
mathematics

Article

Eigenloss: Combined PCA-Based Loss Function for
Polyp Segmentation

Luisa F. Sánchez-Peralta 1,* , Artzai Picón 2 , Juan Antonio Antequera-Barroso 3,
Juan Francisco Ortega-Morán 1, Francisco M. Sánchez-Margallo 1 and J. Blas Pagador 1

1 Jesús Usón Minimally Invasive Surgery Centre, N-521, km 41.7, E-10071 Cáceres, Spain;
jfortega@ccmijesususon.com (J.F.O.-M.); msanchez@ccmijesususon.com (F.M.S.-M.);
jbpagador@ccmijesususon.com (J.B.P.)

2 TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, C/Geldo.
Edificio 700, E-48160 Derio, Spain; artzai.picon@tecnalia.com

3 Didactics of Mathematics, University of Cadiz, Avda. República Saharaui s/n. Campus de Puerto Real,
E-11519 Puerto Real, Spain; juanantonio.antequera@uca.es

* Correspondence: lfsanchez@ccmijesususon.com; Tel.: +34-927-18-10-32

Received: 8 June 2020; Accepted: 5 August 2020; Published: 7 August 2020
����������
�������

Abstract: Colorectal cancer is one of the leading cancer death causes worldwide, but its early diagnosis
highly improves the survival rates. The success of deep learning has also benefited this clinical
field. When training a deep learning model, it is optimized based on the selected loss function.
In this work, we consider two networks (U-Net and LinkNet) and two backbones (VGG-16 and
Densnet121). We analyzed the influence of seven loss functions and used a principal component
analysis (PCA) to determine whether the PCA-based decomposition allows for the defining of
the coefficients of a non-redundant primal loss function that can outperform the individual loss
functions and different linear combinations. The eigenloss is defined as a linear combination of
the individual losses using the elements of the eigenvector as coefficients. Empirical results show
that the proposed eigenloss improves the general performance of individual loss functions and
outperforms other linear combinations when Linknet is used, showing potential for its application in
polyp segmentation problems.

Keywords: deep learning; loss functions; principal component analysis; polyp segmentation

1. Introduction

Nowadays, colorectal cancer (CRC) presents high incidence rates in developed countries, as it
is mainly considered a lifestyle disease [1]. More than 800,000 deaths are reported yearly and CRC
incidence reaches one in ten people worldwide [2]. In 2020, over 104,000 new cases and 53,200 deaths
are estimated in the United States alone [3], while more than 174,600 deaths are foreseen in Europe [4].
However, an early detection of CRC, increasing the current 13% up to 50% of patients diagnosed in
stage I could save 130,000 lives and reduce the healthcare cost per year by three billion [5]. In this
sense, colonoscopy is the gold standard for early diagnosis (CRC screening): the gastroenterologist
performs a visual exploration of the rectum and colon using a flexible endoscope inserted through the
patient’s anus. During the procedure, polyps are detected and treated if deemed necessary, as these are
considered precursor lesions of CRC. Colonoscopy is highly dependent on the endoscopist’s skills,
therefore computer-aided diagnosis and detection systems have a great potential to improve clinical
results [6].

Recently, deep learning has outperformed classical methods on several computer vision tasks,
such as detection, segmentation, classification, and enhancement, also in the healthcare field [7]. The
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automatic extraction of features performed by convolutional neural networks (CNN) is the main
advantage over classical hand-crafted features, but the need of large and annotated datasets is one of
its major drawbacks in specific fields, such as medical applications. For this reason, several studies
focus on improving the scarce and weak annotations in medical imaging datasets [8]. Although clinical
evidence of deep learning algorithms is still poor (there are few studies with low confidence), they
show equivalent (or even better) performance than clinicians [9,10]. In this sense, some systematic
reviews show the potential of deep learning in gastric tissue diseases [11] and wireless endoscopic
capsule [12], but these studies also identify risk of bias due to gaps in the evaluation metrics and public
availability of the dataset [11] that must be solved through prospective multicenter studies [12].

In our field of interest, computer-aided detection (CAD) systems have been classically based
on the extraction of polyp characteristics, like shape [13], texture [14,15] or depth of valleys [16,17].
Moreover, other classical segmentation methods could be also applied to this problem, such as
the alternating direction method of multipliers (ADMM) approach to decompose the image into
non-additive components and classify pixels into background and foreground [18] or the approach
proposed by Li et al. [19], who combine semi-supervised learning of the posterior class distribution
modeled using multinomial logistic regression with segmentation that exploits spatial information.
It has been recently determined that up to 80% of missed colonic lesions could be avoided using
real-time artificial intelligence assistance [20]. Therefore, there is still a need for further developing
polyp detection, localization, and segmentation methods. In this last case, several authors use deep
learning methods, which outperform hand-crafted methods [21], and where CNNs are widely used [22].
Among them, the encoder-decoder architectures are a popular family of deep models for semantic
segmentation [23]. U-Net [24] is one of the most widely used and well-known architectures for
medical imaging segmentation, which has led to many variants for particular applications with great
results [25–28]. While U-Net relies on concatenation in the decoder, LinkNet [29] adds the information
from the encoder and has also been used for medical image segmentation [30,31] including polyp
segmentation [32]. Furthermore, these two networks are usually compared in studies from different
medical fields [33–36]. For polyp segmentation on colonoscopy images, different approaches can be
found. Wichakam et al. [37] proposed a compressed fully convolutional network (FCN) based on
VGG-16 [38] which provided state of the art results (Jaccard index of 69.36) while running seven times
faster than the original FCN. Vázquez et al. [39] employ a FCN8 architecture [40] and get a Jaccard
index equal to 56.07 for the polyp class. Similarly, Wickstrøm et al. [41], also with an enhanced FCN8,
get 58.70 overlap.

