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Abstract

Search and Rescue (SAR) is a hard decision making context where there is available a
limited amount of resources that should be strategically allocated over the search region in
order to find missing people opportunely. In this thesis, we consider those SAR scenarios
where the search region is being affected by some type of dynamic threat such as a wildfire
or a hurricane. In spite of the large amount of SAR missions that consistently take place
under these circumstances, and being Search Theory a research area dating back from
more than a half century, to the best of our knowledge, this kind of search problem has
not being considered in any previous research.

Here we propose a bi-objective mathematical optimization model and three solution
methods for such purpose: (1) Epsilon-constraint; (2) Lexicographic; and (3) Ant Colony
based heuristic. One of the objectives of our model pursues the allocation of resources in
most risky zones. This objective attempts to find victims located at the closest regions
to the threat, presenting a high risk of being reached by the disaster. In contrast, the
second objective is oriented to allocate resources in regions where it is more likely to find
the victim. Multi-objective decision making techniques where implemented in this thesis.

Furthermore, we implemented a receding horizon approach oriented to provide our
planning methodology with the ability to adapt to disaster’s behavior based on updated
information gathered during the mission. A second set of experiments evidenced the
validity of our search planning methodology supported on a receding horizon scheme.

The search planning methodology proposed here has the capability of distributing
available resources over the most risky zones and the location where it is most expected
to find the victim. Our methods are suitable for a fleet of heterogeneous agents, making
it appropriate for application in real search contexts, where different kind of agents be-
longing to different emergency management and research agencies take part.

This thesis was unanimously nominated to be honored with a Cum Laude distinction
by the members of the committee, based on the excellence of the results and products,
the quality of the defense and the diverse opportunities of future research.
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Chapter 1

Introduction

1.1 Motivation

Search and Rescue (SAR) is an increasingly important operation in many military and
humanitarian contexts, given its primary objective of saving lives. This operation of-
ten involves complex decision making scenarios where search planners need to allocate
available resources strategically in order to increase the chances of finding the victim(s)
opportunely. Unfortunately, SAR takes place under many different scenarios and there is
not any generic search strategy that can be broadly applied to all scenarios. For example,
the strategy implemented in a search operation underway for survivors of a plane crash
over the ocean should be different from the one implemented if a person became lost
on a wilderness area. In the former case, the possible location of the victims should be
considered. A belief map for their position could be made based on crash coordinates
and progressively updated according to the expected displacement of people due to sea
motion. Then, a strategy could be to focus search efforts on the most likely zones at each
moment. In the second case, there could be a total lack of information about victim’s
location. Under these circumstances, a maximum coverage-minimum time strategy could
be a good choice.

There is a large number of studies focused on the construction of search plans under
different scenarios. Some versions of the problem are constituted by combining levels of
the following parameters: number of search units (one or multiple), SAR team configura-
tion (homogeneous or heterogeneous), SAR units’ sensing reliability (infallible or fallible),
target state (stationary or mobile), among others. Furthermore, previous researches con-
sidered some typical constraints on SAR, such as those concerning to: searchers’ motion
(degrees of freedom, speed and acceleration), fuel available for the search team and max-
imum coverage of transmitters. Despite the wide variety of configurations of the search
problem that have been studied, there exists a special SAR scenario which has not been
tackled yet, at least to the best of our knowledge. To describe such a scenario, let us first
define a non-instantaneous disaster; in this thesis, a non-instantaneous disaster refers to a
natural disaster that spreads or progress through a region taking some hours, days or even
weeks. Some examples of non-instantaneous disasters are volcanic eruptions, hurricanes
and wildfires. In contrast, landslides are examples of instantaneous disasters while they
occur suddenly and last for a few minutes or even seconds. The aftermaths of some type
of disasters can be also considered a non-instantaneous disaster. For instance, consider
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the potential collapse of a damaged building few minutes after the occurrence of an earth-
quake. Such kind of threatening phenomenon will also be considered a non-instantaneous
disaster in this thesis.

Having defined what a non-instantaneous disaster is, we can describe the scenario
that we address in this thesis. Consider a search mission for a missing person, where
the search area is being affected by a non-instantaneous disaster. The phenomenon is
advancing through the region and has the potential to kill anyone in its way. In such
a scenario, conventional search strategies are not sufficient as they do not consider the
fact that there is a phenomenon progressively exhausting feasible search zones. In other
words, they do not take into account the distribution of the risk over the region and its
dynamic behavior.

In this thesis, we present what to the best of our knowledge is the first mathematical
model for search planning in presence of a non-instantaneous disaster. Such a model is
capable of coordinating a team of heterogeneous agents by defining the search path for
each one of them and the number of explorations to be performed at each location of
the search region. We equipped our model with a recursive Bayesian filter which updates
the belief map after each exploration of an agent, allowing to decide how long to remain
exploring at each location. According to our literature review, the mathematical model
proposed in this thesis is one of the few path planning models for search missions capable
of making such an update. As a result, our model builds reactive search sequences,
adapted to expected changes in the belief map. Several previous path planning models
found in the literature, only update the belief map at the end of each planning window.

In contrast to several models found in the literature, our model does not impose any
limitation in time or space to the displacements executed by search agents. Instead of
discretizing the time as is commonly done in previous studies, we designed an event-
based model, which allows agents to move among any pair of cells at any time. This
characteristic provides our model with a higher representative capacity, compared with
models that discretize the time.

As expected, the computational requirements of solving our model result prohibitive
for real size instances. In this respect, we designed and implemented a multi-objective Ant
Colony based algorithm namely Pareto Multi-Agent Ant Colony Optimization (PMAACO),
which is capable of effectively solving the problem under study. Our experiments show
that our PMAACO is able to provide good quality solutions in a relatively short time.
The applicability of PMAACO algorithm in real size instances was tested in a rolling
horizon fashion that allows to keep an updated track of the disaster through the mission.

1.2 Organization

In this thesis, we introduce the Optimal Search Path with Effort Allocation Problem
under Dynamic Disaster (OSPEAD). We further provide three solution methods for it;
two of them are based on the exact solution of the mathematical formulation of the
problem and the third one is an efficient heuristic method, able to deal with the trade off
between computational requirements and solution quality. The steps on the development
of this research and the corresponding results are exposed in the next chapters as follows:
in Chapter 2 we extend the description of our research problem. In that chapter, we also
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justify the execution of this thesis and state our research objectives. In Chapter 3, we state
the theoretical basis supporting our research. The chapter starts with a literature review
of 83 articles published at different moments through the history of Search Theory (ST).
Our survey not only provides a panorama of historical developments in ST, but it also
introduces a novel taxonomy for studies in that research line, based on the identification
of the main types of search problems and the typical variants of the problem setting.
In Chapter 4 we introduce our mathematical formulation for the OSPEAD, which is in
principle a Mixed Integer Nonlinear Program. The separability of our model allowed
us to implement the Piecewise Linear Approximation method, leading us to a linear
version of our model, corresponding to a Mixed Integer Linear Program. Accounting for
the dynamic behavior of the disaster, we propose the solution of the OSPEAD under a
receding horizon scheme working as follows: at each time window, a forecast of disaster
future state (location and severity) is generated based on updated information collecting
by sensing platforms and imagery collection devices. This information is then used as an
input of our model, which prioritize explorations in most danger locations for the next
time window. The whole search path for each agent results from the joint of individual
search paths built at each window. In Chapter 5, we present three solution methods for
the OSPEAD which are then tested and compared in Chapter 6. Finally, in Chapter 7
we offer our conclusions and suggest a set of promising future research lines.

3



Chapter 2

Problem Description

2.1 Problem statement

Imagine that a wildfire is in progress in a large outdoor area such as a natural reserve.
Authorities evacuated the area, but a person was reported missing. A SAR mission should
be performed soon because this person could be in risk of being harmed by the fire. SAR
units are ready to launch the mission, but which search strategy should they apply in
order to increase the chances of finding the missing person safe? If there is available
some information about target’s location, a strategy could include some smart use of
this information. Based on it, the mission could start by investing efforts on exploring
over the most likely zones where the person could be, and then progressively move to
less likely zones until the person is found. If there is not any clue about the location
of the sought person, the strategy could be focused on achieving the maximum possible
coverage within the minimum possible time. However, an overriding element that should
be taken into account is that the fire is advancing and each zone that becomes exhausted,
represents a lost opportunity of finding the missing person alive. Accordingly, this thesis
aims to answer the following question: which could be an efficient search strategy for a
single missed person, on an area hit by a non-instantaneous disaster that progressively
consumes parts of the search region? To answer this question, we applied mathematical
modeling and algorithm concepts on the construction of a methodology for conducting a
search mission in presence of an ongoing non-instantaneous disaster. This methodology
will increase the effectiveness of a SAR mission under stated circumstances. Our methods
are not limited to a given type of disaster, but they concern about any non-instantaneous
natural phenomenon that could progressively consume the search region.

The dynamic behavior of the threatening phenomenon makes it necessary to system-
atically adapt the mission to phenomenon’s evolution. The lack of an adaptation scheme
may conduct to unfeasible or poor solutions. To illustrate this idea, imagine that the
emergency response manager is going to apply a non-adaptive scheme in a search mission
in presence of a hurricane. In such a scheme, a set of forecasts for hurricane’s future state
is generated at the beginning of the mission and then, those forecasts are used as inputs
for a single run of the search planning model. No future updates of the forecast are done.
The weakness of the non-adaptive schemes is that they do not consider the natural un-
certainty associated with non-instantaneous disaster forecasts. This issue may introduce
the following two main types of imprecision in the search plan: (1) the scheduling of ex-
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plorations over certain locations at moments when such locations will already have been
exhausted by the phenomenon; and inversely (2) the avoidance of scheduling explorations
at certain locations, at moments when forecast tags them as exhausted, given that they
will actually remain feasible to explore at those moments.

To mitigate this issue, we propose the adoption of a receding horizon scheme where
the search planning model is solved iteratively, providing the search plan for the next
time window each time that it is solved. At each time window, an updated forecast
for disaster’s behavior until the next horizon is generated and taken as input for the
next run of the search planning model. We are aware that such a methodology do
not completely remove the two types of distortion in the search plan, mentioned in the
previous paragraph. We will be forced to deal with those issues whenever the forecast is
subject to uncertainty. Fortunately, our receding horizon scheme reduces such uncertainty
by using shorter forecasting horizons than a non-adaptive scheme and keeping updated
forecasts through the whole mission.

Recent execution of applied research projects as Deployable SAR Integrated Chain
with Unmanned Systems (Chrobocinski, Makri, Zotos, Stergiopoulos, & Bogdos, 2012)
and Modeling Crisis Management for Improved Action and Preparedness (Daou et al.,
2014), suggests that it is time to start merging decision support models and methodologies
belonging to Search Theory with the rising technology of robotics automation. Our
methodology is not limited to a specific type of agent, nonetheless, we consider interesting
its application making use of automated robotic agents, particularly unmanned aerial
vehicles (UAVs). The advantages that robotic agents offer in comparison with humans
include:

• They do not require the exposition of human agents to hazards present in the search
region during the exploration,

• They facilitate the coordination within the search team,

• They allow a more precise execution of the search plan as it is designed, given the
possibility of standardizing their kinematics and detection profile.

By the other side, UAVs offer the possibility of making large displacements in a
short time, allowing the search team to rapidly cover the search region. Additionally,
an unmanned quadrotor results much cheaper than a manned aerial vehicle such as a
helicopter or a plane, which means that the usage of UAVs permits to include a greater
number of search agents to take part on the mission in a lower cost than if it was performed
by means of manned aerial vehicles. The fulfillment of this assumption will contribute to
make it feasible to implement our protocol in real-world missions; however, once again
we want to make it clear that our methods are not limited to any specific type of agent.

Real search mission often involve heterogeneous search teams. Heterogeneity is typ-
ically originated in the adoption of different types of agents, the uneven aging of ho-
mogeneous agents and the execution of a cooperative mission where different emergency
management agencies or research groups take part. Seeking for the applicability of our
methodology in real scenarios, we considered agents’ travel times, exploration times and
reliability as sources of heterogeneity within the search team.
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2.2 Justification

Human lives are at stake during SAR operations. The search plan will have an impact
on the probability of finding the missed person on time. In many practical cases, a
wrong decision could imply a lost life. Unfortunately, this decision is not easy, since there
could be millions of possible search plans suitable for the same mission. Just consider
the number of possible paths that a team of SAR units could use to explore a certain
area or the infinite combination of exploration times that could be assigned to each zone
of the search region. Furthermore, the presence of a non-instantaneous disaster on the
search area considerably hampers the decision to be taken. As stated before, there is not
a decision making model, suitable for the conditions of our research problem. This lack
of supporting tools is a weakness of current SAR protocols which reduces the chances of
saving lives during SAR missions. Through the execution of this thesis, we developed a
solution for this issue. The resulting methodology might contribute to reduce the risk of
losing human lives during SAR missions under dynamic disaster scenarios.

2.3 Objectives

2.3.1 General objective

To design a protocol for conducting a search mission in presence of a non-instantaneous
disaster, where such a disaster is progressively exhausting parts of the search region.

2.3.2 Specific objectives

• To build a mathematical model that provides the search paths for a team of het-
erogeneous agents considering the forecast of disaster’s behavior.

• To select a solution method for our mathematical model which balances solution
quality and processing time.
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Chapter 3

Frame of reference

In this section we provide a literature review on Search Theory, which is the research
area which closely matches to our research problem. Such review allowed us to identify
research gaps present in current literature, which are fulfilled though the execution of
this thesis.

3.1 Search Theory: A Taxonomic Literature Review

We conducted a review in Search theory (ST), which is the discipline that studies how
to search for an entity in order to increase the chances to find it using limited resources.
Search theory began with the researches performed by Dr. Koopman, B. O. and his team,
during World War II, as a part of Antisubmarine Warfare Operations Research Group
(ASWORG)(B. O. Koopman, 1946). This discipline grew stronger through years and
nowadays it is an important and well-known field in Operations Research. One of the
main applications of search theory is in SAR1, where it concerns about the management of
limited resources to find harmed or lost people. Our research problem fits in this research
area since we are interested in the construction of search methodology for cases of missing
people. Nonetheless, as it was stated in previous sections, this review is not exclusively
focused on SAR scenarios because there are studies related to other search contexts,
belonging to ST, that can be adapted to our purposes. The literature review presented
here is identical in content to a paper co-authored by José Betancourt and Gina Galindo,
which has been submitted to the academic journal Computers & Operations Research,
and is currently under review for publication.

3.1.1 Search methodology and scope of the study

In this section we present the search methodology and the boundaries of our review. The
following databases were used for our search: ScienceDirect, IEEE Xplore, ProQuest,
SpringerLink, Wiley Online Library, Taylor & Francis, INFORMS PubsOnline, JSTOR,
SPIE Digital Library and Google Scholar. The latter directed us to articles on the fol-
lowing academic websites: ResearchGate, Dudley Knox Library - Naval Postgraduate
School, Cornell University Library, American Institute of Aeronautics and Astronautics,

1Search and Rescue
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Scientific Research Publishing, MDPI AG, ISRN Mathematical Analysis, The Operations
Research Society of Japan (ORSJ) and SIAM Journal on Applied Mathematics. Addi-
tionally, results from Google Scholar led us to the academic websites of two researchers,
namely, Dr. R. Batta (Personal website at UB - University at Buffalo), and Dr. G. Di
Caro (Personal website at IDSIA - Istituto Dalle Molle di Studi sull’Intelligenza Artifi-
ciale). We used Search Theory, Search and rescue, Bayesian Search, Optimal Search path
and Search effort allocation as keywords in the aforementioned databases.

The scope of our survey limits to articles in Operations Research that clearly situate
their problem on the ST field without specifying a particular time window. We did not
consider studies that did not present any numerical or analytic approach to solve a search
problem.

After screening the first set of articles, we performed backward and forward reference
search. This procedure lead us to a second sample of items. We repeated the process
multiple times, ensuring that all studies in the sample were meeting our acceptance
criteria. For this purpose, we explored the abstract and the methodology section (if
available) of each new item looking for the presence of numerical or analytic methodologies
to solve search problems. The resulting collection of items constitutes by no means an
exhaustive bibliography on ST. Nonetheless, we find our sample to be sufficiently diverse
in year of publication, problem setting and solution approach, to make it suitable for our
purposes of characterizing main ST types of problems and their variants.

As a result of our search process, considering the boundaries stated above, we incorpo-
rated a total of 83 items to our survey, including theses, book chapters, complete papers
and conference papers. Major article producers identified by us were European Journal
of Operational Research (7 items), Operations Research (5 items), Computers & Oper-
ations Research (4 items) and Naval Research Logistics (4 items). As expected, those
four journals are part of the top in Operations Research and Management Sciences. The
remaining journals accounted for only one article in our sample. As it is evident, there
is not a clear preference for publishers in ST literature yet. This behavior is partially
explained by the fact that only the 55.4% of our sample correspond to journal papers.
The remaining 45% was distributed among conference papers (41.0%), technical reports
(1.2%), book chapters (1.2%) and theses (1.2%).

3.1.2 Previous bibliographies and surveys

We are aware of five previous bibliographic reviews in the field of ST, these are Enslow
(1966), Dobbie (1968), Stone (1989), Benkoski, Monticino, and Weisinger (1991) and
Frost and Stone (2001). This group of articles presented the following characteristics:

1. Only two of the five studies presented conclusions and identified research gaps.
However, only one of those two studies proposed future research lines. Unfortu-
nately, that study was specifically concerned about the state of ST research on the
US navy and their suggested research lines may not be applicable to ST research
in general.

2. One of the studies is limited to provide the abstract for a list of 75 articles in ST
and Reconnaissance Theory.
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3. The classification scheme in tree of the studies appears to be oriented to the natural
grouping of the publications rather than the natural decomposition of the ST mat-
ter. A fourth article classifies the literature based on ST main eras. The fifth article
implements a classification scheme that relates research in ST with the definition of
search planning doctrine and the development of computer based search planning
decision support tools.

4. The four articles where published within the period 1966 to 2001, inclusive.

It is evident that previous surveys in ST have adopted a dissimilar perspective in the
exploration of the literature. Our study is not an exception. In this review, we identified
two typical purposes followed by search studies: (1) Path planning; and (2) Effort allo-
cation. Furthermore, we noticed that ST literature was decomposed in studies solving
search problems under planning and control schemes. The main difference between both
approaches is that a single run of a planning model provides the decision for multiple
actions of the search team, while a control algorithm guides the team step by step thor-
ough the mission. The intersection between the purposes of the studies and the solution
schemes lead us to the decomposition of ST literature in four types problems: (1) Search
Effort Allocation Problem (SEA); (2) Optimal Search Path with Effort Allocation Prob-
lem (OSPEA); (3) Optimal Search Path Problem (OSP); and (4) Probabilistic Search
Control Problem (PSC). Table 3.1 illustrates the characteristics of each type of problem.
A formal definition of each type of search problem and a discussion on the developments
for each one of them is presented in Section 3.1.4.

Table 3.1: Main types of search problems
Objective Sol. scheme

Problem
Path planning Effort allocation Planning Control

SEA x x
OSPEA x x x
OSP x x
PSC x x x

Additionally, we identified a set of factors that can be adopted as variants of any of
the four types of problems introduced above, some of them are: agent, target and scenario
features such as the number of agents (one or multiple), the constitution of the search
team (homogeneous or heterogeneous), the target state (stationary or moving), the time
and space modeling (discrete or continuous) and others. We refer to this set of elements
as the problem setting.

The identification of studies according on the type of problem and problem setting,
allowed us to constitute a novel taxonomic decomposition ST literature. Our classifica-
tion scheme allows researchers and practitioners to identify studies of interest for their
particular purposes as part of a benchmark procedure. The classification by type of
problem helps to discard the inspection of studies that present a different purpose (path
planning/effort allocation) or solution approach (planning/control) than the one that the
researcher is facing. Furthermore, the inspection of the problem setting of those articles
will aid the identification of the studies that closely match to the characteristics of the
problem under consideration and may also evidence unexplored problem settings.
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3.1.3 Key SAR concepts

Before delving into the exploration of literature, this section provides the fundamental
notions involved on a typical search mission. The concepts addressed here provide the
basis for the models and methodologies found in both, theory and practice in ST. Con-
sequently, it is highly recommended to gain full comprehension of these concepts before
exploring any methodology related to ST. Fortunately, the majority of those concepts are
very intuitive and can be easily understood by association with daily searches that we all
make for misplaced objects such as keys or pens. The following subsections describe the
tasks required for the construction of an optimal search plan. This scheme was structured
based on Frost (1998) and Abi-Zeid and Frost (2005).

Task 1: Delimitation of the possibility area

Every search mission starts with the definition of the region where the mission will be
conducted. Such a region is known as possibility area and can be defined as the smallest
region that contains all possible object locations. The delimitation of the possibility
area strongly relies on the exploitation of available information about the missing object
and the environmental conditions. The last known position (LKP) of the object, its
intended route (if available) and its physical features, combined with the topographic
description of the area, its vegetation and weather, are all sources of information often
implemented by search planners in the definition of the possibility area. In this thesis we
will also refer to the possibility area as search region.

Task 2: Construction of the probability map

Once the possibility area has been delimited, it is discretized in a finite collection of sub-
regions often referred as cells. Such a discretization may reflect natural partitioning of
the region (e.g. by rivers or buildings) or virtual sectioning defined by SP to aid analytic
methods and assign specific tasks to agents through the mission (Chung, Kress, &
Royset, 2009). Those sub-regions are typically represented as squared or hexagonal cells
on ST literature. However, such cellular decomposition is often adopted for clarity in
illustration and the majority of models are independent on the particular decomposition
frame implemented by the SP.

Based on the same information that leaded to the definition of the possibility area, the
SP subjectively assigns a probability to each cell, indicating the expectancy of finding
the target there. The probability assigned to each cell is variously called probability
of containment (POC), while the probability distribution allocated over the whole
possibility area is referred as probability of containment map or probability map
(POC map). It is always desired to be sure that the object is present in the possibility
area (i.e. that the sum of the POC over the whole search region is one), however, this
condition is not always true, due to limitations in time, fuel and other types of limited
resources. This fact will be detailed later in this section.

As stated by Dr. L. Stone, a pioneer in ST research, “devising a probability distribu-
tion for target’s location is an art rather than a science” (Stone, 1977). Fortunately, the
incidence of the POC map on the effectiveness of a search plan is widely recognized in
the practice and there are available multiple programs for support in its construction.
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Task 3: Search team constitution

In order to build effective search plans, the SP must explicitly consider the particular
characteristics of different types of agents. Indeed, it must also consider differences be-
tween agents of the same type. Humans, dogs, trucks, planes, helicopters and ships,
constitute the traditional spectrum of search agents, all of them equipped with diverse
types of sensing devices and recognition mechanisms. Unmanned Aerial Vehi-
cles (UAVs), Ground Vehicles (UGVs), Surface vehicles (USVs) and Underwater Vehicles
(UUVs) have recently joined the list in the last decade.

Once again, available information about the object and the environment helps the
SP to conform a convenient search team for the particular characteristics of the case in
progress. For its selection, each search agent competes with the others in the following
set of specifications:

Kinematic properties: maximum speed, acceleration and deceleration are all fea-
tures belonging to the kinematic profile of an agent. All of them will determine the
times required for the agent to move over the search region while performing the search
plan. The degrees of freedom of the agent are also considered in this category. A very
fast aircraft with limited capability of turning around presents a very different kine-
matic profile to the one corresponding to a human agent, slower but capable of turning
around at any moment if required.

Autonomy: this second specification is strongly related to the concept of search
effort, which refers to any limited resource necessary for the operation of a given
agent. Energy and fuel are both examples of search effort. With this in mind, the
autonomy of an agent can be defined as its expected operative time provided that it
has been fully recharged/refueled.

Skills and capabilities: this describes the expected performance of each agent at
different sub-regions of the possibility area. For that reason, it is useful to discretize
the region in such a way that the conditions at different points within each cell remain
approximately homogeneous. To exemplify this, consider the search region composed
by rocky, woody and open areas. Figure 3.1 illustrates such a scenario.

