
Performance mutation testing:
hypothesis and open questions

Ana B. Sáncheza,∗, Pedro Delgado-Pérezb,∗, Sergio Seguraa,
Inmaculada Medina-Bulob

aETS Ingenieŕıa Informática, Universidad de Sevilla, Spain
bEscuela Superior de Ingenieŕıa,Universidad de Cádiz, Spain

Abstract

Performance bugs are common, costly, and elusive. Performance tests aim
to detect performance bugs by running the program with specific inputs and
determining whether the observed behaviour is acceptable. There not exist
mechanisms, however, to assess the effectiveness of performance tests. Mutation
testing is a technique to evaluate and enhance functional test suites by seeding
artificial faults in the program under test. In this new idea paper, we explore
the applicability of mutation testing to assess and improve performance tests.
This novel approach is motivated with examples and open questions.

Keywords: performance testing, mutation testing, performance bugs

1. Introduction and motivation

Performance bugs are those programming errors that lead to significant per-
formance degradation while preserving the program functionality [1]. Identi-
fying these bugs are of primary importance: they cause poor user experience,
low system throughput and waste of resources, which can easily frustrate users
and eventually result in considerable loss of money. For instance, consider the
performance bug found in the JFreeChart software shown in Figure 1. The bug
arises because the code traverses a dataset to compute a value called xxWidth.
However, if the dataset is not modified between successive calls to drawItem,
the recomputation of xxWidth in each call is redundant and, therefore, exhibits
a serious performance bug that should be fixed [1]. Such bugs are surprisingly
common: 7,603 performance bugs were identified in Mozilla Firefox, and 510 in
Google Chrome [2].

Performance bugs are different from functional bugs and require special test-
ing care. In general, the definition of performance defects is imprecise due to

IThis work was partially supported by the European Commission (FEDER) and the Span-
ish Goverment projects BELI TIN2015-70560-R and DArDOS TIN2015-65845-C3-3-R.

∗Corresponding authors (anabsanchez@us.es,pedro.delgado@uca.es)

Preprint submitted to Information and Software Technology June 15, 2018

public boolean render (Graphics2D g2 , Rectangle2D dataArea , . . .) {
. . .
for (item=f i r s t ; item <= l a s t ; item++){

r endere r . drawItem (dataset , s e r i e s , item . . .) ;
}
. . .

}

public void drawItem (XYDataSet dataset , int s e r i e s , int item , . . .) {
. . .
for (int i =0; i < itemCount ; i++){

xxWidth=Math . min (xxWidth ,Math . abs (pos−l a s t)) ;
}
. . .

}
Figure 1: Real performance bug in JFreeChart.

the oracle problem (e.g., how slow a computation should be to be considered a
performance bug). As such, they need much more time and effort to be detected
and fixed than functional bugs [3]. Performance bugs are typically detected by
running the program under test with specific inputs and checking whether the
observed performance (e.g., execution time) is within the expected boundaries
by using test cases and profilers. However, the selection of suitable inputs and
the assessment of the observed performance are challenging tasks [4, 5]. Also,
there is a lack of mechanisms to evaluate and improve the quality of performance
tests, which allow many performance bugs to remain unrevealed [5].

Mutation testing is nowadays deemed as a powerful method to measure the
fault-revealing ability of test suites. It is based on the injection of faults (mu-
tations) through some predefined rules (mutation operators) that are helpful to
assess the adequacy of a test suite in detecting plausible coding errors. This
technique has been mainly focused on source-code transformations to uncover
existing deficiencies in functional test suites. Even though this injection of
mutations has also been extrapolated to many other software engineering ac-
tivities [6], its use on non-functional properties is limited. An exception to this
could be those systems where properties like the execution time are especially
relevant and treated as a part of the functional specification. For example, in
a related paper, timed automata models –representing timeliness properties of
the program under test– were mutated to detect timing issues [7], instead of
testing them at the source-code level. Also, software refactoring based on code
mutations was applied to optimize the performance of a program [8], which is
different from our goal of assessing the quality of tests in detecting performance
issues. In this paper, we present different novel approaches to the generation
of mutants oriented to testing non-functional properties on the basis of the
following hypothesis:

Hypothesis: Performance mutation testing can help to evaluate and
enhance the fault detection capability of performance tests.

