
P. Delgado-Pérez, I. Habli, S. Gregory, R. Alexander, J. Clark and I. Medina-Bulo, "Evaluation

of Mutation Testing in a Nuclear Industry Case Study," in IEEE Transactions on Reliability, vol.

67, no. 4, pp. 1406-1419, Dec. 2018, doi: 10.1109/TR.2018.2864678.

Version: Accepted Version

© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—For software quality assurance, many safety-critical

industries appeal to the use of dynamic testing and structural

coverage criteria. However, there are reasons to doubt the

adequacy of such practices. Mutation testing has been suggested

as an alternative or complementary approach but its cost has

traditionally hindered its adoption by industry, and there are

limited studies applying it to real safety-critical code. This paper

evaluates the effectiveness of state-of-the-art mutation testing on

safety-critical code from within the UK nuclear industry, in terms

of revealing flaws in test suites that already meet the structural

coverage criteria recommended by relevant safety standards. It

also assesses the practical feasibility of implementing such

mutation testing in a real setting. We applied a conventional

selective mutation approach to a C codebase supplied by a nuclear

industry partner and measured the mutation score achieved by the

existing test suite. We repeated the experiment using trivial

compiler equivalence (TCE) to assess the benefit that it might

provide. Using a conventional approach, it first appeared that the

existing test suite only killed 82% of the mutants, but applying

TCE revealed that it killed 92%. The difference was due to

equivalent or duplicate mutants that TCE eliminated. We then

added new tests to kill all the surviving mutants, increasing the test

suite size by 18% in the process. In conclusion, mutation testing

can potentially improve fault detection compared to structural-

coverage-guided testing, and may be affordable in a nuclear

industry context. The industry feedback on our results was

positive, although further evidence is needed from application of

mutation testing to software with known real faults.

Index Terms— Mutation testing; safety-critical systems;

coverage criteria; verification and validation; nuclear industry.

I. INTRODUCTION

UTATION TESTING is a method for estimating the

robustness of test suites by measuring their effectiveness

for finding faults which have been systematically seeded in the

code. Several faulty versions of the program under test

(mutants) are generated, each one with a simple syntactic

Submission date: 27/07/2017
This study was funded by the UK Control and Instrumentation Nuclear

Industry Forum (CINIF). This paper was also partially funded by the European

Commission (FEDER) and the Spanish Ministry of Economy and
Competitiveness (National Program for Research, Development and

Innovation) through the project DArDOS (TIN2015-65845-C3-3-R).

Pedro Delgado-Pérez is with the Department of Computer Science and
Engineering, University of Cádiz, Cádiz, Spain. (e-mail:

pedro.delgado@uca.es).

Ibrahim Habli is with the Department of Computer Science, University of
York, UK (e-mail: ibrahim.habli@york.ac.uk).

change, and the test suite is run against each faulty version. If

the test results differ (typically, if some tests fail) when run

against a faulty version, that version is said to be “killed”. The

effectiveness of the suite is the “mutation adequacy score” – the

proportion of faulty versions that are correctly detected by the

tests. Originally proposed in the 1970s by Hamlet [1] and

DeMillo et al. [2], this technique has been widely studied by

researchers [3] but has not been embraced by industry, which

has regarded the cost as a millstone for its practical application.

Research studies on mutation testing have produced evidence

of its usefulness in improving the quality of test suites and have

also explored multiple mechanisms to reduce the cost without

significantly lessening its effectiveness [4]. As a consequence,

it has re-emerged as a feasible opportunity to enhance test

assurance models adopted in some critical domains, where

verification and validation is a key phase in software

development. The potential for increasing confidence in

existing test suites is especially appealing for safety-critical

industries.

In safety-critical industries such as aviation, automotive and

nuclear, where failures of certain software-based functions may

lead to human harm or damage to the environment, system

developers and integrators need evidence from rigorous testing

to meet regulatory requirements. The form and level of rigour

vary, but is most often expressed as a specific structural

coverage criterion. For example, the safety standards IEC

61508 [5], ISO 26262 [6] and DO 178C [7] adopt this approach.

The degree of rigour and coverage required — e.g., statement

coverage, branch coverage, or Modified Condition/Decision

Coverage (MC/DC) [8] — depends on the criticality of the

software to safety. For example, DO 178C requires MC/DC at

the highest level of software assurance (e.g., that applying to

aircraft engine controllers).

This study aims to provide rigorous and empirical evidence

of the impact that the application of mutation testing could have

in a nuclear industrial setting. Our top-level research question

is as follows:

Steve Gregory is with AWE, Aldermaston, Reading, UK (e-mail:
steve.gregory@awe.co.uk).

Rob Alexander is with the Department of Computer Science, University of

York, UK (e-mail: rob.alexander@york.ac.uk).
John Clark was with the Department of Computer Science, University of

York, UK. He is now with Department of Computer Science, University of

Sheffield, Sheffield, UK (e-mail: john.clark@sheffield.ac.uk).
Inmaculada Medina-Bulo is with the Department of Computer Science and

Engineering, University of Cádiz, Cádiz, Spain. (e-mail:

inmaculada.medina@uca.es).

Evaluation of Mutation Testing in

a Nuclear Industry Case Study

Pedro Delgado-Pérez, Ibrahim Habli, Steve Gregory, Rob Alexander, John Clark

and Inmaculada Medina-Bulo

M

mailto:pedro.delgado@uca.es
mailto:ibrahim.habli@york.ac.uk
mailto:steve.gregory@awe.co.uk
mailto:rob.alexander@york.ac.uk
mailto:john.clark@sheffield.ac.uk
mailto:inmaculada.medina@uca.es

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

Can mutation testing affordably enhance fault

detection in safety-critical systems that are

assessed as suitable for use in nuclear safety

applications?

In this paper, we explore this question using a case study,

supported by a series of experiments, of a safety-related

software system and its associated branch-adequate test suites,

which have been selected and evaluated in collaboration with

partners from the UK nuclear industry. We evaluated mutation

testing by applying two cost reduction techniques, namely (1)

selective mutation, a well-known strategy that discards a subset

of mutation operators, and (2) trivial compiler equivalence, a

novel method to identify some equivalent and duplicate mutants

(i.e., variants which are not useful for the assessment and

refinement of the test suite). The results show that this approach

can make mutation testing affordable for the industry while

retaining testing power. The results can be summarised as

follows:

 The selective set of mutation operators generates some

mutants which are not killed by the existing branch-

adequate test suites in most of the functions analysed.

 By adding new test cases to kill surviving mutants, the

minimal size of the test suite is notably increased.

 Thanks to trivial compiler equivalence, we can detect a

significant percentage of ineffective mutants

automatically and therefore calculate the mutation score

more accurately.

II. BACKGROUND

A. Mutation Testing

 Overview

Mutation testing is a technique used to evaluate the ability of

a test suite in revealing faults in the source code [9]. In this

technique, new versions of the program under test are

generated. These versions are known as mutants, because they

contain an intentionally injected fault. Mutation testing is

founded on two underlying hypotheses: the Competent

Programmer Hypothesis and the Coupling Effect Hypothesis

[2].

The Competent Programmer Hypothesis suggests that

programmers create programs that are very close to the correct

version but may contain subtle, low-level faults. The simple

syntactic changes introduced in mutation testing represent

common programming mistakes.

The Coupling Effect Hypothesis suggests that complex faults

are realised when simple faults combine and result in new

behaviours. According to Offutt [10], “complex faults are

coupled to simple faults in such a way that a test data set that

detects all simple faults in a program will detect a high

percentage of the complex faults”.

The rationale behind mutation testing is that test suites that

are deemed adequate by software engineers should be able to

detect changes that are introduced into the code. As such,

mutation testing provides an empirical test of the engineer’s

confidence in the test suite. The analysis of the mutants can also

assist in improving the rate of fault detection of the test suite.

There are three main stages when applying mutation testing:

 Mutant generation: In this stage, the source code is

analysed with respect to a set of mutation operators

(syntactic transformations of the code) to determine

where in the code mutations can be injected. For each

location detected in the code, a mutant is generated.

Each mutant is usually a clone of the original program

except for a simple syntactic change.

 Test suite execution: Once the mutants have been

produced, the original test suite is executed against each

mutant to produce an output.

