
Assessment of Class Mutation Operators for C++
with the MuCPP Mutation System

Pedro Delgado-Péreza,∗, Inmaculada Medina-Buloa, F. Palomo-Lozanoa,
A. García-Domíngueza, J. J. Domínguez-Jiméneza

aDepartment of Computer Science and Engineering, University of Cádiz, Cádiz, Spain

Abstract

Context: Mutation testing has been mainly analyzed regarding traditional mutation operators involving structured
programming constructs common in mainstream languages, but mutations at the class level have not been assessed
to the same extent. This fact is noteworthy in the case of C++, despite being one of the most relevant languages
including object-oriented features. Objective: This paper provides a complete evaluation of class operators for the
C++ programming language. MuCPP, a new system devoted to the application of mutation testing to this language,
was developed to this end. This mutation system implements class mutation operators in a robust way, dealing with
the inherent complexity of the language. Method: MuCPP generates the mutants by traversing the abstract syntax
tree of each translation unit with the Clang API, and stores mutants as branches in the Git version control system. The
tool is able to detect duplicate mutants, avoid system headers, and drive the compilation process. Then, MuCPP is
used to conduct experiments with several open-source C++ programs. Results: The improvement rules listed in this
paper to reduce unproductive class mutants have a significant impact in the computational cost of the technique. We
also calculate the quantity and distribution of mutants generated with class operators, which generate far fewer mutants
than their traditional counterparts. Conclusions: We show that the tests accompanying these programs cannot detect
faults related to particular object-oriented features of C++. In order to increase the mutation score, we create new test
scenarios to kill the surviving class mutants for all the applications. The results confirm that, while traditional mutation
operators are still needed, class operators can complement them and help testers further improve the test suite.

Keywords: Mutation testing, mutation system, C++, class mutation operators, object-oriented programming

1. Introduction

C++ is a popular industrial-strength multiparadigm
programming language, supporting concepts from both
structured programming and object-oriented (OO) pro-
gramming. However, because of its advanced features and
flexibility, it is not easy to learn. Inexperienced developers
may misunderstand parts of the language, increasing the
need for adequate testing. In this context, it is puzzling to
see that not much attention has been paid to perform mu-
tation testing on C++ programs. A survey of the overall
state of mutation testing [1] lists many mutation systems
for similar languages like Java or C#, but only a few com-
mercial tools for C++ that only apply some simple muta-
tions. Given the widespread use of C++, we can conclude
that the large gap between the systems for other languages

∗Corresponding author
Email addresses: pedro.delgado@uca.es (Pedro

Delgado-Pérez), inmaculada.medina@uca.es (Inmaculada
Medina-Bulo), francisco.palomo@uca.es (F. Palomo-Lozano),
antonio.garciadominguez@uca.es (
A. García-Domínguez), juanjose.dominguez@uca.es (J. J.
Domínguez-Jiménez)

and C++ must originate from the specific challenges that
C++ presents.

Mutation testing is a well-known fault-based technique
which has been used since the late 1970s to evaluate and
improve the quality of test suites designed for a system
under test (SUT) [2]. This technique is based on the in-
jection of simple changes into the code, following the rules
prescribed by a set of mutation operators usually based on
emulating real faults or promoting good coding practices.
The new versions of the program are called mutants. Mu-
tation testing is supported by the competent programmer
hypothesis, which explains why most software faults have
their origin in subtle defects. While Gopinath et al. [3]
found that real faults tended to be more complex than
most mutations, Just et al. [4] provided evidence that the
simple errors introduced in the mutations were related to
more complex ones. This is known as the coupling effect
hypothesis.

Mutation testing has been applied to different domains
as new technologies appeared. The popularity of OO pro-
gramming motivated the creation of class mutation oper-
ators for Java [5] and C# [6]. Nevertheless, existing tools
for C++ do not tackle mutation operators at the class

Preprint submitted to Elsevier July 15, 2016

level, i.e., operators injecting mutations concerning OO
features. We have not found any studies in the literature
in this regard for C++ either, while several authors have
evaluated sets of class mutation operators for Java [7, 8]
and C# [9].

This work aims to lower the barriers concerning the com-
plex task of building an OO-aware C++ mutation tool by
presenting the MuCPP system. MuCPP can produce use-
ful data regarding novel features of C++. In concrete
terms, this paper aims to evaluate the class-level mutation
operators for their validation. To the best of our knowl-
edge, a mutation tool for this purpose has not been de-
veloped so far. The abstract syntax tree (AST) produced
by Clang, a widely known open-source compiler, is used to
systematically inject the mutations in a robust and com-
prehensive way, taking into account the variety of issues
that can arise when analyzing C++ programs. Several
aspects of the tool are described: the class mutation op-
erators included, the process to produce the mutants and
the overall system architecture and functionalities.

In our previous work [10], we showed an initial version of
a set of class-level mutation operators for C++, conducted
two case studies to evaluate how mutants were distributed
across operators, and carried out a qualitative study on
three specific class-level operators. The tool was first out-
lined in another previous work [11]. This paper extends
the evaluation of the usefulness of the class-level operators
with new case studies and compares them with traditional
operators usingMuCPP, which is presented in more depth.
The relevant contributions of this paper are:

1. A collection of restrictions on the generation of
mutants (several of them are C++-specific). These
improvement rules reduce the number of unproductive
mutants: those mutants which do not help the pur-
pose of mutation testing as they do not provide inter-
esting information for the assessment of a test suite.
The conducted experiment, which evaluates these sit-
uations creating unproductive mutants, shows that
these rules enhance mutant effectiveness and the effi-
ciency of the system.

2. A set of solutions for several technical chal-
lenges involved in C++ mutation testing of
real-world programs, such as the detection of du-
plicate mutants, system headers and the full com-
mands to compile the source files analyzed. These so-
lutions allowed MuCPP to perform the experiments
in this paper. Generating mutants as Git branches
has been especially helpful to simplify implementa-
tion and save space without impacting scalability.

3. A quantitative evaluation of the distribution of
the mutants across five open-source programs,
showing the number of mutants generated by each
operator and various statistics about the mutations.
The experiment reveals that since the class-level op-
erators generate fewer mutants than traditional ones,
using these operators takes less time overall.

4. An assessment of the usefulness of class opera-
tors and a comparison with traditional opera-
tors. Mutation scores show that the tests distributed
together with these SUTs did not handle some of the
OO details. The class operators are shown to be useful
in suggesting key missing test scenarios and helping
find defects in the analyzed programs. The experi-
ments provide evidence that the scenarios needed to
kill certain class mutants may not be derivable from
just using the traditional operators.

The paper is structured as follows. Section 2 describes
the evolution of mutation testing in general, the existing
research and issues around C++ mutation testing, and
selects a metric for assessing operator quality. The next
section introduces the MuCPP C++ mutation system, the
implemented mutation operators and its approach across
the different phases of the technique. Section 4 lists vari-
ous restrictions imposed to improve operator effectiveness.
Section 5 provides research questions and Section 6 an-
swers them by discussing the results obtained in the con-
ducted experiments. Section 7 explores related work, and
the final Section 8 presents the conclusions and future re-
search lines.

2. Background

2.1. Mutation Testing Evolution

Mutation testing research dates back to the 1970s from
the ideas posed by Hamlet [12] and DeMillo et al. in
1978 [13]. In its early years, this technique was devel-
oped for a limited number of procedural languages such
as FORTRAN, Ada or C, creating sets of mutation opera-
tors for those languages commonly known as standard or
traditional operators. Some of these early landmarks are:

• Agrawal et al. [14] defined in 1989 a set of 77 mutation
operators for C, divided into four categories (state-
ment, operator, variable and constant mutations).
This collection constitutes a base for the composition
of sets of mutation operators for different program-
ming languages afterwards.

• King et al. [15] developed the tool Mothra including
22 operators to apply mutation testing to FORTRAN.

• Offutt et al. [16] composed a set of 65 Ada operators.

Woodward [17] collected all the research on mutation
testing from these first years. However, the appearance
of new languages boosted research in the late 1990s and
shifted the focus to other kinds of languages and do-
mains [1]. Hence, in a short period, the technique has
been applied to languages of diverse nature, and has also
been used to detect faults in some technologies related to
Web Services [18] or in the specification of models like
Petri Nets [19].

2

The number of languages that have been tackled with
this technique has definitely expanded, including OO lan-
guages. Although the OO paradigm became widely used in
the early 90s, research regarding mutation testing started
in 1999 with the definition of the first class operators for
Java [20]. The class-level mutation operators for Java were
refined and increased later in [21, 5, 7]. Furthermore, the
first empirical studies on the effectiveness of class muta-
tion operators have been accomplished recently [22, 6, 8].
Nonetheless, we can find an assortment of tools to test Java
programs since then, such as MuJava [7] or CREAM [23].

2.2. Challenges to Address in C++

When it comes to C++, it is no wonder that other lan-
guages have drawn more attention regarding object orien-
tation because of the difference in complexity. Regarding
the catalog of mutation operators, a rough approximation
was made by Derezińska [24], but no operators were for-
mally defined. The definition of a set of operators at the
class level was carried out recently [10]. In the case of
mutation systems for C++ [1], state-of-the-art commer-
cial software adopting mutation testing within their test-
ing techniques, like Insure++ and PlexTest, do not cover
mutations at the class level, but only some standard oper-
ations (e.g., the removal of expressions and subexpressions
in PlexTest). As for open-source systems, CCMutator [25]
is a mutation generator for concurrency constructs in C or
C++ applications.

The intricate structures involved in the analysis at the
class level and the variety of alternatives provided by the
language require thorough and arduous work. Indeed, the
compilers for C++ are more complex than compilers for
other languages because of the size of the grammar and
the ambiguities (the meaning of a token depends on the
context). At the same time, the compilers for this lan-
guage have to deal with overgeneration during parsing [26],
which would be a problem to solve if we consider develop-
ing our own C++ parser. Additionally, it is not possible to
use introspection and secondary but complex issues must
be addressed, like integrating the wide variety of C++
build environments for the SUTs into the mutation pro-
cess. Despite these difficulties, it is important to apply
mutation testing to C++ as it is an industrial-strength
language with widespread adoption in key strategic ar-
eas, like the defense, aerospace and telecommunications
industries. This language is placed in the third position of
popularity in the TIOBE index.1.

Traditional operators may not be sufficient to test OO
applications because of the new structures and features
added with this programming paradigm. Therefore, the
OO characteristics tackled by class operators require their
own research. The C++-specific features deserve special
attention as they may provide new knowledge in this field.

1http://www.tiobe.com/index.php/content/paperinfo/tpci/
index.html, in March 2016

2.3. Mutation Operator Quality

Mutants are classified depending on the output of their
execution. Thus, evaluating the mutants produced by each
operator is very important, as only some of the mutants
may be useful in the assessment of a test suite. In par-
ticular, operators generating a high number of equivalent
mutants are inadvisable because they represent false posi-
tives for missing test cases. Various papers have dealt with
the concept of quality of mutation operator: several of
them have used the mutation score (the ratio of killed mu-
tants to non-equivalent mutants) in each particular muta-
tion operator [27], while some others have considered new
dimensions like the number and kinds of mutants gener-
ated [6, 28].

Moreover, the orthogonality of several class operators
has been studied [22]. Cost reduction techniques, such
as selective mutation, have been analyzed while trying to
draw conclusions about the most effective operators [9]. In
other studies, mutants that are difficult to kill have been
valued over mutants killed by many test cases [28]. Trivial
mutants fall within this category of easy-to-kill mutants,
as they are killed by every test case exercising the muta-
tion [16].

