IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 21, 2020, accepted June 1, 2020, date of publication June 8, 2020, date of current version June 18, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000928

TANDEM: A Taxonomy and a Dataset of
Real-World Performance Bugs

ANA B. SANCHEZ“'!, PEDRO DELGADO-PEREZ"“2,
INMACULADA MEDINA-BULO“2, (Member, IEEE),
AND SERGIO SEGURA"'!, (Member, IEEE)

!Escuela Técnica Superior de Ingenieria Informética, Universidad de Sevilla, 41004 Seville, Spain

2Escuela Superior de Ingenierfa, Universidad de C4diz, 11519 Cédiz, Spain

Corresponding author: Ana B. Sdnchez (anabsanchez @us.es)

This work was supported by the European Commission (FEDER), the Spanish Ministry of Science, Innovation and Universities,
under Project RTI2018-101204-B-C21, Project RTI2018-093608-B-C33 and the Andalusian Research, Development and Innovation

Program under Grant US-1264651.

ABSTRACT The detection of performance bugs, like those causing an unexpected execution time, has
gained much attention in the last years due to their potential impact in safety-critical and resource-constrained
applications. Much effort has been put on trying to understand the nature of performance bugs in different
domains as a starting point for the development of effective testing techniques. However, the lack of a widely
accepted classification scheme of performance faults and, more importantly, the lack of well-documented and
understandable datasets makes it difficult to draw rigorous and verifiable conclusions widely accepted by the
community. In this paper, we present TANDEM, a dual contribution related to real-world performance bugs.
Firstly, we propose a taxonomy of performance bugs based on a thorough systematic review of the related
literature, divided into three main categories: effects, causes and contexts of bugs. Secondly, we provide a
complete collection of fully documented real-world performance bugs. Together, these contributions pave
the way for the development of stronger and reproducible research results on performance testing.

INDEX TERMS Performance bugs, performance testing, dataset, taxonomy.

I. INTRODUCTION

Software testing is a key part of software development
aimed to assess whether the program meets its requirements
and users’ expectations. A vast majority of the resources
and research advances on software testing has focused on
functional testing: evaluating whether the program provides
the expected functionality. However, the emerging popu-
larity of time-critical systems (e.g., autonomous cars) and
resource-constraint devices (e.g., Internet of Things) has
attracted the attention of the research community toward per-
formance testing: evaluating the program’s conformance with
non-functional requirements such as execution time, or mem-
ory consumption. As a result, the number of research papers
analyzing the specific characteristics of performance bugs has
grown significantly in the last decade. A performance bug is
defined as a programming or configuration error that causes
significant performance degradation, leading to undesirable

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiang Chen

107214

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

effects like low system throughput, memory bloat, Graphical
User Interface (GUI) lagging, or energy drain [1], [2].

Preventing performance bugs, or implementing effective
tools to detect and fix them, requires a wide understand-
ing of the nature of these issues in real-world programs.
On the search for realistic and documented performance
bugs, researchers typically resort to mining software repos-
itories and bug tracking systems [3]-[7]. However, this is a
time-consuming and error-prone task that inevitably requires
the manual inspection of the issue’s records, for example,
to detect false positives (e.g., misclassified issues), and to
understand the bug, its cause, the source code (if available),
and the fix (if any) [8].

As a result, performance bugs are rarely reported in detail,
making them hardly reproducible. For example, some papers
simply point to the issue Identifier (ID) in the bug tracking
system or to related papers where the bug is mentioned,
or even send readers to a website that details the problem
but is no longer available [9], [10]. Other papers describe
the issues detected in real applications but do not show
the source code [11]-[13]. This makes extremely difficult

VOLUME 8, 2020

https://orcid.org/0000-0003-1473-0955
https://orcid.org/0000-0003-1568-9288
https://orcid.org/0000-0002-7543-2671
https://orcid.org/0000-0001-8816-6213
https://orcid.org/0000-0002-1180-3891

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

to fully understand or reproduce the causes that led to
an underperforming system. Reproducibility of performance
bugs has recently been identified as an important issue by
Lima et al. [14] and also by Han et al. [1], who, despite their
best efforts, were only able to reproduce 17 out of 93 real
performance bugs reported and described by developers.

The reproducibility problem of performance bugs is aggra-
vated by the lack of a widely accepted classification scheme
for performance faults. Functional bugs and their classifica-
tion have been extensively studied since many years ago [15].
However, existing performance-related classifications are
either too general [16], target specific scopes (e.g., cloud
computing systems or Android apps) [17]-[21] or address
both functional and performance bugs [22]. This makes even
more difficult for researchers to find subject bugs for their
studies, and as a result, they are finally advocated to perform
expensive and often unsuccessful searches in software repos-
itories from scratch.

In this paper, we present a taxonomy and a dataset of
real-world performance bugs called TANDEM (TAxoNomy
and Dataset of pErforMance bugs). TANDEM is the result
of a systematic literature review of related studies, which led
us to find 49 papers reporting real-world performance bugs.
The proposed taxonomy, based on the performed review,
takes into account 1) the effect of bugs (in terms of time,
memory and energy), 2) the cause of performance prob-
lems (according to the structure of the source code, mis-
use/misunderstanding of operations, redundancy of code,
etc.), and 3) the context where the issue appears (consider-
ing project type, language specificity and generalizability).
Additionally, as a major outcome of our work, we present a
dataset of 125 real-world performance bugs collected from
the reviewed papers. Each fault is fully documented, includ-
ing the buggy source code, its description, classification
(based on the proposed taxonomy) and the link to the pub-
lication where it was originally published. The proposed
taxonomy eases the classification, distribution and reusabil-
ity of performance issues among researchers. The dataset
is generic including bugs related to different programming
languages (Java, C, SQL, etc.), domains (web development,
databases, etc.) and performance-related aspects. As such,
we are confident that TANDEM will serve as a helpful source
of information for conducting more traceable and compre-
hensive experiments and evaluations.

The rest of the paper is structured as follows. Section II
reviews the state of the art of performance bugs. Section III
elaborates on the related work. Section IV introduces the
research questions, the steps followed to search for relevant
papers for our study and how we extracted the real-world per-
formance bugs identified in the process. Section V describes
the dataset and provides an overview of the collected per-
formance bugs. Then, Section VI explains in detail the
proposed taxonomy, analyzes the distribution of the bugs
within the different categories and discusses how they relate
to each other by assessing the most common combina-
tions of effects, causes and contexts. The main challenges

VOLUME 8, 2020

2 /x*Mozilla Bug 66461 & Patchxx/

3 /+When the input is a transparent image, all
} the computation in Draw is uselessx/

5 nsImage::Draw(...) {

6 DR

//The patch conditionally skips Draw.

8§ + if (mIsTransparent) return;

9 ...
10 //render the input image
1}

Listing 1. Example of performance bug described by Jin et al. [5].

identified in relation to performance bugs are enumerated in
Section VII. Finally, we present the main conclusions of this
study in Section VIII.

Il. PERFORMANCE BUGS

Well-tested applications such as Microsoft SQL Server,
Apache HTTPD and Mozilla Firefox, among others, are
affected by hundreds of performance bugs [2], [23]. A per-
formance bug is a programming error that causes signifi-
cant performance degradation in a program, leading to slow
and/or inefficient software [1], [2]. These bugs can cause GUI
lagging, memory bloat or excessive energy consumption,
among others, and consequently they may cause a poor user
experience and a loss of customers and money to companies.
As an example, consider the real-world performance bug in
Listing 1. The bug has to do with the method nsimage::Draw,
which is invoked to render an input image in Mozilla. The
bug appeared when calling nslmage::Draw for transparent
images, thereby conducting work that is not needed. This led
to the unnecessary consumption of computational resources
by increasing the execution time of the program.

Compared with functional faults, performance bugs are
significantly harder to detect and require more time and effort
to be fixed. These bugs do not often result in an erroneous
program output; consequently, they cannot be detected by
simply inspecting the results in general, but analyzing the
performance of the program in terms of its non-functional
properties. A common and priority objective of many recent
research papers is to understand the nature of performance
problems and to struggle against them [2], [5], [6], [23],
[24]. A number of common root causes that frequently lead
to performance bugs includes the inadequate combination
of function calls, synchronization issues or the wrong use
of functions in certain contexts [5]. Performance bugs can
be analyzed from different perspectives to better understand
their nature: 1) the effect that produces in a program when
they appear (e.g., increasing the execution time), 2) the cause
that originated the bug (e.g., an inefficient loop), and 3) the
context where the bug occurred (e.g., Java applications).

With regard to the detection of performance problems and
their fixing, three are the most widely-used methods in this
task: the run-time analysis with profilers [20], [25], the use
of bug detection strategies that exploit known root causes
for the appearance of performance bugs [5], [26], [27], and
the application of traditional testing techniques to discover

107215

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

new faults [4], [28], [29]. All these methods could benefit
from a comprehensive performance bug classification to go
a step further in understanding performance problems and
being able to address and detect them.

lIl. RELATED WORK

Performance issues are different from functional problems,
and being aware of this is crucial in driving the detection
of both types. Zaman et al. [23] studied a random sample
of 400 performance and non-performance bug reports across
four dimensions (Impact, Context, Fix and Fix validation),
showing how different both types of bugs are in detecting
and fixing them. Nistor et al. [2] also assessed the differences
between performance and non-performance bugs in popular
code bases regarding how these bugs are discovered, reported
and fixed. Jin et al. [5] found that many of the real-world
performance bugs used in their study manifested with special
and large-scale inputs, being this conclusion similar to the one
in the study by Han et al. [6]. Also, Baltes et al. [24] quali-
tatively analyzed how twelve developers located, understood
and communicated with each other to fix several real-world
performance bugs. All these studies show that performance
bugs share particular features that make them harder to detect,
handle and fix than functional bugs.

