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Abstract: Aroma is one of the main characteristics of coffee specimens. Different mixtures of Arabica
and Robusta coffees are usually found in the market to offer specific aroma or flavor profiles to
consumers. However, the mixed samples or their proportions are not always identified in the product
labels. Since the price of Arabica is much higher than that of Robusta, this lack of information
is not only an economical issue but a possible fraud to consumers, besides the potential allergic
reaction that these mixtures may trigger in some individuals. In this paper, two sample preparation
techniques were compared before the analysis of the total volatile organic compounds (VOCs) found
in Robusta, Arabica, and in the mixture from both coffee types. The comparison of the signals
obtained from the analyses showed that the VOCs concentration levels obtained from the headspace
(HS) analyses were clearly higher than those obtained from the pre-concentration step where an
adsorbent, an active charcoal strip (ACS + HS), was used. In the second part of this study, the
possibility of using the headspace gas-chromatography ion mobility spectrometry (HS-GC-IMS) for the
discrimination between Arabica, Robusta, and mixed coffee samples (n = 30) was evaluated. The ion
mobility sum spectrum (IMSS) obtained from the analysis of the HS was used in combination with
pattern recognition techniques, namely linear discrimination analysis (LDA), as an electronic nose.
The identification of individual compounds was not carried out since chromatographic information
was not used. This novel approach allowed the correct discrimination (100%) of all of the samples.
A characteristic fingerprint for each type of coffee for a fast and easy identification was also developed.
In addition, the developed method is ecofriendly, so it is a good alternative to traditional approaches.

Keywords: coffee; Arabica; Robusta; illegal mix; headspace; activated carbon strip; ion mobility
spectrometry; sensor; ion mobility sum spectra; chemometrics

1. Introduction

Coffee is one of the most popular and valuable products in agriculture markets today. Multiple
applications of this commodity based on its properties have been discovered over the last decade [1].
Coffee is mainly consumed as a hot drink due to its flavor, taste, and high caffeine content, which has
demonstrated to favor concentration [2]. In addition, coffee is also used by many other industries such
as food [3], cosmetics [4], pharmacy [5,6] or medicine [7,8]. A regular daily intake of coffee has shown
to be beneficial for humans, since it reduces the risk of developing some specific disorders such as
cirrhosis [9], Parkinson’s disease [10], or bowel cancer [11].
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The main components found in coffee are carbohydrates (around 60%), lipids, caffeine,
mineral compounds, chlorogenic acid, trigonelline, aminoacids, peptides, proteins, and volatile
compounds [12-14]. They are responsible for the different characteristic of this product. For example,
its high content in mineral compounds led to the use of coffee wastes as fertilizers in the past [15].
Trigonelline is a compound closely associated to coffee aroma [16]. There are also other volatile
compounds related to coffee aroma, which is a critical aspect towards consumers’ positive reception.
Coffee aroma is influenced by a large number of factors including grain kind and the roasting process
of such grains [17,18]. In this way, the volatile compounds of a particular coffee sample could be used
to determine its original grain kind, the roasting process employed and even its geographical origin,
for authentication purposes [19-21].

There are approximately 500 coffee varieties, but only two of them are the most widely demanded:
Arabica and Canephora coffee, mainly known as Robusta. Coffea arabica is a plant that was originally
imported into Latin America and Caribbean countries because of their favorable warm climate (from
15 °C to 24 °C). The plants usually grow up to between three meters and five meters tall and can be
cultivated in zones at around 800 meters and 2000 meters above sea level. In general, Coffea arabica
has proven to be extremely resistant to harsh weather conditions [22,23]. However, Coffea canephora
is a plant that usually grows up to between seven meters and 13 meters tall. They grow in zones at
between 200 and 900 meters above sea level and at temperatures ranging from 24 °C to 30 °C and, in
general, they are not as resistant as Coffea arabica to weather changes [23,24].

Both species differ in their physical properties, and they also show some differences in the
chemical composition of their grains [14,25,26]. In general, Arabica grains contain more trigonelline
and lipids, whereas Robusta grains are characterized by a larger caffeine and chlorogenic acids content.
These differences in their compositions are also reflected in their aroma and flavor. Whereas Arabica
coffee flavor is considered smooth, mild and rich, Robusta coffee presents a sallower flavor with an
almost muddy odor [27]. According to the International Coffee Organization 2018 [28], Arabica coffee
accounts for 61% of all the coffee currently produced globally, while Robusta coffee only reaches 39%.
Additionally, the price of Arabica coffee is much higher than the price of Robusta coffee.

Arabica and Robusta mixtures for consumption can be found in the markets. Such mixtures
intend to create specific aromas or creamier drinks [29,30]. The problem comes when Arabica coffee is
largely replaced by Robusta or when the mixing objective is purely economic, and the consumer is not
duly informed on the mixture composition. In those cases, it should be considered as a fraud to the
industry and to consumers. Poor mixtures can largely affect coffee quality, alter its aroma, and have
an effect on consumers health, since it has been observed that the compounds found in each species
are quite different [30,31]. Although Arabica and Robusta grains are rather different, this fraud is not
easily detected by the naked eye and microscopes are generally used to inspect the grains. However,
when the coffee sample to be inspected has been roasted or ground, the detection of an undeclared
mixture is very difficult even with the aid of microscopes.

Different techniques, such as laser-induced breakdown spectroscopy (LIBS) [32], DNA-based
molecular biology methods [33,34], solid-phase microextraction-gas chromatography-mass
spectrometry (SPME-GC-MS) [25], or high-performance liquid chromatography (HPLC) have been
successfully used in other research studies for the detection of Arabica coffee samples adulterated
with Robusta [35]. However, these techniques usually require a preliminary time-consuming sample
preparation step, and the addition of solvents. Furthermore, most of the required equipment is not
easy to move around. For this reason, some fast and green analytical methods that do not require
a sample preparation phase would be convenient such as electronic noses. An Agrinose electronic
nose was successfully applied for the detection of different roasted coffee Arabica beans based on the
volatile organic compounds (VOCs) profile [36].