Figure 3.1: Capabilities based on environmental features

Retrieved from: Flushing et al. (2013)

It is expected to find different levels of performance coming from different types of
agents at cells with different characteristics. For example, in Figure 3.1, aircrafts will
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not be able to effectively detect objects hidden in densely vegetated areas but will have
the possibility of searching over rocky areas; in contrast, human searchers may not be
able to search over rocky areas but will have the possibility to enter on the wooded
areas and explore with a relatively high level of confidence. The strategic selection of
the agents that will take part on the mission will be determinant on its success and
therefore it is a critical step on search planning.

Reliability: this last specification is closely related to the previous one. Reliability
of an agent is an indicator of its expected level of performance when exploring a region
with certain conditions. Alternatively, it can be seen as a measure of how well an area
was explored by a given agent (Frost, 1998). Agent reliability is commonly associated
with a scalar between 0 and 1 representing the probability of detecting the object given
that it is in the area searched. This feature accounts for the fact that real agents have
rarely perfect detection and recognition capabilities.

Table 3.2: Sensor visibility coefficients

Environment
Sensor

1 2 3 4 5 6

Forest 0.4 0.5 0.6 0.8 0.5 0.1

Water 0.9 0.1 0.1 0.1 0.3 0.5

Town 0.3 0.1 0.4 0.6 0.5 0.2

Rugged land 0.2 0.7 0.8 0.2 0.4 0.6

Very rugged land 0.1 0.6 0.7 0.1 0.3 0.5

Flat land 0.8 0.9 0.1 0.7 0.6 0.2

Retrieved from: Simonin et al. (2009)

Table 3.2 illustrates an example where six agents were modeled with heterogeneous
sensing reliabilities. As in the example illustrated in Figure 3.1 of heterogeneous agent
capabilities, agents possess environment-dependent sensing reliabilties.

The longer an agent remains exploring at a the area where the object is hidden, the
higher the probability that the agent will detect the object. This concept is captured
by a quantity known in ST as probability of detection (POD). The POD represents
the probability of detecting the object given that it is in the area searched, as a function
of the effort that the agent expends exploring there. Hereinafter we will denote the
POD mathematically as:

PODk
i = POD(αk, z

k
i ) (3.1)

being αk the reliability coefficient of agent k and zki the amount of effort invested by
agent k, exploring at cell i.
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Task 4: Allocation of available effort

Whenever it is available a POC map and the reliability profile corresponding to each
agent, the SP is able to estimate the expected benefit of performing an exploration on
a given cell. Such benefit is known in ST as probability of success (POS) and can
be defined as the joint probability of: (1) the missing object being in the area scanned
by the agent; and (2) the agent effectively identifying the object hidden in scanned area.
As a joint probability of two independent events, POS can be computed by the product
between the probability of the two events as follows:

POSi = POCi x POD
k
i (3.2)

where i is the index of the scanned cell and k is the index of the agent.
The construction of an optimal search plan involves the strategic distribution of the

effort available for each agent fk in such a way that one or multiple criteria are max-
imized or minimized. Every time that POC map and POD profiles are available, the
maximization of cumulative probability of success is a natural and common criteria
to be maximized. The resulting optimization problem is here referred as the general
search problem (GSP) and can be formulated as follows:

Max POS =
∑
i

∑
k

POCi x POD
k
i

subject to
∑
i

zki ≤ fk, ∀k
(GSP)

The GSP is the basis of any search problem existent in ST literature.

Task 5: Updating of probability map

The last but not least important task required for the construction of an optimal search
plan is the updating of the POC map after each exploration performed by an agent.
Given that a certain agent k performs a single unsuccessful scan on a given region, its
POC should immediately be updated to represent that it is now less expectancy of finding
the target there. The updated POC can be expressed as the probability that the agent
is on cell i given that agent k said that it is not there, and corresponds to a conditional
probability. The computation of the updated POC can be performed as follows:

POC1
i =

POC0
i x (1− PODk

i )

POC0
i x (1− PODk

i ) + (1− POC0
i ) x (1− δk)

(3.3)

where δk represents the probability that the agent will erroneously detect the object given

that the it is not present in the area and superscripts 0 and 1 in POC indicate if the value

correspond to the POC before or after the exploration, respectively.

In cases where agents are virtually false alarm free, δk becomes 0 and Equation 3.3 is
simplified to:

POC1
i =

POC0
i x (1− PODk

i )

1− POC0
i x POD

k
i

(3.4)
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Case of moving target

In the case of a moving target, an additional step is often required. Here we explain the
computation for the specific case of a Markovian neutral target. We mean by neutral
that the target is neither evasive, nor non-evasive, its decisions are just independent of
searcher’s actions. Let M be a stochastic matrix describing a Markov chain over the
discretized search region R, where Mij denotes the probability that the target will move
from cell i to cell j on a single time step. Each time that an agent performs an exploration,
the POC map can be updated by the following two steps:

1. Implement Equation 3.3 to find the updated POC of each cell P̂OC
1

j according to
the searcher’s actions:

P̂OC
1

j =
POC0

j x (1− PODk
i )

POC0
j x (1− PODk

i ) + (1− POC0
j ) x (1− δk)

(3.5)

2. Update POC according to the motion model of the target by means of Equation
3.6:

POC1
j =

∑
i

MijP̂OC
1

i (3.6)

This procedure is suitable for cases where the target is not able to leave the search
region and also for case when it is.

3.1.4 Representative search problems

Through the story, the GSP have been adapted to a large variety of scenarios. In this
section, we classify derived versions of the GSP in four main sub-problems, based on
the characteristics of their solutions. The first type of problem namely SEA, consists on
determining the best allocation of available search effort. The second type of problem,
namely OSPEA is concerned not only about effort allocation but also about the routing
of search agents. The third type of problem, namely OSP is only focused on the routing of
search agents, and the search effort allocation is managed implicitly by allowing multiple
visits to the same location. Those three types of models are solved under a planning
scheme, where a single run of the decision support model accounts for multiple decisions
of each agent. By its side, the fourth type of problem, namely PSC has the same objective
of the OSPEA problem, but it is solved under a control scheme, where an algorithm guides
search entities step by step through the mission.

The four types of problems defined here correspond to an empirical classification
proposed by us. Other classifications found in the literature may be perpendicular to
our classification, meaning that a category of problem considered in other study may be
associated with problems in any of the four categories defined by us. To illustrate us,
consider the Stationary target - discrete time and space problem defined as a category
in Benkoski et al. (1991). In our classification scheme, we may find studies considering
stationary targets, modeled in a discrete time and space environment, in any of the four
types of problem.
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3.1.4.1 Search Effort Allocation (SEA)

This first version of the search problem consists on distributing the available effort of
each agent fk at the most convenient areas of the search region R. This problem is
only concerned about the amount of effort that should be allocated at each point of R,
irrespective of the path that must be followed by each agent to perform such allocation.
In this sense, the SEA can be associated with a resource allocation problem.

The SEA problem has been tackled in both, the continuous and the discrete version.
The continuous version was first introduced by Dr. Koopman in B. Koopman (1956a,
1956b); B. O. Koopman (1957). In those three articles, he presented a pure mathemat-
ical methodology for the solution of the continuous SEA problem, considering a single
target. Despite the revolutionary nature of this work, it was first limited to the special
case where the POC map comes from a bivariate normal probability distribution. Dr.
Koopman later extended his methods to a more general set of probability distributions.
The optimization model proposed by Dr. Koopman is presented in Formulation C-SEA
with minor adaptions to our notation.

Max POS(z) =

∫
x

∫
y

POC(x, y) POD(x, y, z(x, y)) dx dy

subject to∫
x

∫
y

z(x, y) = F

z(x, y) ≥ 0, ∀x, y

(C-SEA)

where z(x, y) is a search density function that indicates the amount of effort to be allocated

at each point of the continuous plane constituted by R.

In the discrete version, the region R is divided into a finite collection of cells as
described in Section 3.1.3. This version of the problem was later introduced by Charnes
and Cooper (1958). Under this scenario, the SEA problem becomes to find the amount of
effort that should be assigned to each cell so that cumulative POS is maximized, subject
to a limited amount of search effort. Resulting formulation looks exactly like the GSP
model illustrated in Formulation GSP.

The SEA problem was then extended by Dr. Stone, L., to the case of a single moving
target (Stone, 1979). In this work, the author provided necessary and sufficient conditions
for an optimal solution of both, the continuous and the discrete version of the problem.
By these years, the improvement of computers began to gain presence in the Operations
Research (OR) context and thus in ST field. In Brown (1980) the authors proposed an
algorithm capable to build optimal solutions to the discrete version of the SEA problem
proposed by Charnes and Cooper (1958). By their side, Hohzaki and Iida (2001) tackled
a special case of the discrete SEA problem where the target has multiple options of
predefined paths. Each path has a probability of being selected by the target, and
the searcher knows both, the constitution of each path, and the probability of being
selected by the target. The authors formulated the problem as a concave maximization
program and proposed two algorithms for its solution based on Kuhn-Tucker necessary
and sufficient conditions for optimality. Their methods was noticed to be more efficient
than numerical methods developed in previous works for moving targets.
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Hohzaki (2006) also considered a SEA problem where a moving target is able to
chose its path from a predefined set of them. In this case, the author implemented a
game theoretic approach to deduce equilibrium points for both, the continuous and the
discrete version of the problem. The study by Hohzaki (2006) differs from previous works,
not only in the solution approach occupied there, but also in the assumption that the
target is evasive. The author proposed a theorem for the existence of equilibrium points
in both versions of the SEA. Nonetheless, he reported the intractability of the continuous
version solved by his method.

An important extension of SEA models was done by Iida, Hohzaki, and Sakamoto
(2002) who relaxed the assumption of local effectiveness of searching effort, consistently
imposed in previously published works. This assumption states that the search effort
located on a certain point of R is only effective at this point and does not have any
effect on a target located at any neighbor point. In many practical cases, this assumption
seems to be unrealistic, since real agents typically possess a sensing range/field of view
and targets within this range/field are detectable. The assumption of local effectiveness
of searching effort is only valid in scenarios where the sensing range/field of view is
relatively tiny with respect to the size of the search region. This could be the case of a
vessel equipped with a sonar, searching a submarine on a large region in the ocean. This
example provides some insights in the possible rationales that could lead ST pathfinders
to adopt this assumption.

By their side, Dambreville and Le Cadre (2004) extended Dr. Koopman’s formula-
tion to account for multiple modes of detection. They tackled a generalization of the
continuous SEA problem where each agent possess particular effort allocation function
and reliability. As will be discussed later, heterogeneity within the search team is a
very important feature in nowadays practical scenarios. The work in Dambreville and
Le Cadre (2004) is one of the pioneers accounting for this fact.

In a recent study, Beltagy and Abd Allah El-Hadidy (2013) addressed a particular
case of the SEA problem that consists on determining the amount of search effort to be
allocated at each point of a predefined search path. They considered the special case
where the agent follows a parabolic spiral curve around its initial position. The authors
developed a theorem that allows them to determine the expected time to find the target,
which is moving randomly over a plane.

All reviewed articles tackling the continuous SEA problem assumed that search effort
in infinitely divisible. It means that search effort can be allocated as finely as desired at
any point of R. This assumption represent an obstacle for the application of those models
in real search missions. The limitation of this assumption comes from the fact that the
majority of search agents explores the region moving through a smooth path with limited
control of the effort that they spend at each point it. Dogs, humans, aircrafts and almost
any type of search agent has very limited control of the amount of energy, fuel or battery
that they spend along their search path. This fact has motivated the preference of the
discrete version of the problem for realistic applications.

In Abi-Zeid and Frost (2005), the authors present SARPlan; a realistic decision sup-
port system intended to help search planners to allocate available effort in SAR missions.
SARPlan is able to receive raster files with information about the search region such as
the vegetation and topography for the construction of a search effort allocation plan. The
model implemented in SARPlan considers specific features of the search agents such as
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their maximum speed, altitude and specifications of the sensing devices to be employed
in the mission. The size of the search region, the POC map and the total effort available
are basic parameters for SARPlan to operate. Internally, SARPlan runs an optimization
model whose solution is an effort allocation plan over a discrete set of bounded regions.
The system also allows the user to specify unfeasible search zones such as high mountains
or lakes if it is known that the victim might not be there.

3.1.4.2 Optimal Search Path with Effort Allocation (OSPEA)

This problem is conceptually very similar to the SEA problem, nonetheless, there exist an
important difference between them; As its name suggests, the OSPEA problem consists
not only in determining the best way of distributing available search effort over the region,
but also in defining the search path that must be followed by each agent when allocating
search effort. The OSPEA problem possess characteristics of both, routing problems and
resource allocation problems. In consequence, it can be inferred that the OSPEA problem
is harder than the SEA problem.

As in the case of the SEA problem, the OSPEA also presents a continuous and a
discrete version, whose are analogue to those described for the corresponding versions of
the SEA problem. By the side of the continuous version, Lukka (1977) first introduced
necessary and sufficient conditions for the optimum solution in the case of a single moving
target. Agent kinematics are explicitly considered by the model. This version of the
problem can be associated to the Honey-pot problem and some items in the literature
explicitly refers to the problem with that name. The Honey pot problem can be defined
as follows:

A bear is searching for a honey-pot hidden in a bounded region. The bear does not
have certainty about the honey-pot location, but it has some clues. The bear wants to find
the honey-pot before tiring, so he needs to find a search path and a way of allocating its
effort (time, energy) in order to maximize its probability of finding the honey-pot soon.

In DasGupta, Hespanha, and Sontag (2004), the Honey-pot problem is tackled un-
der a two phase approach. In phase one, they transform the continuous problem into a
discrete one, and then they solve the discrete problem. In the second phase, they imple-
ment a refinement method for deriving a solution of the continuous problem, from the
solution obtained to the discrete problem. The authors found the discrete version of the
Honey-pot problem to be computationally intractable; therefore, they exploited various
mathematical properties of the problem to reduce the solution space before executing
the solution method in phase one. Their method was limited to produce sub-optimal
solutions and bounds for the problem. By their side, Assaf and Sharlin-Bilitzky (1994)
focused on a particular case on the problem, where the missing object is known to be
hidden in one of m boxes, and it occasionally moves between the boxes according to a
given Markovian process. The authors proposed a pure mathematical solution method
for this problem.

Alternatively, Ablavsky and Snorrason (2000) also proposed a two phase approach,
but their phases are very different to those implemented in In DasGupta et al. (2004).
The first phase consists on dividing the search region on a finite number of primitive
shapes. This partitioning allows them to determine possible locations of the target for a
given future time step. Phase two consists on building a feasible path over the sub-areas
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defined in phase one, in a way that the total flight time is minimized and the likelihood
of finding the target is maximized. The authors assumed a single agent searching for a
moving target but announced the adaptability of their methods for the case of multiple
homogeneous agents.

In contrast to the decision support system (DSS) presented in Abi-Zeid and Frost
(2005) for the SEA problem, in Flushing, Gambardella, and Caro (2012), the authors
introduce a support system for the continuous version of the OSPEA problem. This
system is able to deal with heterogeneity within the search team. Specifically, such
heterogeneity is expressed as agent-dependent maximum speed and sensing range. The
benefits of this consideration have been shortly mentioned before and we will provide a
wide discussion on this topic later in this document. Similarly to SARPlan, the system
in Flushing et al. (2012) is able to process information about topographic characteristics
and vegetation distribution over the search region. The authors validated their method
with a realistic instance involving three types of agents. The required processing times
were not reported in the article.

3.1.4.3 Optimal Search Path (OSP)

In this version of the problem, the search region is often discretized on a finite collection
of cells as explained in Section 3.1.3. All exploration resources (e.g. energy, fuel, battery,
time, effort) involved on a single exploration over a given cell are predefined. The problem
consists in determining the path that each agent should follow in order to obtain a
maximum performance in terms of a predefined objective, subject to limited amount of
effort. Reader should note that this time, the amount of effort that can be allocated at
each exploration is fix, and then the effort allocation problem is absorbed by the path
planning problem. By the other side, objective functions in the OSP problem are more
general than those in the SEA and OSPEA problems. This fact does not imply that the
same variety of objectives cannot be applied to all four types of problems. It reflects that
the OSP is a newer search problem than the SEA and the OSPEA problems and current
computational power has allowed researchers to make a wider diversification of the OSP
problem.

Common objectives for the OSP problem are the maximization of cumulative POS,
the minimization of expected search time and the minimization of the cumulative prob-
ability of non-success. In Song and Teneketzis (2004), the authors present an optimal
methodology for solving an OSP problem with multiple agents under two specific and
determinant conditions: (i) the time is discretized in a finite collection of time units;
and (ii) the time required for agents to move among cells is zero. The discretization of
time limits the ability of the model for adequately describing motion features such as the
acceleration and deceleration of agents. Nonetheless according to the second condition
stated in the article, those features must not be considered in the problem, since the
switch among cells is instantaneous. This second condition in turn, is accepted by the
authors to be unrealistic. The OSP problems where travel times are considered, result
significantly more difficult to be solved than those without this consideration. However,
the authors reported that travel times where not considered in the literature for the OSP
problem when this research was conducted.

The authors in Jotshi and Batta (2008) developed graph-theory based heuristics for
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the problem of searching for an stationary target on a network. In that research, the
agent capabilities of moving among nodes is constrained by the topology of the network.
It means that an agent is able to move among two nodes only if there exists a link
connecting them. This is a typical grounded urban search scenario where agents motion
is limited to the configuration of the urban network. In Jotshi and Batta (2008), the
agent is supposed to possess a reliability so that the entity is immediately identified with
probability equal to 1 if it is hidden at any point of the network where the agent pass
through. Both heuristics developed were found to be competitive in comparison with a
test-oriented heuristic which finds the k-different open Eulerian tours by doing a partial
enumeration existent open Eulerian tours.

The same problem was tackled later by Yu and Batta (2010), but instead of developing
an heuristic, they developed a mathematical programming formulation. They first derived
a Mixed Integer Quadratic Program (MIQP), tractable for available solvers when the
graph size is small. Nonetheless, for medium size graphs, the time required for the solution
became intractable. Consequently, the authors implemented a substitution scheme that
migrated the model to a Mixed Integer Linear Program (MILP). Finally, they developed
an algorithm to solve the MILP for medium-size instances in acceptable running times.
Both articles, Jotshi and Batta (2008) and Yu and Batta (2010) assumed a single searcher
with perfect detection profile searching for a uniformly-random located stationary entity.

Lo, Berger, and Noel (2012), Berger, Lo, and Noel (2013) and Berger and Lo (2015)
are a collection of articles where the OSP was solved for multiple homogeneous agents
through mathematical programming. In Lo et al. (2012) authors introduced their model-
ing scheme, based on a network representation of feasible displacements over the search
region. The main contribution of that study is a methodology for computing bounds
of OSP instances in acceptable running time. For this purpose, they implemented La-
grangian Integrality Constraint Relaxation to their MILP and solved the resulting model
using CPLEX. In Lo et al. (2012), no updating of the POC map was implemented af-
ter each exploration. The objective function implemented by Lo et al. (2012) in their
optimization program is presented in Equation 3.7 for clarity.

Max
Vcl

∑
c∈N

pc0

(
1−

Vc∑
l=0

(1− pcc)lVcl

)
(3.7)

where the assignment of the decision variable Vcl = 1 represents a solution including l visits

to cell c. N is the set of cells {1, . . . , |N |}, Pc0 refers to the current POC of cell c, Vc is an upper

bound for the allowed number of visits at cell c and pcc is the probability on a specific visit to

correctly detect the target in cell c, given that the target is present there.

Equation 3.7, computes the cumulative POS after multiple explorations to the same
cell with no updating on the POC of such cell after each exploration. This equation might
be valid in certain contexts where the POC remains constant after explorations. For
instance, when a sensing device is scanning items coming from a production line, looking
for nonconformities. In this case, the percentage of defectives (which can be associated
with the POC) will probably remain constant for several observations. However, in the
search context (at least for immobile entities), it is not adequate to assume that POC of
a given location remains the same after being explored. Each time that a sensing device
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indicates a negative result in a given location, our expectancy of finding the target at
such location will be reduced. Accordingly, a model for search planning should be able
to update the POC after each exploration and decive how long to remain exploring at
each location, considering the resulting POC after each exploration. This aspect was
attempted to be considered in Berger et al. (2013) where the model proposed in Lo et al.
(2012) was extended and the POC of each cell is updated after each time step according
to Equation 3.8.

pc(t+1) =
∑

0≤l≤Vc

pc(t)(1− pcc)lVclt (3.8)

Where pcc and Vc have the same meaning than in Lo et al. (2012), pc(t) is the updated

POC of cell c at the beginning of time interval t and Vclt = 1 reflects a cumulative number of

explorations l in cell c, by the end of time interval t.

In Berger et al. (2013), the authors claim to update the POC after each exploration.
Nonetheless, Equation 3.8 seems to correspond to the probability of not detecting the
target after a given number of explorations at the same cell. In contrast, what is required
to be computed is the conditional probability of the target occupying a given cell, given
that there have been performed certain number of unsuccessful explorations there. In
Section 3.1.3 we presented a Bayesian filter suitable for the update of the POC at a given
cell after a single exploration. The particular case when agents are assumed false alarm
free was also derived and presented in Equation 3.4. The generalization of that Bayesian
filter for the update of the POC after a given number of explorations is presented in
Sections 4.2.2 and 4.2.3 as part of the contributions of this thesis.

The model presented in the three articles, Lo et al. (2012), Berger et al. (2013) and
Berger and Lo (2015) is one of the most complete and fast methods found in the liter-
ature. Nonetheless, we make emphasis on the inaccuracy present in their POC update
mechanism because we have noted that this is a problem affecting a big portion of the
articles in ST literature. The major part of SEA models do not even update the POC
after exploring on a given location. The Bayesian filter introduced here is suggested by
us as a valid updating mechanism for future researches.

Another important limitation of several OSP models arises when the time step and
the spatial step coincide. Given that agents are enforced to occupy a given cell at each
time step, they are only allowed to move no adjacent cells between two time periods.
This imposition could be suitable for ground of maritime agents, whose exploration is
continuous over a smooth path and are not allowed to “jump” between nonadjacent cells.
In contrast, this imposition will reduce the effectiveness of an agents capable to “jump”
between nonadjacent cells. Aircrafts are examples of these kind of agents, which can go
from a location to another without exploring at every point in their way. The particular
type of problems where agents displacements are limited to adjacent cells, are commonly
referred as constrained search problems. Despite the evident limitation imposed by this
rule, it has been consistently adopted in multiple studies, including those in Yan and
Blankenship (1988), Eagle and Yee (1990), Hohzaki and Iida (1997), Dodin, Minvielle, and
Le Cadre (2007), Hong, Cho, and Park (2009), Hong, Cho, Park, and Lee (2009), Morin,
Abi-Zeid, Lang, Lamontagne, and Maupin (2009), Lanillos, Besada-Portas, Pajares, and
Ruz (2012), Lo et al. (2012) and Berger and Lo (2015). However, some authors such as
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Chung et al. (2009) also criticize the adoption of this rule based on the limitations here
discussed.

The assumption of local effectiveness of search effort discussed in Section 3.1.4.2 was
relaxed by Israel, Khmelnitsky, and Kagan (2012) for the OSP problem. This assumption
is not very limiting for the OSP problems, since it is often assumed that the sensing range
of an agent circumscribes at least a single cell with could represent hundreds of meters
in a real mission. However, Israel et al. (2012) went further in the relaxation of this
assumption and introduced the search on a topographic terrain. The authors assumed
natural limitations to the sight of view of grounded agents such as mountains. Under
this assumption, they defined two main types of areas; shadowed areas, which are those
that are not visible to the agent due to the presence of some obstacle; and the observed
areas, which are those areas that are clearly visible to the agent. Figure 3.3 illustrates
the idea.

Figure 3.2: Field of view in a topographic terrain

Retrieved from: Israel et al. (2012)

Similarly, Sarmiento, Murrieta, and Hutchinson (2003) provided an herustic method to
solve the OSP problem over a region which may present holes. Those holes can represent
obstacles that impose motion and visibility constraints. Their method is based on a
greedy algorithm that selects the most convenient location to be visited in the next step,
taking the POC and the time required to reach such location as criteria. This heuristic
can be solved in polynomial time, providing a relatively good but sub-optimal solution to
the problem. Various other researches have implemented branch and bound algorithms
for different versions of the OSP problem. For instance Eagle and Yee (1990) applied
a branch and bound algorithm for the path constrained search problem with a single
searcher and Dodin et al. (2007) also implemented a branch and bound algorithm, but
this time for a general OSP problem. By its side, Washburn (1997) tested a branch and
bound algorithm for the path constrained search problem but he focused on comparing the
performance of the algorithm when defining different bounds for the computational time.
It should be noted that any solution of a path planning problem which allows repeated
visits to the same point is implicitly an OSPEA problem since the effort assigned to
each point can be determined by standardization of the number of visits assigned to each
point over the whole number of visits assigned to all points of the region. The reciprocate
transformation is also feasible.