Principal Component Analysis (PCA) is a mathematical technique for data transformation
that reduces multidimensional data sets into a lower number of principal components, which are
uncorrelated and retain variance as much as possible [42]. PCA has been used in medical imaging with
different purposes. Ansari et al. [43] use the PCA to obtain a target image from a different source image.
They transform endoscopic narrow-band images (NBI) into standard colored endoscopic images. In
this case, the PCA extracts the fundamental information in NBI, which usually enhances structures
and textures, so the standard images can be improved for better assessment and diagnosis. Another
application of PCA is the reduction of highly dimensional data, such as fluorescence spectral images of
colorectal polyps [44]. In this work, near-infrared autofluorescence spectroscopy images with multiple
wavelengths and intensities were obtained from healthy, hyperplastic, and adenomatous colonic tissues
and this high dimensional set of images was reduced to eight principal components for an easier and
more intuitive tissue classification. It is also worth mentioning that other technical aspects, such as
prevention of overfitting in neural networks, have also been addressed with PCA. Kim et al. [45] apply
the PCA to reduce the dimensions of the input feature vector while retaining the main information, so
the number of weights in the neural network can be reduced. Related to polyp segmentation, PCA has
been used as reduction technique for contour region analysis based on hand-crafted features [46].

In statistics, a loss function is commonly used in optimization problems, where the minimum
difference between estimated and true values for a given dataset is sought. Therefore, loss functions,
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also known as objective functions, cost functions, error functions or simply losses, conduct the training
process of deep learning models computing the error between predicted values and ground truth and
minimizing it to optimize the weights of the model. The relevance and influence of loss functions in
deep learning models have been studied in many fields, such as handwritten digits recognition [47], fast
single classification [48], cardiac MRI reconstruction [49], low-dose CT images denoising [50], or face
recognition [51]. Loss functions can be categorized into distribution, region or boundary-based losses,
depending on the main concept considered for minimization. Regarding distribution-based losses, the
cross entropy loss function [52] is widely used. It calculates the cost at each pixel using a logarithmic
function that is then averaged over all pixels to quantify the difference between the two probability
distributions (ground truth vs prediction). Other distributed-based functions are the weight cross
entropy [24] and the focal loss [53]. In case of region-based losses, the commonly used Dice loss [25]
measures the overlap of two sets, which can be easily applied to binary segmentation. Additional
region-based functions are the Jaccard or Intersection over Union (IoU) loss [54], the Tversky loss [55],
the Lovász-Hinge or Lovasz-Softmax loss [56], and the focal Tversky loss [57]. Finally, boundary-based
loss functions include for example the surface loss that uses a distance metric to compare the shapes of
two contours [58], or the loss that uses the estimations of the Hausdorff distance to measure differences
between two contours [59].

When deep learning is applied to medical imaging analysis, researchers tend to use classical
cross-entropy loss functions together with a second distance or overlap measure [60], so combined loss
functions are commonly used [61–63]. For polyp segmentation, both individual and combined loss
functions can be found. Wichamkam et al. [37] apply the Dice loss function alone. On the other hand,
while Zhou [26] combines the Dice loss function with the binary cross entropy, Mohammed et al. [64]
combine it with the weight binary cross entropy instead.

Hence, the aim of this paper is to analyze the influence of several loss functions on different
models for polyp segmentation and to determine whether a PCA-based decomposition allows for
the defining of the coefficients of a non-redundant primal loss function that can outperform the
individual loss functions and other aggregation methods, such as the sum and the mean of loss
functions. Consequently, the same dataset and training conditions were used for all experiments, while
several loss functions were applied to compare the training and testing performance of the model.
Two different encoder-decoder architectures, namely U-Net [24] and LinkNet [29], with two backbones
each (VGG-16 [40] and Densenet121 [65]) were used for comparison.

The rest of the paper is organized as follows. In Section 2, a detailed description of materials
and methods is exposed, including dataset, network architectures, training parameters, loss functions,
metrics and PCA analysis. In Section 3, the results are presented and analyzed. Finally, Section 4
discusses the results and Section 5 summarizes the most important conclusions of this work.

2. Materials and Methods

2.1. Dataset

CVC-EndoSceneStill is a publicly available dataset [39] that contains 912 images obtained from
44 video sequences collected from 36 patients. The dataset is divided into training, validation and
test sets, each of them including 547, 183, and 182 images, respectively. For each image, binary masks
are provided for the polyp, lumen, specular lights and void (black area) classes. In the binary masks,
pixels corresponding to the class are labelled with 1, and 0 otherwise (Figure 1). In this work, only the
polyp and void classes are used. While the polyp binary mask is used both at training and testing, the
void binary mask is just used for reporting metrics with respect to the valid endoscopic image.



Mathematics 2020, 8, 1316 4 of 19Mathematics 2020, 8, x FOR PEER REVIEW 4 of 19 

 

 

(a) 

 

(b) 

 

(c) 

Figure 1. Example of the CVC-EndoSceneStill dataset (a) polyp image; (b) polyp binary mask; (c) void 
binary mask. 
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used to obtain the feature vector that is fed into the decoder. VGG-16 (Figure 2A) employs 
convolutional blocks composed of convolutional and activation layers, which are then followed by a 
max pooling layer to reduce the input size. On the other hand, Densenet121 (Figure 2B) relies on 
dense blocks where all layers are interconnected with the rest of layers in the block. In both cases, 
backbones are pretrained using IMAGENET [66], rather than trained from scratch, in order to 
improve the performance on a small dataset such as CVC-EndosceneStill (only 547 images for 
training). As for the encoder-decoder architectures, the difference between U-Net and LinkNet 
mainly lies on the integration of the information of the encoder into the decoder. While U-Net (Figure 
2C) concatenates the features maps of the encoder at their corresponding level in the decoder, 
LinkNet (Figure2D) adds the input to each encoder layer to the output of the corresponding layer in 
the decoder. In our implementation, the decoder path is created accordingly to the selected backbone 
to match the dimensions and number of layers. Therefore, we have four different models (Tables S1–
S4 provided in the supplementary material): U-Net-VGG-16 (Figure2A,C), U-Net-Densenet121 
(Figure2B,C), LinkNet-VGG-16 (Figure2A,D) and LinkNet-Densenet121 (Figure2B,D). In all cases, 
image input size is set to 256 × 256 × 3 and the predicted binary mask size is 256 × 256 × 1. 

