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Abstract—For software quality assurance, many safety-critical 

industries appeal to the use of dynamic testing and structural 

coverage criteria. However, there are reasons to doubt the 

adequacy of such practices. Mutation testing has been suggested 

as an alternative or complementary approach but its cost has 

traditionally hindered its adoption by industry, and there are 

limited studies applying it to real safety-critical code. This paper 

evaluates the effectiveness of state-of-the-art mutation testing on 

safety-critical code from within the UK nuclear industry, in terms 

of revealing flaws in test suites that already meet the structural 

coverage criteria recommended by relevant safety standards. It 

also assesses the practical feasibility of implementing such 

mutation testing in a real setting. We applied a conventional 

selective mutation approach to a C codebase supplied by a nuclear 

industry partner and measured the mutation score achieved by the 

existing test suite. We repeated the experiment using trivial 

compiler equivalence (TCE) to assess the benefit that it might 

provide. Using a conventional approach, it first appeared that the 

existing test suite only killed 82% of the mutants, but applying 

TCE revealed that it killed 92%. The difference was due to 

equivalent or duplicate mutants that TCE eliminated. We then 

added new tests to kill all the surviving mutants, increasing the test 

suite size by 18% in the process. In conclusion, mutation testing 

can potentially improve fault detection compared to structural-

coverage-guided testing, and may be affordable in a nuclear 

industry context. The industry feedback on our results was 

positive, although further evidence is needed from application of 

mutation testing to software with known real faults. 

 
Index Terms— Mutation testing; safety-critical systems; 

coverage criteria; verification and validation; nuclear industry. 

 

I. INTRODUCTION 

UTATION TESTING is a method for estimating the 

robustness of test suites by measuring their effectiveness 

for finding faults which have been systematically seeded in the 

code. Several faulty versions of the program under test 

(mutants) are generated, each one with a simple syntactic 

 
Submission date: 27/07/2017 
This study was funded by the UK Control and Instrumentation Nuclear 

Industry Forum (CINIF). This paper was also partially funded by the European 

Commission (FEDER) and the Spanish Ministry of Economy and 
Competitiveness (National Program for Research, Development and 

Innovation) through the project DArDOS (TIN2015-65845-C3-3-R). 

Pedro Delgado-Pérez is with the Department of Computer Science and 
Engineering, University of Cádiz, Cádiz, Spain. (e-mail: 

pedro.delgado@uca.es). 

Ibrahim Habli is with the Department of Computer Science, University of 
York, UK (e-mail: ibrahim.habli@york.ac.uk). 

change, and the test suite is run against each faulty version. If 

the test results differ (typically, if some tests fail) when run 

against a faulty version, that version is said to be “killed”. The 

effectiveness of the suite is the “mutation adequacy score” – the 

proportion of faulty versions that are correctly detected by the 

tests. Originally proposed in the 1970s by Hamlet [1] and 

DeMillo et al. [2], this technique has been widely studied by 

researchers [3] but has not been embraced by industry, which 

has regarded the cost as a millstone for its practical application.  

Research studies on mutation testing have produced evidence 

of its usefulness in improving the quality of test suites and have 

also explored multiple mechanisms to reduce the cost without 

significantly lessening its effectiveness [4]. As a consequence, 

it has re-emerged as a feasible opportunity to enhance test 

assurance models adopted in some critical domains, where 

verification and validation is a key phase in software 

development. The potential for increasing confidence in 

existing test suites is especially appealing for safety-critical 

industries. 

In safety-critical industries such as aviation, automotive and 

nuclear, where failures of certain software-based functions may 

lead to human harm or damage to the environment, system 

developers and integrators need evidence from rigorous testing 

to meet regulatory requirements. The form and level of rigour 

vary, but is most often expressed as a specific structural 

coverage criterion. For example, the safety standards IEC 

61508 [5], ISO 26262 [6] and DO 178C [7] adopt this approach. 

The degree of rigour and coverage required — e.g., statement 

coverage, branch coverage, or Modified Condition/Decision 

Coverage (MC/DC) [8] — depends on the criticality of the 

software to safety. For example, DO 178C requires MC/DC at 

the highest level of software assurance (e.g., that applying to 

aircraft engine controllers). 

This study aims to provide rigorous and empirical evidence 

of the impact that the application of mutation testing could have 

in a nuclear industrial setting. Our top-level research question 

is as follows: 
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Can mutation testing affordably enhance fault 

detection in safety-critical systems that are 

assessed as suitable for use in nuclear safety 

applications? 

In this paper, we explore this question using a case study, 

supported by a series of experiments, of a safety-related 

software system and its associated branch-adequate test suites, 

which have been selected and evaluated in collaboration with 

partners from the UK nuclear industry. We evaluated mutation 

testing by applying two cost reduction techniques, namely (1) 

selective mutation, a well-known strategy that discards a subset 

of mutation operators, and (2) trivial compiler equivalence, a 

novel method to identify some equivalent and duplicate mutants 

(i.e., variants which are not useful for the assessment and 

refinement of the test suite). The results show that this approach 

can make mutation testing affordable for the industry while 

retaining testing power. The results can be summarised as 

follows: 

 The selective set of mutation operators generates some 

mutants which are not killed by the existing branch-

adequate test suites in most of the functions analysed. 

 By adding new test cases to kill surviving mutants, the 

minimal size of the test suite is notably increased. 

 Thanks to trivial compiler equivalence, we can detect a 

significant percentage of ineffective mutants 

automatically and therefore calculate the mutation score 

more accurately. 

 

II. BACKGROUND 

A. Mutation Testing 

 Overview 

Mutation testing is a technique used to evaluate the ability of 

a test suite in revealing faults in the source code [9]. In this 

technique, new versions of the program under test are 

generated. These versions are known as mutants, because they 

contain an intentionally injected fault. Mutation testing is 

founded on two underlying hypotheses: the Competent 

Programmer Hypothesis and the Coupling Effect Hypothesis 

[2]. 

The Competent Programmer Hypothesis suggests that 

programmers create programs that are very close to the correct 

version but may contain subtle, low-level faults. The simple 

syntactic changes introduced in mutation testing represent 

common programming mistakes.  

The Coupling Effect Hypothesis suggests that complex faults 

are realised when simple faults combine and result in new 

behaviours. According to Offutt [10], “complex faults are 

coupled to simple faults in such a way that a test data set that 

detects all simple faults in a program will detect a high 

percentage of the complex faults”. 

The rationale behind mutation testing is that test suites that 

are deemed adequate by software engineers should be able to 

detect changes that are introduced into the code. As such, 

mutation testing provides an empirical test of the engineer’s 

confidence in the test suite. The analysis of the mutants can also 

assist in improving the rate of fault detection of the test suite. 

There are three main stages when applying mutation testing: 

 Mutant generation: In this stage, the source code is 

analysed with respect to a set of mutation operators 

(syntactic transformations of the code) to determine 

where in the code mutations can be injected. For each 

location detected in the code, a mutant is generated. 

Each mutant is usually a clone of the original program 

except for a simple syntactic change. 

 Test suite execution: Once the mutants have been 

produced, the original test suite is executed against each 

mutant to produce an output. 

 Mutant analysis: The mutants are then classified as 

killed or alive depending on whether the test suite could 

detect the mutation (i.e., because of a difference in the 

output when compared to the original program) or not 

(because of no observable difference in the output when 

compared to the original program). 