2

2. Performance mutation testing

In this section, we propose two different strategies for the application of
performance mutation testing, described below.

2.1. Performance mutants

This approach consists in defining specific performance mutation operators
that introduce performance faults in the program under test, i.e., changes in the
code that degrade the performance of the program without altering its function-
ality. We distinguish two different types of performance operators, depending
on whether they require preprocessing the program code to preserve its func-
tionality, or not, namely:

Context-dependent mutation operators. These operators introduce faults that
mimic real bugs by cleverly mutating code fragments. For instance, as noted
by Olivo et al. [1], the performance bug in Figure 1 can be fixed by previously
calculating the value of xxWidth and passing it as an argument to drawItem:

public boolean render (Graphics2D g2 , Rectangle2D dataArea , . . .) {
. . .
double xxWidth= calculateXxWidth(dataset);
for (item=f i r s t ; item <= l a s t ; item++){

r endere r . drawItem (dataset , s e r i e s , item , . . . , xxWdith) ;
}
. . .

}

Inspired by this performance bug, we could define a mutation operator that,
given the correct solution shown above, inverts the situation to recreate the code
in Figure 1: the operator would move the statement to calculate xxWidth into
the drawItem function. Similarly, Xu et al. [9] identified a common performance
degradation caused by the unnecessary creation of GregorianCalendar objects
inside a loop. Based on this idea, we could define an operator that moves the
object creation statements located before loops’ openings into the loops:

/∗ Origina l program vers ion ∗/ /∗ Mutant program vers ion ∗/

GregorianCalendar g = for (int i =0; i<l . s i z e () ; i++){
new GregorianCalendar(); GregorianCalendar g =

for (int i =0; i<l . s i z e () ; i++){ new GregorianCalendar();
.

} }

The mutant creates many objects inside the loop instead of just one outside
the loop. Theoretically, a performance mutant should be functionally equiva-
lent to the original program, i.e., it should preserve the program functionality.
Going back to the previous examples, before generating the mutants, we should
check that the value of xxWidth and the object g keep the same state between
successive iterations in the for loop. This is somehow connected with program
optimizations performed by compilers, e.g. loop-invariant code motion. This
leads to the following open questions:

3

Question set 1: How can the program be preprocessed to ensure its
functionality is not altered by the mutation? What is the cost of such
preprocessing? What is the connection with program optimization tech-
niques?

Question set 2: How many context-dependent performance mutations
operators can be identified? How often can they be applied?

Context-independent mutation operators. This approach proposes the definition
of mutation operators that are not dependent on the context, thereby prevent-
ing that functional errors arise. As an example, we could define an operator
that randomly inserts a noticeable delay into the code by calling a sleep method
into a loop (similar mutation operators have been proposed for multithreaded
applications but with the goal of modifying the program’s functionality). Op-
erators like this simulate the effect that real coding errors would produce. For
instance, the invocation to sleep resembles whatever sequence of unnecessary
instructions, such as in the previous examples, where a value or object was
needlessly recomputed. This fact leads to the following question:

Question 3: How close are context-independent performance mutants
to modelling real performance bugs?

Another type of performance mutation operators that can be considered are
those based on programming “anti-patterns” or “bad practices”. These habits
often introduce defects that have a negative impact on the program performance
(but not in the functionality). For instance, the following mutation example,
based on a real defect [1], transforms a set collection (s) into a generic list (ls)
before checking whether the collection contains certain elements. This change
worsens the execution time because generic types of collections have a slow
containment checking method that is invoked a linear number of times.