All these issues with performance bugs are exacerbated
by the problem of their reproducibility. The findings by
Zaman et al. [23] suggest that new techniques should be
developed to improve the quality of the ““‘steps to reproduce”,
both in the performance bug reports as well as in the system
as a whole. Also, more optimized means to identify the root
cause of performance bugs should be developed. The study
by Nistor et al. [2] also reveals that performance bugs are
reported without inputs or steps to reproduce more often than
non-performance bugs. Han et al. [1] have recently reported
their experiences reproducing several performance bugs in
server applications, failing to reproduce most of them based
on developers’ descriptions. In an attempt to help in the repli-
cation of complex performance benchmarks, Lima et al. [14],
developed a framework to collect fine-grained data from
executions.

Regarding the classification of performance bugs, lit-
tle is reported in the literature, and the contributions are
either too general or focused on some specific languages
or contexts, or are not comprehensive enough. For instance,
Alam et al. [19] presented a study of categories of perfor-
mance issues focused on explicit synchronization primitives.
Also targeting a particular type of bug and application, we can
cite the studies by Fedorova et al. [21] and Mi et al. [18],
focused on WiredTiger performance-related issues and per-
formance problems in cloud computing systems, respectively.
Hassan et al. [30] carried out a study where the issues
were classified by response time, timeliness, memory usage
and miscellaneous. They suggested that for software perfor-
mance, factors different from the time were underrepresented,
such as memory usage and throughput. Catolino et al. [22]
analyzed bug reports of different popular projects with the

107216

aim of building a taxonomy of the types of bugs. This work
provided a taxonomy for both functional and non-functional
bugs, categorizing most of the performance bugs in the cat-
egory ‘“‘performance issue”’. Another related paper is the
one presented by Radu et al. [16], who proposed a generic
classification of non-functional bugs (including security, per-
formance, memory, resource management and determinism
problems). Also, this work provided a dataset of 133 non-
functional bug fixes with brief descriptions, collected from
open-source projects written in Java and Phyton. This dataset
can be especially helpful in evaluations of new tools facing
the detection of non-functional bugs in those languages.

As previously mentioned, most of the papers describing
real-world performance bugs specialize in issues related to
a particular scope. Another example of a study focused on
specific programming languages is the one presented by
Selakovic et al. [3], which proposed an approach for auto-
matically finding and fixing performance bugs in JavaScript
programs. They studied 37 real-world performance bug fixes
from eleven popular JavaScript projects and identified several
recurring fix patterns. We can also cite some papers concen-
trated on a single non-functional property, such as energy
consumption in Android apps [17] or out of memory bugs
in MapReduce applications [20], among others.

In summary, in our work with TANDEM, we carry out a
more wide-ranging review of real performance bugs, with-
out restricting the approach to a particular non-functional
property, root cause, kind of system or programming lan-
guage. In this sense, we aim to build a complete picture
of performance bugs in real software. In addition to this,
we collect those real-world performance bugs that are well
documented, contextualized in research papers and include
the buggy source code for the sake of understandability and
to facilitate their reproducibility.

IV. REVIEW METHOD

In this section, we first present our research questions, which
aim to analyze the nature of performance bugs in real appli-
cations. Then, we perform a systematic literature review
inspired by the guidelines by Kitchenham and Charters [31]
to search for relevant studies describing these issues. To do
so, we define the inclusion and exclusion criteria, the search
procedure and the data extracted from the identified
studies.

A. RESEARCH QUESTIONS
In this work, we aim to answer the following research ques-
tions on performance bugs:

« RQI1: What are the effects produced by performance
bugs and how are they distributed in real-world pro-
grams?

o RQ2: What are the causes that lead to the appearance
of performance bugs and how are they distributed in
real-world programs?

VOLUME 8, 2020

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

« RQ3: What are the contexts in which these performance
bugs arise and how are they distributed in real-world
programs?

« RQ4: What is the relationship among the effects, causes
and contexts of the analyzed performance bugs?

B. INCLUSION AND EXCLUSION CRITERIA
We included papers reporting real-world performance bugs
satisfying the following criteria:

1) Bugs extracted from the source code of real programs.
Only bugs described for the first time will be consid-
ered (i.e., bugs not included in other previous papers).

2) The reported bugs are well documented, including the
source code (or simplified versions to gain in legibility)
and a self-contained description (or a reference to a
recognizable bug pattern).

We excluded those papers not belonging to the computer
sciences field or not focused on the detection or evaluation
of performance bugs. We also excluded those papers not
available online or not written in English.

C. SEARCH STRING AND STRATEGY

As a search strategy to retrieve relevant papers, we followed
a method inspired by the concept of quasi-gold standard
of Zhang et al. [32]. This method is useful to formalize
proper search strings for systematic reviews starting from a
set of known studies. This strategy helps to reach a more
objective and representative search string than the one that
could be determined simply on the basis of the authors’
perceptions and experience.

A few manual and automated searches in online reposi-
tories allowed us to capture a set of relevant studies on the
topic. Thanks to this first step, we found that authors often
use the words “‘bugs”, “faults’, “problems” and “issues”
interchangeably in their papers. Thus, we decided to use
all those terms associated with performance, memory and
energy. In the case of memory and energy, the word “leak”
is also widely used. In addition, this collection of studies led
us to restrict the search to papers with an explicit mention
to bugs in real programs, applications, projects or software.
In these studies, it is also commonplace the use of the term
“real-world” preceding all aforementioned keywords.

TABLE 1. Search string and terms.

All combinations of {Block 1 + Block 2}
AND (All combinations of {“real” + Block 3} OR “real-world”)

Block 1 performance, memory, energy
Block 2 bug, problem, issue, fault, leak
Block 3 programs, software, project, application

@ Except for performance leak

Table 1 shows, in a structured way, the elicited search string
that we used to collect papers that are candidates to become
primary studies, i.e., papers actually describing real-world
performance bugs. For the automated search, we applied
our search string to the title, abstract and keywords of

VOLUME 8, 2020

papers contained in three renowned search engines: Scopus,
IEEE Xplore and ACM. The search, executed on 30th Octo-
ber 2019, yielded 337, 48 and 119 candidate papers respec-
tively. We also incorporated 10 more papers that appeared
in the previous phase but not in the final set of candidate
papers (despite meeting our search criteria, did not exactly
include the search terms set in the string). Next, we revised the
abstract and, if applicable, the full content of these papers to
identify meaningful descriptions of performance bugs (in line
with the inclusion and exclusion criteria defined). Each paper
was reviewed by two different authors, who agreed on the
detected performance bugs. Finally, the application of these
constraints left the set of primary studies in 49, altogether
containing 125 real-world performance bugs.

Despite our best efforts, we might have failed in collecting
all relevant papers related to the topic, especially because of
the diversity in the terminology. However, given the number
of performance bugs found, we are confident that the search
serves to design a taxonomy that presents a complete picture
of the kinds of performance bugs in real projects.

D. DATA COLLECTION AND BUG IDENTIFICATION

Once we completed the search, we proceeded with the data
extraction of each primary study. The first step was to identify
each of the performance bugs described in the primary study.
Then, a data extraction form was filled in for each of the
performance bugs. We collected information on each of the
bugs identified, including the reference of its paper, the pub-
lication year, the figure or listing showing the source code that
contains the bug, its description, what caused its appearance,
what was the effect regarding the performance of the program
and information on the domain (namely, the nature of the
affected system and the programming language). A clean
version of the resulting form in tabular format can be viewed
in the following link: https://tinyurl.com/ycopzabs.

V. TANDEM DATASET

In this section, we first present the dataset with the collected
real-world performance bugs. Then, we summarize the main
data extracted from the performance bugs in our dataset.

A. DATASET

To facilitate the comprehension of the data extracted from all
the bugs in the primary studies and make them more useful,
we bound together all the information into a single document
of 67 pages called TAxoNomy and Dataset of pErforMance
bugs (TANDEM). This document consists of a form for each
of the 125 bugs identified in the search, as the one shown
in Figure 1, containing the following information:

o Bug identifier. Each performance bug in the dataset has
an identifier assigned, which consists of the initials of
“Performance Bug” (i.e., PB) plus a number, e.g. PB25.

o Publication identifier. The publication doi where the
bug was reported is included for the convenience of the
reader.

107217

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

Performance bug data
Figure Effect Cause Context
Fig. 1 Energy Communication

Language
Condition, Java (Android)
Unnecessary
computation
Figure 1 gives a simplified example of energy inefficiency caused by sensory data
under-utilization. The app listens to GPS updates and defines a handler
onLocationChanged to handle location changes, calculating the distance between the
new and a target location. If the distance is larger than NOT FAR DISTANCE, the
handler will do nothing. All location data that indicate locations far away from the
target location will always be discarded. If an app frequently encounters such cases,
the location data utilization would be very low compared to location data that are
close to the target location, causing significant energy waste.