 
Figure 2. Backbones for the encoder (A,B) and encoder-decoder architectures (C,D). 
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Figure 1. Example of the CVC-EndoSceneStill dataset (a) polyp image; (b) polyp binary mask; (c) void
binary mask.

2.2. Architectures and Training Parameters

For this study, two backbones (VGG-16 [40] and Densenet121 [65]) and two encoder-decoder
architectures (U-Net [24] and LinkNet [29]) were selected. The backbones differ in the type of block
used to obtain the feature vector that is fed into the decoder. VGG-16 (Figure 2A) employs convolutional
blocks composed of convolutional and activation layers, which are then followed by a max pooling
layer to reduce the input size. On the other hand, Densenet121 (Figure 2B) relies on dense blocks
where all layers are interconnected with the rest of layers in the block. In both cases, backbones
are pretrained using IMAGENET [66], rather than trained from scratch, in order to improve the
performance on a small dataset such as CVC-EndosceneStill (only 547 images for training). As for
the encoder-decoder architectures, the difference between U-Net and LinkNet mainly lies on the
integration of the information of the encoder into the decoder. While U-Net (Figure 2C) concatenates
the features maps of the encoder at their corresponding level in the decoder, LinkNet (Figure 2D)
adds the input to each encoder layer to the output of the corresponding layer in the decoder. In
our implementation, the decoder path is created accordingly to the selected backbone to match the
dimensions and number of layers. Therefore, we have four different models (Tables S1–S4 provided
in the Supplementary Materials): U-Net-VGG-16 (Figure 2A,C), U-Net-Densenet121 (Figure 2B,C),
LinkNet-VGG-16 (Figure 2A,D) and LinkNet-Densenet121 (Figure 2B,D). In all cases, image input size
is set to 256× 256× 3 and the predicted binary mask size is 256× 256× 1.
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Figure 2. Backbones for the encoder (A,B) and encoder-decoder architectures (C,D).

Each model is trained for 300 epochs using the Adam optimizer, a batch size of 16 and batch
normalization. The learning rate is initially set to 0.001, decreasing by half every 5 epochs and restoring
the initial value every 25 epochs. The weights of the best epoch (lowest validation loss) are used
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for prediction. All experiments were implemented using segmentation models [67], Keras [68] and
Tensorflow [69] as backend and were run in a NVIDIA Quadro P5000 with 16 GB memory.

2.3. Loss functions

Seven loss functions are considered in this work. In order to present their formulation, we firstly
establish the mathematical framework of the binary segmentation problem. Since we are performing
a binary semantic segmentation based on a pixel-wise classification, we describe the problem of a
binary classifier.

As X is the image of size M × N to be segmented, each pixel x ∈ X has a corresponding value, y ,
in the ground truth mask, Y. In a binary classification problem, the ground truth labels can take the
values y =

{
y1, y0

}
, where y1 is the positive class, being polyp in this case, and y0 the negative class,

corresponding to the background class. The segmentation model gives a prediction Ŷ, with labels
ŷ =

{
ŷ1, ŷ0

}
. In our work, labels are assigned as y1 = 1; y0 = 0; ŷ1 = 1; ŷ0 = 0. Thus, the elements of

the confusion matrix, ni j, indicate the number of cases belonging to class i that were classified as class j.
In our binary problem, the elements of the 2 × 2 confusion matrix are:

• n11, or true positives (TP): polyp pixels in the ground truth binary mask that are correctly classified
as polyp in the predicted binary mask.

• n10, or false negatives (FN): polyp pixels in the ground truth binary mask that are incorrectly
classified as background in the predicted binary mask.

• n01, or false positives (FP): background pixels in the ground truth binary mask that are incorrectly
classified as polyp in the predicted binary mask.

• n00, or true negatives (TN): background pixels in the ground truth binary mask that are correctly
classified as background in the predicted binary mask.

Therefore, any loss function L
(
Y, Ŷ

)
measures the cost or error of predicting Ŷ for a given image

X with ground truth Y [70]. In the following subsections, we define the loss functions considered in
this study.

2.3.1. Jaccard Loss

The Jaccard index [71], also known as intersection over union (IoU), provides the ratio of the
intersection between the ground truth and the predicted binary masks over their union, in a [0, 1]
range and with the convention of solving the indetermination 0/0 = 1. In our particular dataset, this
situation does not occur as all images contains a segmented polyp, so the ground truth binary masks
always contain positive elements. Based on this index, the Jaccard loss can be defined as:

LJaccard
(
Y, Ŷ

)
= 1−

∣∣∣Y∩ Ŷ
∣∣∣∣∣∣Y∪ Ŷ
∣∣∣ = 1−

∑M·N
i=1 yi·ŷi∑M·N

i=1 yi +
∑M·N

i=1 ŷi −
∑M·N

i=1 yi·ŷi
= 1−

TP
TP + FN + FP

(1)

This loss function is widely used in segmentation problems as it directly optimizes the Jaccard
index, one of the most common metrics.

2.3.2. Dice Loss

The Dice coefficient [72] also measures similarities between two regions. This coefficient is the
same as the F1-score. The Dice loss can be defined as:

LDice
(
Y, Ŷ

)
= 1−

2·
∣∣∣Y∩ Ŷ

∣∣∣
|Y|+

∣∣∣Ŷ∣∣∣ = 1−
2
∑M·N

i=1 yi·ŷi∑M·N
i=1 yi +

∑M·N
i=1 ŷi

= 1−
2·TP

2·TP + FN + FP
(2)
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2.3.3. Binary Cross Entropy Loss

Cross entropy or softmax loss is the most widely used loss function for classification problems [73].
For a binary classification problem, binary cross entropy can be defined as:

LBEC
(
Y, Ŷ

)
=

1
M·N

M·N∑
i=1

(−yi· log(ŷi) − (1− yi)· log(1− ŷi)) (3)

The aim of this distributed-based loss function is to maximize the accuracy of the predicted binary
mask, considering both the positive class, or polyp, and the negative class, or background.