 Mutant analysis: The mutants are then classified as

killed or alive depending on whether the test suite could

detect the mutation (i.e., because of a difference in the

output when compared to the original program) or not

(because of no observable difference in the output when

compared to the original program).

Mutants can be generated manually according to predefined

mutation operators and the execution of the test suite can be

prepared for each of those mutants. However, this is a laborious

and error-prone task. Multiple tools have therefore been

developed to undertake the two first stages systematically (see

[3] for a survey).

The analysis of test execution results, however, is hard to

fully automate. Ideally, the test suite should be able to detect all

the mutations injected into the code and no further actions

would be required because the test suite achieves full mutation

coverage. In practice, there are usually some mutants

undetected by the test suite. In that case, the tester needs to

review those surviving mutants. The behaviour of some of the

mutants may be the same as the original code (equivalent

mutants), and therefore no test can detect the mutation. For

instance, the fragment “if (x > 1) x = 1;” is behaviourally

equivalent to “if (x >= 1) x = 1;” – whatever the value assigned

to the variable x before the execution of this fragment, the

variable will have the same value in both versions after the

conditional statement. Where this is not the case, the test suite

has indeed failed in detecting injected faults within the code.

Once all surviving mutants have been inspected and

equivalent mutants have been discarded, the tester can measure

the ability of the test suite to detect faults. The mutation

adequacy score is the number of killed mutants divided by the

number of non-equivalent mutants. The higher the mutation

score, the higher the test suite quality and therefore its ability to

reveal coding errors. The test suite is mutant adequate when the

mutation score is 100%, that is, when it has killed the full set of

non-equivalent mutants.

As an extra step, the engineer can create new test cases to kill

the undetected non-equivalent mutants. The mutation testing

process should then be repeated with the augmented test suite

to ensure that the mutation score increases accordingly.

Mutation testing is a powerful technique but computationally

inefficient in its basic form. There are two main problems when

applying mutation testing: the high computational cost when

generating and executing all the mutants, and the presence of

equivalent mutants (determining which of the live mutants are

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

equivalent requires manual inspection and takes considerable

time). These problems are explored in the next section.

 Improving the Efficiency of Mutation Testing

Mutation testing can generate a large number of mutants even

for small programs, so most recent research in mutation testing

has aimed to reduce the effort of applying it. Several techniques

have been proposed to address this issue [4]. Some of them can

be classified as “do fewer” techniques, in the sense that they

seek to reduce the number of mutants, such as random mutant

selection [11] (i.e., sampling a percentage of the full set of

mutants) and higher order mutation [12] (i.e., several mutations

are combined into a single mutant). Selective mutation, perhaps

the cost reduction technique with the greatest acceptance [13],

[14], [15], [16], works under the assumption that some mutation

operators can be excluded without sacrificing a great deal of

fault-revealing power. Notably, Offutt et al. [13] found that five

of the 22 mutation operators implemented in the mutation tool

Mothra sufficed to apply mutation testing in an effective way,

allowing for large reductions in the number of mutants (78% on

average).

For programs developed in C, which is the language of the

software system examined in this paper, Barbosa et al. [14]

defined a set of general rules to systematically select a subset of

mutation operators. By applying this guideline to Agrawal et

al.’s operators [17], the authors found that with only 10

operators the mutation score was still close to 100% (99.6% on

average with 27 programs). Namin et al. [15] also tried to find

sufficient sets of operators for C programs by defining a

statistical analysis procedure to predict an effective subset of

operators. The results show that using just 28 out of 108

operators leads to a good approximation of the full-set mutation

score. One of the most recent studies on selective mutation was

conducted by Delamaro et al. [16]. They used a greedy

algorithm which successively added the operators that

increased the overall mutation score the most. Unlike the

previous two studies, the authors of that paper assessed

mutation operators not only regarding the effectiveness but also

considering the cost in the form of number of mutants and

number of equivalent mutants.

While some techniques have been investigated to reduce and

detect equivalent mutants [18], [19], [20], this is still an

undecidable problem. Mutant classification strategies analysing

coverage impact of mutations [21], [22] have been used in a

study to mitigate the effects of equivalence. Papadakis et al.

[23] also proposed a technique based on compiler optimisations

(TCE) to automatically detect equivalent mutants. In their

study, TCE was able to remove 30% of all existing equivalent

mutants on average in 18 benchmark programs, and 7%

(equivalent) and 21% (duplicate) of all mutants on 6 large open-

source programs.

Another related work using C programs was conducted by

Amman et al. [24]. They proposed to minimise the set of

mutants to avoid the impact of redundant mutants when

interpreting the mutation score. Based on this theoretical

framework, they analysed the mutants generated with the

mutation tool Proteum when applied to the Siemens suite,

showing that the mutation scores were lower once redundant

mutants were removed.

 Mutation Testing and Structural Test Coverage

Andrews et al. [25] applied mutation testing to evaluate four

test coverage criteria: block, decision, c-use and p-use. They

showed that mutation testing can help in predicting the

effectiveness of these criteria to detect real faults and their

relative cost in terms of fault detection, test suite size and

control/data flow coverage.

Yao et al. [26] showed the distribution of “stubborn” mutants

across mutation operators. These authors labelled as stubborn

those non-equivalent mutants that are not detected by a test

suite complying with branch coverage criteria. They concluded

that testers should prioritise those operators generating many of

these mutants in comparison with the number of equivalent

mutants.

Inozemtseva et al. [27] studied the correlation between

coverage (statement, decision and MC/DC), test suite size and

effectiveness of large programs. The results gave evidence that

test effectiveness is not strongly correlated with coverage

criteria, so coverage is not necessarily a good indicator of test

quality.

 Significance of Mutation Testing for the Industry

There has been some empirical evaluation of mutation testing

in real testing environments. Daran and Thévenod-Fosse [28]

also considered safety-critical software in a previous study, but

with the aim of identifying whether mutations are correlated

with real faults instead of evaluating the test suites developed.

That study found a relation between mutations and real coding

errors in a program from the civil nuclear field. Concretely,

85% of the injected mutations were also produced by real faults.

Andrews et al. [29] applied four mutant types in C to explore

the link between hand-seeded and real faults. The results

suggest that manually-seeded mutations are different from real

faults and harder to detect, whereas mutation operators are more

in line with real faults. The experiments by Just et al. [30]

provide some evidence that the simple errors simulated by

mutations relate to complex errors, supporting the coupling

effect hypothesis. However, the results obtained by Gopinath et

al. [31] contradict that hypothesis because real faults appeared

to be more complex than most of the mutant types considered

in that study.

Baker and Habli [32] carried out an empirical evaluation

based on two safety-critical airborne systems that had satisfied

the coverage requirements for certification. Those systems were

developed using high-integrity subsets for C (MISRA C [33])

and Ada. In their experiments, they found an effective subset of

mutation operators that was able to detect different deficiencies

in tests suites which had already met statement and MC/DC

coverage and had been manually peer-reviewed.

B. UK Nuclear Industry

The nuclear industry provides safety-critical services and

develops technologies whose failure, under certain conditions,

can lead to catastrophic events, i.e., resulting in harm to humans

and damage to property and the environment. As such, it is a

highly regulated domain with rigorous assessment practices.

Requirements include a high degree of redundancy and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

diversity in design, both for hardware and software, and

independence in testing and certification.

In the UK, the industry adopts a two-legged approach to the

assurance of software-based systems, in accordance with the

Office for Nuclear Regulation’s (ONR) Safety Assessment

Principles [34]. These two legs are “production excellence” and

“confidence building” and the rigour applied is commensurate

with the claimed risk reduction. For a software-based

component to be incorporated into a safety-critical system it

must first be qualified following the two-legged approach.

For Commercial-Off-The-Shelf (COTS) software-based

instrumentation (smart devices), the manufacturer’s

development process and documentation are assessed,

including all records of software analysis and testing. This

assessment of production excellence is performed against the

safety standard IEC 61508 [5] as a benchmark, which requires

structural test coverage criteria such as branch coverage and

MC/DC. IEC 61508 is applied along with some more stringent,

industry-specific requirements. Independent analysis and

testing are then carried out, usually by an expert and

independent third party, using diverse tools and techniques.