Description

1 public void onLocationChanged (Location loc) {

2 double dis = calDistance(loc, goalloc);

3 if (dis < NEAR_DISTANCE)

1 doLightWork () ;

else if (dis < NOT_FAR_DISTANCE)
doHeavyWork () ;

else

8 ; //do nothing

9 }

Source code .

FIGURE 1. A performance bug form in TANDEM.

o Year of publication. The year when the bug was
described in the publication is also reported.

o Figure in the publication. For the sake of completeness,
the name of the figure where the bug appeared within
the publication is given (or alternatively, the listing or
section).

o Taxonomy of the performance bug. The dataset also
records the classification of the bugs according to the
taxonomy proposed in this work, indicating the cause,
effect, context and language of the performance bug.

o Description of bug. A detailed description or pattern of
the issue is provided.

e Source code. To complement the description of the bug,
we also supply the fragment with the buggy source code.

The performance bugs in TANDEM dataset are alpha-
betically ordered by effect, cause, context, language, year
of the publication and, for performance bugs referenced in
the same publication, number of the figure or listing in the
paper. We refer the reader to the webpage of TANDEM
(https://github.com/belene/tandem), which contains all per-
formance bugs forms details. The primary studies contribut-
ing with performance bugs to the dataset are [3, 5, 19-20,
25-27, 33-41, 49-81].

B. DATA OVERVIEW

The following subsections show a summary of the data
extracted from the performance bugs in the primary studies.
The collected data allow us to know the trend of the per-
formance problems found in real projects, the distribution of
performance bugs in the examined studies or the main venues
where real-world performance bugs are published.

1) REAL-WORLD PERFORMANCE BUGS TRENDS

Figure 2 illustrates the number of real-world performance
bugs reported in the literature between the first work found
in 2007 and October 30th 2019. The graph 2a shows a fluc-
tuating growth of the number of performance bugs, reaching

107218

30

20

Number of performance bugs

Year
(a) Number of bugs per year
125

100

(2}
& B
Qo
S 75 /
9]
£
=]
2 5 /
2 ||
5
=] -
E 25 -
[&]
0
A - R R N I T S S S SN
Q' K K N N AV NN NN A NN
LS S S S S S, S, S P

Year

(b) Cumulative number of bugs per year

FIGURE 2. Evolution of real-world performance bugs over time.

the highest peaks of bugs in the years 2015 and 2018. The
graph 2b in Figure 2 illustrates the cumulative number of
performance bugs found in real projects. The increasing trend
suggests that the interest in this topic continues to grow,
especially if we compare the two performance bugs found
in 2007 (the year in which the first real-world performance
issues were found) with the 25 real-world found only in 2018,
reaching a total of 125 published issues to date. Notice that
we did not cover the whole year 2019; this, together with a
possible delay in the publication of the proceedings of some
conferences or journals, might have had some influence on
the low number of primary studies identified in 2019.

2) REAL-WORLD PERFORMANCE BUGS

DISTRIBUTION BY PUBLICATION

The number of performance bugs found in each of the
49 studies under review varies considerably. There are papers
describing only one performance bug, while others present
up to 7 different buggy codes. Table 2 shows 7 out of the
49 papers considered in the TANDEM dataset with the high-
est number of real-world performance bugs. As an example,
the paper by Jin et al. [5], presented in the International
Conference on Programming Language Design and Imple-
mentation (PLDI) in 2012, makes the greatest contribution to
our dataset, including 7 different bugs with detailed descrip-
tions and source codes. The number of bugs described in

VOLUME 8, 2020

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

TABLE 2. Publications with the largest number of real-world
performance bugs.

Authors Venue Bugs Reference
Jin et al. PLDI’12 7 [51
Nistor et al. ICSE’15 6 [33]
Han et al. ESEM’16 6 [34]
Yang et al. ICPP’ 12 5 [35]
Jensen etal. ESEC/FSE’15 5 [36]
Song et al. ICSE’17 5 [37]
Lietal. Eurosys’18 5 [38]

TABLE 3. Top venues on real-world performance bugs.

Venue Bugs
Int. Conference on Software Engineering (ICSE) 26
Soft. Eng. Conf. and Symposim on Foundations of Soft. (ESEC/FSE) 19

Programming Language Design and Implementation (PLDI) 11
Conf. on Object Oriented Program. Systems Lang. and App. (OOPSLA) 10
EuroSys 8

the remaining papers (those not included in this table) is
between 1 and 4.

3) PUBLICATION VENUES

The 125 bugs registered in our TANDEM dataset were pub-
lished in 28 different venues. In Table 3, we detail the venues
where at least eight real-world performance bugs were pre-
sented. The International Conference on Software Engineer-
ing (ICSE) is the first venue chosen by the community of
performance bugs researchers to publish the detected prob-
lems (26 bugs reported), followed by the European Software
Engineering Conference and Symposium on the Foundations
of Software (ESEC/FSE), where 19 issues were reported.
Regarding the type of venue, most of the bugs were presented
at conferences and symposia (89.6%), some of them were
presented at journals (8.8%) and the rest of the papers (1.6%)
at workshops.

Vi. TANDEM TAXONOMY

This section presents our proposal of taxonomy for perfor-
mance bugs. First, we provide a description of the TANDEM
taxonomy with its graphical representation. Then, we depict
and analyze the occurrence of each category in the dataset
with a view to answering our three first research questions
(RQ1-RQ3). We also assess the connection among different
categories to know what are the most common combinations
of effects, causes and contexts (i.e., RQ4).

A. CLASSIFICATION

Our intention is to provide a complete classification of the
types of real-world performance issues we have found in
this study. Figure 3 illustrates the graphical representation
of TANDEM taxonomy. Specifically, we classify the perfor-
mance bugs according to three main categories, namely:

1) Effect: This refers to the non-functional properties
affected when the bug manifested.

VOLUME 8, 2020

1
2 //Simplified from the XYPlot class in JFreeChart
3 public void render(...) {
4 for (int item = 0; item > itemCount; item++) {
//Outer Loop
6 renderer.drawltem(...item...);
//Call drawVerticalItem
8 }
9 }
0 //Simplified from the CandlestickRenderer class in
JFreeChart
11 public void drawVerticalItem(...) {

12 int maxVolume = 1;
13 for (int i = 0; i > maxCount; i++){ //Inner Loop
14 int thisVolume = highLowData.getVolumeValue (

15 series, 1).intVvalue();

16 if (thisVolume > maxVolume) {
17 maxVolume = thisVolume;
18 }

19 }

20 ... = maxVolume;

21}

Listing 2. Example of performance bug described by Nistor et al. [39].

2) Cause: This indicates the reasons that caused the
appearance of the bug.

3) Context. This takes into account the kind of system
where the bug was contained and the programming
language used to code the program.

As an illustration of the previous classification, we can go
back to the performance bug in Listing 1. As we explained,
this performance bug appeared when calling nslmage::Draw
for transparent images, thereby an unnecessary task. Accord-
ing to the three categories, (1) the effect of this bug is the
degradation of the system regarding the execution time, (2)
the cause behind this degradation is the call to an API method
that performs unnecessary computation, and (3) this bug is
especially relevant in the context of web and C++ develop-
ment.

In the following sections we detail the three main cate-
gories of the taxonomy.

B. EFFECTS

In this section, we address RQ1 by analyzing the
non-functional properties affected by the introduction of
performance bugs and their distribution in real projects.

1) CATEGORIES
Three are the classical non-functional properties impacted by
the introduction of performance bugs:

o Execution time.

o Memory utilization.

o Energy consumption.

Table 4 shows a description of the kind of performance
issues related to each of the three non-functional properties.

2) EXAMPLES

Listing 2 represents an example of a performance bug that
increases the execution time of the application [39]. The loop
in the method drawVerticalltem iterates over all the items in
highLowData to compute the maximum volume. The loop

107219

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

TANDEM

Query

FIGURE 3. Graphical representation of TANDEM Taxonomy.

1
2 class CUOLexParseactions{
RegExp makeNL () {

4 Vector list = new Vector();

5 list.addElement (new Interval (’\n’,’\r’));

6 list.addElement (new Interval (’/\u0085’,’\u0085"));
7 list.addElement (new Interval (’/\u2028’,’\u2029"));
8 RegExpl c = new RegExpl (sym.CCLASS, list);

1}

Listing 3. Example of performance bug described by Xu et al. [40].

in the method render calls a number of times to draw Verti-
calltem. However, since the data set does not change between
calls to that method, the computation of the maximum volume
is redundant and worsens the execution time of the system.

Listing 3 illustrates a memory-related issue [40]. In that
example, a Vector object is underutilized because only three
elements are assigned to it when, by default, a vector allocates
space for ten elements. This is a problem since this container
was allocated many times during the execution of the system
and there are many other similar containers throughout the
code of the program.

Finally, Listing 4 presents a case of excessive energy
consumption [41]. In this buggy code, a GPS listener
(gpsListener) is registered in the method onCreate. However,
the developers failed to unregister this listener in the method
onDestroy (a new listener is created instead of removing the
existing one). As a result, the listener keeps receiving data
from the GPS, which drains the battery.