Mutants can be generated manually according to predefined 

mutation operators and the execution of the test suite can be 

prepared for each of those mutants. However, this is a laborious 

and error-prone task. Multiple tools have therefore been 

developed to undertake the two first stages systematically (see 

[3] for a survey).  

The analysis of test execution results, however, is hard to 

fully automate. Ideally, the test suite should be able to detect all 

the mutations injected into the code and no further actions 

would be required because the test suite achieves full mutation 

coverage. In practice, there are usually some mutants 

undetected by the test suite. In that case, the tester needs to 

review those surviving mutants. The behaviour of some of the 

mutants may be the same as the original code (equivalent 

mutants), and therefore no test can detect the mutation. For 

instance, the fragment “if (x > 1) x = 1;” is behaviourally 

equivalent to “if (x >= 1) x = 1;” – whatever the value assigned 

to the variable x before the execution of this fragment, the 

variable will have the same value in both versions after the 

conditional statement. Where this is not the case, the test suite 

has indeed failed in detecting injected faults within the code. 

Once all surviving mutants have been inspected and 

equivalent mutants have been discarded, the tester can measure 

the ability of the test suite to detect faults. The mutation 

adequacy score is the number of killed mutants divided by the 

number of non-equivalent mutants. The higher the mutation 

score, the higher the test suite quality and therefore its ability to 

reveal coding errors. The test suite is mutant adequate when the 

mutation score is 100%, that is, when it has killed the full set of 

non-equivalent mutants.  

As an extra step, the engineer can create new test cases to kill 

the undetected non-equivalent mutants. The mutation testing 

process should then be repeated with the augmented test suite 

to ensure that the mutation score increases accordingly.  

Mutation testing is a powerful technique but computationally 

inefficient in its basic form. There are two main problems when 

applying mutation testing: the high computational cost when 

generating and executing all the mutants, and the presence of 

equivalent mutants (determining which of the live mutants are 
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equivalent requires manual inspection and takes considerable 

time). These problems are explored in the next section. 

 

 Improving the Efficiency of Mutation Testing 

Mutation testing can generate a large number of mutants even 

for small programs, so most recent research in mutation testing 

has aimed to reduce the effort of applying it. Several techniques 

have been proposed to address this issue [4]. Some of them can 

be classified as “do fewer” techniques, in the sense that they 

seek to reduce the number of mutants, such as random mutant 

selection [11] (i.e., sampling a percentage of the full set of 

mutants) and higher order mutation [12] (i.e., several mutations 

are combined into a single mutant). Selective mutation, perhaps 

the cost reduction technique with the greatest acceptance [13], 

[14], [15], [16], works under the assumption that some mutation 

operators can be excluded without sacrificing a great deal of 

fault-revealing power. Notably, Offutt et al. [13] found that five 

of the 22 mutation operators implemented in the mutation tool 

Mothra sufficed to apply mutation testing in an effective way, 

allowing for large reductions in the number of mutants (78% on 

average). 

For programs developed in C, which is the language of the 

software system examined in this paper, Barbosa et al. [14] 

defined a set of general rules to systematically select a subset of 

mutation operators. By applying this guideline to Agrawal et 

al.’s operators [17], the authors found that with only 10 

operators the mutation score was still close to 100% (99.6% on 

average with 27 programs). Namin et al. [15] also tried to find 

sufficient sets of operators for C programs by defining a 

statistical analysis procedure to predict an effective subset of 

operators. The results show that using just 28 out of 108 

operators leads to a good approximation of the full-set mutation 

score. One of the most recent studies on selective mutation was 

conducted by Delamaro et al. [16]. They used a greedy 

algorithm which successively added the operators that 

increased the overall mutation score the most. Unlike the 

previous two studies, the authors of that paper assessed 

mutation operators not only regarding the effectiveness but also 

considering the cost in the form of number of mutants and 

number of equivalent mutants. 

While some techniques have been investigated to reduce and 

detect equivalent mutants [18], [19], [20], this is still an 

undecidable problem. Mutant classification strategies analysing 

coverage impact of mutations [21], [22] have been used in a 

study to mitigate the effects of equivalence. Papadakis et al. 

[23] also proposed a technique based on compiler optimisations 

(TCE) to automatically detect equivalent mutants. In their 

study, TCE was able to remove 30% of all existing equivalent 

mutants on average in 18 benchmark programs, and 7% 

(equivalent) and 21% (duplicate) of all mutants on 6 large open-

source programs. 

Another related work using C programs was conducted by 

Amman et al. [24]. They proposed to minimise the set of 

mutants to avoid the impact of redundant mutants when 

interpreting the mutation score.  Based on this theoretical 

framework, they analysed the mutants generated with the 

mutation tool Proteum when applied to the Siemens suite, 

showing that the mutation scores were lower once redundant 

mutants were removed. 

 

 Mutation Testing and Structural Test Coverage 

Andrews et al. [25] applied mutation testing to evaluate four 

test coverage criteria: block, decision, c-use and p-use. They 

showed that mutation testing can help in predicting the 

effectiveness of these criteria to detect real faults and their 

relative cost in terms of fault detection, test suite size and 

control/data flow coverage.  

Yao et al. [26] showed the distribution of “stubborn” mutants 

across mutation operators. These authors labelled as stubborn 

those non-equivalent mutants that are not detected by a test 

suite complying with branch coverage criteria. They concluded 

that testers should prioritise those operators generating many of 

these mutants in comparison with the number of equivalent 

mutants.  

Inozemtseva et al. [27] studied the correlation between 

coverage (statement, decision and MC/DC), test suite size and 

effectiveness of large programs. The results gave evidence that 

test effectiveness is not strongly correlated with coverage 

criteria, so coverage is not necessarily a good indicator of test 

quality. 

 

 Significance of Mutation Testing for the Industry 

There has been some empirical evaluation of mutation testing 

in real testing environments. Daran and Thévenod-Fosse [28] 

also considered safety-critical software in a previous study, but 

with the aim of identifying whether mutations are correlated 

with real faults instead of evaluating the test suites developed. 

That study found a relation between mutations and real coding 

errors in a program from the civil nuclear field. Concretely, 

85% of the injected mutations were also produced by real faults. 

Andrews et al. [29] applied four mutant types in C to explore 

the link between hand-seeded and real faults. The results 

suggest that manually-seeded mutations are different from real 

faults and harder to detect, whereas mutation operators are more 

in line with real faults. The experiments by Just et al. [30] 

provide some evidence that the simple errors simulated by 

mutations relate to complex errors, supporting the coupling 

effect hypothesis. However, the results obtained by Gopinath et 

al. [31] contradict that hypothesis because real faults appeared 

to be more complex than most of the mutant types considered 

in that study. 

Baker and Habli [32] carried out an empirical evaluation 

based on two safety-critical airborne systems that had satisfied 

the coverage requirements for certification. Those systems were 

developed using high-integrity subsets for C (MISRA C [33]) 

and Ada. In their experiments, they found an effective subset of 

mutation operators that was able to detect different deficiencies 

in tests suites which had already met statement and MC/DC 

coverage and had been manually peer-reviewed. 

 

B. UK Nuclear Industry 

The nuclear industry provides safety-critical services and 

develops technologies whose failure, under certain conditions, 

can lead to catastrophic events, i.e., resulting in harm to humans 

and damage to property and the environment. As such, it is a 

highly regulated domain with rigorous assessment practices. 

