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Nomenclature 

 

ASU  Air Separation Unit 

cp
e  Mean molar isobaric energy capacity 

hfg   Latent heat of vaporization 

IGCC  Integrated Gasification Combined Cycle 

Irr  Irreversibility 

n  Number of moles 

NCV  Net Calorific Value 

PCRC   Pulverized Coal Rankine Cycle 

Po  Ambient pressure 

R   Universal gas constant 

To  Ambient temperature 

SNG  Synthetic Natural Gas 

W  Work 

WGS  Water gas shift 

Xo   Chemical exergy 

Xph   Physical exergy 

z  mole fraction 

δ  Efficiency defect 

φdry  Fuel factor 

∆Ho  Enthalpy of reaction 

 

 



Introduction 

 

The polygeneration process can convert coal, biomass, petroleum or waste to electricity, 

chemicals or fuels in a high efficient and environmental friendly way. The gasification has 

gained value by the need to use low price feedstock like lignite, low rank coals, coke or 

refinery residues with low pollutants emissions. The most interesting gasification resource 

in commercial application is coal due to its wide reserves and low prices, therefore in this 

work coal gasification for the methane and electricity production is evaluated in four 

chapters to determine the exergoenvironmental performance and the sustainability of the 

processes. 

In the first chapter it was developed the literature review of the polygeneration processes. 

The exergy analyses in the literature were compiled and the theoretical framework was 

made for the main process stages. 

In the second chapter it was considered the simulation of different types of gasifiers such as 

fixed bed, fluidized bed and entrained flow reactors. The validation and accuracy of the 

model was determined and finally it was developed an exergy analysis, considering the 

environmental performance and capital costs.  

In the third and fourth chapters a comparison analysis is presented between conventional 

and emerging processes. In the third chapter it was compared the indirect and direct 

methanation processes and in the fourth chapter it was compared the integrated gasification 

combined cycle (IGCC) with the pulverized coal Rankine cycle (PCRC). For each case the 

analysis is performed through exergy analysis and taking into account the economics and 

CO2 emissions. 

The final products selected were electricity and methane, because the first one is the energy 

in its highest grade of quality and methane is the principal component of natural gas which 

represents the fuel of the near future since it is the most environmental friendly fossil fuel 

with high energy content.  

 

 

 

 

 



Problem statement 

 

Coal is the widest energy source in the world, but it also produces the highest greenhouse 

emissions when it is burned in chemical and power plants. The main application of this fuel 

is the direct combustion in a boiler to produce electricity, however through coal 

gasification; it can be converted to other products like fuels and chemicals. Since the 

beginning of this century the interest on polygeneration processes rose up due to the need to 

decrease the oil and gas dependency.   

In this work it was considered the production of electricity and methane, comparing the 

conventional and emerging processes through exergy tools. The conventional process 

considered for the electricity production is the pulverized coal Rankine cycle (PCRC) and 

the emerging process is the integrated gasification combined cycle (IGCC). The mature 

technology for the methane production from coal gasification is the indirect methanation 

and the emerging technology is the direct methanation. 

The exergy analysis is implemented for each case because this method is a suitable 

approach to identify where the losses occur and how individual components impact the 

efficiency of the plant.  Traditional techniques for the study of the plant performance such 

as energy balances or criterion of performance are based on the first law of 

thermodynamics which do not differentiate between the different grades of energy crossing 

the system boundary and provide no information about internal losses. The exergy analysis 

is the most suitable method since it takes into account the first and second law of 

thermodynamics [1].  

It is necessary to identify an environmental friendly and competitive way to use coal and 

coal gasification could represent a suitable option for the energy security of countries with 

wide coal resources. For this reason, the main question of this work states: 

How much can the emerging technologies increase the exergy performance, the 

sustainability and decrease the greenhouse emissions of power and fuels production 

derived from coal?  

 

 

 

 

 



Objectives 

 

General objective 

Evaluate the exergy performance of the electricity and methane production processes from 

coal gasification, considering the CO2 greenhouse emissions and its sustainability. 

 

Specific objectives  

Evaluate the exergetical, economical and environmental performance of large scale coal 

gasifiers. 

Quantify the exergy losses in the coal to methane and electricity processes and evaluate the 

capital costs and the CO2 emissions with and without carbon capture and sequestration. 

Compare the conventional and the emerging technologies for electricity and methane 

production from coal. 

Simulate with Aspen Plus the production of syngas, methane and electricity from coal 

gasification.  

 

 

 

 

 

 

 

 

 

 

 

 



Methodology 

 

Initially a compilation of the exergy works for polygeneration processes is developed 

through the Universidad Del Norte Database. The works reviewed considered the 

production of electricity, fuels and chemicals, analyzed with exergy methods as one of the 

main tools for the evaluation of the performance.  

Subsequently the theoretical framework is performed through a bibliography review for the 

most important process stages such as the coal gasification, air separation unit, gas clean 

up, the combined cycle and methanation, including the most important reactions and 

describing its inherent features. The exergy assumptions and equations are also presented, 

based on the exergy theory by the author Kotas. In the bibliography revision the 

performance, costs, technical restrictions of the technologies and information required for 

the simulation of the process are collected from real plants, demonstrations projects and 

scientific articles. 

Steady state simulations at chemical equilibrium are performed with the software Aspen 

Plus to predict the properties and composition of the gasifiers. The three most important 

gasifier types such as the fixed bed, fluidized bed and entrained flow gasifiers are simulated 

with technical restrictions of the next commercial coal gasifiers: Conoco Phillips, Shell, 

British Gas Lurgi and KRW technologies. The results are compared to real plants reported 

in the bibliography to validate the model. The results of the model are used to evaluate the 

syngas composition produced, the environmental performance, the effect of coal type and 

to perform an exergy analysis. 

In order to collect the data needed for the exergy analysis, the IGCC, the direct and indirect 

methanation are also simulated with Aspen Plus. The property streams of the pulverized 

coal Rankine cycle are collected from simulations of the US Department of Energy. The 

exergy analysis is performed considering only the inlet and outlet streams, hence the stages 

are considered as black boxes for the exergy evaluation. The exergy calculations are 

developed only for the most important stages latter mentioned and considered the physical 

and chemical equations which are programmed with the program EES (Engineering 

Equations Solver) and Excel.  

The exergy analysis is developed for each process individually and then the conventional 

processes are compared to the corresponding emerging technologies; thus the IGCC is 

compared with the pulverized coal Rankine cycle and the direct methanation, specifically 

the hydromethanation is compared with the indirect methanation.  

 



1. LITERATURE REVIEW 

 

 

1.1 Background of exergy analysis works of polygeneration processes 

from coal gasification and CO2 capture and storage 

 

In this section it was made a compilation of the exergy works of polygeneration processes 

which were classified by the final desired products or as a subcomponent of the 

polygeneration process. Initially it was considered the electricity production with the 

integrated gasification combine cycle where it was found most of the works. The next 

papers comprise the fuels only production, the polygeneration processes and single unit 

analysis of the gasifiers, air separation unit section and the CO2 capture and storage. All the 

works reviewed used exergy analysis as one of the main tools for the evaluation of the 

performance. 

 

 

1.1.1 Exergy analyses of the integrated gasification combines cycle process 

 

Exergy analysis of IGCC have been investigated in the past and the works reviewed next 

consider the electricity as the only principal desired product with no polygeneration cases. 

Previous exergy studies are focused on several directions as the exergy evaluation of single 

units on the process performance, process comparisons or technology combinations. 

Several works looked at the effect of single units on the process performance which can be 

seen from authors such as Linwei Ma, 2012, [2] that analyzed the influence of integration 

of the coal water slurry preheating vaporization technology on the exergy efficiency 

performance of wet feed IGCC systems with and without carbon capture. He compared ten 

cases of IGCC systems, including three wet feed IGCC systems with distinct integration 

modes for this technology. Han, 2009, [3] evaluated exergy performance of the electricity 

production from coal gasification and char fired natural gas partial reforming. The gasifier 

considered does not refer to any particular technology but assumes that produces significant 

amounts of energy content char. Kawabata, 2012, [4] proposed and determined the exergy 

recuperation when some of the steam produced from the combine cycle HRSG is used as 

gasifying agent. Additionally compared the plant performance of the pre-combustion and 

post-combustion CO2 capture for the proposed and the traditional IGCC plant. De, 2004, 

[5] made an exergy analysis of an IGCC plant with rankine cycle with a variable number of 



steam turbines and heat recovery steam generator sections. The exergy advantages and 

disadvantages of using variable number of units were quantified. Steinfeld, 2001, [6] 

evaluated the exergy efficiency and CO2 mitigation potential of a solar thermal gasification 

of coal with combined cycle and a fuel cell technology. The exergy and environmental are 

compared with the process using the conventional steam gasification technology. Ong'iro, 

1996, [7] determined the effect of gas turbine firing temperature on the IGCC plant 

exergetic efficiency and  compared the exergy destruction in IGCC with the integrated 

humid air turbine process. 

Other authors focused on the IGCC process comparison between different cases or similar 

process which generates also electricity. Erlach, 2010, [8] compared the performance of 

conventional IGCC design with pre-combustion carbon capture by physical absorption with 

various configurations of chemical looping combustion. Key design parameters are varied, 

identifying its advantages and disadvantages by the exergy destruction rate. Yang, 2012, [9] 

studied and compared two IGCC cases with two slurry gasifier types and air preheating 

system for the combustion chamber. For each process stage, the exergy destruction was 

assessed. Kunze, 2010, [10] made a comparison between the currently IGCC technology 

and the ideal case and found a significant potential for further technology optimization. A 

structure exergy analysis of its subsystems and individual component was performed for 

both cases. Two individual process has been evaluate by Gnanapragasam, 2009, [11] who 

assessed and compared the energy, exergy and CO2 separation performance of an IGCC 

plant and hydrogen production from coal gasification. The polygeneration case was not 

evaluated, only the process individually. 

On the other hand some studies considered technology combinations to achieve higher 

exergy efficiency. Odukoya, Dincer and Naterer 2011, [12] investigated the exergetic 

performance of coal and natural gas co-gasification integrated with a combine cycle and 

with a solid oxide fuel cell. They determined for a plant configuration the maximum fuel 

cell power output, combined cycle net work output, combined cycle exergetic efficiency, 

fuel utilization exergetic efficiency, sustainability index, CO2 emissions, and exergy 

destruction. Similar technology combination was made by Lobachyov and Richter, 1996, 

[13] only for coal gasification and by El-Emam, 2011, [14] who considered the effect of 

changing the reference temperature and pressure ratio of the component on the exergy 

destruction for the gasification of two coal types.  

 

 

 

 



Table 1. Exergy Analysis of IGCC.  

Author Year  Exergy analysis contribution Carbon 

capture 

 Single units on the process performance 

Linwei Ma 2012 Water slurry preheating vaporization technology   Yes 

Han 2009 Coal gasification with Char fired natural gas  partial 

reforming 

No 

Kawabata 2012 Pre and post-combustion carbon capture comparison 

for two plant configurations. 

Yes 

De 2004 The rankine cycle has a variable number of steam 

turbines and heat recovery steam generator sections. 

No 

Steinfeld 2001 Solar thermal gasification of coal No 

Ong'iro 1996 effect of gas turbine firing temperature on the IGCC 

plant exergetic efficiency and  exergy destruction 

comparison between IGCC and the integrated humid 

air turbine process 

No 

Comparison between different cases or similar process 

Erlach 2010 Comparison between the conventional IGCC 

performance with pre-combustion carbon capture by 

physical absorption with various configurations of 

chemical looping combustion. 

Yes 

Yang 2012 Study of two IGCC cases with two slurry gasifier 

types and air preheating system for the combustion 

chamber 

No 

Kunze 2010 Comparison between IGCC currently technology and 

the ideal case 

Yes 

Gnanapragasam 2009 IGCC plant and hydrogen production from coal 

gasification as individual processes. 

Yes 

Technology combinations 

Odukoya 2011 Investigation of a cofired coal and natural gas IGCC 

with a solid oxide fuel cell. 

Yes 

Richter 1996 Coal gasification with combined cycle and solid oxide 

fuel cell. 

No 

El-Emam 2011 Effect of two coal types, reference temperature and  

ratio of the component on the exergy destruction of 

IGCC and solid oxide fuel cell technologies. 

No 

Source: [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]  

 

 

 

 



1.1.2 Exergy works of fuel production from coal gasification 

 

In this section exergy analysis of fuel production processes without electricity production is 

considered. These case studies are not wide studied because for most cases the power 

production represents a good opportunity to enhance the efficiency of the process.  

Steinfeld, 2004, [15] determined the maximum exergy efficiency and CO2 mitigation 

potential of three hydrogen production processes using concentrated solar radiation and 

fossil fuels which are natural gas for the thermal decomposition and  the steam-reforming 

and coal for steam-gasification process. Zhu, 2010, [16] evaluated the exergy and energy 

performance of the coal to fuel process with a single and two stage slurry coal gasifier. The 

targets fuels are the Fischer Tropsch synthetic crude and synthetic natural gas. 

 

Table 2. Exergy Analysis of fuels derived from coal 

Author Year  Exergy analysis contribution Carbon 

capture 

Process performance evaluation 

Steinfeld 2004 Maximum exergy efficiency and CO2 mitigation of 

thermal decomposition, steam-reforming and the 

steam-gasification with solar and fossil energy for 

hydrogen production. 

Yes 

Zhu 2010 Exergy and energy performance of coal to liquid and 

gaseous fuel process with two slurry coal gasifier. 

No 

Source: [15] [16] 

 

 

1.1.3 Exergy analyses of polygeneration processes from coal gasification 

 

One of the big advantages of coal gasification is that it offers the polygeneration possibility 

of fuels, chemical and electricity. Previous exergy analyses of these plants are focused on a 

combination of these final desired products where hydrogen, methanol and electricity are 

the most studied products. 