3.1.4.4 Probabilistic Search Control (PSC)

The PSC problem has the same two purposes than the OSPEA problem; (i) to determine
the best places to allocate search effort and (ii) to determine the best path to be followed
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by each agent in the distribution of the search effort. The main difference between both
types of problem is that OSPEA is solved under a planning perspective, while PSC is
solved under a control perspective. The difference among planning and control approaches
is that a single run of a planning model determines the solution for multiple steps of each
agent, while control algorithms guide search units step by step through the mission. In
order to build the search paths, a decision rule is first established. Such a decision rule
is typically a greedy optimization program that determines the next position of each
agent after each exploration. To start, each agent moves to a given cell according to the
specified rule and performs one exploration there. Then, the POC map is updated based
on findings of the agents and a new decision is taken by means of the decision rule. The
process is repeated until the target is found or a given stopping condition is reached.
This type of problem is oriented to automation contexts where there are robotic agents
performing the mission.

In Bourgault, Furukawa, and Durrant-Whyte (2004b), authors addressed a PSC prob-
lem where multiple agents search for a single, moving, non-evader target. In that study,
the authors assessed the impact that different types of obstacles present in the search
region, could make on the progress of the mission and then on the evolution of the POC
map. The constraints were demonstrated to have a significant effect on the computation
of the updated POC map, leading to over and underestimation of the importance of the
cells and the affecting the search sequences.

In Collins, Riehl, and Vegdahl (2007), the authors considered a PSC problem where
multiple UAVs and their sensing devices are controlled. This is the only study tackling
a PSC problem that did not applied a Bayesian filter for the updating of the POC map.
In contrast, they implement Equation 3.8, which is the one adopted by Berger et al.
(2013) for their OSP problem. A wide discussion on the inaccuracy of such an expression
was conducted in the previous section and there is nothing more to say, than suggesting
the use of Bayesian filters for this purpose, which is the adequate statistical tool for the
conditional nature of the updated POC.

A dynamic programming approach was implemented in Lau, Huang, and Dissanayake
(2005) for solving a PSC problem in a known built environment. Their approach allows
the agents to decide their displacements, based on projected information of the POS at
each location. The algorithm presents an acceptable solution time for instances up to 14
regions.

The updating of the POC map depends on the assumptions about the reliability
profile of the agents. Generalizing the idea introduced in Section 3.1.3, the reliability
of an agent depends on its accuracy indicating the presence or absence of the target
given that the target is actually present or not. In this sense, an agent can be prone
to deliver false positives, false negatives, neither or both types of verdicts. As it was
clearly stated, the Bayesian filter derived in Section 3.1.3 corresponds to the particular
case where agents are false alarm free, meaning that they will never indicate that the
target is present on an empty cell. The majority of SEA, OSPEA and OSP related
models work with this assumption. In contrast, many PSC studies assumes agents prone
to both types of errors. We did not found any study in this survey where the authors
assumed neither a perfect sensor nor a sensor prone just to false positives. In Table 3.3
we classified some PSC related studies found in this survey according to their assumption
about sensor reliability.
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Table 3.3: Sensor reliability on PSC problems

False
positive

False
negative

Papers

x

Simonin, Cadre, and Dambreville (2008);
Sun and Duan (2012); Gan, Fitch, and
Sukkarieh (2012); Furukawa, Mak, Durrant-
Whyte, and Madhavan (2012); Nguyen,
Lawrance, Fitch, and Sukkarieh (2013);
Lanillos, Gan, Besada-Portas, Pajares, and
Sukkarieh (2014); Kassem and El-Hadidy
(2014)

x x

Chung and Burdick (2007, 2008); Chung
(2009); Carpin, Burch, and Chung (2011);
Kwok and Holsapple (2011); Chung and Bur-
dick (2012)

When there are two or more agents performing the mission, the PSC problem can be
tackled with a centralized or decentralized approach. In a centralized scheme, each agent
shares the information achieved in its last exploration with a central system. Then,
this system updates a general POC map and makes the decision about the following
movement of each agent. This system is responsible of ensuring collision avoidance and
also a good performance of the team as a hole system. Some examples of PSC problems
solved under a centralized scheme can be found in Furukawa et al. (2012) and Wong,
Bourgault, and Furukawa (2005). On the other hand, decentralized schemes do not
consider any central system managing the POC updating or the decision making process.
In contrast to the centralized scheme, agents share their findings with the other agents and
then each agent decides its following destination independently. A common assumption
in decentralized schemes, is that agents are equipped with a collision avoidance system.
Some examples of PSC under decentralized schemes can be found in Bourgault, Furukawa,
and Durrant-Whyte (2003), Bourgault, Furukawa, and Durrant-Whyte (2004a) and Kwok
and Holsapple (2011). We provide a brief comparison between both schemes in Table 3.4,
where best qualified method on each comparison variable is signed by *.

A typical objective in PSC problems is the maximization of the POS at each step.
As stated in previous section, the maximization of the cumulative POs is the natural
objective whenever it is available a POC map and the reliability profiles of the agents.
Given that the PSC implies multiple independent decisions along the search path, the
maximization of POS at each step becomes the natural objective. Researches where
this objective was implemented can be found in Bonnie, Candido, Bretl, and Hutchinson
(2012), Chung and Burdick (2007) and Saito, Hatanaka, and Fujita (2010).

Another interesting objective function could be the maximization of the amount of
information about the target, collected by the search team at each step. In a real search
mission, the amount of information collected depends on the resolution implemented to
explore a given area region and also on the value of the POC at this area. Taking this into
consideration, the amount of information gathered by a search team can be estimated by
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Table 3.4: Comparison between centralized and decentralized schemes

Indicator C D Comments

Robustness *

It is not necessary for each agent to share informa-
tion with a central system. Communication delays
due to instability of the communication network will
be mitigated since information will be shared just
between close-by agents

Flexibility *

On a decentralized scheme, agents are semi-
independent and autonomous for deciding where to
go at each step. In a centralized scheme, this in-
dependence is not possible, since all agents need the
information of the other ones to know their following
location. In real search missions agents must be able
to perform tasks independently to the current state
of other agents

Solution
quality

*

The decisions that agent takes, affects the future
decisions of other agents and their expected perfor-
mance. Optimal solutions for the whole search team
at each time step, could not be warranted under de-
centralized schemes

C: Centralized scheme

D: Decentralized scheme

the sum of the POS at each exploration, weighted by a factor representing the resolution
implemented at each area. To account for multiple resolutions, studies in Carpin et al.
(2011), Chung and Carpin (2011) and Carpin, Burch, Basilico, Chung, and Kölsch (2013)
adopted a data structure known as quadtree. By means of this data structure, authors
in those studies are able to deal with the trade-off between sensing range/field of view
and resolution. When an air vehicle explores an area at a higher elevation, field of view
increases but its resolution diminishes. The opposite occurs when it explores a region at
a lower elevation. Figure 3.3 illustrates the idea with a quadtree.

Figure 3.3: Quadtree implemented on PSC with variable resolution

It will be ideal to explore the whole search region with the higher possible resolution;
nonetheless, it requires to explore at a very low altitude and takes much more time than
exploring the region at a lower resolution. Models implementing quadtrees are able to
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decide at which level each area should be explored, dealing with the trade off between
speed and resolution.

Hubenko, Fonoberov, Mathew, and Mezić (2011) also implemented a variable reso-
lution framework for a PSC problem. In contrast to the works in Carpin et al. (2011),
Chung and Carpin (2011) and Carpin et al. (2013), this author attributes the existence of
variable resolution to instability on the radius of the sensor due to uncertainties about the
search region and not to voluntary adaptations performed by the agents when exploring.
In their model, the radius of the sensor is assumed to be a random variable that varies
over a known interval. Their algorithm was compared with the billiard search and results
advice that their method vastly outperforms the test-method.

In order to reduce the myopic component present in the PSC, Chung and Burdick
(2007) adopted a receding horizon scheme to a PSC problem. They compared the per-
formance of their algorithm with the results obtained through random walk and search
methods inspired in saccadic movements of human eyes and drosophila’s search for food.
Results evidenced that longer look-ahead windows on receding horizon control have the
potential of improving the performance of the mission. They also found that receding
horizon control outperforms the other two search strategies tested in their study since it
requires fewer steps to find the target.

All previously mentioned studies assumed simple binary detection models for the de-
tection capabilities of the sensors. In Lanillos, Besada-Portas, Lopez-Orozco, and de la
Cruz (2014), the authors tackled a PSC problem dealing with complex non-linear/non-
differential models. To solve this problem, they implemented a Cross Entropy Optimiza-
tion (CEO) algorithm which was proved to find attractive solutions accumulating POS
faster than approaches in other works.

3.1.5 Characteristics of reviewed articles

Having defined our classification of ST representative problems, we proceed with the
breakdown of literature, based on seven features belonging to the problem setting. Fig-
ure 3.4 summarizes the eleven categories of problem setting features considered by us.
Categories where selected with the objective of providing a broad panorama of the prob-
lem setting considered in each study. With this in mind, we declared categories related
with three basic components of any search problem: agents, targets and spatio-temporal
framework. Each study in our sample was classified according to the type of problem
addressed and then by each one of those categories. Results are illustrated in Tables 3.5
to 3.8.

Note that each category allows to classify a given study in one of two possible con-
figurations. Nonetheless, there are some studies that may not be classified in any of two
configurations on a given category. This happens specifically when a study considers a
single search agent. Then, categories 2 to 7 become immediately not applicable to that
study, since they are oriented to studies considering multiple agents. In that cases, we
filled all cells from categories 2 to 7 with the symbol “-”.
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Agent features

1. Number of agents

1.1. One

1.2. Multiple

2. Decision scheme

2.1. Centralized

2.2. Decentralized

3. Effort

3.1. Homogeneous

3.2. Heterogeneous

4. Agent abilities

4.1. Homogeneous

4.2. Heterogeneous

5. Agent reliabilities

5.1. Homogeneous

5.2. Heterogeneous

6. Sensing range

6.1. Homogeneous

6.2. Heterogeneous

7. Travel times

7.1. Homogeneous

7.2. Heterogeneous

Target features

8. Number of targets

8.1. One

8.2. Multiple

9. Target state

9.1. Stationary

9.2. Moving

Scenario features

10. Time modeling

10.1. Discrete

10.2. Continuous

11. Space modeling

11.1. Discrete

11.2. Continuous

Figure 3.4: Categories for ST Taxonomy
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Table 3.5: Setting of SEA problems - 17 studies

1 2 3 4 5 6 7 8 9 10 11
Study

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2
B. Koopman (1956a) X - - - - - - - - - - - - X X X X
B. Koopman (1956b) X - - - - - - - - - - - - X X X X
B. O. Koopman (1957) X - - - - - - - - - - - - X X X X
Charnes and Cooper (1958) X - - - - - - - - - - - - X X X X
Brown (1980) X - - - - - - - - - - - - X X X X
B. O. Koopman (1979) X - - - - - - - - - - - - X X X X
Stone (1979) X - - - - - - - - - - - - X X X X
Hohzaki and Iida (2001) X - - - - - - - - - - - - X X X X
Iida et al. (2002) X - - - - - - - - - - - - X X X X
Dambreville and Le Cadre (2002) X X X X X X X X X X
Dambreville and Le Cadre (2004) X - - - - - - - - - - - - X X X X
Abi-Zeid and Frost (2005) X - - X X X X X X X X X
Hohzaki (2006) X - - - - - - - - - - - - X X X X
Simonin et al. (2009) X X X X X X X X X X X
Beltagy and Abd Allah El-Hadidy (2013) X - - - - - - - - - - - - X X X X
Le Thi, Nguyen, and Dinh (2014) X X X X X X X X X X X
Wang and Zhou (2015) X X X X X X X X X X X
Participation 71% 29% 24% 0% 12% 18% 29% 0% 12% 18% 24% 0% 29% 0% 88% 12% 53% 47% 41% 59% 71% 29%

Table 3.6: Setting of OSPEA problems - 5 studies

1 2 3 4 5 6 7 8 9 10 11
Study

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2
Lukka (1977) X - - - - - - - - - - - - X X X X
Assaf and Sharlin-Bilitzky (1994) X - - - - - - - - - - - - X X X X
Ablavsky and Snorrason (2000) X - - - - - - - - - - - - X X X X
DasGupta et al. (2004) X - - - - - - - - - - - - X X X X
Flushing et al. (2012) X X X X X X X X X X X
Participation 80% 20% 20% 0% 20% 0% 20% 0% 20% 0% 0% 20% 0% 20% 100% 0% 40% 60% 40% 60% 60% 40%
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Table 3.7: Setting of OSP problems - 34 studies

1 2 3 4 5 6 7 8 9 10 11
Study

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2
Yan and Blankenship (1988) X - - - - - - - - - - - - X X X X
Eagle and Yee (1990) X - - - - - - - - - - - - X X X X
Santos (1993) X X X X X X X X X X X
Dell, Eagle, Alves Martins, and Gar-
nier Santos (1996)

X X X X X X X X X X X

Washburn (1997) X - - - - - - - - - - - - X X X X
Hohzaki and Iida (1997) X - - - - - - - - - - - - X X X X
Hohzaki and Iida (2000) X - - - - - - - - - - - - X X X X
Sarmiento et al. (2003) X - - - - - - - - - - - - - - X X X
Song and Teneketzis (2004) X X X X X X X X X X X
Grundel (2005) X X X X X X X X X X X
Lau, Huang, and Dissanayake (2006) X - - - - - - - - - - - - X X X X
Dodin et al. (2007) X - - - - - - - - - - - - X X X X
Jotshi and Batta (2008) X - - - - - - - - - - - - X X X X
Morin et al. (2009) X - - - - - - - - - - - - X X X X
Hong, Cho, and Park (2009) X - - - - - - - - - - - - X X X X
Hong, Cho, Park, and Lee (2009) X - - - - - - - - - - - - X X X X
Chung et al. (2009) X X X X X X X X X X X
Royset and Sato (2010) X X X X X X X X X X X
Yu and Batta (2010) X - - - - - - - - - - - - X X X X
Waharte and Trigoni (2010) X X X X X X X X X X X
Morin, Lamontagne, Abi-Zeid, and
Maupin (2010)

X - - - - - - - - - - - - X X X X

Lo et al. (2012) X X X X X X X X X X X
Lanillos et al. (2012) X - - - - - - - - - - - - X X X X
Israel et al. (2012) X - - - - - - - - - - - - X X X X
Forsmo, Grøtli, Fossen, and Johansen
(2013)

X X X X X X X X X X X

Berger et al. (2013) X - - - - - - - - - - - - X X X X
Flushing et al. (2013) X X X X X X X X X X X
Berger, Lo, and Noel (2014) X X X X X X X X X X X
Khan, Yanmaz, and Rinner (2014) X X X X X X X X X X X
Lee and Morrison (2015) X X X X X X X X X X X
Kriheli, Levner, Bendersky, and Yakubov
(2015)

X X X X X X X X X X X

Berger and Lo (2015) X X X X X X X X X X X
Yetkin, Lutz, and Stilwell (2016) X X X X X X X X X X X
Berger, Lo, and Barkaoui (2016) X X X X X X X X X X X
Participation 50% 50% 50% 0% 44% 6% 38% 12% 29% 21% 47% 3% 35% 15% 74% 24% 44% 56% 82% 18% 91% 9%
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Table 3.8: Setting of PSC problems - 27 studies

1 2 3 4 5 6 7 8 9 10 11
Study

1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 7.1 7.2 8.1 8.2 9.1 9.2 10.1 10.2 11.1 11.2
Bourgault et al. (2003) X X X X X X X X X X X
Bourgault et al. (2004b) X X X X X X X X X X X
Bourgault et al. (2004a) X X X X X X X X X X X
Lau et al. (2005) X - - - - - - - - - - - - X X X X
Wong et al. (2005) X X X X X X X X X X X
Chung and Burdick (2007) X - - - - - - - - - - - - X X X X
Collins et al. (2007) X X X X X X X X X X X
Chung and Burdick (2008) X X X X X X X X X X X
Owen and McCormick (2008) X - - - - - - - - - - - - X X X X
Simonin et al. (2008) X - - - - - - - - - - - - X X X X
Chung (2009) X - - - - - - - - - - - - X X X X
Saito et al. (2010) X X X X X X X X X X
Carpin et al. (2011) X - - - - - - - - - - - - X X X X
Saito, Hatanaka, and Fujita (2011) X X X X X X X X X X X
Kwok and Holsapple (2011) X X X X X X X X X X X
Chung and Carpin (2011) X - - - - - - - - - - - - X X X X
Hubenko et al. (2011) X X X X X X X X X X X
Chung and Burdick (2012) X - - - - - - - - - - - - X X X X
Sun and Duan (2012) X - - - - - - - - - - - - X X X X
Gan et al. (2012) X X X X X X X X X X X
Furukawa et al. (2012) X X X X X X X X X X X
Bonnie et al. (2012) X X X X X X X X X X X
Nguyen et al. (2013) X - - - - - - - - - - - - X X X X
Carpin et al. (2013) X - - - - - - - - - - - - X X X
Kassem and El-Hadidy (2014) X X X X X X X X X X X
Lanillos, Gan, et al. (2014) X X X X X X X X X X X
Lanillos, Besada-Portas, et al. (2014) X X X X X X X X X X X
Participation 41% 59% 26% 30% 59% 0% 59% 0% 48% 11% 59% 0% 56% 4% 70% 30% 44% 52% 100% 0% 85% 15%
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Using our taxonomy to identify useful sources

In Section 3.1.2, we state that our taxonomy allows decision makers and researchers to
find studies corresponding to the same type of problem that they are facing and also
taking a similar problem setting into consideration. Here we will evidence this potential
with a simple hypothetical case.

Please consider a researcher planning to address the problem of searching for multi-
ple targets on the sea. Furthermore, he wants to account for search missions involving
different types of agents such as boats, aircrafts and satellites. Additionally, he wants to
address the problem from a strategic point of view, where search paths are not required
but search effort must be allocated at each sub-region of the possibility area. Then, the
search within each sub-region is assumed to be performed in a parallel sweep scheme.

Having understood our classification of the types of search problems, the researcher
will associate his particular problem with a SEA problem, given that he does not need
to define search paths, but he need to allocate the effort. Taking this into account, a
first step will be to focus on Table 3.5, which contains studies tackling the SEA problem.
By inspecting the Table, the researcher will find interesting the works at (Dambreville &
Le Cadre, 2002), (Abi-Zeid & Frost, 2005), (Simonin et al., 2009), (Le Thi et al., 2014),
(Wang & Zhou, 2015). All of these studies coordinate multiple search agents accounting
for different sources of heterogeneity. Particularly, he may want to detail the work in
(Dambreville & Le Cadre, 2002), which accounts for multiple targets. This way, our
taxonomy allowed our hypothetical researcher to easily find five useful studies for his
particular purposes.

Statistical findings

Multiple inferences can be done from the classification in Tables 3.5 to 3.8. To start, it is
evident a balance between studies considering a single searcher and multiple searchers in
both, the OSP and PSC problems. Contrarily, the SEA and the OSPEA problem show
a very less number of studies considering multiple agents than studies considering single
agents. The SEA, presents just a 29% of the studies tackling problems with multiple
agents (See Table 3.6). This low participation is partially explained by the fact that
the SEA was the first search problem addressed in ST literature, and was first modeled
under the simplest problem setting. By its side, the OSPEA reports a single study,
corresponding to the 20% OSPEA related studies, considering multiple agents.

Other interesting finding is that the decentralized decision scheme was only imple-
mented in PSC problems of our sample. It may be explained by the fact that the other
three types of problems are solved by means of a single run of a planning model that
coordinates the whole search team. However, a decentralized planning scheme where
planning models are solved independently for sub-sets of agents should not be discarded.
This kind of modeling may be suitable for cases where the tasks performed by a group of
agents, depend on the tasks performed by other group of agents. The problem addressed
in (Chung et al., 2009) is an example of such a case. In that study, a group of aerial
agents are responsible for identifying targets from air and ground agents are responsible
for intercepting and verifying devised targets.

Among the different sources of heterogeneity on the search team, agent reliabilities
and and travel times (categories 5 and 7, respectively) are the most commonly tackled.
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Both sources of heterogeneity have been considered by multiple studies in three of the
four types of problems. By its side, agent abilities have been considered as a source of
heterogeneity only in the OSP problem. Studies addressing this feature correspond to
the 12% of OSP problems and the 5% of the whole sample. A more detailed exploration
of the tables allows to identify combinations of sources of heterogeneity that have and
have not been considered yet. Here we revised the interactions between two sources of
heterogeneity. The combinations (effort - abilities), (effort - sensing range) and (abilities
- sensing range) were not considered simultaneously as sources of heterogeneity in any
of the studies of our sample. By its side, the OSP has been modeled, accounting for
the majority of combinations between sources of heterogeneity. The following sources
have been considered exclusively in OSP problems: (effort - travel times), (abilities -
reliabilities), (abilities - travel times), (reliabilities - sensing range) and (reliabilities -
travel times). SEA problems have only considered (effort - abilities) as a combined
source of heterogenity. By its side, the OSPEA have only been modeled under the
combined source of heterogeneity (sensing range - travel times). This analysis considering
only combinations of two sources of heterogeneity points out multiple opportunities of
improvement for future researches.

Categories 8 and 9 which are focused on target features, also present interesting be-
haviors. The scenario with multiple targets have been scarcely addressed in all types of
problems. In fact, that scenario was not addressed by any study tackling an OSPEA
problem in our sample. Problems involving a single target are often simpler to be solved
than those involving multiple targets, specially if the targets are moving since that condi-
tion would imply the definition of target-dependent motion models and special treatments
for POC update. However, a total of 10 studies in our study, representing the 13% of
the sample, addressed problems involving multiple targets, and 7 of them also considered
moving targets.

The last two categories to be assessed are 10 and 11, related to scenario features.
From the participation at each category, we can appreciate that both, the discrete and
continuous scheme for time and space have been consistently addressed in the literature,
with some particular exceptions. All PSC problems in our sample discretized the time,
and the 85% of them discretized the space. By the other side, only the 9% of the
articles related to the OSP problem, considered continuous space. That statistic coincides
with our description of the OSP problem in Section 3.1.4.3, where we advice that this
problem is often modeled over a discrete region composed of cells. The use of discrete
or continuous time and space can represent an advantage or a weakness of a model,
depending on the specific context where the model is going to be applied. Inventory
management problems are often solved over a time horizon which is naturally discretized
by the seasons. In that case, the time discretization results a suitable approach. By the
other side, machine scheduling problems usually involve heterogeneous jobs associated
with different processing times. The use of a discretized time horizon in this context
may imply the dilatation or contraction of real processing times in order to be fitted to
the discretized time steps. This second case is a scenario where the time discretization
may impose great limitations to the model in describing the reality. Real search missions
commonly involve displacements over the region consuming different amounts of time.
As the search region becomes larger, the imposition of time discretization will cause
major distortion in the model, since multiples of the time size will be necessarily used
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to allow the agent for completing short and also very long displacements. To avoid such
a distortion, many studies in ST limit agents displacements to the neighbor cells from
their current position. Unfortunately, as we explained in Section 3.1.4.3, this imposition
is only valid for a special type of agents whose exploration is continuous over a smooth
path. The time discretization significantly limits the ability of a model to account for
agents that are able to “jump” between distant cells without focusing on other cells in
their way.

The 45% of our sample tackled their search problems under discretized time schemes.
SEA and OSPEA problems are the two ones where the continuous time has attracted
more attention from researchers. Space discretization does not present clear limitations to
search problems. In fact, it fits very well with the procedures that many search agencies
implement in practice and allows search planners to assign specific tasks to agents during
the mission.