2.3.4. Binary Focal Loss

Yin et al. [53] defined the focal loss to counteract the effect of imbalanced classes. For a binary
problem, it can be defined as:

LBF
(
Y, Ŷ

)
=

M·N∑
i=1

(−yi· ∝ ·(1− ŷi)
γ
· log(ŷi) − (1− yi)· ∝ ·ŷi

γ
·log(1− ŷi)) (4)

being α a weighting factor in balanced cross entropy and γ a focusing parameter. We have considered
α = 0.25 and γ = 2.0, default parameters in the segmentation models library [67].

2.3.5. Tversky Loss

The Tversky index [74] allows us to control the penalties for FP and FN through the parameters α
and β, and it is defined as:

TI
(
Y, Ŷ

)
=

∑M·N
i=1 ypi ŷpi + ε∑M·N

i=1 ypi ŷpi + α
∑M·N

i=1 yip ŷip + β
∑M·N

i=1 yip ŷip + ε
(5)

where p stands for the polyp class, so ypi = 1 if pixel i belongs to the polyp class, and 0 otherwise, and
the opposite for ypi in the ground truth binary mask. The same definitions apply for ŷpi and ŷpi in the
predicted binary mask. Based on this index, the Tversky loss function is defined as:

LTversky
(
Y, Ŷ

)
= 1− TI

(
Y, Ŷ

)
(6)

For implementation, we have selected α = 0.7 and β = 1− α = 0.3, as the authors report in their
original work.

2.3.6. Focal Tversky Loss

Based on the Tversky index (Equation (6)) and combining the idea of the binary focal loss
(Section 2.3.4), Abraham et al. [57] defined the Focal Tversky loss as:

LFocalTversky
(
Y, Ŷ

)
=

(
1− TI

(
Y, Ŷ

)) 1
γ (7)

to address the issue of data imbalance in medical imaging segmentation. For implementation, we have
selected γ = 4

3 , as the authors report in their original work.

2.3.7. Lovász-Hinge Loss

Berman et al. [56] propose the Lovász-Hinge loss function, based on the convex Lovász extension
of sub-modular losses. For our binary problem, it is defined as:

LLovasz−Hinge
(
Y, Ŷ

)
= ∆Jp(m(p)) (8)
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where ∆Jp is the Lovász extension to the Jaccard loss function and m(p) is the vector of hinge losses for
the polyp class, as defined in [56].

2.4. Metrics

The results are always reported over the 182 images of the test set of CVC-EndoSceneStill dataset,
which allows for a fair comparison of the models. To calculate the reporting metrics, only the valid
area of the void binary mask (Figure 1c) is considered. For each image, seven metrics are calculated
based on the elements of the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

F2− score =
5·TP

5·TP + 4·FN + FP
(13)

Jaccard =
TP

TP + FN + FP
(14)

Dice =
2·TP

2·TP + FN + FP
(15)

2.5. PCA Analysis

Previously to the application of the PCA, the viability of the method was tested. Therefore, the existing
correlation between the variables under study was determined based on the correlation matrix and two
statistical tests: Kaiser-Meyer-Olkin (KMO) index and χ2 test. Next, the Bartlett sphericity test was carried
out to determine the correlation between all variables. This test is based on Pearson’s χ2 distribution,
indicating that a significant correlation between variables other than zero when the determinant of the
correlation matrix is different from one. The mean of the KMO sample fit was also calculated to measure the
proportion of variance that the variables under study have in common. This parameter ranges from 0 to 1,
considering a good sample suitability to use PCA for values greater than 0.5.

Under the assumption that these tests are positive, a PCA was performed using the seven metrics
of the 182 images of the test set predicted by the model trained with each individual loss function, in
order to identify non-correlated variables that allow for a dimensionality reduction while the included
variance is maximized. We have a set of data X ∈ RN×D, where N is the number of metrics calculated
for the 182 images of the test set and D is the number of loss functions. The objective is to project
X into Y∈ RN×K, where K < D, while maximizing the variance included in Y. If the D variables are
correlated, the information in X is redundant, so the PCA analysis allows for a dimension reduction
resulting in a set of independent variables. For that, eigenvectors and eigenvalues from the correlation
matrix are calculated. Eigenvalues are sorted in descending order and K eigenvectors with the largest
eigenvalues are selected. Then, the original dataset X can be transformed into Y using the projection
matrix W from the selected K eigenvectors as:

Y = WX = αk1X1 + αk2X2 + . . .+ αKNXN (16)

being αkn the coefficient of the k-th principal component for the n-th input variable. The resulting
components were examined and only those with eigenvalues greater than 1 which also include a great
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proportion of variance (over 80%) were considered [75]. We can define an eigenloss function for each
principal component as a linear combination of the individual loss functions as:

Lk Eigenloss
(
Y, Ŷ

)
= αk Jaccard·LJaccard

(
Y, Ŷ

)
+ αk Dice·LDice

(
Y, Ŷ

)
+ αk BCE

·LBCE
(
Y, Ŷ

)
+ αk BF·LBF

(
Y, Ŷ

)
+ αk Tversky·LTversky

(
Y, Ŷ

)
+αk FocalTversky·LFocalTversky

(
Y, Ŷ

)
+ αk Lovasz Hinge

·LLovasz Hinge
(
Y, Ŷ

) (17)

3. Results and Analysis

3.1. PCA Analysis

Tables 1–4 summarize the results of the different models in the test set of CVC-EndoSceneStill.
Metrics calculated in the [0, 1] range were transformed into [0, 100] range for better visualization. In
all models, the accuracy is always closer to 100 due to the influence of the background in this metric
and the unbalance between polyp and background classes. This is also found in the case of precision
and specificity, where values are in general over 80.00 and 98.00, respectively. On the contrary, recall,
F2-score, Jaccard and Dice provide lower values, ranging from around 40.00 to 81.00. It is important to
highlight the small deviation of the specificity in comparison to the rest of the metrics. This is due to
the high presence of background pixels, which makes the TN a very stable figure. When classes are
highly unbalance, such as our case because the polyp represents 12.50 ± 11.49% (range: 0.75–66.15) of
the image, metrics that do not consider the TN (precision, recall, F2-score, Jaccard and Dice) are more
representative of the performance.