The exergy process efficiency has been investigated in several direction. Malik, 2012, [17] 

investigated the hydrogen and electricity production of a zero emission plant from coal and 

biomass gasification. The plant was simulated with the software Thermoflex and two cases 

were considered with exergy and energy points of view, the coal only operation and the 

cogasification of coal and biomass, both with CO2 capture and sequestration. A similar 



work was developed by Chen, 2012, [18] but additionally made a sensibility analysis of 

hydrogen to electricity ratio on the exergy efficiency and Aspen plus was used for the 

process simulation. The exergy conversion efficiency of coal to methanol, coke, electricity 

and heat was studied by Anikeev, 1997, [19]. The author presents a mathematical model of 

the process which is used to assess the global exergy efficiency of the plant with different 

coal types and different production amounts.  Lou, 2011, [20] used exergy methods in a 

sustainability assessment of the dimethyl ether and power production from coal and natural 

gas. He calculated the exergy conversion efficiency, economics, process safety and 

environmental performance of the coal gasification with natural gas reforming and the co-

gasification of both feed stocks. A similar case study was considered by Cocco, 2005, [21] 

with two coal gasifiers with dry and slurry feeding systems and the exergy losses calculated 

were at four plant subsystems. 

Some authors compared the process exergy efficiency with similar plant configuration. Jin, 

2004, [22] evaluated the energy savings of electricity and methanol polygeneration process 

compared with the plants producing these products individually. The process was simulated 

with the software Aspen Plus and the results were analyzed through exergy destruction rate 

and graphical exergy diagrams. A similar case study was developed by Zheng, 2009, [23]  

but the exergy losses are decomposed into five sub-systems which are chemical reaction 

processes, heat exchange processes, external exergy losses, turbine/mechanical exergy 

losses and others. Yuanyuan, 2002, [24] made an analogous work but the subsystems were 

the gasifier, cleanup unit, synthesis, exhaust heat and combined cycle.   

In order to reach higher efficiencies several works propose technology combination with 

coal gasification. Gao, 2008, [25] studied the technology combination coal gasification with 

the coal fired and conventional cocking process for production of methanol and electricity. 

The exergy analysis made was on component level based with energy utilization diagram. 

A similar process combination for the production of methanol, dimethyl ether and dimethyl 

carbonate was investigated by Li, 2010, [26] with an exergoeconomic analysis. The process 

was evaluated with a proposed mathematical model of the chemical reaction kinetics and 

the gasifier and cocking process were not considered. Han and Jin, 2010, [27] evaluated 

exergy performance of a electricity and methanol production from coal gasification and 

char fired natural gas  partial reforming. The exergy destruction rate was calculated at a 

component level. 

 

 

 

 



Table 3. Exergy Analysis of  polygeneration processes 

Author Year  Exergy analysis contribution Carbon 

capture 

  

Malik 2012 Hydrogen and electricity production of a zero emission plant 

from coal and biomass gasification. 

Yes 

Linwei Ma 2012 Global exergy conversion efficiency of coal to methanol, 

coke, electricity and heat 

Yes 

Lou 2011 Global exergy conversion efficiency of the dimethyl ether 

and power production from coal and natural gas 

No 

Comparison between similar process 

Jin 2004 Energy savings of power and methanol polygeneration 

process compared with the plants producing these products 

individually. 

No 

Zheng 2009 Exergy losses on power and methanol polygeneration 

process 

No 

Yuanyuan 2002 Exergy losses on power and methanol polygeneration 

process 

No 

Technology combinations 

Gao 2008 Technology combination with the conventional and coal 

fired cocking process for production of methanol and 

electricity. 

No 

Li 2010 Exergoeconomics of a methanol, dimethyl ether and 

dimethyl carbonate from coal gasification and coke oven gas. 

No 

Source: [17] [18] [19] [20] [21] [22] [23]  [24] [25] [26] [27] 

  

 

 

1.1.4 Exergy analyses on Coal Gasification 

 

The works review next considered only the exergy evaluation of coal gasifiers and the air 

separation unit. Kunze, 2010, [28] developed an exergy analysis of different raw gas 

cooling concepts and compared the cold gas efficiency of different gasifier designs. The 

gasifiers analyzed were Shell, Siemens and General Electric technologies through Aspen 

plus simulation. Janajreh, 2012, [29] calculated and compared the overall plant exergy 

efficiency of plasma gasification and conventional air gasification of coal, tire, municipal 

solid waste, algae, treated wood, untreated wood, pine needles and plywood through. The 

air gasification plant was modeled using the Engineering equation solver while Aspen plus 

was used for plasma gasification. 

The operation condition of coal gasifiers haven been studied by Chen, 2012, [30] who 

optimized the coal gasification process through an Aspen plus model. The optimization 



variables were oxygen to coal ratio, steam to coal ratio and steam temperature and the 

response variables were the syngas yield, syngas concentration, system exergy efficiency 

and CO2 separation rate. Öztürk, 2011, [31] made a sustainability study of coal gasification 

considering the energy and exergy efficiency, exergy destruction, improvement potential 

and environmental impact. These parameters were determined for several coal types, 

operating temperature range from 850 to 1000 C and for an air blown gasifier without 

steam injection which reach chemical equilibrium. 

Coal gasification comparison has been made by Raugei, 2004, [32] comparing the 

thermodynamic efficiency and environmental sustainability of  the syngas production from 

coal gasification with natural gas off shore extraction, and hydrogen production from steam 

reforming of natural gas and alkaline electrolysis. Besides the exergy and energy analysis, 

two other methods were applied; the material flow accounting and energy synthesis.   

The coal gasification performance has been also compared with the gasification of other 

fuels. Prins, 2004, [33] studied the effect of fuel composition on the thermodynamic 

efficiency of coal and biomass gasification. The exergy losses for both cases were 

quantified and the optimal gasification temperature for the fuel composition was identified. 

Dudgeon, 2009, [34] used exergy analysis on gasification for the evaluation of different 

fuels while comparing the effectiveness of gasifying three fossil fuels which comprises 

coal, petcoke and orimulsion  and three biomass fuels which include distillers dried grains, 

switch grass and oat hull. In addition an exergy analysis of oxyburn processes including an 

investigation of flue gas recirculation and a comparison between two different gas 

separation processes for capturing CO2 was performed. Anheden, 1998, [35] evaluated a 

gas turbine with chemical looping combustion of methane and syngas from coal 

gasification. The two cases are compared with conventional combustion of the same fuels 

through irreversibility generation rate.  

Regarding the air separation unit  was investigated by van der Ham, 2010, [36] considering 

two cryogenic air separation with different number of distillation columns; either two or 

three.  The exergy destruction of the different process parts were calculated and compared 

for both cases and proposed energy integration with other IGCC components. Cornelissen, 

1997, [37] analyzed the exergy performance of a three column configuration air separation 

unit and liquefaction process. The third column was used for argon purification and the 

plant can produce gaseous and liquid nitrogen.  

 

 

 

 



 

Table 4. Exergy Analysis of  coal gasification 

Author Year  Exergy analysis contribution 

Coal Gasification 

Janajreh 2012 Overall plant exergy efficiency of plasma gasification 

and conventional air gasification of coal, municipal 

solid waste, and different biomass types  

Kunze 2010 Exergy performance of different raw gas cooling 

concepts 

Öztürk 2011 Coal gasification considering several coal types and 

operating temperatures 

van der Ham 2010 Two air separation unit with different number of 

distillation columns. 

Raugei 2004 Comparison of  the syngas production from coal 

gasification with natural gas off shore extraction, and 

hydrogen production from steam reforming of natural 

gas and alkaline electrolysis 

Chen 2012 optimized the coal gasification process through an 

Aspen plus model 

Performance comparison with other fuels 

Prins 2004 Effect of fuel composition on the thermodynamic 

efficiency of coal and biomass gasification 

Anheden 1998 Performance of gas turbine with chemical looping 

combustion of methane and syngas from coal 

gasification 

Dudgeon 2009 Gasifying effectiveness of three fossil fuels and three 

biomass types, and evaluation of oxyburn processes 

including flue gas recirculation. 

 
Source: [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] 

 

 

1.1.5 Exergy analysis on CO2 capture and sequestration 

 

The big concern on CO2 capture is its high power consumption; therefore authors like 

Tsutsumi, 2011, [38] proposed a new process to reduce the energy lost on CO-shift 

conversion and CO2 chemical absorption processes of precombustion CO2 separation. The 

new process was based on the self heat recuperation technology and the process simulator 

Pro/II was used for the analysis.  



Various carbon capture methods suitable to be applied for an IGCC plant for power 

generation was investigated by Iribarren, 2012, [39] as well as Romeo, 2011 [40]. The 

technologies examined are post-combustion capture using monoethanolamine, membrane 

separation, cryogenic fractionation and pressure swing adsorption, precombustion capture 

through coal gasification, and capture performing conventional oxy-fuel combustion. 

Finally Lombardi, 2001, [41] made an exergetic life cycle assessment and a classical 

environmental life cycle assessment for a post combustion gas turbine, a precombustion 

IGCC plant and a proposed O2/CO2 cycle. The proposed component burn methane and 

oxygen producing CO2 which becomes the cycle working fluid. The CO2 excess, produced 

in the combustion, is removed in liquid phase without any additional system. 

 

Table 5. Exergy Analysis of  carbon capture and sequestration 

Author Year  Exergy analysis contribution 

CO2 capture 

Tsutsumi 2011 Self heat recuperation technology evaluation. 

Iribarren, 

Romeo 

2012, 

2011 

Various carbon capture methods examined. 

Lombardi 2001 Exergetic life cycle assessment and a classical 

environmental life cycle assessment for a post 

combustion gas turbine, a precombustion IGCC plant 

and a proposed O2/CO2 cycle. 
Source: [38] [39] [40] [41] 

 

 

 

 

 

 

 

 

 

 

 



1.2  Theoretical framework 

 

1.2.1 Description of the methane and electricity production processes  

 

Introduction to polygeneration processes  

The polygeneration processes consist of three main stages where initially the feedstock is 

gasified, then the product gases are clean up and finally the syngas can be used to produce 

several products as shown in figure 1.  In this study it was considered only the coal 

gasification for the production of methane and electricity but the process can be powered 

with other feedstock like biomass petroleum derivates or waste to produce also liquid fuels 

or chemicals like fertilizers, solvents and phenols. The process can achieve low emission; 

therefore it is considered an environmental friendly way to process coal. Gasification, gas 

clean up, methanation and gas turbine are described next. 

 

 

Figure 1. Polygeneration processes. Source: USDoE [42] 

 

1.2.1.1 Coal gasification 

 

Coal gasification for the production of low to medium heating value syngas 

Coal gasification is the partial oxidation of the components with an oxidation agent that can 

be air, oxygen, hydrogen, steam or a mixture of oxygen and steam, producing syngas 

composed mainly of hydrogen and carbon monoxide. Coal gasification with air produces a 



gas with low heating value and medium heating value when oxygen is used. The oxidation 

amount in the reaction should be the gasification stoichiometric  amount which is much less 

than combustion quantity in order to fall in the gasification zone shown in figure 2 and 

avoiding the complete oxidation, obtaining carbon dioxide and water. Besides carbon 

monoxide and hydrogen, the syngas produced has a low mole fraction of methane and 

pollutants as H2S, NH3 and COS. The reactions in the gasifier reach the chemical 

equilibrium without any catalyst and reach cold gas efficiencies in order of 60 to 90% [43, 

44]. The syngas composition depends mainly of the reactor type, the gasification agent and 

the operational conditions [45]. 

 

 

Figure 2. Diagram showing the products of reaction as a function of oxygen to coal ratio. Source: Jeffrey 

Phillips [43] 

 

 

Reactions in coal gasification 

The most important gasification reactions are: 

The partial oxidation  

𝐶 +  𝑂2  →  𝐶𝑂2       ∆H°298=-393,5 kJ/mol, Exothermic reaction   

𝐶 +  0,5 𝑂2 →  𝐶𝑂       ∆H°298=-111,4 kJ/mol, Exothermic reaction   

 



The steam gasification  

C +  H2O →  CO + 𝐻2  ∆H°298=131,3 kJ/mol, Endothermic reaction   

 

Carbon dioxide gasification 

C +  C𝑂2  →  2 CO       ∆H°298=172,5 kJ/mol, Endothermic reaction    

 

Hydrogasification 

𝐶 + 2𝐻2 → 𝐶𝐻4               ∆H°298=-74,8 kJ/mol, Exothermic reaction   

 

Water gas shift reaction  

CO + H2O → CO2 + H2  ∆H°298=-41,2 kJ/mol, Exothermic reaction   

 

Table 6. Equilibrium constants for gasification reactions. Source: [46] 

Log Kp 

T (K) 1 2 3 4 5 6 

300 23,93 68,67 15,86 20,81 4,95 8,82 

400 19,13 51,54 10,11 13,28 3,17 5,49 

500 16,26 41,26 6,63 8,74 2,11 3,43 

600 14,34 34,4 4,29 5,72 1,43 2 

700 12,96 29,5 2,62 3,58 0,96 0,95 

800 11,93 25,83 1,36 1,97 0,61 0,15 

900 11,13 22,97 0,37 0,71 0,34 0,49 

1000 10,48 20,68 0,42 0,28 0,14 1,01 

1100 9,94 18,8 1,06 1,08 0,02 1,43 

1200 9,5 17,24 1,6 1,76 0,16 1,79 

1300 9,12 15,92 2,06 2,32 0,26 2,1 

1400 8,79 14,78 2,44 2,8 0,36 2,36 

1 C + 1⁄2O2 = CO 4 C + CO2 = 2 CO 
 

2 C + O2 = CO2 5 CO + H2O = CO2 + H2 

3 C + H2O = CO + H2 6 C + 2 H2 = CH4 
 

 

Table 6 shows the equilibrium constants for each reaction showing that the partial oxidation 

has the largest participation in the final products and the water gas shift has the lowest. 



Therefore the oxygen to coal ratio is the most important parameter in order to operate under 

the gasification zone reaching high carbon conversion and avoiding combustion products 

like carbon dioxide and water. The steam to coal ratio is another important parameter and 

the excess of it also hurts the thermal efficiency of the process.  

 

Coal gasification to produce high heating value syngas 

These processes produce directly methane in the gasifier. There are two process under 

investigation; the hydrogasification which gasifies the coal with hydrogen and the steam 

catalyst gasification, also called the hydromethanation, that uses catalysts to  increase the 

small amounts of methane in coal gasification with steam [46].  