Ion mobility spectrometry (IMS) is an analytical technique based on the ionization of VOCs
and their velocities through a drift tube influenced by a low electric field in an inert gas [37].
Ionization is achieved by radiation [38] (x or 3 from isotopic radioactive sources), UV radiation [39],
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or corona discharge [40]. The different velocities of the ions will depend on their mass, charge, and
characteristic shapes [41]. Based on these variables, IMS can achieve a different selectivity than
mass-spectrometry-based methods. Besides, IMS is considered a green method because it does not use
solvents and has a low nitrogen consumption. Furthermore, IMS has got low quantification limits
(in the range of pg/kg) [42]. All these advantages have favored a considerable growth in the use of
this technique over the last years. Regarding the agri-food industry, it has been used for the study of
oils [43] and wines [44,45]. It has also been used for analysis control in beer [46], cheese [47], and bread
production [48], as well as for the control of adulterated honey [49].

In general, the samples do not require any preliminary treatment before they are subjected to
IMS, except for the production of a reproducible headspace (HS) above the sample. The VOCs in the
sample are concentrated by techniques such as headspace or thermal desorption, and they are directly
injected into the ion mobility spectrometry (IMS) or the gas-chromatography ion mobility spectrometry
(GC-IMS) coupled systems. However, a previous concentration step of the volatile compounds may
sometimes be convenient. For some particular samples, adsorbents as activated charcoal strips (ACS)
have been used to increase the selectivity of the method and the VOCs concentration during the
generation of the HS [50,51].

IMS has been previously applied for the characterization of different type of coffee samples [52,53].
In these studies, individual compounds in the headspace were identified and quantified. This approach
is time consuming because both samples and standards must be determined. Additionally, there is
some information that cannot be used because the registered peaks do not correspond to any standards.
Therefore, the use of the ion mobility sum spectrum (IMSS) obtained from the analysis of the HS,
in combination with pattern recognition tools as a screening method, can be an alternative to such
traditional approaches. By using the IMSS, chromatographic information is avoided but a global
profile for each type of sample is obtained; In this way, a faster analysis can be applied since system is
working as an electronic nose [49,54,55]. The application of linear discrimination analysis (LDA) to the
whole IMSS allows for the development of a simple fingerprint characteristic of each type of sample.
Hence, the present work aims to study the suitability of using the IMS in combination with LDA for
fast discrimination between the two most consumed coffee varieties (Arabica and Robusta) and the
detection of the illegal mixture from both based on the analysis of the headspace by using the IMSS.

2. Materials and Methods

2.1. Coffee Samples

Four different Arabica—Robusta commercialized mixtures were employed to determine the
influence of two pre-concentration methods (ACS + HS or direct HS) on the detection of VOCs by
HS-GC-IMS. Once the influence of each pre-concentration method was determined, a total of 30 samples
were selected to evaluate the suitability of the developed method for the discrimination of the samples:
13 Arabica coffee samples, seven Robusta samples, and 10 mixed coffee samples. All the samples were
obtained from Spanish and Indonesian stores. The actual exact percentages in the commercial mix
samples were unknown, although, according to their labels, the Robusta content was between 10% and
50%.

The samples were named A, R, and Mix (for Arabica, Robusta, and their mixture, respectively)
followed by the sample number and A or B for duplicate analyses. For example, the first Arabica coffee
sample was named A_1_A.

2.2. Pre-Concentration Methods

Two pre-concentration steps prior to analysis by GC-IMS has been evaluated. A comparison
scheme with the analytical method is displayed in Figure 1.
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Figure 1. Steps followed in each pre-concertation method prior to gas-chromatography ion mobility
spectrometry (GC-IMS) analysis.

2.2.1. Activated Charcoal Strip Analysis + Headspace (ACS + HS)

0.5 g of each sample was weighted using an analytical balance (Ohaus®CS Series, Greifensee,
Switzerland) and transferred to 50 mL glass falcons (Labbox Labware, S.L., Barcelona, Spain).
The headspace above the samples was collected on a 10 mm x 22 mm ACS (USA Albrayco Technologies
Inc., Cromwell, CT, USA), which was placed around 2 cm above the sample by means of a paperclip
and unwaxed dental floss. The falcons were closed and heated in an oven at 60 °C to generate the HS.
Different times were tested—>5, 15, and 30 min.

Then, the ACSs contents were transferred to 10 mL glass vials (Agilent Crosslab, Santa Clara, CA,
USA). The retained compounds were then thermally desorbed into the headspace and analyzed by
GC-IMS. The conditions for the thermal desorption of the ACSs were as follows: 55 °C incubation
temperature, 10 min incubation time, and 500 rpm agitation speed. Then, 100 uL volume samples
were collected from the HS by means of a syringe heated at 80 °C (5 °C higher than the incubation
temperature, to prevent condensation) and fed into the GC-IMS system. After each analysis, the
syringe was flushed for 5 min with nitrogen gas to prevent cross-contamination.

2.2.2. Direct Headspace (HS)

For the direct passive HS pre-concentration method, coffee samples with different weights (0.1, 0.2,
0.3,0.4, and 0.5 g) were measured by means of an analytical balance and transferred into 10 mL vials
(Agilent Crosslab, Santa Clara, CA, USA) to be analyzed by HS-GC-IMS. Regarding the conditions to
generate the HS, different incubation temperatures (30-75 °C) were tested in order to select the best
conditions to determine the VOCs present in the samples.

The rest of the incubation conditions were the same as for the previous method: 10 min of
incubation time at 500 rpm agitation speed, 100 pL volume samples, 80 °C syringe temperature, and
5 min syringe flushing time.

2.3. GC-IMS Analysis

All the coffee samples were analyzed by HS-GC-IMS FlavourSpec (G.A.S., Dortmund, Germany),
which consists of an HS 100 static headspace autosampler, a GC column, and IMS detector. Vials
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containing either the pure coffee samples or the ACS were placed inside the autosampler oven to be
heated and agitated to generate the HS. The GC column used was a 20 cm X 0.2 um multi capillary
MCC OV-5 (5%-diphenyl, 95%-dimethylpolysiloxane) (G.A.S., Dortmund, Germany). The drift gas
and carrier gas selected were N, at 99.999% purity, supplied by an N, generator (G.A.S., Dortmund,
Germany) and *H Tritium beta radiation was employed for the ionization of the samples.