Requirements include a high degree of redundancy and 
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diversity in design, both for hardware and software, and 

independence in testing and certification. 

In the UK, the industry adopts a two-legged approach to the 

assurance of software-based systems, in accordance with the 

Office for Nuclear Regulation’s (ONR) Safety Assessment 

Principles [34]. These two legs are “production excellence” and 

“confidence building” and the rigour applied is commensurate 

with the claimed risk reduction. For a software-based 

component to be incorporated into a safety-critical system it 

must first be qualified following the two-legged approach.  

For Commercial-Off-The-Shelf (COTS) software-based 

instrumentation (smart devices), the manufacturer’s 

development process and documentation are assessed, 

including all records of software analysis and testing. This 

assessment of production excellence is performed against the 

safety standard IEC 61508 [5] as a benchmark, which requires 

structural test coverage criteria such as branch coverage and 

MC/DC. IEC 61508 is applied along with some more stringent, 

industry-specific requirements. Independent analysis and 

testing are then carried out, usually by an expert and 

independent third party, using diverse tools and techniques. 

Provided that the results of these activities are favourable, the 

device may be deemed suitable for use.  

Despite the robustness of the current approach to assuring 

software in the nuclear industry, there has been a general trend 

toward greater automation, particularly for instrumentation and 

control, potentially giving more authority to software-based 

functions [35]. To this end, mutation testing, in the context of 

the wider safety case for nuclear instrumentation and control 

systems, could provide further evidence concerning confidence 

in the safe design and deployment of these systems, e.g., 

enhanced confidence in the software testing process for certain 

applications. 

 

C. Study Objectives 

The nuclear industry partners were interested to understand 

if mutation testing might be beneficial in the development of 

safety-critical software (supporting the “production excellence” 

argument) or, alternatively, whether it would be useful in the 

independent assessment of a COTS software-based device 

(supporting the “confidence building” argument). Accordingly, 

the objectives of our study were as follows: 

1. To determine whether the current standards in the nuclear 

industry for test assurance could be made more rigorous by 

the application mutation testing; 

2. To determine whether cost reduction techniques proposed 

in the literature can make mutation testing affordable for 

the nuclear industry whilst retaining its power; and 

3. To determine the most effective mutation operators for a 

typical nuclear software system. 

 

D. Evaluation Criteria 

The following criteria were important for the study to be 

valid: 

(a)  To meet objective (1), we needed to use mutation testing 

to assess an appropriate case study – a test suite satisfying 

current nuclear industry standards.  

(b) To meet objective (1) we needed an appropriate 

comparison measure for our claims about relative fault-

finding adequacy of different test coverage criteria.  

(c) Additionally, in order to meet objective (2), we needed an 

appropriate measure of the additional costs incurred by 

using mutation coverage as our test suite adequacy criteria. 

(d) To meet objective (3), we needed an appropriate measure 

to calculate the relative fault-finding ability of each 

mutation operator. 

In this paper, we achieved criterion (a) by measuring the 

mutation coverage achieved by a test suite that satisfies branch 

coverage. This is appropriate as branch coverage is widely 

applied in the nuclear industry, being mandated for example by 

IEC 61508 for Safety Integrity Level (SIL) 3 systems [5]. In 

IEC 61508, SILs specify safety requirements and measures that 

are allocated to safety functions in order to justify confidence 

(on a scale of 1 to 4) that the functions will not fail (particularly 

due to systematic causes for software components). The 

allocation of SILs depends on the necessary risk reduction in 

order to achieve tolerable risk, considering both the frequency 

of the hazardous events and their consequences. 

We achieved criterion (b) by determining the mutation score 

achieved by the original branch-adequate test suite against our 

mutant set. The mutation score is widely used to assess test suite 

quality, and our use of TCE (in Section IV) meant that our 

mutation scores were very accurate. 

We achieved criterion (c) by comparing the size of the test 

suites needed to achieve branch coverage and 100% mutation 

score, respectively. Here, we worked on the assumption that the 

cost of test development and maintenance is roughly 

proportional to the number of test cases developed. Using the 

mutation score alone is not enough, as one test case may kill 

more than one mutant (thus making the increase in test suite 

size less than the raw difference in mutation score would 

suggest). 

We achieved criterion (d) by performing an analogous study 

to that used to achieve criterion (b) but determining the 

percentage of surviving mutants produced by each mutation 

operator.  

 

E. Nuclear Software System 

We performed a mutation testing process on a real nuclear 

software system. Specifically, this study simulates a complete 

mutation testing process applied to a COTS software-based 

device developed by a supplier to the UK nuclear industry. The 

device is used throughout the industry in a range of safety 

applications. The device receives a variety of inputs from field 

sensors and carries out user-configurable computations to 

deliver the required safety outputs. The overall COTS system 

(including the hardware and firmware) was developed in 

accordance with IEC 61508 to satisfy the requirements of SIL 

3 and achieves 100% branch coverage. MC/DC was not used 

during the development of the firmware, in line with the 

requirements of the standard. An interesting aspect of using 

such software is that, apart from satisfying a key coverage 

criterion, the system has undergone a thorough testing process 

that includes several forms of assurance. This fact differentiates 

this study from other previous evaluations related to mutation 
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testing, which are mostly based on test suites developed without 

using the guidelines mandated by a standard. The firmware is 

implemented in the C programming language, following 

MISRA C coding standards [33], which are widely used in such 

systems as they are devoted to improve the safety and reliability 

of the code, We compiled the code with gcc 5.4.0 in a machine 

running Ubuntu 16.04. 

We selected 15 functions from different modules of the 

firmware. We should note that, overall, there are many modules 

with functions of similar structures. As such, to avoid biased 

results derived from the injection of mutations into similar code 

structures, we carefully studied the code to include functions 

with different functionalities, use of language facilities, size, 

and cyclomatic complexity [36] It is important to note that most 

of the functions in the firmware were composed of very few 

lines because the code had been implemented with utmost 

modularity and was highly optimised. As a result, the size of 

the selected functions ranged from 10 to 63 lines of code and 

their cyclomatic complexities ranged from 2 to 9.  

For the sake of confidentiality, we will refer to this program 

pseudonymously as project, and its functions as F1, F2 ... F15. 

Table I shows several characteristics of the functions selected 

for this study. 

The project was supplied with a unit test suite for each of the 

analysed functions (input values and expected outcome). All the 

test cases in these suites passed successfully when executed. 

 

TABLE I:  
FEATURES OF THE FUNCTIONS UNDER STUDY IN THE PROJECT 

Source Features 

Function Lines of 

code* 

Cyclomatic 

complexity 

Number of 

test cases 

F1 14 2 25 

F2 34 6 15 

F3 38 7 15 

F4 10 2 96 

F5 40 8 13 

F6 63 7 20 

F7 27 4 9 

F8 38 4 8 

F9 15 3 7 

F10 54 9 25 

F11 29 5 5 

F12 42 7 5 

F13 32 4 16 

F14 32 4 32 

F15 16 3 11 

* Lines of code counted with c_count as “lines containing code” 

 

F. Mutation Tool 

It was important for this study to use a relevant mutation tool 

— a tool that is practical for real-world use, or at least 

representative of such tools. 

At present, there are a variety of mutation tools for C with 

different features, according to the survey by Jia and Harman 

 
1 A brief description of these commercial products can be seen in the study by 

Delgado-Pérez et al. [37]. 

[3]. While several of them are commercial1 or are not publicly 

available, five of them are accessible.  