 

Hydrogasification 

The process gasifies the coal directly with hydrogen at temperature around the 800 C and 

high pressure (30-50 bars) in an entrained flow reactors combining the carbon and 

hydrogen molecules to produce methane without any catalyst [45, 47] . When hydrogen is 

injected additionally with steam, it enhances the reaction rates, lower the residence time 

and the coal has not to be dried [48]. After the main reactor, the gas is cleaned and the 

methane is separated from the unreacted hydrogen and carbon monoxide [45, 47]. The 

hydrogen must be supplied with an additional unit that can be by electrolysis or with a 

water gas shift reactor.  The most important reaction is: 

𝐶𝑜𝑎𝑙 + 𝐻2 → 𝐶𝐻4 +  𝐶𝑎𝑟𝑏𝑜𝑛𝑎𝑐𝑒𝑜𝑢𝑠 𝑚𝑎𝑡𝑡𝑒𝑟 

𝐶(𝑠) + 2𝐻2(𝑔) → 𝐶𝐻4(𝑔)        ∆𝐻°298 = −74.8 𝑘𝐽/𝑘𝑚𝑜𝑙 

The reaction is exothermic and thermodynamically favored at low temperatures , however a 

limit temperature is needed to increased its kinetics.  

 

Hydromethanation 

In the hydromethanation process, the gasification, water gas shift reaction and methanation 

take place in the same fluidized bed reactor with the presence of a potassium carbonate 

(K2CO3) catalyst at relative low temperatures (600-700 C). The gas yield contains 

methane, carbon dioxide, carbon monoxide and hydrogen, which are separated with amines 

and cryogenic distillation and then the unreacted fuels (CO, H2) are recirculated in the 

reactor [45]. The coal is gasified mainly with steam and small amounts of oxygen and the 

three most important reactions are shown below.  



 

Individual reactions:  

𝑆𝑡𝑒𝑎𝑚 𝑐𝑜𝑎𝑙 𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

 C +  𝐻2O →  CO + 𝐻2  ∆H°298=131,3 kJ/mol, Endothermic reaction   

 

 

 

𝑊𝐺𝑆 
 CO + H2O → CO2 + H2  ∆H°298=-41,2 kJ/mol, Exothermic reaction   

 

 

𝑀𝑒𝑡ℎ𝑎𝑛𝑎𝑡𝑖𝑜𝑛 

 CO + 3H2→ CH4 + H2O  ∆H°298=-205 kJ/mol, Exothermic reaction   

 
 

 

Overall reaction:  

2𝐶 + 2𝐻2𝑂 → 𝐶𝐻4 + 𝐶𝑂2 

 

 

 

1.2.1.2 Air Separation Unit (ASU) 

 

The methods to separate the oxygen and nitrogen from air can be classified in cryogenic 

plants or non-cryogenic plants. The first one uses a distillation column to produce high 

purity products at medium to high production rates, therefore the cryogenic option is 

preferred for polygeneration processes. The non cryogenic plants are membranes 

technologies or selective adsorption, commonly used when product demand is relatively 

low and high purity streams are not needed. In this study all the air separation unit (ASU) 

refers to cryogenic distillation. The ASU produces 95 mole percent oxygen for the IGCC 

process and for coal to fuels processes the 99 percent separation degree is preferred.  

In power generation applications air from the turbine compressor is sent to the air 

separation unit what is called the integration degree and enhances the efficiency of the 

process. The separated nitrogen in the ASU is send to the gas turbine, thus increasing the 

power output while maintaining optimum firing temperature and reducing the NOX 



formation by dilution. The syngas dilution ranges from 4,4-4,7 MJ/Nm3 and the specific 

value depends of the combustion turbine technology.  

 

 

1.2.1.3 Gas clean up  

 

After the gasification or water gas shift reactors, the gas has to be cooled to 100 C with 

water quench or heat recovery and the tar and dust have to be removed with syngas 

scrubber. Then the syngas passes through the acid gas cleanup which can be either the 

Selexol or Rectisol process, both based on physical absorption [47]. The Selexol process 

uses a mixture of dimethyl ethers of polyethylene glycol as an absorbent and the Rectisol 

uses cold methanol and both processes have wide commercial experience. Besides the 

physical absorption, the clean up process can also use the amine process based on chemical 

absorption but it is more expensive. The clean up stage separates the H2S and CO2 in two 

separate streams, which the H2S is send to the Claus plant to produce high purity sulfur 

implementing these reactions: 

 

Individual reactions: 

 H2S + 3/2 O2 ↔ H2O + SO2   

2H2S + SO2 ↔ 2H2O + 3S 

Overall reaction: 

3H2S + 3/2 O2 ↔ 3H2O + 3S 

 

 

 

1.2.1.4 Water Gas shift reactors  (WGS) 

 

In case of carbon capture or fuels production, the hydrogen fraction in the syngas has to be 

increased in the water gas shift reaction. The syngas produced in the gasifier is mixed with 

water and with the presence of a catalyst, the following reaction takes place; 

 CO + H2O → CO2 + H2  ∆H°298=-41,2 kJ/mol, Exothermic reaction   



The CO shift converter can be located either upstream of the AGR or immediately 

downstream. The upstream option is preferred since the water gas shift reaction stage 

operates at higher temperatures than the gas clean up. In the downstream option the gas has 

to be cooled, cleaned and additionally steam generated with an additional equipment and 

energy input.   

 

1.2.1.5 Methanation 

 

The syngas produced is reformed to CH4 in the methanation stage with three reactor types; 

equilibrium-limited fixed bed reactors in series, through wall-cooled fixed bed reactor and 

the fluidized bed reactor. Through wall-cooled fixed bed reactor and the fluidized bed have 

been developed only at pilot plant scale and only equilibrium-limited fixed bed reactors are 

available at the commercial stage [45, 49]. The main reaction in the methanation stage is; 

𝐶𝑂 + 3𝐻2 → 𝐶𝐻4 + 𝐻2𝑂      ∆𝐻°298 = −206 kJ/mol 
 

The principal objective on the methanation design process is able to remove efficiently the 

heat generated by the high exothermic reaction, trying to produce more methane before the 

chemical equilibrium is reached [50] and to avoid the catalyst sintering and decomposition 

of the methane to carbon [49]. For this reason several configurations with intercooling and 

gas recycle were developed with catalysts system that can maintain its activity after 

prolonged exposure to high temperatures [49]. The main commercial processes are the 

TREMP and the Johnson Matthey process but reported data in the literature is only 

available for the TREMP case, which is evaluated in this study.  

 

 

1.2.1.6 Gas turbine with different fuel composition  

 

Thermodynamically with a higher turbine inlet temperature, higher will be the efficiency, 

however the turbine firing temperature is limited to metallurgy restriction. Most of the 

working fluid is air but the fuel composition also plays an important parameter in the heat 

transfer to the turbine blades. The gas turbine in this study is an F class gas turbine with a 

suitable firing temperature with natural gas of 1371 C. For an equivalent turbine lifetime, 

with a syngas composition of H2/CO ratio equal to 0.5, decreases to 1338 C because the 

heating value of the syngas is lower and more fuel has to be injected what increases the 

heat transfer by convection. Furthermore with a higher hydrogen fraction also the firing 



temperature has to decrease because the water content in the product gases increases and 

this compound intensify the heat transfer by radiation and convection to the blades.  

The most important reactions taking place in the gas turbine combustion chamber are: 

2 𝐶𝑂 +  𝑂2  → 2𝐶𝑂2   ∆H°298=-283 kJ/mol, Exothermic reaction   

𝐻2 + 0.5 𝑂2  → 𝐻2𝑂  ∆H°298=-241,8 kJ/mol, Exothermic reaction   

𝐶𝐻4 + 2 𝑂2  → 2𝐻2𝑂 + 𝐶𝑂2       ∆H°298=-801 kJ/mol, Exothermic reaction   

 

The integration between the air separation unit and the turbine compressor is recommended 

to enhance the global efficiency. The recommended integration degree is 25 to 30 percent 

of the ASU air coming from the turbine what provides the best balance of plant output, 

availability, efficiency and reliability [51, 52].  However for CO2 capture case, all of the 

available combustion air is required in the gas turbine to maintain a high performance. 

 

 

1.3 Exergy Theory and General Assumptions 

 

1.3.1 Exergy assumption  

In this work only the physical and chemical exergy were considered and the rest exergy 

terms as the mechanical, electric, magnetic, nuclear, potential and kinetic were neglected 

without significant different results. The physical exergy (Xph) considers the maximum 

work from the temperature and pressure and the Chemical exergy (Xo) considers the 

maximum work from chemical reactions. The chemical species considered in the study are 

argon (Ar), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2),  carbonyl 

sulfide (COS),  hydrogen (H2), water (H2O), hydrogen sulfide (H2S), nitrogen (N2) and 

ammonia (NH3). The ambient condition in the analysis are T=25 oC and P=101.32 kPa. 

 

 

1.3.2 Theoretical exergy models  

The exergy models used in this paper are based on the book exergy method of thermal plant 

analysis by Kotas [1]. The exergy balance at steady state forms the following equations: 

 



Exergy of a solid fuel 

The chemical exergy of the coal is described as: 

𝑥𝑐𝑜𝑎𝑙
𝑜 = [(𝑁𝐶𝑉)𝑜 + 𝑤 ℎ𝑓𝑔]𝜑𝑑𝑟𝑦 + [𝑥𝑠

𝑜 − (𝑁𝐶𝑉)𝑆
𝑜] 𝑠 

 

For rhombic sulfur: 

[𝑥𝑠
𝑜 − (𝑁𝐶𝑉)𝑆

𝑜] = 9417
𝑘𝐽

𝑘𝑔
 

𝜑𝑑𝑟𝑦 = 1,0437 + 0,1882 (
ℎ

𝑐
) + 0,061 (

𝑜

𝑐
) + 0,0404 (

𝑛

𝑐
) 

 

Where h, c, o, n, s, w are the mass fraction of hydrogen, carbon, oxygen, nitrogen, sulfur 

and water respectively. 

 

 

Exergy of a chemical reactor 

𝑋𝑖𝑛 + 𝑋𝑜𝑢𝑡 − 𝐼𝑟𝑟 = 0 

The exergy for a stream is the sum of the chemical and the physic term. 

𝑋 = 𝑋𝑜 + 𝑋𝑝ℎ 

𝑋 = 𝑛  𝑥𝑇
𝑜 + ∑ 𝑛𝑘

𝑘

 𝑥𝑇
𝑝ℎ

 

The specific chemical exergy of a gas mixture is: 

𝑥𝑜 = ∑ 𝑧𝑘

𝑘

  𝑥𝑘
𝑜 + 𝑅 𝑇𝑜 ∑ 𝑧𝑘

𝑘

 𝑙𝑛𝑧𝑘 

The physic exergy of a gas mixture is: 

𝑥𝑝ℎ = ∑ 𝑛𝑘

𝑘

 𝑥𝑇
𝑝ℎ

 



𝑥𝑝ℎ = (𝑇 − 𝑇𝑜) ∑ 𝑧𝑘

𝑘

  𝑐𝑝,𝑘
𝑒 + 𝑅 𝑇𝑜  ln (

𝑃

𝑃𝑜
) 

 

Exergy Balance of a distillation column  

     

𝑋𝑖𝑛 + 𝑋𝑜𝑢𝑡 − 𝐼𝑟𝑟 = 0 

𝐼𝑟𝑟 = 𝑊𝑖𝑛 + 𝑋𝐹 − 𝑋𝑇 − 𝑋𝐵 

 

Air at atmospheric conditions and the nitrogen is vented to the ambient: XF=0, 𝑋𝑇 = 0 

𝐼𝑟𝑟 = 𝑊𝑖𝑛 − 𝑋𝑇 

𝑋𝑇 = 𝑛  𝑥𝑇
𝑜 + 𝑛  𝑥𝑇

𝑝ℎ
 

𝐼𝑟𝑟 = 𝑊𝑖𝑛 − 𝑛  𝑥𝑇
𝑜 − 𝑛  𝑥𝑇

𝑝ℎ
 

 

Criteria of performance 

The efficiency defect is defined by Kotas [1] as the irreversibility of the stage divided by the total 

exergy input to the process. When it is multiplied by 100, it gives us the percentage of coal exergy 

lost for each stage which is the criteria of performance used in this work.   

  

% 𝐸𝑥𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 = 100 ∗ 𝛿 = 100 
𝐼𝑟𝑟

𝑋𝑖𝑛
 

 

 

1.3.2.1 Economic Assumption 

The plant capital costs were reported by the US department of energy with an expected accuracy of 

-15% to -30% on the low side and a +20 to +50% on the high side [53, 54, 51]. These costs 

correspond to the total amount needed for the plant construction including the equipment, labor, 

additional construction materials, taxes and contingencies. Financial costs and first consumable 

costs were not considered. 

 



2 SIMULATION AND EXERGY COMPARISON OF COAL GASIFIERS  
 

 

Introduction to coal gasification 

 

Gasification has been a reliably commercial scale technology for more than 75 years and 

currently exist approximately 150 large scale plants worldwide with more than 430 

gasifiers where 50% of the total syngas is derived from coal [55] [56].  The gasifier is the 

most influent plant stage and its selection sets the main performance and costs [57]. The 

main commercial gasification technologies able to process more than 1000 tons coal per 

day are: British Gas Lurgi, General Electric initially developed by Texaco, Shell and 

ConocoPhillips E-gas initially developed by Dow [56] [43]. Figure 3 shows the total 

installed capacity for these gasifiers, where it can be observed that the three technologies 

with the highest syngas production are Shell at the first stage, followed by Lurgi and 

General Electric. The KRW gasifier is also analyzed to include the analysis of fluidized bed 

gasifiers, but the General electric gasifier was excluded since there is no enough available 

information to the analysis.  

 

 

Figure 3 Syngas production capacity from different gasification technologies. Source: [56] 
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2.1 Simulation of coal gasification 

 

2.1.1 Key assumptions 

 

Description of the gasifier design features 

The gasification technologies considered are a fixed bed gasifier; BGL, a fluidized bed; 

KRW and two entrained flow gasifier; Shell and E-Gas. The different design options are 

classified under single stages what determines the features of each gasifier, summarized in 

table 7 which are considered as inputs and technical restrictions in the coal gasification 

simulations. The information was compiled from the manufacturer and the US Department 

of Energy. 

The major species considered in the reactor are CO, CO2, H2, H2O, N2, O2  and the minor 

species tracked are H2S, COS and NH3. Other low percentage species like mercaptans, 

metals (Hg, Se) and alkali components were not considered to enhance the model 

convergence [28].  