The GC-IMS conditions, for both pre-treatment methods, were as follows: 55 °C column
temperature (T;), 55 °C equipment temperature (T1), 80 °C injector temperature (T3), and 80 °C
system temperature (T).

The initial carrier gas flow of 2 mL/min was held for 5 min, followed by a gas flow ramp of
5 mL/min which was kept for 3 min and then followed by a gas flow ramp of 10 mL/min, which was
held for 2 min and followed by another gas flow ramp of 25 mL/min kept for 5 min. The N flow inside
the drift tube, in the opposite direction to that of the gas flow, was kept at 250 mL/min. All the above
values had been selected based on the literature and on the solid experience gained by the research
group in similar procedures.

2.4. Data Analysis

IMS data were acquired in positive mode using LAV HS-GC-IMS software (G.A.S., Dortmund,
Germany). By means of HS-GC-IMS a three-dimensional map was elaborated where the Y-axis
represents the retention time (s) during GC, the X-axis represents the drift time (ms), and the Z-axis
indicates the intensity value (V) of each compound. Two different signals were considered in this study:

e  Area. The total area calculated as the sum of the VOCs areas obtained by the two pre-concentration
methods—ACS and non-preconcentrated samples. For that purpose, the area of each compound
was selected and calculated using LAV software (Figure 2A). Then, the sum of all the areas was
used to determine the optimal conditions to obtain the maximum signal (area) corresponding to
the total VOC content and to evaluate the headspace differences between the pre-concentrated
samples and non-pretreated samples.

e Jon mobility sum spectrum (IMSS). Once the optimal sample preparation method had been
established, a total of 30 samples were analyzed under those conditions. IMSS was used to
evaluate the capacity of the HS-GC-IMS to discriminate between the Arabica, Robusta, and
mixture samples. IMSS is defined as the sum of intensities across the chromatographic profile, this
results in a spectrum in which each drift time acts as a “sensor,” and the total volatile compounds
intensity collected at each drift time is equivalent to a multiple sensor signal. It supposes that no
chromatographic information has been used (Figure 2B). i.e., data on the total intensities at 4500
drift times, from 0.000 ms to 4.500 ms (relatives to RIP). The reaction ion peak (RIP) represents
the total available ions generated by the ion source and this signal is used as the reference to
determine each compound drift time. A specific zone was selected, as it was the range where
volatiles compounds were detected, resulting in a spectrum with a total of 599 drift times from
1.187 ms to 1.786 ms. Each spectrum was normalized by assigning one unit value to its maximum
intensity. The data obtained from the IMSS was arranged in matrixes named D;x, where m is the
number of samples and n is the number of drift times.
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Figure 2. Topographic plot of the GC-IMS spectra of a mixed coffee sample. (A) Area map of the
compounds of interest; (B) The zone of interest in each topographic plot has been framed by a dotted
orange line in the figure. The ion mobility sum spectrum (IMSS) corresponding to this zone has
been represented.

The spectroscopic data were analyzed by applying non-supervised chemometric tools such as
hierarchical cluster analysis (HCA) and supervised methods such as linear discriminant analysis (LDA).
For this purpose, the statistics computer package SPSS 22.0 (SPSS Inc., Armonk, NY, USA) and LAV
HS-GC-IMS software (G.A.S., Dortmund, Germany) were used.

2.5. Standardization Procedure

The RIP is formed as a sharp signal proving the cleanliness of the system and at a specific position
so it can be considered as internal standard (IS). To minimize instrument variation, such as the effect of
temperature, a relative drift time is used as normalization term. In this way, the RIP works as an IS
that compensates any instrument variation, and there is a quality control to guarantee the reliability of
the equipment.

3. Results

3.1. Comparison between the Two Pre-Concentration Methods

As previously explained, VOCs’ complex matrixes may sometimes require a pre-concentration or
compound pre-selection step. Either of these processes involve time-consuming sample preparation
processes and additional costs. In this study, it has been considered, and pre-concentration samples are
compared by means of an ACS followed by its thermal desorption, against the direct analysis of the
released volatile compounds by HS.
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3.1.1. Activated Charcoal Strip Analysis + Headspace (ACS + HS)

The ACS-preconcentrated VOCs obtained from the coffee samples were dried in an oven at 60 °C.
Different times were evaluated to determine its influence on the recovery yields. For that purpose, four
mixed coffee samples were incubated at 60 °C for 5, 15, and 30 min. Each experiment was carried out
in duplicate so that a total of 24 ACS samples were analyzed (4 mixed coffee samples X 3 times X 2).
Each ACS was thermally desorbed in an oven at 55 °C for 10 min and then analyzed by GC-IMS.

The results were evaluated by comparing the total sum of the VOCs areas (Figure 2A). The average
areas and the standard deviation of the four mixed coffee samples after each different adsorption time
are shown in Table 1.

Table 1. One-way ANOVA test results corresponding to all the mixed coffee samples at different
absorption times.

Time (min) Average Sum Area + Standard Deviation
52 1839 + 24
5P 2309 + 42
30° 2431 + 12

ab According to the ANOVA analysis, the conditions accompanied by the same letter have not shown any relevant
differences (p-value < 0.05).

One-way ANOVA was applied to determine the influence of time on the pre-concentration of
VOCs on the ACSs (5 min, 15 min, and 30 min). Since F critical value was 3.49 and an F value of 17.85
was obtained, it can be concluded that there are significant differences between the 5 min and the
15-30 min adsorption times. Given that, according to the ANOVA test, the average area difference
between the 15 min and 30 min adsorption times was negligible, 15 min was selected as the adsorption
time to be employed for the pre-concentration step.

3.1.2. Headspace (HS)

The direct analysis of the HS generated above the sample without the use of any adsorbent was
also considered. The amount of volatile compounds in the HS depends on specific experimental
variables such as the sample volume and its incubation temperature. Therefore, both of these variables
were also studied. First, in order to determine the influence of incubation temperature on the VOCs
detected, 0.5 g from each one of the mixed coffee samples were analyzed at different temperatures
(80 °C-75 °C) for 10 min with agitation. It was observed that in all the cases the RIP signal was
disappearing at some specific retention times. As above explained, RIP is a reference signal for the
total available ions generated by the ion source, when this signal disappears, it cannot ensure the total
ionization of all the VOC content in the sample. At this point, it was observed that, when the same
amount of sample was used, the VOC content detected was significantly higher in those cases where
the plain samples were directly analyzed by HS in comparison to the VOC contents detected in the
samples that had been pre-concentrated by means of the adsorbent.