A comparison on the number of publication related to each type of problem shows
that the OSP is the most frequently type of problem addressed in our sample, with 34
studies. It is followed by the PSC problem with 27 studies. An analysis on the evolution
of the scientific production by type of problem shows that this has not always been the
situation. Figure 3.5 provides the basis for such an analysis.
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Figure 3.5: Scientific production per period - problem

It is evident from Figure 3.5 that ST literature has not only been growing at a higher
rate each time, but its constitution has suffered a transformation through years. In the
early years of ST, scientific literature was mainly composed by studies addressing SEA
problem. As stated in the introduction, the evolution of computers had an important in-
fluence on the evolution of ST literature. The availability of cheaper and faster computers
have progressively increase the range of characteristics that algorithms and models can
simultaneously take into account. As a result, the OSP and the PSC problems, which
are highly supported on computational processing, gained important participation on ST
field. The OSPEA seems to be a type of problem that has been consistently addressed at
a very low rate. However, as we mentioned in Section 3.1.4.3, any OSP problem allowing
multiple visits to the same region can be associated with an OSPEA problem. By this
point of view, the participation of the OSPEA problem may also have increased with the
years.
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Figure 3.5 also shows a rising trend in scientific production. Such tendency is expected
to persist as there still been multiple areas of improvement in the literature, some of them
evidenced in Tables 3.5 to 3.8.

3.1.6 Research gaps

Based on our survey, we state the following research gaps present on ST literature:

1. The presence of a non-instantaneous disaster on the search region has
not been considered yet

Most part of the sample in this review, only considered the POC map and the
coefficients of the transition matrix as criterion for conducting the search mission.
In scenarios where the search region is threatened by a non-instantaneous disaster,
it should be given some priority to those zones which the threatening phenomenon
have a grater potential to affect in near future periods. There is not any study in
our survey that has considered this fact in their model.

2. Mono-objective problems

The majority of studies in our survey modeled their problem as a single-objective
problem. As stated before, the majority of decision making real problems pursue
more than a single objective, and each missed objective in the formulation dimin-
ishes the validity of the model for real scenarios. In the case of search problems,
combinations of the following objectives, and so on, might be included in a decision
making model:

• Minimization of the expected span of the mission

• Minimization of the number of cells being exhausted by the disaster before
being explored

• Maximization of the area covered by the agents within a given time lapse

• Maximization of the cumulative POC

• Maximization of the cumulative POS

3. Missing or out of context updating of POC map

Several path planning models included in our survey keep the POC map constant
over each time window for which the model is solved. This fact considerably reduces
the efficacy of the search mission since the potential effect of explorations performed
by agents over a given location are not considered until the model is solved again. If
such probability is updated after each agent explores a cell, then all agents including
itself will be able to take their following decision based on updated data about
the expectancy of finding the target in different locations. Some of the articles
that aim to update the POC map within each time window, applied out of context
formulations that diminish the accuracy of their methods. Bayes formulations seems
to be the adequate tool for executing such update.
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4. Time discretization

Several authors in our sample discretized the time in their models in order to sim-
plify the handling of some elements in their formulations such as collision avoidance
and updating of POC map. Nonetheless, the discretization of the time consider-
ably limits the capacity of the model to account for some features in the motion of
search agents such as heterogeneity among their maximum velocities and accelera-
tions. Additionally, the time discretization forces the agents to perform unnecessary
explorations on their way to an attractive exploration zone.

5. Limitation on agents movements only to adjacent cells

This imposition causes serious limitations to missions where agents are able to
perform fast displacements among distant points without focusing in each section
of their paths. The imposition of this rule will prohibit such kind of displacements.

In order to fulfill those gaps defined above, we proposed the following research at the
proposal stage of this thesis:

The construction of a search methodology for scenarios where the search region is
threatened by a non-instantaneous disaster. Such methodology will include a math-
ematical model for path planning capable of combining the objectives of prioritizing
explorations in the most critical cells with the objective prioritizing explorations in
cells with the higher expectancy of holding the victim. This model will be suitable
for multiple heterogeneous agents that may be joined to the mission by different
emergency management agencies and research groups for real search missions. In
this case, the heterogeneity of agents will be associated with agent-dependent prob-
abilities of detection, travel times and exploration times. Additionally, the POC
map will be updated after the exploration performed by each agent on each cell.
This fact will improve the expected results of the decisions taken by agents within
a given time window. A network topology will be imposed over the search region in
order to allow displacements among any two locations, enhancing the description of
agents’ motion in comparison with models that discretize the time and those that
prohibits displacements to not adjacent cells.

At this time, our research has been executed and the stated methodology was gener-
ated according to the description provided in the paragraph above.
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Chapter 4

Problem Modeling

In the previous chapter, we presented a literature review in Search Theory which allowed
us to identify existent research gaps. In the present chapter, we illustrate the methods
and techniques that we implemented during the execution of this thesis in order to fulfill
such gaps.

We start by providing an overview of the search methodology environment. It includes
a general description of the system where our products will perform in cooperation with
other components. Then we introduce and explain our mathematical model in both,
its nonlinear and linear version. We also present the solution methods developed and
implemented for the solution of our research problem. Finally, we describe the simulation
scheme adopted to emulate disaster’s behavior.

4.1 Search methodology environment

4.1.1 Components of the search methodology

In this thesis we have focused on the development of a OR-based methodology for search
planning under dynamic disaster scenarios. Such a methodology is mainly composed
by a mathematical programming model and a solution method able to produce feasible
search sequences over most attractive zones of the search region. Although our focus is
on the development of those two products, for a better comprehension here we provide
an overview of those and other important components that would take part on real SAR
missions. Figure 4.1 illustrates those components.

The Danger map will be explained in Section 4.1.2, for now it can be seen a numerical
grid that indicates the current and predicted location and severity of the disaster.

The monitoring system is any kind of sensing system capable of tracking the disaster.
Its objective is to collect relevant information about the current state of the disaster that
could be used to forecast its future state. This system could be composed by a fleet of
UAVs provided with different kind of sensing devices depending on the disaster type. For
instance, In case of a wildfire, the sensing device could be thermal camera capable of
detecting different temperatures in the search region.

The processing system is a computerized module that is engaged of forecasting the
future state of the disaster and running our search planning model, taking resulting
forecast as an input. It is also responsible of the storage and updating of the POC map.
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Figure 4.1: Systems involved in our SAR system

The exploration system is composed by a team of searchers with heterogeneous fea-
tures. In this thesis, such heterogeneity is represented by agent-dependent travel times,
exploration times and sensing capabilities (reliabilities), specifically agent-dependent prob-
abilities of detection.

As its name suggests, the rescue system is composed by the team of rescuers and their
vehicles. Depending on the danger of the scenario, the rescue team could be supporting
the exploration system in the search task or waiting in a safe place for the advice of the
exploration system to aid a detected victim.

Finally, the communication system is typically a wireless network which supports the
information sharing between the other systems involved in the mission. This system is
critical, because in real search missions, it is prompt to suffer interruptions and then
part of the information does not reach the destination. There is an ongoing research
field on the design of robust wireless networks for mobile systems (Frew & Brown, 2009;
Ho, Grøtli, Sujit, Johansen, & Borges Sousa, 2013; Bekmezci, Sahingoz, & Temel, 2013).
This topic is not the main subject of this thesis and consequently, we will not address
it here. For this thesis, we will assume that the communication system is perfect and
imperturbable.

In this research, we are only concerned about the functioning of the processing and
the exploration system. The construction of the monitoring and rescue systems, the
wireless network and the navigation controllers for cases of autonomous search vehicles
are beyond the scope of this thesis. We expect those elements that will not be addressed
here, could be developed in future research.

Simulation of a disaster demands some expertise in the factors that influence its
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behavior. The acquisition of this expertise may demand investment of several hours
studying and learning how to operate the simulator. Due to the limited time budget
available for this research and without loss of generality, we decided to select only one
type of disaster to be considered for validations of our products. Specifically, we decided
to work with wildfires, given the availability of simplified fire propagation models suitable
for our purposes.

4.1.2 Search based on Danger and POC maps

Our search methodology is based on the aggregation of the five systems described in
Section 4.1.1. In that methodology, those systems work together as a macro system
which executes a search mission pursuing the following two objectives:

• Maximization of the cumulative probability of success collected by the agents.

• Maximization of the cumulative danger collected by the agents.

By collected we refer to the sum of the updated POC and the sum of the danger of the
cells that the agents visit through their search paths. To explain how this combination
will interact, we will first explain each one of them separately.

In a search based on a POC map, the responsible of the mission constructs an initial
POC map, based on the information available about victims location at the beginning
of the mission. As explained in Section 3.1.3 - Task 2, typical aspects considered for the
construction of the POC map are the topographic characteristics of the terrain, the last
reported sighting of the victim, and the coordinates of the last communication. Basically,
a POC map is a probability distribution over a grid, that represents the expectancy
of finding the victim on each cell. An example of a POC map is presented in Figure
4.2a. In this figure, those cells filled with a darker blue tone, possess a higher POC
value. Conversely, those cells filled with a lighter blue tone, possess a lower POC value.
Considering this convention, a natural intuition about how to perform a search based on a
POC map may be to prioritize explorations over darker cells and then advance exploring
thorough lighter cells. Figure 4.2b illustrates the concept of a search mission based on a
POC map.

(a) POC map representation over a grid (b) UAVs exploring based on POC map

Figure 4.2: POC on search Theory

An important portion of the sample in our literature review, adopted the POC map
as the unique criterion to structure the search plan. Apart from the POC map, we only
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identified one element considered by reviewed papers as a criterion to decide where to
search. Such an element is the transition matrix, which allows to account for the potential
displacement of the target through the search region.

In this thesis, we propose to consider a new element to be taken into account as
a criterion to lead the search mission. Such element, mentioned in Section 4.1.1 and
illustrated in Figure 4.1 is referred to in this thesis as Danger map (DA map). Here we
define the DA map as a distribution over the search region of the danger caused by the
disaster. The danger at a given location in turn can be associated with the closeness
between the current position of the disaster and such location, the probability of disaster
arriving there within a given horizon or alternatively, with the severity of the damage
that the disaster could cause if it reaches that point of the search region. For clarity, we
present example of a DA map for a search mission during a wildfire in Figure 4.3a.

(a) Wildfire representation over a grid
(b) UAVs exploring based on danger

(wildfire)

Figure 4.3: Search in presence of a wildfire

The black colored cells in Figure 4.3a represent burned areas. Those are cells that the
wildfire have destroyed yet. By their side, those cells filled with a dark red color, represent
locations that are currently fired and where the wildfire presents a high destructive power.
Cells with a lighter red fill represent currently firing areas where the wildfire present a
low destructive power. In this thesis we assume that the chances of finding the victim
alive in any of the three types of cells mentioned before, is zero. Consequently, it does not
have any sense to search for a victim in such cells. The search efforts should be focused
on yellow filled cells. Those cells filled with a dark yellow color represent locations with a
high DA coefficient and the remaining light yellow colored cells represent locations with
a medium DA coefficient. All yellow filled cells are locations that the wildfire have not
reached yet but there is a high risk of being devastated in a forthcoming time window.
In our methodology, DA coefficients might be obtained through the following two steps:

1. Recollection of relevant information of current state of the disaster that could be
used to forecast its future state.

2. Forecasting of future state of the disaster.

Such a procedure can be applied to different types of non-instantaneous disasters. In
the case of a search mission based on a DA map, the natural intuition is to prioritize
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explorations over darker yellow cells, and then advance exploring thorough lighter yellow
cells. We provide an example of such kind of mission in Figure 4.3b. In that figure, the
green UAVs compose the monitoring system, responsible of tracking the wildfire and the
blue UAVs conform the exploration system responsible of searching for victims.

The distribution of shapes over a DA map depends on the specific type of disaster
considered. The shapes in Figure 4.3a where localized over a defined section of the
search region. This distribution represents the typical behavior of a wildfire, with an
initial central point and the fire expanding around it. In contrast, a DA map for a
post-earthquake scenario might contain multiple scattered center points associated with
damaged structures that present risk of collapse. We present a DA map for such scenario
in Figure 4.4a. The corresponding search mission based on the DA map is presented in
Figure 4.4b. In both figures, the green UAVs represent the monitoring system and the
blue ones represent the exploration system.

(a) Earthquake representation over a grid (b) UAVs exploration based on danger
(earthquake)

Figure 4.4: Search after an earthquake

The combined adoption of the POC map and the DA map provides en alternative
for structuring search plans in presence of non-instantaneous disasters. The POC map
indicates the locations where it is more probable to find the victim. By its side, the DA
map highlights the most risky locations of the search region for a near future horizon.

The concept of a search mission based on the combined adoption of the POC and the
DA maps as planning criteria is illustrated in Figures 4.5a and 4.5b for the both, the
wildfire and post-earthquake scenarios considered before.

(a) UAVs exploring over a POC grid during a
wildfire

(b) UAVs exploring over a POC grid after an
earthquake

Figure 4.5: Search based on POC combined with DA
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As shown in Figures 4.5a and 4.5b, a search mission based on a combination of POC
and AD maps, will be characterized by a distribution of the search agents over most
likely and most risky zones. Cells with a high coefficient in both features will be the most
attractive locations to be explored.

4.1.3 Receding horizon for dynamic planning

As we have been explaining in previous sections, the disasters considered in this thesis
are dynamic threats that evolve during the search mission. As a direct consequence, a
suitable search methodology for such a scenario, is required to be adaptive. In Figure
4.6, we illustrate the receding horizon scheme that we propose in this thesis, aiming to
set up our methodology with the ability to adapt to disaster’s behavior. The receding
horizon scheme shown in Figure 4.6, is composed of four main processes, named moni-
toring, forecasting, path planning and exploration. Those processes are executed by the
monitoring, processing and exploration systems, described in Section 4.1.1.

First cycle

Second cycle

Third cycle

Fourth cycle

M F P E

M F P E

M F P E

M F P E

... ... . . .

Figure 4.6: Receding horizon scheme

The monitoring process involves the continuous tracking of the disaster and the col-
lection of relevant information about its current state that could be used to forecast its
future behavior. This task is responsibility of the monitoring system. The determination
of the mechanism for collecting the data is a crucial task in this process. It represents by
itself an engineering problem that is currently being subject of research. Some examples
of monitoring systems for disasters can be found in (Hirokawa, Kubo, Suzuki, Meguro, &
Suzuki, 2007; Adams & Friedland, 2011; Baiocchi, Dominici, Milone, & Mormile, 2013).
In this thesis, we will not consider the sampling process required to achieve updated
information about disaster’s behavior. In contrast, our experiments assume that the
monitoring system has access to real time information about the state of the disaster all
over search region.

The forecasting process consists of the estimation of relevant features about the future
state of the disaster. Disasters are complex phenomenons whose forecast often requires the
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computation of multiple formulations and the solution of several mathematical models.
For that reason, a good alternative to carry on such estimation may be via computational
simulation. Such an approach is implemented in this thesis. In order to emulate real life
missions, we implemented two types of disaster simulations. The first type of simulation
is a single run of the fire spread model representing the real behavior of the disaster.
By its side, the second type of simulation will be composed by multiple runs of the fire
spread model, which accounts for the forecast of disaster’s behavior.

The path planning process consists on the solution of our search planning model via
one of our solution methods. Finally, the exploration process deals with the the execution
of the plan provided by the processing system and the updating of the POC map.

Those four processes are executed multiple times in an iterative fashion during the
search mission. The mission starts with a preliminary track of the disaster. When such
exploration is ended, the information collected by the monitoring system is shared with
the processing system via the communication system. Then, a computerized module
executes the forecasting process and uses the outputs of the simulation as inputs of the
search planning model. The solution of the model is then shared with the exploration
system via the communication system and the search team executes the plan. In order
to maintain a continuous functioning of the exploration system during the whole mission,
the last forecast should remain valid at least until the search plan for the next cycle is
delivered by the processing system. The red dotted arrow in Figure 4.6 illustrates that
requirement. In a real search mission, the forecast horizon may be extended in order to
provide the protocol with time buffers in case that one of the three first processes suffers
a failure.

The dotted line in Figure 4.6 indicates that each cycle must start after the end of the
monitoring process of the previous cycle. In consequence, it is expected that both, the
monitoring system and the exploration system remain active during the whole mission.
The addition or removal of an agent during the mission will be possible at any moment
within a given cycle before the solution of the search planning model for the next time
window.

The rescue system, will be waiting at every moment of the mission for the advice of
the exploration system, via the communication system, to aid and rescue marked victims.

4.2 Formulations

4.2.1 Problem definition

Let us consider a single missing entity reported lost on a large open region hit by a non-
instantaneous natural disaster. The area of interest is discretized in a grid composed by
n cells, reflecting natural partitioning of the region or virtual sectioning defined by search
agencies in order to aid analytical methods and assign specific tasks to agents through
the mission (Chung et al., 2009). A team of heterogeneous agents K = {k1, . . . , km}
is deployed over the search region with the objective of identifying the location of the
missing entity. In order to represent possible displacements among cells, we adopt a
complete undirected graph G {I, A}, connecting cells I = {i1, . . . , in} through a set of
edges A = {(i, j) /i, j ∈ I}. The edge i, j is supposed to be the shortest path connecting
cells i and j, while avoiding any obstacle in the way. Sensing reliabilities αk, exploration
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times Ok and travel times Tk are considered as sources of heterogeneity, meaning that
they are all agent-dependent properties.

At the beginning of the mission, there is available a POC map1 resulting from the
exploitation of available data on the last known position and expected trip of the entity.
Such a POC map provides each cell with a coefficient γi, representing the probability
of finding the person there. The search horizon is decomposed in a receding horizon
fashion, with the purpose of dynamically adapt the search strategy to the behavior of
the disaster. At the beginning of each time window of the receding horizon scheme, a
forecast for disaster’s state is produced. As a result of the forecast, each cell acquires a
danger coefficient wi that will remain constant for the next time window, but may change
at future moments of the mission.

At each time window, all agents depart from their last assigned position in the previous
time window; in the case of the first time window, the manager is allowed to specify the
initial position of the agents. We have the following assumptions:

- The triangle inequality is satisfied so that tiv + tvj ≥ tij,

- There is no possibility of collision while agents travel among cells,

- Agents are false-alarm free, i.e. they will never announce a finding in a cell given
that the entity is not there,

- All agents has sufficient resources available (e.g. fuel, energy) for conducting the
largest possible search sequence on a time window of length W ,

- The communication system that trades information among agents and the planning
module is perfect and imperturbable,

- There is available information about the state of the disaster at each location of
the search region throughout the whole mission.

The problem consists on finding the search sequence of each agent, aiming to maximize
the chances of finding the entity safe and opportunely. Such goal is seek by means of the
following two objective functions:

- Maximization of the cumulative danger collected by the search team

- Maximization of the cumulative probability of success collected by the search team

The first objective prioritizes explorations in most risky zones, which are those with
a higher risk coefficient wi. The second objective prioritizes explorations in most likely
zones by sending most reliable agents to explore cells with the higher probability of
containment γi.

A feasible solution for the problem stated above must satisfy the following constraints:
(i) simultaneous explorations at the same cell must not be performed; (ii) The length of
the sequence of each agent should be shorter than the length of each time window W .

Following the decomposition of Search Theory problems, introduced by us in Section
3.1, we call this problem the Optimal Search Path with Effort Allocation Problem under
Dynamic Disaster (OSPEAD).

1See Section 3.1.3 - Task 2 for a full definition of POC map.

42



4.2.2 Updating the POC map

In this section, we introduce the recursive Bayesian filter that we implement in our mathe-
matical model for updating the POC map. Bayesian filters have been widely implemented
in the literature for such purpose, nonetheless, as mentioned in Section 3.1.6 several mod-
els in the literature present out of context updating mechanism or does not present any.
The majority of models that update the POC map after each exploration are those re-
lated to PSC problems2. In contrast, the majority of studies that tackle path planning
problems, such as the OSP2 and the OSPEA2 problems, only update the POC map at
the end of each time window. This fact represent a weakness of path planning models
because it implies loss of accuracy in the information that supports decision taking by
such models. To illustrate this idea, imagine that there are only two cells in the search
region, c1 and c2, where c1 has a POC of 0.8 and c2 has the remaining 0.2 of POC. Now,
imagine that a non-perfect search agent visits c1 one time and it does not find the target.
It is natural to think that the POC of c1 could not remain being 0.8 after this visit due
to the fact that now the expectancy of finding the target in c1 is lower. If the agent does
not update the POC map during a given time window, he will keep comparing 0.2 with
0.8 after each visit in such time window and then it will remain exploring c1 during the
whole time window.

To mitigate this issue, we developed a Bayesian filter able to update the POC map
depending on the number of visits carried out in a given cell. Such a filter allows an
accurate computation of the cumulative POS and aids our path planning model to decide
how long to remain exploring at each location. Our Bayesian filter is presented below.

Consider the following notation:

• αk: probability that agent k announces detection given that the target is present
in explored cell.

• p(f)
j : probability of containment of cell j after f visits.

Then, the conditional probability of containment of cell j after a single visit of agent
kcan be defined as follows:

p
(f+1)
j =

p
(f)
j (1− αk)

p
(f)
j (1− αk) + (1− p(f)

j )(1− δk)
(4.1)

In this thesis, we assume that UAVs are false-alarm free, which means that δ = 0.
Replacing this value in 4.1, we obtain the following expression:

p
(f+1)
j =

p
(f)
j (1− αk)
1− p(f)

j αk
(4.2)

We can apply the same formulation for any pair of subsequent visits on cell j. For
convenience, we present the expressions for f = 0, f = 1, f = 2 and f = 3.

p
(1)
j =

p
(0)
j (1− αk)
1− p(0)

j αk
(4.3)

2See Section 3.1.4 for a full description of the main four types of search problems
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p
(2)
j =

p
(1)
j (1− αk)
1− p(1)

j αk
(4.4)

p
(3)
j =

p
(2)
j (1− αk)
1− p(2)

j αk
(4.5)

p
(4)
j =

p
(3)
j (1− αk)
1− p(3)

j αk
(4.6)

We are interested in developing an expression for pfj , dependent on the value of p0
j ,

that could be implemented for any value of f . It means, that we aim to build a generic
Bayesian formulation that be able to provide the updated POC after any number of visits
to a given cell. To obtain such expression, we followed these steps:

1. Replace 4.3 in 4.4

p
(2)
j =

[
p

(0)
j (1− αk)
1− p(0)

j αk

]
(1− αk)

1−

[
p

(0)
j (1− αk)
1− p(0)

j αk

]
αk

(4.7)

2. Factorize to obtain an expression for p2
j , dependent on the value of p0

j

p
(2)
j =

p
(0)
j (1− αk)2

1− p(0)
j αk [1 + (1− αk)]

(4.8)

3. Replace 4.8 in 4.5

p
(3)
j =

[
p

(0)
j (1− αk)2

1− p(0)
j αk [1 + (1− αk)]

]
(1− αk)

1−

[
p

(0)
j (1− αk)2

1− p(0)
j αk [1 + (1− αk)]

]
αk

(4.9)

4. Factorize to obtain an expression for p3
j , dependent on the value of p0

j

p
(3)
j =

p
(0)
j (1− αk)3

1− p(0)
j αk [1 + (1− αk) + (1− αk)2]

(4.10)
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5. Replace 4.10 in 4.6

p
(4)
j =

[
p

(0)
j (1− αk)3

1− p(0)
j αk [1 + (1− αk) + (1− αk)2]

]
(1− αk)

1−

[
p

(0)
j (1− αk)3

1− p(0)
j αk [1 + (1− αk) + (1− αk)2]

]
αk

(4.11)

6. Factorize to obtain an expression for p4
j , dependent on the value of p0

j

p
(3)
j =

p
(0)
j (1− αk)3

1− p(0)
j αk [1 + (1− αk) + (1− αk)2 + (1− αk)3]

(4.12)

7. Finally, from equations 4.3, 4.8, 4.10 and 4.12 we can deduce the following general
expression for p

(f)
j , dependent on the value of p

(0)
j

p
(f)
j =

p
(0)
j (1− αk)f

1− p(0)
j αk

f−1∑
`=0

(1− αk)`
(4.13)

The Bayesian filter proposed in Equation 4.13 is a valid expression for the computation
of the updated POC as a conditional probability. However, this filter has the nonlinear
nature coming from its Bayesian basis. It is well known that nonlinear problems are
intrinsically more difficult to solve than their linear counterparts and the optimum is
only warranted for some specific structures of the model. Therefore, in this thesis we
conduct a linearization scheme which starts with the removal of the summation present
in the denominator of the filter, whose upper limit depends on the number of explorations,
which in turn is naturally a variable of search planning models. The expression for the
convergence of a truncated geometric series could be useful for this purpose as follows:

p
(f)
j =

p
(0)
j (1− αk)f

1− p(0)
j αk

(
1− (1− αk)f

1− (1− αk)

) (4.14)

Equation 4.14 can be then simplified to obtain Equation 4.15

p
(f)
j =

p
(0)
j (1− αk)f

1− p(0)
j (1− (1− αk)f )

(4.15)

Equation 4.15 is fundamental for the computation of one our the objective functions
of our path planning model. Further procedures to reach a linear version of our filter are
presented in Section 4.2.5.
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4.2.2.1 Contribution of our Bayesian recursive filter

In Section 3.1.4.3, we advised that several ST studies, many of them tackling the OSP
problem, present missing or out of context mechanisms for POC updating. As an example,
we cited the mathematical expression adopted in Berger et al. (2013), which is in fact one
of the most common approaches for such purpose. Such expression is rewritten below for
the convenience of the reader.

pc(t+1) =
∑

0≤l≤Vc

pc(t)(1− pcc)lVclt (3.8)

Where pcc is the probability on a specific visit to correctly detect the target in cell c; pc(t) is

the updated POC of cell c at the beginning of time interval t; and Vclt = 1 reflects a cumulative

number of explorations l in cell c, by the end of time interval t.