3) DATASET ANALYSIS
Table 4 collects the performance bugs in our dataset with
a negative impact on each of these three non-functional

107220

Effect Cause Context
Missing d di EIG7Err Project . o
Energy Structural B B memoization Others |-practice L pecific!
operation /Misuse opportunity type
Execution time Condition Callstogtl Server
method
Communication
Memory Loop Inter-procedural Web
Multiple
processes
Data Unnecessary
5 GUI
structure computation
System software
Synchronization Configurgation Database

Others

Memory
27.2%

Execution time

FIGURE 4. Classification of primary studies by bug's effect.

properties. For instance, the nine first bugs in TANDEM
(PB1-PB9) have a direct impact on the energy consumption
of their respective applications. Figure 4 illustrates with a
pie chart the percentage of types of performance bugs found
according to the property that they affect.
“The execution time is by far the most frequent
effect of performance bugs (65.6%), followed by
memory (27.2%) and energy (7.2%).”

C. CAUSES

In this section, we address RQ2 by examining the root causes
that originated the performance bugs and their distribution in
real projects.

1) CATEGORIES

We found a great diversity of root causes for the occurrence of
performance problems in the analyzed primary studies. After
a thorough evaluation of each performance bug, we detected

VOLUME 8, 2020

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

TABLE 4. Classification by bug’s effect.

[Effect Description

| Performance bugs |

Energy

An excessive amount of energy is consumed because the
implementation leads to leaks of energy.

PB1-PB9

Execution time

A slowdown is perceived in the system, such as GUI lagging,
low throughput or poor responsiveness.

PB10-PB91

Memory

An inadequate use of the memory is observed, including
memory churn (excessive generation of objects),
memory bloat (storage of large amounts of unnecessary
information), or memory leaks.

PB92-PB125

/*x*buggy version of the CheckInMap classxx*/
2 public class ChckinMap extends MapActivity{
public void onCreate () {
! MyGPSListener gpsListener = new MyGPSListener();
5 LocationManager lm =
6 getSystemService (LOCATION_SERVICE) ;
//GPS listener registration
8 Im.requestLocationUpdates (GPS, 0,0, gpsListener);
9 }
10 public void onDestroy () {
1 //unregister GPS listener
12 getSystemService (LOCATION_SERVICE)

13 .removeUpdates (new MyGPSListener ());

14 }

15 //location listener class

16 public class MyGPSListener implements

17 LocationListener(

18 public void onLocationChanged (Location loc) {

19 //utilize location data

Listing 4. Example of performance bug described by Liu et al. [41].

similar reasons behind the introduction of most of these
bugs. As such, we could classify them into five secondary
categories:

« Related to structural aspects of the source code.

o Derived from misunderstandings and misuse.

« Originated by a missing operation.

o Caused by a redundant action.

o Classified as others, to cover those cases not fitting in
the above categories.

Those five categories, as well as their corresponding sub-
categories, are described in Table 5.

2) EXAMPLES

This section illustrates some real performance bugs classified
in the different categories, with a special emphasis in those
subcategories with the highest prevalence in the dataset (as it
will be seen in the next subsection).

The bug reported by Nistor ef al. [39] (see Listing 2) is a
clear example of a performance bug involving a redundant
use of loop statements (see Section VI-B for a description of
this bug).

Listing 1 and 3 exemplify the difference between an unnec-
essary and a redundant operation. The bug in Listing 1 falls
into the category “‘unnecessary computation” because the
instructions to draw a transparent figure are useless and could
be saved. In contrast, the Vector object in Listing 3 is required

VOLUME 8, 2020

> /+*MySQL Bug 38941 & Patchx«/

3 // random() is a serialized global-mutex-protected
glibc function. Using it inside ’fastmutex’
causes 40X slowdown in users’ experience.

4 int fastmutex_lock (fmutex_t +*mp) {

6 = maxdelay += (double) random();
+ maxdelay += (double) park_rng();

9}

Listing 5. Example of performance bug described by Jin et al. [5].

to create a RegExpr object; however, the created container
could be reused in the rest of the calls to makeNL since
the information does not change among different invocations
to the function. This bug, as well as the bug in Listing 2,
therefore belongs to the category ‘“‘redundancy”.

Listing 5 provides an example of a synchronization-related
problem [5], in which the use of a lock in the function random
serializes the threads calling this function, causing a signifi-
cant slowdown. This bug, additionally, was characterized as
a “Call to API method” issue, given that the performance
degradation is a consequence of the call to the glibc function
random.

Regarding ‘“‘missing operation”, the bug in Listing 4 is
representative of this category. The wrong unregistration of
the GPS listener (the preregistered listener is not passed to the
sensor listener unregistration API removeUpdate), causes the
waste of battery energy.

We included a further category (others) to encompass bugs
produced by a more particular cause. The causes in this
category include inconsistent field ordering, problems with
dynamic typing, missed concretization and parallelization
opportunity, use of functional programming style, application
of non-trivial operations and branch misprediction.

3) DATASET ANALYSIS

Table 5 indicates the performance bugs in the dataset that
can be labeled in each category. We should note that some
bugs were caused for a combination of reasons; these bugs
were accordingly classified into more than one category.
As an example, the bug in Listing 3 is related to both causes,
the misuse of a data structure (structural category) and the
inclusion of a redundant operation (the same three elements
are added each time the method is called).

107221

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

TABLE 5. Classification by bug’s cause.

[Cause | Description | Performance bugs
Structural Performance bugs related to defects in the code structure.
- Condition Improper or incomplete conditional statement. PB1-2, PB13, PB21-23, PB94-95
- Loop Inefficient loop statements. PB13-15, PB29, PB34-39, PB46-64, PB109-112

- Data structure
- Synchronization

Poor selection or inappropriate use of structures to collect data.
Incorrect use of synchronization mechanisms.

PB32-PB41, PB97-104
PB6, PB19, PB31, PB41, PB55-57, PB78-90, PB123-125

- Inter-procedural
- Unnecessary computation

- Configuration

that hurts the program performance.

Two or more methods, implemented independently, reveal a
performance problem when used in conjunction.

A method unnecessarily performs a task because the computed
values are not used in the end or do not produce any effect.
Configuration tuning for a program that differs from the users’

- Query Construction of inefficient query statements. PB14, PB16-18, PB30, PB51, PB70-72, PB119
Misunderstanding/Misuse | Inefficiency casused by the wrong utilization of certain features.
- Calls 1o API method Choice of an API function, or a value for one of its parameters, PB10-20, PB92.93

PB42-45, PB93-94, PB105-110

PB1-2, PB6-9, PB15, PB20, PB57-64, PB72,
PB90-91, PB93, PB104, PB110

PB24-31, PB96

expectation of performance.

Missing operation
resources.

The lack of an operation makes the program keep consuming

PB3-6, PB22, PB49, PB95, PB111, PB113-118

Redundancy or

memoization opportunity | same computation more than once.

Code fragments that can be transformed to avoid repeating the

PB14, PB36-40, PB51-55, PB73-77, PB103,
PB112, PB120-125

Others Other more specific causes.

PB23, PB43-45, PB50, PB65-69

40
33
30
24
22

20

Number of performance bugs

FIGURE 5. Classification of primary studies by bug’s cause.

Figure 5 shows the number of performance issues collected
according to the cause that originated them.

“In the light of the results, the most common
cause for the degradation of systems has to do
with the executions of loops (33 issues), followed
by the redundancy of operations (24 issues), syn-
chronization problems (23 issues) and unneces-
sary computation (22 issues).”

D. CONTEXTS

In this section, we address RQ3 by analyzing the context
where the performance bugs arose and their distribution in
real projects.

1) CATEGORIES

Table 6 furnishes our proposal of taxonomy related to the
environment where the performance bugs appeared. We clas-
sified each performance bug on the basis of the following
three secondary aspects:

o Project type: We bound together the bugs contained in
projects belonging to the same computer science field.

107222

o Generalizability: Apart from the project type, we marked
as ‘“‘general-practice” performance bugs those which
may well appear in most general-purpose languages and
programs.

Language specificity: We analyzed whether the source
code of the bugs was related to specific features of
the programming language, which confined them to the
scope of that particular language or similar ones.

2) EXAMPLES

This section exemplifies how we analyzed each performance
bug to classify them according to the three aforementioned
aspects. Regarding project type, the bug in Listing 1 presents
a situation that is of the interest of designers of web projects.
As an example of multiple processes, the bug in Listing 5 lies
within that category because the slowdown appeared when
the threads were serialized by the random function. Also,
the bug in Listing 4 has to do with the communication of
interconnected systems.

With regard to generalizability, note that the case of draw-
ing a transparent figure or the registration/unregistration of
GPS listeners are particular aspects and cannot be considered
as general-practice problems. We have classified the bugs
in Listings 2 and 3 as generalizable, given that the use of
containers and loops is commonplace in most programs.

As for language specificity, we can observe that the bug in
Listing 5 is a representative case of this aspect; the increase
in the execution time is directly connected with the call to a
function (random) that is contained in the sources of the GNU
C Library.