In order to ensure the full ionization of the compounds in the headspace, the weight of the samples
was reduced. Samples of different weight ranging from 0.1 to 0.5 g were analyzed by heating them at
30 °C with agitation for 10 min to generate their HS. The average area and the standard deviation are
presented in Table 2. The comparison between the different average areas is represented in Figure 2A.
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Table 2. One-way ANOVA test results corresponding to all the mixed coffee samples of different weights.

Sample Weight (g) Average Sum Area + Standard Deviation
052 9209 +2
04P° 9141 + 23
03¢ 9062 + 78
024 8920 + 62
0.14 8412 + 11

abed According to the ANOVA analysis, the conditions accompanied by the same letter have not shown any relevant
differences (p-value < 0.05).

One-way ANOVA was used to determine the relevant average differences. An F value of 43.18
with a critical F value of 5.19 was obtained, which indicates that there are significant differences
between area averages. Although the resulting area for 0.5 g samples was significantly larger than for
smaller samples, as it was previously said, the RIP signal was still discontinuous. In fact, only 0.1 g
samples produced enough RIP signals and, therefore, they were selected for the experiment.

Both pre-concentration methods have demonstrated to be suitable for the isolation of the VOCs
present in mixed coffee samples prior to their analysis by GC-IMS. Nevertheless, the comparison of the
areas obtained by the two methods showed that the VOC concentration levels detected by HS-GC-IMS
was significantly higher than those obtained by ACS + HS-GC-IMS, even in those cases where the
samples were of a much smaller weight (0.1 g). For this reason, HS-GC-IMS was the method selected
for the discrimination study between the three sample categories.

3.2. Discrimination of Arabica, Robusta, and Mixed Coffee Samples by HS-GCIMS

A total of 30 samples (13 samples of Arabica coffee, seven samples of Robusta coffee, and 10 mixed
coffee samples) were directly analyzed by HS-GC-IMS. No ACSs were previously used, and the 0.1 g
samples were directly heated in an oven at 30 °C for 10 min to generate their HS. All the experiments
were run in duplicate. The suitability of this methodology to characterize Arabica, Robusta and mixed
coffee samples in a rapid, simple and convenient way was evaluated according to the samples” IMSS.
Each spectrum was obtained following the procedure above explained in the Materials and Methods
section, and the total intensities for 599 drift times (1.187-1.786 ms (RIP relatives)) were determined.
All the spectra were normalized by assigning one unit to the maximum intensity.

The reason to use IMSS for the discrimination between coffee varieties is that IMSS data analysis
can be carried out in a shorter time. Additionally, this method should also allow for the determination
of the characteristic fingerprint of each variety or mixed coffee sample, which, in turn, should facilitate
their convenient discrimination. For this reason, IMSS has been proposed as a suitable method for the
final treatment of the data to be used in routine control analyses. The average spectra obtained from
Arabica, Robusta, and mixed coffee samples are represented in Figure 3.

As can be observed, there are some differences in specific spectra zones that can be visually
detected: 1.213-1240 ms, 1.320-1360 ms, or 1.400-1.440 ms. Such differences suggest that these
areas are probably relevant for the discrimination of the samples, but they are not clear enough
for the discrimination of the samples just by the plain visual inspection of the spectra. In order to
accomplish an objective discrimination of the samples, pattern recognition tools would have to be used.
In the first place, a non-supervised analysis namely HCA was applied to the IMSS of all the samples
(Dgox599)- The Ward’s method based on the Squared Euclidian distance was selected for this study.
The dendrogram in Figure 4 displays the results in a graphical way.
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Figure 4. Dendrogram obtained by the hierarchical cluster analysis (HCA) of Arabica, Robusta, and
mixed coffee samples IMSSs (Dgox599)-

Two main clusters were generated. Cluster A, which is formed exclusively by mixed coffee
samples (six out of 20 samples), and Cluster B, that includes the rest of the samples. Also, two main
subclusters can be distinguished within Cluster B. Cluster B, contains 14 Robusta coffee samples, four
out of the 20 mixed coffee samples and six out of the 26 Arabica coffee samples. Cluster B; is formed by
10 mixed coffee samples and 20 Arabica coffee samples. Although some of the mixed coffee samples
were misclassified as Arabica samples, it is important to highlight that mixed coffee samples had a 50%
minimum Arabica content. A tendency to discriminate between Arabica and Robusta samples was
also noticed. These results suggest that the samples’ IMSSs contains data related to their coffee variety
content. However, since all the samples were not fully and successfully discriminated by means of
their whole IMSSs, a supervised method was applied.

A stepwise LDA was selected as the supervised method to point out the discriminant functions
and thus, reducing the number of variables to just those associated to the detection of the coffee
varieties of interest. 75% of the samples (n = 45) were randomly picked up to create the model and
the remaining 25% were used for validation purposes (n = 15) (seven Arabica samples, five mixed
coffee samples, and three Robusta samples). Three groups were established a priori: Arabica samples,
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Robusta samples, and mixed coffee samples. A 100% successful classification was achieved by the
discrimination model. Additionally, a fully and exact discrimination was also completed when applied
to the validation samples, i.e., the 15 samples used for validation were successfully classified into their
respective groups.

All of the samples were represented according to the two canonical functions (FCs) obtained by
the LDA (Figure 5). According to FC1 (Y-axis) the samples showed a trend to fall into two groups: the
first one formed by Robusta coffee samples (negative loading values) and the second one formed by
both Arabica and mixed coffee samples (positive loading values). FC2 (X-axis) allowed the separation
between Arabica coffee samples (negative loading values) and mixed coffee samples (positive loading
values). Similarly to the previous method (plain HCA), it could be observed that some mixed coffee
samples were closer to Arabica coffee than to Robusta coffee samples. As above explained, the
percentage of Arabica content in mixed coffee samples is greater that their Robusta coffee content.
It was then established that both FCs were required for a full discrimination between the three types of
coffee samples.