Table 1. U-Net-VGG-16. Results of the model trained with the different loss functions, reported over
the test set of CVC-EndoSceneStill. Best values are indicated in bold.

Loss Function Accuracy Precision Recall Specificity F2-Score Jaccard Dice

Jaccard 93.36 ± 10.26 88.69 ± 23.02 65.65 ± 37.52 99.24 ± 1.73 65.79 ± 36.20 59.77 ± 35.03 67.39 ± 34.44
Dice 92.76 ± 10.45 82.20 ± 27.36 63.24 ± 37.94 99.07 ± 1.66 63.23 ± 36.42 56.38 ± 34.59 64.61 ± 34.47

Binary entropy 93.18 ± 10.28 85.39 ± 30.95 64.62 ± 38.92 99.29 ± 1.45 64.89 ± 37.90 59.48 ± 36.35 66.39 ± 36.58
Binary focal 93.34 ± 10.28 82.44 ± 26.45 68.84 ± 36.37 98.59 ± 2.84 68.13 ± 34.91 60.49 ± 33.66 68.48 ± 33.59

Tversky 92.80 ± 10.53 82.80 ± 29.18 60.84 ± 39.16 99.22 ± 1.57 61.20 ± 38.03 55.34 ± 36.12 62.88 ± 36.59
Focal Tversky 93.10 ± 9.94 81.19 ± 26.54 64.03 ± 38.72 98.98 ± 2.13 63.81 ± 37.25 57.20 ± 35.57 64.89 ± 35.46
Lovász-Hinge 91.26 ± 11.07 72.26 ± 41.71 40.09 ± 39.55 99.71 ± 0.86 41.48 ± 39.44 38.23 ± 37.64 44.74 ± 39.49

Sum 92.78 ± 10.45 81.15 ± 32.97 57.76 ± 39.88 99.37 ± 1.44 58.43 ± 39.01 53.58 ± 37.44 60.64 ± 38.11
Mean 93.33 ± 10.5 84.07 ± 29.03 69.53 ± 35.64 98.84 ± 2.42 69.38 ± 34.42 62.83 ± 33.45 70.49 ± 33.13

Eigenloss 93.00 ± 10.91 80.31 ± 31.35 65.07 ± 37.70 99.00 ± 2.25 65.45 ± 36.70 59.66 ± 35.32 67.04 ± 35.39
Norm Eigenloss 92.97 ± 10.13 81.62 ± 27.02 64.02 ± 37.73 98.91 ± 2.06 63.82 ± 35.99 56.56 ± 33.99 65.01 ± 33.99

Table 2. U-Net-Densenet121. Results of the model trained with the different loss functions, reported
over the test set of CVC-EndoSceneStill. Best values are indicated in bold.

Loss Function Accuracy Precision Recall Specificity F2-Score Jaccard Dice

Jaccard 95.02 ± 9.53 86.95 ± 23.58 79.18 ± 33.08 99.14 ± 1.66 78.56 ± 31.94 72.17 ± 31.06 78.45 ± 30.37
Dice 94.17 ± 10.22 90.10 ± 24.86 77.88 ± 33.74 98.99 ± 2.34 76.63 ± 32.63 69.88 ± 32.63 76.30 ± 31.61

Binary entropy 94.30 ± 9.68 86.58 ± 23.06 75.60 ± 33.75 99.12 ± 1.65 74.96 ± 32.17 68.07 ± 31.89 75.39 ± 30.06
Binary focal 94.27 ± 9.81 84.61 ± 22.94 80.84 ± 31.62 98.64 ± 2.67 78.69 ± 30.03 70.01 ± 30.18 77.40 ± 28.41

Tversky 94.74 ± 9.77 89.04 ± 19.81 81.04 ± 30.35 99.02 ± 2.29 79.71 ± 29.35 73.19 ± 30.17 79.72 ± 27.98
Focal Tversky 94.19 ± 9.83 83.08 ± 25.12 78.59 ± 34.18 98.62 ± 2.90 68.05 ± 32.22 75.10 ± 31.24 79.84 ± 24.73
Lovász-Hinge 94.73 ± 9.77 87.52 ± 21.59 80.07 ± 31.72 98.95 ± 2.37 79.01 ± 30.42 72.26 ± 30.62 78.86 ± 28.78

Sum 94.76 ± 9.53 87.92 ± 22.08 80.72 ± 30.32 98.95 ± 2.38 79.69 ± 29.12 72.89 ± 29.77 79.62 ± 27.80
Mean 94.45 ± 9.77 86.12 ± 22.40 80.45 ± 31.49 98.82 ± 2.56 78.48 ± 30.17 70.75 ± 30.84 77.72 ± 28.96

Eigenloss 94.43 ± 9.78 89.83 ± 21.63 77.39 ± 33.28 99.06 ± 2.18 76.41 ± 31.97 69.35 ± 31.55 76.33 ± 30.39
Norm Eigenloss 94.68 ± 9.69 87.85 ± 22.12 79.24 ± 32.31 99.09 ± 1.95 78.43 ± 31.11 71.86 ± 31.02 78.37 ± 29.60
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Table 3. LinkNet-VGG-16. Results of the model trained with the different loss functions, reported over
the test set of CVC-EndoSceneStill. Best values are indicated in bold.