Among these tools, Proteum/IM 2.0 [38] and MILU [39] are 

the most widely used in other research studies, such as to 

evaluate selective mutation [14] or higher order mutation [12].  

While MILU offers fewer features than Proteum, it automates 

most of the mutation analysis process, in contrast to Proteum 

which requires considerable manual intervention [40].  

For the purpose of this study, we selected MILU 3.22, the 

most recent version available online when we performed the 

experiments. 

 

G. Cost Reduction Techniques 

Several techniques have been proposed to reduce the expense 

of mutation testing. These techniques have been extensively 

studied in academia (see Section II.A.2), but less so in realistic 

industrial applications. There is consequently a lack of evidence 

of their applicability to industrial systems, or information 

concerning their effectiveness.  

In this study, we apply two cost reduction techniques: 

operator-based Selective Mutation (SM) and Trivial Compiler 

Equivalence (TCE). We expect SM to reduce the number of 

mutants generated, and TCE to remove ineffective (invalid, 

equivalent, or duplicate) mutants. As SM is almost universally 

recommended, we used it in all our experiments; as TCE is a 

fairly new technique, we repeated our experiments with and 

without it. 

 

 Selective Mutation 

In SM [13], only some of the operators are applied (while the 

rest are discarded) under the premise that this subset of 

operators is representative of the full set of mutants. 

The survey by Delahaye and du Bousquet [40] states that 

MILU implements the 77 mutation operators that Agrawal et al. 

[17] identified for C. However, the number of mutation 

operators has been reduced in MILU 3.2 — following studies 

on SM [13], [14], only 12 of those 77 operators were included 

in this version. Two additional operators are also included: 

SSDL (delete statements) and SBRC (replaces break by 

continue). Table II presents the operators that were used in the 

study – 10 of the 12 from MILU’s “Selective” set and one of the 

available two from its “Other” set. Note that: 

 We excluded the “arithmetic assignment operator” 

(OOAN) and “bitwise logical assignment operator” 

(OBBA) because they can be substituted in the code by 

plain arithmetic and bitwise logical operators 

respectively, maintaining the same functionality. By 

doing this transformation, OAAN and OBBN apply in 

those cases.  

 We included SSDL because recent studies have pointed 

to the usefulness of this operator [41]. Moreover, the 

comparable study by Baker and Habli [32] analyses this 

operator, so it is interesting to observe if mutants from 

this operator are also effective in detecting deficiencies 

in our branch-adequate test suites. 

 

2 http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/, last accessed 17/06/2017 

http://www0.cs.ucl.ac.uk/staff/y.jia/Milu/
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TABLE II:  

LIST OF MUTATION OPERATORS APPLIED 

Operator Description Modifications 

From MILU’s “Selective” set  
 

 

CRCR Integer constants replacement 9 insertions (0, 1, -1 and 6 additional values) 

ORRN Relational operator replacement 5 replacements (==, !=, <=, >=, < and >) 

OAAN Arithmetic operator replacement 4 replacements (+, -, *, / and %) 

OLLN Logical operator replacement 1 replacement (&& and ||) 

OLNG Logical negation 3 replacements (x op !y, !x op y and !(x op y), where 

op can be && or ||) OCNG Logical context negation 1 replacement (applied to if and while statements) 

OIDO Increment/Decrement replacement 3 replacements (increment/decrement and 
prefix/postfix) 

OBBN Bitwise logical replacement 1 replacement (& and |) 

UOI Unary operator insertion 4 insertions (increment/decrement and prefix/postfix) 

ABS Integer and float variable absolute value 

insertion 

2 insertions (abs() and -abs()) 

From MILU’s “Other” set 

SSDL Statement deletion 1 deletion 

 

 

  

 We excluded SBRC because, unlike SSDL, there are no 

recent studies that suggest it is useful. 

SM is easy to implement in any mutation tool: either the tool 

provides the tester with a reduced subset of mutation operators 

(as in MILU) or it adds the option to enable/disable mutation 

operators. 

 

 Trivial Compiler Equivalence 

Recently, MILU has been improved by incorporating TCE, 

which we briefly described in Section II.A.2. TCE allows the 

detection of three classes of ineffective mutants (mutants that 

waste time and/or distort the achieved mutation scores): 

 All invalid mutants — those that cannot be compiled. 

 Some equivalent mutants — those that have the same 

external behaviour as the original function. 

 Some duplicate mutants — those that have the same 

functionality as another mutant in the set.  

TCE works by comparing the binary files produced by the 

gcc compiler. A mutant is noted as invalid if it does not compile. 

A mutant is marked as equivalent if there is no difference 

between the binary files originated from the original program 

and the mutant. Two mutants are considered to be duplicate 

when their binary files are the same. Using the same example 

as the one to explain equivalence, depending on the compiler 

and the level of  optimisation, TCE may determine that a mutant 

with the code “if (x > 1) x = 1;” and a mutant with the code “if 

(x >= 1) x = 1;” are behaviourally equivalent and are, therefore, 

duplicate mutants. 

It is possible to apply different levels of optimisation when 

compiling, which can lead to different binary files and thus 

different results from TCE. It is reasonable to expect that more 

aggressive optimisation will lead to greater effectiveness of 

TCE, as many optimisations work by eliminating code elements 

that do not affect the output. This is not, however, guaranteed. 

For detecting equivalent mutants, the experiments by Papadakis 

et al. [23] show no clear winner among gcc’s optimisation 

options. For detecting duplicate mutants, Papadakis et al. 

observe that the best options are –O2 and –O3.  

In this study, we initially focused on gcc’s highest level of 

optimisation (–O3) to learn about the limits of the application 

of this technique. According to the gcc documentation, this is 

reliable for all standards-compliant C programs. However, due 

to odd behaviour noted during the experiments, we repeated 

TCE on one function without optimisation (see Section IV.B). 

TCE can plausibly be applied in real-world contexts. There 

is some cost in compute time, which corresponds to: 

 The compilation process when applying an optimisation 

setting (in the experiments by Papadakis et al. [23] this 

was almost five times higher for –O3 than using no 

optimisation option); 

 The equivalence detection process (one comparison 

between the binary of each mutant and the original 

program); and 

 The duplicate mutant detection (each mutant is 

compared with the other mutants generated in the same 

function). 

The results reported by Papadakis et al. [23] with respect to 

efficiency suggest that TCE is reasonably fast even for the most 

aggressive optimisation option: there is a trade-off between the 

compilation time and the effectiveness of the optimisation 

option, and the time required for equivalent and duplicate 

mutant detection is quite small when compared to the 

compilation time. 

 

III. EVALUATING BRANCH-COVERAGE-DRIVEN TESTING 

USING SELECTIVE MUTATION 

A. Experiment 

In this first experiment, we carried out the following steps for 

each of the functions listed in Table I: 

1. We generated all mutants from our set of mutation 

operators (see Table II). This set naturally included invalid, 

equivalent and duplicate mutants. 

2. We ran the exiting test suite against the mutants. This 

allowed us to classify the mutants as killed or alive. 

3. We calculated the mutation score based on the findings 

from the previous step. 
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B. Results 

Table III shows the number of operators applied and the 

distribution of mutants in each of the functions, and can be 

summarised as follows: 

 2,509 mutants were generated in total, F1 and F6 being 

the functions with the smallest and largest number of 

mutants respectively (75 and 331 mutants); 

 81.94% of those mutants were killed (2,056) and 453 

mutants were alive, with every function having some 

live mutants; 

 The mutation score ranges from 56.32% in F2 to 96.10% 

in F8. None of the functions achieved 100% mutation 

coverage. 