GR
” # Arabica
i - % Mix
3 o ¥ , % Robusta
1 W
-3 H 3
L _k,;?{} B ’
’ P! 3
0—
1
-
e
37 % £ %
& ¥
51 had %
e
8-
T T T T T
-4 2 0 2 4
FC2

Figure 5. Linear discrimination analysis (LDA) score plot for all the coffee samples (n = 60).

A total of six drift times were selected to develop the necessary Fisher’s linear discriminant
functions: 1.220 ms, 1.300 ms, 1.306 ms, 1.629 ms, 1.657 ms, and 1.666 ms (RIP relatives). Since the aim
of this study is to establish a rapid and convenient methodology that can be used in routine analyses
to discriminate coffee samples, a coffee type characteristic fingerprint had to be determined. For this
purpose, the intensities corresponding to each one of the three coffee type categories at six specific drift
times were calculated. All of the values were normalized to the base peak at 100%. The fingerprints
obtained are illustrated in Figure 6.
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Figure 6. Average normalized intensities of the three groups at the six selected drift times.

It was detected that Robusta coffee maximum intensities were reached at 1.629 ms, 1.657 ms, and
1.666 ms drift times (RIP relatives), whereas it showed intensities below 0.5 (50% of the maximum
intensity) at the other drift times. The scenario was completely different in the case of the Arabica coffee,
where at 1.629 ms and 1.657 ms drift times (RIP relatives) it showed intensities below 0.5. The rest of
the drift times showed relative intensities above 0.5, even at 1.666 ms drift time (RIP relative), where
their intensity was similar to those of Robusta coffee samples.

Lastly, mixed coffee samples had a similar profile to that of Arabica coffee due to its large
percentage of Arabica content, with a maximum percentage of Robusta content up to 50% so that
they would keep their physically properties. However, even in those cases, some differences could be
found. For example, the intensities corresponding to 1.220 ms drift time (RIP relative) were lower than
Arabica’s for the same drift time and closer to that of Robusta’s. Furthermore, at 1.629 ms and 1.657 ms
drift times [RIP relatives] mixed coffee samples’ intensities were higher than Arabica’s but not as high
as Robusta’s. It can be visualized from Figure 6 that just a few specific drift times that characterize
each one of the three groups are required to discriminate coffee sample types. This means that any
adulteration of Arabica coffee by adding Robusta coffee can be detected in a rapid and convenient way.

3.3. Greenness Assessment of the Developed Analytical Procedures

To evaluate the greenness of the developed analytical methods the analytical Eco-Scale was
used [56]. This scale considers hazard and amount of the reagents, waste generation, the energy
consumption and occupational hazard. The Eco-Scale tool is determined by assigning penalty points
(PPs) to each analytical process parameter which is not in agreement with the ideal green analysis.
Analytical Eco-Scale = 100 — total PPs, which gives higher score to greener and more economical
analytical procedure.

Based on the eco-scale criteria, pure coffee samples method scored 100 points (nitrogen —
non-hazardous reagent, no waste created (IMS vials are recyclable), no emission of vapors and gases to
the air and the method uses less than 0.1 kWh per sample —200 Watts (GC-IMS power consumption) x
25 min (10 min of incubation + 15 min of analysis) = ~0.08 kWh). The ACS method differs only in the
energy consumption — additional step of static headspace adsorption. The electricity consumption
rises to 0.17 kWh per sample —0.08 kWh + 350 Watts (oven power consumption) X 15 min (static
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headspace adsorption time), which gives 99 score (1 PP for power consumption bigger than 0.1 kWh
per sample). Eco-Scale scores show that both designed methods are excellent green analysis.

4. Conclusions

In the first part of this study, the possibility of employing an adsorbent such as ACS to obtain
greater VOC concentrations in comparison to the direct analysis of the HS was evaluated. According
to the experimental results, the direct analysis of the HS was more efficient, since it detected greater
VOC concentrations in only 10 min by heating the samples in an oven at 30 °C.

In the second part of the research, the HS of 30 samples of three different categories, namely
13 samples of Arabica coffee, seven samples of Robusta coffee, and 10 samples of mixed coffee
varieties, were directly analyzed by means of IMSS and chemometric tools, a rapid and convenient
procedure, which was proposed by this study as a novel alternative for the analysis and treatment of
the data. After the chemometric treatment, 100% successful discrimination of the samples in the three
pre-established categories (Arabica, Robusta, and mixed coffee varieties) was achieved. These results
demonstrate the suitability of the HS-GC-IMS to discriminate between coffee sample categories and,
therefore, to detect any fraudulent mixtures in just 25 min (10 min for the HS + 15 min for the GC-IMS).

In addition, from the initial 4500 drift times, just 6 drift times (1.220 ms, 1.300 ms, 1.306 ms,
1.629 ms, 1.657 ms, and 1.666 ms (RIP relatives)) were selected as required to complete a reliable and
complete discrimination between the samples. All in all, the results obtained in this study represent
a promising improvement in food control analysis, and the proposed method, ion mobility sum
spectrum, has demonstrated to be a fully reliable and convenient technique for the discrimination of
samples containing varying percentages of Arabica and/or Robusta coffee. Additionally, this technique
is ecofriendly and there are portable devices in the market, so the analysis could be carried out in situ.