Provided that the results of these activities are favourable, the

device may be deemed suitable for use.

Despite the robustness of the current approach to assuring

software in the nuclear industry, there has been a general trend

toward greater automation, particularly for instrumentation and

control, potentially giving more authority to software-based

functions [35]. To this end, mutation testing, in the context of

the wider safety case for nuclear instrumentation and control

systems, could provide further evidence concerning confidence

in the safe design and deployment of these systems, e.g.,

enhanced confidence in the software testing process for certain

applications.

C. Study Objectives

The nuclear industry partners were interested to understand

if mutation testing might be beneficial in the development of

safety-critical software (supporting the “production excellence”

argument) or, alternatively, whether it would be useful in the

independent assessment of a COTS software-based device

(supporting the “confidence building” argument). Accordingly,

the objectives of our study were as follows:

1. To determine whether the current standards in the nuclear

industry for test assurance could be made more rigorous by

the application mutation testing;

2. To determine whether cost reduction techniques proposed

in the literature can make mutation testing affordable for

the nuclear industry whilst retaining its power; and

3. To determine the most effective mutation operators for a

typical nuclear software system.

D. Evaluation Criteria

The following criteria were important for the study to be

valid:

(a) To meet objective (1), we needed to use mutation testing

to assess an appropriate case study – a test suite satisfying

current nuclear industry standards.

(b) To meet objective (1) we needed an appropriate

comparison measure for our claims about relative fault-

finding adequacy of different test coverage criteria.

(c) Additionally, in order to meet objective (2), we needed an

appropriate measure of the additional costs incurred by

using mutation coverage as our test suite adequacy criteria.

(d) To meet objective (3), we needed an appropriate measure

to calculate the relative fault-finding ability of each

mutation operator.

In this paper, we achieved criterion (a) by measuring the

mutation coverage achieved by a test suite that satisfies branch

coverage. This is appropriate as branch coverage is widely

applied in the nuclear industry, being mandated for example by

IEC 61508 for Safety Integrity Level (SIL) 3 systems [5]. In

IEC 61508, SILs specify safety requirements and measures that

are allocated to safety functions in order to justify confidence

(on a scale of 1 to 4) that the functions will not fail (particularly

due to systematic causes for software components). The

allocation of SILs depends on the necessary risk reduction in

order to achieve tolerable risk, considering both the frequency

of the hazardous events and their consequences.

We achieved criterion (b) by determining the mutation score

achieved by the original branch-adequate test suite against our

mutant set. The mutation score is widely used to assess test suite

quality, and our use of TCE (in Section IV) meant that our

mutation scores were very accurate.

We achieved criterion (c) by comparing the size of the test

suites needed to achieve branch coverage and 100% mutation

score, respectively. Here, we worked on the assumption that the

cost of test development and maintenance is roughly

proportional to the number of test cases developed. Using the

mutation score alone is not enough, as one test case may kill

more than one mutant (thus making the increase in test suite

size less than the raw difference in mutation score would

suggest).

We achieved criterion (d) by performing an analogous study

to that used to achieve criterion (b) but determining the

percentage of surviving mutants produced by each mutation

operator.

E. Nuclear Software System

We performed a mutation testing process on a real nuclear

software system. Specifically, this study simulates a complete

mutation testing process applied to a COTS software-based

device developed by a supplier to the UK nuclear industry. The

device is used throughout the industry in a range of safety

applications. The device receives a variety of inputs from field

sensors and carries out user-configurable computations to

deliver the required safety outputs. The overall COTS system

(including the hardware and firmware) was developed in

accordance with IEC 61508 to satisfy the requirements of SIL

3 and achieves 100% branch coverage. MC/DC was not used

during the development of the firmware, in line with the

requirements of the standard. An interesting aspect of using

such software is that, apart from satisfying a key coverage

criterion, the system has undergone a thorough testing process

that includes several forms of assurance. This fact differentiates

this study from other previous evaluations related to mutation

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

testing, which are mostly based on test suites developed without

using the guidelines mandated by a standard. The firmware is

implemented in the C programming language, following

MISRA C coding standards [33], which are widely used in such

systems as they are devoted to improve the safety and reliability

of the code, We compiled the code with gcc 5.4.0 in a machine

running Ubuntu 16.04.

We selected 15 functions from different modules of the

firmware. We should note that, overall, there are many modules

with functions of similar structures. As such, to avoid biased

results derived from the injection of mutations into similar code

structures, we carefully studied the code to include functions

with different functionalities, use of language facilities, size,

and cyclomatic complexity [36] It is important to note that most

of the functions in the firmware were composed of very few

lines because the code had been implemented with utmost

modularity and was highly optimised. As a result, the size of

the selected functions ranged from 10 to 63 lines of code and

their cyclomatic complexities ranged from 2 to 9.

For the sake of confidentiality, we will refer to this program

pseudonymously as project, and its functions as F1, F2 ... F15.

Table I shows several characteristics of the functions selected

for this study.

The project was supplied with a unit test suite for each of the

analysed functions (input values and expected outcome). All the

test cases in these suites passed successfully when executed.

TABLE I:
FEATURES OF THE FUNCTIONS UNDER STUDY IN THE PROJECT

Source Features

Function Lines of

code*

Cyclomatic

complexity

Number of

test cases

F1 14 2 25

F2 34 6 15

F3 38 7 15

F4 10 2 96

F5 40 8 13

F6 63 7 20

F7 27 4 9

F8 38 4 8

F9 15 3 7

F10 54 9 25

F11 29 5 5

F12 42 7 5

F13 32 4 16

F14 32 4 32

F15 16 3 11

* Lines of code counted with c_count as “lines containing code”

F. Mutation Tool

It was important for this study to use a relevant mutation tool

— a tool that is practical for real-world use, or at least

representative of such tools.

At present, there are a variety of mutation tools for C with

different features, according to the survey by Jia and Harman

1 A brief description of these commercial products can be seen in the study by

Delgado-Pérez et al. [37].

[3]. While several of them are commercial1 or are not publicly

available, five of them are accessible.

Among these tools, Proteum/IM 2.0 [38] and MILU [39] are

the most widely used in other research studies, such as to

evaluate selective mutation [14] or higher order mutation [12].

While MILU offers fewer features than Proteum, it automates

most of the mutation analysis process, in contrast to Proteum

which requires considerable manual intervention [40].

For the purpose of this study, we selected MILU 3.22, the

most recent version available online when we performed the

experiments.

G. Cost Reduction Techniques

Several techniques have been proposed to reduce the expense

of mutation testing. These techniques have been extensively

studied in academia (see Section II.A.2), but less so in realistic

industrial applications. There is consequently a lack of evidence

of their applicability to industrial systems, or information

concerning their effectiveness.

In this study, we apply two cost reduction techniques:

operator-based Selective Mutation (SM) and Trivial Compiler

Equivalence (TCE). We expect SM to reduce the number of

mutants generated, and TCE to remove ineffective (invalid,

equivalent, or duplicate) mutants. As SM is almost universally

recommended, we used it in all our experiments; as TCE is a

fairly new technique, we repeated our experiments with and

without it.

 Selective Mutation

In SM [13], only some of the operators are applied (while the

rest are discarded) under the premise that this subset of

operators is representative of the full set of mutants.

The survey by Delahaye and du Bousquet [40] states that

MILU implements the 77 mutation operators that Agrawal et al.

[17] identified for C. However, the number of mutation

operators has been reduced in MILU 3.2 — following studies

on SM [13], [14], only 12 of those 77 operators were included

in this version. Two additional operators are also included:

SSDL (delete statements) and SBRC (replaces break by

continue). Table II presents the operators that were used in the

study – 10 of the 12 from MILU’s “Selective” set and one of the

available two from its “Other” set. Note that:

 We excluded the “arithmetic assignment operator”

(OOAN) and “bitwise logical assignment operator”

(OBBA) because they can be substituted in the code by

plain arithmetic and bitwise logical operators

respectively, maintaining the same functionality. By

doing this transformation, OAAN and OBBN apply in

those cases.

 We included SSDL because recent studies have pointed

to the usefulness of this operator [41]. Moreover, the

comparable study by Baker and Habli [32] analyses this

operator, so it is interesting to observe if mutants from

this operator are also effective in detecting deficiencies

in our branch-adequate test suites.