Estero-Botaro et al. [29] recently defined a more accu-
rate metric of the quality of a mutant:

Qm =

0, m ∈ E

1− 1

(|M | − |E|) · |T |
∑

t∈Km

|Ct| , m ∈ D (1)

Where:

• M is the set of valid mutants.

• E is the set of equivalent mutants.

• D is the set of dead mutants.

• T is the test suite.

• Km is the set of test cases that kill mutant m.

• Ct is the set of mutants killed by test case t.

Consequently, the quality of a set of dead mutants can
be defined as:

QD =
1

|D|
∑
m∈D

Qm (2)

Mutant equivalence is one the major barriers to muta-
tion testing. The analysis of the surviving mutants is a
time-consuming and error-prone task that has to be done
manually. In the case of class mutation operators, the re-
sults in different studies show that equivalence is a more
relevant issue than when applying their traditional coun-
terparts [30], so the usage of a technique to reduce equiv-
alence is justified.

3

However, the approach in this paper is more in line with
the ideas posed by Offutt et al. [7], where different situ-
ations always creating equivalent mutants are filtered out
in MuJava to reduce the equivalence in various operators.
Upon an in-depth analysis of the context of each operator,
a mutation producing equivalence can be detected and,
therefore, a new criterion can be used to avoid that type
of mutants.

3. MuCPP Mutation System

In the following subsections we present the work un-
dertaken to apply mutation testing to C++ programs:
the construction of the C++ mutation system called
MuCPP2, its features and included operators.

3.1. Class Mutation Operators

The authors started out the process to apply mutation
testing to C++ programs with the development of a set
of mutation operators at the class level [10]. Research
around other similar languages like Java and C# was sur-
veyed in order to adapt existing class mutation operators
to C++ as well as new operators were defined. The list
of operators implemented in MuCPP can be seen in Ta-
ble 1. We should note that some of the operators defined
for C++ were not included in the system after performing
a review of the class operators assessed in the literature
as well as those available in other mature mutation tools
like MuJava [7] or CREAM [23]. For instance, MBC and
MNC were discarded from this study because they are too
similar to traditional operators in other languages to be re-
garded as class operators. In addition, SVR, a traditional
operator for FORTRAN in Mothra similar to MBC, was
the most prolific operator in the experiments conducted
by Offutt et al. [31]; however, the mutation score was still
100% in almost all the case studies when this operator was
removed.

The definition of these operators can be found in [10],
in addition to a complete comparison with the class op-
erators for Java. Still, a description of the particular and
outstanding characteristics about the operators inMuCPP
and also new information is summed up below:

1. Inheritance (I): Unlike other languages like Java, a
class can have more than a single direct base class in
C++; this fact is called multiple inheritance. More-
over, the scoping in C++ allows to reference the
members of classes which are deeper in the hierar-
chy. Thus, the ISI operator can create two mutants
in Figure 1, inserting a qualifier for the classes A and
B before the member variable n, because that variable
is present in both classes.

2https://ucase.uca.es/mucpp

Original classes:
c l a s s A{ c l a s s C: pub l i c B{

.
i n t n ; i n t n ;

} ; i n t m () {
.

c l a s s B: pub l i c A{ return n ∗2 ;
. } ;
i n t n ;

} ;

Mutant 1: Mutant 2:
c l a s s C: pub l i c B{ c l a s s C: pub l i c B{

.
i n t n ; i n t n ;
i n t m () { i n t m () {

.
r e turn A::n ∗2 ; r e turn B::n ∗2 ;

} }
} ; } ;

Figure 1: Example of mutants from the ISI operator in the same
location.

2. Polymorphism and dynamic binding (P): C++ re-
sorts to a virtual method table (also known as v-table)
to achieve a dynamic or late binding when calling a
method (the method is then looked up at runtime).
For this purpose, the method needs to be declared
as virtual so that the v-table is consulted and the
method is dispatched based on the runtime type of
the invoking pointer to object. This polymorphic be-
havior is attained with the usage of pointers and also
with references, which must be initialized and cannot
reference another object once they are created. With
respect to the type casting of objects, C++ provides
specific casting operators apart from the generic form.
The dynamic_cast conversion includes, in a safe way,
the downcasting of pointers/references as well as the
upcasting.

3. Method overloading (O): Method or function over-
loading is the ability that allows to declare several
methods on a context with the same name, provided
that they differ in the type or number of parameters.
The possibility of adding default parameters is a point
to take into account as the same method can be in-
voked with different numbers of arguments.

4. Exception handling (E): Throwing and catching ex-
ceptions is an important mechanism to control and
handle errors in a uniform manner, which is closely
related to object orientation. For instance, throwing
exceptions is an alternative to ensure the correct con-
struction of objects, which is a fundamental aspect in
C++. Exception handling requires attention because
different exceptions can be raised in a try-catch block.

5. Object and member replacement (M): Class members
can be confused when referenced, especially if they
belong to the same semantic field. The same applies
to similar classes in a class hierarchy. The operators
in this block simulate this kind of faults.

4

Table 1: Mutation Operators at the Class Level Included in MuCPP
Block Oper. Description

Inheritance IHD Hiding variable deletion
IHI Hiding variable insertion
ISD Base keyword deletion
ISI Base keyword insertion
IOD Overriding method deletion
IOP Overriding method calling

position change
IOR Overriding method rename
IPC Explicit call of a parent’s

constructor deletion
IMR Multiple inheritance replacement

Polymorphism PVI virtual modifier insertion
and dynamic PCD Type cast operator deletion
binding PCI Type cast operator insertion

PCC Cast type change
PMD Member variable declaration

with parent class type
PPD Parameter variable declaration

with child class type
PNC New method call with child class type
PRV Reference assignment with

other comparable variable

Method OMD Overloading method deletion
overloading OMR Overloading method contents replace

OAN Argument number change
OAO Argument order change

Exception EHC Exception handling change
handling EHR Exception handler removal

Object MCO Member call from another object
and member MCI Member call from another
replacement inherited class

Miscellany CTD this keyword deletion
CTI this keyword insertion
CID Member variable initialization deletion
CDC Default constructor creation
CDD Destructor method deletion
CCA Copy constructor and assignment

operator overloading deletion

6. Miscellany (C): This block gathers some other oper-
ators checking different language features, mainly re-
garding the construction of objects. We can mention
copy constructors and destructors, or the initializa-
tion of variable members through initialization lists in
the constructors because a direct initialization cannot
be performed. CID has been redefined so that it only
considers the initialization list.

3.2. Mutation Operator Implementation

The technique used to introduce the mutations into the
code and create correct mutants is a crucial step in the
whole process of applying mutation testing to a language.
In the case of C++, the determination of mutation loca-
tions (where mutation operators can be used) has been a
major concern stemming from the complexity and flexi-
bility in the language. Given the challenge presented by
inserting simple changes in a program, the use of a compre-
hensive and full-fledged parser yields a much more robust
detection of mutation locations. The selected parser is
Clang, a front-end developed for the LLVM project which
is dedicated to the C family of languages (including C++).

This parser guarantees a complete coverage of the gram-
mar and allows us to conceive operations on the code which
would be unattainable otherwise.

The method followed to inject mutations resorts to the
abstract syntax tree (AST) generated by Clang to ana-
lyze and transform the code. The approach of travers-
ing the AST has also been taken in other mutation sys-
tems for mainstream languages, like Major for Java [32],
whereas Clang has been used in CCMutator [25] for multi-
threaded C/C++ programs and MILU [33] for the C pro-
gramming language. The main benefit of analyzing the
AST is the consistent search of potential locations, omit-
ting higher-level details. Mutation locations can be deter-
mined through the pattern-matching facilities in Clang.
This is not a pattern matching based on the concrete syn-
tax of the language as in other existing mutation tools,
thus avoiding some practical issues that arise in those sys-
tems [34]. Class mutation operators deal with structures
much more intricate than the ones mutated by traditional
operators. Thus, this approach is very convenient to de-
tect certain type of complex declarations or expressions
beyond the most basic situations or elements.

3.3. MuCPP Architecture
MuCPP, as most of the existing mutation systems,

works in three distinct phases: analysis, mutant genera-
tion and test execution. These are described below and
the entire process can be seen in Figure 2:

Analysis
MuCPP traverses the AST to study the code and deter-

mine where mutation operators can be applied. The set
of class-level operators shown in Section 3.1 is available in
the system and another set of operators can be added at
any moment: the framework can be extended in a modular
way to cover all the aspects of the language.

In this step, the tester provides one or more C++ files to
the tool. Their ASTs are created and then visited for each
of the operators. Note that all operators are executed at
the same time, so each AST is only traversed once. This
fact avoids introducing system overhead if the entire tree
had to be visited as many times as operators were enabled.

Mutant generation
Mutants are created in this phase, each one only repre-

senting a single modification (first order mutation). Each
mutant is a clone of the original program except for the
modified files. Therefore, the files remaining unchanged
are also stored in the clone. However, mutants are not cre-
ated as new directories: each one is generated as a branch
with a unique name in the Git version control system3.
Thus, only the changes with respect to the original ver-
sion occupy space on disk, allowing for a huge reduction
of storage resources (see Section 3.4). This method allows

3http://git-scm.com

5

testing each mutant as a stand-alone program because the
mutant contains all necessary files to build the program.

Test execution
Mutants are run against the tests defined for the SUT,

reporting preset values when a mutant fails (1) or passes
(0) a test. Then, these results are used to determine
whether the mutants are dead or still alive after the test
suite execution. MuCPP has been implemented in such
a way that the tester is not limited to a specific testing
framework. This is possible provided that the results of
the test suite execution meet the output format that is
expected by the tool. A timeout has been implemented,
which can be configured depending on the tests run; the
injected mutation can lead to unexpected behavior, so the
timeout will stop the execution of the test when exceeding
a reasonable time.

The testing process for the mutants derived from class
mutation operators requires a test suite where objects be-
longing to the mutated classes are exercised. Thus, we
have to differentiate test cases from test scenarios:

• Test case: It checks the state of one or more objects
at a particular time. A test case is a single assertion
to confirm that the response of concrete actions is the
expected result.

• Test scenario: A scenario describes a particular logic
where some objects work together. It may encompass
different test cases, where a test scenario is tested by
various test cases checking that the target of the sce-
nario is achieved.

Thus, the tester creates several test scenarios including
different kinds of test cases to check the correct operation
of a set of classes and their members. Still, not only the
test cases determine whether a mutant is killed or not, but
a different behavior can be exhibited at any moment dur-
ing the scenario execution, such as a runtime error or a
timeout. Therefore, a test scenario may fail at any mo-
ment, even passing all the test cases.

3.4. Remarks

Dependency analysis: MuCPP requires the informa-
tion handled by the build system of each SUT to correctly
parse its source files. For instance, the tool should be
aware about header file paths. This information and other
configuration options can be found in the commands used
to compile each source file in a project. This informa-
tion can be provided through a JSON compilation database
file4, which can be automatically generated with CMake.
Header files: The AST contains the code of the head-

ers included in the supplied files. The system is able to
distinguish the user header files from the ones marked as

4http://clang.llvm.org/docs/JSONCompilationDatabase.html

Figure 2: General MuCPP work-flow.

system headers, only considering the former kind of head-
ers for the insertion of mutations. Thus, if the user does
not want a particular header file being mutated, this fact
can be conveyed to the tool with the appropriate option.
This is specially useful when working with third-party “lite
libraries” provided by a single header placed within the
project directory.