The coal handling capacity shown in table 7 are for bituminous coal and this value 

increases for lower rank coals but the energy input capacity decreases.  For example the 

Shell gasifier energy input is 757 MW or 2500 tons/day of bituminous coal and change to 

735 MW, 2484 tons/day of subbituminous coal and to 714 MW, 2439/day tons of lignite 

[54]. The fixed bed and fluidized bed reactor have the lowest coal handling capacity due to 

these reactors have a residence time on the order of minutes while in the entrained flow 

gasifiers is on the order of seconds. The coal conversion for all the gasifiers is 99% carbon 

conversion. 

The wall of the gasifier could be refractory lined or use a cooling screen that is a heat 

exchanger tubes wall that circulates water around the gasifiers to control the reactor 

temperature and producing low pressure steam. The heat loss for gasifier with refractory 

lined walls can be neglected but for cooling screen walls with a value in the range of 1 and 

2 percent of the heat combustion of the coal feed [58] [59]. Therefore the refractory lined 

walls reactors were simulated as adiabatic and the cooling screen walls are simulated with a 

heat loss of 1 percent coal low heating value. 

The drying system burns some syngas to heat air which dry the coal to 5 percent moisture 

content. The drying process requires 25 kg syngas for each ton of bituminous Illinois No. 6 

coal.  

In the syngas cooling section all the gasifiers use heat recovery steam generator except for 

the KRW which uses water quench. The temperature of the syngas is cooled to 200 C and 



the temperature of the water in the heat recovery was assumed as 280 in the inlet and 335 in 

the outlet of the heat exchanger at a operating pressure of 15 MPa. 

 

Table 7. Principal design characteristics of coal gasifiers, Sources: [53, 54, 51, 60, 61] 

Gasification 

technology  

ConocoPhillips  

E-Gas  
Shell  KRW 

British Gas 

Lurgi  

H2O/C (mol)+ 0,45 0,11 0,19 0,32 

O2/C (mol)+ 0,42 0,41 0,48 0,29 

Transport gas H2O N2 N2 Syngas 

Coal drying No Yes 
(5 % Moisture in coal) 

Yes 
(5 % Moisture in coal) 

No  
(Mixed with limestone) 

Feeding system 
Coal-Water 

Slurry 

Dry coal with lock 

hopper and Pneumatic 
conveying with 

nitrogen 

Dry coal with lock 

hopper and Pneumatic 
conveying with carbon 

dioxide 

Dry coal with lock 

hopper and Pneumatic 

conveying with syngas 

Reactor Type 
Entrained flow 

slagging gasifier 

Entrained flow 

slagging gasifier 

Fluidized Bed 

gasifier 

Fixed bed 

slagging gasifier 

Gasifier Wall Refractory 
Cooling screen 
(2 % coal LHV loss) 

Refractory Refractory 

Operating 

Pressure 
5,1 MPa 4,2 MPa  3,1 MPa  3,44 MPa 

Syngas Outlet 

Temperature  
(After Cooling) 

 1030 C 
(200C) 

 1400 C 
 (200C) 

 1400 C 
(200C) 

537 C 
(200C) 

Gasification 

temperature 
1316 -1427 C 1427 C 1499 C  1400 C 

Coal handling 

capacity  

(ton/day)+ 

2500 2500 880 1000 

Syngas Coolers HRSG HRSG Water Quench HRSG 

Pressure loss* 

(MPa) 
1,03 1,07 0,59 1,15 

*Includes the syngas cooling system 
+Bituminous coal: Illinois No. 6 

 

 

 



Physical property method 

In order to select  the proper method, the streams composition and the operating condition 

of the process has to be considered [62]. The process considered in this study comprises 

mainly short chain hydrocarbons and non polar substances at high pressure and for this 

reasons equations of states as Peng Robinson or Redlich Kwong Soave are recommended. 

In the simulations of this study the Peng Robinson Equation was used as the global 

property method since it is recommended from Aspen Plus [63].  

 

Description of the model flow sheet 

 

Gasification 

The model flow sheet consists of two reactor and a separator which altogether represents a 

gasifier. The diagram is shown in figure 4, where the small reactor is a yield reactor. This 

unit decompose the solid stream into the single components from the proximate and 

ultimate analysis of the coal and calculates the heating value of the coal which is a input to 

the second reactor. The second reactor is a Gibbs reactor where the chemical equilibrium 

from all the streams is calculated and the reactions implemented are shown in table 8. 

Finally the last unit is a "SSplit" where the ash and the syngas produced are separated.  

 

 

Figure 4. Gasification flow sheet 

 

The second reactor can be a Gibbs reactor because the kinetics barriers associated with its 

chemical reaction are largely minimized when the temperature are above 873 K, [44, 28] 

and oxygen steam gasification take place at temperatures higher than 1000 C to certify a 

high carbon conversion [64] [43]. The chemical equilibrium is calculated from a known 



thermodynamic condition when the system reaches the maximum entropy production or 

equivalent the Gibbs free energy reach a minimum, satisfying the following equation [65]: 

𝑑𝐺 ≤ 0    𝑤𝑖𝑡ℎ (𝑃, 𝑇) 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

 

Table 8. Reactions taking place in the gasification Gibbs reactor 

Stoichiometry Reaction ΔH298 (kJ/mol) 

C + O2 → CO2  
Partial oxidation 

-393,5 

C + 0.5 O2 → CO   -111,4 

C + H2O → CO +H2     Steam gasification  131,3 

C + CO2 → 2 CO     Carbon dioxide gasification 172,5 

C+2H2 → CH4   Hydrogasification -74,8 

CO + H2O → CO2 + H2 Water gas shift reaction  -41,2 

CO+3H2→CH4+H2O Methanation  -206.2 

H2+S→H2S 
Sulfur reaction 

 -20.5 

CO+S→COS  -27.9 

CL2+H2→2HCl Hydrogen chlorine reaction  -184.6 

N2+3NH2→2NH3 Ammonium formation  -91.9 

Source: [28] 

 

Air Separation Unit and compressors 

Initially the air is compressed to 900 kPa and send  to heat exchangers which decreases the 

temperature to -174 C. The refrigeration performance was taken from the literature. In the 

column the oxygen is separated to 99 percent purity and then is compressed again to the 

operating pressure of the gasifier.  

 

 

Figure 5. ASU flow sheet 

 

 



Table 9. Inputs to the model 

 

 

 

 

Coal properties considerations 

The coal properties have to be considered since it affect the performance of coal gasifiers. 

The coal type is described in the simulation with the proximate, ultimate and sulfur analysis 

shown in table 10. Coals are preferred for all gasifiers with low ash content because it 

decreases the efficiency of the gasifier as a result of an increase in oxygen consumption. 

Although some gasifiers have a minimum ash content requirement, for example for Shell is 

>8 wt% because of the slag self coating system on the walls of the gasifiers and to 

minimize the heat lost [66] [67].  

For gasifiers that use mixtures of coal and water such as the E-Gas, the slurryability is an 

important coal property which is related directly to the coal grindability measured by the 

hard grove grindability Index (HGI). The HGI shows a size distribution from grindability 

operations and a high HGI favors the production of slurry with high coal concentration, but 

it has to be considered if this slurry is pumpable and stable with particle settling [67]. In the 

simulation a coal water slurry of 63 percent solid concentration is implemented for 

bituminous and sub bituminous coals.   

For gasifiers with low to moderate average temperatures of 1000 °C, reactive coals are 

desired to achieve high carbon conversion and improving the cold gas efficiency [67]. The 

gasifiers considered on this work have high gasification temperature of more than 1200 °C 

and reach high carbon conversion for unreactive coals [68]. 

In slagging gasifiers the reactor operates above the ash melting point, hence its fusion 

temperature should be low or moderate so that the molten slag can flow down the reactor 

walls and drain from the gasifier. Fluxes like limestone can be added to reduce the ash 

fusion temperature and a temperature of 1400 °C or higher need to consider flux addition. 

[66] [67]. The software do not considered the ash composition, slag properties and 

reactivity of the char, hence it is supposed that the slag presents a Newtonian flow, with a 

viscosity with no crystalline behavior which can blockage the system.  

 

Global simulation parameters 

Oxygen purity 99% 

Carbon conversion 99% 

Physical property method  Peng Robinson 

Kinetics model  Chemical Equilibrium 



Table 10. Proximate and Ultimate analysis of  Bituminous Illinois # 6, Source: [69] 

Coal:  Bituminous Illinois # 6 

Proximate Analysis (weight %) 

  As Received Dry 

Moisture 11,12 0 

Ash 9,7 10,9 

Volatile Matter 34,9 39,3 

Fixed Carbon 44,1 49,7 

Total 100 100 

Sulfur 2,51 2,82 

HHV, kJ/kg 27,1 30,506 

LHV, kJ/kg 26,1 29,544 

Ultimate Analysis (weight %) 

  As Received Dry 

Moisture 11,12 0 

Carbon 63,75 71,72 

Hydrogen 4,5 5,06 

Nitrogen 1,25 1,41 

Chlorine 0,29 0,33 

Sulfur 2,51 2,82 

Ash 9,7 10,91 

Oxygen  6,88 7,75 

Total 100 100 

    

 

 

 

 

 

 

 

 

 

 

 



2.2 Results 

2.2.1 Model verification and accuracy 

 

Table 11. Model verification for different gasifier technologies (mol %) 

Entrained Flow Reactors 

  Dry feed gasifiers   Slurry feed gasifiers 

  

 
Shell     E-GAS   

 
Simulation  Reference [28]    

 

Simulation Reference [70]   

CO 60,99 59,27   CO 46,61 44   

H2 21,65 21,4   H2 36,43 33   

CH4 0 0   CH4 3,38 2   

CO2 1,67 2,8   CO2 13,58 16   

N2 14,07 14,3   

   
  

AR 0,96 0,9   

   
  

H2S 1,27 0,83   

   
  

H3N 0 0   

   
  

COS 0,14 0,31           

Fluidized bed Reactors Fixed bed Reactors 

  KRW   

 

BGL   

  Simulation Reference [71]   

 

Simulation Reference [72]   

CO 23,2 23,9   CO 44,66 54,96   

H2 14,27 14,5   H2 35,19 31,54   

CH4 0,41 1,4   CH4 5,33 4,54   

CO2 5,02 5,5   CO2 9,78 3,46   

N2 51,28 48,6   N2 3,95 3,35   

AR 0,61 0,6   AR 0,01 0   

H2O 5,21 5,5   H2O 0,96 1,31   

        H2S 0,03 0,36   

 

The model verification was performed for different gasifier technologies with syngas 

reported from existing coal gasification plants which are mainly demonstration project. The 

E-GAS and KWR gasifier projects reported the syngas composition after the gas clean up 

stage, consequently the accuracy of the model predicting the pollutant emissions for this 

gasifier was not determined.  From table 11 it can be observed that the maximum difference 

between the Aspen plus equilibrium models and the experimental results reported is 10 

percent  for the BGL fixed bed gasifier. The most accurate results is presented for the 

fluidized bed and dry feed entrained flow gasifiers with less than 2 percent deviation for 

each chemical component, followed by the slurry feed entrained flow gasifiers with less 

than 4 percent deviation.  



The fixed bed reactor produces hydrocarbons liquids such as tars and oils which are not 

considered by the model. In the BGL gasifier the 7,6 percent of the mass flow corresponds 

to the hydrocarbons liquids and this is the main reason for the divergence between the 

simulation and the reference.   

Additionally in steady state simulations the gasifier is a perfect mixed reactor with uniform 

thermo chemical properties where the hydrodynamic within the reactor is neglected 

consequently geometry is not considered [44]. The BGL is the only technology with a 

significant different properties along the gasifier which change the equilibrium composition 

of the syngas. For this gasifier computational fluid dynamics (CFD) has to be implemented 

to considerer the kinetics within the reactor. 

 

 

2.2.2 Syngas composition and environmental performance  

 

The slurry gasifier produces a syngas with the highest H2/CO ratio approximately equal to 1 

which enhances the plant efficiency for the methane production since the downstream 

methanation needs a H2/CO ratio of 3. In case that the syngas has low hydrogen percentage, 

the carbon dioxide production increases in the WGS what reduces the global plant 

efficiency. However is has to be considered that the slurry technology presents the highest 

CO2 molar fraction, as a result of this gasifier has a high oxygen consumption since more 

coal has to be burned to evaporate the fluid. 

The production of CO2 greenhouse emissions and sulfur pollutant emissions are presented 

in table 12 for bituminous coal gasification. The dry feed entrained flow reactor presents 

the lowest greenhouse emissions, 14 times less than the slurry feed gasifier. 

In carbon capture application, the KRW, Shell and BGL syngas have high nitrogen content 

and it produce a negative effect since it dilutes the raw gas and therefore reduces the CO2 

partial pressure [64]. Therefore the coal compression with CO2 is preferred for carbon 

capture cases. The methane production is low for the entrained flow gasifiers as a result of 

the short residence time, on the other hand the BGL gasifier, with the highest residence 

time has a significant CH4 percentage and also the syngas with the highest heating value.  

The sulfur emissions are also the highest for the fixed bed gasifier [73] and is the only 

gasifier that produces hydrocarbon liquids, such as tars and oils which need to be 

recirculated to achieve low pollutants emissions [43]. The 99 percent of the H2S can be 

recovered and send to a Claus plant for the production of pure sulfur [53].  

 



Table 12. Syngas composition for coal gasifier with water quench 

  KRW Shell E-GAS BGL 

Environmental Performance 

CO2, kg/tons coal 186 55 716 153 

COS, kg/tons coal 1,5 3 2 3 

H2S , kg/tons coal 24 25 26 32 

 

 

 

2.2.3 Exergy analysis 

 

The exergy results are presented in table 13, considering the gasification process as four 

individual stages; drying, air separation unit,  reactor and syngas coolers.  

Higher oxygen requirements produce a gas with a lower energy outlet as a result of the 

reactants are more oxidize. Therefore  BGL gasifier counts with the lowest oxygen 

consumption and the highest exergy conversion efficiency of 82,2%, considering that the 

liquid hydrocarbons produced are recirculated. The dry feed entrained flow gasifiers are at 

the second stage in a exergy conversion efficiency with 80,8 percent, followed by the slurry 

feed entrained flow gasifier with 75,6 percent. The fluidized bed gasifier is in the last stage 

with a conversion efficiency of 70,4 percent, because this gasifier is recommended only 

with water quench, destroying 9,1 percent of its exergy. On the other hand Shell recovers 

51,5 MW of the exergy cooling the syngas and destroys only 2,1 percent of the exergy.   