2 http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/, last accessed 17/06/2017

http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

TABLE II:

LIST OF MUTATION OPERATORS APPLIED

Operator Description Modifications

From MILU’s “Selective” set

CRCR Integer constants replacement 9 insertions (0, 1, -1 and 6 additional values)

ORRN Relational operator replacement 5 replacements (==, !=, <=, >=, < and >)

OAAN Arithmetic operator replacement 4 replacements (+, -, *, / and %)

OLLN Logical operator replacement 1 replacement (&& and ||)

OLNG Logical negation 3 replacements (x op !y, !x op y and !(x op y), where

op can be && or ||) OCNG Logical context negation 1 replacement (applied to if and while statements)

OIDO Increment/Decrement replacement 3 replacements (increment/decrement and
prefix/postfix)

OBBN Bitwise logical replacement 1 replacement (& and |)

UOI Unary operator insertion 4 insertions (increment/decrement and prefix/postfix)

ABS Integer and float variable absolute value

insertion

2 insertions (abs() and -abs())

From MILU’s “Other” set

SSDL Statement deletion 1 deletion

 We excluded SBRC because, unlike SSDL, there are no

recent studies that suggest it is useful.

SM is easy to implement in any mutation tool: either the tool

provides the tester with a reduced subset of mutation operators

(as in MILU) or it adds the option to enable/disable mutation

operators.

 Trivial Compiler Equivalence

Recently, MILU has been improved by incorporating TCE,

which we briefly described in Section II.A.2. TCE allows the

detection of three classes of ineffective mutants (mutants that

waste time and/or distort the achieved mutation scores):

 All invalid mutants — those that cannot be compiled.

 Some equivalent mutants — those that have the same

external behaviour as the original function.

 Some duplicate mutants — those that have the same

functionality as another mutant in the set.

TCE works by comparing the binary files produced by the

gcc compiler. A mutant is noted as invalid if it does not compile.

A mutant is marked as equivalent if there is no difference

between the binary files originated from the original program

and the mutant. Two mutants are considered to be duplicate

when their binary files are the same. Using the same example

as the one to explain equivalence, depending on the compiler

and the level of optimisation, TCE may determine that a mutant

with the code “if (x > 1) x = 1;” and a mutant with the code “if

(x >= 1) x = 1;” are behaviourally equivalent and are, therefore,

duplicate mutants.

It is possible to apply different levels of optimisation when

compiling, which can lead to different binary files and thus

different results from TCE. It is reasonable to expect that more

aggressive optimisation will lead to greater effectiveness of

TCE, as many optimisations work by eliminating code elements

that do not affect the output. This is not, however, guaranteed.

For detecting equivalent mutants, the experiments by Papadakis

et al. [23] show no clear winner among gcc’s optimisation

options. For detecting duplicate mutants, Papadakis et al.

observe that the best options are –O2 and –O3.

In this study, we initially focused on gcc’s highest level of

optimisation (–O3) to learn about the limits of the application

of this technique. According to the gcc documentation, this is

reliable for all standards-compliant C programs. However, due

to odd behaviour noted during the experiments, we repeated

TCE on one function without optimisation (see Section IV.B).

TCE can plausibly be applied in real-world contexts. There

is some cost in compute time, which corresponds to:

 The compilation process when applying an optimisation

setting (in the experiments by Papadakis et al. [23] this

was almost five times higher for –O3 than using no

optimisation option);

 The equivalence detection process (one comparison

between the binary of each mutant and the original

program); and

 The duplicate mutant detection (each mutant is

compared with the other mutants generated in the same

function).

The results reported by Papadakis et al. [23] with respect to

efficiency suggest that TCE is reasonably fast even for the most

aggressive optimisation option: there is a trade-off between the

compilation time and the effectiveness of the optimisation

option, and the time required for equivalent and duplicate

mutant detection is quite small when compared to the

compilation time.

III. EVALUATING BRANCH-COVERAGE-DRIVEN TESTING

USING SELECTIVE MUTATION

A. Experiment

In this first experiment, we carried out the following steps for

each of the functions listed in Table I:

1. We generated all mutants from our set of mutation

operators (see Table II). This set naturally included invalid,

equivalent and duplicate mutants.

2. We ran the exiting test suite against the mutants. This

allowed us to classify the mutants as killed or alive.

3. We calculated the mutation score based on the findings

from the previous step.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

B. Results

Table III shows the number of operators applied and the

distribution of mutants in each of the functions, and can be

summarised as follows:

 2,509 mutants were generated in total, F1 and F6 being

the functions with the smallest and largest number of

mutants respectively (75 and 331 mutants);

 81.94% of those mutants were killed (2,056) and 453

mutants were alive, with every function having some

live mutants;

 The mutation score ranges from 56.32% in F2 to 96.10%

in F8. None of the functions achieved 100% mutation

coverage.

However, we have to note that these are only preliminary

results because we have not tackled some factors that might

affect the mutation score (which will be addressed in the next

section).

TABLE III:
INITIAL DISTRIBUTION OF MUTANTS

IN THE FUNCTIONS UNDER STUDY

 Generation Test execution Analysis

Function Operators

applied

Total

Mutants

Killed Alive Mutation

score

F1 7 75 59 16 78.67

F2 6 277 156 121 56.32

F3 5 118 84 34 71.19

F4 7 76 61 15 80.26

F5 7 164 113 51 68.90

F6 8 331 310 21 93.66

F7 5 158 148 10 93.67

F8 5 154 148 6 96.10

F9 7 134 105 29 78.36

F10 9 200 170 30 85.00

F11 7 210 186 24 88.57

F12 6 212 188 24 88.68

F13 5 94 86 8 91.49

F14 7 186 141 45 75.81

F15 7 120 101 19 84.17

Mean - - - - 81.94

Total - 2,509 2,056 453 -

C. Implications

From the above, it first appears that testing guided by branch

coverage has led to relatively weak test suites (ones that may

fail to identify many faults).

 There are reasons to be suspicious of these results, however.

There are three ways in which the mutation scores may be

misleading:

 Some “killed” mutants may be invalid, i.e., not written

in valid C code. The results above count invalid mutants

as killed, but those mutants cannot actually be executed.

These mutants may have increased the apparent

mutation score as MILU does not differentiate invalid

mutants from killed mutants. Test suites should not get

credit for killing mutants that would be killed by the

compiler anyway.

 Mutants that remained alive have not been inspected yet

to determine whether there are some equivalent mutants.

Therefore, there is the possibility that the final mutation

scores are higher than stated — test suites should not be

penalised for failing to kill equivalent mutants.

 There is also the possibility that some mutants represent

the same fault (that is, they are duplicate). Depending on

the nature of the fault (whether the test suite kills it or

not), this could increase or decrease the reported

mutation score.

IV. EVALUATING BRANCH-COVERAGE-DRIVEN TESTING

USING SELECTIVE MUTATION AND TRIVIAL COMPILER

EQUIVALENCE

A. Experiment

For a more accurate mutation score, we carried out the

following steps:

1. We applied TCE to detect invalid, duplicate and equivalent

mutants automatically.

2. We ran the exiting test suite against the mutants not flagged

by TCE. This allowed us to classify the mutants as killed

or alive.

3. We manually inspected the remaining live mutants to

identify equivalent mutants not revealed by TCE. To do

this, we designed further test cases with the specific aim of

killing all surviving mutants; those mutants that still

remained alive after this process were finally determined

as equivalent.