Git version control system: This is the first use of
Git branches in a mutation tool as far as the authors know.
Previously, the SVN version control system had been used
to reduce space when storing mutants [23]. However, Git
features make this version control system more efficient for
mutation testing than SVN; Git is faster when switching
between branches and when committing changes, as Git
can be informed about the modified files. Although this
usage of Git is unusual, the system has shown the ability
to handle a large number of mutants without experiencing
performance issues. As an illustration, during one of the
case studies in Section 5 (KatePart), two sets of 2,127
and 54,984 mutants were generated: Git spent the same
average time per mutant for both sets (0.174 seconds on
a non-SSD hard disk). This shows that Git can scale to
large numbers of mutants without problems.

Duplicate mutants: MuCPP has been designed to
prevent the creation of duplicate mutants. As commented
in the analysis phase, the system enables parsing vari-
ous source files in the same execution, which are analyzed
sequentially. Because of header files being contained in
the AST and the same headers being included in different
source files, a class could be analyzed more than once, lead-
ing to creation of the same mutants. Segura et al. [30] dis-
tinguishes the terms “generated” and “executed” mutants
when carrying out the testing process in Java because of
the existence of reusable classes. Thus, MuCPP saves a
list of the locations mutated by each operator, ensuring
that every mutant represents a different fault.

6

4. Implementation Criteria for
Operator Improvement

The main goal when implementing a mutation system is
to obtain mutation operators which produce valid but also
useful mutants. This section aims to address how impos-
ing different rules or restrictions on the implementations
of the operators can result in mutants of a higher quality.
Although it is not mandatory in a basic implementation of
an operator, reducing the number of mutants that do not
help in evaluating the test suite may improve the effective-
ness of the mutation testing technique, imposing less work
on the tester and reducing the computational requirements
of the approach.

In this regard, the idea is to avoid the generation of what
we term unproductive mutants: those that are not useful
for the assessment of the test suite. They include equiv-
alent, invalid and trivial mutants (see Section 2.3). The
generation of these mutants should be avoided as much as
possible. However, in general, it is not possible to avoid
every unproductive mutant: equivalence is an undecidable
problem, and some restrictions can be very complex to
implement.

Several studies exist identifying class-level mutants that
should be avoided, by pointing to different situations in
each concrete mutation operator [7, 22]. In this work,
these situations are described in general instead of for each
operator. Every case detected in this regard followed a
systematic process:

1. When analyzing the generated mutants, a situation
creating unproductive mutations could be located in
a particular operator.

2. The detected case was then thoroughly studied to de-
termine whether it was a one-time situation or it could
be generalized as always creating unproductive mu-
tants.

3. A feasibility study in terms of implementation was
undertaken.

4. Then, the whole set of operators was processed to
establish whether that situation could be extrapolated
to other operators, creating an improvement rule, or
it was an isolated occurrence. In the former case, the
steps 2 and 3 were performed again in each of the
concerned operators.

Bearing in mind that mutation testing is a white-box
technique, most of the improvements are closely linked to
C++ because they have been directly derived for the lan-
guage under study. Still, some of these rules may apply
to other OO programming languages. In addition to some
particular cases implemented in specific operators, the fol-
lowing general improvement rules have been identified and
carried out in the corresponding operators:

1. Check for triviality : In the operators related to con-
structors and destructors, deleting them would be use-
less if the compiler provides them with the same func-
tionality by itself. This happens when the method is

trivial: it has no initializers or the base classes are ini-
tialized with their default constructors, or the method
has an empty definition.

2. Member access control : When replacing a reference to
a member, if the member selected for the replacement
belongs to the same class where it is referenced from,
the access level is irrelevant. Otherwise, the access
to the member needs to be checked to know whether
that reference is allowed within that class.

3. Declaration scopes: Several operators replace a men-
tion of a class to another class, but the new class may
not have been declared yet at that point. Thus, it is
necessary to check if the new class is available at the
location to be mutated.

4. Explicit invocation of constructors: If a non-default
constructor of a base class is invoked, this call cannot
be removed if the base class does not have an explicit
no-argument constructor. In this case, the class has
to be always initialized explicitly as the compiler does
not provide the default constructor.

5. Check the invoked member : A frequent reason for the
existence of equivalent mutants is that the referenced
member is still the same after the mutation. For in-
stance, if a member of a base class is referenced with
Base::member but the member has not been overrid-
den in the child class, the mutant produced by ISD
by removing Base:: will be equivalent to the original
program.

6. Attributes marked as const : Constant attributes re-
quire an explicit initialization. Hence, CDC for in-
stance should not remove the default constructor if
the class contains a constant attribute. Likewise, IHI
will produce an invalid mutant when inserting an at-
tribute marked as const in a child class: the variable
would need to be initialized in the constructors. This
also applies to reference type attributes.

7. Default arguments: When a method call is changed
to invoke another method, default arguments must
be taken into account: the list of parameters of a
method needs to accept the arguments provided in
the invocation.

8. Pure virtual methods: Several mutations result in
pure virtual methods being called: these methods
have no definition, resulting in invalid mutants. As
an illustration, if IOD deletes an overriding method,
the inherited method will be called instead when ref-
erenced. This will cause a compilation error if that
method is marked as pure virtual.

9. Infinite recursion: Sometimes, the mutation can make
a method calls itself indefinitely, as in ISD when
deleting the base class qualifier within the overrid-
ing method (see Figure 3). This state leads to trivial
mutants that would be killed by any test case covering
the mutation.

7

Original:
c l a s s A{ c l a s s B: pub l i c A{

.
i n t m() { } i n t m () { . . . A : :m() ; . . . }

} ; } ;

Mutant:
c l a s s B: pub l i c A{

.
i n t m () { . . . m(); . . . }

} ;

Figure 3: Example of the “infinite recursion” rule for the ISD oper-
ator.

5. Experimentation with the Class Mutation Op-
erators included in MuCPP

5.1. Research Questions
The general research goal of the experiments is to eval-

uate whether applying the class mutation operators im-
plemented in MuCPP is useful and cost-effective. To this
end, the following research questions will be answered:

RQ1: What is the impact of the reduction of unpro-
ductive mutants in the efficiency of the muta-
tion system? We aim to know whether the reduc-
tion of unproductive mutants has a relevant effect in
the cost of applying mutation testing.

RQ2: What is the quantity and distribution of mu-
tants generated with the class mutation opera-
tors? We aim to perform a quantitative analysis of
the class-level mutants. Then, we want to compare
the set of class operators with the set of traditional
operators to know which of them gives rise to a higher
computational cost.

RQ3: Are class mutation operators useful to reveal
missing tests? The mutation scores produced after
the execution of the class-level mutants will indicate
whether class operators are useful to design test cases
and scenarios that were missing.

RQ4: To which degree do class-level and traditional
mutants subsume each other? There may be
some test scenarios in the test suites which are only
necessary to kill class-level mutants but not tradi-
tional mutants. We will also compare the minimal test
suites that cover all operators (traditional and class
operators) with those covering only the traditional op-
erators. If the former require more tests than the lat-
ter, it will show that the class-level operators provide
valuable information that is not available through the
traditional operators.

5.2. Applications and Test Suites
We have selected several existing open-source libraries

and applications to avoid the potential bias of using a sin-
gle case study. They are briefly described below:

• Matrix TCL Pro (version 2.2)5: a library for perform-

5http://www.techsoftpl.com/matrix/download.php

ing matrix algebra calculations in C++ programs.

• Tinyxml2 6: a lightweight and efficient XML parser
that can be integrated into C++ applications, com-
monly used for data serialization.

• XmlRpc++ (version 0.7)7: an implementation of the
XML-RPC protocol for client-server communication
over HTTP with other C++ programs.

• KMyMoney (version 4.6.4)8: a KDE desktop appli-
cation for personal finance management.

• KatePart9: a text editor component with many ad-
vanced features, common in the KDE desktop envi-
ronment.

The selected libraries are reused in many other appli-
cations. For instance, XmlRpc++ is used in SIREMIS
(Open-Source Web Management Interface for SIP Rout-
ing Engines)10 and ROS (Robot Operating System)11. In
the case of Tinyxml2, we can mention mFAST 12, an ef-
ficient implementation of the FAST protocol. KatePart
is used by various popular KDE applications, such as the
Kate text editor, the Konqueror browser or the KDevelop
IDE.

Different characteristics and measurements of these pro-
grams are collected in Table 2, providing an overall picture
of their complexity13. We have also included the time that
the original programs spend executing their test suites.
Table 3 complements the information about the SUTs for
the quantitative analysis by classifying their classes into
four ranges according to the lines of code. For each pro-
gram, the number of classes belonging to each group (C)
and the overall percentage (C%) are shown. The last col-
umn presents the total percentage of classes within each
range.

For the experiments in this paper, the test suite dis-
tributed together with these applications has been used: a
simple library and a script were developed so that the dif-
ferent programs reported the results to MuCPP. As a final
remark, we selected a manageable set of all the mutants for
the experiments in Section 6, in order to be able to check
their results. These mutants come from the most repre-
sentative parts of the SUT covered by the test suite. For
the quantitative study to answer research question RQ2,
however, we studied the whole code in the SUT.

6http://github.com/leethomason/tinyxml2
7http://xmlrpcpp.sourceforge.net/
8http://sourceforge.net/projects/kmymoney2/
9https://kate-editor.org/about-katepart

10http://siremis.asipto.com
11http://www.ros.org
12http://sett.ociweb.com/sett/settOct2013.html
13The name of these programs have been abbreviated in the tables

throughout the paper: Matrix TCL Pro (TCL), XmlRpc++ (RPC),
Tinyxml2 (TXM) and KMyMoney (KMY) and KatePart (KAP).

8

Table 2: Metrics About the SUT Used in the Experiments
Measure TCL RPC TXM KMY KAP

Classes 9 13 20 68 365
Lines of code 3,228 2,194 2,620 29,094 57,833
Constructors (mean) 3.0 1.5 0.9 1.7 0.9
Methods (mean) 21.1 11.2 15.6 21.5 14.5
Attributes (mean) 2.6 3.8 2.9 4.8 5.3
Inheriting classes 0 5 8 27 135
Inherited members (mean) 0.0 6.6 41.1 18.9 20.9
Depth inheritance (max.) 0 1 1 2 2
Direct bases (max.) 0 1 1 3 14
Test suite (seconds) 0.5 0.8 1.7 4.0 141.1

Table 3: Number of Classes in the Analyzed SUT by Range of Lines of Code
TCL RPC TXM KMY KAP Total

Range C C% C C% C C% C C% C C% C C%

0-100 7 77.8 7 53.9 13 65.0 38 55.9 245 67.1 310 65.3
101-300 1 11.1 3 23.0 3 15.0 12 17.6 67 18.4 86 18.1
301-500 0 0.0 2 15.4 3 15.0 6 8.8 25 6.8 36 7.6
+500 1 11.1 1 7.7 1 5.0 12 17.6 28 7.7 43 9.0

5.3. Experimental Procedure
To answer RQ1:

A basic version of the operators was prepared using the
approach explained in Section 3.2. As a second step, an
improved version of the operators was implemented after
a thorough study of each operator. Hence, the rules de-
scribed in Section 4 were automated in the correspond-
ing operators. The mutants generated in both versions
were compared to check if the improved version properly
avoided unproductive mutants. The generation and ex-
ecution times as well as the storage requirements were
measured in both cases to calculate the enhancement in
the efficiency of the mutation system. A tailored timeout
for each SUT was set to stop a test scenario if it did not
respond after a reasonable time.