3) DATASET ANALYSIS

Table 6 shows the bugs in TANDEM classified by the aspects
project type, generalizability and language specificity. Notice
again that each bug can appear in several project types
and, in addition, can be categorized as general-practice or

VOLUME 8, 2020

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

TABLE 6. Classification by bug’s context.

[Context | Description | Performance bugs \
Project type The issue concerns a particular computer science field.
- Server Server software . E.g., Apache HTTP Sever. PB11, PB13, PB27-29, PB53, PB89, PB96
L . PB12, PB14, PB16, PB18, PB20, PB24, PB51, PB54, PB64,
- Web Browsers and web applications. E.g., Mozilla. PB70.72. PB92. PB117-118
-GUI Applications with graphical interface. E.g., Smartphone apps. 533’9559’1)%]31%25’ {;]]332152-026’ PB50, PB65, PB75,
- Database Database management systems and applications. E.g., MySQL. | PB14-19, PB24, PB30, PB51, PB70-72, PB78, PB91

- Communication
- Multiple processes | Concurrent, parallel and asynchronous tasks.

- System software
- Others

Operating systems, compilers... E.g., GCC.
Other more specific projects.

Interconnection of systems. E.g., GPS and navigation apps.

PB1-5, PB7-9, PB42, PB109, PB112

PB6, PB9, PB22, PB25-27, PB31, PB41, PB56-57, PB67
PB77-78, PB80-90

PB23, PB39, PB41, PB49, PB102, PB123-125

PB33, PB35, PB46-48, PB55, PB68-69, PB99-101, PB119

General-practice
general-purpose languages and software programs.

The code originating the problem is reproducible in most

PB32, PB34-40, PB43, PB46-49, PB52-54, PB58-64,
PB73-74, PB93-95, PB103-104, PB110-113

The problem relates to particular features of a

Language-specific programming language.

PB6, PB10, PB14, PB16, PB19, PB21, PB44-45, PB66, PB70-71,
PB76, PB80, PB97-98, PB106-108, PB114-116, PB121-122

40
34

30
24

23

Number of performance bugs

FIGURE 6. Classification of primary studies by bug’s context.

language-specific depending on whether the bug extrapolates
to other domains or not.

Figure 6 illustrates the distribution of performance bugs
involved in each context found in the review.

“We can say that the most addressed kind of sys-
tem is multiple processes, with 24 out of 125 per-
Jormance issues recorded. We also found that
27.2% of performance bugs (34 out of 125) are
not limited to a particular area, thereby being of
general interest. However, it is worth noting that
23 out of 125 bugs are specific to a particular
programming language and are not expressible in
other languages in general.”

We also gathered in the category others those project types
with five or fewer performance bugs, which include MapRe-
duce and big data applications, solver-aided programs and
distributed systems.

Table 7 and Figure 7 present the performance bugs classi-
fied by languages and the distribution of issues according to
that classification, respectively.

“It is worth noting that 31% of the performance
problems recorded in our TANDEM dataset were
given in C, being this the most frequent program-
ming language.”

VOLUME 8, 2020

Android
13.2%

2.3%
JavaScript
10.1%

FIGURE 7. Classification of bugs by programming language.

TABLE 7. Classification by programming language.

[Language [Performance bugs \

Android PB1-9, PB22, PB25-26, PB75, PB79-81, PB120
PBI11, PB15, PB19, PB23, PB28-29, PB32, PB35, PB39

C PB42, PB46-49, PB53-58, PB64, PB67, PB77-78,
PB82-83, PB89-90, PB94-96, PB106-109, PB114-115,
PBI121, PB123-124

Cat PB17, PB20, PB24, PB27, PB31, PB41, PB50, PB65,
PB84-88, PB91-92, PB102, PB116, PB125

Java PB13, PB34, PB36-38, PB40, PB52, PB59-63, PB73-74
PB93, PB99-101, PB103-105, PB110-111

JavaScript PB10, PB12, PB21, PB43-45, PB66, PB76, PB97-98
PB117-118, PB122

PHP PB113

Rossete PB30, PB68-69

Ruby PB14, PB16, PB18, PB51, PB70-72

Scala PB112

SQL PB14, PB16, PB18, PB30, PB51, PB119

Almost 18% of the issues appeared in Java, and, almost the
same percentage of issues (14% and 13.2%) appeared in the
C++ and Android (Java) languages. JavaScript was behind
10.1% of the bugs. The rest of the programming languages
were present in a much smaller proportion.

E. DISCUSSION OF THE RELATIONSHIP AMONG
CATEGORIES IN THE TAXONOMY

This section addresses RQ4 by assessing the connection
among different categories and presenting which effects,
causes and contexts take place in conjunction often.

107223

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

Loop

l Query

Synchronization
Execution time
l Call to API Method

["] Configuration

Others

I Data structure

7 Redundancy

Memory I Unnecessary computation

- Condition

Inter-procedural

Energy U Missing operation

FIGURE 8. Sankey diagram showing the relationship between effects and
causes.

General-practice

Database

[l server

Web

Execution time

Multiple processes

I GUI

Others

[l system-software

I Language-specific

Communication

Memory ~

i ‘ Energy

FIGURE 9. Sankey diagram showing the relationship between effects and
contexts.

Figure 8, Figure 9 and Figure 10 depict with Sankey dia-
grams the relationships effects-causes, effects-contexts and
contexts-causes, respectively. The Sankey diagrams were
developed with R using the networkD3 package. Each
diagram graphically represents the number of connections
between the categories in two different blocks (one on the
right hand, and the other on the left). Each of the coloured
boxes at both sides represents a category in each of the two
blocks; the size of the box is in line with the number of
occurrences of each category in the dataset. Then, each two
categories are linked with a gray line: the wider the line,
the more times the two connected categories appear together
in the performance bugs in the dataset. Note that the line is
only depicted when there is at least one connection between
two categories.

1) EFFECTS-CAUSES

From Figure 8, we can observe that performance bugs
related to loops, queries, synchronization, calls to API meth-
ods, configuration and others mainly increase the execu-
tion time. Contrarily, inadequate use of memory is the

107224

Synchronization
Multiple processes

Configuration

—]

Call to API Method

Database e

- /ﬂ(Z8
- N
= e Sl a
e . ue
- % v
Server S\ %
T - A~ .
-~ e - - Loop
Web oL o
o S ~
N Unnecessary computation
- N
GUI > ; ~ s
~ = S Redundancy
- P SN
System software < ——
- [wissing operation

Conditi
Others (Context) - - ["] Condition
- — ["] Others (Cause)

D Data structure

1 Inter-procedural

FIGURE 10. Sankey diagram showing the relationship between contexts
and causes. Language-specific and general-practice bugs are omitted for
the sake of clarity.

predominant effect in inter-procedural and missing opera-
tion issues. Regarding the latter, forgetting to release the
memory is commonly the missing operation that leads to
the performance bug. The most frequent cause of energy
problems is the unnecessary computation of values. This is
logical because the execution of non-required actions drains
the battery, especially when these tasks run in the background.
In fact, we can see in Figure 9 that the vast majority of energy
leaks appear in relation to communication and GUI, either
because an application unnecessarily reads data from a sensor
or because the elements are not efficiently rendered in the user
interface. As such, a notable link between communication
issues and unnecessary computation can be seen in Figure 10.

2) EFFECTS-CONTEXTS

Figure 9 also reveals a clear connection between execu-
tion time and different project types, such as server, web,
multiple processes and, especially, database (where all the
bugs degrade the performance in terms of execution time).
Effects in memory have a presence in most of the domains,
except for database and multiple processes. A part of the
time and memory-related problems can be extrapolated to
most domains in contrast to energy issues, which do not seem
generalizable. Language-specific bugs equally affect the time
and the memory, and marginally to the energy.

3) CONTEXTS-CAUSES

Figure 10 shows that the subcategories in contexts and causes
are quite intermingled. Still, we can observe some reasonable
links between some of the causes and the project types. For
instance, queries and calls to API methods are the main
reasons behind issues in web and database applications. Syn-
chronization problems can be frequently found in systems
managing multiple processes. Also, inter-procedural prob-
lems are behind GUI and communication-based applications,
which is not surprising because the subsystems that intervene
in these applications are often implemented separately, lead-
ing to misunderstandings.

VOLUME 8, 2020

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

Other interesting connections take place between missing
operation and communication (the issue appears when the
connection is kept open instead of closing it), and between
configuration and servers (the issue manifests when different
parameters of the server are not properly configured, such
as the cache size or the sockets). Some other causes apply
to many of the project types, especially bugs associated with
loops and redundancy, which appear highly dispersed across
all domains. As for general-practice bugs, we can remark that
half of the loop-related problems are regarded as likely to
happen in most of the domains; loop statements are frequent
in software programs to run the same code several times and
their syntax is shared by many general-purpose languages.

From the collected data with respect to the programming
language, we can observe that all the bugs encompassed
in the category “System software” were found in systems
implemented either in C or C++. Similarly, all query-related
bugs are linked to the widely-known query language SQL.
It is also remarkable that all energy problems were detected
in Android apps. Finally, another finding is that 9 out
of 13 of the bugs associated with JavaScript were classified as
language-specific issues. This is partially due to the particular
features of this language and its nature of dynamically-typed
language.