4. We calculated the mutation score based on the findings

from the previous steps.

 a) b) c)

Fig. 1 - a) Proportion of mutants not detected as invalid, duplicate or

equivalent by TCE (“After TCE”) and detected (“Removed”); b) proportion of
mutants in “Removed” that are “Invalid”, “Duplicate” and “Equivalent” c)

Proportion of “Equivalent” mutants “Detected by TCE” and “Detected

manually” (manual inspection).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

TABLE IV:
DISTRIBUTION OF MUTANTS AND MUTATION SCORE IN THE FUNCTIONS UNDER STUDY AFTER APPLYING TCE

 Generation Test execution Analysis Mutation sufficiency

Function Total

Mutants

Mutants

after TCE

Killed Alive Equivalent Surviving Non-

equivalent

Mutation

score

F1 75 45 38 7 1 6 44 86.36

F2 277 114 70 44 4 40 110 63.64

F3 118 61 51 10 7 3 54 94.44

F4 76 51 44 7 7 0 44 100

F5 164 105 80 25 4 21 101 79.21

F6 331 207 203 4 3 1 204 99.51

F7 158 126 121 5 5 0 121 100

F8 154 112 110 2 1 1 111 99.10

F9 134 71 58 13 6 7 65 89.23

F10 200 110 103 7 3 4 107 96.26

F11 210 93 89 4 4 0 89 100

F12 212 123 119 4 2 2 121 98.35

F13 94 54 51 3 1 2 53 96.23

F14 186 89 70 19 0 19 89 78.65

F15 120 46 46 0 0 0 46 100

Mean - - - - - - - 92.20

Total 2,509 1,407 1,253 154 48 106 1,359 -

B. Results

Fig. 1 bar (a) depicts the percentage of the total of mutants

that were discarded using TCE (43.92%). Bar (b) drills into the

mutants removed by TCE, showing that the highest reduction

was obtained through duplicate mutants detection (73.14%),

followed by equivalent (18.87%) and invalid mutants (7.99%).

We are confident from the method that TCE removed all invalid

mutants and most duplicate mutants. We are confident from our

inspection of surviving mutants that TCE removed 81.25% of

all equivalent mutants. This is shown in bar (c) of Fig. 1.

Table IV furnishes a complete breakdown of the

classification of mutants in each function and is categorised as

follows:

 Generation:

- Total mutants: number of mutants generated initially.

- Mutants after TCE: number of mutants once TCE has

been applied to detect invalid, duplicate and equivalent

mutants automatically.

 Test execution: (from “Mutants after TCE”):

- Killed: number of mutants detected by the test suite.

- Alive: number of mutants not detected by the test suite.

 Analysis: (from mutants in “Alive”):

- Equivalent: number of mutants manually identified as

equivalent.

- Surviving: number of mutants that the test suite fails

to detect.

 Mutation sufficiency:

- Non-equivalent: number of mutants identified to

represent a valid fault in the program; calculated as

“Mutants after TCE”-“Equivalent”.

- Mutation score: calculated as: (“Non-equivalent”-

“Surviving”)/“Non-equivalent” x 100.

We can observe from this table that:

 In four functions (F4, F7, F11 and F15) the branch-

adequate test suite is mutant-adequate (i.e., the mutation

score is 100%);

 In the remaining 11 functions, the mutation score varies

from 63.64% (F2) in the worst case to 99.51% (F6) in

the best case;

 The percentage of live mutants (154) that turned out to

be equivalent (48) is 31.17%. That means that around

70% of the live mutants can guide us on the creation of

new test cases (106 mutants).

There was one strange false-positive — for one function

(F7), TCE classified six mutants as equivalent even though they

were killed by the original test suite (and thus cannot have

actually been equivalent). Those six mutations were all

generated by CRCR in the same location. In response, we

removed the optimisation flag (–O3) when compiling this

function; thereafter, those mutants were not marked as

equivalent. The “F7” row in the above table uses the results of

this unoptimised compilation (the classification of the rest of

the mutants in that function remained the same when the flag

was removed).

Papadakis et al. [23] do note that compiler settings may

influence equivalence detection, but they suggest that this

should only cause false negatives. They claim that their

technique (correctly implemented) cannot classify a non-

equivalent mutant as equivalent. Therefore, they appear to stem

from faults in the TCE implementation or the tools it depends

upon. This issue would merit further investigation to establish

its cause and how it can be avoided.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

C. Implications

TCE has the potential to reduce the cost of mutation testing

considerably. From the 2,509 mutants initially generated with

nine mutation operators in 15 functions, only 1,407 mutants

(56.08%) represent valid, unique and non-equivalent mutations

in terms of automatic detection. From that reduced set, only 154

mutants had to be reviewed to determine whether they were

equivalent or not (see column “Alive” in Table IV) far from the

453 mutants that remained alive without applying TCE (see

column “Alive” in Table III). This is the most time-consuming

and laborious task in mutation testing, and the costs of this step

have been reduced here by about two-thirds.

Of the 154 surviving mutants, only 48 mutants were later

manually identified to be equivalent. 81% of the equivalent

mutants were directly detected by TCE.

We can now be fairly confident of the accuracy of our kill

scores. Overall, the kill score was 92.20%; 106 out of 1,359

non-equivalent mutants (7.80%) were not killed by the current

test suite. Contrast this with the pre-TCE kill score of 81.94%.

Without TCE, our estimate of surviving mutants was more than

twice its correct value.

The difference in accuracy between our pre- and post-TCE

results is even more pronounced for a subset of the functions.

Fig. 2 graphically depicts the initial and accurate mutation

scores in each of the functions. The highest difference is found

in F3, with a gap of 23.25 percentage points between the two

scores.

In the experiments conducted by Papadakis et al. [23], TCE

detected from 9% to 100% of all the equivalent mutants when

considering the results in the subject programs individually.

This means that the performance of TCE greatly varies

depending on the features of the system under test. The

proportion of equivalent mutants detected by TCE in this case

study (81.25%) is within the range identified by Papadakis et

al., but is far above their average (30%).

The mutation score provides an estimation of the weaknesses

detected in a test suite. Over 73% of the functions present

surviving mutants. While in F6 and F8 the mutation score is

close to 100%, other functions have lower scores. F2, F5 and

F14 are especially low: 63.64%, 79.21% and 78.65%

respectively. This suggests that if we have a test suite that

complies only with branch coverage, we may be unable to

detect a large variety of faults in our code.

V. EVALUATION OF MUTATION-DRIVEN TESTING

A. Experiment

Surviving mutants represent potential deficiencies in the test

suite. Therefore, the more surviving mutants, the lower the

suite’s ability to detect faults in the software. Surviving mutants

can be used to design new test cases, thereby increasing the

fault-revealing power of the suite. In this phase of the work, we

inspected the uncovered surviving mutants and manually

generated new test cases until all surviving mutants were killed

(i.e., until we had a mutant-adequate test suite). In all cases, we

achieved this by copying existing test cases and changing some

input values — we did not need to create new test case

structures.

As noted in Section II.D, our metric for cost of improvement

was the increase in the number of test cases needed. There are,

however, problems with this measure. A test case tailored to a

specific surviving mutant may also kill other mutants at the

same time. Similarly, a test case from the original suite may kill

two or more of the killed mutants. This makes it difficult to

calculate how much the test suite needed to be enlarged, or how

large it would have been had mutation testing been used to

create it.

Fig. 2 - Initial vs accurate mutation score in each of the functions under study

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

TABLE V:

TEST SUITE IMPROVEMENT OF THE FUNCTIONS UNDER STUDY

Function Original

MM branch-

adequate

New

test cases

generated

MM mutant-

adequate

New test cases in

MM

mutant-adequate

% of mutation-

adequate test

cases that are new

F1 25 4 5 7 4 57

F2 15 5 13 15 11 73

F3 15 11 3 11 3 27

F4 96 5 0 5 0 0

F5 13 7 8 11 5 45

F6 20 5 1 6 1 16

F7 9 5 0 5 0 0

F8 8 4 1 5 1 20

F9 7 5 5 7 2 28

F10 25 9 4 10 3 30

F11 5 4 0 4 0 0

F12 5 5 2 5 2 40

F13 16 4 2 4 2 50

F14 32 5 10 10 6 60

F15 11 6 0 6 0 0

Mean 20.1 5.6 3.6 7.4 2.67 36

Total 302 84 54 111 40 -

We compensated for the above problem by minimising both

the original and improved test suites. A test suite is minimal

when there are no smaller test suites killing all non-equivalent

mutants. The minimisation of the test suite removes redundant

test cases, leaving both the original and improved suites as

accurate representations of what is needed. To perform this

minimisation, we employed the algorithm used by Estero-

Botaro et al. [42], which produces test suites that are exactly

minimal rather than approximate. Therefore, in our experiment

we minimised the test suites preserving mutation adequacy,

obtaining mutation-minimal test suites (abbreviated as MM test

suites from now on).