As it can be appreciated, Equation 3.8 only fits to the numerator of the recursive
Bayesian filter proposed by us in Equation 4.15. The difference between both approaches
is evidenced in Figures 4.7 and 4.8, where both expressions were implemented to compute
the POS and the cumulative POS, respectively. In both figures, the l represents the
number of explorations, the orange curve is the one obtained by means of the Bayesian
filter derived in Equation 4.15 and the yellow curve is the one obtained by means of the
approximation presented in Equation 3.8.
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Figure 4.7: Comparison of POS curves

It can be deduced that the approximation underestimates the remaining importance
of a cell after being explored and then it leads agents to leave cells prematurely. The
Bayesian filter introduced here is suggested by us as a valid updating mechanism for
future researches in order to avoid such issue.

4.2.3 Computation of cumulative POS

Let p
(f)
j be the probability of containment of cell j after f visits and αk be the probability

that agent k announces detection given that the target is present in explored cell, as in
Section 4.2.2. We need to define an expression for the cumulative POS that could be
implemented in our path planning model, accounting for the updating of the POC map
depending on the number of explorations performed at each location. Let POS(f) be
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Figure 4.8: Comparison of cumulative POS curves

the cumulative POS after f visits to a given cell. Assuming that the POC and the
agent reliability are independent events, the cumulative POS of agent k after a single
exploration at cell j, POS(1), can be computed as the product between the POC of cell
j and the probability of detection of agent k. The following equation illustrates that
computation:

POS(1) = p
(0)
j αk (4.16)

If agent k performs a new exploration at cell j, the probability of finding the target
will be obtained by multiplying the updated POC by the probability of detection of the
agent. This computation is illustrated in Equation 4.17.

POS(2) = p
(1)
j αk (4.17)

In this expression, the updated value of the POC must be obtained by implementing
the Bayesian filter introduced in Section 4.2.2. This computation will be analogue for
any future exploration. At each exploration, the only term that changes is the POC of
the cell that is being explored. One might be tented to implement Equation 4.18 instead
of Equation 4.17 for the computation of the POS at the second exploration. Nonetheless,
strictly speaking, Equation 4.18 computes the probability of not finding the target in the
first exploration but finding it at the second exploration if the POC remains the same
after the first exploration. As discussed in a previous section, the POC must not remain
the same after an exploration and then, Equation 4.18 become discarded.

POS(2) = p
(0)
j αk + p

(0)
j (1− αk)αk (4.18)

According to Equations 4.16 and 4.17, the the cumulative POS of agent k after two
explorations at cell j, can be computed as follows:

POS(2) = p
(0)
j αk + p

(1)
j αk (4.19)

This expression can be generalized for f visits at cell j as it is shown in Equation
4.20.

POS(f) =

f−1∑
`=0

p
(`)
j αk (4.20)
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Similar results were obtained by Frost (1998). Now that we defined general expressions
for the updating of the POC map and for the cumulative POS, we can proceed with the
introduction of our optimization model.

4.2.4 Mixed Integer Nonlinear Program (MINLP)

In this section we propose a MINLP mathematical formulation for the Optimal Search
Path with Effort Allocation Problem under Dynamic Disaster (OSPEAD), formally de-
fined in Section 4.2.1. The notation for the model is presented in Table 4.1. A thorough
explanation is subsequently made.

Table 4.1: Notation of the Mixed Integer Nonlinear Program

Sets

n Total number of cells, with set I = {1, . . . , n}
a Total number of agents, with set K = {1, . . . , a}

Mrk
Maximum number of visits allowed to agent k, with
set R = {1, . . . ,Mrk}

Mfk
Maximum number of consecutive exploration allowed to
agent k on the same visit, with set F = {1, . . . ,Mfk}

Region and horizon parameters

γi ∈ R[0,1] Probability of containment of cell i at the beginning
of the time window

wi ∈ {0, 1} Risk coefficient of cell i

W ∈ R≥0 Length of the time window

Agent parameters

αk ∈ {0, 1} Sensing reliability of agent k

Ok ∈ R≥0 Exploration time of agent k

tkij ∈ R≥0 Time required by agent k to cover the link ij

bki ∈ R≥0 Earliest moment at which agent k is able to visit cell i for first
time, given its initial position

Big-Ms

MT ∈ R≥0 Sufficiently large value of time

MP ∈ {0, 1} Sufficiently large value of probability

Decision variables

Y k
ir ∈ {0, 1} 1 if agent k is assigned to visit cell i for r-th time;

0 otherwise

Continued on next page

48



Table 4.1 – Continued from previous page

Xk
ir ∈ Z≥0 Number of scans performed by agent k on its r-th visit

to cell i

V k
fjr ∈ {0, 1} 1 if agent k performs f scans at its r-th visit to cell j;

0 otherwise

T kir ∈ R≥0 Arrival time of agent k, being its r − th visit to cell i

Φk
ir ∈ {0, 1} Probability of containment found by agent k on its r-th

visit to cell i

P k
ir ∈ {0, 1} Probability of success collected by agent k on its r-th

visit to cell i

Skijrr′ ∈ {0, 1}
1 if agent k ∈ K visits cell i ∈ I for r − th time before it
visits cell j ∈ I for r′ − th time; 0 otherwise

Bkd
irr′ ∈ {0, 1}

1 if agent k ∈ K visits cell i ∈ I for r − th time just
before agent d ∈ K visits such cell for r′ − th time;
0 otherwise

Hkd
irr′ ∈ {0, 1}

1 if agent k ∈ K visits cell i ∈ I for r − th time at any
moment before agent d ∈ K visits such cell for r′ − th time;
0 otherwise

The mathematical model can be written as follows:

Max
Xk

ir

CumDanger =
∑
k

∑
i

∑
r

wiX
k
ir (O1)

Max
Pk

ir

CumPOS =
∑
k

∑
i

∑
r

αkP
k
ir (O2)

s. t.

Routing

Xk
ir =

∑
k

fV kfir, ∀i,∀r, ∀k, (C1)

Y kir =
∑
k

V kfir, ∀i,∀r, ∀k, (C2)

∑
f

Ekfir ≤ 1, ∀i,∀r, ∀k, (C3)

Y kir ≤ Y ki(r−1), ∀i,∀r, ∀k : r>1, (C4)

T kir ≥ T ki(r−1) +Ok −MT (2− Y kir − Y ki(r−1)), ∀i,∀r, ∀k : r>1, (C5)

T kir ≥ bki Y kir, ∀i,∀r, ∀k, (C6)

T kir ≤WY kir, ∀i,∀r, ∀k, (C7)
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T kjr′ ≥ T kir +
(
tkii +Ok

)
Xk
ir + tkij −MT

(
1− Skijrr′

)
−MT

(
2− Y kir − Y kjr′

)
, ∀i,∀j,∀r, ∀r′,∀k, (C8)

Skiirr = 0, ∀i,∀r, ∀k, (C9a)

Skijrr′ + Skjir′r ≥ Y kir + Y kjr′ − 1, ∀i,∀j,∀r, ∀r′,∀k, (C9b)

Skijrr′ + Skjir′r ≤ Y kir, ∀i,∀j,∀r, ∀r′,∀k, (C9c)

Skijrr′ + Skjir′r ≤ Y kjr′ , ∀i,∀j,∀r, ∀r′,∀k, (C9d)

W ≥ T kir +
(
tkii +Ok

)
Xk
ir, ∀i,∀r, ∀k, (C10)

Scheduling

T dir′ − T kir ≥ OkXk
ir −MT

(
1−Hkd

irr′
)
−MT

(
2− Y kir − Y dir′

)
, ∀i,∀r, ∀r′,∀k, ∀d, (C11)

Tmir′′ ≥ T dir′ +Od −MT

(
2−Hkm

irr′′ −Bkdirr′
)
, ∀i,∀r, ∀r′,∀r′′,∀k, (C12)

Bkdirr′ ≤ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C13)

m∑
`=1

Mr∑
v=1

Bk`irv ≥ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C14)

m∑
`=1

Mr∑
v=1

B`divr′ ≥ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C15)

∑
k

∑
r

Bkdirr′ ≤ 1, ∀i,∀r′,∀d, (C16)

∑
d

∑
r′

Bkdirr′ ≤ 1, ∀i,∀r, ∀k, (C17)

Hkk
irr = 0, ∀i,∀r, ∀k, (C18a)

Hkd
irr′ +Hdk

ir′r ≥ Y kir + Y djr′ − 1, ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18b)

Hkd
irr′ +Hdk

ir′r ≤ Y kir, ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18c)

Hkd
irr′ +Hdk

ir′r ≤ Y djr′ , ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18d)

POC updating and POS collecting

P kir ≤
f−1∑
λ=0

(
Φkir(1− αk)λ

1− Φkir(1− (1− αk)λ)

)
+MP (1− Ekfir), ∀i,∀r, ∀k, ∀f, (C19)

P kir ≤MPY
k
ir, ∀i,∀r, ∀k, (C20)

Φkir′ ≤
Φdir(1− αd)f

1− Φdir(1− (1− αd)f )
+ (2−Bdkir′r − V dfir′), ∀i,∀r, ∀r′,∀k, ∀d,∀f, (C21)

Φkir ≤ γiY kir, ∀i,∀r, ∀k, (C22)

Domain

T kir, Φkir, P
k
ir ∈ R≥0, ∀i,∀r, ∀k, (C23)

V kfir ∈ {0, 1}, ∀f, ∀i,∀r, ∀k, (C24)

Skijrr′ ∈ {0, 1}, ∀i,∀j,∀r, ∀r′,∀k, (C25)
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Bkdirr′ , H
kd
irr′ ∈ {0, 1}, ∀i, ∀r, ∀r′,∀k, ∀d, (C26)

Xk
ir ∈ Z≥0, ∀i,∀r, ∀k, (C27)

4.2.4.1 Explanation of the formulation

Now that we have formally defined our model, we provide an explanation on its function-
ing.

Objective Functions

The Objective function O1 maximizes the cumulative danger, collected by all agents
during upcoming time window. This function will lead agents to prioritize visits to most
dangerous cells3.

Objective function O2 maximizes the cumulative probability of success (POS) col-
lected by all agents along their search sequences. This function is an extension of Equa-
tion 4.20 derived in Section 4.2.3 for multiple agents, multiple cells and and multiple
visits. Both Expressions are rewritten below for convenience of the reader.

Max
Pk
ir

CumPOS =
∑
k

∑
i

∑
r

αk P k
ir (O2)

POS(f) = αk

f−1∑
`=0

p
(`)
j (4.20)

As it can be inferred, variable P k
ir in the Objective function O2 represents the proba-

bility of containment (POC) collected by agent k on its r-th visit to cell i, which is then
multiplied by the reliability of the agent αk to obtain the cumulative POS. The value of
P k
ir is determined by means of the recursive Bayesian filter developed in Section 4.2.3,

which was implemented in Constraint C19. There, the variable Ek
fjr is responsible of

activating the constraint for the specific number of explorations performed by agent the
agent.

Constraints

Constraints C1, C2 and C3 determine the number of explorations performed by agent k
on its r-th visit to cell i. Constraint C1 ensures that the binary variable Ek

fir takes a
value of 1 if and only if the subscript f is equal to the number of visits assigned to agent
k on its r-th arrival to cell i. Constraint C2 links the number of explorations with the
visited locations. By its side, Constraint C3 enforces the number of explorations assigned
to agent k on its r-th visit to cell i to be unique.

Constraint C4 states that a visit r to cell i in the sequence of agent k can only be
assigned if the visit r-1 was also assigned. Coherently, Constraint C5 states that visit r

3See Section 4.1.2 for a full definition of the facts that makes a zone to become dangerous in this
thesis.
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of agent k to cell i must be performed after visit r-1 of such agent to that cell. Originally,
this constraint is oriented to enforce that T kir > T ki(r−1) if both, Y k

ir and Y k
i(r−1) are equal

to one. Nonetheless, strict inequalities are not treated in linear programming, since the
solution is not guaranteed to exist on corner points. Then, we added the value ok to the
right side in order to change which allowed us to change the strict inequality to a greater
or equal one.

Constraint C6 determines the earliest time at which agent k is able to visit cell i
for first time. This constraint assumes that the agent is ready to launch from its initial
position at time 0 of the planning horizon. Otherwise, the set-up time should be added
to bki . Constraint C8 determines the exploration sequence for agent k, reflected on the
arrival times T kir. Constraints C9b, C9c and C9d establish the relation between sequencing
variables S and assignment variables Y . According to such constraints, Skijrr′ and Skjir′r
can only take a positive value if both, the r-th visit on cell i and the r′-th visit on cell j
are assigned to the sequence of agent k. If at least one of those assignments is not done,
both sequencing variables are fixed to be zero. Finally, Constraint C10 determines the
maximum length of any sequence.

Constraint C11 avoids simultaneous explorations of different agents to the same cell.
The transitivity among predecessors at a given cell is ensured by Constraint C12. It
states that if agent k in visits cell i for r-th time just before agent d visits that cell for
r′-th time and agent k in visits cell i for r-th time at any time before agent m visits
that cell for r′′-th time, then the arrival time of agent m on its r′′-th visit to cell i must
be greater than the arrival time of agent d on its r′-th visit to such cell. An illustrative
example is presented in figure 4.9. There, the three agents k, d and m are assigned to
visit the yellow cell in that order. The solid line represent the immediate precedence of
agent k over agent d, while the dotted line represent the non-immediate precedence of
agent k over agent m, implying that d must enter on the cell before m.

m d k
Bkd
irr′

Hkm
irr′′

Figure 4.9: Transitivity constraint

Constraint C13 states that every immediate predecessor should also be a general
immediate predecessor. Constraints C14 and C15 imply that every general predecessor
should also be an immediate predecessor and every general successor should also be an
immediate successor, respectively. On the other hand, Constraints C16 and C17 allow
an agent to be immediate predecessor and successor of at much a single agent.

Similarly to Constraints C9b- C9d, Constraints C18b - C18d establish the relation
between sequencing variables H and assignment variables Y . They state that Hkd

irr′ and
Hdk
ir′r can only take a positive value if both, the r-th visit on cell i and the r′-th visit on

cell j are assigned to the sequence of agent k.
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Switching Constraints C7, C20 and C22 allows to assign values to arrival time T kir,
collected probability of containment P k

ir and updated probability of containment Φk
ir,

respectively, only if visit r to cell i is part of the sequence of agent k. If at least one of those
assignments is not done, both sequencing variables are fixed to be zero. Constraints C9a
and C18a prohibit reflexive predecessor relation within and among sequences, respectively.

Finally, but essential, Constraint C21 determines the updated POC that every agent
finds at each cell on its sequence, given previous explorations assigned to other agents.
Such update is done by means of the Bayesian filter introduced in section 4.2.2. Con-
straints C23 to C27 state the domain of the variables.

4.2.4.2 Valid bounds for Mrk and Mfk

In previous sections we explained the limitations that time discretization impose to the
model, reducing its capacity of describing the dynamics in agents’ motion. Our modeling
approach uses visits (r) and explorations (f) instead of time instants, allowing agents to
move free among any pair of cells at any moment within the time window. Given that
both, r and f are indices in our model, it is necessary to define the maximum number of
visits that an agent will be allowed to perform within the time window and the maximum
number of explorations that an agent will be allowed to perform per visit. Those values
will determine the size of the sets R and F according to the notation presented in Table
4.1.

Given that agents may be heterogeneous in their maximum kinematic speed, acceler-
ation and scanning time, it is possible to define agent-dependent bounds Mr and Mf .
The steps that we implemented to define valid bounds for both parameters are illustrated
below. In the case of Mrk, we assume that tkij = tkji ∀ i, j, k.

Bounds for Mrk:

1. Select an agent k,

2. Take a cell i as first destination of agent k,

3. Make t1 the time required for agent k to move from its initial position p0 to its first
destination i, plus its exploration time ok,

4. Make t2 the time required for agent k to move from its first destination i to the
closest neighbor i′, plus its exploration time ok,

5. Make Mi =

⌊
W − t1
2 ∗ t2

⌋
+ 1,

6. Make Mrk = Maxi {Mi}.

Bounds for Mfk:

1. Select an agent k

2. Make t1 the time required for agent k to prepare for a new scan at cell (if necessary),
plus its exploration time ok
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3. Make Mfk =

⌊
W

t1

⌋
4.2.4.3 Valid big-M values

Seeking to obtain a linear version of our problem, we implemented the big-M approach at
multiple constraints. Theoretically, any sufficiently large value of M will be suitable for
our formulation. Nonetheless, it is well-known that very large values of M could cause
numerical instability, leading to inaccurate results. In this section we briefly define valid
values for Ms in our model.

Valid MT value. This parameter is present in the following set of constraints:

T kir ≥ T ki(r−1) +Ok −MT (2− Y k
ir − Y k

i(r−1)), (C5)

T kjr′ ≥ T kir +
(
tkii +Ok

)
Xk
ir + tkij −MT

(
1− Skijrr′

)
−MT

(
2− Y k

ir − Y k
jr′

)
, (C8)

T dir′ − T kir ≥ OkX
k
ir −MT

(
1−Hkd

irr′

)
−MT

(
2− Y k

ir − Y d
ir′

)
, (C11)

Tmir′′ ≥ T dir′ +Od −MT

(
2−Hkm

irr′′ −Bkd
irr′

)
, (C12)

In all cases MT is used to inactivate the constraint when it is necessary. The large
number that must be canceled by MT could be T kir + Ok. We know that T kir is bounded
by W from Constraint C7. Taking this into account, we defined MT as follows:

MT = W +MaxO,
Where MaxO = Maxk {Ok}.

Valid MP value. By its side, MP is present in the following two constraints:

P k
ir ≤

f−1∑
λ=0

(
Φk
ir(1− αk)λ

1− Φk
ir(1− (1− αk)λ)

)
+MP (1− Ek

fir), (C19)

P k
ir ≤MPY

k
ir , (C20)

In this case we must search for a value sufficiently large to allow real feasible POC
accumulation. Given that Mfk represents the largest number that f could take, a valid
bound for MP could be found based on the following procedure:

1. Select a pair agent - cell (k, i),

2. Make Tmpik the value of cumulative POC according to Constraint C19, assuming
that agent k is the first agent that arrives to cell i, finding its POC as γi, and it
performs Mfk scans there,

3. Make MP = Maxik {Tmpik}.
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4.2.5 Piecewise linear approximation

The optimization program provided above was built based on the formulations proposed
by Dondo and Cerdá (2007), Wex, Schryen, Feuerriegel, and Neumann (2014) and Berger
et al. (2013) for the MDVRPTW4 with heterogeneous vehicles, the RUASP5 and the
OSP6, respectively. The resulting model is majorly linear, which is an advantage in terms
of tractability. Unfortunately, Constraints C19 and C21 remain nonlinear since both of
them implement the recursive Bayesian filter derived in Section 4.2.2, which is intrin-
sically nonlinear. However, modern solvers have relatively efficient methods for Mixed
Integer Linear Programs (MILPS) in terms of accuracy and solution time (Borghetti,
D’Ambrosio, Lodi, & Martello, 2008). Therefore, we decided to implement a lineariza-
tion scheme in order to obtain a MILP version of our OSPEAD model. Let us first define
a property of our model that will support our linearization approach.

Separability: Separable functions are those that can be decomposed into sums of
single decision variables, and separable programs are nonlinear programs over sep-
arable objective functions and constraints (Rardin, 1998). Those types of problems
have much similarity to linear programs, where functions are always scalar multiples
of the decision variables. Therefore, the separability of a nonlinear program is a
desired property that offers the possibility of building an approximate linear version
of the original NLP by means of piecewise linear approximation. Both nonlinear
constraints in our model are separable, since each term of the Bayesian filter only
depends on Φk

ir, and remaining terms in both equations are linear.

The expression to be approximated corresponds to our recursive Bayesian filter as a
function of the updated POC, taken αk and f as constants. Equation 4.21 illustrates
such function; for simplicity, in this section we will call it G for both constraints.

G
(
Φk
ir

)
=

Φd
ir′(1− αd)f

1− Φd
ir′(1− (1− αd)f )

(4.21)

Piecewise approximation consists in dividing the domain of Φk
ir into a collection of

intervals c and interpolate linearly to approximate the value of G. Following such proce-
dure, Equation 4.21 can be approximated according to Expression 4.22.

G
(
Φk
ir

)
≈ Ĝ

(
Φk
irc

)
=
∑
c

mk
λcΦ

k
irc (4.22)

where mk
λc is the slope of the piecewise approximation in the segment c. The value of

the original variables can be computed as the sum of corresponding new variables over
all the segments. The approximation scheme is almost complete by adding the following
set of constraints to the model:

0 ≤ Φirck ≤ zkc − zk(c−1) (4.23)

4Multi Depot Vehicle Routing Problem with Time Windows.
5Rescue Unit Assignment and Scheduling Problem.
6Optimal Search Path Problem.
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where zc are the interval breakpoints for variable Φirck (zk0 = 0).

Resulting linear program gives a correct representation of the original problem, when-
ever the solution satisfy Condition 4.24. It states that the variable corresponding to
a given segment should take its maximum value in order to allow the variable in the
subsequent segment to be positive.

Φk
ir(c+1) > 0 only if Φk

irc = (zc − z(c−1)), ∀i, r, k, c (4.24)

whith z0 = 0

Note that slopes m can be defined independently of the cell i and the visit r indices.
Figure 4.10 illustrates the approximation scheme for two dummy curves with parameters
(αk, f) = (0.9, 1) and (αk, f) = (0.5, 1), being the lower one, that corresponding to the
greater αk. It is evident that the precision of the approximation in that example is not
quite good, specially for higher values of αk. It can be easily noted that the accuracy
of piecewise approximation can be enhanced by increasing the number of breakpoints
or by defining better values for the same number of breakpoints. The first approach
seems attractive since a sufficiently large number of breakpoints will provide any desired
level of accuracy. Nonetheless, as explained above, piecewise approximation requires the
introduction of a new set of variables, each one representing the value of the original
decision variable on a given interval of the domain. If we take q as the number of
segments in our approximation, it will be necessary to add i∗r∗k ∗q new variables to the
model. Based on it we should proceed carefully with the first way of improving piecewise
approximation accuracy.
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ir

G(Φk
ir)

Figure 4.10: Accuracy of piecewise linear approximation

The second approach consists on finding good values for the same number of break-
points. However, for some types of problems it could be difficult to identify suitable
breakpoints, specially when the domains of decision variables are not naturally upper
bounded. In those cases, the analyst may not be able to figure out the shape of the curve
until the model has been solved. In our case, the decision variable Φk

ir is a probability and
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then it ranges in the interval [0, 1]. To decide how many and where to add breakpoints,
we plotted G(Φk

ir) for several combinations of αk and f , searching for common inflection
points. Resulting plot is shown in Figure 4.11.
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Figure 4.11: Plot sectioned by slope behavior

Based on the slopes of the curves in Figure 4.11, we can identify three main relevant
sections. The region on the right side of the plot (0.7 − 1.0), where the inflection point
is often located; the middle region, which has no sharp curves but still being clearly
nonlinear (0.3 − 0.7); and finally the left side region, where slopes tend to be constant
(0.0 − 0.3). Based on this behavior, we decided to work with the set of breakpoints
Z = {0.3, 0.5, 0.7, 0.8, 0.9, 0.96, 1}. Resulting approximation for the example provided
above is illustrated in Figure 4.12 and its goodness of fit is tested in Table 4.2.
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Figure 4.12: Curve fitting reached

It is evident from Figure 4.12 and Table 4.2 that our approximation has a very good
fit to the original function. Even the worst Mean Standard Error, the one corresponding
to curve 6, is relatively small in comparison with the values that needs to be calculated by
the expression, which are probabilities. It can be also appreciated from Figure 4.12 that
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the greatest deviations in that curve occur at values of Φk
ir higher than 0.95. However,

real life missions are commonly subject to high uncertainty and such high values for the
POC of a given cell are unlikely. In contrast, the approximation is much better for mid
and low values of Φk

ir, which are more common.