Loss Function Accuracy Precision Recall Specificity F2-Score Jaccard Dice

Jaccard 93.41 ± 10.47 82.86 ± 30.16 68.2 ± 36.67 99.34 ± 1.22 68.51 ± 35.56 62.75 ± 34.19 70.07 ± 34.11
Dice 93.59 ± 10.38 81.03 ± 32.94 67.58 ± 38.01 99.49 ± 0.96 67.90 ± 37.10 62.53 ± 35.45 69.24 ± 35.92

Binary entropy 93.61 ± 9.98 83.01 ± 26.67 70.18 ± 35.97 98.97 ± 1.97 69.76 ± 34.50 62.65 ± 33.05 70.48 ± 32.88
Binary focal 93.15 ± 10.28 81.04 ± 28.02 66.18 ± 38.02 98.95 ± 1.76 65.63 ± 36.44 58.36 ± 34.85 66.22 ± 34.65

Tversky 93.45 ± 10.78 82.54 ± 28.10 69.82 ± 37.05 99.13 ± 1.85 69.55 ± 35.85 63.14 ± 34.49 70.27 ± 34.33
Focal Tversky 93.56 ± 10.35 83.56 ± 26.75 70.18 ± 37.39 99.09 ± 1.74 69.54 ± 36.10 62.81 ± 34.66 69.91 ± 34.58
Lovász-Hinge 92.98 ± 10.28 80.57 ± 29.84 68.17 ± 37.82 98.73 ± 2.60 67.21 ± 36.06 59.6 ± 34.49 67.42 ± 34.23

Sum 93.26 ± 10.08 78.00 ± 32.57 68.06 ± 36.90 98.76 ± 2.59 67.53 ± 35.50 60.4 ± 34.20 68.17 ± 34.12
Mean 93.53 ± 10.36 84.11 ± 28.24 68.64 ± 37.03 99.35 ± 1.23 68.80 ± 35.79 62.77 ± 34.16 70.10 ± 34.05

Eigenloss 93.50 ± 10.60 83.31 ± 28.49 69.52 ± 36.50 99.28 ± 1.76 69.51 ± 35.31 63.24 ± 33.86 70.61 ± 33.68
Norm Eigenloss 93.12 ± 10.59 84.35 ± 28.65 65.74 ± 37.70 99.33 ± 1.61 66.13 ± 36.53 60.62 ± 35.21 67.93 ± 35.03

Table 4. LinkNet-Densenet121. Results of the model trained with the different loss functions, reported
over the test set of CVC-EndoSceneStill. Best values are indicated in bold.

Loss Function Accuracy Precision Recall Specificity F2-Score Jaccard Dice

Jaccard 94.71 ± 9.08 87.32 ± 20.08 81.92 ± 27.25 98.58 ± 3.05 79.84 ± 26.01 71.57 ± 28.02 79.44 ± 24.79
Dice 94.47 ± 9.90 86.44 ± 23.22 76.91 ± 34.45 99.19 ± 1.52 76.27 ± 33.16 69.71 ± 32.18 76.32 ± 31.22

Binary entropy 93.99 ± 10.18 84.52 ± 25.45 77.44 ± 34.21 98.70 ± 2.73 75.96 ± 32.98 68.74 ± 32.73 75.44 ± 31.57
Binary focal 94.39 ± 9.88 85.15 ± 25.81 77.04 ± 34.42 99.08 ± 2.07 75.99 ± 33.15 69.11 ± 32.62 75.71 ± 31.76

Tversky 94.68 ± 9.41 88.13 ± 21.48 78.47 ± 31.38 99.00 ± 2.37 77.74 ± 29.93 70.92 ± 30.11 78.12 ± 28.08
Focal Tversky 94.31 ± 9.64 85.96 ± 21.48 81.01 ± 29.48 98.52 ± 3.11 79.16 ± 27.99 70.84 ± 28.83 78.53 ± 26.54
Lovász-Hinge 94.89 ± 9.56 86.73 ± 22.64 79.62 ± 31.09 99.21 ± 1.29 79.02 ± 30.08 72.41 ± 29.88 79.13 ± 28.59

Sum 94.36 ± 9.65 84.13 ± 25.73 76.50 ± 34.19 99.01 ± 1.67 75.47 ± 32.69 68.36 ± 32.11 75.45 ± 30.70
Mean 94.11 ± 10.09 85.48 ± 26.24 74.92 ± 34.48 98.96 ± 2.67 74.17 ± 33.11 67.77 ± 32.82 74.7 ± 31.61

Eigenloss 94.59 ± 9.61 88.65 ± 18.25 80.23 ± 30.78 99.05 ± 1.92 79.18 ± 29.26 71.84 ± 29.25 79.07 ± 27.07
NormEigenloss 94.60 ± 9.86 87.79 ± 21.65 77.81 ± 32.85 99.16 ± 1.89 77.49 ± 31.66 71.57 ± 31.28 78.06 ± 29.85

At loss function level, the Jaccard and Tversky losses appear to provide the most stable results
along the different models. On the contrary, the binary cross entropy, the binary focal and the
Lovász-Hinge loss functions provide different results depending on the model. On the other hand,
models with the Densenet121 backbone obtain overall better results than models using VGG-16 for all
individual loss functions. Using U-Net (concatenation) or LinkNet (add) lead to similar results for the
individual loss functions.

Figures 2 and 3 show the boxplots for the accuracy and Jaccard index for the four models. Boxplots
for the rest of metrics are provided as Supplementary Materials (Figures S1–S5). While the accuracy is
more similar for all loss functions and models, the Jaccard index presents a greater variability and
differences among them.

The correlation matrix presents high values ranging from 0.659 to 0.898 outside the main diagonal
of the matrix for the four analyzed models. Therefore, correlation between the variables under study
can be considered high and significant (p-value ≤ 0.001 in all cases). Furthermore, the value of the
determinant of the correlation matrix was 0 for each model, so there is a linear relationship between
the variables under study. Next, for the Bartlett sphericity test value, we obtain a χ2 greater than
10,000 which indicates that there are high values outside the diagonal of the correlation matrix with
significance less than 0.001, for all models. In the KMO sample fit, the value ranged from 0.937 to 0.941
for the four models, which corroborates the results of the previous statistical parameters. Therefore,
we can conclude that the PCA can be applied to the variables under study in the four models.