To answer RQ2:
Different measurements were computed to study the dis-

tribution of the generated mutants across class operators
on real programs. Traditional mutants were also generated
to compare the number of mutants created with the two
types of operators.

To answer RQ3:
The mutation score using class operators was calculated

for each SUT. The surviving mutants were analyzed, and
then we tried to add new test cases to kill the surviv-
ing non-equivalent mutants. Each test scenario is usually
written with a goal according to the SUT. In this way, the
augmentation of the test suite to kill the surviving mutants
has been performed as follows (see Section 3.3):

• A new test case is inserted in an existing scenario
when the test case needed is closely related to the
logic of that scenario.

• A new test scenario is created when, in our view, there
are no test scenarios checking a particular use of the

program. This scenario may include some test cases.
Thus, several test cases not needed to kill the targeted
mutant were also inserted to complete the scenario
and make it as general as possible.

To answer RQ4:
Two different experiments using the execution results of

traditional and class mutants were prepared. In the first
experiment, we created for each case study 30 test suites
derived from the augmented test suite which were ade-
quate for the set of class mutants. Then, we applied those
test suites to the set of traditional mutants and calculated
an average mutation score. We also prepared the reverse
experiment by computing the mutation score of class mu-
tants with adequate test suites for the set of traditional
mutants.

In the second experiment, we defined a metric to know if
class mutants added test cases with respect to traditional
mutants. Let T be the test suite used, Mt the results of
running each traditional mutant against each test scenario
in T , and Mc the analogue of Mt for class mutants. The
following procedure was carried out for each SUT:

1. Obtain Mt, Mc, and also Mt∪c as the combination of
the results of Mt and Mc.

2. Minimize the test suite we are using for Mt, Mc and
for Mt∪c; we will refer to these minimal test suites
as TM(Mt), TM(Mc) and TM(Mt∪c) henceforth.
When minimizing the test suite we obtain those test
scenarios which are necessary to kill the same mutants
as the complete test suite T , thus avoiding redundant
test scenarios.

3. Compare the sets TM(Mt) and TM(Mt∪c). In this
regard, the comparison can yield two results:
• |TM(Mt∪c)| = |TM(Mt)|, that is, the size of

the minimal test suite for the set of traditional
mutants is not affected when adding the mutants
at the class level.

9

• |TM(Mt∪c)| > |TM(Mt)|, that is, the size of
the minimal test suite for the set of traditional
mutants increases when considering the mutants
at the class level.

4. Compute the metric Td, defined as:

Td =
|TM(Mt∪c)| − |TM(Mt)|

|TM(Mt∪c)|
(3)

This metric will allow us to know what proportion
of tests from the minimal test suite TM(Mt∪c) ap-
pear when considering the class mutants in addition
to the traditional ones. Notice that if |TM(Mt)| =
|TM(Mt∪c)|, then Td = 0. Also if TM(Mt) = ∅, then
Td = 1; therefore, 0 ≤ Td ≤ 1. We should note that
Td depends on T , as Mt and Mt∪c have been initially
obtained from the complete test suite T .

We compared the metric QD (see Equation 2 in Sec-
tion 2.3) for the set of traditional and class mutants to
assess if the value of Td is affected by the fact that the test
suite was improved only inspecting the surviving class mu-
tants.

5.4. Experimental Setup
As mentioned in Section 5.3, the class mutation oper-

ators have been compared with a set of traditional oper-
ators. Table 4 lists the traditional operators included in
MuCPP. We have adapted a set of operators for struc-
tured languages (e.g. C or FORTRAN) that have been
thoroughly studied in the literature [30, 9, 8]. Offutt et
al. [35] found that focusing on replacing primitive opera-
tors sufficed to efficiently implement mutation testing for
these languages. When implementing some of these oper-
ators, we can opt for (1) generating all possible mutations
per mutation location, (2) producing a sufficient set of
non-redundant mutations [36, 37] or (3) introducing just
one mutation in order to further reduce the cost. MuCPP
implements option (1) for most of its operators, except
for ARB, ROR, LOR and ASR, in which option (3) is
implemented. For those operators, the tool performs one
replacement (for instance, ROR replaces each appearance
of the relational operator >= only with >), following a
similar approach to PITest14.

All the experiments were carried out on a server
equipped with an Intel Xeon 2.60 GHz CPU and 16GB
RAM running Ubuntu 14.04. The total execution time has
been measured using the standard Unix utility time, while
the execution, compilation and Git times were measured
using the C++ standard library chrono. Concerning RQ4,
we used an ad-hoc algorithm to produce a non-redundant
and minimal test suite. This algorithm computes the first
minimal test suite with respect to the execution order of
the test scenarios, as there may be multiple minimal test
suites of the same size. This allows us to properly compare
TM(Mt) and TM(Mt∪c).

14http://pitest.org/quickstart/mutators/

Table 4: Traditional Mutation Operators included in MuCPP
Oper. Description

ARB Arithmetic Operator Replacement (Binary:+,−,∗,/,%)
ARU Arithmetic Operator Replacement (Unary:+,−)
ARS Arithmetic Operator Replacement (Short-cut:++,−−)
AIU Arithmetic Operator Insertion (Unary:−)
AIS Arithmetic Operator Insertion (Short-cut:++,−−)
ADS Arithmetic Operator Deletion (Short-cut:++,−−)
ROR Relational Operator Replacement

(<,<=,>,>=,==,!=,not eq)
COR Conditional Operator Replacement (&&,and,||,or)
COD Conditional Operator Deletion (!,not)
COI Conditional Operator Insertion (!,not)
LOR Logical Operator Replacement (&,|,ˆ)
ASR Short-Cut Assignment Operator Replacement

(−=,+=,∗=,/=,%=)

Table 5: Reduction of Mutants for Improved Class Operators Gen-
erating Fewer Mutants in the Analyzed SUT

Oper. Basic Improved Reduction Red.%

IHI 223 152 71 31.8
ISD 16 2 14 87.5
ISI 98 8 90 91.8
IOD 201 43 158 78.6
IPC 67 35 32 47.8
IMR 3 0 3 100.0
PCD 38 13 25 65.8
PCI 2,324 901 1,423 61.2
PCC 5 0 5 100.0
PMD 458 453 5 1.1
PPD 334 261 73 21.9
OMD 340 199 141 41.5
OAN 33 27 6 18.2
CID 323 300 23 7.1
CDC 23 15 8 34.8
CDD 74 28 46 62.2

Total 4,560 2,437 2,123 46.6

6. Results and Discussion

6.1. Evaluating the Reduction of Unproductive Mutants
The reduction of mutants achieved by the improvement

rules listed in Section 4 has been computed for every SUT.
Table 5 shows how many mutants were produced in the
original and improved versions, for those operators that
produced fewer mutants after their improvement. The dif-
ference between the basic and the improved version (Re-
duction) and the percentage of reduction in the mutants
obtained (Red.%) are also presented.

The total percentage of mutants excluded by the im-
provement rules in 16 mutation operators was 46.6%. This
percentage should be taken with caution because of the few
mutants produced in various operators and the varying re-
ductions among the operators. In relation to the complete
set of class operators, the reduction represents 32.1% of
the total number of mutants. As for the individual re-
sults, the removal of all the mutants from IMR and PCC
is remarkable. In contrast, the number of mutants was
not reduced for other operators due to the characteristics
of the SUTs.

Table 6 shows a complete list of times measured when
applying mutation testing to each SUT. Results have been
calculated for the basic and the improved version of the op-
erators, as in Table 5. The time for each version has been

10

Table 6: Times for the Generation of Mutants and Test Suite Execution in the Analyzed SUT with the Basic and the Improved Version of
Class Operators

Basic version Improved version

Generation Test suite execution Generation Test suite execution
SUT |M | Git Total Git Comp. Exec. Total — |M | Git Total Git Comp. Exec. Total

TCL 172 5.7 11.2 0.00 0.13 0.02 0.17 137 4.7 9.3 0.00 0.11 0.02 0.13
RPC 244 7.5 23.2 0.01 0.32 0.06 0.39 191 5.7 19.0 0.01 0.27 0.06 0.35
TXM 1,140 37.6 39.5 0.01 0.22 0.17 0.41 614 20.2 22.2 0.01 0.10 0.12 0.23
KMY 2,289 100.6 163.8 0.14 9.86 0.84 10.84 1,421 62.5 123.5 0.09 7.17 0.75 8.01
KAP 2,768 481.6 526.1 0.82 24.87 47.10 72.80 2,127 371.3 413.5 0.68 20.50 44.28 65.46

Generation times measured in seconds; Test suite execution times measured in hours.

Table 7: Storage Resources for Class Mutants in the Analyzed SUT
SUT |M | Original Git Mean

TCL 137 0.3 6.9 0.05
RPC 191 2.5 12.0 0.05
TXM 614 0.9 24.0 0.04
KMY 1,421 96.0 167.0 0.05
KAP 2,127 520.0 754.0 0.11

Disk space measured in MB.

Table 8: Distribution of Class Mutants Generated by SUT and Op-
erator, Divided by the Categories in Table 1

Oper. TCL RPC TXM KMY KAP Total

IHD 0 0 0 1 1 2
IHI 0 4 48 42 762 856
ISD 0 1 0 2 2 5
ISI 0 3 0 6 18 27
IOD 0 3 25 48 98 174
IOP 0 0 8 6 15 29
IOR 0 15 11 31 347 404
IPC 0 1 0 37 78 116
IMR 0 0 0 0 0 0

PVI 0 0 0 3 1 4
PCD 0 0 0 12 116 128
PCI 0 8 324 493 3,988 4,813
PCC 0 0 0 0 32 32
PMD 0 2 11 62 1,269 1,344
PPD 0 4 21 361 370 756
PNC 0 0 0 0 2 2
PRV 0 0 0 0 0 0

OMD 46 19 61 92 77 295
OMR 36 15 0 75 65 191
OAN 0 0 0 14 75 89
OAO 0 0 0 0 0 0

MCO 3 88 19 677 7,369 8,156
MCI 0 0 39 0 108 147

EHC 0 2 0 27 0 29
EHR 0 0 0 0 0 0

CTD 0 0 0 0 0 0
CTI 0 0 0 0 15 15
CID 40 17 34 152 832 1,075
CDC 0 2 3 7 29 41
CDD 2 5 6 8 84 105
CCA 10 2 4 4 10 30

Total 137 191 614 2,160 15,763 18,865

Mean 15.2 14.7 30.7 31.8 43.2 39.7

divided according to the two last phases in Section 3.3,
mutant generation and test execution. Total in Genera-
tion measures the time needed to analyze the source files
and produce the mutants. The time used by Git has been
calculated separately, including creation of new branches
and changes in the corresponding files. Regarding the test
suite execution, the compilation and the execution times
have been measured. The time taken by Git has also been
computed, encompassing switches between branches and
storage of the execution results.

As it can be seen, execution is the critical operation
when compared with the phase of mutant generation. The
compilation and the execution times are almost entirely
dependent on the compilation system and the duration of
the tests, respectively (see Table 2). The operations per-
formed by Git are the least time-consuming in the execu-
tion phase. In contrast, Git takes most of the time in the
generation phase. However, this result is not unexpected,
taking into account that Git performs output operations
which imply writing files.