VII. CHALLENGES

A number of research challenges are identified in this work.
These are the result of observed recurrent problems and gaps
in the literature that emerged throughout the review:

A. CHALLENGE 1: GUIDELINES FOR THE PROPER
DOCUMENTATION OF PERFORMANCE BUGS

In the review, we observed an assortment of different ways to
describe and classify performance bugs found in real projects.
Some authors simply provide the ID assigned to each issue
in a bug tracking system, while others explain the bugs at
different levels of granularity, supply the source code or
even show and detail fixes for the problem. It becomes clear
that there is a lack of guidelines that help researchers doc-
ument these issues following similar and comparable rules,
which currently limits the comprehension of the different
types of performance bugs. Therefore, systematic guidelines
should be developed to allow the proper documentation of all
performance-related aspects of this kind of issues and to help
fully understand the nature and impact of their presence on
real programs.

B. CHALLENGE 2: REPRODUCIBILITY

OF PERFORMANCE BUGS

As mentioned in earlier papers [1], [23], most of the per-
formance bugs described in the literature may not be repro-
duced in future evaluations, partially due to the reasons
discussed in the previous challenge. Apart from providing
sufficient descriptions of the causes and effects of the bug,
it is important that performance issues are accompanied by
both the inputs that helped uncover the problem and the

VOLUME 8, 2020

steps to reproduce the same situation. As commented by
Nistor et al. [2], functional bugs also suffer from the same
problem, though to a lesser extent. Analogously to the guide-
lines to document the bugs, templates should be designed
to specify the inputs, scripts, configuration options, software
and hardware requirements and the step-by-step process to
be able to repeat the same environment. Some promising
advances have been made towards this direction recently [14].
How to reproduce the most complex bugs or those manifest-
ing under unusual circumstances as well as the development
of standard and publicly available repositories containing
reproducible performance problems are challenges to be
explored in the future.

C. CHALLENGE 3: HOMOGENIZATION OF TERMS

AND DEFINITIONS

There exist no consensus among authors on the terms used
to refer to performance bugs. For instance, a performance
bug can be found referred in the related literature to as
performance problem, issue, error, fault, anomaly, etc, or
memory-related problems are mentioned with diverse terms,
like performance bugs of abusing storage [42]. This makes
difficult to build a complete picture of all the types of existing
performance bugs. We also detected contradictory defini-
tions of performance issues; while He et al. [43] differenti-
ate the situations when a system experiences software hang
from those with performance slowdown, Dai et al. [44] con-
sider both types of problems as performance bugs. As such,
the trend should be towards the standardization and homoge-
nization with widely-accepted terms, definitions, bug patterns
and categories to enable the classification of performance
bugs, but it currently remains as an open problem.

D. CHALLENGE 4: BETTER UNDERSTANDING OF
PERFORMANCE PROBLEMS IN ALL DOMAINS

Some relevant papers related to the performance of systems
were outside the scope of this study because they did not meet
the inclusion and exclusion criteria established for the review
procedure. In general, those papers illustrate the performance
problems with synthetic examples, do not present descrip-
tions of the identified real bugs, or these are simply either too
brief or are not accompanied by the source code [13], [43].
In other cases, especially in complex systems, researchers
resort to high-level diagrams to illustrate the origin of the
problems that, while useful, may overlook low-level details
in relation to the underlying source code [45]. After the
review and classification of the identified bugs in our dataset,
we found that some relevant domains are not sufficiently
represented with detailed descriptions of performance bugs in
the related literature. Among others, we can cite cloud com-
puting [43], [44], real-time [46], IoT [42], blockchain [47] or
large-scale systems [48]. This impedes obtaining a compre-
hensive view of the nature of the bugs appearing in those and
other contexts. Therefore, this study also serves to identify
current gaps in the scope of performance issues that are worth
exploring in depth in further research.

107225

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

VIil. CONCLUSIONS

In this paper, we presented TANDEM, a taxonomy and a
dataset of real-world performance bugs. TANDEM is elab-
orated according to a systematic review of the related lit-
erature that allowed us to extract exhaustive information
of the exposed performance bugs. The proposed taxonomy
classifies the bugs in three main categories: effects, causes
and contexts of performance bugs. In turn, these main blocks
are divided into subcategories to enable the accurate clas-
sification of bugs and to ease their comprehension. Addi-
tionally, we provide a dataset composed of 125 real-world
performance issues fully documented including the buggy
source code and the categorization of all the bugs based on
the proposed taxonomy. This is expected to facilitate both the
distribution and the reusability of performance bugs among
researchers. Finally, we performed different analyses of the
ratios of the types of bugs found. These data bring us closer
to understanding what are the most recurrent types of perfor-
mance problems, the common causes that originate them or
the contexts where they appear. We also went a step further
analyzing the relationship among causes, effects and contexts
in which the issues arose, observing notable connections
between different categories; this could help associate which
aspects should be particularly assessed when focusing on
each one of these categories.

The challenges identified in this study reveal the need for
homogenization of the terms and definitions used to refer to
performance bugs and the lack of well-documented perfor-
mance problems from real applications, especially in some
underrepresented domains, that allow them to be understood
and reproduced. We trust that this work may become a helpful
reference for researchers, testers and future beginners dealing
with performance bugs as well as to serve as a pool of infor-
mation that helps conduct more traceable and understandable
experiments and evaluations.

REFERENCES

[1] X. Han, D. Carroll, and T. Yu, “Reproducing performance bug reports in
server applications: The researchers’ experiences,” J. Syst. Softw., vol. 156,
pp. 268-282, Oct. 2019.

[2] A.Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing perfor-
mance bugs,” in Proc. 10th Work. Conf. Mining Softw. Repositories (MSR),
May 2013, pp. 237-246.

[3] M. Selakovic and M. Pradel, “Poster: Automatically fixing real-world
JavaScript performance bugs,” in Proc. IEEE/ACM 37th IEEE Int. Conf.
Softw. Eng., vol. 2, May 2015, pp. 811-812.

[4] S. Han, Y. Dang, S. Ge, D. Zhang, and T. Xie, “‘Performance debugging
in the large via mining millions of stack traces,” in Proc. 34th Int. Conf.
Softw. Eng. (ICSE), Jun. 2012, pp. 145-155.

[5] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
detecting real-world performance bugs,” in Proc. 33rd ACM SIGPLAN
Conf. Program. Lang. Design Implement. (PLDI). New York, NY, USA:
ACM, 2012, pp. 77-88.

[6] X. Han, T. Yu, and D. Lo, “PerfLearner: Learning from bug reports
to understand and generate performance test frames,” in Proc. 33rd
ACM/IEEE Int. Conf. Automated Softw. Eng. (ASE). New York, NY, USA:
ACM, Sep. 2018, pp. 17-28.

[71 W. Zheng, C. Feng, T. Yu, X. Yang, and X. Wu, “Towards understanding
bugs in an open source cloud management stack: An empirical study
of OpenStack software bugs,” J. Syst. Softw., vol. 151, pp. 210-223,
May 2019.

107226

[8]

[9]

(10]

(1]

[12]

[13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

(29]

M. Ohira, H. Yoshiyuki, and Y. Yamatani, ‘A case study on the misclassifi-
cation of software performance issues in an issue tracking system,” in Proc.
IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci. (ICIS), Jun. 2016, pp. 1-6.
H. Yu, X. Shi, and W. Feng, “‘LeakTracer: Tracing leaks along the way,”
in Proc. IEEE 15th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2015, pp. 181-190.

L. Fang, L. Dou, and G. Xu, “PerfBlower: Quickly detecting memory-
related performance problems via amplification,” in Proc. 29th Eur. Conf.
Object-Oriented Program. (ECOOP), 2015, pp. 296-320.

Z.Wen, W. Dai, D. Zou, and H. Jin, ‘“PerfDoc: Automatic performance bug
diagnosis in production cloud computing infrastructures,” in Proc. IEEE
Trustcom/BigDataSE/ISPA, Aug. 2016, pp. 683-690.

R. Padhye and K. Sen, “Travioli: A dynamic analysis for detecting data-
structure traversals,” in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), May 2017, pp. 473-483.

C. Trubiani, A. Bran, A. van Hoorn, A. Avritzer, and H. Knoche, “Exploit-
ing load testing and profiling for performance antipattern detection,” Inf.
Softw. Technol., vol. 95, pp. 329-345, Mar. 2018.

R. A.Lima, J. Kimball, J. E. Ferreira, and C. Pu, “Systematic construction,
execution, and reproduction of complex performance benchmarks,” in
Cloud Computing—CLOUD, D. Da Silva, Q. Wang, and L.-J. Zhang, Eds.
Cham, Switzerland: Springer, 2019, pp. 26-37.

V. R. Basili and B. T. Perricone, “Software errors and complexity:
An empirical investigation,” Commun. ACM, vol. 27, no. 1, pp. 42-52,
Jan. 1984.

A. Radu and S. Nadi, “A dataset of non-functional bugs,” in Proc.
IEEE/ACM 16th Int. Conf. Mining Softw. Repositories (MSR). Piscataway,
NJ, USA: IEEE Press, May 2019, pp. 399—403.

R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware test-
suite minimization for Android apps,” in Proc. 25th Int. Symp. Softw. Test.
Anal. (ISSTA). New York, NY, USA: ACM, 2016, pp. 425-436.