Table 4.2: Goodness of fit of the approximation

Curve αk f Error (MSE)
1 0.1 1 9,45E-07
2 0.1 14 3,28E-05
3 0.5 1 1,72E-05
4 0.5 5 2,80E-04
5 0.9 1 5,37E-05
6 0.9 2 1,42E-03

There is still a last thing to consider before finishing the approximation process. That
last thing is the non-convexity of our problem.

Non-convexity: Convex programs are those where: (a) convex objective functions
are minimized or (b) concave objective functions are maximized, subject to concave
≥ constraints, convex ≤ ones and linear equalities (Rardin, 1998). By the other
side, piecewise approximations to separable convex programs have an optimal so-
lution satisfying sequencing condition 4.24. Contrarily, non-convex models impose
additional difficulties to the application of piecewise linear approximation. In order
to proceed with the approach, it is necessary to introduce a set of binary variables
and switching constraints that will push the decision variable to its upper bound if
the subsequent one is positive.

It is straightforward to determine that our problem is non-convex. The presence of
integer decision variables is a sufficient condition to classify a model as non-convex
(FrontlineSolvers, n.d.). Consequently, we proceed to define a set of binary decision
variables Rk

irc and the following set of constraints:

(zc − z(c−1))R
k
(c+1) ≤ Φk

irc ≤ (zc − z(c−1))R
k
irc ∀i, r, k, c (4.25)

Now that our linear approximation is completely defined, we proceed to present the
linear version of our mathematical model.

4.2.6 Mixed Integer Linear Program (MILP)

Considering the piecewise approximation derived in previous section, the notation of the
linear version of our model is presented in Table 4.3.
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Table 4.3: Notation of the Mixed Integer Linear Program

Sets

n Total number of cells, with set I = {1, . . . , n}
a Total number of agents, with set K = {1, . . . , a}

Mrk
Maximum number of visits allowed to agent k, with
set R = {1, . . . ,Mrk}

Mfk
Maximum number of consecutive exploration allowed to
agent k on the same visit, with set F = {1, . . . ,Mfk}

Q
Number of segments in the piecewise linear approximation,
with set C = {1, . . . , Q}

Region and horizon parameters

γi ∈ R[0,1] Probability of containment of cell i at the beginning
of the time window

wi ∈ {0, 1} Risk coefficient of cell i

W ∈ R≥0 Length of the time window

Agent parameters

αk ∈ {0, 1} Sensing reliability of agent k

Ok ∈ R≥0 Exploration time of agent k

tkij ∈ R≥0 Time required by agent k to cover the link ij

bki ∈ R≥0 Earliest moment at which agent k is able to visit cell i for first
time, given its initial position

Piecewise Parameters

zc ∈ R≥0 Breakpoint at segment c

mk
λc ∈ R≥0 Slope of segment c for agent k and f scans

Big-Ms

MT ∈ R≥0 Sufficiently large value of time

MP ∈ {0, 1} Sufficiently large value of probability

Decision variables

Y k
ir ∈ {0, 1} 1 if agent k is assigned to visit cell i for r-th time;

0 otherwise

Xk
ir ∈ Z≥0 Number of scans performed by agent k on its r-th visit

to cell i

Continued on next page
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Table 4.3 – Continued from previous page

V k
fjr ∈ {0, 1} 1 if agent k performs f scans at its r-th visit to cell j;

0 otherwise

T kir ∈ R≥0 Arrival time of agent k, being its r − th visit to cell i

Φk
ir ∈ {0, 1} Probability of containment found by agent k on its r-th

visit to cell i

Φk
irc ∈ {0, 1} Artificial value for Φk

ir on segment c of the linear approximation

P k
ir ∈ {0, 1} Probability of success collected by agent k on its r-th

visit to cell i

Skijrr′ ∈ {0, 1}
1 if agent k ∈ K visits cell i ∈ I for r − th time before it
visits cell j ∈ I for r′ − th time; 0 otherwise

Bkd
irr′ ∈ {0, 1}

1 if agent k ∈ K visits cell i ∈ I for r − th time just
before agent d ∈ K visits such cell for r′ − th time;
0 otherwise

Hkd
irr′ ∈ {0, 1}

1 if agent k ∈ K visits cell i ∈ I for r − th time at any
moment before agent d ∈ K visits such cell for r′ − th time;
0 otherwise

The linear approximation to our planning model is presented below:

Max
Xk

ir

CumDanger =
∑
k

∑
i

∑
r

wiX
k
ir (O1)

Max
Pk

ir

CumPOS =
∑
k

∑
i

∑
r

αkP
k
ir (O2)

s. t.

Routing

Xk
ir =

∑
k

fV kfir, ∀i,∀r, ∀k, (C1)

Y kir =
∑
k

V kfir, ∀i,∀r, ∀k, (C2)

∑
f

Ekfir ≤ 1, ∀i,∀r, ∀k, (C3)

Y kir ≤ Y ki(r−1), ∀i,∀r, ∀k : r>1, (C4)

T kir ≥ T ki(r−1) +Ok −MT (2− Y kir − Y ki(r−1)), ∀i,∀r, ∀k : r>1, (C5)

T kir ≥ bki Y kir, ∀i,∀r, ∀k, (C6)

T kir ≤WY kir, ∀i,∀r, ∀k, (C7)
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T kjr′ ≥ T kir +
(
tkii +Ok

)
Xk
ir + tkij −MT

(
1− Skijrr′

)
−MT

(
2− Y kir − Y kjr′

)
, ∀i,∀j,∀r, ∀r′,∀k, (C8)

Skiirr = 0, ∀i,∀r, ∀k, (C9a)

Skijrr′ + Skjir′r ≥ Y kir + Y kjr′ − 1, ∀i,∀j,∀r, ∀r′,∀k, (C9b)

Skijrr′ + Skjir′r ≤ Y kir, ∀i,∀j,∀r, ∀r′,∀k, (C9c)

Skijrr′ + Skjir′r ≤ Y kjr′ , ∀i,∀j,∀r, ∀r′,∀k, (C9d)

W ≥ T kir +
(
tkii +Ok

)
Xk
ir, ∀i,∀r, ∀k, (C10)

Scheduling

T dir′ − T kir ≥ OkXk
ir −MT

(
1−Hkd

irr′
)
−MT

(
2− Y kir − Y dir′

)
, ∀i,∀r, ∀r′,∀k, ∀d, (C11)

Tmir′′ ≥ T dir′ +Od −MT

(
2−Hkm

irr′′ −Bkdirr′
)
, ∀i,∀r, ∀r′,∀r′′,∀k, (C12)

Bkdirr′ ≤ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C13)

m∑
`=1

Mr∑
v=1

Bk`irv ≥ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C14)

m∑
`=1

Mr∑
v=1

B`divr′ ≥ Hkd
irr′ , ∀i,∀r, ∀r′,∀k, ∀d, (C15)

∑
k

∑
r

Bkdirr′ ≤ 1, ∀i,∀r′,∀d, (C16)

∑
d

∑
r′

Bkdirr′ ≤ 1, ∀i,∀r, ∀k, (C17)

Hkk
irr = 0, ∀i,∀r, ∀k, (C18a)

Hkd
irr′ +Hdk

ir′r ≥ Y kir + Y djr′ − 1, ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18b)

Hkd
irr′ +Hdk

ir′r ≤ Y kir, ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18c)

Hkd
irr′ +Hdk

ir′r ≤ Y djr′ , ∀i,∀j,∀r, ∀r′,∀k, ∀d, (C18d)

POC updating and POS collecting

P kir ≤
f−1∑
λ=0

∑
c

(
mk
λcΦ

k
irc

)
+MP (1− Ekfir), ∀i,∀r, ∀k, ∀f, (C19)

P kir ≤MPY
k
ir, ∀i, ∀r, ∀k, (C20)

Φkir′ ≤ +
∑
c

(
md
fcΦ

d
irc

)
(2−Bdkir′r − V dfir′), ∀i,∀r, ∀r′,∀k, ∀d,∀f, (C21)

Φkir ≤ γiY kir, ∀i,∀r, ∀k, (C22)

Φkirc ≥ (zkirc − zkir(c−1))R
k
ir(c+1), ∀i,∀r, ∀k, ∀c, (C23a)

Φkirc ≤ (zkirc − zkir(c−1))R
k
irc, ∀i,∀r, ∀k, ∀c, (C23b)

Φkir =
∑
c

Φkirc, ∀i,∀r, ∀k, (C24)
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Domain

T kir, Φkir, P
k
ir ∈ R≥0, ∀i,∀r, ∀k, (C25)

Φkirc ∈ R≥0, ∀i,∀r, ∀k, ∀c, (C26)

V kfir ∈ {0, 1}, ∀f, ∀i,∀r, ∀k, (C27)

Skijrr′ ∈ {0, 1}, ∀i,∀j,∀r, ∀r′,∀k, (C28)

Rkirc ∈ {0, 1}, ∀i,∀r, ∀k, ∀c, (C29)

Bkdirr′ , H
kd
irr′ ∈ {0, 1}, ∀i, ∀r, ∀r′,∀k, ∀d, (C30)

Xk
ir ∈ Z≥0, ∀i,∀r, ∀k, (C31)

This linear version of our model is the one that we implemented in our computation
experiments that will be shown later. Note that Constraint C24 and variable Φk

ir could be
omitted and the sum of artificial variables Φk

irc over the segments could be used instead
of it. Nonetheless, for the sake of clarity, we included both types of variables, Φk

ir and
Φk
irc, in our formulation.
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Chapter 5

Solution Methods

In this chapter we present the solution techniques that we developed to solve the mathe-
matical bi-objective problem defined in Section 4.2.1. Until today, there are several well
known optimization problems that have been studied in their single-objective version.
However, in the real world it is common to find that there are several criterion to be
taken into account in the decision for the majority of problems. In many cases, such
multiple objective conflict one with each other. In the case of a search in presence of a
non-instantaneous disaster, it could be intuitive to prioritize zones with the higher POC
and also zones with a high probability of being exhausted by the phenomenon in a near
future moment. The two objectives included in our model, are designed to pursue such
prioritization.

The optimality concept is not directly applicable to multi-objective problems, specially
for cases where there is at least one objective that is expressed in different units than the
others. In multi-objective optimization, it is required to introduce the concept of Pareto-
optimality. A Pareto-optimal vector is a set of solutions for a given multi-objective
problem, each one which have a higher value than the others for at least one of the
objective functions. Figure 5.1 illustrates the idea for a bi-objective optimization, where
both objectives are maximized. In this Figure, the light dots over the orange line represent
solutions in the Pareto-optimal vector, and the dark dots represent dominated solutions.
As it can be appreciated, there is no solution that overwhelms a Pareto-optimal solution
in both objectives. When the optimization problem has multiple objectives, the solution
consists in building the Pareto front for the problem and then selecting one Pareto-optimal
solution to be implemented.

Our first attempt is based on the construction of a quasi-exact Pareto front through the
iterative solution of our MILP on an ε-constraint fashion. Our second approach attempts
to build an approximated Pareto front by implementing an Ant Colony Optimization
algorithm. Our third alternative is a lexicographic based method where the two extremes
of the Pareto front are identified by solving our MILP.
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Not dominated solution

Dominated solution

O1

O2

Figure 5.1: Pareto front for bi-objective optimization

5.1 Epsilon Constraint Method

This first solution method corresponds to an implementation of the adaptive epsilon-
constraint scheme introduced in Laumanns, Thiele, and Zitzler (2006). In general, the
epsilon-constraint method works by selecting one objective function as the only objective
and set the remaining objectives as constraints. A systematic variation of constraint
bounds allows the method to explore the solution space, identifying elements of the
Pareto front. The applicability of the method depends on the availability of a procedure
to solve the mono-objective problem, here referred as opt(M(f, ε)) following the notation
of Laumanns et al. (2006).

The original epsilon-constraint method presents the necessity of determining the con-
straint values a priori, which in practice could result very hard to do. The adapted version
proposed by Laumanns et al. (2006) deals with that drawback of the original version by
generating appropriate constraint values during the run based on updated information
about solution space. The construction procedure for a bi-objective Pareto front is illus-
trated in Figure 5.2, step by step. This example corresponds to a problem where both
objectives are maximized, which is the type of problem addressed in this thesis. To start,
the coordinate of epsilon constraint is fixed on −∞ so that the first region explored by
the algorithm is the whole potential objective space, R2. In step 1 opt(M(f1,−∞)) is
solved and the first solution of the Pareto front, x is found. Then, the epsilon constraint
is moved up to f2(x) and opt(M(f1, f2(x))) is solved. The process is repeated at each step
until a stopping condition is met. In our experiments, we have run the algorithm until
the whole Pareto front was found. In order to know when it happens, we added a step
0 to the procedure, where we solved opt(M(f2,−∞)) and fixed f2(x) as the maximum
possible value of f2 that can be found.

The adaptive ε- constraint procedure implemented here presents significant advan-
tages in comparison with other methods that attempt to build the whole Pareto front.
The weighted sum method, for example, only guarantees to find supported Pareto-optimal
solutions, which are those lying in convex regions of the objective space Laumanns et al.
(2006). This drawback is evidenced in Figure 5.3. In this adaption of our example, red so-
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(a) ε-constraint - Step 1 (b) ε-constraint - Step 2 (c) ε-constraint - Step 3

(d) ε-constraint - Step 4 (e) ε-constraint - Step 5 (f) Max-Max Pareto front

Figure 5.2: ε-constraint procedure

lution is a non-supported Pareto-optimal solution that weighted sum method, represented
by the red dotted lines, is unable to find. The epsilon-constraint method implemented
here guarantees to find this kind of solutions, provided that the mono-objective solution
method is able to reach that point.

f2(x)

f1(x)

Figure 5.3: Weighted sum and non-supported Pareto-optimal solutions

The pseudo-code for our bi-objective problem is presented in Algorithm 1. Steps 2
and three correspond to the delimitation step where we define the higher value of f2 to be
searched, and thus we find a suitable stopping condition for the algorithm. Each iteration
of the loop in steps 3-7, provides a new efficient solution of the bi-objective problem.

In this thesis, the mono-objective version of our linear model is solved by means of
the branch− and− cut algorithm implemented in CPLEX 12.6.2 for solving MILPs.
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Algorithm 1 ε -constraint method for bi-objective Pareto Front construction

1: P := ∅; ε := −∞
2: x′ := opt(M(f2))
3: b := f2(x′)
4: while <ε < b> do
5: x := opt(M(f1, ε))
6: P := {P,x}
7: ε := f2(x)
8: end while

Output: Set of Pareto-optimal decision vectors P

5.2 Pareto Multi-Agent Ant Colony Optimization

The OSPEAD can be seen as a generalization of the Team Orienteering Problem (TOP)
where multiple visits to nodes are allowed, the profit is decreased each time a member of
the team visits a node and the final destination of each member of the team is free. The
TOP in turn, has as special case the Orienteering Problem (OP), known also as Selective
Traveling Salesman Problem (STSP). The OP has been shown to be NP-hard by Golden,
Levy, and Vohra (1987). Therefore, it can be concluded that the OSPEAD is NP-hard
and thus, no efficient solution techniques for the problem at hand exists, especially when
considering multiple objectives. Based on this assertion we worked on the construction of
an alternative solution method, able to deal with the trade-off between solution quality
and processing time. Seeking for such an equilibrium, we decided to work on a meta-
heuristic algorithm based on Ant Colony Optimization (ACO). ACO was introduced on
the 1990s by Dr. M. Dorigo and colleagues as a nature-inspired heuristic for the solution
of hard combinatorial optimization problems (Dorigo & Blum, 2005). Since then, ACO
has been effectively applied to several problems in routing and scheduling domains. For
very good reviews on ACO, reader is referred to Dorigo and Stützle (2010) and Mohan
and Baskaran (2012).

ACO philosophy is based on the natural learning process of real ants, who are capable
of finding the shortest path from a food source to their nest by exploiting pheromone
information (Dorigo & Gambardella, 1997). The process is illustrated in Figure 5.4. In
the first scene, ants arrive at decision point with no information about paths length and
start taking paths randomly. Given that ants move at an approximate constant rate, the
shortest path is traversed by more ants in the same period. In consequence, pheromone
level in the shortest path increases faster than it does in alternative path. The pheromone
trail suffers evaporation, but ants keep using the shortest path at a higher rate and thus
the pheromone level remains higher there than in alternative paths. As time advances,
almost every ant chooses the shortest path.

ACO problem possess an exploration component which accounts for diversification on
the solutions and avoids local optima. By the other side, ACO presents an exploitation
component that focuses on the local improvement the most attractive solutions found
at each iteration. Furthermore, ACO is known to be an alternative for obtaining good
solutions in relatively short time. In the OSPEAD, most attractive cells are grouped
on a short number of areas, typically two; the area surrounding the threat and the area
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(a) Ants arrive at decision point
(b) Some ants choose the upper path

and some the lower path

(c)
Pheromone level increases faster in shortest path

Figure 5.4: How real ants find shortest path
Based on: Dorigo and Gambardella (1997)

containing the POC peak. In some cases where there are expectations of finding the
person at different areas, the POC could become multimodal. In that case the number
of attractive areas could be greater than two, but the priority still grouped on a small
number of areas. We find the exploitation component of ACO, a very interesting char-
acteristic that could lead agents to converge exploring over the most critical zones. As a
complement, the exploration component will avoid taking greedy decisions such as send-
ing most reliable agents to cells with the highest POC or danger, without any care on
the travel time involved. Our approach is an extension of the Pareto Ant Colony Opti-
mization (PACO) method proposed in Schilde, Doerner, Hartl, and Kiechle (2009) for the
bi-objective orienteering problem (OP). Our ACO method adds multiple agents, multiple
visits and decreasing profits to the framework presented in Schilde et al. (2009). The
most similar problem to the OSPEAD, found in the literature by us, which is solved by
ACO is the VRP with multiple time windows and multiple visits addressed by Favaretto,
Moretti, and Pellegrini (2007). Despite the similarities, Favaretto et al. (2007) assume
fixed profits related to nodes and predefined time windows. The OSPEAD involves de-
creasing profits depending on the visits at each cell and dynamic time windows, which
makes their approach unsuitable for our purposes. In this sense, the ACO method intro-
duced here can be seen as an alternative to solve the VRP with multiple time windows,
multiple visits and decreasing profits. The validation of this alternative is proposed as a
future research.

In order to introduce our ACO algorithm, we will first describe the approach proposed
in Schilde et al. (2009) and then we will explain the adaptions that we implemented in
order to build an ACO system suitable for the OSPEAD.
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5.2.1 Pareto Ant Colony Optimization (PACO)

The algorithm proposed in Schilde et al. (2009) can be decomposed in the following five
main steps:

1. Initialization: a population is created and each ant is positioned at the starting
vertex v0. Additionally, each ant is provided with a set of objective weights p which
intends to direct ants to find solutions uniformly distributed along the Pareto front.
Additionally, each arc (vi, vj) is assigned an initial pheromone value τ fij = τ0 for each
objective function f .

2. Construction: each ant builds a feasible tour from starting vertex to the ending
vertex following the ant colony system scheme proposed by Dorigo and Gambardella
(1997). The probability of visiting one of the feasible vertices is computed based
on two man sources of information, namely the heuristic information ηfij and the

pheromone information τ fij.

3. Local pheromone update: each time a vertex is added to a partial sequence, a local
pheromone update takes place. In this step, pheromone level at visited link (vi, vj)
is decreased as a simulation of pheromone trail evaporation. This mechanism brings
diversification of the set of solutions.

4. Iterative improvement: after each ant has built a complete feasible tour, a local
search heuristic is applied to each solution. Best solutions resulting from this step
are stored in an external memory and other ones are deleted.

5. Global pheromone update: finally, a global pheromone update procedure is per-
formed where the pheromone level at links visited in the best and second best
solutions for each objective, is increased by a predefined factor. This mechanism
gives the algorithm the capability to exploit attractive solutions and build better
paths from them.

* Repeat the process until stopping conditions are meet

5.2.2 Extending Pareto Ant Colony Optimization

In the previous section we described the PACO algorithm. Now we describe the adapta-
tions that we implemented in PACO in order to make it suitable for solving the OSPEAD.
There are three main differences among the PACO algorithm and the Pareto Multi-Agent
Ant Colony Optimization (PMAACO) method introduced here:

1. PACO algorithm is oriented to problems involving a single agent like the TSP and
the OP. Our PMAACO algorithm is able to deal with problems involving multiple
agents like the VRP, the TOP and of course, the OSPEAD.

2. PACO considers fixed profits associated with each node. In OSPEAD, profits are
allowed to variate, depending on the visits scheduled at each cell. PMAACO is
adapted for this kind of behavior in the profits.
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3. PACO allows a single visit per node. PMAACO not only considers multiple visits,
but avoids simultaneous explorations at the same cell by imposing dynamic time
windows.

The PMAACO algorithm implements virtually the same steps than the PACO algo-
rithm, except for the iterative improvement, which we plan to cover on a future extension
of this research. The pseudo-code for the PMAACO is presented in Algorithm 2.

Algorithm 2 PMAACO for the OSPEAD

1: while Stopping conditions remain unsatisfied do
2: Create a new colony Col of size Psize
3: ColonyState := partial
4: for <f=1:Psize> do
5: Assign a weight vector p to the ant
6: Locate each agent at its initial position
7: Tag each agent as Partial
8: Tag Ant as partial
9: end for

10: while <ColonyState == partial> do
11: for <each ant in Col> do
12: if (ant f remains partial) then
13: Randomly select a partial agent k from ant f
14: Select next cell j to visit for agent k
15: Update time window of chosen cell
16: Perform local pheromone update on used links
17: Check which agents remain partial
18: end if
19: Check if ant remains partial
20: end for
21: Check if colony remains partial
22: end while
23: Check efficiency
24: Perform global pheromone update
25: end while
Output: Set of Pareto-optimal decision vectors P

As the PACO algorithm, PMAACO starts by creating a new colony. This time, ants
will not be located at the initial vertex. In its place, agents will be located at their initial
cell. The initialization step puts in evidence the first adaption of our algorithm, which
is the depth of the data structure hierarchy three. PMAACO algorithm present a data
structure three similar to that presented in Figure 5.5, where agents are located at the
extreme of each branch. In this scheme, ants still representing solutions, but the routing
decisions are individually taken by each agent. PACO algorithms do not consider multiple
agents and then their data structure hierarchical three is limited to the ants’ level. As
in the case of PACO, we allow ants to share pheromone information. This feature makes
agents from a given solution (ant) to enforce diversification on agents other solutions.
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Figure 5.5: PMAACO hierarchy

During the first loop of Algorithm 2, each ant is provided with a weight vector p
which will determine the degree of priority that such ant will give to each objective.
Additionally, each agent is tagged as partial and remains at this state until there is any
cell that could be visited by him without exceeding the time horizon W or performing
simultaneous explorations at a given cell with other agent. Finally, each ant is tagged as
partial and remains as this until sequences of all its agents become complete.