When comparing the times in the basic and the im-
proved version, we can see from Table 6 that the highest
reduction is achieved in the compilation time. Many of the
mutants avoided are invalid, which only increase the com-
pilation time but not the execution time. The other mu-
tants that are also discarded help reduce compilation time
further. Test suite execution times were lowered thanks
to the improvement rules. While these rules may require
spending more time when detecting mutation locations,
the final time is nonetheless lower than generating all the
mutants in the basic version.

Regarding the storage requirements, Table 7 shows the
size of each original SUT (Original) and the disk space
occupied (Git) after creating the mutants in each SUT
with the improved version of the operators (|M |). The
size of the Git repository barely depends on the size of
the SUT, but mainly on the number of mutants; we cal-
culated the average of storage resources needed by each
mutant (Mean) and the result is similar for every case
study. This fact supports that Git just needs to save the
mutation when generating a mutant, as commented in Sec-
tion 3.3. Because of Git, the difference between the basic
and the improved version of the operators with regard to
the storage needed is not such an important matter as the

11

Table 9: Quantitative Statistics by SUT and Operator
TCL RPC TXM KMY KAP Mean

Operator C C% M C C% M C C% M C C% M C C% M C% M

IHD 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 1 1.5 0.0 1 0.3 0.0 0.4 0.0
IHI 0 0.0 0.0 2 15.4 0.3 6 30.0 2.4 9 13.2 0.6 70 19.2 2.1 15.6 1.1
ISD 0 0.0 0.0 1 7.7 0.1 0 0.0 0.0 1 1.5 0.0 1 0.3 0.0 1.9 0.0
ISI 0 0.0 0.0 1 7.7 0.2 0 0.0 0.0 2 2.9 0.1 6 1.6 0.0 2.4 0.1
IOD 0 0.0 0.0 3 23.1 0.2 7 35.0 1.3 18 26.5 0.7 34 9.3 0.3 18.8 0.5
IOP 0 0.0 0.0 0 0.0 0.0 1 5.0 0.4 2 2.9 0.1 4 1.1 0.0 1.8 0.1
IOR 0 0.0 0.0 3 23.1 1.2 2 10.0 0.6 1 1.5 0.5 29 7.9 1.0 8.5 0.7
IPC 0 0.0 0.0 1 7.7 0.1 0 0.0 0.0 22 32.4 0.5 76 20.8 0.2 12.2 0.2
PVI 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 1 1.5 0.0 1 0.3 0.0 0.4 0.0
PCD 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 2 2.9 0.2 46 12.6 0.3 3.1 0.1
PCI 0 0.0 0.0 6 46.2 0.6 9 45.0 16.2 20 29.4 7.3 128 35.1 10.9 31.1 7.0
PCC 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 5 1.4 0.1 0.3 0.0
PMD 0 0.0 0.0 2 15.4 0.2 7 35.0 0.6 7 10.3 0.9 86 23.6 3.5 16.9 1.0
PPD 0 0.0 0.0 4 30.8 0.3 8 40.0 1.0 27 39.7 5.3 42 11.5 1.0 24.4 1.5
PNC 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 2 0.5 0.0 0.1 0.0
OMD 7 77.8 5.1 2 15.4 1.5 13 65.0 3.1 18 26.5 1.4 32 8.8 0.2 38.7 2.3
OMR 9 100.0 4.0 3 23.1 1.2 0 0.0 0.0 27 39.7 1.1 36 9.9 0.2 34.5 1.3
OAN 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 7 10.3 0.2 14 3.8 0.2 2.8 0.1
MCO 1 11.1 0.3 2 15.4 6.8 3 15.0 0.9 16 23.5 10.0 87 23.8 20.2 17.8 7.6
MCI 0 0.0 0.0 0 0.0 0.0 2 10.0 1.9 0 0.0 0.0 3 0.8 0.3 2.2 0.4
EHC 0 0.0 0.0 1 7.7 0.2 0 0.0 0.0 7 10.3 0.4 0 0.0 0.0 3.6 0.1
CTI 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 0 0.0 0.0 4 1.1 0.0 0.2 0.0
CID 8 88.8 4.4 4 30.8 1.3 8 40.0 1.7 24 35.3 2.2 153 41.9 2.3 47.4 2.4
CDC 0 0.0 0.0 2 15.4 0.2 3 15.0 0.1 7 10.3 0.1 29 7.9 0.1 9.7 0.1
CDD 2 22.2 0.2 5 38.5 0.4 6 30.0 0.3 8 11.8 0.1 84 23.0 0.2 25.1 0.2
CCA 8 88.8 1.1 1 7.7 0.2 2 10.0 0.2 3 4.4 0.1 6 1.6 0.0 22.5 0.3

Mean 5.8 64.8 2.5 2.5 19.5 0.9 5.5 27.5 2.0 10.5 15.3 1.4 39.2 10.7 1.7 27.6 1.7

C: Number of mutated classes – C%: Percentage of mutated classes – M: Average mutants per class

time expenses.
Answer to RQ1 : The improvement rules avoided the

generation of 46.6% of the mutants across 16 class op-
erators, as presented in Table 5, which represents a total
reduction of 32.1% mutants for the analyzed SUT. As a re-
sult, the computational cost is reduced in all the cases (see
Table 6) both when generating and executing the mutants
(mainly with regard to the compilation time), improving
the efficiency of MuCPP.

6.2. Quantitative Study

Table 8 depicts the number of mutants created with
MuCPP in the analyzed SUTs. The number of mutants is
shown per operator and the total is added up at the end of
the table. In addition, the average number of mutants pro-
duced by class in each application is calculated (this mean
only considers the operators producing at least one mu-
tant). Table 9 includes, for each program and operator,
the number (C) and percentage (C%) of all the classes
that were mutated, and the average number of mutants
that were generated per class (M) (operators producing
no mutants are not shown in this table). As an exam-
ple of the meaning of M, the operator OMR produced 36
mutants in Matrix TCL Pro (see Table 8); the number of
classes in this SUT is 9 (see Table 2), so the value of M in
Table 9 is 4 (36/9).
PCI and MCO produce a considerable number of mu-

tants, so they may increase the cost of the technique.
These two operators have a great influence in the data
shown in Table 8 as they produce almost 69% of the total

Table 10: Distribution of Traditional Mutants Generated by SUT
and Operator (see Table 4)

Oper. TCL RPC TXM KMY KAP Total

ARB 1,252 64 58 232 2,068 3,674
ARU 12 14 5 162 747 940
ARS 896 40 104 348 1,680 3,068
AIU 3,841 348 288 1,475 10,649 16,601
AIS 11,304 828 620 2,096 23,668 38,516
ADS 63 12 44 141 412 672
ROR 612 155 97 589 3,593 5,046
COR 28 53 88 425 2,023 2,617
COI 533 277 229 1,442 8,172 10,653
COD 20 48 74 482 1,501 2,125
LOR 1 4 17 10 170 202
ASR 172 12 18 22 301 525

Total 18,734 1,855 1,642 7,424 54,984 84,639

of mutants. In order to keep the cost of mutation test-
ing manageable, testers could decide to manually disable
MCO based on their knowledge about the program (i.e.
they know that the members of the analyzed classes are
not prone to cause confusion). However, the decision of
excluding some operators could introduce a bias in the
testing process. One option would be investigating if this
decision could be automated in some form by the tool (e.g.
by comparing member names according to a heuristic):
this would merit additional studies.

While PCI and MCO are also the operators inject-
ing the highest number of mutations per class (7.0 and
7.6 respectively), CID (47.4%), OMD (38.7%) and OMR
(34.5%) are the operators mutating more classes as a per-
centage. This is partially explained by the fact that they
mutate constructors.

12

On the contrary, other operators do not generate any
mutants or only introduce few mutations. This is the case
of IMR, PRV, OAO, EHR and CTD. This is largely be-
cause the language features they address are not so used.
In other cases, the restrictions imposed on the operators
prevent several mutants from appearing. For instance, the
basic version of IMR generates various invalid mutants in
KMyMoney (see Table 5) because the rule about pure vir-
tual methods (number 8 in Section 4) is disabled. Despite
not generating any mutants for the SUTs in this work,
these operators can be valuable because the features they
address may receive less attention due to their rare use.
Therefore, we do not recommend discarding them.

A key factor in the creation of class mutants is the exis-
tence of inheritance relationships among classes. The ab-
sence of inheritance will not only impact the “inheritance”
operators, but also the operations in the “polymorphism
and dynamic binding” group. This is also the case of MCI,
including over half of the class-level operators. This fact
has been purposely explored with the inclusion of Matrix
TCL Pro, encompassing nine classes with no inheritance
relations among them.

Table 11: Mutation Score in Matrix TCL Pro
Operator Mutants Dead Alive Equivalent MS

OMD 46 31 15 8 0.82
OMR 34 25 9 1 0.76
MCO 3 0 3 0 0.00
CID 40 31 9 2 0.82
CDD 2 0 2 2 -
CCA 10 3 7 7 1.00

Total 135 90 45 20 0.78

Table 12: Mutation Score in XmlRpc++
Operator Mutants Dead Alive Equivalent MS

IHI 4 2 2 2 1.00
ISD 1 0 1 0 0.00
ISI 3 0 3 1 0.00
IOD 3 0 3 2 0.00
IOR 15 0 15 15 -
IPC 1 1 0 0 1.00
PCI 3 2 1 1 1.00
PPD 1 0 1 1 -
OMD 10 7 3 1 0.78
OMR 10 7 3 0 0.70
MCO 48 19 29 10 0.50
EHC 2 0 2 1 0.00
CID 17 10 7 3 0.71
CDC 2 0 2 0 0.00
CDD 5 1 4 3 0.50
CCA 2 2 0 0 1.00

Total 127 51 76 40 0.59

Table 10 shows how many traditional mutants were gen-
erated for each SUT. This table reports that the number
of traditional mutants from only 12 operators (84,658) is
far higher than their class-level counterparts (18,865): over
four times as many, in fact. There are fewer mutants at the
class level in every SUT, especially in the case of Matrix
TCL Pro which heavily uses arithmetic operations (137
class-level and 18,734 traditional mutants). We should

Table 13: Mutation Score in Tinyxml2
Operator Mutants Dead Alive Equivalent MS

IHI 47 30 17 6 0.73
IOD 25 21 4 1 0.87
IOP 8 8 0 - 1.00
IOR 11 8 3 1 0.80
PCI 190 133 57 20 0.78
PMD 3 0 3 3 -
PPD 7 4 3 3 1.00
OMD 37 15 22 14 0.65
MCO 19 17 2 1 0.94
MCI 39 11 28 26 0.85
CID 34 21 13 10 0.87
CDC 3 3 0 - 1.00
CDD 6 3 3 3 1.00
CCA 4 0 4 4 -

Total 433 274 159 92 0.80

Table 14: Mutation Score in KMyMoney
Operator Mutants Dead Alive Equivalent MS

IHD 1 1 0 - 1.00
IHI 23 6 17 15 0.75
ISI 3 0 3 3 -
IOD 1 0 1 0 0.00
IPC 18 9 9 6 0.75
PCI 15 14 1 1 1.00
PMD 1 0 1 1 -
PPD 18 4 14 14 1.00
OMD 13 4 9 4 0.44
OMR 32 28 4 0 0.87
OAN 7 3 4 4 1.00
MCO 87 31 56 7 0.39
EHC 6 1 5 5 1.00
CID 48 15 33 22 0.58
CDC 5 4 1 1 1.00
CDD 4 2 2 2 1.00
CCA 2 0 2 2 -