Author Contributions: PPK., M.J.A.-G., and M.P. conceived and designed the experiments; PPK. and M.J.A.-G.
performed the experiments; G.EB. and M.E-G. analyzed the data; M.J.A.-G., PPK., and M.E-G. wrote the draft
version; M.E-G., G.EB., and M.P. were responsible for writing—review and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The Education, Audiovisual and Culture Executive Agency (EACEA) of the European Union
is gratefully acknowledged for the financial support of PW. in the context of the Erasmus Mundus Master in
Quality in Analytical Laboratories (EMQAL).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Samoggia, A.; Riedel, B. Coffee consumption and purchasing behavior review: Insights for further research.
Appetite 2018, 129, 70-81. [CrossRef]

2. Mejia, E.G.; Ramirez-Mares, M.V. Impact of caffeine and coffee on our health. Trends Endocrinol. Metab. 2014,
25,489-492. [CrossRef]

3. Veiga-Santos, P; Silva, L.T.; de Souza, C.O.; da Silva, ].R.; Albuquerque, E.C.C.; Druzian, ].I. Coffee-cocoa
additives for bio-based antioxidant packaging. Food Packag. Shelf Life 2018, 18, 37—-41. [CrossRef]

4. Palmieri, M.G.S.; Cruz, L.T.,; Bertges, ES.; Hungaro, H.M.; Batista, L.R.; da Silva, S.S.; Fonseca, M.].V,;
Rodarte, M.P; Vilela, EM.P.; Amaral, M. Enhancement of antioxidant properties from green coffee as
promising ingredient for food and cosmetic industries. Biocatal. Agric. Biotechnol. 2018, 16, 43-48. [CrossRef]

5. Celik, E.E.; Gokmen, V. A study on interactions between the insoluble fractions of different coffee infusions
and major cocoa free antioxidants and different coffee infusions and dark chocolate. Food Chem. 2018, 255,
8-14. [CrossRef] [PubMed]

6. Marto, J.; Gouveia, L.F,; Chiari, B.G.; Paiva, A.; Isaac, V.; Pinto, P.; Simoes, P.; Almeida, A.J.; Ribeiro, H.M.
The green generation of sunscreens: Using coffee industrial sub-products. Ind. Crops Prod. 2016, 80, 93-100.
[CrossRef]


http://dx.doi.org/10.1016/j.appet.2018.07.002
http://dx.doi.org/10.1016/j.tem.2014.07.003
http://dx.doi.org/10.1016/j.fpsl.2018.08.005
http://dx.doi.org/10.1016/j.bcab.2018.07.011
http://dx.doi.org/10.1016/j.foodchem.2018.02.048
http://www.ncbi.nlm.nih.gov/pubmed/29571501
http://dx.doi.org/10.1016/j.indcrop.2015.11.033

Sensors 2020, 20, 3123 13 of 15

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

O’Keefe, ].H.; DiNicolantonio, J.J. Coffee for Cardioprotection and Longevity. Prog. Cardiovasc. Dis. 2018, 61,
38-42. [CrossRef] [PubMed]

Mirmiran, P; Carlstrom, M.; Bahadoran, Z.; Azizi, F. Long-term effects of coffee and caffeine intake on the risk
of pre-diabetes and type 2 diabetes: Findings from a population with low coffee consumption. Nutr. Metab.
Cardiovasc. Dis. 2018, 28, 1261-1266. [CrossRef] [PubMed]

Dranoff, J.A. Coffee Consumption and Prevention of Cirrhosis: In Support of the Caffeine Hypothesis.
Gene Expr. 2018, 18, 1-3. [CrossRef]

Munoz, D.G.; Fujioka, S. Caffeine and Parkinson disease. Neurology 2018, 90, 205-206. [CrossRef]

Schmit, S.L.; Rennert, H.S.; Rennert, G.; Gruber, S.B. Coffee Consumption and the Risk of Colorectal Cancer.
Cancer Epidemiol. Biomark. Prev. 2016, 25, 634-639. [CrossRef] [PubMed]

Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products:
A review. Resour. Conserv. Recycl. 2018, 128, 110-117. [CrossRef]

Cid, M.C,; de Pefia, M.-P. Coffee: Analysis and Composition. Encycl. Food Health 2016, 225-231. [CrossRef]
Moreira, A.S.P.; Nunes, EM.; Simoées, C.; Maciel, E.; Domingues, P.; Domingues, M.R.M.; Coimbra, M.A. Data
on coffee composition and mass spectrometry analysis of mixtures of coffee related carbohydrates, phenolic
compounds and peptides. Data Br. 2017, 13, 145-161. [CrossRef]

Clarke, R.J. COFFEE: Roast and Ground. Encycl. Food Sci. Nutr. 2003, 1487-1493. [CrossRef]

De Oliveira, A.L.; Cruz, PM.; Eberlin, M.N.; Cabral, F.A. Brazilian roasted coffee oil obtained by mechanical
expelling: Compositional analysis by GC-MS. Food Sci. Technol. 2005, 25, 677—682. [CrossRef]

Chu, B.; Yu, K;; Zhao, Y.; He, Y. Development of Noninvasive Classification Methods for Different Roasting
Degrees of Coffee Beans Using Hyperspectral Imaging. Sensors 2018, 18, 1259. [CrossRef]

Lee, SJ.; Kim, M.K,; Lee, K.-G. Effect of reversed coffee grinding and roasting process on physicochemical
properties including volatile compound profiles. Innov. Food Sci. Emerg. Technol. 2017, 44, 97-102. [CrossRef]
Cordoba, N.; Fernandez-Alduenda, M.; Moreno, FL.; Ruiz, Y. Coffee extraction: A review of parameters and
their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci. Technol.
2020, 96, 45-60. [CrossRef]

Beverly, D.; Fryer, PJ.; Bakalis, S.; Lopez-Quiroga, E.; Farr, R. Mathematical modelling of the steam stripping
of aroma from roast and ground coffee. In Proceedings of the Energy Procedia, 1st ed.; Elsevier Ltd.: Amsterdam,
The Netherlands, 2019; Volume 161, pp. 157-164. [CrossRef]

De Melo Pereira, G.V.; de Carvalho Neto, D.P.; Magalhaes Junior, A.L; Vasquez, Z.S.; Medeiros, A.B.P;
Vandenberghe, L.P.S.; Soccol, C.R. Exploring the impacts of postharvest processing on the aroma formation
of coffee beans—A review. Food Chem. 2019, 272, 441-452. [CrossRef]

Anthony, F,; Bertrand, B.; Quiros, O.; Wilches, A.; Lashermes, P.; Berthaud, J.; Charrier, A. Genetic diversity
of wild coffee (Coffea arabica L.) using molecular markers. Euphytica 2001, 118, 53—65. [CrossRef]
Wintgens, J.N. Coffee: Growing, Processing, Sustainable Production, 2nd ed.; Wintgens, J.N., Ed.; Wiley-VCH
Verlag GmbH: Weinheim, Germany, 2004; pp. 1-1000. ISBN 9783527619627. [CrossRef]