 

 

Figure 6. Exergy flows in coal gasifiers 

 



Table 13. Exergy results 

Component 
KRW E-Gas   Shell   BGL 

(dry feed fluidized bed) (slurry feed entrained flow) (dry feed entrained flow) (dry feed fixed bed)   

% Exergy Lost 

Drying 1,0 0,0 1,0 0,0 

ASU 2,5 2,5 2,1 2,2 

Reactor 17,0 19,8 13,8 14,8 

Syngas cooling 9,1 2,1 2,3 0,8 

Exergy Balance 

Exergy Input, MW 284 882,5 815 358 

Exergy from steam production, MW 
(from syngas coolers) 

0 26,2 51,5 5,8 

Exergy from syngas 
production, MW 

200 641 607 288,49 

Exergy conversion 
efficiency, % 

70,4 75,6 80,8 82,2 

 

 

 

 

2.2.4 Effect of coal type on the exergy conversion efficiency  

 

The exergy conversion efficiency for bituminous and sub bituminous coal  is presented in 

table 14, where it shows that the exergy decreases for lower rank coal. A moisture increase 

has a more negative impact on the slurry feed than the dry feed entrained flow gasifier 

because while the carbon concentration in the slurry decrease, the coal can be dried in the 

dry feeding gasifiers, eliminating partially its effect. While the dry feed gasifier has an 

exergy efficiency decrease of 2% approximately, the E-Gas slurry has a 9% decrease, 

mainly because the oxygen amount increases when subbituminous coal is implemented. For 

the latter reason the coal water slurry gasifiers are recommended only for bituminous coal 

and for lower rank coal such as sub-bituminous and lignite, the dry feeding systems is 

recommended in order to maintain high efficiencies. The BGL gasifier wasn´t evaluated 

because the model don´t achieve the accuracy to determine the effect of coal type and the 

KRW operating conditions for subbituminous coal are not available. 

 

 



 

Table 14. Exergy conversion efficiency for bituminous and sub-bituminous coal. Sources: [53, 54, 

51, 60, 61] 

Coal Proximate Analysis  

  Bituminous Sub bituminous 

Moisture, % 11,12 25,77 

Ash, % 9,7 8,19 

Volatile Matter,%  34,99 30,34 

Fixed carbon, % 44,19 35,7 

LHV (MJ/kg) 26,15 19,19 

Gasifier Inputs 

H2O/C (mol) 
Shell: 0,11 
E-GAS:0,45 

Shell:0 
E-GAS:0,54 

O2/C (mol) 
Shell:0,41 

E-GAS:0,42 

Shell:0,44  

E-GAS:0,72 

Gasifier exergy conversion efficiency 

Shell 
(dry feed entrained flow) 80,8 78,9 

E-GAS  
(slurry feed entrained flow) 75,6 66,5 

 

 

 

 

2.2.5 Capital cost of coal gasifiers 

 

Table 15 shows the most important gasifiers characteristics for the capital cost comparison 

for bituminous coal gasification. The KWR is not a commercial gasifier because in the 

Pinon Pine demonstration IGCC plant utilizing this gasifier, it was not able to maintain the 

syngas production successfully in project period from 1998 to 2000 [64].  

The main technology barrier is not technical but economical since the major problems for 

polygeneration process from coal gasification are the capital cost [66]. In the economic 

section the cost shown are related for a single gasification train and only the equipment cost 

are included. Other costs for the plant construction like labor, additional construction 

materials, taxes or contingencies were not considered. The gasifier section comprises the 

reactor, the syngas cooler, heat recovery and auxiliaries and the coal preparation and 

feeding includes the milling, drying, compression and feeding systems. 



In order to compare the gasifiers taking into account the capital cost and the coal handling 

capacity, these two values were divided, founding that the BGL gasifier counts with the 

lowest value.  Although the low coal handling capacity of this technology, for the same 

capital investment more coal can be gasified with BGL than the other gasifiers. The BGL 

has lower capital cost because it doesn't dry the coal, has a refractory wall and operates at 

high temperature only at a section of the reactor where the gasification take place what 

requires less sophisticated materials in the gasifier [66]. It is the only gasifier with a low 

waste heat duty with an outlet temperature of  560 °C.    

The dry feed entrained flow is the most expensive option but it has to be considered that it 

is the only technology with  membrane water wall which requires less maintenance time 

and a higher life time [64] [66]. Additionally the cooling screen improves the startup and 

turndown time and reduces the concerns surrounding coal; especially ash properties due to 

water membrane wall produce a solid and liquid slag lining instead of a refractory lining 

[54]. Some coal compound as SiO2 CaO and iron oxide can penetrate deeply into the high 

chrome refractory materials and eventually give rise to cracks that lead to material loss 

[67]. The life of a water wall can provide a significant operating and maintenance cost 

benefit over refractory lined gasifiers [51]. 

 

 

 

Table 15. Techno economical comparison of coal gasifiers 

Gasification 

technology  

E-Gas   Shell   BGL 

(slurry feed 

entrained flow) 

(dry feed entrained 

flow) (fixed bed)   

Economics  USD ($x1.000) 

Coal preparation and 

feeding  $ 11.000  $ 53.000  $ 2.500  

Air separation unit  $ 73.000  $ 74.000  $ 30.000  

Gasifier  $ 67.000  $ 93.000  $ 18.000  

Total capital cost $ 151.000  $ 220.000  $ 50.500  

Total capital cost 

divided by the coal 

handling capacity  

(USD $x1000/Ton-

day) 60,4 95,7 50,5 

Capital cost Source: [51] [54] [53] 

 

 



3 SIMULATION AND EXERGY COMPARISON OF COAL TO SYNTHETIC 

NATURAL GAS PRODUCTION PROCESSES 

 

3.1 Processes for the production of synthetic natural gas from coal 

gasification 

 

The technologies for SNG production can be classified by direct or indirect methanation. 

The indirect methanation is currently the only available commercial technology and 

consists in four principal steps; gasification, water gas shift (WGS), gas clean up and 

methanation. The direct methanation comprises two processes; the hydrogasification and 

hydromethanation or also called the steam catalytic gasification, which are still considered 

emerging technologies.  The hydromethanation is closed to reach a commercial 

development and currently a demonstration project at industrial scale is been constructed in 

China. The hydrogasification is under investigation with a 10 tons per day pilot plant. Table 

16 shows the current technology development for the direct and indirect methanation 

Currently there are only 2 worldwide SNG plants under commercial operation, one in USA 

and one in China and both use indirect methanation technology. The plant in China, the 

Datang, has been recently build and it was confirmed in September 2012 its startup and 

initial demonstration run [74]. The Great Plains Synfuels Plant in North Dakota USA is the 

only large scale SNG plant worldwide with significant commercial experience producing 

methane since 1984. 

 

Table 16. Technology development status of methanation processes (2013) 

Technology 

Development 

status Production plants 

Direct Methanation 

Hydromethanation 

Large scale 

development 

First demonstration plant 

is been constructed in 

China and it is expected to 

begin operation in 2017 

Hydrogasification 

Pilot plant 

investigation 

Pilot plant lower of 10 ton 

per day 

Indirect Methanation 

Steam oxygen 

gasification and 

downstream 

methanation Commercial 

Two power plants in 

operation and numerous 

under construction 

  Source: [48, 75] [76, 77] [78, 79] [47] 



 

 

Direct Methanation: Emerging Technologies 

 

Development Status of Hydrogasification Process 

Several test at small pilot plant are under development, investigating the main technical 

challenges which are the low carbon conversions, low product yields and slow reaction 

rates [80, 48]. The process was tested in 2006 at a bench level  by the Viresco Energy and 

the company currently works (2011 last report) to build a pilot plant in Utah, a small scale 

plant with a capacity for 5 tons per day  of coal  or a mixture coal/biomass to evaluate the 

steam hydrogasification  technical feasibility [48, 75]. Another similar project is been 

developed by the Arizona Public Service with the financial support of the department of 

energy with a small pilot plant. Two of the total three project phases are accomplished 

which tries to determine if the hydrogasification without steam injecting could be a 

commercially viable process [48]. The successful of these projects could provide the 

engineering information to develop bigger plants.  

 

Development Status of the Hydromethanation Process 

The development status of the hydromethanation technology is under large scale 

demonstration [78, 79] and in 2017 the first large scale plant in the world is expected to 

complete its construction in China [76, 77]. The first catalytic gasification process was 

demonstrated by Exxon in 1979 with a one ton per day pilot plant [79]. The process was 

improved by the Great Point Energy Group with the hydromethanation, developing more 

than 60 patents on the technology. The project was demonstrated at near commercial 

condition with a 100 foot reactor in 2007 and currently conducts test to demonstrate the 

latest version of their technology to overcome some technical problems [78]. The main 

challenges to overcome are the catalyst poisoning diminishing its performance over time, 

the catalysts cost and difficulties recovering and recycling the catalyst [47, 79]. 

 

Development status of the Indirect methanation: Commercial Technologies 

The commercially proved SNG technology is based on traditional oxygen-steam 

gasification technologies operated to yield multiple products from syngas. From the total 

syngas production, 45% is employed to produce chemicals like fertilizers, 38% for liquid 

fuels, 11% for electric power and only 5% to produce methane [77]. Apparently the actual 



SNG commercial process was adapted from the existing technology and wasn’t design 

directly to produce methane. 

Methanation catalyst for syngas reforming 

Extensive catalyst metals investigations have been developed mainly on nickel, cobalt, iron, 

ruthenium, molybdenum and tungsten materials. The preferred catalyst material is the 

nickel based due to the high activity and low price and its main disadvantage is the extreme 

vulnerability to sulfur poisoning. A syngas with 20 sulfur ppb gives a nickel life cycle of 4 

years approximately [45, 81]. Another important technical challenge is the catalyst 

temperature resistance. The allowed temperature for nickel commercial catalyst is in the 

range of 240-650C [45, 50].        

 

 

3.2 Simulation and Exergy Analysis of Coal to SNG Processes 
 

The process simulated are the indirect methanation and the hydromethanation, both 

evaluated at chemical equilibrium for all the reactions in the process. The validation is 

developed only for the indirect methanation since there is no available information for the 

direct methanation  in the open bibliography. The hydrogasification process was not 

simulated because it is not expected to reach chemical equilibrium and a kinetic model has 

to be developed which is out of the target of this work. 

 

3.2.1 Key Assumptions  

 

The simulation features described in chapter 3 such as model limitations, scope and coal 

gasification assumption are also valid for the next simulations. Except the steam and 

oxygen gasification, all the reactors use catalyst to reach the chemical equilibrium in a short 

residence time. Therefore the kinetics barriers are decreased and the processes can be 

evaluated with thermodynamic equilibrium. In the exergetic analysis the oxygen separation 

degree was in order of 99 percent and all the reactor in the process flow sheets are modeled 

as adiabatic. 

The temperature range of hydromethanation is 600 to 700 C. In this work 600 C since the 

methane production is favored at lower temperatures [82].  This process uses fluidized bed 

reactors and technology difficulties as recovering, recycling and poisoning of the catalyst 

cannot be evaluated with the steady state software. According to Great Point Energy, the 



oxygen consumption of hydromethanation is 75 percent lower  than the conventional steam 

oxygen gasification [83] which is equivalent to a maximum value of 0.2 kg oxygen/kg coal 

bituminous Illinois No. 6.  The pressure used in the hydromethanation simulations was 50 

bars, the same than the pressure of some steam oxygen gasification plants.  

The  indirect methanation stages such as the WGS and methanation can use fixed bed 

reactors since they handle streams without solids. The methanation stage have also 

difficulties with catalyst poisoning, however in this case the gas is cleaned before with the 

Selexol process.  

 

Table 17. Key Assumptions 

  

Direct 

methanation: 

Hydromethanation 

Indirect Methanation 

Gasifier 

Technology Great Point Energy Shell 

H2O/C (mol) 1 0,01 

O2/C (mol) 0,11 0,44 

Oxygen purity 99% 99% 

Carbon conversion 
Calculated with the 

model 
99% 

Temperature 600 C Calculated with the model 

Pressure (Bars) 50 50 

Global simulation parameters 

Physical property 

method 
Peng Robinson  Peng Robinson 

Kinetics model Chemical Equilibrium  Chemical Equilibrium 

Heat loss 
Adiabatic  

Adiabatic 
(Except the gasifier) 

Pressure loss (MPa) 

ASU: 0,2  ASU: 0,2  

Gasifier: 1,3 Gasifier: 1,3 

WGS: 0,45  Gas clean up: 0,07 

Methanation: 0,61   

Gas clean up: 0,07    

Indirect methanation parameters 

Equilibrium Temperature 1/2/3 Stage 

WGS: 428/252 C 

Methanation: 

600/ 438/303 C 

Steam Cycle 1/2/3 Stage 
Pressure (MPa): 12,5/3,45/0,44 

Temperature (C): 565/534/260 

Coal:  Bituminous Illinois # 6 

Moisture, % 11,12 

Ash, % 9,7 

Volatile Matter,%  34,99 

Fixed carbon, % 44,19 

LHV (MJ/kg) 26,15 

 



The inputs to the model are summarized in table 17 for the direct and indirect methanation 

processes. The most important input to the reactors is the equilibrium temperature which is 

limited by the fixed bed reactors and by the catalyst technology.  The gasification 

technology used for the exergy comparison was the Shell gasifier since it has one of the 

highest cold gas efficiencies. 

 

Description of the model flow sheet 

 

Indirect Methanation: Water gas shift and methanation  

The model flow sheet of the water gas shift and the methanation stage are shown in figure 7 

and 8 respectively. All the reactors are Gibbs reactors which calculates the equilibrium of 

the streams for a given temperature and pressure. Initially the syngas produced in the 

gasifier is mixed with steam in order to have a CO/H2O ratio of 1 and send to the water gas 

shift reactor which consists of two adiabatic Gibbs reactors with inter cooling heat 

exchanger. In the last heat exchanger most of the water is condensed and recycled to the 

process. The heat duty from the heat exchanger is used to produce steam to the process. The 

gas cleanup is not shown on the figures and it is simulated as a simple separator unit which 

removes the CO2 and the sulfur components. The methanation flow sheet is similar to the 

water gas shift but this unit uses three fixed bed reactors to produce high purity methane 

and use a compressor to recycle some of the gas to control the inlet temperature to the first 

reactor. The gas is also cooled with steam for power production and the last heat exchanger 

condenses the water. While the temperature in the gasification model can be calculated 

from the coal heating value, the other reactors need the equilibrium temperature as a model 

input. 

