 m/s and the
variability for the results is mainly due to the different
levels of wind reached. The results show that the effect of645

the presence of the chimney is negative for the electrical
efficiency of the module in winter time. However, the im-
provement in the electrical efficiency of the module is up

to 8% in summer time, when the air conditioning system
will usually be used.650

5. Conclusions

An environmentally friendly alternative to heat dissi-
pation in buildings and PV electrical production has been
experimentally studied. The Photovoltaic Evaporative Chim-
ney as a new alternative to enhance solar cooling increases655

the electrical efficiency of photovoltaic modules by cool-
ing them and is able to dissipate heat from a refrigeration
cycle. The experimental facility consisted of two photo-
voltaic modules. One of them was used as a reference and
the other one was modified in its rear side including the660

evaporative solar chimney. The experimental results were
divided into thermal and electrical performance.

Figure 20: Difference in electrical efficiency of both modules vs
(Tamb − Tint) and (Vout − Vwind) .

The parameter used to describe the water cooling ca-
pacity of the system was the thermal efficiency, taking the
wet bulb temperature as a lower limit. So, the experimen-665

tal results achieved by the system in the measurements in
summer time exceeded a thermal efficiency of 30%. For
these levels of thermal efficiency, the outlet water temper-
ature is about 6 K under dry ambient temperature for a
heat dissipation of about 1500 W. Coupling between ther-670

mal and electrical results is discussed by using the PV
module temperature. Cooling of the photovoltaic modules
is justified by the air flow and air conditions of entry to
the convective section. On the one hand, the difference
between the velocity of air inside the chimney and wind675

velocity, and on the other hand the possibility that the air
temperature inside the chimney could be different from the
ambient produced up to 8 K of module cooling.

Regarding the electrical efficiency, the results showed
an average improvement of 4.9% to a maximum of 7.6%680

around midday in a typical summer day for a Mediter-
ranean climate. For a comprehensive energy analysis of
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the improvements produced by the system, it will be nec-
essary to model it and include it in a simulation program.
We have already taken the first steps modelling the PV685

electrical efficiency by using the traditional linear expres-
sion and the evaporative cooling process by using efficiency
and NTU, but further analysis is left for future work.
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HIGHLIGHTS: 
 
 

• The paper evaluates the thermal and electrical performance of a Photovoltaic 
Evaporative Chimney. 

 
• An evaporative thermal efficiency exceeding 30% in summer conditions has 

been measured 

• An electrical efficiency improvement of 4.9% could be reached on a typical 

summer day 

 

 