/∗ Origina l program vers ion ∗/ /∗ Mutant program vers ion ∗/

boolean f (HashSet<Foo> s , boolean f (HashSet<Foo> s ,
ArrayList<Foo> l){ ArrayList<Foo> l){

List<Foo> ls = new ArrayList<Foo>(s);
for (int i =0; i < l . s i z e () ; i++){ for (int i =0; i < l . s i z e () ; i++){

Foo elem = l . get (i) ; Foo elem = l . get (i) ;
i f (s . conta in s (elem)){ i f (ls . conta in s (elem)){

return true ; return true ;
} }
return fa l se ; return fa l se ;

} }

Question 4: How effective are mutation operators based on “bad prac-
tices” in evaluating and improving performance tests?

4

2.2. Functionally-equivalent mutants

Functional mutants have been traditionally produced under the assumption
that they only model functional errors. As such, surviving mutants are reviewed
and those that have the same functionality as the original program are then
tagged as equivalent (this is an undecidable problem and, therefore, it cannot
be fully automated). However, we might have overlooked the possibility that
those equivalent mutants do show a performance degradation. As an example,
Delgado-Pérez et al. [10] noticed that the number of iterations in a loop could
increase because of a mutation, but those additional iterations did not affect the
functionality of the program; they resorted to a timeout to kill that mutant. As a
result, we now propose going a step further and reusing functionally-equivalent
mutants, which have always been regarded as a stumbling block in mutation
testing. This is an innovative way to search for performance defects because, to
our knowledge, the effect of these mutations on the performance has never been
studied before. At this point, we wonder:

Question 5: How many functionally-equivalent mutants created with
traditional operators can be reused to assess performance tests?

The term equivalence leads to a question transversal to all these strategies:

Question set 6: What is an equivalent mutant in performance mutation
testing? What criteria should be used to detect them? How many of them
are generated and what is the cost of their identification?

3. Conclusion

This paper presents open questions on performance mutation testing that
have remained unexplored so far. On the one hand, we propose the generation
of performance mutants based on real bugs seeking not to alter the semantics
of the program. On the other hand, we suggest giving a new opportunity to
mutants that are found to be functionally equivalent to search for performance
defects. Previous research challenges need to be resolved and they are key to
enhancing the ability of tests to reveal performance bugs.

4. References

[1] O. Olivo, I. Dillig, C. Lin, Static detection of asymptotic performance bugs
in collection traversals, in: ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2015, pp. 369–378.

[2] S. Zaman, B. Adams, A. E. Hassan, A qualitative study on performance
bugs, in: IEEE Working Conference on Mining Software Repositories, 2012,
pp. 199–208.

5

[3] S. Segura, J. Troya, A. Durán, A. Ruiz-Cortés, Performance metamorphic
testing: Motivation and challenges, in: International Conference on Soft-
ware Engineering: New Ideas and Emerging Results Track, 2017, pp. 7–10.

[4] A. Nistor, T. Jiang, L. Tan, Discovering, reporting, and fixing performance
bugs, in: Working Conference on Mining Software Repositories, 2013, pp.
237–246.

[5] I. Molyneaux, The Art of Application Performance Testing: Help for Pro-
grammers and Quality Assurance, O’Reilly Media, 2009.

[6] M. Papadakis, M. Kintis, J. Zhang, Y. Le Traon, M. Harman, Mutation
testing advances: An analysis and survey, Advances in Computers.

[7] R. Nilsson, J. Offutt, S. F. Andler, Mutation-based testing criteria for
timeliness, in: Annual International Computer Software and Applications
Conference, 2004, pp. 306–311 vol.1.

[8] W. B. Langdon, M. Harman, Optimizing existing software with genetic pro-
gramming, IEEE Transactions on Evolutionary Computation 19 (1) (2015)
118–135.

[9] G. Xu, M. Arnold, N. Mitchell, A. Rountev, G. Sevitsky, Go with the flow:
Profiling copies to find runtime bloat, in: ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2009, pp. 419–430.

[10] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domı́nguez-Jiménez, A. Garćıa-
Domı́nguez, F. Palomo-Lozano, Class mutation operators for C++ object-
oriented systems, Annals of telecommunications 70 (3-4) (2015) 137–148.

6