B. Results

The test-suite refinement process, in principle, was not as

laborious as expected. In our experience, once we had identified

the reason why a given mutant was not killed by the test suite,

it was straightforward to construct a suitable test to kill it. In

addition, when two or more functions followed a similar design

pattern, we were often able to use the same reasoning to kill a

mutant in all of them.

Determining equivalence with high confidence was difficult

in some cases but, following the application of TCE, the

number of potentially equivalent mutants was modest (48 in

total). We expect that both identifying equivalence and

following a mutation-driven testing process would be even less

difficult for someone who is completely acquainted with the

system under test.

Table V shows the results of improving the test suite to

achieve mutation adequacy. The columns are as follows:

 Original — the size of the original branch-adequate test

suite we were given by the developer.

 MM branch-adequate — the size of a MM version of

the branch-adequate test suite, i.e., the minimal number

of test cases needed to kill the same mutants as the whole

branch-adequate test suite.

 New test cases generated — the number of new test

cases generated to improve the MM branch-adequate

suite into a MM mutation-adequate suite. Note that the

number of additional test cases does not match the

number of surviving mutants because a single additional

test case sometimes kills a group of mutants.

 MM mutant-adequate — the size of a MM test suite

that is also mutation adequate (i.e., kills all non-

equivalent mutants).

 New test cases in MM mutant-adequate — the number

of new test cases appearing in the minimal version of the

mutation-adequate test suite.

 % of mutation-adequate test cases that are new —

percentage of new test cases appearing in the minimal

mutant-adequate test suite.

Note that in some cases the minimal size is the same for both

branch-adequate and mutant-adequate test suites, even when

new test cases are used in the mutation-adequate test suite

(specifically F3, F12 and F13). This occurs when some of the

new test cases can kill some of the mutants killed by the branch-

adequate test suite. In this case, some test cases in the branch-

adequate test suite are replaced by new test cases in the mutant-

adequate test suite to maintain minimality. This is reflected in

the column “New test cases in MM mutant-adequate”, which

states how many cases in the mutant-adequate suite are

genuinely new.

As can be seen from this data, the test suite has been

augmented in the 11 functions with surviving mutants,

especially in F2 and F14, where the MM mutant-adequate test

suite contains 73% and 60% of new test cases respectively. On

average the MM mutation-adequate test suites contained 36%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

new test cases, with the remainder being ones from the

originally supplied test suites.

In terms of additional test-development effort, the MM

branch-adequate test suites had a total of 84 test cases; 54 new

test cases had to be generated to achieve mutation adequacy.

Assuming an equal effort to develop each test case, that is an

extra 64% effort. However, had mutation adequacy been a

target from the start, only 111 test cases would have been

required (an increase of only 27 test cases from the MM branch-

adequate test suite). This corresponds to an increase of 32% in

testing effort.

However, branch coverage was not the only goal in

generating the original test suites. They will have taken account

of system requirements, other process compliance

requirements, and developer ideas about likely faults.

Therefore, a better estimate of additional effort to achieve

mutation coverage would be the increase in the number of tests

needed versus the original test suite count. This was calculated

as (302+54 = 356) divided by 302 original tests, so 18% extra

effort.

C. Implications

Once we had identified the surviving mutants, it was

straightforward to create test cases that killed them. This led to

a net increase in test case count of 18% versus the original

branch-adequate suites. Given the potential fault-finding

benefits compared to this extra effort (recall that the increase in

the test suite size allowed us to kill 106 surviving mutants in the

analysed functions), it is certainly plausible that mutation-

driven testing will be worthwhile for safety-critical software.

VI. EVALUATION OF THE CONTRIBUTION OF THE DIFFERENT

MUTATION OPERATORS

A. Experiment

In this study, we used a reduced set of mutation operators by

applying selective mutation. Despite this fact, it is interesting to

know which of those operators are the most effective as the cost

of applying mutation testing is, in part, dependent on the

number of operators used.

In this experiment, we carried out the same steps as in

Section IV.A, but we computed the results per mutation

operator instead of per function analysed of the project. We

should notice that, instead of the mutation score, in this case we

show the “survival rate”, which is computed as “100 – mutation

score”. This measure helps interpret the results: the higher the

survival rate, the more effective the mutation operator.

B. Results

Table VI presents the distribution of mutants for each

mutation operator, much as in Table IV. In this table, we also

show:

 Functions applied: number of functions in which these

operators generated at least one mutant.

 Functions with surviving mutants: number of

functions in which these operators generated at least one

surviving mutant.

All the mutants were generated by 9 operators of the selective

set. CRCR was by far the operator generating the highest

number of mutants and it was applied to all the functions (as

were SSDL, ORRN and OCNG). On the other hand, OBBN was

the less prolific (17 mutants) as well as the least-applied

operator in the set (3 functions). CRCR, ORRN and OANN (the

most prolific operators) were the operators that generated the

48 equivalent mutants not detected by TCE.

The results show that five out of nine operators (SSDL,

CRCR, ORRN, OAAN and OLLN) generated mutants that

survived the execution of the test suite. The results also suggest

that the operators OLNG, OCNG, OIDO and OBBN were not

effective operators for the system under test.

Judging by the survival rate, OLLN seems the most valuable

operator. However, we should also consider the following

factors:

 Mean — computed as the sum of the survival rates of

the operator in each function divided by “Functions

applied”;

 Standard deviation — standard deviation in the

survival rates in the functions in which the operator was

applied;

 % Functions with surviving mutants — calculated as:

“Functions with surviving mutants” / “Functions

applied”.

This information can be graphically seen in Fig. 3. The mean

shows that ORRN (9.1), CRCR (8.9) and OAAN (7.2) produce

more surviving mutants in the functions on average than OLLN

(6.7). Similarly, the standard deviation of OLLN (21.1)

indicates that the number of surviving mutants from this

operator is substantially dissimilar in these functions (in fact,

only one of the 10 functions in which OLLN is applied presents

surviving mutants). ORRN (10.1) followed by OAAN (12.6)

are the most stable operators according to the standard

deviation. Finally, the percentage of functions with surviving

mutants confirms ORRN as an effective operator, since some

mutants produced by this operator survive in 60% of the

functions in which this operator is applied. CRCR and OAAN

tie in the second position (40%), while OLLN (10%) is at the

bottom of this classification.

C. Implications

From the initial set of mutation operators, only five operators

(SSDL, CRCR, ORRN, OAAN and OLLN) generated some

mutants not detected by the branch-adequate test suite. This

subset of operators aligns with the results reported by Baker and

Habli [32], where these same five operators generated surviving

mutants when analysed with test suites achieving statement-

level coverage in a project implemented in C. In that study, the

operators CRCR, ORRN and OAAN also generated some

mutants that survived the execution of a test suite achieving

MC/DC coverage in a project implemented in Ada. That fact

suggested that the operators SSDL and OLLN were not fruitful

with more demanding coverage levels. However, the results in

this paper have shown that these two operators are still useful

when it comes to branch coverage.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

TABLE VI:

DISTRIBUTION OF MUTANTS AND SURVIVAL RATE OF EACH MUTATION OPERATOR

 Generation Analysis Mutation sufficiency

Operator Total

Mutants

Functions

applied

Mutants

after

TCE

Equivalent Surviving Functions with

surviving mutants

Non-

equivalent

Survival

rate

SSDL 211 15 127 0 8 4 127 6.3

CRCR 1,386 15 649 18 51 6 631 8.1

ORRN 425 15 292 27 32 9 265 12.1

OAAN 296 10 224 3 11 4 221 5.0

OLLN 25 10 19 0 4 1 19 21.1

OLNG 75 10 22 0 0 0 22 0

OCNG 56 15 53 0 0 0 53 0

OIDO 18 5 6 0 0 0 6 0

OBBN 17 3 15 0 0 0 15 0

 a) b)

 c) d)

Fig. 3 – Mutant survival statistics of each mutation operator that generate surviving mutants:

a) raw survival rate; b) mean survival rate; c) standard deviation of survival rate; d) % functions with surviving mutants.

On the basis of the results, ORRN seems the most valuable

operator, as it was in the study by Baker and Habli [32]. We

have also shown how important is to measure the relative value

of each operator in terms of the mean and the standard deviation

(of the survival rates in the functions) and the percentage of

functions with surviving mutants.