 

 

Figure 7. Water gas shift reactors 

 



 

Figure 8. Tremp Methanation Process 

 

 

Direct Methanation 

 

The hydromethanation flow sheet is similar to the conventional steam oxygen gasification 

flow sheet and the only difference is that the flow sheet of figure 9 does not show the dotted 

line from the yield to the Gibbs reactor because the temperature is a model input not 

calculated with the software. The hydromethanation uses catalyst to enhance the production 

of methane and the reaction rates at a temperatures range of 600 to 700 C [82]. The 

processes reach the chemical equilibrium, therefore can be modeled with a Gibbs reactor 

and the unreacted char is recycle to ensure complete carbon conversion. 

 

 

Figure 9. Hydromethanation 

 

 

 

 



3.3 Simulation Results  

 

Methanation 

The simulation results are compared with the reported data from the bibliography as shown 

in table 18. The model has a high accuracy with an error less than 1 percent for each 

process stage. The outlet stream of the third stage contains a high steam fraction, which has 

to be condensed to reach a methane purity more than 85 percent. Additionally the CO2 can 

also be separated to purify even more the product stream.  

 

Table 18. Verification of the model  

  

First stage Second stage Third stage 

Simulation 

Reference 

[84] Simulation 

Reference 

[84] Simulation  

Reference 

[84] 

H2O 31,1234989 31,0 40,2 39,9 43,7593435 43,4 

CH4 38,0927144 38,1 45,0 44,7 47,4333531 47,2 

CO 1,1469081 1,0 0,0 0 0,00108465 0 

CO2 4,92054739 5,0 2,6 2,4 1,40811985 1,4 

H2  19,1394027 19,1 6,1 6,7 1,22983486 1,6 

N2 5,57692853 5,8 6,0 6,3 6,16826409 6,4 

 

 

Hydromethanation 

There are no available experimental data in the bibliography for the hydromethanation 

process since this process is still on experimental state. The simulations were performed at 

3 operating pressures and it can be seen that higher pressures benefits the methane 

production, from 10 to 50 bars it enhances 3 mol percent on the final composition. It is 

expected that the process reach the chemical equilibrium with the catalyst implemented 

similarly to the Tremp methanation process. On the other hand the minimal gasification 

temperature to reach complete carbon conversion is 1000 C. For this reason with the low 

operating temperature of 600C, 43 percent carbon moles do not react and has to be 

recycling in the gasifier. The final gas compositions are composed mainly of hydrogen, 

steam, carbon dioxide and methane as shown in table 19.  

 

 



Table 19. Equilibrium compositions of the hydromethanation process at 3 different operating 

pressures 

Hydromethanation - Mol % 

  50 bars 30 bars 10 bars 

H2O 32,7 31,4 28,1 

N2 0,4 0,4 0,4 

H2 7,6 9,7 15,5 

CO 1,4 1,8 3,1 

CO2 15,3 15,3 15,1 

H2S 0,7 0,6 0,6 

CH4 17,2 16,3 13,6 

Carbon/Char 24,7 24,4 23,6 

 

 

3.4 Exergy Performance Results and discussion 

 

The exergy performance results of the direct and indirect methanation are shown in table 20 

where it states that 29,3 percentage of the coal exergy is lost in the hydromethanation 

process and 42,9 percent in the indirect methanation, equivalent to an exergy efficiency of 

70,7% and 57,1% respectively.  The higher efficiency of hydromethanation responds to the 

stage reduction, lower exothermic reactions with a more neutral thermal balance of the 

reactions and lower temperature gap between the gasifier and clean up equipment. The 

conventional oxygen-steam gasifiers produce syngas that can be upgraded to methane but 

with a more exergetic expensive product than the direct methanation because of the greater 

number of stages needed. The sensible heat of the syngas is partially recovered in the 

indirect methanation with the steam turbine, however the syngas production is more 

suitable for other products like electricity production [78]. 

Additionally the technology of hydromethanation converts more coal to methane since 

while the direct methanation needs 2 carbon moles to produce 1 mole of methane, the 

indirect methanation needs almost 3 carbon moles to produce 1 mole of methane. The 

difference between carbon moles are compensated with the carbon dioxide production since 

more carbon dioxide is produced in the indirect methanation with a CO2/C ration of 0,785 

and in hydromethanation the ratio is equal to 0,474.  

As a result of the higher carbon dioxide production in the indirect methanation a higher 

fraction of gas has to be separated in the gas cleanup stage, producing 4,3 percent more 

exergy loss than the direct methanation. 



The air separation unit of hydromethanation in table 20 includes the ASU for oxygen 

separation and methane purification. It has less exergy losses than the indirect methanation 

ASU mainly because hydromethanation has 75 percent less oxygen consumption than the 

conventional gasification.  

Although the significant difference of the total efficiency between the two processes, it has 

to be considered that in the hydromethanation process presents some intrinsic 

thermodynamic limitations such as the carbon conversion goes only up to 57% while for 

the indirect methanation reach 99%, because the chemical equilibrium constants are higher 

for the oxygen gasification than for the steam catalytic gasification. The low carbon 

conversion implies that higher reactor volumes has to be used because more unconverted 

coal has to be recycle, decreasing the coal handling capacity. Therefore high gasification 

capacities of 2500 tons/day like conventional coal gasification are not expected to be 

constructed. In this work the same coal handling capacity was assumed because there is no 

available information in the bibliography and to compare easier the two plants. Besides the 

hydromethanation still  presents challenging technical difficulties mainly on the catalyst 

poisoning diminishing its performance over time and recovering and recycling the catalyst 

which don´t take place in the indirect methanation. 

 

Table 20. Exergy balance in coal to SNG processes 

Indirect methanation   Direct methanation  

 Exergy results  

 Process Stage   % Exergy loss  
 Exergy 

losses (MW)   Process Stage  

 Efficiency 

Defect  

 Exergy 

losses (MW)  

 ASU                     2,5            14,4   ASU              1,5                    8,6  

 Gasifier                    21,1          121,1   

Hydromethanation 

reactor            24,4                140,1  

 WGS                     3,0            17,2  

 Methanation                     4,7            27,0  

 Gas clean up                     7,7            44,2  

 Gas clean up              3,4                  19,5   Steam turbine                     3,9            22,4  

 Total                   42,9          246,2   Total            29,3                168,2  

 Plant performance  

 Exergy input (MW)          574,0   Exergy input (MW)                574,0  

 Exergy output (MW)          327,8   Exergy output (MW)                405,8  

 Exergy conversion efficiency (%)            57,1   Exergy conversion efficiency, %                  70,7  

Methane and Carbon Dioxide Production 

CH4/C ratio (mol) 0,387 CH4/C ratio (mol) 0,505 

CO2/C ratio (mol) 0,785 CO2/C ratio (mol) 0,474 



3.5 Sustainability of the indirect methanation 

 

3.5.1 Outlook of the next SNG plants 

 

The economic viability of the coal to SNG projects depends mainly on the natural gas local 

price, secondly on the coal price and the technology implemented [85]. Several facilities 

were planned in the United States in the time frame 2005-2006 when natural gas prices 

were floating between 12-13 dollars per million BTUs, but the prices unexpectedly fell as a 

result of the enormous unconventional gas (shale gas) resources founding in 2008-2009. In 

2012 the natural gas prices reached 2 dollars per million BTUs [86] [87] [88], consequently 

in USA the coal to SNG plants are been driven out of business with 9 SNG projects 

canceled or put on hold [89].  

On the other hand China has a lack of natural gas resources while the demand has become 

increasingly prominent [90]. The situation increases the natural gas prices in some Chinese 

regions up to 12 dollars per million BTUs, around 5 times more expensive than USA 

market [91]. Since the costs of producing SNG via steam-oxygen commercial coal 

gasification is estimated to be from 6.7 to 7.5 dollars per million Btus [85], it has a quite 

economic viability in China and this country may have most of the next SNG plants. In 

total there are 80 SNG from coal plant projects planning and under construction in China 

[92] [93]. The first construction phase will produce 198.041 billion cubic meter per year 

and after the second construction phase the plants will be able to supply 248.896 bcm, 

200% of the total China consumption in 2011 (129 bcm) [92]. 

 

3.5.2 Capital investment 

 

The main barrier of the indirect methanation technology is that it requires a high capital 

investment, high maintenance cost and has a low availability generally in the first years of 

operation [64]. In order to reach availabilities over 90%, the plant has to count with spare 

gasifier what makes the plant even more expensive.  For these reasons, many gasification 

projects still need the government economic support [43]. It is expected that the 

hydromethanation process can reduce the capital and operational costs since it has less 

stages. 

The plant capital costs were reported by the US department with an expected accuracy of -

15% to 30% on the low side and a +20 to 50% on the high side [54]. These costs 

correspond to the total amount needed for the plant construction including the equipment, 



labor, additional construction materials, taxes and contingencies, which are shown in table 

21. Financial costs and first consumable costs were not considered. 

The SNG plant studied operates six of the biggest commercial Shell gasifier of 757 MW 

coal input, three train Selexol gas clean up technology and three TREMP methanation units 

to produce approximately 156 million of standard cubic feet SNG.  

The most expensive component of SNG plant is the gasifier with the 45,6% capital 

investment. The gasifier selected presents high cost mainly as a result of the gasifier 

features like coal drying, pulverizing and dry coal injection system to achieved high 

efficiency and coal handling capacities. The capital cost of CO2 removal and compression 

is low as a result of the precombustion separation system. 

 

Table 21. Capital investment of indirect Methanation  

USD$ *1000 

  
Component 

Capital 

Investment % 

Sorbent handling and feed water $ 98.009  3,6 

Gasifier and accessories $ 1.230.380  45,6 

Air separation Unit $ 288.039  10,7 

Gas Cleanup and piping $ 625.812  23,2 

CO2 compression $ 71.602  2,7 

Methanation and shift reactors $ 99.784  3,7 

Steam turbine and accessories $ 156.800  5,8 

Cooling water systems $ 45.274  1,7 

HRSG, ducting and stack $ 5.096  0,2 

Instrumentation and Control  $ 30.286  1,1 

Building and Structures $ 47.277  1,8 

Total cost $ 2.698.359  

Production Capacity 156 MPCD 

   Source: [54]  

 

3.5.3 Operating cost and effect of coal price 

 

The operating and maintenance cost, reported by USDoE in 2011 reached the US$6.39/ 

MMBtu if the coal have a price of US $60/ton. The 66% percent of the operating cost 

corresponds to the fuel and only 34% to other costs like maintenance, operating labor and 

other consumables. It was assumed that the plant produces its electricity needs and sells the 



sulfur produced.  Lower rank coals decrease the cost of the SNG from $6.39/ MMBtu to 

$2.85/ MMBtu, when the coal price reduces from $60/ton to $10/ton as shown in figure 10.  

On the other hand the huge amount of carbon dioxide emissions could impact directly the 

sustainability of the process if carbon taxes are included in the economy of the country, like  

European countries which have already included carbon dioxide taxes. In this analysis 

carbon dioxide taxes were not included. 

 

Figure 10.  Effect of coal price on the operating cost.  

 

 

3.5.4 Return on investment 

 

The plant capital investment is around $ 2.698.359.000 US dollars for a production capacity 

of 155.532 MBtu/day of methane. If the operating cost are $ 6,39/ MMBtu and the price of 

natural gas in the international market (Caribbean Region) is $ 14,0/ MMBtu, the return on 

investment goes up to 10 years with a capacity factor of 90 percent and 7 percent discount 

rate, which is a medium period for this large size project. However it has to be considered 

that the natural gas price can decrease with the revolution of shale gas what risks the project 

finances.  

Table 22 Return on investment 

Balance 

Total costs $ 2.698.359.000  

SNG production capacity 155.532 MBtu/day 

Operating cost $ 6,39/ MMBtu 

Natural gas price $ 14,0/ MMBtu 

Return on investment* 10 Years 

           *Capacity factor of 0,9 
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4 EXERGY ENVIRONMENTAL AND CAPITAL COST COMPARISON OF THE 

INTEGRATED GASIFICATION COMBINED CYCLE WITH THE 

PULVERIZED COAL RANKINE CYCLE 

 

  

4.1 Description of the Pulverized Coal Rankine Cycle 
 

The property streams of the pulverized coal Rankine cycle are collected from simulations 

from the US Department of Energy in order to develop the exergy analysis  

The subcritical and supercritical pulverized coal Rankine cycle (PCRC) consist of the 

boiler, gas clean up and the Rankine cycle. The main difference between the two plants is 

the operating pressure and temperature conditions of 16,5 MPa and 566 oC for the 

subcritical case and 24.1MPa and 593 oC for the supercritical case. It has to be considered 

that there is under investigation an ultra supercritical Rankine Cycle with a working 

temperature of 760 oC and pressure of 34,5 MPa, but this technology is not already 

available and it is still under investigation [51]. In carbon capture cases an additional Fluor 

Econamine FG  unit is used and consists of a formulation of MEA and proprietary 

corrosion inhibitor to recover the CO2 by absorption from the flue gas.  

 

 

 

4.2 Simulation of the Integrated Gasification Combined Cycle - IGCC 

 

4.2.1 IGCC key assumption 

 

Two gasifiers were selected in order to evaluate the IGCC performance, the Shell and E-

Gas gasifiers, both entrained flow reactors. Both gasifiers count with heat recovery for 

steam production in the non capture case and a water quench for the capture case. The dry 

feed gasifier is used as base case, thus this technology is analyzed for all the section in the 

study, except in the exergoeconomic analysis where the slurry feed gasifier is also 

analyzed. 

 The gasification agents are steam and 95% pure oxygen separated with cryogenic 

distillation air separation unit (ASU). The nitrogen separated in the ASU, is send to the gas 

turbine for syngas dilution in order to avoid NOx formation.  