However, we have to note that these are only preliminary 

results because we have not tackled some factors that might 

affect the mutation score (which will be addressed in the next 

section). 

TABLE III: 
INITIAL DISTRIBUTION OF MUTANTS  

IN THE FUNCTIONS UNDER STUDY 

 Generation Test execution  Analysis 

Function Operators 

applied 

Total 

Mutants 

Killed Alive Mutation 

score 

F1 7 75 59 16 78.67 

F2 6 277 156 121 56.32 

F3 5 118 84 34 71.19 

F4 7 76 61 15 80.26 

F5 7 164 113 51 68.90 

F6 8 331 310 21 93.66 

F7 5 158 148 10 93.67 

F8 5 154 148 6 96.10 

F9 7 134 105 29 78.36 

F10 9 200 170 30 85.00 

F11 7 210 186 24 88.57 

F12 6 212 188 24 88.68 

F13 5 94 86 8 91.49 

F14 7 186 141 45 75.81 

F15 7 120 101 19 84.17 

Mean - - - - 81.94 

Total - 2,509 2,056 453 - 

 

 

C. Implications 

From the above, it first appears that testing guided by branch 

coverage has led to relatively weak test suites (ones that may 

fail to identify many faults). 

 There are reasons to be suspicious of these results, however. 

There are three ways in which the mutation scores may be 

misleading:  

 Some “killed” mutants may be invalid, i.e., not written 

in valid C code. The results above count invalid mutants 

as killed, but those mutants cannot actually be executed. 

These mutants may have increased the apparent 

mutation score as MILU does not differentiate invalid 

mutants from killed mutants. Test suites should not get 

credit for killing mutants that would be killed by the 

compiler anyway. 

 Mutants that remained alive have not been inspected yet 

to determine whether there are some equivalent mutants. 

Therefore, there is the possibility that the final mutation 

scores are higher than stated — test suites should not be 

penalised for failing to kill equivalent mutants. 

 There is also the possibility that some mutants represent 

the same fault (that is, they are duplicate). Depending on 

the nature of the fault (whether the test suite kills it or 

not), this could increase or decrease the reported 

mutation score. 
 

IV. EVALUATING BRANCH-COVERAGE-DRIVEN TESTING 

USING SELECTIVE MUTATION AND TRIVIAL COMPILER 

EQUIVALENCE 

A. Experiment 

For a more accurate mutation score, we carried out the 

following steps: 

1. We applied TCE to detect invalid, duplicate and equivalent 

mutants automatically. 

2. We ran the exiting test suite against the mutants not flagged 

by TCE. This allowed us to classify the mutants as killed 

or alive. 

3. We manually inspected the remaining live mutants to 

identify equivalent mutants not revealed by TCE. To do 

this, we designed further test cases with the specific aim of 

killing all surviving mutants; those mutants that still 

remained alive after this process were finally determined 

as equivalent. 

4. We calculated the mutation score based on the findings 

from the previous steps. 

 

 

 

 
 a)      b)     c)  

 

Fig. 1 - a) Proportion of mutants not detected as invalid, duplicate or 

equivalent by TCE (“After TCE”) and detected (“Removed”); b) proportion of 
mutants in “Removed” that are “Invalid”, “Duplicate” and “Equivalent” c) 

Proportion of “Equivalent” mutants “Detected by TCE” and “Detected 

manually” (manual inspection). 
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TABLE IV:  
DISTRIBUTION OF MUTANTS AND MUTATION SCORE IN THE FUNCTIONS UNDER STUDY AFTER APPLYING TCE 

 Generation Test execution Analysis Mutation sufficiency 

Function Total 

Mutants 

Mutants 

after TCE 

Killed Alive Equivalent Surviving Non-

equivalent 

Mutation 

score 

F1 75 45 38 7 1 6 44 86.36 

F2 277 114 70 44 4 40 110 63.64 

F3 118 61 51 10 7 3 54 94.44 

F4 76 51 44 7 7 0 44 100 

F5 164 105 80 25 4 21 101 79.21 

F6 331 207 203 4 3 1 204 99.51 

F7 158 126 121 5 5 0 121 100 

F8 154 112 110 2 1 1 111 99.10 

F9 134 71 58 13 6 7 65 89.23 

F10 200 110 103 7 3 4 107 96.26 

F11 210 93 89 4 4 0 89 100 

F12 212 123 119 4 2 2 121 98.35 

F13 94 54 51 3 1 2 53 96.23 

F14 186 89 70 19 0 19 89 78.65 

F15 120 46 46 0 0 0 46 100 

Mean - - - - - - - 92.20 

Total 2,509 1,407 1,253 154 48 106 1,359 - 

 

 

B. Results 

Fig. 1 bar (a) depicts the percentage of the total of mutants 

that were discarded using TCE (43.92%). Bar (b) drills into the 

mutants removed by TCE, showing that the highest reduction 

was obtained through duplicate mutants detection (73.14%), 

followed by equivalent (18.87%) and invalid mutants (7.99%). 

We are confident from the method that TCE removed all invalid 

mutants and most duplicate mutants. We are confident from our 

inspection of surviving mutants that TCE removed 81.25% of 

all equivalent mutants. This is shown in bar (c) of Fig. 1. 

Table IV furnishes a complete breakdown of the 

classification of mutants in each function and is categorised as 

follows: 

 Generation: 

- Total mutants: number of mutants generated initially. 

- Mutants after TCE: number of mutants once TCE has 

been applied to detect invalid, duplicate and equivalent 

mutants automatically. 

 Test execution: (from “Mutants after TCE”): 

- Killed: number of mutants detected by the test suite. 

- Alive: number of mutants not detected by the test suite. 

 Analysis: (from mutants in “Alive”): 

- Equivalent: number of mutants manually identified as 

equivalent. 

- Surviving: number of mutants that the test suite fails 

to detect. 

 Mutation sufficiency: 

- Non-equivalent: number of mutants identified to 

represent a valid fault in the program; calculated as 

“Mutants after TCE”-“Equivalent”. 

- Mutation score: calculated as: (“Non-equivalent”-

“Surviving”)/“Non-equivalent” x 100. 

 

 

We can observe from this table that: 

 In four functions (F4, F7, F11 and F15) the branch-

adequate test suite is mutant-adequate (i.e., the mutation 

score is 100%); 

 In the remaining 11 functions, the mutation score varies 

from 63.64% (F2) in the worst case to 99.51% (F6) in 

the best case;  

 The percentage of live mutants (154) that turned out to 

be equivalent (48) is 31.17%. That means that around 

70% of the live mutants can guide us on the creation of 

new test cases (106 mutants). 

There was one strange false-positive — for one function 

(F7), TCE classified six mutants as equivalent even though they 

were killed by the original test suite (and thus cannot have 

actually been equivalent). Those six mutations were all 

generated by CRCR in the same location. In response, we 

removed the optimisation flag (–O3) when compiling this 

function; thereafter, those mutants were not marked as 

equivalent. The “F7” row in the above table uses the results of 

this unoptimised compilation (the classification of the rest of 

the mutants in that function  remained the same when the flag 

was removed).   