Liu, C.; Yang, Q.; Linforth, R.; Fisk, I.D.; Yang, N. Modifying Robusta coffee aroma by green bean chemical
pre-treatment. Food Chem. 2019, 272, 251-257. [CrossRef] [PubMed]

Caporaso, N.; Whitworth, M.B.; Cui, C.; Fisk, I.D. Variability of single bean coffee volatile compounds of
Arabica and robusta roasted coffees analysed by SPME-GC-MS. Food Res. Int. 2018, 108, 628-640. [CrossRef]
[PubMed]

Vignoli, J.A.; Viegas, M.C.; Bassoli, D.G.; de Toledo Benassi, M. Roasting process affects differently the
bioactive compounds and the antioxidant activity of arabica and robusta coffees. Food Res. Int. 2014, 61,
279-285. [CrossRef]

Flament, 1. Coffee Flavor Chemistry, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 1-424.
ISBN 978-0-471-72038-6.

Coffee Market Reports. The Current State of the Global Coffee Trade. Available online: www.ico.org
(accessed on 1 March 2020).

Folmer, B. The Craft and Science of Coffee, 1st ed.; Academic Press: London, UK, 2017; pp. 1-556.
ISBN 978-0-12-803520-7.

Dias, R.C.E.; Valderrama, P.; Marco, PH.; dos Santos Scholz, M.B.; Edelmann, M.; Yeretzian, C. Quantitative
assessment of specific defects in roasted ground coffee via infrared-photoacoustic spectroscopy. Food Chem.
2018, 255, 132-138. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.pcad.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29474816
http://dx.doi.org/10.1016/j.numecd.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30352712
http://dx.doi.org/10.3727/105221617X15046391179559
http://dx.doi.org/10.1212/WNL.0000000000004898
http://dx.doi.org/10.1158/1055-9965.EPI-15-0924
http://www.ncbi.nlm.nih.gov/pubmed/27196095
http://dx.doi.org/10.1016/j.resconrec.2017.10.001
http://dx.doi.org/10.1016/B978-0-12-384947-2.00185-9
http://dx.doi.org/10.1016/j.dib.2017.05.027
http://dx.doi.org/10.1016/B0-12-227055-X/00269-8
http://dx.doi.org/10.1590/S0101-20612005000400009
http://dx.doi.org/10.3390/s18041259
http://dx.doi.org/10.1016/j.ifset.2017.07.009
http://dx.doi.org/10.1016/j.tifs.2019.12.004
http://dx.doi.org/10.1016/j.egypro.2019.02.075
http://dx.doi.org/10.1016/j.foodchem.2018.08.061
http://dx.doi.org/10.1023/A:1004013815166
http://dx.doi.org/10.1002/9783527619627
http://dx.doi.org/10.1016/j.foodchem.2018.07.226
http://www.ncbi.nlm.nih.gov/pubmed/30309540
http://dx.doi.org/10.1016/j.foodres.2018.03.077
http://www.ncbi.nlm.nih.gov/pubmed/29735099
http://dx.doi.org/10.1016/j.foodres.2013.06.006
www.ico.org
http://dx.doi.org/10.1016/j.foodchem.2018.02.076
http://www.ncbi.nlm.nih.gov/pubmed/29571458

Sensors 2020, 20, 3123 14 of 15

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Frega, N.G.; Pacetti, D.; Mozzon, M.; Balzano, M. Authentication of Coffee Blends. In Coffee in Health and
Disease Prevention, 1st ed.; Press, A., Ed.; Elsevier: London, UK, 2015; pp. 107-115. [CrossRef]

Zhang, C.; Shen, T.; Liu, F; He, Y. Identification of Coffee Varieties Using Laser-Induced Breakdown
Spectroscopy and Chemometrics. Sensors 2017, 18, 95. [CrossRef]

Combes, M.-C.; Joét, T.; Lashermes, P. Development of a rapid and efficient DNA-based method to detect
and quantify adulterations in coffee (Arabica versus Robusta). Food Control 2018, 88, 198-206. [CrossRef]
Couto, C.C.; Santos, T.F.; Mamede, A.M.G.N.; Oliveira, T.C.; Souza, A.M.; Freitas-Silva, O.; Oliveira, EM.M.
Coffea arabica and C. canephora discrimination in roasted and ground coffee from reference material
candidates by real-time PCR. Food Res. Int. 2019, 115, 227-233. [CrossRef]

Pauli, E.D.; Barbieri, F; Garcia, P.S.; Madeira, T.B.; Acquaro, V.R.; Scarminio, 1.S.; da Camara, C.AP;
Nixdorf, S.L. Detection of ground roasted coffee adulteration with roasted soybean and wheat. Food Res. Int.
2014, 61, 112-119. [CrossRef]

Marek, G.; Dobrzanski, B., Jr.; Oniszczuk, T.; Combrzyniski, M.; Cwikla, D.; Rusinek, R. Detection and
Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries
Using an Electronic Nose and GC-MS. Sensors 2020, 20, 2124. [CrossRef]

Borsdorf, H.; Eiceman, G.A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev.
2006, 41, 323-375. [CrossRef]

Fernandez-Maestre, R. Ion mobility spectrometry: History, characteristics and applications. Rev. U.D.C.A
Act. Div. Cient. 2012, 15, 467-479.