VII. DISCUSSION

A. Overall assessment given industrial requirements

Our results indicate that mutation testing is both effective and

feasible for a safety-critical system. The experiments

highlighted potential weaknesses in the test process despite

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

meeting a key test coverage criterion that is specified in a

primary safety standard, IEC 61508, and despite meeting the

stringent expectations of the nuclear industry. Mutation testing

is also shown to be practical in the sense that we utilised already

available techniques (SM and TCE), and a publicly available

mutation analysis tool (MILU).

Of course, the system considered in this research covers one

case only, i.e., one software system in one industrial context.

However, this system is representative of many applications in

the nuclear industry in the sense that it is developed in a high-

integrity language subset, i.e., MISRA C, and against the

requirements of IEC 61508. Both MISRA C and IEC 61508 are

highly regarded and widely used in the nuclear industry and

within the safety-critical domain generally. For example, the

requirements within IEC 61508 have formed the basis for safety

standards in different domains including automotive [5] and

railway [6], particularly with regard to the test coverage criteria

(statement coverage, branch coverage and MC/DC).

Ideally, we would also measure the mutation coverage

achieved by the more thorough MC/DC structural criteria.

However, we did not have access to such test suites. If we

wanted to replicate the study with test suites that met MC/DC,

we would need to develop new artificial test suites. That would

break the research design methodology followed in this study

since the data used is based on real-world test suites. Therefore,

the results of a study with MC/DC could not be fairly compared

with the rest of the results shown in the paper.

The primary issue might not lie in whether mutation testing

is effective or feasible. Rather, it is in the extent to which it is

cost-effective, given the potential increase in confidence

relative to other competing techniques, e.g., formal methods or

runtime verification. Another issue lies in whether mutation

testing is effective when the results of the mutation testing

process, which is based on hypothetical faults, are compared to

actual faults reported for safety-critical operations. Progress

towards any wider industrial adoption will rely on a more

explicit consideration of these issues. As such, the primary

contribution of our paper is in showing the potential

effectiveness and feasibility of the technique based on real

world code and data.

B. Feedback from industry

The feedback from the nuclear industry partners has been

positive. The engineers were surprised that the branch-adequate

test suite was shown to be comparatively weak in its fault

detection capability, although it was recognised that this was

not necessarily a cause for concern as no coding errors were

identified during the experiments and the overall device had

been subjected to other forms of assurance including statistical

testing. They were also interested in the modest level of

additional effort to move from a branch-adequate test suite to a

mutation-adequate test suite. It was interesting that, after

studying in detail surviving mutants, repeatable test

deficiencies in the original test suites could be identified. For

instance, following the application of ORRN and CRCR, we

found out that the boundary conditions were not fully tested in

all functions.

Moving forward, the industry is keen to explore the potential

power of a mutation-adequate test suite in comparison to a

branch-adequate test suite. As such, future investigations are

likely to focus on the application of a mutation-adequate test

suite to a system seeded with real faults that passed through the

original testing process. These investigations may seek to

support or challenge the underlying theory of mutation testing.

C. Threats to Validity

Here, we present some caveats that slightly temper our

claims, and some rebuttals of concerns readers might have

regarding the validity of the study.

Construct validity: Our main measures of concern are

testing power achieved and the associated cost. We derive

metrics for these as the mutation score and the required number

of test cases, respectively. Any weaknesses in these metrics

endanger our construct validity.

The mutation score is a common metric in software testing

research for determining fault-detection power. It can, however,

be distorted by inclusion of duplicate, equivalent and invalid

mutants. In this experiment, we removed these using automated

and manual methods.

To generate our mutation score, we intended to use a reduced

set of eleven mutation operators. This is the set of operators

included in the mutation tool employed (MILU), based on

studies about selective mutation for the reduction of mutants

[13], [14]. However, only nine of these operators could be

applied to the software under test, as the features of this

software prevented two operators related to built-in types from

generating some mutants (UOI and ABS). Had we implemented

custom versions of those operators that worked with this

codebase, it is possible that the mutation scores would have

been slightly different.

The number of test cases is a debatable measure of test

development cost. It is likely that there is a moderate correlation

in practice, but also a high degree of error (for example, it is

likely that earlier tests cost more than later tests because later

tests can reuse code and techniques from earlier ones, as we

found when expanding the test suite in this study). However,

we are not aware of a practical measure that is a better proxy

for cost.

When we look at the increase in number of test cases to move

from branch to mutation coverage, there is a risk of ending up

with redundant test cases. This can happen when a new test case

introduced to kill a mutant also contributes to branch coverage

in a way that completely subsumes one of the original test cases.

To counter this threat, we minimised both test suites. However,

recognising that any real-world test suite could (and should) be

developed to cover diverse criteria (not just branch coverage or

mutation adequacy), we have also calculated the proportional

increase of the mutation-adequate test suite against the full

original test suite. Thus, given that test cases were extended

manually (differently from the method used in practice to

generate test cases), the calculations shown in this paper should

be treated as estimations.

Internal validity: In this paper, we have studied whether

TCE reduces the number of invalid, duplicate and equivalent

mutants, and how many extra tests are required to move from

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

branch coverage to mutation adequacy. We are confident that

TCE correctly removed all the invalid and most duplicate

mutants. We are fairly confident that all the equivalent mutants

it removed were indeed equivalent. However, as noted in

Section IV.B, there was a case in which TCE classified some

killable mutants as equivalent. Were the faults that caused this

identified and fixed, the mutation score might be slightly

different.

External validity: We have only used one target system, but

it is representative of a range of real-world systems which

comply with IEC 61508 and MISRA C coding standards. Since

these standards are applied for many safety-critical software

systems, our results may apply to many such systems.

TCE is implemented as a combination of gcc (a collection of

compilers for several programming languages) and the diff file

comparison utility. As such, it may not be available on all

platforms or for all languages. However, its implementation is

straightforward to duplicate given a compiler and a file

comparison utility that supports binary files.

VIII. CONCLUSION

This study presents an empirical evaluation of mutation

testing in a joint project sponsored by the UK nuclear industry.

Our primary conclusion is that mutation testing can assist in

designing a better test suite for safety-critical software when

compared to one that is designed to demonstrate compliance

with a branch coverage criterion.

The results consistently show that a branch-adequate test

suite fails to detect injected faults in the code. This happened in

11 out of the 15 functions analysed. In the most noteworthy

case, 37% of the faults injected into one of the functions were

not detected by the original test suite, and several new test cases

could be added to improve its fault-detection capability.

The approach followed in this study (use of a selective set of

mutation operators followed by the application of TCE to detect

ineffective mutants) greatly reduces the cost of applying

mutation testing. The mutants generated in the analysed

functions ranged from 75 to 331, far fewer than those found in

similar previous studies. Around 44% of these mutants were

automatically discarded on average, and around 96% of the

remaining mutants represented valid faults. By applying TCE,

we were able not only to reduce the cost of identifying

equivalent mutants (81% of the set of equivalent mutants) but

also to measure the mutation score more accurately. The study

about the surviving mutants generated by each mutation

operator revealed that the set of operators may be reduced

further without losing significant effectiveness in these

systems.

As a result, the test suite improvement derived from mutation

testing only requires a test suite increase of 18% compared with

the original branch-adequate test suites. It is thus plausible that

it will be worth its cost in many situations, especially in safety-

critical systems.

To justify increased costs, however, industrial developers are

likely to need more confidence that achieving mutation

coverage will find more faults. As such, our industrial partners

recommended conducting new experiments challenging

mutation testing to detect real coding errors, specifically those

that have not been found by existing tests. Given evidence of

that, it is likely that many developers may be willing to accept

the extra costs and adopt mutation testing as another approach

to assuring safety-critical software.

ACKNOWLEDGMENT

This study was funded by the UK Control and

Instrumentation Nuclear Industry Forum (CINIF). This paper

was also partially funded by the European Commission

(FEDER) and the Spanish Ministry of Economy and

Competitiveness (National Program for Research,

Development and Innovation) through the project DArDOS

(TIN2015-65845-C3-3-R). We also thank Francisco Palomo-

Lozano for helping us use his algorithm to find minimal test

suites.