Papadakis et al. [23] do note that compiler settings may 

influence equivalence detection, but they suggest that this 

should only cause false negatives. They claim that their 

technique (correctly implemented) cannot classify a non-

equivalent mutant as equivalent. Therefore, they appear to stem 

from faults in the TCE implementation or the tools it depends 

upon. This issue would merit further investigation to establish 

its cause and how it can be avoided. 
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C. Implications 

TCE has the potential to reduce the cost of mutation testing 

considerably. From the 2,509 mutants initially generated with 

nine mutation operators in 15 functions, only 1,407 mutants 

(56.08%) represent valid, unique and non-equivalent mutations 

in terms of automatic detection. From that reduced set, only 154 

mutants had to be reviewed to determine whether they were 

equivalent or not (see column “Alive” in Table IV) far from the 

453 mutants that remained alive without applying TCE (see 

column “Alive” in Table III). This is the most time-consuming 

and laborious task in mutation testing, and the costs of this step 

have been reduced here by about two-thirds. 

Of the 154 surviving mutants, only 48 mutants were later 

manually identified to be equivalent. 81% of the equivalent 

mutants were directly detected by TCE.  

We can now be fairly confident of the accuracy of our kill 

scores. Overall, the kill score was 92.20%; 106 out of 1,359 

non-equivalent mutants (7.80%) were not killed by the current 

test suite. Contrast this with the pre-TCE kill score of 81.94%. 

Without TCE, our estimate of surviving mutants was more than 

twice its correct value. 

The difference in accuracy between our pre- and post-TCE 

results is even more pronounced for a subset of the functions. 

Fig. 2 graphically depicts the initial and accurate mutation 

scores in each of the functions. The highest difference is found 

in F3, with a gap of 23.25 percentage points between the two 

scores. 

In the experiments conducted by Papadakis et al. [23], TCE 

detected from 9% to 100% of all the equivalent mutants when 

considering the results in the subject programs individually. 

This means that the performance of TCE greatly varies 

depending on the features of the system under test. The 

proportion of equivalent mutants detected by TCE in this case 

study (81.25%) is within the range identified by Papadakis et 

al., but is far above their average (30%). 

The mutation score provides an estimation of the weaknesses 

detected in a test suite. Over 73% of the functions present 

surviving mutants. While in F6 and F8 the mutation score is 

close to 100%, other functions have lower scores. F2, F5 and 

F14 are especially low: 63.64%, 79.21% and 78.65% 

respectively. This suggests that if we have a test suite that 

complies only with branch coverage, we may be unable to 

detect a large variety of faults in our code. 

 

V. EVALUATION OF MUTATION-DRIVEN TESTING 

A. Experiment 

Surviving mutants represent potential deficiencies in the test 

suite. Therefore, the more surviving mutants, the lower the 

suite’s ability to detect faults in the software. Surviving mutants 

can be used to design new test cases, thereby increasing the 

fault-revealing power of the suite. In this phase of the work, we 

inspected the uncovered surviving mutants and manually 

generated new test cases until all surviving mutants were killed 

(i.e., until we had a mutant-adequate test suite). In all cases, we 

achieved this by copying existing test cases and changing some 

input values — we did not need to create new test case 

structures. 

As noted in Section II.D, our metric for cost of improvement 

was the increase in the number of test cases needed. There are, 

however, problems with this measure. A test case tailored to a 

specific surviving mutant may also kill other mutants at the 

same time. Similarly, a test case from the original suite may kill 

two or more of the killed mutants. This makes it difficult to 

calculate how much the test suite needed to be enlarged, or how 

large it would have been had mutation testing been used to 

create it. 

 

 

 

Fig. 2 - Initial vs accurate mutation score in each of the functions under study 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

10 

TABLE V:  

TEST SUITE IMPROVEMENT OF THE FUNCTIONS UNDER STUDY 

Function Original 

MM branch-

adequate  

 

New  

test cases 

generated 

MM mutant-

adequate  

 

New test cases in 

MM  

mutant-adequate  

% of mutation-

adequate test 

cases that are new 

F1 25 4 5 7 4 57 

F2 15 5 13 15 11 73 

F3 15 11 3 11 3 27 

F4 96 5 0 5 0 0 

F5 13 7 8 11 5 45 

F6 20 5 1 6 1 16 

F7 9 5 0 5 0 0 

F8 8 4 1 5 1 20 

F9 7 5 5 7 2 28 

F10 25 9 4 10 3 30 

F11 5 4 0 4 0 0 

F12 5 5 2 5 2 40 

F13 16 4 2 4 2 50 

F14 32 5 10 10 6 60 

F15 11 6 0 6 0 0 

Mean 20.1 5.6 3.6 7.4 2.67 36 

Total 302 84 54 111 40 - 

 

 

We compensated for the above problem by minimising both 

the original and improved test suites. A test suite is minimal 

when there are no smaller test suites killing all non-equivalent 

mutants. The minimisation of the test suite removes redundant 

test cases, leaving both the original and improved suites as 

accurate representations of what is needed. To perform this 

minimisation, we employed the algorithm used by Estero-

Botaro et al. [42], which produces test suites that are exactly 

minimal rather than approximate. Therefore, in our experiment 

we minimised the test suites preserving mutation adequacy, 

obtaining mutation-minimal test suites (abbreviated as MM test 

suites from now on). 

 

B. Results 

The test-suite refinement process, in principle, was not as 

laborious as expected. In our experience, once we had identified 

the reason why a given mutant was not killed by the test suite, 

it was straightforward to construct a suitable test to kill it. In 

addition, when two or more functions followed a similar design 

pattern, we were often able to use the same reasoning to kill a 

mutant in all of them.  

Determining equivalence with high confidence was difficult 

in some cases but, following the application of TCE, the 

number of potentially equivalent mutants was modest (48 in 

total). We expect that both identifying equivalence and 

following a mutation-driven testing process would be even less 

difficult for someone who is completely acquainted with the 

system under test. 

Table V shows the results of improving the test suite to 

achieve mutation adequacy. The columns are as follows: 

 Original — the size of the original branch-adequate test 

suite we were given by the developer. 

 MM branch-adequate — the size of a MM version of 

the branch-adequate test suite, i.e., the minimal number 

of test cases needed to kill the same mutants as the whole 

branch-adequate test suite. 

 New test cases generated — the number of new test 

cases generated to improve the MM branch-adequate 

suite into a MM mutation-adequate suite. Note that the 

number of additional test cases does not match the 

number of surviving mutants because a single additional 

test case sometimes kills a group of mutants. 

 MM mutant-adequate — the size of a MM test suite 

that is also mutation adequate (i.e., kills all non-

equivalent mutants). 

 New test cases in MM mutant-adequate — the number 

of new test cases appearing in the minimal version of the 

mutation-adequate test suite. 

 % of mutation-adequate test cases that are new — 

percentage of new test cases appearing in the minimal 

mutant-adequate test suite. 

Note that in some cases the minimal size is the same for both 

branch-adequate and mutant-adequate test suites, even when 

new test cases are used in the mutation-adequate test suite 

(specifically F3, F12 and F13). This occurs when some of the 

new test cases can kill some of the mutants killed by the branch-

adequate test suite. In this case, some test cases in the branch-

adequate test suite are replaced by new test cases in the mutant-

adequate test suite to maintain minimality. This is reflected in 

the column “New test cases in MM mutant-adequate”, which 

states how many cases in the mutant-adequate suite are 

genuinely new. 