H. Mi, H. Wang, G. Yin, H. Cai, Q. Zhou, and T. Sun, “Perfor-
mance problems diagnosis in cloud computing systems by mining request
trace logs,” in Proc. IEEE Netw. Oper. Manage. Symp., Apr. 2012,
pp. 893-899.

M. M. U. Alam, T. Liu, G. Zeng, and A. Muzahid, “SyncPerf: Catego-
rizing, detecting, and diagnosing synchronization performance bugs,” in
Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017, pp. 298-313.

L. Xu, W. Dou, F. Zhu, C. Gao, J. Liu, and J. Wei, “Characterizing and
diagnosing out of memory errors in MapReduce applications,” J. Syst.
Softw., vol. 137, pp. 399—414, Mar. 2018.

A. Fedorova, C. Mustard, I. Beschastnikh, J. Rubin, A. Wong, S. Miucin,
and L. Ye, “Performance comprehension at WiredTiger,” in Proc. 26th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/FSE). New York, NY, USA: Association for Computing Machinery,
2018, pp. 83-94.

G. Catolino, F. Palomba, A. Zaidman, and F. Ferrucci, “Not all bugs are the
same: Understanding, characterizing, and classifying bug types,” J. Syst.
Softw., vol. 152, pp. 165-181, Jun. 2019.

S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on perfor-
mance bugs,” in Proc. 9th IEEE Work. Conf. Mining Softw. Repositories
(MSR), Jun. 2012, pp. 199-208.

S. Baltes, O. Moseler, F. Beck, and S. Diehl, “Navigate, understand, com-
municate: How developers locate performance bugs,” in Proc. ACM/IEEE
Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Oct. 2015, pp. 1-10.

R. Mudduluru and M. K. Ramanathan, “Efficient flow profiling for
detecting performance bugs,” in Proc. 25th Int. Symp. Softw. Test. Anal.
(ISSTA). New York, NY, USA: Association for Computing Machinery,
2016, pp. 413-424.

Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting perfor-
mance bugs for smartphone applications,” in Proc. 36th Int. Conf. Softw.
Eng. (ICSE). New York, NY, USA: Association for Computing Machinery,
2014, pp. 1013-1024.

0. Olivo, I. Dillig, and C. Lin, “Static detection of asymptotic performance
bugs in collection traversals,” in Proc. 36th ACM SIGPLAN Conf. Pro-
gram. Lang. Design Implement. (PLDI). New York, NY, USA: ACM, 2015,
pp. 369-378.

P. Zhang, S. Elbaum, and M. B. Dwyer, “Automatic generation of load
tests,” in Proc. 26th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE).
Washington, DC, USA: IEEE Computer Society, Nov. 2011, pp. 43-52.
P. Delgado-Pérez, A. B. Sanchez, S. Segura, and I. Medina-Bulo, ‘““Per-
formance mutation testing,” Softw. Test., Verification Rel., Jan. 2020,
Art. no. el728.

VOLUME 8, 2020

. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

IEEE Access

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

M. M. Hassan, W. Afzal, B. Lindstrom, S. M. A. Shah, S. F. Andler, and
M. Blom, “Testability and software performance: A systematic mapping
study,” in Proc. 31st Annu. ACM Symp. Appl. Comput. (SAC). New York,
NY, USA: ACM, 2016, pp. 1566-1569.

B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele Univ. Durham Univ.
Joint Report, Keele, U.K., Tech. Rep. EBSE 2007-001, 2007.

H. Zhang and M. A. Babar, “On searching relevant studies in soft-
ware engineering,” in Proc. 14th Int. Conf. Eval. Assessment Softw.
Eng. (EASE). Swindon, U.K.: GBR, BCS Learning & Development Ltd,
Apr. 2010, pp. 111-120.

A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “CARAMEL: Detect-
ing and fixing performance problems that have non-intrusive fixes,” in
Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 902-912.

X. Han and T. Yu, “An empirical study on performance bugs for highly
configurable software systems,” in Proc. 10th ACM/IEEE Int. Symp.
Empirical Softw. Eng. Meas. (ESEM). New York, NY, USA: ACM, 2016,
pp. 23:1-23:10.

Y. Yang, P. Xiang, M. Mantor, and H. Zhou, “Fixing performance bugs:
An empirical study of open-source GPGPU programs,” in Proc. 41st Int.
Conf. Parallel Process., Sep. 2012, pp. 329-339.

S. H. Jensen, M. Sridharan, K. Sen, and S. Chandra, “MemlInsight:
Platform-independent memory debugging for JavaScript,” in Proc. 10th
Joint Meeting Found. Softw. Eng. (ESEC/FSE). New York, NY, USA:
Association for Computing Machinery, 2015, pp. 345-356.

L. Song and S. Lu, “Performance diagnosis for inefficient loops,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE). Piscataway, NJ, USA: IEEE
Press, May 2017, pp. 370-380.

J. Li, Y. Chen, H. Liu, S. Lu, Y. Zhang, H. S. Gunawi, X. Gu, X. Lu, and
D. Li, “Pcatch: Automatically detecting performance cascading bugs in
cloud systems,” in Proc. 13th EuroSys Conf. New York, NY, USA: ACM,
Apr. 2018, pp. 7:1-7:14.

A. Nistor, L. Song, D. Marinov, and S. Lu, “Toddler: Detecting perfor-
mance problems via similar memory-access patterns,” in Proc. 35th Int.
Conf. Softw. Eng. (ICSE), May 2013, pp. 562-571.

G. Xu and A. Rountev, “Detecting inefficiently-used containers to avoid
bloat,” in Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement.
(PLDI). New York, NY, USA: Association for Computing Machinery,
2010, pp. 160-173.

Y. Liu, C. Xu, S. C. Cheung, and J. Lu, “‘GreenDroid: Automated diagnosis
of energy inefficiency for smartphone applications,” IEEE Trans. Softw.
Eng., vol. 40, no. 9, pp. 911-940, Sep. 2014.

H. Liang, Q. Zhao, Y. Wang, and H. Liu, “Understanding and detecting
performance and security bugs in IOT OSes,” in Proc. 17th IEEE/ACIS Int.
Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD),
May 2016, pp. 413-418.

J. He, T. Dai, and X. Gu, “TScope: Automatic timeout bug identification
for server systems,” in Proc. IEEE Int. Conf. Autonomic Comput. (ICAC),
Sep. 2018, pp. 1-10.

T. Dai, D. Dean, P. Wang, X. Gu, and S. Lu, “Hytrace: A hybrid
approach to performance bug diagnosis in production cloud infrastruc-
tures,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 107-118,
Jan. 2019.

L. Luo, A. Sriraman, B. Fugate, S. Hu, G. Pokam, C. J. Newburn, and
J. Devietti, “LASER: Light, accurate sharing dEtection and repair,” in
Proc. IEEE Int. Symp. High Perform. Comput. Archit. (HPCA), Mar. 2016,
pp. 261-273.

S. Tsakiltsidis, A. Miranskyy, and E. Mazzawi, “On automatic detection of
performance bugs,” in Proc. IEEE Int. Symp. Softw. Rel. Eng. Workshops
(ISSREW), Oct. 2016, pp. 132-139.

Z. Wan, D. Lo, X. Xia, and L. Cai, “Bug characteristics in blockchain
systems: A large-scale empirical study,” in Proc. IEEE/ACM 14th Int.
Conf. Mining Softw. Repositories (MSR). Piscataway, NJ, USA: IEEE
Press, May 2017, pp. 413-424.

H. Malik, H. Hemmati, and A. E. Hassan, “‘Automatic detection of perfor-
mance deviations in the load testing of large scale systems,” in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 1012-1021.

H. He, “Tuning backfired? Not (always) your fault: Understanding
and detecting configuration-related performance bugs,” in Proc. 27th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.
(ESEC/FSE). New York, NY, USA: Association for Computing Machinery,
2019, pp. 1229-1231.

VOLUME 8, 2020

(50]

[51]

(52]

(53]

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

S. Kothari, A. Deepak, A. Tamrawi, B. Holland, and S. Krishnan,
“A ‘human-in-the-loop’ approach for resolving complex software anoma-
lies,” in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC), Oct. 2014,
pp. 1971-1978.

Z. Xu and J. Zhang, “Path and context sensitive inter-procedural mem-
ory leak detection,” in Proc. 8th Int. Conf. Qual. Softw., Aug. 2008,
pp. 412-420.

L. Della Toffola, M. Pradel, and T. R. Gross, “Performance problems
you can fix: A dynamic analysis of memoization opportunities,” in Proc.
ACM SIGPLAN Int. Conf. Object-Oriented Program., Syst., Lang., Appl.
(OOPSLA). New York, NY, USA: Association for Computing Machinery,
2015, pp. 607-622.

R. Gu, G. Jin, L. Song, L. Zhu, and S. Lu, “What change history tells
us about thread synchronization,” in Proc. 10th Joint Meeting Found.
Softw. Eng. (ESEC/FSE). New York, NY, USA: Association for Computing
Machinery, 2015, pp. 426-438.

S. Lee, C. Jung, and S. Pande, “Detecting memory leaks through intro-
spective dynamic behavior modelling using machine learning,” in Proc.
36th Int. Conf. Softw. Eng. (ICSE). New York, NY, USA: Association for
Computing Machinery, 2014, pp. 814-824.