The construction step takes place in the second loop of Algorithm 2. In our first
attempt to define that step, we declared the following procedure:

1. Select a partial ant;

2. Select each partial agent on this ant and choose the next cell on its sequence.

Fortunately, we promptly noted that such a procedure was reducing the solution space
and some alternatives were never produced. In consequence, we modified the construction
step to this new procedure:

1. Select a partial ant;

2. Randomly select a partial agent on this ant and choose the next cell on its sequence.

This new construction scheme keeps unaltered the solution space, allowing PMAACO
to find any feasible solution. As stated before, the pheromone information is shared by all
agents in a colony. In consequence, the local pheromone updated modifies the τ matrix for
all agents. After adding a cell to the sequence of an agent, it is necessary to check which
agents remain partial. Given that we are working with multiple agents and simultaneous
explorations at the same cell are not allowed, the addition of a cell in the sequence of an
agent may cause multiple partial agents to become complete agents. In contrast, in the
PACO algorithm it is only necessary to check if the ant who selected the new destination
remains partial. In the OSPEAD, an agent remains partial if there exists at least one cell
that can be visited and scanned by the agent within the time window of length W , and
without violating the constraint on no simultaneous explorations. After this step, it is
possible to determine if the ant remains partial. An ant remains partial until all agents
belonging to it become complete. Having updated all ants, it is necessary to determine if

70



the colony remains partial. A colony remains partial until all ants belonging to it become
complete.

When a colony is completed, the efficiency of encountered solutions is checked in order
to delete dominated solutions. Then a global pheromone update is performed, increasing
the attractiveness of those cells visited by all agents in the best two solutions for each
objective function. The process is completed until a given stopping condition is meet. In
our experiments, we predefined a number of colony generations as the stopping condition.

5.2.2.1 Heuristic information

The heuristic information η is an indicator of the benefit of visiting a candidate cell j
departing from the agent’s current position i. In the multi-objective case, η is typically
calculated for each objective as:

ηoij =
soj
cij

(5.1)

where soj represents the benefit of adding vertex j to the sequence and cij represents
the corresponding cost. Following the notation for the OSPEAD declared in Section 4.2,
PMAACO computes the heuristic information as follows:

ηk1
ij =

wj
tkij +Ok

, ηk2
ij =

γj
tkij +Ok

(5.2)

Given that we allow agent-dependent travel times and exploration times, PMAACO
was adapted to compute agent dependent values for the heuristic information. Addition-
ally, the value of ηkoij is updated each time that an agent is going to chose a destination.
It is necessary since γi is decreased each time that an agent performs explorations there.
However, given that each ant is solving an independent run of the problem, the POC
map of each ant is also independent and thus the values of ηkoij in a given ant are not
modified by decisions taken by other ants.

5.2.2.2 Pheromone information

Pheromone information has the objective of diversifying solutions within each colony and
lead to convergence around most attractive solutions from a colony to another. As stated
before, we work with a single pheromone value for link ij that is the same for all the
ants in the colony. This approach makes the decisions of each agent to influx not only on
agents belonging to the same ant, but also in agents belonging to other ants.

5.2.2.3 Decision rule

Let i be the last visited cell in the sequence of agent k and also let Ωki to be the set
of feasible destinations for agent k located at cell i. Next destination in the sequence of
agent k is selected by applying one of the following pseudo-random decision rules:

decisionrule =


rule 1, if q ≤ q0

rule 2, if q0 < q ≤ q1

rule 3, otherwise
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The variable q is a random number uniformly distributed in [0, 1], whereas q0 and q1

are parameters in the range 0− 1 specified by the user.

Rule 1: it can be seen as a greedy decision rule where agent k always selects the most
attractive feasible cell from its current position as its next destination. Mathematically,
this rule can be expressed as:

vj = argmax
vl∈Ω(ki)

{∑
o

(ταilo · η
β
ilok · po)

}
(5.3)

Rule 2: similarly to rule 1, this rule gives priority to most attractive feasible cells from
current position of agent k. Contrary to rule 1, this second rule is not deterministic and
even the less attractive feasible destinations could be chosen. For this decision rule, a
uniformly distributed pseudo-random number is generated and the destination is selected
according to the following probability pie.

P (vj) =

∑
o

(ταijo · η
β
ijok · po)∑

l∈Ω(ki)

∑
o

(ταilo · η
β
ilok · po)

(5.4)

Rule 3: this last rule is not present in the PACO algorithm. We added it because we
identified that with the previous two rules it was very difficult to reach more than 3 steps
in a sequence without executing a greedy or semi-greedy decision and once again, there
were some feasible solutions that were virtually never explored. This new decision rules
gives the algorithm the opportunity to escape from obvious greedy sequences that we
found to be dominated by experimentation. The rule consists on selecting a cell by the
set of feasible destinations according to a uniformly distributed probability pie. This rule
can me mathematically expressed as:

P (vj) =
1

|Ωki|
(5.5)

5.2.2.4 Pheromone update

As mentioned we have two updating mechanisms responsible of evaporation and en-
hancement of the pheromone level. Each time an ant adj a cell to its sequence, the local
pheromone update reduces the level of pheromones in traversed link ij. This update
procedure can be seen as a mechanism of diversification that enhances the capacity of
exploration oof the algorithm within each colony. By decreasing the level of pheromones
in the last traversed link, unexplored combinations of cells involving a relatively high
amount of pheromone become very attractive for future decisions. Local pheromone up-
date is performed based on Equation 5.6, where ρ is a parameter that simulates the
evaporation rate (0 ≤ ρ ≤ 1).

τ kij = (1− ρ)τ kij + ρτ0 (5.6)
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By the other side, global pheromone update takes place each time that a colony
becomes complete. This time, pheromone level is increased in those links belonging to
the best b solutions of each objective function. Global pheromone update is performed
according to Equation 5.7.

τ kij = τ kij + ∆τ kij (5.7)

In this thesis, the value of ∆τ kij was fixed in τ0 based on Schilde et al. (2009) and
Dorigo and Gambardella (1997).

5.3 Lexicographic Method

Our third method seeks to find two efficient Pareto solutions in a short time. In fact,
through this method we attempt to find the two extreme solutions of the Pareto front.
For this purpose, we make use of the Lexicographic method which consists on ranking the
set of objectives F = {f1, ..., fq} by priority and then solve q single-objective problems,
each one optimizing the objective function fi, subject to optimal values obtained by the
first fi−1 iterations to the first i− 1 objective functions.

Let L(fr, fs) be a function that returns the solution for the Lexicographic method giv-
ing priority to objective function fr over objective function fs. Then, this third approach
consists on calling L(f1, f2) and then L(f2, f1) ans save both solutions.

This method could seems quite simple, nonetheless, it could provide an interesting
alternative for cases when the threaten phenomenon is very aggressive and the information
on the POC map is highly reliable so that it is very desirable to decide for a single one of
the two objectives. In that scenario, the Lexicographic method will provide the decision
maker with the ability to find the two extreme solutions and then apply a trade off rule
to make the last decision. A procedure supporting this kind of decision is explained in
the following section.

5.4 Artificial Decision maker

In previous sections, we have suggested the use of unmanned air vehicles (UAVs) as
search agents. Our methods are suitable for other types of agents as humans, helicopters
or airplanes, nonetheless, the use of UAVs eliminates the exposure of search agents to risky
conditions on the search area during long time periods. By suggesting the use of UAVs,
we propose to use human agents only to perform rescue tasks once the victim has been
located, and also as search agents in relatively save places, far from the current location
of the threatening phenomenon. Additionally, we are seeking for the automation of the
decision making process for the exploration. An automated search planning based on last
information recorded by UAVs will lead to faster and possibly more accurate decisions. In
order to implement automation in a problem where the decision making problem involves
multiple objectives, it is necessary to define an artificial decision maker (ADM). An ADM
will emulate the reasoning of a human decision maker, based on predefined selection rules
that will lead him to a single solution. In this section, we propose the use of the max-min
ADM for the automation of the decision process in the OSPEAD.
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The max-min ADM is oriented to find a solution where the worst of the two objectives
values is not too bad. Suppose that we have the set of solutions presented in Table 5.1,
composing our Pareto front.

Table 5.1: Dummy Pareto front

Solution 1 2 3 4 5 6

Obj1 32 28 19 15 7 2

Obj2 3 9 11 13 15 28

The first step consists on dividing the f1 values for all the solutions by its maximum
value, which in our example is 32. The same procedure should be performed for the f2

values, dividing each one of them by 28. Resulting standardized values are shown in
Table 5.2.

Table 5.2: Dummy Pareto front standardized

Solution 1 2 3 4 5 6

Obj1 1.000 0.875 0.594 0.469 0.219 0.063

Obj2 0.107 0.321 0.393 0.464 0.536 1.000

The next step is to identify the minimum of the two standardized objectives for each
one of the solutions. The resulting vector is shown in Figure 5.3.

Table 5.3: Mins of Dummy Pareto front

Solution 1 2 3 4 5 6

Min {f1, f2} 0.107 0.321 0.393 0.464 0.219 0.063

Finally, the ADM selects the solution with the higher value on Table 5.3, which
corresponds to solution 4.

5.5 Dynamic disaster simulation

A fundamental characteristic of the OSPEAD is the dynamic behavior of the disaster
which progressively consumes parts of the search region. In order to validate our methods,
we have searched a simulation tool capable of producing a Danger map over a discretized
region. As part of the search process, we contacted numerous researchers and even
agencies specialized in wildfire modeling. Thunderhead was the only organization that
kindly put in our service a key for their fire simulation tool Pyrosim. Unfortunately, that
simulation tool is mainly oriented to simulate indoor fires and then it was not suitable
for our purposes.

In face of this situation, and knowing that this was not the focus of our research, we
decided to build a basic wildfire simulation algorithm based on Cellular Automata (CA).
This approach is particularly suitable for our methods since it decomposes the region of
interest in a collection of cells and is able to build burn probability maps with a high
level of accuracy in a very short time. Our wildfire simulation scheme is presented below:
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Physical environment

The physical environment on CA is composed by a finite collection of cells. Typically
those cells are equally in size and the conditions within each cell are assumed to be
homogeneous. He have exploited the convenience of that discretization to build a general
cellular decomposition of the search region, feasible for planning the search mission and
conducting fire spread forecasts.

Cells’ states

Each cell can be in one of a given set of predefined states. Such a state is typically
represented by a number for convenience in analytic and computational analysis. In our
approach, the following three states are considered:

1. Not burning: cells containing combustible vegetation

2. Burning: cells which are currently being consumed by fire

3. Burned: cells which have already been consumed by the fire

Transition rules

A transition rule acts upon a cell, defining its change of state from a discrete time step
to another one. The CA evolves simultaneously in space and time by performing iter-
ative implementations of the transition rule over the whole region. The transition rule
determines the evolution on cells state based on the state of neighbor cells. In our CA
algorithm, we adopted the following transition rules for a given cell i:

• if cell i is not burning, it becomes burning in the following time step with a prob-

ability
fc ∗ ir
nc

, where fc are the number of burning neighbor cells, ir is a factor

defined by us as ignition rate (0 ≤ ir ≤ 1). This factor determines how fast or easy
the fire spreads from a cell to another. Finally, nc is the number of neighbor cells
for cell i

• if cell i is burning, it becomes burned in the following time step with probability
1−fd, where fd is an indicator of the quality of combustibles present in the region.
Higher values of fd elongates the presence of the fire on cell i

• if cell i is burned, it remains burned for the following time step

Figure 5.6 presents a simulation performed by us as part of our initial tests with CA.
For each run of our computational experiment, we performed 300.000 simulations of

fire spread for the given time window in order to reach convergence on the forecast. The
time required for that pre-computation was not significant, even in the largest instances.
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Figure 5.6: Example of cellular automata simulation of fire spread
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Chapter 6

Findings

In previous two chapters we introduced the methods implemented in this thesis for the
solution of the OSPEAD. We first developed a Mixed Integer Nonlinear Program, which
was then linearized by means of piecewise linear approximation. Then, we presented three
solution methods which attempt to solve the problem with different trade-offs between
solution quality and processing time. In this chapter, we test the performance of our
tree solution methods in multiple scenarios. In order to perform a fairly comparison
among the three methods, the values obtained by the Epsilon-constraint method and the
Lexicographic method where corrected after the run. This procedure sometimes makes
dominated solutions to appear in the Pareto front coming from those two methods, even
when they are solved by exact algorithms. This happens because the piecewise linear
approximation implemented here does not guarantee a perfect fitting to the original
curve. In consequence, those two methods are prone to detect false efficient solutions
and ignore efficient ones. However, as it will be evidenced with the experiments, the
solutions delivered by Epsilon-constraint the Lexicographic methods are relatively good
in comparison with the PMAACO algorithm.

The last section of this chapter validates the receding horizon approach proposed in
Section 4.1.3, which makes our methodology reactive to the dynamic behavior of the
disaster. Additionally, that section implements the Decision Maker proposed in Section
5.4 which allows the application of our methods with autonomous robotic search agents.

We used Netbeans 8.0.2 and JDK 1.8.0 for implementation and simulation. All ex-
periments were run on an Intel Core i5-6300U with 2.5GHz and 8GB RAM.

6.1 Data sets

Aiming to provide validity to our results, we made an effort for implementing realistic
parameters in our experiments. The fire front speed (Fs) was fixed on 10 km/h = 2.78
m/s, which corresponds to a regular wildfire Scott (2012). The cell size (` x `) was
fixed according to agent physical and technological capabilities. According to Goodrich
et al. (2008) and Lin and Goodrich (2009), the maximum area that could be covered by
a camera in order to enable for recognition of a human is no wider than 32m x 24m.
Following them, we fixed our cell size in 24m x 24m. Given the values of (Fs) and `, we
were able to determine the length of a fire step, meaning the expected time to consume
a cell with 24 x 24 m2. The fire step (Ft) was empirically computed as `/Fs, resulting
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in 8.64 s ≈ 9 sec. We considered time windows of one and two Ft, corresponding to 9
and 18 sec, and grids composed by 9 and 16 cells, representing regions of 5184 and 9216
m2. The values of σ1, σ2 and ρ: where set in 7, 15 and 0 respectively, based on Chung
and Burdick (2007). Additionally, the POC distribution was centered at the right down
corner of the region in all scenarios as follows:

• Scenarios 1, 3, 5 and 7: µ1 = 2, µ2 = 0

• Scenarios 2, 4, 6 and 8: µ1 = 3, µ2 = 0

Finally, three different types of agents were considered. Their specifications are de-
tailed in Table 6.1.

Table 6.1: Agents’ specifications

Agent 1 2 3 Units Source
Speed 11 13.4 10 m / sec S1
Reliability 0.9 0.6 0.7 % accuracy S2
Exploration time 4.4 4.5 4.3 sec S3

S1. Casbeer et al. (2005); Carpin et al. (2013)

S2. Waharte et al. (2010); Le Thi et al. (2014)
S3. Flushing et al. (2014)

6.2 Validation

In this section, we test the coherence on the results delivered by our three solution
methods for a small study case. Such study case corresponds to the smallest possible
instance that can be constricted based on our data set. It involves two search agents, 18
seconds of planning and a 3x3 grid decomposition of the search region. The objective
values for the solutions obtained by our three solution methods are plotted in Figure 6.1.
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Figure 6.1: Pareto front Scenario 1
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Yellow points correspond to the solutions obtained by the Epsilon-constraint method,
red bordered circles correspond to the solutions delivered by our PMAACO algorithm and
blue bordered circles correspond to the solutions delivered by the Lexicographic method.
As it can be appreciated, the Epsilon-constraint method and the PMAACO are able to
find the whole Pareto front for this small instance. By its side, the Lexicographic method
achieves its goal of finding the extreme Pareto efficient solutions.

The search sequences corresponding to the solutions plotted in Figure 6.1 are presented
in Tables 6.2 to 6.4. For all the sequences, we validated that no simultaneous explorations
were performed simultaneously at the same cell. Additionally, we verified that all the
sequences were shorter than the time window of 9 seconds.

Table 6.2: Epsilon-Constraint Scenario 1

Epsilon - constraint (0.748 sec)
Solution 1 2 3 4 5
Agent 1 0 - 1 0 - 4 0 - 1 0 - 4 0 - 3
Agent 2 0 - 0 - 0 0 - 0 - 0 0 - 7 0 - 7 0 - 7
Danger (O1) 0.0 0.12415 0.19945 0.32359 0.39834
POS (O2) 0.10294 0.09738 0.08834 0.08278 0.07257

Table 6.3: Ant Colony Scenario 1

Ant Colony (0.567 sec)
Solution 1 2 3 4 5
Agent 1 0 - 1 0 - 4 0 - 1 0 - 4 0 - 3
Agent 2 0 - 0 - 0 0 - 0 - 0 0 - 7 0 - 7 0 - 7
Danger (O1) 0.0 0.12415 0.19945 0.32359 0.39834
POS (O2) 0.10294 0.09738 0.08834 0.08278 0.07257

Table 6.4: Lexicographic method Scenario 1

Lexicographic (0.27 sec)
Solution 1 5
Agent 1 0 - 1 0 - 3
Agent 2 0 - 0 - 0 0 - 7
Danger (O1) 0.0 0.39834
POS (O2) 0.10294 0.07257

Finally, we implemented the max-min ADM1 introduced in Section 5.4 to select a
single solution for each one of the sets of solutions coming from the three solution methods.

ADM applied to Pareto front

As described in Section 5.4, the first step for the application of the max-min ADM is to
identify, for each objective function, the solution with the greatest objective value. In

1Artificial Decision Maker
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this case, such value is 0.39834 for cumulative Danger and 0.10294 for cumulative POS.
Then, each one of the objective values of each objective function is standardized with
respect to the greatest value of that function. Resulting values for our small study case
are presented in Table 6.5.

Table 6.5: Standardized Pareto front Scenario 1

Solution 1 2 3 4 5

Danger(O1) 0.000 0.312 0.501 0.812 1.000

POS(O2) 1.000 0.946 0.858 0.804 0.705

Next step is to identify the smallest standardized objective value of each objective
function. The resulting vector is shown in Table 6.6.

Table 6.6: Mins of Pareto front Scenario 1

Solution 1 2 3 4 5

Min {f1, f2} 0.000 0.312 0.501 0.804 0.705

Finally, the solution associated to the highest value of Table 6.6 is selected as the
solution to be executed by the search team. In this case, Solution 4, with a Danger value
of 0.32359 and a POS value of 0.08278 is the one selected by the max-min ADM. That
solution corresponds to the 81.2% and the 80.4% of the greatest values present in the
Pareto front for Danger and Cumulative, respectively.

ADM applied to extreme points

In the case of the Lexicographic method, the selection of a single solution only requires
the comparison between the two extreme Pareto points. Those two points correspond
to solutions 1 and 5 in Table 6.6. From there, it can be concluded that the solution
taken by the max-min ADM for the case of the Lexicographic method is number 5. That
solution presents a Danger value of 0.39834 and a POS value of 0.07257, corresponding
to the 100% and the 70.5% of the best objective values found in the Pareto front for the
corresponding objective function.

6.3 Comparison of CPU performance

In this section we perform a large number of experiments that allow us to compare the
performance on our three methods. At each experiment, a single run of the Epsilon-
constraint method and the Lexicographic method was sufficient to find the intended
solution. In contrast, the results of our Ant Colony algorithm were averaged over 30
independent trials.

All three solution methods proposed in this thesis are prone to find non-efficient
solutions as part of their Pareto front. In the case of the PMAACO it happens because
as a meta-heuristic, it does not warranty to find the exact Pareto front. By their side,
the Epsilon-constraint method and the Lexicographic method are affected by the linear
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approximation scheme adopted in order to make the model linear. The linearization
modifies the solution space of the original problem and then, those two methods only
warranty to find the exact Pareto front of the modified problem. In this case, it is the
trade of for working with a linear programming model. Fortunately, if the approximation
breakpoints are adequately selected, our model tends to find the exact Pareto front.
However, in order to test the performance of our algorithm, we defined the best merged
Pareto front F∗, which results From the combination of all efficient solutions found by
each one of the three solution methods. The combined Pareto front substitutes the exact
Pareto front and is adopted as an ideal in our comparisons. The following performance
indicators were implemented for each experimental condition tested:

1. |P |: number of solutions in the Pareto front found by a given method

2. |P ∩F*|: number of solutions in the intersection between the best combined Pareto
front F∗ and the Pareto front P found by a given algorithm.

3. |P ∩ F*| / |F*|: percentage of the best combined Pareto front F∗, discovered by a
given solution method.

4. D: generational distance found by means of Equation 6.1.

D =

(∑
i∈P

di
q

)1/q

|P |
(6.1)

In this experiment, the value of q was fixed at 2.

The set of experimental conditions considered in our experiment are shown in Table
6.7. For each one of those conditions, we run our methods and saved their advances at
different time steps. Results are summarized in Tables 6.8 to 6.15.

Table 6.7: Experimental design

Scenario
Agents

(number)
Window

(secs)
Region

(dimensions)
1 2 9 3x3
2 2 9 4x4
3 2 18 3x3
4 2 18 4x4
5 3 9 3x3
6 3 9 4x4
7 3 18 3x3
8 3 18 4x4
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Table 6.8 corresponds to the scenario that we used in the last section to validate our
methods. The results for both, Scenario 1 and Scenario 2 are quite similar. In both cases,
all three algorithms were able to find the whole Pareto front in a short time. The increase
in the grid size from Scenario 1 to Scenario 2 caused a minimal enlargement of solution
times.

Table 6.8: Scenario 1

Ants Lexicographic Epsilon
Time(sec) 0,567 0,201 0,270 0,216 0,332 0,632 0,668 0,748
|P | 5,0 1,0 2,0 1,0 2,0 3,0 4,0 5,0
|P ∩ F*| 5,0 1,0 2,0 1,0 2,0 3,0 4,0 5,0
|P ∩ F*| / |F*| 100,0% 20,0% 40,0% 20,0% 40,0% 60,0% 80,0% 100,0%
D 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000

Table 6.9: Scenario 2

Ants Lexicographic Epsilon
Time(sec) 0,820 1,639 0,316 0,453 0,356 0,492 1,144
|P | 3,0 3,0 1,0 2,0 1,0 2,0 3,0
|P ∩ F*| 3,0 3,0 1,0 2,0 1,0 2,0 3,0
|P ∩ F*| / |F*| 100,0% 100,0% 33,3% 66,7% 33,3% 66,7% 100,0%
D 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000

Pictures 6.2 and 6.3 show the percentage of F∗ and the generational distance D for
each solution method, at each one of the time steps included in Table 6.9, respectively.
For better visualization, all time steps where scaled to the same length. In this small
Scenario, the behavior of three algorithms is very similar. Nonetheless, Ant Colony
algorithm begins showing its natural ability as an heuristic, which rapidly identifies good
solutions. From Figure 6.3 it is evident that all solutions found by each solution method
at each time step were part of F∗.
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Figure 6.2: |P ∩ F*| vs step - Scenario 2

In Scenarios 3 and 4, the same combinations on number of agents and grid size than
Scenarios 1 and 2 were tested for a duplicated time window of 18 secs. Under these
conditions, all three methods suffered a noticeable increase in its running time. Partic-
ularly, the Epsilon-constraint increased its time from 0.748 secs in Scenario 1 to 73.707
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Figure 6.3: D vs step - Scenario 2

secs in Scenario 2, and from 1.144 secs in Scenario 3 to 283.548 secs in Scenario 4. It
can also be noted that the performance of Ant Colony was better than Epsilon-constraint
performance in Scenario 3, in terms of the percentage of F∗ found. In contrast, Epsilon-
constraint was able to find the whole Pareto front over its 283.548 secs on running time
for Scenario 4, while Ant Colony ended with a regular value of 76.4%. It is also interesting
to see that independently of the increase in solution time, all three methods conserved a
short generational distance in all four Scenarios. It means that the quality of solutions
obtained by all three methods was high in the first four scenarios.