Total 284 122 162 87 0.62

Table 15: Mutation Score in KatePart
Operator Mutants Dead Alive Equivalent MS

IHI 51 4 47 28 0.17
ISI 2 0 2 2 -
IOD 4 1 3 2 0.50
IOR 5 0 5 5 -
IPC 5 0 5 0 0.00
PCD 1 0 1 0 0.00
PCI 53 12 41 29 0.50
PMD 1 0 1 1 -
PPD 11 0 11 11 -
OMD 5 1 4 1 0.25
OMR 8 4 4 3 0.75
OAN 16 2 14 0 0.12
MCO 46 0 46 0 0.00
MCI 15 0 15 0 0.00
CTI 2 2 0 - 1.00
CID 54 21 33 26 0.75
CDC 5 1 4 2 0.33
CDD 10 8 2 2 1.00
CCA 6 2 4 4 1.00

Total 300 58 242 116 0.32

note that we have spent much time improving class op-
erators, but traditional operators have also been refined
to prevent unproductive mutants. As a conclusion, with
regard to the number of mutants generated, most class
mutation operators tend to require less computational re-
sources than traditional operators.
Answer to RQ2: Absolute and relative counts for the

13

Table 16: Mutation Score Obtained After Improving the Test Suite
for the Analyzed SUTs with Respect to Surviving Non-Equivalent
Class Mutants

Original Added Augmented
SUT |S| |C| |M | |S| |C| |S| |C| MS

TCL 17 87 3 7 35 24 122 1.00
RPC 26 61 5 8 36 34 97 1.00
TXM 57 111 3 5 32 62 143 0.91
KMY 241 2,281 10 7 67 248 2,348 0.98
KAP 158 1,843 1 16 56 174 1,899 0.57

class-level mutants are shown in Tables 8 and 9. On av-
erage, the class operators create mutants for 27.6% of the
classes, inserting 39.7 changes in each one (1.7 per opera-
tor). Each of these means is obtained considering only the
operators that created mutants in its case study. On the
other hand, there are many more traditional mutants for
the same SUT than class mutants (see Table 10), which
require more time to evaluate.

6.3. Test Suite Improvement

We have categorized the valid mutants of the classes
of each SUT. Tables 11–15 include the mutants produced
by operator (Mutants), how many are killed (Dead), how
many remain alive (Alive), how many are found to be
equivalent (Equivalent), and the mutation score (MS). As
shown in the results of Sections 6.1 and 6.2, MuCPP pre-
vents creating several mutants because of the improvement
rules, and class operators generally produce fewer mutants
than traditional operators. Thus, the low quantity of mu-
tants when compared to other evaluations of operators in
the literature corresponds to the column M in Table 9,
where most operators inject less than one mutation per
class on average.

As it can be observed, the mutation score is far from
100% in all the programs, especially for XmlRpc++ (51%)
and KatePart (32%). Therefore, in these cases, we can
say that the test suite is not able to detect the different
variations mimicked by the class operators: the test suite
does not ensure a minimum coverage of class mutations.

Even after reducing the number of equivalent mutants,
27.9% of the valid class mutants across all SUTs are still
considered equivalent (357 out of 1,279). We have to note
that some mutants are classified as equivalent because we
could not find a way to reach the mutation. For instance,
in the case of EHC in KMyMoney, we were unable to
throw an exception that reached the catch block. There
are other equivalent mutants related to memory manage-
ment, as in some mutants from CDD, which might be only
killable under certain memory restrictions. All the valid
mutants from the operator PMD are considered as equiv-
alent; among the class operators creating at least one mu-
tant for the analyzed SUTs, PMD is the only one produc-
ing no useful mutants.

The mutation scores in these tables show that mutation
testing can help improve the test suite. We have analyzed
the surviving non-equivalent mutants, and included new

1 bool XmlRpcServerConnection::executeMulticall(
2 const std:: string& methodName, XmlRpcValue& params,
3 XmlRpcValue& result){
4 ...
5 try{
6 if (!executeMethod(methodName, methodParams, resultValue[0])
7 && !executeMulticall(methodName, params, resultValue[0])){
8 ...
9 }

10 }catch(const XmlRpcException& fault){
11 ...
12 }
13 }

Figure 4: Method “executeMulticall” in XmlRpc++

test cases or scenarios following the procedure explained in
Section 5.3. We have added new tests within our possibil-
ities, due to the demanding nature of the work involved in
creating new tests to kill mutants of third-party libraries.

Table 16 shows the original size of the test suite, the ad-
ditions made, and the size of the final augmented test suite.
|S| is the number of test scenarios, |C| is the number of test
cases, and |M | is the number of modified scenarios. This
table also shows the mutation score (MS) computed with
the final test suite. We have achieved a class-adequate test
suite for the programs Matrix TCL Pro and XmlRpc++.

In addition to accomplishing the main goal of mutation
testing, we have found some defects in the analyzed code
thanks to the technique:

• While removing the SetAttribute(float) method
implemented in the XMLAttribute class, we detected
that it was not reachable by clients of the XMLElement
class. XMLElement only has a double variant
for its SetAttribute(const char*, type)methods,
so only XMLAttribute::SetAttribute(double) is
reachable from it. This is also a problem when per-
forming shallow clones in XMLElement, since it reuses
the 2-argument SetAttribute methods. In short,
this forces all floating-point attributes to use double
values.

• While trying to design a test case that threw an ex-
ception in line 7 of Figure 4, we detected a case of
infinite recursion in XmlRpc++. The code seems to
have been designed to allow executing multiple invo-
cations by iterating through a data structure, but it
is not correctly implemented. The method calls itself
without changing the value of params, resulting in in-
finite recursion and eventually a segmentation fault.

Answer to RQ3: According to the mutation scores
in Tables 11-15, the test suites distributed with the SUTs
cannot completely detect the mutations proposed by the
class operators. After inspecting the surviving mutants,
we designed new tests (see Table 16) to form better test
suites, which are used to answer the next research question.

6.4. Usefulness of Class Mutation Operators
Table 17 has been included to answer if class mutants or

traditional mutants can subsume the other in some way.

14

Table 17: Average Mutation Scores for Traditional and Class Mu-
tants over 30 Class-Adequate and 30 Test-Adequate Test Suites

SUT
Class-Adequate
Traditional MS

Traditional-Adequate
Class MS

TCL 0.84 0.97
RPC 0.90 0.98
TXM 0.93 0.94
KMY 0.52 0.90
KAP 0.81 0.87

Mean 0.80 0.93
SD 0.16 0.05

The column Class-Adequate Traditional MS contains, for
each SUT, the average mutation score associated to tra-
ditional mutants when applying different adequate test
suites for the set of class mutants. Conversely, the column
Traditional-Adequate Class MS shows the average scores
for class mutants using adequate test suites with respect
to traditional ones. As it can be seen, the results favor tra-
ditional operators because, with a mean score of 80% in
the SUTs, class mutants do not cover traditional mutants.
However, traditional operators are not able to completely
subsume class mutants either. While these results suggest
that only few class mutants cannot be killed through tra-
ditional mutants, it is also true that there are far fewer
class mutants than traditional ones (see Section 6.2).

In a second experiment, we have calculated the metric
Td (defined in Section 5.3) after obtaining minimal test
suites for each of the programs. The results are shown in
Table 18, where D is the result of |TM(Mt∪c)|−|TM(Mt)|
and N is the number of scenarios in D that were modified
or added to improve the test suite in Section 6.3.

Table 18: Calculation of Metric Td with the Improved Tests for the
Analyzed SUT

SUT |TM(Mc)| |TM(Mt)| |TM(Mt∪c)| D N Td

TCL 15 21 24 3 3 0.12
RPC 15 22 23 1 1 0.04
TXM 15 31 37 6 4 0.16
KMY 36 77 90 13 7 0.14
KAP 24 49 56 7 6 0.12

In every SUT, the set of class-level mutants provides at
least a test scenario to TM(Mt∪c) which is not included in
TM(Mt), despite being |TM(Mt)| > |TM(Mc)| in all the
cases. It is also interesting to observe that, in the case of
Matrix TCL Pro, the minimal test suite matches with the
complete test suite (24 test scenarios) only when consider-
ing both the class-level and the traditional mutants. This
fact illustrates that the two types of mutation operators
complement each other when improving a test suite.

The value of Td is quite similar for all the analyzed pro-
grams, except for XmlRpc++. These values can be seen
as low, but we have to remark that Td indicates the pro-
portion of test scenarios that appear in the minimal test
suite exclusively when considering the class-level mutants.
The remaining scenarios in TM(Mc) are already included

in TM(Mt∪c) because of the traditional mutants.
As commented in Section 5.3, when improving the test

suite, we tried to include test scenarios which were not
completely specific to kill a concrete class mutant. The
new test scenarios appearing in TM(Mt) reflect this fact:
several new tests are included in the minimal test suite for
the traditional mutants. For instance, we created 8 scenar-
ios for XmlRpc++ (see Table 16), but 7 of them are also
in TM(Mt). In the same line, we computed the column
N to check if there were any tests in D that belonged to
the original test suite. This happens with three programs,
most notably with KMyMoney, where 6 of the 13 scenarios
in D are from the original test suite.

Table 19: Calculation of Metric QD for the Set of Killed Class and
Traditional Mutants from the Analyzed SUT and the Improved Test
Suite

SUT |Kc| |Kt| QDC QDT Dif

TCL 115 10,402 0.95 0.96 −0.01
RPC 87 1,064 0.94 0.90 0.04
TXM 310 1,017 0.88 0.91 −0.03
KMY 193 1,744 0.99 0.99 0.00
KAP 104 1,595 0.99 0.97 0.02

Table 19 shows the calculation of the metric QD for the
killed class mutants (Kc) and the killed traditional mu-
tants (Kt), obtaining QDC and QDT respectively. Dif is
the result of QDC − QDT . When Dif > 0, then the re-
sults for Kc are of higher quality than Kt; in contrast,
when Dif < 0, then the results for Kt are of higher qual-
ity. With this metric, we have checked that there is not
a significant difference in any case study after improving
the test suite using the class mutants that remained alive.
Indeed, QDT is even higher than QDC in Matrix TCL Pro
and Tinyxml2. This shows that Td values are not due to
the design of new tests only with regard to the surviving
class mutants.
Answer to RQ4: On one hand, in all the analyzed

SUTs, some scenarios only appeared in the minimal test
suite when the class mutants were considered (see Ta-
ble 18). On the other hand, the minimal test suites for
the traditional mutants have been consistently larger than
the minimal test suites for the class-level mutants. This
suggests that while there is some overlap between class-
level and traditional mutants, they do not subsume each
other fully, but rather complement each other.

6.5. Threats to Validity
The different behavior of the operators in each applica-

tion makes it difficult to provide final conclusions about
the obtained results. The OO features of the language are
used with varying frequency, so several operators require
further research as they did not produce a significant num-
ber of mutants. Moreover, many of the improvement rules
to enhance the effectiveness of the operators were not ap-
plicable to the SUTs. Subsequently, the implemented rules
could produce major improvements in operator efficiency
in some cases, while having no effect in others. Since the

15

equivalence problem is undecidable, the identification of
these mutants is a manual task, and the mutation scores
shown may be inaccurate.

As for the construct validity, the restrictions to avoid
invalid, equivalent and trivial mutants have been studied
for the set of operators, identifying several of the unpro-
ductive mutations in a subset of them. However, further
reduction of unproductive mutants may still be possible
by establishing new rules, which could be detected apply-
ing the technique to other programs with different features
that foster the appearance of new situations.