D. Yan, G. Xu, S. Yang, and A. Rountev, “LeakChecker: Practical
static memory leak detection for managed languages,” in Proc. Annu.
IEEE/ACM Int. Symp. Code Gener. Optim. (CGO). New York, NY, USA:
Association for Computing Machinery, 2014, pp. 87-97.

H. Zhang, J. Rhee, N. Arora, S. Gamage, G. Jiang, K. Yoshihira, and D. Xu,
“CLUE: System trace analytics for cloud service performance diagnosis,”
in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS), May 2014, pp. 1-9.
L.Songand S. Lu, “Statistical debugging for real-world performance prob-
lems,” in Proc. ACM Int. Conf. Object Oriented Program. Syst. Lang. Appl.
(OOPSLA). New York, NY, USA: Association for Computing Machinery,
2014, pp. 561-578.

Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for
big data applications,” in Proc. Int. Symp. Int. Symp. Memory Manage.
(ISMM). New York, NY, USA: Association for Computing Machinery,
2013, pp. 119-130.

J. Yang, C. Yan, P. Subramaniam, S. Lu, and A. Cheung, ‘‘PowerStation:
Automatically detecting and fixing inefficiencies of database-backed Web
applications in IDE,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng. (ESEC/FSE). New York, NY, USA: Asso-
ciation for Computing Machinery, 2018, pp. 884-887.

B. Welton and B. Miller, “Exposing hidden performance opportunities in
high performance GPU applications,” in Proc. 18th IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput. (CCGRID), May 2018, pp. 301-310.

C. Lemieux, R. Padhye, K. Sen, and D. Song, “PerfFuzz: Automatically
generating pathological inputs,” in Proc. 27th ACM SIGSOFT Int. Symp.
Softw. Test. Anal. (ISSTA). New York, NY, USA: Association for Comput-
ing Machinery, 2018, pp. 254-265.

T. Chen, W. Huang, M. Jiang, X. Luo, L. Xue, Y. Wang, and X. Zhang,
“PERDICE: Towards discovering software inefficiencies leading to cache
misses and branch mispredictions,” in Proc. IEEE 42nd Annu. Comput.
Softw. Appl. Conf. (COMPSAC), vol. 1, Jul. 2018, pp. 276-285.

J. Yang, P. Subramaniam, S. Lu, C. Yan, and A. Cheung, “How not to
structure your database-backed Web applications: A study of performance
bugs in the wild,” in Proc. 40th Int. Conf. Softw. Eng. New York, NY, USA:
Association for Computing Machinery, May 2018, pp. 800-810.

A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: Characterizing and detecting no-sleep energy bugs in
smartphone apps,” in Proc. 10th Int. Conf. Mobile Syst., Appl., Services
(MobiSys). New York, NY, USA: ACM, 2012, pp. 267-280.

G. Xu, “Finding reusable data structures,” in Proc. ACM Int. Conf. Object
Oriented Program. Syst. Lang. Appl. (OOPSLA). New York, NY, USA:
ACM, 2012, pp. 1017-1034.

G. Xu, M. D. Bond, F. Qin, and A. Rountev, “LeakChaser: Helping
programmers narrow down causes of memory leaks,” ACM SIGPLAN
Notices, vol. 46, no. 6, pp. 270-282, Jun. 2011.

A. Fehnker and R. Huuck, “Model checking driven static analysis for the
real world: Designing and tuning large scale bug detection,” Innov. Syst.
Softw. Eng., vol. 9, no. 1, pp. 45-56, Mar. 2013.

Y. Jung and K. Yi, “Practical memory leak detector based on parameterized
procedural summaries,” in Proc. 7th Int. Symp. Memory Manage. (ISMM).
New York, NY, USA: ACM, 2008, pp. 131-140.

Q. Li, C. Xu, Y. Liu, C. Cao, X. Ma, and J. Lii, “CyanDroid: Stable and
effective energy inefficiency diagnosis for Android apps,” Sci. China Inf.
Sci., vol. 60, no. 1, p. 12104, Jan. 2017.

107227

IEEE Access

A. B. Sanchez et al.: TANDEM: Taxonomy and a Dataset of Real-World Performance Bugs

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

R. van Tonder and C. L. Goues, “‘Static automated program repair for heap
properties,” in Proc. 40th Int. Conf. Softw. Eng. New York, NY, USA:
ACM, May 2018, pp. 151-162.

M. Weninger, E. Gander, and H. Mossenbock, “Detection of suspicious
time windows in memory monitoring,” in Proc. 16th ACM SIGPLAN Int.
Conf. Managed Program. Lang. Runtimes (MPLR). New York, NY, USA:
ACM, 2019, pp. 95-104.

Y. Liu, J. Wang, C. Xu, and X. Ma, “NavyDroid: Detecting energy ineffi-
ciency problems for smartphone applications,” in Proc. 9th Asia—Pacific
Symp. Internetware (Internetware). New York, NY, USA: ACM, 2017,
pp. 8:1-8:10.

Y. Kang, Y. Zhou, H. Xu, and M. R. Lyu, “DiagDroid: Android perfor-
mance diagnosis via anatomizing asynchronous executions,” in Proc. 24th
ACM SIGSOFT Int. Symp. Found. Softw. Eng. (FSE). New York, NY, USA:
Association for Computing Machinery, 2016, pp. 410-421.

J. Bornholt and E. Torlak, “Finding code that explodes under sym-
bolic evaluation,” Proc. ACM Program. Lang., vol. 2, pp. 149:1-149:26,
Oct. 2018.

Y. Lin, C. Radoi, and D. Dig, “Retrofitting concurrency for Android
applications through refactoring,” in Proc. 22nd ACM SIGSOFT Int. Symp.
Found. Softw. Eng. (FSE). New York, NY, USA: ACM, 2014, pp. 341-352.
X. Xiao, S. Han, D. Zhang, and T. Xie, “Context-sensitive delta inference
for identifying workload-dependent performance bottlenecks,” in Proc.
Int. Symp. Softw. Test. Anal. (ISSTA). New York, NY, USA: ACM, 2013,
pp. 90-100.

Y. Liu, C. Xu, and S.-C. Cheung, “Diagnosing energy efficiency and
performance for mobile internetware applications,” IEEE Softw., vol. 32,
no. 1, pp. 67-75, Jan. 2015.

M. Dhok and M. K. Ramanathan, “Directed test generation to detect loop
inefficiencies,” in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng.
(FSE). New York, NY, USA: ACM, 2016, pp. 895-907.

C. Sakalis, C. Leonardsson, S. Kaxiras, and A. Ros, ““Splash-3: A properly
synchronized benchmark suite for contemporary research,” in Proc. IEEE
Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Apr. 2016, pp. 101-111.
J. Suand K. Yelick, Automatic Communication Performance Debugging in
PGAS Languages. Berlin, Germany: Springer-Verlag, 2007, pp. 232-245.
X. Xiao, S. Han, C. Zhang, and D. Zhang, “Uncovering JavaScript
performance code smells relevant to type mutations,” in Programming
Languages and Systems, X. Feng and S. Park, Eds. Cham, Switzerland:
Springer, 2015, pp. 335-355.

ANA B. SANCHEZ received the Ph.D. degree
(Hons.) in software engineering from the Univer-
sity of Seville, Seville, Spain, in 2016. She was a
Postdoctoral Researcher with the Department of
Languages and Computer Systems, University of
Seville, from 2017 to 2018. She has been a mem-
ber of the Applied Software Engineering Research
Group, University of Seville, since 2012. She cur-
rently works as an Assistant Lecturer with the
Department of Languages and Computer Systems,

University of Seville. She is the author of some articles in relevant journals,
international conferences, and workshops. Her research interest includes
software testing. She has also participated in the organization of international
and national conferences and in the review of several journals.

107228

PEDRO DELGADO-PEREZ was born in Cidiz,
Spain. He received the B.S., M.S., and Ph.D.
degrees in computer science engineering from
the University of Cadiz in 2011 and 2017,
respectively.

He is currently working as an Assistant Lec-
turer with the Department of Computer Science
and Engineering, University of Cddiz. He has been
a member of the UCASE Software Engineering
Research Group since 2013. He is the author
of several works in journals, international conferences, and books mainly
related to software engineering. He has mainly centered his research on
testing techniques. His research interests include search-based software
engineering, performance analysis, object-oriented programming, and the
assessment of software quality factors.

INMACULADA MEDINA-BULO (Member,
IEEE) received the Ph.D. degree in computer sci-
ence from the University of Seville, Spain. She has
been with the Department of Computer Science
and Engineering, University of Cadiz, Spain, since
1995. She has published numerous peer-reviewed
articles, participated in conference and workshops
organization, and acted as a reviewer for sev-
eral journals. She is the Main Researcher of the
UCASE Software Engineering Research Group.
Her current research interests include software testing, search-based software
engineering, the IoT, CEP, and SOA 2.0.

SERGIO SEGURA (Member, IEEE) is an Asso-
ciate Professor of software engineering with the
University of Seville, Spain. He is a member of the
Applied Software Engineering Research Group,
where he leads the research lines on software test-
ing and search-based software engineering. His
current research interests include test automation
and Al-driven software engineering.

VOLUME 8, 2020