After the particulate removal the syngas passes through the acid gas cleanup stage, where 

the Selexol process was analyzed because it has a wider commercial experience. Finally the 

syngas is burned in an Advance F class gas turbine and with the flue gases, steam is 

generated which are used to produce electricity in a three pressure stage subcritical steam 

turbine. The model flow sheet and the key assumptions for the gas turbine and the Rankine 

cycle are  shown in figure 11 and table 23. 

 

 

 

 

 

 

 

Figure 11. Model flow sheet of the Combined Cycle 

 

 

Table 23. Key Assumptions 

Advanced F Class Combustion Turbine 

Firing Temperature for Syngas (Natural Gas), °C  1338 (1371) 

Airflow, kg/s  431 

Pressure Ratio 18,5 

Net Output, MW 280 

Net Efficiency (LHV), % 57,5 

Net Heat Rate (LHV), kJ/kWh 6,256 

Rankine Cycle 

Steam Turbine 1/2/3 Stage 

Pressure (MPa): 

12,5/3,1/0,44 

Temperature (C): 

558/558/260 

Condenser Pressure, kPa 6,8 

Pinch Temperature in HRSG, C 30 

Pressure Lost in HRSG, Bar 30 

Other Stages 

Gasifier Technology Shell/E-Gas 

ASU 95  % Oxygen 

Gas Clean Up Selexol 

 



4.3 Exergy results and comparison between IGCC with and without CO2 

capture 

 

Table 24 shows the exergy balance for the proposed IGCC plant with and without CO2 

capture. The capture case has 9.5 % higher exergy losses than the non capture case mainly 

because the higher entropy production in the cleanup section and the water gas shift 

reactors. The shift reactors are included only for the capture case to convert the carbon 

monoxide into hydrogen, avoiding the production of CO2 in the combustion chamber. The 

CO2 produced in the water gas shift reactor corresponds to the 37% of the syngas mole 

fraction which accounts as a significant amount of exergy destroyed when is separated in 

the gas cleanup section. Besides there is approximately 60% more energy consumption in 

the process mainly from the additional CO2 compression and a significant increased in the 

acid gas removal. Consequently the fraction of the exergy lost in the clean up section and 

water gas shift reactors increase 5,6 and 1,9 % respectively. 

The difference between the two cases in the gasifier and the air separation unit are 1,8 % 

and 0,8%  respectively higher in the CO2 capture case due to the gasifier cooling section in 

this case uses a water quench to have a high H2O/CO ratio for the downstream shift 

reaction. On the other hand in the non-capture case the syngas high sensible heat is partially 

recovered for steam generation and send to the HRSG. In addition the integration between 

the air separation unit and the turbine compressor is recommended to enhance the global 

efficiency and 25 to 30 percent of the ASU air from the turbine provides the best balance 

between plant output, availability, efficiency and reliability [51, 52].  However for 

hydrogen syngas corresponding to CO2 capture case, all of the available combustion air is 

required in the gas turbine to maintain a high performance. 

The gas turbine also have a higher entropy production for the capture case because of the 

turbine firing temperature has to be reduced to allow parts having an equivalent lifetime 

[51].  

Thermodynamically with a higher turbine inlet temperature, higher will be the efficiency, 

however the turbine firing temperature is limited to metallurgy restriction. 

Syngas with high hydrogen content produced water in the combustion which increases the 

heat transfer to the turbine blades due to the higher heat transfer coefficient of water, thus 

the firing temperature has to decrease to maintain the same turbine lifetime [64]. For the 

same turbine lifetime the firing temperature has to decrease 20 C when the hydrogen 

fraction increased from 0.31 to 0.985 what produces in combustor exhaust gases a H2O 

molar fraction increased from 0.0719 to 0.1307. As a results of this the difference of exergy 

lost between the two cases is 0,8 %. 



The only components with a lower Irreversibility production in the capture case are the heat 

recovery steam generation (HRSG) and the steam turbine, because in this case no steam is 

produced in the gasifier and there is less steam sources to mix, producing less 

irreversibilities. 

The components with the highest electricity consumption are the air separation unit with 

32%, the CO2 compressor with 18 % and the coal feeding system with 17 %. However the 

exergy lost for the air separation unit is the one of the lowest because the biggest plant 

irreversibilities corresponds to the components with the combustion reaction in the gasifier 

and the gas turbine combustion chamber. The gasifier has less entropy production than the 

gas turbine because the gasification is an incomplete combustion of the coal and in the 

turbine the fuel is complete oxidized.  

 

 

Table 24. Exergy lost in IGCC plants with and without CO2 capture 

IGCC (Dry Feed entrained flow gasifier) 

  

without CO2 

capture 

with CO2 

capture 

Exergy conversion efficiency, 

% 40,1 30,6 

Process stage % Exergy lost 

Gasifier 19,3 21,1 

ASU 1,7 2,5 

WGS N/A 1,9  

Gas clean up 4 9,6 

Gas turbine 22,1 22,9 

HRSG and Steam turbine 9 7,9 

Stack 3,8 3,5 

Total 59,9 69,4 

 

 

 

 

 

 



4.4 Comparison between IGCC, subcritical and supercritical pulverized coal 

rankine cycle with and without CO2 capture 

 

4.4.1 Exergoeconomic analysis  

 

The exergy conversion efficiency and capital cost of the plant vary significantly with 

different coal types and if CO2 capture and sequestration is implemented. For all cases the 

IGCC plant has a slight higher exergy conversion efficiency of 1 to 5% than the pulverized 

coal Rankine Cycle (PCRC) plants and given that the gasification plant has more stages, it 

is more expensive but only for the CO2 non capture case, as shown in table 25. The capital 

cost are at least 16 % higher for IGCC when the plant does not use carbon dioxide capture 

but it has a lower cost with the slurry feed gasifier when the CO2 emissions need to be 

sequestrated. The IGCC process depends strongly on the gasifier technology and it can be 

seen that the slurry technology has a lower capital requirement with CO2 capture than the 

PCRC. The dry feed gasifier is always more expensive but has the highest exergy 

efficiency. The gasification plant has a better economical and exergetical performance for 

CO2 capture cases mainly because of the pre combustion gas clean up separates the 

undesired gases at a lower temperature and higher pressure with an elevated density. The 

conventional pulverized coal plants has to handle approximately 10 times more gas in the 

post combustion clean up stage. The cost of implementing CO2 capture in pulverized coal 

plants is approximately 1300 $/kW and in IGCC 900 $/kW, for a total difference of 400 

$/kW more expensive. However the operating costs are for all cases more expensive for the 

IGCCC process because it presents more process units and stages.  

The dry feed gasifier has a greater negative impact on the exergy efficiency when the 

greenhouse emissions are capture, because of its dry feeding system produce a syngas 

composition with a lower H2/CO ration than the slurry gasifier. The syngas composition is 

relative insensitive of coal type and is mainly a function of the gasification technology, the 

reactor type and the operating conditions [45, 64].  This ratio should be as high as possible 

in order to have a better performance in the downstream water gas shift reactors. In case 

that the syngas has low hydrogen percentage, the carbon dioxide production in the WGS 

increases what reduces the global plant efficiency. 

Additionally in carbon capture application, the dry feed gasifier compressed the coal with 

nitrogen and with higher nitrogen content, the raw gas is more diluted and therefore reduces 

the CO2 partial pressure [64].  For these reasons the slurry gasifiers is recommended when 

carbon capture is applied. 

The PCRC cannot process low rank coals since the emissions can exceed the environmental 

requirements. On the other hand a big advantage of the IGCC process is the capacity of 



handling low rank coals with high environmental performance. The exergy efficiency 

decreases for lower rank coals mainly because the gasifier cold gas efficiency decreases 

with higher ash and moisture content. 

A moisture or ash increase has a more negative impact on the slurry feeding system than 

the  dry system because while the carbon concentration in the slurry decrease, the coal has 

to be dried in the dry system [64], eliminating partially its effect. Comparing the two coal 

cases without CO2 capture, the IGCC with the dry feed gasifier has a efficiency decrease of 

0,8% while the slurry case has a 3,6% decrease. The dry feed gasifier presents an exergy 

advantage for lower rank coal with no carbon capture and this difference is expected to be 

higher for lignite. Thus to maintain the highest efficiencies, the dry feed gasifier are 

recommended for lower rank coals when no carbon capture is implemented. 

Additionally for lower rank coals the cost increases since for the same production capacity 

more coal has to be processed what require larger equipment size to handle syngas with 

lower density. Considering the IGCC plant, the cost increase to change from bituminous to 

sub bituminous coal is approximately 300 $/kW for all cases.  

 

Table 25. Comparison between IGCC, subcritical and supercritical pulverized coal rankine cycle 

with and without CO2 capture 

  

IGCC Subcritical Supercritical 

Shell E-GAS     

Bituminous Coal 

Capital costs 

Without CO2 capture, $/kW 2.217 1.913 1.622 1.647 

With CO2 capture and sequestration, $/kW 3.181 2.817 2.942 2.913 

Operating Costs 

Without CO2 capture, $/kW (net) 85 77 59 58 

With CO2 capture and sequestration, $/kW 117 108 96 97 

Exergy conversion efficiency 

Without CO2 capture, % 40,1 38,0 35,4 37,5 

With CO2 capture and sequestration, % 30,6 29,7 25,2 27,4 

Subbituminous Coal 

Capital costs 

Without CO2 capture, $/kW 2.506 2.265 

 N/A 

With CO2 capture and sequestration, 

$/kW 3.480 3.144 

Exergy conversion efficiency 

Without CO2 capture, % 39,3 34,4 

  N/A With CO2 capture and sequestration, % 30,0 28,5 

Economic Source: [51, 53, 54] 



4.4.2 Exergy comparison of IGCC and pulverized coal plants at component level 

 

The exergetic performance of the principal process components for the IGCC, the 

subcritical and supercritical pulverized coal Rankine cycle plant is shown on the table 26. 

The dry feed gasifier was selected for the IGCC plant since it has the highest exergy 

efficiency although it presents the highest costs. For the three plants the main 

irreversibilities source corresponds to the combustion reactions in the gas turbine, the 

gasifier and the boiler.  

As shown in the latter section the IGCC process presents less irreversibilities than the other 

two plants. In spite of the big irreversibility contribution of the gasifier, the IGCC is more 

exergy efficient due to the combine cycle have a better exergy performance than the 

rankine cycle and more exergy is lost in the stack gases for the pulverized coal plant. The 

irreversibilities of the IGCC non-capture case are reduced up to 4,7 % compared with the 

subcritical plant and 2,2 % with the supercritical process. Regarding the carbon capture 

cases, the differences between IGCC and subcritical are 5,4 % and 3,2 % compared with 

the supercritical case. The difference is specifically advantageous for IGCC when CO2 

capture is applied due to the exergy difference is significant higher.  

The IGCC gas clean up has a higher Irreversibilities than the other plants mainly as a 

results of the separation of the H2S with a higher exergy content than SO2 and additionally 

the CO2 separation before the gas turbine which does not allow the work production from 

these gases. 

 

Table 26. Percentage of exergy lost of IGCC and pulverized coal Rankine cycle plants at 

component level  

Process stage 

IGCC (Dry Feed Gasifier) 

Process stage 

Subcritical PC rankine cycle Subcritical PC rankine cycle 

With CO2 

capture 

Without CO2 

capture 

With CO2 

capture 

Without CO2 

capture 

With CO2 

capture 

Without CO2 

capture 

Gasifier 21,1 19,3 

Boiler 48,6 48,6 47 40,8 ASU 2,5 1,7 

WGS 1,9 N/A 

Gas clean up 9,6 4 Gas clean up 4,1 0,7 4,1 0,7 

Gas turbine 22,9 22,1 

Steam 

turbine 
16,9 10 16,4 15,4 HRSG and 

Steam 

turbine 

7,9 9 

Stack 3,5 3,8 Stack gases 5,2 5,2 5,2 5,2 

Total 69,4 59,9 Total 74,8 64,6 72,6 62,1 

 



4.4.3 Environmental Performance  

 

The gas emission are illustrated in table 27, where it shows that for all plants the emissions 

of SOx, NOx, Hg and particulates decrease implementing the carbon capture and IGCC 

have a better environmental performance, specially for the non capture case.  The sulfur 

dioxide and carbon dioxide emissions are almost the same in the three plants for the capture 

cases. The NOx production is significant lower for IGCC due to this emission can be 

controlled with nitrogen dilution, humidification and steam dilution [51].  

While the pulverized coal plants have to use a postcombustion gas clean up stage, the IGCC 

plant can use precombustion carbon capture, but has to separate the sulfur species and 

particulates before the combustion due to the turbine lifetime and operational safety [94] 

[95]. The precombustion option is more energy efficient because it has a lower net energy 

consumption as a result that the gas is cleaned at a higher density when it is still 

compressed and at a cold temperature. The electricity consumption, illustrated in table 27, 

includes the acid gas removal, the scrubber pumps, the Claus plant and the CO2 compressor 

in capture cases for the IGCC plant and the induced fans, Wet Limestone Forced Oxidation 

and CO2 compressor for the pulverized coal rankine cycle plants. The electricity 

consumption is always higher for the pulverized coal plants, reaching 30 percent higher 

electricity consumption in carbon capture applications and go up to 4 to 5 times higher in 

non capture cases. 

The table 27 comprises the emissions for bituminous coals, since for lower rank coals cases 

the pulverized coal plants increases the emissions  considerably and therefore these plants 

are recommended only for bituminous coals. 

For the IGCC cases the gas emissions maintain practically constant for lower rank coals 

including subbituminous coals and lignite [51, 53]. The only significant emission increased 

is presented for the CO2 component for the non-capture cases where the amount rise from 

617 to 647 kg/MWhe, what represents 5% more greenhouse emissions mainly due to the 

higher irreversibility produced in the gasifier oxidizing the coal. 

 

 

 

 

 

 



Table 27. Environmental performance of IGCC and pulverized coal rankine cycle plants 

  

IGCC  Subcritical PC rankine cycle Subcritical PC rankine cycle 

With CO2 

capture 

(90%) 

Without 

CO2 capture 

With CO2 

capture 

Without CO2 

capture 

With CO2 

capture 

Without CO2 

capture 

SO2 

[kg/MWhe] 

0,008 0,013 0,008 0,341 0,007 0,32 

NOx 0,18 0,185 0,339 0,278 0,316 0,261 

Particulates 0,026 0,022 0,063 0,052 0,059 0,049 

Hg 2,09E-06 1,79E-06 5,53E-06 4,54E-06 5,16E-06 4,27E-06 

CO2 73 617 98 809 92 760 

Gas clean up 

electricity 

consumption 

kWh/kg 

coal 
243 13 319 55 319 59 

Source: [51, 53, 54]



5 Conclusions 
 

The main conclusions of the study are classified in three components by methane, 

electricity and syngas production in order to respond the following investigation problem;  

How much can the emerging technologies increase the exergy performance, the 

sustainability and decrease the greenhouse emissions of power and fuels production 

derived from coal?  