The mutation score may greatly vary depending on the
operators because of the few mutants inserted within a
class, as commented in Section 6.3. We spent considerable
effort in creating valuable mutants through the improve-
ment rules; several trivial mutants were avoided, which
may have reduced this score. Not all the mutants gener-
ated in the applications were later studied because of the
time-consuming and hard task of analyzing class mutants
and designing new test scenarios.

As for the experiment to answer RQ4, we have to remark
that, being Td dependent on the test suite, the results
may change with different test suites. In this regard, the
results yielded by this experiment could have been different
if the test suites were adequate both for class-level and
traditional mutants. In the same line, the results are also
dependent on the tests added to increase the mutation
score, although we designed the tests to be as general as
possible to reduce this kind of threat. Finally, we have
to note that QD should be calculated with an adequate
test suite, but when the test suite does not meet with this
requirement, this metric gives us an approximation to the
quality of the dead mutants with that test suite.

7. Related Work

There have been many studies on the utility and signif-
icance of mutation testing. In this regard, we can men-
tion several: Offutt et al. [38] pointed out that “16% more
faults can be detected using mutation adequate test sets
than all-use test sets”, and Daran et al. [39] stated that
85% of the errors simulated with mutants in an industrial
program were produced by real mistakes. Likewise, An-
drews et al. [40] concluded, from empirical results using
four types of mutation operators in C, that the mutations
inserted were similar to real faults but different from the
manually seeded ones, which were harder to detect than
real faults. These facts underpin the importance of the
technique and the main underlying idea behind mutation
operators: to detect common mistakes when developing
software applications.

As mentioned in Section 2.2, no broad empirical anal-
yses of the application of class-level mutation testing to
C++ had been conducted so far. Existing studies in this
vein have used Java and C# [23]. One of the first analyses
was made by Lee et al. [22], studying the orthogonality
of the class mutation operators compiled by Ma et al. for

Java [5], and also the distribution of the mutants stem-
ming from large programs. Experimental results show that
class operators could reveal many faults while producing
few mutants in comparison to traditional operators in pro-
cedural programs. Ma et al. found that, for the same ap-
plications, the traditional operators produced about twice
as many mutants as the class-level operators [8]. In our
experiments, the gap between the mutants generated by
both sets of operators is even wider. Over 70% of the
class-level mutants in [8] were equivalent, whereas the tra-
ditional operators usually generated 5-15% of equivalent
mutants. The analyzed programs regarding class opera-
tors in Section 6 reported that 27.9% of the valid mutants
from several operators were equivalent.

In any case, the results for unit testing of procedural lan-
guages are broader and even more conclusive than the ones
for OO languages: Segura et al. [30] reported that 45.4%
of the generated mutants were equivalent using their class
operators for Java, which is quite different from the afore-
mentioned results of Ma et al. [8] and our experiments,
finding other contradictory results in related literature.
These mixed data can be explained by the different be-
havior of the operators in the tested programs; class mu-
tation operators are less frequently used and depend on the
program characteristics. Thus, some operators with high
percentage of equivalence in the study by Ma et al. [8] did
not produce any mutants in the experiments conducted by
Segura et al. [30] and in this paper.

The impact of equivalence has been widely studied, for
example by Grun et al. [41]. Hence, a variety of works
have tried to alleviate this issue: from the first heuris-
tics for detecting equivalence [42], to the use of a co-
evolutionary algorithm to discard equivalent mutants in
the process through a fitness function [43]. The first hints
on the automation of rules to avoid class mutants which
are known to be equivalent were proposed for three class
operators [22]. Equivalence conditions were then extended
by Offutt et al. [7] for sixteen operators; almost 75% of
equivalent mutants on average were identified and their
generation was prevented for sixteen operators. The re-
port with the definitions of the mutation operators for
Ada [16] mentions several decisions made to avoid triv-
ial mutants in their implementation. Our paper provides
a collection of rules to detect equivalent, invalid and trivial
mutants, putting forward some general ideas not only for
C++, but for all class operators in different languages. In
our study, 32.1% of mutants from the analyzed SUTs were
not generated because of the implemented restrictions.

Several techniques have been proposed to generate fewer
mutants, including mutant sampling [44], high-order mu-
tation [45] and mutant clustering [46]. Another com-
mon technique for mutant reduction is selective mutation,
which has been mainly applied to procedural languages
like FORTRAN [27] or Ada [38]. More recently, Derezińska
and Rudnik [9] studied different selective strategies regard-
ing traditional and class-level operators for C#, finding
that 93% of the original mutation score could be obtained

16

with a reduction in the number of mutants from 18 class
operators (74%) and the number of tests (14%). Still, the
results of selective mutation were better when using 8 tra-
ditional operators. Bluemke and Kulesza [47] applied a
selective reduction of mutants by operator to Java, also
including traditional and class operators. Their experi-
ments, which only included 8 classes, also pointed to ac-
ceptable results regarding both mutation score and code
coverage.

Other mutation systems implement dynamic optimiza-
tions, such as the analysis of infection and propagation
states in Major [48] or the use of code coverage informa-
tion in Javalanche [49] or Bacterio [50]. The authors of
Major reported an average reduction of 40% in mutation
analysis times, and Bacterio also showed a significant re-
duction in the number of executions. In the case of Bacte-
rio, only the class operators that did not change the struc-
ture of the program could leverage this information, due to
their use of mutant schemata. MuCPP does not use mu-
tant schemata, but rather creates one separate program
for each mutation, and therefore could adopt a similar ap-
proach without running into that limitation.

In our previous work, an initial approach on different
aspects to consider for the development of this mutation
tool was provided [11], and a general set of class opera-
tors were defined and applied to two libraries [10]. In this
paper, however, the features of the mutation system have
been presented in depth, reporting data about its perfor-
mance. We have also shown a detailed distribution of the
generated class mutants. Additionally, we have compared
the mutants produced with class and traditional opera-
tors, providing evidence that class operators add valuable
information to mutation testing.

8. Conclusion

In this paper, the fundamentals for the application of
mutation testing to the C++ programming language have
been developed, allowing us to accomplish the construction
of the mutation testing system called MuCPP for this lan-
guage. Firstly, different categories of mutation operators
at the class level have been introduced; these operators
have been defined and implemented according to the spe-
cific characteristics of this language. Secondly, the work
presented here removes the obstacles regarding the com-
plex task of automating mutation in C++ by developing a
feasible and comprehensive solution for any SUT through
the traversal of the AST generated with Clang. MuCPP
has been devised to handle the intrinsic complexity of the
language. Among the most remarkable issues, the sys-
tem avoids the generation of duplicate mutants, allows the
use of a compilation database containing the commands to
compile the different source code files, and saves space on
disk by creating the mutants as branches in the Git version
control system.

The correct definition and implementation of mutation
operators that provide valid and useful mutants is key to

successful mutation testing. Operator quality has been
enhanced by establishing a specific scope for the applica-
tion of each operator, which discards unproductive mu-
tants. With this approach, fewer equivalent mutants are
generated, and the effectiveness and efficiency of the mu-
tation operators can be improved. In the conducted ex-
periments, mutants were reduced by 32% on average with
the improved operators, and equivalent mutants dropped
to 27.9%. Computational costs were lowered with these
class-level operators, as they produced far fewer mutants
than traditional operators.

A quantitative study of the mutants generated in 475
classes belonging to five well-known libraries and programs
of different sizes was performed. The figures reveal the
most prolific operators (PCI or MCO), which should be
used cautiously. In contrast, the operators that seem to
emerge infrequently depend on the features used by the
SUTs. Hence, a priori, we do not recommend to eliminate
them from the set of operators. The experiment also points
out that CID, OMR, and OMD are the operators with the
highest rate of mutated classes, and that inheritance is a
determining factor in the generation of class mutants.

The class-level operators showed their usefulness, help-
ing find missing and important test cases in the test suite
distributed with the SUTs. We were able to augment the
test suite using the surviving class mutants for every SUT,
which constitutes an important contribution for further
studies. We also found some defects in the code along the
way thanks to these mutants. The results indicate that
the OO systems should be tested considering the partic-
ularities of the OO paradigm. The experiments carried
out provide evidence that these operators not only mo-
tivate the tester to create new tests, but also that they
add valuable information with respect to traditional oper-
ators. As a conclusion, traditional and class mutants can
complement each other when designing more complete test
suites.

As for further research, new improvement rules could
be detected in the operators. However, the compilation
and execution times shown in the largest SUTs reveal
that other mutant reduction techniques could be needed
to alleviate the high computational cost. In this regard,
evolutionary algorithms, parallel computation and mutant
schemata are techniques to explore. Moreover, coverage
analysis of the test suite could help prevent unnecessary
executions. We also plan to evaluate the quality of each
of the class-level operators separately, using metrics such
as those proposed by Estero-Botaro et al. [29]: the results
could allow us to obtain a sufficient set of class-level mu-
tation operators for C++. Finally, C++ is quickly evolv-
ing and new standards should be studied for creating new
class-level operators or adapting existing ones to new se-
mantics or syntax.

17

Acknowledgment

This paper was funded by the Spanish Ministry of
Economy and Competitiveness (National Program for Re-
search, Development and Innovation), through the project
DArDOS (TIN2015-65845-C3-3-R) and the Excellence
Network SEBASENet (TIN2015-71841-REDT), and by
the research scholarship PU-EPIF-FPI-PPI-BC 2012-037
of the University of Cádiz.
[1] Y. Jia, M. Harman, An analysis and survey of the development

of mutation testing, Software Engineering, IEEE Transactions
on 37 (5) (2011) 649–678.
URL http://dx.doi.org/10.1109/TSE.2010.62

[2] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez,
Encyclopedia of Information Science and Technology, Third
Edition, IGI Global, 2014, Ch. Mutation Testing, pp. 7212–
7221.
URL http://dx.doi.org/10.4018/978-1-4666-5888-2.ch710

[3] R. Gopinath, C. Jensen, A. Groce, Mutations: How close are
they to real faults?, in: Software Reliability Engineering (IS-
SRE), 2014 IEEE 25th International Symposium on, 2014, pp.
189–200.
URL http://dx.doi.org/10.1109/ISSRE.2014.40

[4] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes,
G. Fraser, Are mutants a valid substitute for real faults in soft-
ware testing?, in: Proceedings of the 22nd ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineer-
ing, FSE 2014, ACM, New York, NY, USA, 2014, pp. 654–665.
URL http://dx.doi.org/10.1145/2635868.2635929

[5] Y. S. Ma, Y. R. Kwon, J. Offutt, Inter-class mutation operators
for Java, in: S. Kawada (Ed.), Proceedings of XIII Interna-
tional Symposium on Software Reliability Engineering, IEEE
Computer Society, Annapolis (Maryland), 2002, pp. 352–363.
URL http://dx.doi.org/10.1109/ISSRE.2002.1173287

[6] A. Derezińska, Quality assessment of mutation operators ded-
icated for C# programs, in: P. Kellenberger (Ed.), Proceed-
ings of VI International Conference on Quality Software, IEEE
Computer Society, Beijing (China), 2006, pp. 227–234, ISSN
1550-6002.
URL http://dx.doi.org/10.1109/QSIC.2006.51

[7] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of
MuJava, in: Proceedings of the 2006 International Workshop
on Automation of Software Test, AST ’06, ACM, New York,
NY, USA, 2006, pp. 78–84.
URL http://dx.doi.org/10.1145/1138929.1138945

[8] Y.-S. Ma, Y. R. Kwon, S.-W. Kim, Statistical investigation on
class mutation operators, ETRI Journal 31 (2) (2009) 140–150.
URL http://dx.doi.org/10.4218/etrij.09.0108.0356

[9] A. Derezińska, M. Rudnik, Quality evaluation of object-oriented
and standard mutation operators applied to C# programs, in:
C. Furia, S. Nanz (Eds.), Objects, Models, Components, Pat-
terns, Vol. 7304 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 42–57.
URL http://dx.doi.org/10.1007/978-3-642-30561-0_5

[10] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez,
A. García-Domínguez, F. Palomo-Lozano, Class mutation op-
erators for C++ object-oriented systems, Annals of telecom-
munications - annales des télécommunications 70 (3-4) (2015)
137–148.
URL http://dx.doi.org/10.1007/s12243-014-0445-4

[11] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez,
Analysis of the development process of a mutation testing tool
for the C++ language, in: The Ninth International Multi-
Conference on Computing in the Global Information Technol-
ogy, ICCGI 2014, Seville, Spain, 2014, pp. 151–156.