As can be seen from this data, the test suite has been 

augmented in the 11 functions with surviving mutants, 

especially in F2 and F14, where the MM mutant-adequate test 

suite contains 73% and 60% of new test cases respectively. On 

average the MM mutation-adequate test suites contained 36% 
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new test cases, with the remainder being ones from the 

originally supplied test suites.   

In terms of additional test-development effort, the MM 

branch-adequate test suites had a total of 84 test cases; 54 new 

test cases had to be generated to achieve mutation adequacy. 

Assuming an equal effort to develop each test case, that is an 

extra 64% effort. However, had mutation adequacy been a 

target from the start, only 111 test cases would have been 

required (an increase of only 27 test cases from the MM branch-

adequate test suite). This corresponds to an increase of 32% in 

testing effort. 

However, branch coverage was not the only goal in 

generating the original test suites. They will have taken account 

of system requirements, other process compliance 

requirements, and developer ideas about likely faults. 

Therefore, a better estimate of additional effort to achieve 

mutation coverage would be the increase in the number of tests 

needed versus the original test suite count. This was calculated 

as (302+54 = 356) divided by 302 original tests, so 18% extra 

effort. 

 

C. Implications 

Once we had identified the surviving mutants, it was 

straightforward to create test cases that killed them. This led to 

a net increase in test case count of 18% versus the original 

branch-adequate suites. Given the potential fault-finding 

benefits compared to this extra effort (recall that the increase in 

the test suite size allowed us to kill 106 surviving mutants in the 

analysed functions), it is certainly plausible that mutation-

driven testing will be worthwhile for safety-critical software. 

 

VI. EVALUATION OF THE CONTRIBUTION OF THE DIFFERENT 

MUTATION OPERATORS 

A. Experiment 

In this study, we used a reduced set of mutation operators by 

applying selective mutation. Despite this fact, it is interesting to 

know which of those operators are the most effective as the cost 

of applying mutation testing is, in part, dependent on the 

number of operators used.  

In this experiment, we carried out the same steps as in 

Section IV.A, but we computed the results per mutation 

operator instead of per function analysed of the project. We 

should notice that, instead of the mutation score, in this case we 

show the “survival rate”, which is computed as “100 – mutation 

score”. This measure helps interpret the results: the higher the 

survival rate, the more effective the mutation operator. 

 

B. Results 

Table VI presents the distribution of mutants for each 

mutation operator, much as in Table IV. In this table, we also 

show: 

 Functions applied: number of functions in which these 

operators generated at least one mutant. 

 Functions with surviving mutants: number of 

functions in which these operators generated at least one 

surviving mutant. 

All the mutants were generated by 9 operators of the selective 

set. CRCR was by far the operator generating the highest 

number of mutants and it was applied to all the functions (as 

were SSDL, ORRN and OCNG). On the other hand, OBBN was 

the less prolific (17 mutants) as well as the least-applied 

operator in the set (3 functions). CRCR, ORRN and OANN (the 

most prolific operators) were the operators that generated the 

48 equivalent mutants not detected by TCE. 

The results show that five out of nine operators (SSDL, 

CRCR, ORRN, OAAN and OLLN) generated mutants that 

survived the execution of the test suite. The results also suggest 

that the operators OLNG, OCNG, OIDO and OBBN were not 

effective operators for the system under test. 

Judging by the survival rate, OLLN seems the most valuable 

operator. However, we should also consider the following 

factors: 

 Mean — computed as the sum of the survival rates of 

the operator in each function divided by “Functions 

applied”; 

 Standard deviation — standard deviation in the 

survival rates in the functions in which the operator was 

applied; 

 % Functions with surviving mutants — calculated as: 

“Functions with surviving mutants” / “Functions 

applied”.  

This information can be graphically seen in Fig. 3. The mean 

shows that ORRN (9.1), CRCR (8.9) and OAAN (7.2) produce 

more surviving mutants in the functions on average than OLLN 

(6.7). Similarly, the standard deviation of OLLN (21.1) 

indicates that the number of surviving mutants from this 

operator is substantially dissimilar in these functions (in fact, 

only one of the 10 functions in which OLLN is applied presents 

surviving mutants). ORRN (10.1) followed by OAAN (12.6) 

are the most stable operators according to the standard 

deviation. Finally, the percentage of functions with surviving 

mutants confirms ORRN as an effective operator, since some 

mutants produced by this operator survive in 60% of the 

functions in which this operator is applied. CRCR and OAAN 

tie in the second position (40%), while OLLN (10%) is at the 

bottom of this classification. 

 

C. Implications 

From the initial set of mutation operators, only five operators 

(SSDL, CRCR, ORRN, OAAN and OLLN) generated some 

mutants not detected by the branch-adequate test suite. This 

subset of operators aligns with the results reported by Baker and 

Habli [32], where these same five operators generated surviving 

mutants when analysed with test suites achieving statement-

level coverage in a project implemented in C. In that study, the 

operators CRCR, ORRN and OAAN also generated some 

mutants that survived the execution of a test suite achieving 

MC/DC coverage in a project implemented in Ada. That fact 

suggested that the operators SSDL and OLLN were not fruitful 

with more demanding coverage levels. However, the results in 

this paper have shown that these two operators are still useful 

when it comes to branch coverage. 
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TABLE VI:  

DISTRIBUTION OF MUTANTS AND SURVIVAL RATE OF EACH MUTATION OPERATOR 

 Generation Analysis Mutation sufficiency 

Operator Total 

Mutants 

Functions 

applied 

Mutants 

after 

TCE 

Equivalent Surviving Functions with 

surviving mutants  

Non-

equivalent 

Survival 

rate 

SSDL 211 15 127 0 8 4 127 6.3 

CRCR 1,386 15 649 18 51 6 631 8.1 

ORRN 425 15 292 27 32 9 265 12.1 

OAAN 296 10 224 3 11 4 221 5.0 

OLLN 25 10 19 0 4 1 19 21.1 

OLNG 75 10 22 0 0 0 22 0 

OCNG 56 15 53 0 0 0 53 0 

OIDO 18 5 6 0 0 0 6 0 

OBBN 17 3 15 0 0 0 15 0 

 

 

 

 
 

              a)                        b) 
 

 
 

              c)                        d) 
 

Fig. 3 – Mutant survival statistics of each mutation operator that generate surviving mutants:  

a) raw survival rate; b) mean survival rate; c) standard deviation of survival rate; d) % functions with surviving mutants. 

 

 

On the basis of the results, ORRN seems the most valuable 

operator, as it was in the study by Baker and Habli [32]. We 

have also shown how important is to measure the relative value 

of each operator in terms of the mean and the standard deviation 

(of the survival rates in the functions) and the percentage of 

functions with surviving mutants. 

VII. DISCUSSION 

A. Overall assessment given industrial requirements 

Our results indicate that mutation testing is both effective and 

feasible for a safety-critical system. The experiments 

highlighted potential weaknesses in the test process despite 
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meeting a key test coverage criterion that is specified in a 

primary safety standard, IEC 61508, and despite meeting the 

stringent expectations of the nuclear industry. Mutation testing 

is also shown to be practical in the sense that we utilised already 

available techniques (SM and TCE), and a publicly available 

mutation analysis tool (MILU).  

Of course, the system considered in this research covers one 

case only, i.e., one software system in one industrial context. 