Table 6.10: Scenario 3

Ants Lexicographic Epsilon
Time(sec) 1,765 3,530 5,295 7,059 4,120 9,363 22,498 36,464 48,676 59,651 67,155 73,706
|P | 21,3 23,7 24,5 25,0 1,0 2,0 4,0 8,0 12,0 16,0 19,0 22,0
|P ∩ F*| 17,7 21,2 22,9 23,8 1,0 2,0 4,0 5,0 9,0 13,0 16,0 19,0
|P ∩ F*| / |F*| 70,6% 84,7% 91,6% 95,0% 4,0% 8,0% 16,0% 20,0% 36,0% 52,0% 64,0% 76,0%
D 0,00259 0,00140 0,00085 0,00073 0,00000 0,00000 0,00000 0,02706 0,00000 0,00000 0,00000 0,00000

Table 6.11: Scenario 4

Ants Lexicographic Epsilon
Time(sec) 8,182 16,365 24,547 32,729 3,413 23,566 100,602 189,510 240,116 258,919 271,845 283,548
|P | 21,2 21,7 22,1 22,8 1,0 2,0 5,0 10,0 15,0 19,0 23,0 27,0
|P ∩ F*| 10,3 14,0 16,7 19,1 1,0 2,0 5,0 9,0 14,0 18,0 21,0 25,0
|P ∩ F*| / |F*| 41,0% 56,0% 66,9% 76,4% 4,0% 8,0% 20,0% 36,0% 56,0% 72,0% 84,0% 100,0%
D 0,00372 0,00212 0,00122 0,00051 0,00000 0,00000 0,00000 0,00488 0,00000 0,00000 0,00584 0,00000

The change of behavior registered in Figure 6.2 with respect to Figure 6.4 is also
evident. This time, the Ant Colony Optimization was able to find more than the 70% of
F∗ in the few first time steps and then it became idle at time step 7. By its side, Epsilon
Constraint showed a relatively stable increase on the size of P with each time step from
the moment when it founds the first solution.

In Scenarios 5 and 6, the time window was fixed again in 9 secs but this time the
number of agents was increased to 3. This time, the result was a reduction on the solution
times in a similar order to the solution times in Scenarios 1 and 2. With a time window of
length 9 secs, the effect of increasing the number of agents from 2 to 3 is not significant.
A probable reason for this behavior may be that having the same window size, no matter
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Figure 6.4: |P ∩ F*| vs step - Scenario 4
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Figure 6.5: D vs step - Scenario 4

how far the region is extended, agents are limited to perform a given set of explorations.
To make it clear, if we set a region of dimensions 100 x 100 without increasing the time
window, the number of variables and constraints will be extended but the feasible region
will remain the same.

Once again, in Scenarios 5 ans 6, Ant Colony and Lexicographic method achieved
their goal by finding the combined Pareto front F∗ and the extreme Pareto solutions,
respectively. Epsilon-constraint also shown a very good performance with an 83.3% of
F∗ in Scenario 5 and 100% in Scenario 6.

Table 6.12: Scenario 5

Ants Lexicographic Epsilon
Time(sec) 0,696 0,404 0,489 0,285 0,371 0,539 0,597 0,665 0,711
|P | 6,0 1,0 2,0 1,0 2,0 3,0 4,0 5,0 6,0
|P ∩ F*| 6,0 1,0 2,0 1,0 2,0 3,0 4,0 4,0 5,0
|P ∩ F*| / |F*| 100,0% 16,7% 33,3% 16,7% 33,3% 50,0% 66,7% 66,7% 83,3%
D 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00136 0,00000

For Scenarios 7 and 8, the number of agents remained in 3 as in Scenarios 5 and 6, but
this time we also duplicated the time window to 18 secs. Based on our discussion about
the results from Scenarios 5 and 6, it was expected to find and increase on the solution
time for Scenarios 7 and 8, based on the fact that the number of agents was fixed in the
top, with a combination of a duplication in the time window, which dramatically increases
the size of the solution space. The results was as expected, observing the largest solution
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Table 6.13: Scenario 6

Ants Lexicographic Epsilon
Time(sec) 0,923 1,847 0,526 0,649 0,474 0,593 0,697
|P | 3,0 3,0 1,0 2,0 1,0 2,0 3,0
|P ∩ F*| 3,0 3,0 1,0 2,0 1,0 2,0 3,0
|P ∩ F*| / |F*| 100,0% 100,0% 33,3% 66,7% 33,3% 66,7% 100,0%
D 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000

times of this section of our experiment. Epsilon-constraint reached approximately the
80% and 95% of F∗ at Scenarios 7 and 8, respectively in 20 minutes and 85 minutes. By
its side, Ant Colony took less than 1 minute in both Scenarios to be solved, reaching the
60% and 9% of F∗ on Scenarios 7 and 8, respectively. The low percentage of F∗ found in
Scenario 8 is not an advice of a bad performance of the algorithm. In fact, it found 32.6
solutions on average, presenting less than 0.005 of generational distance from the best
combined Pareto F∗. It means that despite solutions found by Ant Colony were majorly
out of F∗ set, they were high quality solutions.

Table 6.14: Scenario 7

Ants Lexicographic Epsilon
Time(sec) 8,105 16,209 24,314 32,419 3,647 112,332 746,726 1008,191 1126,248 1184,889 1222,603 1242,691
|P | 13,9 14,2 14,7 14,8 1,0 2,0 4,0 8,0 11,0 14,0 17,0 20,0
|P ∩ F*| 3,0 5,1 7,4 9,6 0,0 0,0 0,0 3,0 6,0 9,0 12,0 13,0
|P ∩ F*| / |F*| 19,0% 31,7% 46,3% 59,7% 0,0% 0,0% 0,0% 18,8% 37,5% 56,3% 75,0% 81,3%
D 0,00577 0,00477 0,00410 0,00318 0,20069 0,00015 0,06015 0,00095 0,00000 0,00000 0,00000 0,01629

Table 6.15: Scenario 8

Ants Lexicographic Epsilon
Time(sec) 12,494 24,988 37,483 49,977 20,697 293,732 2282,485 3579,598 4389,569 4796,585 5034,174 5127,199
|P | 24,4 28,8 31,6 32,6 1,0 2,0 7,0 14,0 21,0 28,0 35,0 42,0
|P ∩ F*| 1,3 2,0 2,8 3,6 1,0 2,0 7,0 14,0 19,0 26,0 33,0 39,0
|P ∩ F*| / |F*| 3,0% 4,8% 6,8% 8,7% 2,4% 4,9% 17,1% 34,1% 46,3% 63,4% 80,5% 95,1%
D 0,00536 0,00473 0,00423 0,00400 0,00000 0,00000 0,00000 0,00000 0,00501 0,00000 0,00000 0,00139

This fact is evidenced in Figures 6.6 and Table 6.7, where the percentage of F∗ found
by Epsilon goes up as a rocket in a constant rate and the same percentage for Ant Colony
remains very low, while the generational distance D for all methods remains very low.

6.3.1 Performance on the top of the experimental region

The computational time in Scenario 8 was so large in comparison to other scenarios,
especially for the Epsilon-constraint method which employed more than one hour in the
solution. Nonetheless, our Ant Colony algorithm found multiple solutions with a short
generational distance from the Pareto front. That result motivated us to extend our
experiments on the top of the experimental region in order to compare the performance
of our algorithms when the scenario seems to become large. The new experiment consists
on taking Scenario 8 and creating three new scenarios, each one by increasing one factor
independently to an additional level. Table 6.16 shows the experimental conditions that
we implemented for the extension of our experiment.
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Figure 6.6: |P ∩ F*| vs step - Scenario 8
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Figure 6.7: D vs step - Scenario 8

The computational time of the Epsilon-constraint method resulted prohibitive in all
cases. Particularly in Scenarios 10 and 11, this method required 8 and 15 hours respec-
tively to be completed. Times of the Lexicographic method remained manageable except
for Scenario 11, where it was solved in approximately a half hour. By its side, our Ant
Colony algorithm always performed in approximately one minute. Once again, the per-
centage of F∗ found does not provide sufficient information, and the generational distance
tells the truth. The approximated Pareto fronts found by Ant Colony in all three scenar-
ios was very close to the Pareto front found by the Epsilon-constraint method. Actually,
in Scenario 10, our Ant Colony method identified multiple efficient solutions that the
Epsilon-constraint method was not able to identify. All three Pareto fronts are plotted
in Figure 6.8.

Table 6.16: Extended experiment

Scenario
Agents

(number)
Window

(secs)
Region

(dimensions)
9 3 18 5x5
10 3 27 4x4
11 4 18 4x4
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Table 6.17: Scenario 9

Ants Lexicographic Epsilon
Time(sec) 14,187 28,375 42,562 56,750 4,553 163,469 2468,685 3796,152 4317,715 4521,942 4589,640 4617,543
|P | 19,0 21,0 21,9 23,4 1,0 2,0 6,0 12,0 18,0 24,0 30,0 36,0
|P ∩ F*| 3,6 5,1 6,4 8,1 1,0 2,0 6,0 12,0 18,0 24,0 30,0 36,0
|P ∩ F*| / |F*| 10,1% 14,2% 17,9% 22,4% 2,8% 5,6% 16,7% 33,3% 50,0% 66,7% 83,3% 100,0%
D 0,00525 0,00456 0,00437 0,00395 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000

Table 6.18: Scenario 10

Ants Lexicographic Epsilon
Time(sec) 13,708 27,416 41,125 54,833 46,083 160,114 27515,217 28237,739 28651,414 29726,831 30004,499 30176,728
|P | 22,3 24,2 26,2 28,6 1,0 2,0 8,0 16,0 23,0 30,0 37,0 44,0
|P ∩ F*| 5,1 8,8 12,0 16,2 1,0 2,0 5,0 12,0 18,0 23,0 28,0 34,0
|P ∩ F*| / |F*| 13,1% 22,6% 30,9% 41,6% 2,6% 5,1% 12,8% 30,8% 46,2% 59,0% 71,8% 87,2%
D 0,01325 0,01103 0,00968 0,00804 0,00000 0,00000 0,02686 0,00340 0,00055 0,00166 0,00791 0,00040

Table 6.19: Scenario 11

Ants Lexicographic Epsilon
Time(sec) 15,452 30,904 46,357 61,809 31,493 1745,724 43874,563 50111,802 51964,323 53396,104 53911,711 54192,922
|P | 19,8 21,5 23,2 25,1 1,0 2,0 8,0 16,0 24,0 32,0 40,0 47,0
|P ∩ F*| 0,2 0,3 0,4 0,5 1,0 2,0 5,0 13,0 21,0 28,0 36,0 43,0
|P ∩ F*| / |F*| 0,5% 0,6% 1,0% 1,2% 2,3% 4,7% 11,6% 30,2% 48,8% 65,1% 83,7% 100,0%
D 0,01365 0,01209 0,01151 0,01059 0,00000 0,00000 0,01410 0,00000 0,00000 0,00358 0,00000 0,00000
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Figure 6.8: Pareto front on big size instances
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6.4 Statistics of complete missions applying a reced-

ing horizon scheme

In Section 4.1.3 we proposed the solution of the OSPEAD under a receding horizon
scheme. That scheme is intended to provide our methodology with adaption capabilities,
suitable for the dynamic environment imposed by a non-instantaneous disaster. In the
present section, we illustrate a set of experiments where we implement such scheme aiming
to validate its applicability.

All experiments presented in previous sections were oriented to compare the perfor-
mance of the three solution methods in terms of solution quality and processing time,
considering a single time window. By the other side, the application of the receding
horizon approach allows us to perform complete search missions. In out second set of
experiments, every complete mission ended with one of the following two events: (1) the
target was found; (2) the target was reached by the disaster.

In this new experiment we centered the POC map at four different cells as is shown
in Figure 6.9. In each scenario, we performed 50 simulations of complete search missions,
where the victim was randomly located based on the probability distribution stated by
the POC map. Additionally, independent fire simulations were performed for each one of
the 50 simulations of each scenario. Wildfire initial point was always located at cell 30
in the upper left corner of the grid.

(a) Complete mission Scenario 1 (b) Complete mission Scenario 2

(c) Complete mission Scenario 3 (d) Complete mission Scenario 4

Figure 6.9: Scenarios for complete-mission related experiments

88



At each simulation, the experiment proceeded as follows:

1. Randomly locate the victim based on POC distribution

2. Locate all agents at their starting point in cell 0

3. Generate a danger map

4. Solve the problem for a time horizon of 27 seconds

5. Implement the max-min ADM for selecting a single solution

6. Simulate explorations in chronological order

• If the victim was found, stop the mission and save the mission time

• If the victim was not found simulate fire spread

– If the victim was reached by the fire, stop the mission

7. If the victim was not detected by any agent or reached by the disaster, update the
danger map with a new forecast and return to step 4

In this experiment, we kept equal many of the parameters adopted for experiments
in previous section. The fire front speed was fixed on 10 km/h = 2.78 m/s, the cell size
(` x `) was fixed on 24m x 24m and the fire step was set on 9 sec. We considered time
windows of three fire steps, corresponding to 27 sec, and a single grid composed by 36
cells, representing regions of 20736 m2. The values of σ1, σ2 and ρ: where set in 7, 15
and 0 respectively. Three different types of agents were considered as previous section.
Their specifications are detailed in Table 6.1.

As can be noted, the time window adopted for this experiment correspond to the
largest one tested in the previous section. Furthermore, the size of the search region is
much larger than those tested before. Results from those previous experiments evidenced
that the time required by Epsilon-constraint and Lexicographic methods is prohibitive
for long size instances. For that reason, in the following experiment we only solved the
problem by means of the PMAACO algorithm.

This experiment was intended to test the performance of our methodology given dif-
ferent levels of proximity between the victim and the fire. For that purpose, we computed
the percentage of times that the victim was found alive and the time required to find the
victim at each successful mission. Both computations were done for each one of the four
scenarios.

Table 6.20: Statistics from complete missions

Time (sec)
Scenario Effectiveness

Min Max Avg
1 62% 4.40 27.00 16.01
2 68% 6.68 26.96 17.61
3 66% 4.40 26.55 16.35
4 68% 6.95 26.96 18.64
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Our methodology presented a stable performance through the experiment. The level
of effectiveness remained between 60% and 70% , which represents an attractive perfor-
mance in terms of saved lives. It can be noted that the times required to find the victim
were shorter in Scenarios 1 and 3, where the victim was located nearer to the fire. Un-
fortunately, the percentage of saved lives is lower in Scenarios 1 and 3 than in Scenarios
2 and 4. This phenomenon occurs because, when the POC and the fire are closer among
them, higher values of POC and Danger got overlapped. This makes efforts of the whole
search team to be focused on a shorter number of cells than if the POC peak and the fire
are located distant. At the same time, this reduces the number of chances that agents
have to find the victim. In those scenarios, a failed detection is often fatal.

In contrast, Scenarios where POC peak and Fire are distant present higher chances of
finding the victim alive, associated with a lower risk on its potential locations. However,
in those circumstances, the search team is distributed over the search region from the
beginning of the mission in order to cover both, danger and likely zones. This represents
a lower number of agents searching on the surroundings of POC focus, which leads to
higher times to decision.

The construction of the search plan for each single window in our experiment took
between 22 and 30 seconds. Given the time window imposed of 27 seconds, this fact
evidences the applicability of our methods in real search scenarios. The test of our
methodology in physic simulated scenarios will be useful for verifying these findings.
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Chapter 7

Conclusions and Future Research

This thesis studies how to conduct a search mission in scenarios where the search region is
being affected by a dynamic threat. This problem has great practical relevance given that
consistently, many search missions take place under these kind of circumstances. Despite
the large amount of literature in Search Theory (more than a half century of production),
as far as we know, this type of search problem was never mathematically solved before.
To tackle this problem, we structured an adaptive planning and searching methodology,
oriented to maintain updated information about the state of the threat throughout the
entire mission. The main impact of this methodology is mitigating the risk of missing
people to become critically injured by dynamic threats present in the search region. Such
a reduction in risk, naturally implies an increment on the rate of saved lives during this
kind of missions.

Within the scope of this study, we developed a mathematical formulation and imple-
mented three solution methods for the problem, which determine the search path for a
team of heterogeneous search agents possessing particular reliability profiles, travel times
and exploration times. The formulation is a bi-objective programming model that prior-
itizes explorations in both, riskiest zones and locations where it is more likely to find the
missing person. A vital component of the formulation is a Recursive Bayesian filter which
updates the expectancy of finding the person at a given location, once an agent performs
an unfruitful exploration there. That Bayesian filter is one of our major contributions to
Search Theory, since several studies in this field were applying out of context expressions
or inaccurate approximations that underestimate the expectancy of finding the missing
person on a revised location.

Unfortunately, such a Bayesian filter is by nature a nonlinear expression that made
our formulation a non-linear programming model. Seeking for a more convenient formu-
lation, we fitted the Recursive Bayesian expression by Piecewise Linear approximation
and thus, we obtained a linear programming formulation of the problem. Such a linear
formulation is our second main contribution, since it provides a comparison mechanism
to any alternative solution method that may be developed as part of future research.

Another advantage of our formulation is that it does not discretize the time as the
majority of previous search planning models do. In contrast, our model controls the dy-
namics of the model by means of continuous variables, allowing totally free displacements
of the agents through the search region at any moment required. As a consequence, our
model takes a step forward in the realism captured by search planing models.
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In order to validate our methods, we executed two sets of computational experiments.
The first of them, was intended to compare the three solution methods, named Epsilon
Constraint method, Lexicographic method and Pareto Multi-Agent Ant Colony Opti-
mization (PMAACO). These methods were compared in terms of computational time
and solution quality. We found that the Epsilon Constraint method and the PMAACO
are both able to find very good approximations to the exact Pareto front. However, the
applicability of the Epsilon Constraint method is limited to small instances, where both
methods took less than two seconds to conclude. In contrast, the largest run of the Ep-
silon Constraint method took 15.1 hours, which is a clearly prohibitive time in the SAR
context. In contrast, the PMAACO took 61.8 seconds to conclude in the same instance,
showing its suitability for real size instances. By its side, the Lexicographic method was
always able to find the two extremes of the Pareto front, which was in turn its main pur-
pose. However, its running time for the same large instance was 29.1 minutes, limiting
the applicability of this method to small size and medium size instances.

During our second set of experiments, we validated our adaptive planning methodol-
ogy based on a rolling horizon approach. This time, we increased the size of the instance
with respect to the first experiment, reduced the number of ants in the PMAACO al-
gorithm, and simulated 200 missions, locating the missing person at different places of
the search region. Our methodology proved to be robust and located the missing person
before it was reached by the fire more than 60% of times. The average time required to
find the person rounded the 16 seconds and remained under 27 seconds in all trials.

The scenarios considered during our experiments correspond to some of the largest
instances tested until now for search problems. From our computational experience, we
conclude that our methodology presents an effective solution to the problem of searching
in presence of dynamic threats. Furthermore, we conclude that the PMAACO is the first
algorithm in the literature able to deal with big size instances of this problem under a
reasonable time.

Achieved Results and Products

Research articles:

• Search Theory: A Taxonomic Literature Review. Literature review of 83 articles
in Search Theory - Submitted to the academic journal Computers & Operations
Research

• Academic article exposing our methodology and results - Currently in edition

Conference speeches:

• Búsqueda de Entidades en Presencia de un Desastre. Conferencia en Logistica
Social LS 2016 - Universidad del Norte, Barranquilla, Colombia.

• Searching for Entities Under Dynamic Emergencies. INFORMS Annual Meeting
2016 - Nashville, USA.
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Future Research Lines

We consider the research topic addressed here to be very interesting. The execution of this
research provided us with a lot of new knowledge in a field unexplored by us before. Our
incursion in search planning, combined with the motivation of being solving a problem
never considered in preceding literature, gives us multiple ideas for future research lines.
A set of them are described below.

On the problem setting and assumptions

Extension to multiple targets and moving targets: In this thesis, we considered
the case of a single stationary target. Given that many search scenarios involve multiple
targets and moving targets, both considerations present interesting research avenues.
Such a development may have its major impact on maritime search, where the mission
often involve multiple targets being dragged by the oceanic currents.

Extension to agents prone to false alarm: Another assumption adopted here is that
agents where not prone to advice false target sightings. This assumption may be valid
under certain conditions, as in a search with pretty favorable environmental conditions.
However, this may not be the case for a search in presence of a non-instantaneous disaster.
In those cases, the phenomenon may have an effect on the lectures of the sensing devices
employed by the search team. Therefore, a promising future research line consists on
relaxing the assumption of false alarm free agents for search planning in the context of
the OSPEAD.

Evaluation of alternative objective functions: The mathematical model provided
here implements the following two objective functions:

• Maximization of the cumulative Danger collected by the search team

• Maximization of the cumulative Probability of Success collected by the search team

A future research line may consists on the validation of alternative objectives func-
tions for the OSPEAD. As mentioned above, the OSPEAD may involve the influence
of the disaster, causing distortions on the lectures of sensing devices. In this respect,
a useful development would be to combine the two objectives adopted by us, with the
maximization of the information gathered by the agents.

Another valid objective could be the minimization of the expected time to find the
target. Such an objective may be suitable for entities presumed critically injured, that
may require medical assistance in the shortest possible time.

Development of a formal sampling method for disaster monitoring: In this
research we did not provide or employ any formal sampling method to simulate the
collection of data about disaster’s state. However, real search missions may involve
limited resources to track the disaster and it may not be possible to achieve data from
all over the search region. That constraint makes necessary, the development of formal
sampling methods oriented to decide how to track the disaster. This research line is
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not only interesting, but also necessary for the application of any OSPEAD oriented
methodology in real scenarios.

On the model

Disjunctive constraint pairs: The MILP developed in Section 4.2.6 was effectively
solved during our experiments. Nonetheless, the processing time was clearly prohibitive
for big instances of our algorithm. The induction of disjunctive constraint pairs in our
model will significantly reduce the number of binary variables and constraints. It is known
that the addition of integer variables in a model makes the processing time to increase
exponentially. Then, in a reverse process, we propose to reduce the number of integer
variables, seeking for exponential reduction on processing time.

On the solution methods

Local search: Local improvement heuristics were not evaluated in this thesis. We
propose the application of local improvement algorithms for the following two purposes:

• Improving the solutions found by each colony in the PMAACO algorithm seeking
for a reduction in the distance to the exact Pareto front in big instances. It may also
allow to reduce the population size required to find good solutions and consequently,
the processing time.

• Take extreme Pareto solutions found by the Lexicographic method, and search for
additional Pareto efficient solutions in the region in a short time. This procedure
may increase the diversity in the Pareto front found by this method.

Epsilon-constraint with meta-heuristics: The Epsilon-constraint method presented
here was supported by the solution of the MILP problem developed in Section 4.2.6. The
Epsilon-constraint methodology can also be supported by a meta-heuristic able to solve
the mono-objective problem at each iteration. This research line will attempt to test
the Epsilon-constraint method combined with different meta-heuristic methods such as
Genetic Algorithms, Simulated Annealing or Ant Colony.

Diversification of construction procedure on PMAACO: In the PMAACO de-
veloped here, all the ants build their solution based on the same type of construction
procedure. This research line would attempt to define multiple different construction
procedures within the same PMAACO and distribute them over the ants. Some of those
construction steps may be greedy. For instance, some ants may build their solution by
selecting the most reliable partial agent and choosing next cells in its sequence until
the agent become complete. The use of multiple construction procedures may help the
algorithm to find attractive solutions on a short time. The combination of this diversifica-
tion on the construction procedure with the application of local improvement is another
promising research line.
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On the simulation of the disaster

Enhancement of the disaster simulation method: As it was mentioned in Section
5.5, we encountered several difficulties in our search for a simulation tool available for
our purposes. As far as we know, there exists advanced simulation methods based on
the Cellular Automata approach implemented here. This research line would consist on
the improvement of the disaster simulation method embedded in our algorithm. The
availability of an accurate forecasting tool will be determinant on the effectiveness of the
search methodology proposed here.

On the validation of the methodology

Comparison with current practice and SAR manuals: One of the most revealing
experiments to test the performance of a new development is to compare it with the
current practice and the manuals in the matter. A future step in development of the
OSPEAD may involve the contrast between the procedures implemented nowadays by
emergency response agencies and our methods. Such a procedure may evidence strengths
in both approaches and potential opportunities of improvement.

Field tests: We are aware of the fact that implementing our methods in real scenarios
require multiple future developments. Some of them involve the coordination between
the systems that may take part in our search methodology, described in Section 4.1.1.
However, we find it necessary to reach a cohesion between theoretical and practical devel-
opments in order to reach the desired objective of improving existent search methodolo-
gies. In this respect, we propose the validation of our methodologies in physical simulated
search scenarios as a future research avenue.
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