[12] R. G. Hamlet, Testing programs with the aid of a compiler,
IEEE Transactions on Software Engineering 3 (4) (1977) 279–
290.

[13] R. DeMillo, R. Lipton, F. Sayward, Hints on test data selection:

Help for the practicing programmer, Computer 11 (4) (1978)
34–41.

[14] H. Agrawal, R. DeMillo, B. Hathaway, W. Hsu, W. Hsu,
E. Krauser, R. Martin, A. Mathur, E. Spafford, Design of mu-
tant operators for the C programming language, Tech. rep.,
Technical Report SERC-TR-41-P, Software Engineering Re-
search Center, Purdue University, West Lafayette, Indiana
(Mar. 1989).

[15] K. N. King, A. J. Offutt, A FORTRAN language system for
mutation-based software testing, Software: Practice and Expe-
rience 21 (7) (1991) 685–718.
URL http://dx.doi.org/10.1002/spe.4380210704

[16] A. J. Offutt, J. Voas, J. Payne, Mutation operators for Ada,
Tech. Rep. ISSE-TR-96-09, George Mason University, Fair-
fax, Virginia, Information and Software Systems Engineering,
George Mason University (1996).

[17] M. R. Woodward, Mutation testing - its origin and evolution,
Information and Software Technology 35 (3) (1993) 163–169.
URL http://dx.doi.org/10.1016/0950-5849(93)90053-6

[18] J. J. Domínguez-Jiménez, A. Estero-Botaro, A. García-
Domínguez, I. Medina-Bulo, GAmera: an automatic mutant
generation system for WS-BPEL compositions, in: R. Eshuis,
P. Grefen, G. A. Papadopoulos (Eds.), Proceedings of the 7th
IEEE European Conference on Web Services, IEEE Computer
Society Press, Eindhoven, The Netherlands, 2009, pp. 97–106.

[19] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E.
Delamaro, E. Wong, Mutation testing applied to validate spec-
ifications based on Petri Nets, in: Proceedings of the IFIP TC6
Eighth International Conference on Formal Description Tech-
niques VIII, Chapman & Hall, Ltd., London, UK, 1996, pp.
329–337.
URL http://dx.doi.org/10.1007/978-0-387-34945-9_24

[20] S. Kim, J. A. Clark, J. A. McDermid, The rigorous genera-
tion of Java mutation operators using HAZOP, in: Proceedings
of the 12th International Cofference Software and Systems En-
gineering and their Applications (ICSSEA 99), Paris, France,
1999.

[21] S. Kim, J. Clark, J. McDermid, Class mutation: Mutation test-
ing for object-oriented programs, in: Proc. Net.ObjectDays,
2000, pp. 9–12.

[22] H.-J. Lee, Y.-S. Ma, Y.-R. Kwon, Empirical evaluation of or-
thogonality of class mutation operators, in: Software Engineer-
ing Conference, 2004. 11th Asia-Pacific, 2004, pp. 512–518.
URL http://dx.doi.org/10.1109/APSEC.2004.49

[23] A. Derezińska, A. Szustek, Object-oriented testing capabilities
and performance evaluation of the C# mutation system, in:
Advances in Software Engineering Techniques, Springer, 2012,
pp. 229–242.
URL http://dx.doi.org/10.1007/978-3-642-28038-2_18

[24] A. Derezińska, Object-oriented mutation to assess the quality of
tests, in: EUROMICRO Conference, 2003. Proceedings. 29th,
IEEE Computer Society, Belek, Turkey, 2003, pp. 417–420.
URL http://dx.doi.org/10.1109/EURMIC.2003.1231626

[25] M. Kusano, C. Wang, CCmutator: A mutation generator for
concurrency constructs in multithreaded C/C++ applications,
in: 28th International Conference on Automated Software En-
gineering (ASE), 2013 IEEE/ACM, IEEE, 2013, pp. 722–725.
URL http://dx.doi.org/10.1109/ASE.2013.6693142

[26] D. Lin, Principle-based parsing without overgeneration, in: Pro-
ceedings of the 31st Annual Meeting on Association for Com-
putational Linguistics, ACL ’93, Association for Computational
Linguistics, Stroudsburg, PA, USA, 1993, pp. 112–120.
URL http://dx.doi.org/10.3115/981574.981590

[27] E. S. Mresa, L. Bottaci, Efficiency of mutation operators and
selective mutation strategies: an empirical study, Software Test-
ing, Verification and Reliability 9 (4) (1999) 205–232.
URL http://dx.doi.org/10.1002/(SICI)1099-1689(199912)
9:4<205::AID-STVR186>3.0.CO;2-X

[28] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, Quanti-
tative evaluation of mutation operators for WS-BPEL compo-
sitions, in: Third International Conference on Software Test-

18

ing, Verification, and Validation Workshops (ICSTW), 2010,
pp. 142–150.
URL http://dx.doi.org/10.1109/ICSTW.2010.36

[29] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J.
Domínguez-Jiménez, A. García-Domínguez, Quality metrics for
mutation testing with applications to WS-BPEL compositions,
Software Testing, Verification and Reliability.
URL http://dx.doi.org/10.1002/stvr.1528

[30] S. Segura, R. M. Hierons, D. Benavides, A. Ruiz-Cortés, Mu-
tation testing on an object-oriented framework: An experience
report, Information and Software Technology 53 (10) (2011)
1124–1136, special Section on Mutation Testing.
URL http://dx.doi.org/10.1016/j.infsof.2011.03.006

[31] A. J. Offutt, G. Rothermel, C. Zapf, An experimental evalua-
tion of selective mutation, in: Proceedings of 15th International
Conference on Software Engineering, 1993, 1993, pp. 100–107.
URL http://dx.doi.org/10.1109/ICSE.1993.346062

[32] R. Just, F. Schweiggert, G. Kapfhammer, MAJOR: An efficient
and extensible tool for mutation analysis in a Java compiler,
in: 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2011, pp. 612–615.
URL http://dx.doi.org/10.1109/ASE.2011.6100138

[33] Y. Jia, M. Harman, MILU: a customizable, runtime-optimized
higher order mutation testing tool for the full C language, in:
Practice and Research Techniques, 2008. TAIC PART ’08. Test-
ing: Academic Industrial Conference, 2008, pp. 94–98.
URL http://dx.doi.org/10.1109/TAIC-PART.2008.18

[34] D. Spinellis, Global analysis and transformations in prepro-
cessed languages, IEEE Transactions on Software Engineering
29 (11) (2003) 1019–1030.
URL http://dx.doi.org/10.1109/TSE.2003.1245303

[35] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, An ex-
perimental determination of sufficient mutant operators, ACM
Trans. Softw. Eng. Methodol. 5 (2) (1996) 99–118.
URL http://dx.doi.org/10.1145/227607.227610

[36] R. Just, F. Schweiggert, Higher accuracy and lower run time:
Efficient mutation analysis using non-redundant mutation op-
erators, Software Testing, Verification and Reliability 25 (5-7)
(2015) 490–507.
URL http://dx.doi.org/10.1002/stvr.1561

[37] G. Kaminski, P. Ammann, J. Offutt, Improving logic-based test-
ing, Journal of Systems and Software 86 (8) (2013) 2002–2012.
URL http://dx.doi.org/10.1016/j.jss.2012.08.024

[38] A. J. Offutt, J. Pan, K. Tewary, T. Zhang, An experimental
evaluation of data flow and mutation testing, Software Practice
and Experience 26 (2) (1996) 165–176.
URL http://dx.doi.org/10.1002/(SICI)1097-024X(199602)
26:2<165::AID-SPE5>3.0.CO;2-K

[39] M. Daran, P. Thévenod-Fosse, Software error analysis: A real
case study involving real faults and mutations, SIGSOFT Soft-
ware Engineering Notes 21 (3) (1996) 158–171.
URL http://dx.doi.org/10.1145/226295.226313

[40] J. H. Andrews, L. C. Briand, Y. Labiche, Is mutation an ap-
propriate tool for testing experiments?, in: Proceedings of the
27th International Conference on Software Engineering, ICSE
’05, ACM, New York, NY, USA, 2005, pp. 402–411.
URL http://dx.doi.org/10.1145/1062455.1062530

[41] B. J. M. Grün, D. Schuler, A. Zeller, The impact of equivalent
mutants, in: Proceedings of the IEEE International Conference
on Software Testing, Verification, and Validation Workshops,
ICSTW ’09, IEEE Computer Society, Washington, DC, USA,
2009, pp. 192–199.
URL http://dx.doi.org/10.1109/ICSTW.2009.37

[42] D. Baldwin, F. Sayward, Heuristics for Determining Equiva-
lence of Program Mutations, Department of Computer Science:
Research report, Yale University, Department of Computer Sci-
ence, 1979.

[43] K. Adamopoulos, M. Harman, R. M. Hierons, How to over-
come the equivalent mutant problem and achieve tailored selec-
tive mutation using co-evolution, in: GECCO (2)’04, 2004, pp.
1338–1349.

URL http://dx.doi.org/10.1007/978-3-540-24855-2_155
[44] T. A. Budd, Mutation analysis of program test data, Ph.D.

thesis, Yale University (1980).
[45] Y. Jia, M. Harman, Higher order mutation testing, Information

and Software Technology 51 (10) (2009) 1379–1393.
URL http://dx.doi.org/10.1016/j.infsof.2009.04.016

[46] S. Hussain, Mutation clustering, Master’s thesis, King’s College
London (2008).

[47] I. Bluemke, K. Kulesza, Reduction in mutation testing of Java
classes, in: 9th International Conference on Software Engineer-
ing and Applications (ICSOFT-EA), 2014, 2014, pp. 297–304.
URL http://dx.doi.org/10.5220/0004992102970304

[48] R. Just, M. D. Ernst, G. Fraser, Efficient mutation analysis
by propagating and partitioning infected execution states, in:
Proceedings of the 2014 International Symposium on Software
Testing and Analysis, ISSTA 2014, ACM, New York, NY, USA,
2014, pp. 315–326.
URL http://dx.doi.org/10.1145/2610384.2610388

[49] D. Schuler, A. Zeller, Javalanche: Efficient mutation testing
for Java, in: Proceedings of the 7th Joint Meeting of the Euro-
pean Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ES-
EC/FSE ’09, ACM, New York, NY, USA, 2009, pp. 297–298.
URL http://dx.doi.org/10.1145/1595696.1595750

[50] P. R. Mateo, M. P. Usaola, Reducing mutation costs through
uncovered mutants, Software Testing, Verification and Reliabil-
ity 25 (5-7) (2015) 464–489.
URL http://dx.doi.org/10.1002/stvr.1534

19