However, this system is representative of many applications in 

the nuclear industry in the sense that it is developed in a high-

integrity language subset, i.e., MISRA C, and against the 

requirements of IEC 61508. Both MISRA C and IEC 61508 are 

highly regarded and widely used in the nuclear industry and 

within the safety-critical domain generally. For example, the 

requirements within IEC 61508 have formed the basis for safety 

standards in different domains including automotive [5] and 

railway [6], particularly with regard to the test coverage criteria 

(statement coverage, branch coverage and MC/DC). 

Ideally, we would also measure the mutation coverage 

achieved by the more thorough MC/DC structural criteria. 

However, we did not have access to such test suites. If we 

wanted to replicate the study with test suites that met MC/DC, 

we would need to develop new artificial test suites. That would 

break the research design methodology followed in this study 

since the data used is based on real-world test suites. Therefore, 

the results of a study with MC/DC could not be fairly compared 

with the rest of the results shown in the paper. 

The primary issue might not lie in whether mutation testing 

is effective or feasible. Rather, it is in the extent to which it is 

cost-effective, given the potential increase in confidence 

relative to other competing techniques, e.g., formal methods or 

runtime verification. Another issue lies in whether mutation 

testing is effective when the results of the mutation testing 

process, which is based on hypothetical faults, are compared to 

actual faults reported for safety-critical operations. Progress 

towards any wider industrial adoption will rely on a more 

explicit consideration of these issues. As such, the primary 

contribution of our paper is in showing the potential 

effectiveness and feasibility of the technique based on real 

world code and data. 

 

B. Feedback from industry 

The feedback from the nuclear industry partners has been 

positive. The engineers were surprised that the branch-adequate 

test suite was shown to be comparatively weak in its fault 

detection capability, although it was recognised that this was 

not necessarily a cause for concern as no coding errors were 

identified during the experiments and the overall device had 

been subjected to other forms of assurance including statistical 

testing. They were also interested in the modest level of 

additional effort to move from a branch-adequate test suite to a 

mutation-adequate test suite. It was interesting that, after 

studying in detail surviving mutants, repeatable test 

deficiencies in the original test suites could be identified. For 

instance, following the application of ORRN and CRCR, we 

found out that the boundary conditions were not fully tested in 

all functions. 

Moving forward, the industry is keen to explore the potential 

power of a mutation-adequate test suite in comparison to a 

branch-adequate test suite. As such, future investigations are 

likely to focus on the application of a mutation-adequate test 

suite to a system seeded with real faults that passed through the 

original testing process. These investigations may seek to 

support or challenge the underlying theory of mutation testing. 

 

C. Threats to Validity 

Here, we present some caveats that slightly temper our 

claims, and some rebuttals of concerns readers might have 

regarding the validity of the study. 

Construct validity:  Our main measures of concern are 

testing power achieved and the associated cost. We derive 

metrics for these as the mutation score and the required number 

of test cases, respectively. Any weaknesses in these metrics 

endanger our construct validity. 

The mutation score is a common metric in software testing 

research for determining fault-detection power. It can, however, 

be distorted by inclusion of duplicate, equivalent and invalid 

mutants. In this experiment, we removed these using automated 

and manual methods. 

To generate our mutation score, we intended to use a reduced 

set of eleven mutation operators. This is the set of operators 

included in the mutation tool employed (MILU), based on 

studies about selective mutation for the reduction of mutants 

[13], [14]. However, only nine of these operators could be 

applied to the software under test, as the features of this 

software prevented two operators related to built-in types from 

generating some mutants (UOI and ABS). Had we implemented 

custom versions of those operators that worked with this 

codebase, it is possible that the mutation scores would have 

been slightly different. 

The number of test cases is a debatable measure of test 

development cost. It is likely that there is a moderate correlation 

in practice, but also a high degree of error (for example, it is 

likely that earlier tests cost more than later tests because later 

tests can reuse code and techniques from earlier ones, as we 

found when expanding the test suite in this study). However, 

we are not aware of a practical measure that is a better proxy 

for cost. 

When we look at the increase in number of test cases to move 

from branch to mutation coverage, there is a risk of ending up 

with redundant test cases. This can happen when a new test case 

introduced to kill a mutant also contributes to branch coverage 

in a way that completely subsumes one of the original test cases. 

To counter this threat, we minimised both test suites. However, 

recognising that any real-world test suite could (and should) be 

developed to cover diverse criteria (not just branch coverage or 

mutation adequacy), we have also calculated the proportional 

increase of the mutation-adequate test suite against the full 

original test suite. Thus, given that test cases were extended 

manually (differently from the method used in practice to 

generate test cases), the calculations shown in this paper should 

be treated as estimations. 

Internal validity: In this paper, we have studied whether 

TCE reduces the number of invalid, duplicate and equivalent 

mutants, and how many extra tests are required to move from 
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branch coverage to mutation adequacy. We are confident that 

TCE correctly removed all the invalid and most duplicate 

mutants. We are fairly confident that all the equivalent mutants 

it removed were indeed equivalent. However, as noted in 

Section IV.B, there was a case in which TCE classified some 

killable mutants as equivalent. Were the faults that caused this 

identified and fixed, the mutation score might be slightly 

different. 

External validity: We have only used one target system, but 

it is representative of a range of real-world systems which 

comply with IEC 61508 and MISRA C coding standards. Since 

these standards are applied for many safety-critical software 

systems, our results may apply to many such systems. 

TCE is implemented as a combination of gcc (a collection of 

compilers for several programming languages) and the diff file 

comparison utility. As such, it may not be available on all 

platforms or for all languages. However, its implementation is 

straightforward to duplicate given a compiler and a file 

comparison utility that supports binary files. 

 

VIII. CONCLUSION 

This study presents an empirical evaluation of mutation 

testing in a joint project sponsored by the UK nuclear industry. 

Our primary conclusion is that mutation testing can assist in 

designing a better test suite for safety-critical software when 

compared to one that is designed to demonstrate compliance 

with a branch coverage criterion.  

The results consistently show that a branch-adequate test 

suite fails to detect injected faults in the code. This happened in 

11 out of the 15 functions analysed. In the most noteworthy 

case, 37% of the faults injected into one of the functions were 

not detected by the original test suite, and several new test cases 

could be added to improve its fault-detection capability. 

The approach followed in this study (use of a selective set of 

mutation operators followed by the application of TCE to detect 

ineffective mutants) greatly reduces the cost of applying 

mutation testing. The mutants generated in the analysed 

functions ranged from 75 to 331, far fewer than those found in 

similar previous studies. Around 44% of these mutants were 

automatically discarded on average, and around 96% of the 

remaining mutants represented valid faults. By applying TCE, 

we were able not only to reduce the cost of identifying 

equivalent mutants (81% of the set of equivalent mutants) but 

also to measure the mutation score more accurately. The study 

about the surviving mutants generated by each mutation 

operator revealed that the set of operators may be reduced 

further without losing significant effectiveness in these 

systems. 

As a result, the test suite improvement derived from mutation 

testing only requires a test suite increase of 18% compared with 

the original branch-adequate test suites. It is thus plausible that 

it will be worth its cost in many situations, especially in safety-

critical systems. 

To justify increased costs, however, industrial developers are 

likely to need more confidence that achieving mutation 

coverage will find more faults. As such, our industrial partners 

recommended conducting new experiments challenging 

mutation testing to detect real coding errors, specifically those 

that have not been found by existing tests. Given evidence of 

that, it is likely that many developers may be willing to accept 

the extra costs and adopt mutation testing as another approach 

to assuring safety-critical software. 
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