Garrido-Delgado, R.; Arce, L.; Pérez-Marin, C.C.; Valcarcel, M. Use of ion mobility spectroscopy with an
ultraviolet ionization source as a vanguard screening system for the detection and determination of acetone
in urine as a biomarker for cow and human diseases. Talanta 2009, 78, 863-868. [CrossRef] [PubMed]

Sabo, M.; Matej¢ik, S. Corona Discharge Ion Mobility Spectrometry with Orthogonal Acceleration Time of
Flight Mass Spectrometry for Monitoring of Volatile Organic Compounds. Anal. Chem. 2012, 84, 5327-5334.
[CrossRef] [PubMed]

Vautz, W.; Franzke, J.; Zampolli, S.; Elmi, L; Liedtke, S. On the potential of ion mobility spectrometry coupled
to GC pre-separation—A tutorial. Anal. Chim. Acta 2018, 1024, 52—-64. [CrossRef]

Li, E; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J. Ion mobility spectrometer for online monitoring of
trace compounds. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1563-1574. [CrossRef]

Garrido-Delgado, R.; Mercader-Trejo, E; Sielemann, S.; de Bruyn, W.; Arce, L.; Valcarcel, M. Direct classification
of olive oils by using two types of ion mobility spectrometers. Anal. Chim. Acta 2011, 696, 108-115. [CrossRef]
Camara, M.; Gharbi, N.; Cocco, E.; Guignard, C.; Behr, M.; Evers, D.; Orlewski, P. Fast screening for presence
of muddy/earthy odorants in wine and in wine must using a hyphenated gas chromatography-differential
ion mobility spectrometry (GC/DMS). Int. ]. Ion Mobil. Spectrom. 2011, 14, 39-47. [CrossRef]
Marquez-Sillero, I.; Cardenas, S.; Valcarcel, M. Direct determination of 2,4,6-tricholoroanisole in wines by
single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility
spectrometry detection. |. Chromatogr. A 2011, 1218, 7574-7580. [CrossRef]

Vautz, W.; Baumbach, ].I.; Jung, J. Beer Fermentation Control Using Ion Mobility Spectrometry—Results of a
Pilot Study. J. Inst. Brew. 2006, 112, 157-164. [CrossRef]

Vautz, W.; Baumbach, J.I. Analysis of Bio-Processes using Ion Mobility Spectrometry. Eng. Life Sci. 2008, 8,
19-25. [CrossRef]

Ruzsanyi, V.; Baumbach, ]J.I; Eiceman, G.A. Detection of the mold markers using ion mobility spectrometry.
Int. J. Ion Mobil. Spectrom. 2003, 6, 53-57.

Aliafio-Gonzalez, M.].; Ferreiro-Gonzalez, M.; Espada-Bellido, E.; Barbero, G.F,; Palma, M. Novel method
based on ion mobility spectroscopy for the quantification of adulterants in honeys. Food Control 2020, 107236.
[CrossRef]

Nongonierma, A.; Voilley, A.; Cayot, P.; Le Quéré, J.-L.; Springett, M. Mechanisms of Extraction of Aroma
Compounds from Foods, Using Adsorbents. Effect of Various Parameters. Food Rev. Int. 2006, 22, 51-94.
[CrossRef]

Feist, B.; Mikula, B. Preconcentration of heavy metals on activated carbon and their determination in fruits
by inductively coupled plasma optical emission spectrometry. Food Chem. 2014, 147, 302-306. [CrossRef]
Moon, S.Y.; Baek, S.Y.; Kim, M.R. Determination of aroma profiles of coffee cultivated in Goheung, Korea by
gas chromatography—-ion mobility spectrometry (2019). Korean ]. Food Preserv. 2019, 26, 576-585. [CrossRef]


http://dx.doi.org/10.1016/B978-0-12-409517-5.00012-7
http://dx.doi.org/10.3390/s18010095
http://dx.doi.org/10.1016/j.foodcont.2018.01.014
http://dx.doi.org/10.1016/j.foodres.2018.08.086
http://dx.doi.org/10.1016/j.foodres.2014.02.032
http://dx.doi.org/10.3390/s20072124
http://dx.doi.org/10.1080/05704920600663469
http://dx.doi.org/10.1016/j.talanta.2008.12.050
http://www.ncbi.nlm.nih.gov/pubmed/19269442
http://dx.doi.org/10.1021/ac300722s
http://www.ncbi.nlm.nih.gov/pubmed/22594852
http://dx.doi.org/10.1016/j.aca.2018.02.052
http://dx.doi.org/10.1016/S0584-8547(02)00110-6
http://dx.doi.org/10.1016/j.aca.2011.03.007
http://dx.doi.org/10.1007/s12127-011-0062-0
http://dx.doi.org/10.1016/j.chroma.2011.06.032
http://dx.doi.org/10.1002/j.2050-0416.2006.tb00245.x
http://dx.doi.org/10.1002/elsc.200720221
http://dx.doi.org/10.1016/j.foodcont.2020.107236
http://dx.doi.org/10.1080/87559120500379951
http://dx.doi.org/10.1016/j.foodchem.2013.10.002
http://dx.doi.org/10.11002/kjfp.2019.26.5.576

Sensors 2020, 20, 3123 15 of 15

53. Gloess, AN,; Yeretzian, C.; Knochenmuss, R.; Groessl, M. On-line analysis of coffee roasting with ion mobility
spectrometry—mass spectrometry (IMS-MS). Int. ]. Mass Spectrom. 2018, 424, 49-57. [CrossRef]

54. Aliafio-Gonzélez, M.].; Ferreiro-Gonzalez, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A screening
method based on headspace-ion mobility spectrometry to identify adulterated honey. Sensors 2019, 19, 1621.
[CrossRef]

55. Aliafio-Gonzalez, M.].; Ferreiro-Gonzalez, M.; Barbero, G.F; Palma, M. Novel method based on ion mobility
spectrometry sum spectrum for the characterization of ignitable liquids in fire debris. Talanta 2019, 199,
189-194. [CrossRef]

56. Gatuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namiesnik, J. Analytical Eco-Scale for assessing the
greenness of analytical procedures. TrAC Trends Anal. Chem. 2012, 37, 61-72. [CrossRef]

® © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).



http://dx.doi.org/10.1016/j.ijms.2017.11.017
http://dx.doi.org/10.3390/s19071621
http://dx.doi.org/10.1016/j.talanta.2019.02.063
http://dx.doi.org/10.1016/j.trac.2012.03.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Coffee Samples 
	Pre-Concentration Methods 
	Activated Charcoal Strip Analysis + Headspace (ACS + HS) 
	Direct Headspace (HS) 

	GC-IMS Analysis 
	Data Analysis 
	Standardization Procedure 

	Results 
	Comparison between the Two Pre-Concentration Methods 
	Activated Charcoal Strip Analysis + Headspace (ACS + HS) 
	Headspace (HS) 

	Discrimination of Arabica, Robusta, and Mixed Coffee Samples by HS-GCIMS 
	Greenness Assessment of the Developed Analytical Procedures 

	Conclusions 
	References