REFERENCES

[1] R. G. Hamlet, “Testing programs with the aid of a compiler,” IEEE T.
Software Eng., vol. 3, no. 4, pp. 279–290, 1977.

[2] R. DeMillo, R. Lipton, F. Sayward, “Hints on test data selection: help for

the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.
[3] Y. Jia, M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE T. Software Eng., vol. 37, no. 5, pp. 649–678,
2011.

[4] M. Usaola, P. Mateo, “Mutation testing cost reduction techniques: A

survey,” IEEE Softw., vol. 27, no. 3, pp. 80-86, 2010.
[5] Functional safety of electrical/electronic/programmable electronic safety-

related systems, IEC 61508, International Electrotechnical Commission,

2010.
[6] Road Vehicles: Functional Safety, ISO 26262, International Organization

for Standarization, 2011.

[7] Software Considerations in Airborne Systems and Equipment
Certification, DO-178C, RTCA, 2011.

[8] J. J. Chilenski, S. P. Miller, “Applicability of Modified

Condition/Decision Coverage to Software Testing,” Software Eng. J., vol.
9, no. 5, pp. 193-200, 1994.

[9] M. R. Woodward, “Mutation testing - its origin and evolution,” Inform.

Software Tech., vol. 35, no. 3, pp. 163–169, 1993.
[10] A. J. Offutt, “Investigations of the Software Testing Coupling Effect,”

ACM T. Softw. Eng. Meth., vol. 1, no. 1, pp. 5–20, 1992.

[11] L. Zhang, S.S. Hou, J. J. Hu, T. Xie, H. Mei, “Is operator-based mutant
selection superior to random mutant selection?,” in Proc. ICSE, Cape

Town, South Africa, 2010, pp. 435–444.

[12] Y. Jia, M. Harman, “Higher order mutation testing,” Inform. Software
Tech., vol. 51, no. 10, pp. 1379–1393, 2009.

[13] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, C. Zapf, “An

experimental determination of sufficient mutant operators,” ACM T.
Softw. Eng. Meth., vol. 5, no. 2, pp. 99–118, 1996.

[14] E. F. Barbosa, J. C. Maldonado, A. M. R. Vincenzi, “Toward the

determination of sufficient mutant operators for C,” Softw. Test. Verif.
Rel., vol. 11, no. 2, pp. 113–136, 2001.

[15] A. S. Namin, J. H. Andrews, D. J. Murdoch, “Sufficient mutation

operators for measuring test effectiveness”, in Proc. ICSE, Leipzig,
Germany, 2008, pp. 351–360.

[16] M. E. Delamaro, L. Deng, N. Li, V. Durelli, A. J. Offutt, “Growing a

reduced set of mutation operators”, in Proc. SBES, Maceió, Brazil, 2014,
pp 81–90.

[17] H. Agrawal, R. A. DeMillo, B. Hathaway, W. Hsu, W. Hsu, E. W.

Krauser, R. J. Martin, A. P. Mathur, E. Spafford, “Design of mutant
operators for the C programming language,” Software Engineering

Research Center, Purdue University, West Lafayette, Indiana, USA, Tech.

Rep. SERC-TR-41-P, 1989.
[18] K. Adamopoulos, M. Harman, R.M. Hierons, “How to overcome the

equivalent mutant problem and achieve tailored selective mutation using

co-evolution,” in Proc. GECCO, Seattle, WS, USA, 2004, pp. 1338–
1349.

[19] R. M. Hierons, M. Harman, S. Danicic, “Using program slicing to assist

in the detection of equivalent mutants,” Softw. Test. Verif. Rel., vol. 9, no.
4, pp. 233–262, 1999.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

[20] A. J. Offutt, J. Pan. “Detecting equivalent mutants and the feasible path

problem”, in Proc. COMPASS, Gaithersburg, MD, USA, 1996, pp. 224–

236.

[21] M. Papadakis, M. E. Delamaro, Y. Le Traon, “Mitigating the effects of

equivalent mutants with mutant classification strategies,” Sci. Comput.

Program, vol. 95, no. P3, pp. 298–319, 2014.
[22] D. Schuler, A. Zeller, “Covering and uncovering equivalent mutants,”

Softw. Test. Verif. Rel., vol. 23, no. 5, pp. 353–374, 2013.

[23] M. Papadakis, Y. Jia, M. Harman, Y. Le Traon. “Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective

equivalent mutant detection technique”, in Proc. ICSE, Florence, Italy,

2015, pp. 936–946.
[24] P. Ammann, M. E. Delamaro, A. J. Offutt, “Establishing theoretical

minimal sets of mutants,” in Proc. ICST, Cleveland, Ohio, USA, 2014,

pp. 21–30.
[25] J. H. Andrews, L. C. Briand, Y. Labiche, A. S. Namin, “Using Mutation

Analysis for Assessing and Comparing Testing Coverage Criteria,” IEEE

T. Software Eng., vol. 32, no. 8, pp. 608–624, 2006.
[26] X. Yao, M. Harman, Y. Jia, “A study of equivalent and stubborn mutation

operators using human analysis of equivalence,” in Proc. ICSE,

Hyderabad, India, 2014, pp. 919–930.

[27] L. Inozemtseva, R. Holmes, “Coverage is not strongly correlated with test

suite effectiveness”, in Proc. ICSE, Hyderabad, India, 2014, pp. 435–445.

[28] M. Daran, P. Thévenod-Fosse, “Software error analysis: A real case study
involving real faults and mutations,” in Proc. ISSTA, San Diego,

California, USA, 1996, pp. 158–171.

[29] J. H. Andrews, L. C. Briand, Y. Labiche, “Is mutation an appropriate tool
for testing experiments?,” in Proc. ICSE, St. Louis, MO, USA, 2005, pp.

402–411.

[30] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, G. Fraser, “Are
mutants a valid substitute for real faults in software testing?,” in Proc.

FSE, Hong Kong, China, 2014, pp. 654–665.

[31] R. Gopinath, C. Jensen, A. Groce. “Mutations: how close are they to real
faults?,” in Proc. ISSRE, Naples, Italy, 2014, pp 189–200.

[32] R. Baker, I. Habli. “An empirical evaluation of mutation testing for

improving the test quality of safety-critical software,” IEEE T. Software
Eng., vol. 39, no. 6, pp. 787–805, 2013.

[33] Guidelines for the use of the C language in critical systems, MISRA-

C:2004, 2004.

[34] Safety Assessment Principles for Nuclear Facilities, Office for Nuclear

Regulation, 2014.

[35] J. McDermid, T. Kelly, “Software in Safety Critical Systems-
Achievement & Prediction,” Nuclear Future, vol. 2, no. 3, pp. 140, 2006.

[36] T. J. McCabe, “A complexity measure,” IEEE T. Software Eng., vol. 2,

no. 4, pp. 308-320, 1976.
[37] P. Delgado-Pérez, I. Medina-Bulo, J. J. Domínguez-Jiménez, “Analysis

of the development process of a mutation testing tool for the C++

language”, in Proc. ICCGI, Seville, Spain, 2014, pp. 151–156.
[38] M. E. Delamaro, J. C. Maldonado, A. M. R. Vincenzi, “Proteum/IM 2.0:

An integrated mutation testing environment,” in Mutation testing for the
new century, Springer, Boston, MA, 2001, pp. 91–101.

[39] Y. Jia, M. Harman. “MILU: a customizable, runtime-optimized higher

order mutation testing tool for the full C language”, in Proc. TAIC PART,
Windsor, UK, 2008, pp. 94–98.

[40] M. Delahaye, L. Bousquet, “Selecting a software engineering tool: lessons

learnt from mutation analysis,” Software Pract. Exper., vol. 45, no. 7, pp.
875–891, 2015.

[41] L. Deng, A. J. Offutt, N. Li. “Empirical evaluation of the statement

deletion mutation operator,” in Proc. ICST, Wellington, New Zealand,
2013, pp. 80–93.

[42] A. Estero-Botaro, F. Palomo-Lozano, I. Medina-Bulo, J. J. Domínguez-

Jiménez, A. García-Domínguez, “Quality metrics for mutation testing
with applications to WS-BPEL compositions,” Softw. Test. Verif. Rel.,

vol. 25, no. 5–7, pp. 536–571, 2015.