The PCA analysis identified only one independent component for each considered model (Table 5).
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Table 5. PCA results. Com: Communality; α1n

U-Net-VGG-16 U-Net-Densenet121 LinkNet-VGG-16 LinkNet-Densenet121

Eigenvalue 5.803 6.076 5.913 5.998
% Variance 82.91 86.80 84.47 85.69

Loss function Com. α1n Com. α1n Com. α1n Com. α1n

Jaccard 0.875 0.935 0.819 0.905 0.843 0.918 0.819 0.905
Dice 0.845 0.919 0.894 0.946 0.864 0.930 0.878 0.937

Binary cross entropy 0.835 0.914 0.785 0.886 0.866 0.930 0.842 0.918
Binary focal 0.826 0.909 0.892 0.944 0.805 0.897 0.861 0.928

Tversky 0.881 0.939 0.906 0.952 0.842 0.917 0.881 0.939
Focal Tversky 0.884 0.940 0.869 0.932 0.888 0.942 0.878 0.937
Lovász-Hinge 0.657 0.811 0.911 0.954 0.805 0.897 0.840 0.916

Based on these results, the eigenloss was calculated using the coefficients of the first principal
component, α1n, from Table 5 in (Equation (17)) for each considered model. Results for the test set of
the models trained with its corresponding eigenloss are provided in the penultimate row of Tables 1–4,
as well as in the penultimate boxes of Figures 3 and 4. For comparison, we also analyzed other linear
combinations:

• Sum: where all coefficients are equal to 1.
• Mean: where all coefficients are equal to 1/7.
• Normalized eigenloss: where coefficients α1n are normalized using the formula.

α′1n =
α1n∑
n α1n

(18)

with n ∈
{
Jaccard, Dice, BCE, BF, Tversky, FocalTversky, Lovasz−Hinge

}
.
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The proposed eigenloss improves the general performance of individual loss functions in all
models, as it provides closer values to 100 in the seven metrics at the same time, although the maximum
value might be for any of the individual losses. It is interesting to remark that the F2-score of the
combined loss function improves, therefore providing a better balance between precision and recall
than the individual loss functions. Our proposed combination also minimizes variability in the
Jaccard index.

In comparison to other linear combinations, the eigenloss obtains better results than the sum and
the mean when LinkNet architecture is considered, regardless of the backbone. On the other hand, for
the U-Net, either the sum or the mean performs better.

3.2. Training and Testing Analysis

Table 6 summarizes the best epoch and the corresponding validation loss at which weights are
selected for prediction as indicated in Section 2.2.

Models with VGG-16 converge slower, the lowest epoch is 172 and 211 for the U-Net-VGG-16
and LinkNet-VGG-16, respectively. On the other hand, LinkNet-Densenet121 converges faster than
U-Net-Densenet121 for most losses. In general, all loss values in the best epochs are quite similar,
ranging from 0.12 to 0.20. These findings are also observable in Figures S6–S9 included as Supplementary
Materials. They show the evolution of the losses during training for the training and validation sets.
Peaks are produced when the learning rate is restored to its initial value.

Although there are no great differences in the initial convergence within each model, largest
differences are obtained in LinkNet-VGG-16, where Lovász-Hinge is the slowest one and the binary
cross entropy the fastest one among the individual loss functions (Figure 5). In all cases, the general
trend of the eigenloss is to run within the maximum and minimum values set by the individual
loss functions.
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Table 6. Best epoch (# Epoch) and value of the validation loss (Val Loss) for each model and loss function.

U-Net-VGG-16 U-Net-Densenet121 LinkNet-VGG-16 LinkNet-Densenet121

Loss Function # Epoch Val Loss # Epoch Val Loss # Epoch Val Loss # Epoch Val Loss

Jaccard 292 0.17 71 0.16 292 0.18 17 0.15
Dice 216 0.19 71 0.12 211 0.17 71 0.16

Binary cross entropy 292 0.16 71 0.15 292 0.15 211 0.14
Binary focal 198 0.20 153 0.19 292 0.15 17 0.16

Tversky 292 0.16 71 0.16 292 0.18 47 0.18
Focal Tversky 216 0.20 71 0.14 292 0.16 211 0.17
Lovász-Hinge 184 0.19 71 0.15 216 0.16 17 0.16

Sum 259 0.22 71 0.15 292 0.18 128 0.15
Mean 172 0.16 71 0.14 211 0.12 17 0.14

Eigenloss 211 0.19 114 0.17 211 0.14 17 0.16
Normalized

eigenloss 211 0.20 71 0.13 292 0.16 17 0.18
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Figures S10–S13 provided in the Supplementary Materials show the evolution of the loss, accuracy
and Jaccard index during training for the training and validation sets for each model and each loss
function. In all cases, accuracy values for train and validation sets remain very similar from the first
epochs, achieving values very close to 100. This is due to fact that the background class is considered in
the accuracy, so even when the polyp is not detected at all, accuracy is still high thanks to the negative
class. Therefore, accuracy is not the most suitable metric for polyp segmentation. On the other hand,
Jaccard index values in training and validation set vary along the whole training for all models and
loss functions. Moreover, it shows greater fluctuations, showing a more erratic behavior when VGG-16
is used as backbone. As it might be expected, Jaccard and Dice losses provide a more stable value for
the Jaccard index during training for the training and validation set, as the metric is either directly or
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indirectly included in the loss function for optimization. The proposed eigenloss remains acceptably
stable during training, reaching values around 60 in the best epoch.

4. Discussion

Computer-aided detection systems have the potential to improve colonoscopy [6]. In this way,
polyps, considered early precursors of CRC, can be detected, diagnosed and treated. In this work,
we have faced the problem of polyp detection by the application of segmentation models based on
deep learning. Specifically, we have analyzed the influence of seven loss functions on four models for
polyp segmentation and determined whether a PCA-based decomposition allows for the defining of a
non-redundant primal loss function that can outperform them and different linear combinations.

Through the application of PCA, the eigenloss was defined as a linear combination of seven
individual loss functions. It does improve overall performance over the individual loss functions for
the four considered models. On the other hand, and only for the LinkNet architecture, the eigenloss
performs better than the sum and the mean. Regarding the backbones, the eigenlos performs better
with the Densenet121 than VGG-16, in all cases. This might be due to the fact that VGG-16 presents a
more linear architecture that cannot extract enough details for segmenting complex structures such as
the polyp, due to the high level of visual similarity between healthy mucosa and lesion. Furthermore,
it is also worth mentioning that the eigenloss provides the most balanced results in terms of precision
and recall, therefore balancing false positives and false negatives.

Based on the experimental results of the individual loss functions, region-based loss functions
provide better results for polyp segmentation. While highest values remain in the individual loss
functions in many cases, the eigenloss improves the overall performance providing a more balanced
result among all metrics for each model. Therefore, one benefit of using the eigenloss is to include
the properties of both region and distribution-based loss functions in one single loss function, which
might be the reason for this balanced behavior, which arises from the PCA capability for projecting the
existing losses into a statistically independent eigenloss. This way, there is no need for choosing one
over the other, except in the case that one loss function behaves outstandingly well in all metrics. Due
to the fact that PCA provides a compression with information loss, the use of the eigenloss in this case
might hinder the performance if the individual loss function is used.

Our work can be straightforwardly compared to other works that also used the CVC-EndoSceneStill
dataset (Table 7), although regretfully, the rest of the authors do not provide all of the metrics included
in this work. Our proposed eigenloss leads to better results in all but one of the five comparable
metrics. Nevertheless, we acknowledge that properly ranking the methods is challenging and particular
guidelines would help stablish a common framework for comparison [76].

Table 7. Comparison of the eigenloss of the four models with other works that also use
CVC-EndoSceneStill as the dataset. Best values are indicated in bold.

Work Accuracy Precision Recall Specificity F2-Score Jaccard Dice

U-Net-VGG-16 93.00 ± 10.91 80.31 ± 31.35 65.07 ± 37.70 99.00 ± 2.25 65.45 ± 36.70 59.66 ± 35.32 67.04 ± 35.39
U-Net-Densenet121 94.43 ± 9.78 89.83 ± 21.63 77.39 ± 33.28 99.06 ± 2.18 76.41 ± 31.97 69.35 ± 31.55 76.33 ± 30.39

LinkNet-VGG-16 93.50 ± 10.60 83.31 ± 28.49 69.52 ± 36.50 99.28 ± 1.76 69.51 ± 35.31 63.24 ± 33.86 70.61 ± 33.68
LinkNet-Densenet121 94.59 ± 9.61 88.65 ± 18.25 80.23 ± 30.78 99.05 ± 1.92 79.18 ± 29.26 71.84 ± 29.25 79.07 ± 27.07

Vázquez et al. [39] 96.77 - - - - 56.07 -
Wichakam et al. [37] - 88.84 78.14 - - 69.36 78.61
Wickstrøm et al. [41] 94.90 - - - - 58.70 -

Analyzing the full training, accuracy values for train and validation sets remains very similar
from the first epochs, achieving values very close to 100 for all loss functions. Therefore, accuracy is
not the most suitable metric for polyp segmentation mainly because of the imbalanced problem. In
this situation, Taha et al. [77] recommend the use of distance-based metrics, such as the Hausdorff
distance, average Hausdorff distance or the Mahalanobis distance.
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This work also has limitations to be acknowledged. Only the CVC-EndoSceneStill dataset was
used. This publicly available dataset has a limited size, thus it might be possible that other datasets
behave differently, depending on the type and shape of polyps included in their images. Since the
imbalance level of the dataset have a great influence on metrics, a different dataset where polyps are
bigger or smaller might lead to a different combination. On the other hand, only seven metrics based
on the confusion matrix were used for the PCA analysis. The inclusion of the previously mentioned
distance-based metrics could also yield to different PCA results and therefore a different eigenloss.

Therefore, future works should firstly consider the use of different datasets for comparison as well
as images of normal tissue (frames containing no polyps at all). Another future study prospect relies
on the need for studying the influence of polyp size in the performance of the segmentation models
and loss functions. We also consider the inclusion of more complex loss functions to the study, such as
the rectified cross-entropy [78], random drop loss [79], the integrated Hausdorff-Sine loss [80] or the
enhanced softmax loss [81], which were not considered in this study mainly due to time and resources
constraints. Most of them are proposed for very specific cases, so it should be tested whether they are
also suitable for polyp segmentation. Regarding the selected models, performance of other U-net based
approaches could be further analyzed. These approaches have been proven to be highly effective for
different biomedical imaging applications [26,82,83]. In this comparison, it might be also interesting
to take into account prominent segmentation networks, such as DeepLab [84] or CCNet [85], which
the performs well in natural images, in order to study their suitability for polyp segmentation. Lastly,
it would also be interesting to establish a detailed analysis of transferability of PCA-based losses, in
order to further evaluate whether coefficients for the eigenloss can be reused, analyzing whether the
level of generalization is enough, or whether a new PCA analysis is required for each particular model.

5. Conclusions

In this work, we propose the use of PCA as a method to extract the coefficients of a linear
combination of seven individual loss functions. We have considered two different encoder-decoder
architectures with two different backbones. LinkNet-Densenet121 provides the best performance out
of the four models. Regardless of the backbone, if LinkNet is used, the eigenloss results in more stable
performance (all metrics have an acceptable value) in comparison to other linear combinations, such
as the sum or the mean. Convergence of models using VGG-16 as the backbone is slower than those
using Densener121. Further analysis is required to determine the transferability of PCA-based losses.
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