 

Methane production 

The hydromethanation process has an exergetic conversion efficiency of 70,7%, and the 

conventional indirect methanation technology goes up to 57,1%, for a total 13 % difference. 

In addition the indirect methanation has a higher carbon dioxide production of 0,785 CO2/C 

mole ratio compared to the 0,47 CO2/C mole ratio of the direct methanation. 

The current commercial indirect methanation technology is a risky option considering that 

is a high investment technology with a high carbon dioxide production, extremely 

vulnerable to natural gas local price. The hydromethanation technology is expected to 

demonstrate its feasibility by 2017 and can eventually lower the process capital costs. 

 

Electricity production  

The exergy performance of IGCC with the dry feed gasifier is 2,6 % higher than the 

supercritical PCRC for the CO2 non capture case and 3,2 % higher for the capture case. The 

sources of the biggest irreversibilities correspond to the combustion reactions in the gas 

turbine, the gasifier and the boiler. 

The IGCC plant can be more economical than the PCRC when CO2 capture and 

sequestration is implemented, depending which gasifier technology is used. However the 

operating costs are for all cases more expensive for the IGCC process because it presents 

more process units. The IGCC has total greenhouse gas emissions of 617 kg CO2/MWhe, 

143 lower than the supercritical pulverized coal Rankine Cycle which goes up to 760 kg 

CO2/MWhe. The greenhouse gas emissions is lower for IGCC mainly due to the higher 

exergy conversion efficiency of the coal gasification plant and the precombustion CO2 

capture system.  

The IGCC process can be slightly more advantageous depending on the gasification 

technology and only when CO2 capture is implemented. 



 

Syngas production  

The coal gasifiers has an exergy conversion efficiency in the range of 72 to 82 % for 

bituminous coals and presents the highest capital cost fraction in the plant with 36 and 46% 

of an IGCC and indirect methanation plant respectively. The exergy conversion efficiency 

decreases 3% for the dry feed gasifier and 9 % for the slurry gasifier when instead of 

bituminous, subbituminous coal is implemented. 

Considering the technical, economical aspects of coal gasifiers, the fixed bed gasifier 

represents the most suitable option, comprising the highest exergy conversion efficiency of 

82 % and although it has the lowest coal handling capacity, the fixed bed gasifier produces 

more syngas than the entrained flow gasifiers with the same capital investment.  

Considering the environmental performance, the slurry gasifier has the highest CO2 

emissions production and the fixed bed reactor has the highest pollutant formation. 

 

 

Coal gasification simulation accuracy 

The coal gasification technology was modeled with Aspen plus thermodynamic equilibrium 

models and the results were compared to the real plants from demonstration projects, 

founding a medium to high accuracy depending on the gasifier technology. The gasifiers 

with the highest accuracy are the dry feed entrained flow and the fluidized bed gasifier with 

less than 2 molar fraction deviation for each chemical component. The slurry feed presents 

a satisfactory accuracy since the model has up to 3,4 molar fraction deviation and the fixed 

bed gasifier has the worst accuracy with a 10 percent deviation by the carbon monoxide 

component. This significant deviation is due to the fixed bed reactors produce 

hydrocarbons liquids such as tars and oils which are not considered by the model. 

 

 

 

 

 



6 Recommendations for future works  

 

Natural gas is the most environmental friendly fossil fuel with a high energy content and 

represent the fuel of the near future. Additionally the direct methanation is currently a 

emerging technology which could have a great potential converting the most abundant, 

stable, and low price fossil fuel to a synthetic natural gas. Therefore the hydrogasification 

process and the hydromethanation are recommended areas for future investigations: 

-The hydrogasification kinetics has to be considered in order to evaluate the process. Thus 

the model construction, validation with experimental data and its evaluation could provide 

an important contribution to the investigation field. In addition the investigation should 

focus on how to increase the low carbon conversions, low product yields and slow reaction 

rates. 

-For the hydromethanation process the investigation should focus on the catalyst 

development such as how to decrease the catalyst poisoning diminishing its performance 

over time, the catalysts cost due to the rare metals and difficulties recovering and recycling 

the catalyst in the reactor.  
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8 Appendix 
- 

A) Simulation results of the coal gasification base case  
 

Dry feed entrained flow gasifier results (Shell technical restrictions) 

  COAL1 GPRODUCT NITROGEN O2 STEAM SYNGAS 

Temperature 25 1690,8 32 32 343 1690,8 

Pressure bar 32,04 55,5 5,41 51 51 55,5 

Vapor Frac 0,896 1 1 1 1 1 

Mole Flow kmol/hr 1825,119 8565,869 741,167 2767 575,3 8565,869 

Mass Flow kg/hr 12810,243 194001,479 20796 87212,989 10364,191 194001,479 

Volume Flow cum/hr 1291,115 25402,067 3469,809 1339,316 521,811 25402,067 

Enthalpy    Gcal/hr 1,138 -46,547 0,013 -0,106 -31,901 -46,547 

Mole Flow kmol/hr             

H2O 82,454 220,425 0,296   575,3 220,425 

N2 51,882 1173,856 735,164 387   1173,856 

O2 108,521 trace 4,002 2353   trace 

NO2   trace       trace 

NO   < 0,001       < 0,001 

S 106,164 0,03       0,03 

SO2   0,005       0,005 

SO3   trace       trace 

H2 1475,821 1817,558       1817,558 

CL2 0,275 trace       trace 

HCL   0,55       0,55 

C             

CO   5078,885       5078,885 

CO2   138,982       138,982 

H2S   94,316       94,316 

CH4   0,364       0,364 

H3N   0,38       0,38 

AR   28,705 1,705 27   28,705 

COS   11,813       11,813 



 

Fixed bed gasifier results (BGL technical restrictions) 

  BURNAIR BURNGAS COAL1 GPRODUCT NITROGEN O2 RECYCLE STEAM SYNGAS 

Temperature F 60 60 77 1810,1 60 392 100 680 1810,1 

Pressure psia 500 500 464,7 804,959 500 517 500 510 804,959 

Vapor Frac 1 1 0,779 1 1 1 0 1 1 

Mole Flow lbmol/hr 108,63 8,55 3044,029 8295,644 157,389 1502,584 9,66 1618,515 8295,644 

Mass Flow lb/hr 3147,018 138,683 25339,157 163207,613 4409 48051 684,886 29158 163207,613 

Volume Flow cuft/hr 1192,227 88,904 30105,963 253519,257 1732,768 26625,847 12,803 36478,045 253519,257 

Enthalpy    Gcal/hr -0,006 -0,07 -16,069 -67,439 -0,009 0,838 -0,007 -40,509 -67,439 

Mole Flow lbmol/hr                   

H2O     588,916 918,764     0,03 1618,515 918,764 

N2 84,73 0,08 42,682 291,248 157,389 7,496     291,248 

O2 22,81   205,382     1495,087     trace 

NO2                 trace 

NO                 trace 

S     74,576           trace 

SO2                 trace 

SO3                 trace 

H2     2128,527 2593,607         2593,607 

CL2     3,947 trace         trace 

HCL       7,893         7,893 

C                   

CO       3291,052         3291,052 

CO2   0,02   721,112     0,99   721,112 

H2S       71,036     0,46   71,036 

CH4   8,45   393,456         393,456 

H3N       2,258         2,258 

AR 1,09     1,09         1,09 

COS       4,06     0,06   4,06 

BENZENE       trace     7,81   trace 

PROPA-01       < 0,001     0,05   < 0,001 

ISOBU-01       trace     0,05   trace 

ETHAN-01       0,068     0,21   0,068 

 



 

Fluidized bed gasifier (KWR technical restrictions) 

 

  Air COAL1 GPRODUCT STEAM SYNGAS 

Temperature C 32 25 1005,5 343 1005,5 

Pressure bar 51 32,04 55,5 51 55,5 

Vapor Frac 1 0,779 1 1 1 

Mole Flow kmol/hr 14408,261 3793,733 22147,007 1188,059 22147,007 

Mass Flow kg/hr 417361,679 31579,856 546141,68 21403,21 546141,68 

Volume Flow cum/hr 7064,436 2342,334 42887,378 1077,598 42887,378 

Enthalpy    Gcal/hr -0,985 -44,151 -138,033 -65,879 -138,033 

Mole Flow kmol/hr           

H2O   733,958 1147,606 1188,059 1147,606 

N2 11249,97 53,194 11299,902   11299,902 

O2 3017,09 255,964 trace   trace 

NO2     trace   trace 

NO     trace   trace 

S   92,943 trace   trace 

SO2     < 0,001   < 0,001 

SO3     trace   trace 

H2   2652,755 3144,695   3144,695 

CL2   4,919 trace   trace 

HCL     9,837   9,837 

C           

CO     5113,256   5113,256 

CO2 6,628   1107,095   1107,095 

H2S     86,615   86,615 

CH4     90,575   90,575 

H3N     6,525   6,525 

AR 134,573   134,573   134,573 

COS     6,328   6,328 

 

 

 



 

Slurry feed entrained flow gasifier results (E-Gas technical restrictions) 

 

  COAL1 O2 SYNGAS GPRODUCT Water 

Temperature 25 25 1207,3 1207,3 25 

Pressure bar 32,04 55,5 55,5 55,5 55,5 

Vapor Frac 0,749 1 1 1 < 0,001 

Mole Flow kmol/hr 3131,915 2522,878 10397,291 10397,291 2395,729 

Mass Flow kg/hr 27451,556 81119,099 212092,518 212092,518 42634,054 

Volume Flow cum/hr 1854,697 1078,458 23273,597 23273,597 42,677 

Enthalpy    Gcal/hr -45,351 -0,302 -222,947 -222,947 -157,812 

Mass Flow           

H2O 710,011   2009,525 2009,525 2298,342 

N2 47,74 36,189 84,744 84,744   

O2 204,239 2419,482 trace trace   

NO2     trace trace   

NO     trace trace   

S 78,954   < 0,001 < 0,001   

SO2     0,001 0,001   

SO3     trace trace   

H2 2090,378   2994,091 2994,091   

CL2 0,593   trace trace   

HCL     1,186 1,186   

C           

CO     4058,982 4058,982   

CO2     1091,345 1091,345   

H2S     76,437 76,437   

CH4     8,638 8,638   

H3N     0,54 0,54   

AR   67,208 67,208 67,208   

COS     4,596 4,596   

 

 



B) Simulation results of the hydromethanation base case  
 

 

 

  COAL COAL1 O2 P00 PR RECYCLE SL STEAM 

Temperature   25 25 600 600 340   343 

Pressure bar 51 32,04 51 50 50 51   51 

Vapor Frac   0,783 1 1 1 0,394   1 

Mole Flow kmol/hr 0 120,599 23,512 339,148 339,148 94 0 200 

Mass Flow kg/hr 0 1003,893 755,987 7348,904 7348,904 915,182 0 3603,056 

Volume Flow cum/hr 0 74,555 10,97 492,34 492,34 37,86 0 178,957 

Enthalpy    Gcal/hr   -1,475 -0,003 -14,63 -14,63 -0,018   -11,108 

Mole Flow kmol/hr                 

H2O   23,332   147,002 147,002     200 

N2   1,691 0,337 1,995 1,995       

O2   8,137 22,548           

NO2                 

NO                 

S   2,955             

SO2                 

SO3                 

H2   84,329   34,068 34,068 31     

CL2   0,156             

HCL       0,313 0,313       

C           57     

CO       6,167 6,167 6     

CO2       68,753 68,753       

H2S       2,927 2,927       

CH4       77,203 77,203       

H3N       0,067 0,067       

AR     0,626 0,626 0,626       

COS       0,028 0,028       



C) Simulation results of the methanation base case  
 

 

 

 

 

 

 

  INPUT MIX R1OUT R2IN R2OUT R3IN R3OUT RECY 

Temperature C 290 281 600 281 438 210 303 281 

Pressure bar 27,2 27,1 27,2 27,1 27 27 26,9 27,1 

Vapor Frac 1 1 1 1 1 1 1 1 

Mole Flow kmol/hr 30089,329 26437,08 26437,08 7138,011 6618,964 6618,964 6453,712 19299,068 

Mass Flow kg/hr 427038,268 427038,268 427038,268 115300,332 115300,332 115300,332 115300,332 311737,935 

Volume Flow cum/hr 51851,436 44488,946 70762,629 12012,015 14416,185 9509,285 11253,157 32476,93 

Enthalpy    Gcal/hr -638,226 -727,356 -637,064 -196,386 -197,064 -212,976 -210,35 -530,97 

Mole Flow kmol/hr                 

H2O 5506,347 8228,144 8228,144 2221,599 2661,939 2661,939 2824,102 6006,545 

CH4 8244,476 10070,601 10070,601 2719,062 2978,586 2978,586 3061,212 7351,539 

CO 1233,662 303,209 303,209 81,867 3,159 3,159 0,07 221,343 

CO2 2196,521 1300,849 1300,849 351,229 170,413 170,413 90,876 949,62 

H2 11433,945 5059,899 5059,899 1366,173 406,786 406,786 79,37 3693,726 

N2 1474,377 1474,377 1474,377 398,082 398,082 398,082 398,082 1076,295 

 



D) Simulation results of the water gas shift reactor and gas clean up base case  
 

 

 

 

 

 

  F1 F2 P00 P01 P02 P03 P04 P05 RWATER1 STEAM WASTE 

Temperature C 37 37,4 1200 634,8 236 428 236 252 37 238 37,4 

Pressure bar 32 32 32 32 32 32 32 32 32 32 32 

Vapor Frac 1 1 1 1 1 1 1 1 0 1 0 

Mole Flow kmol/hr 11438,378 11392,178 8565,2 19625,2 19625,2 19625,2 19625,2 19625,2 8186,822 11060 46,2 

Mass Flow kg/hr 231957,372 230386,2 180196,261 379445,258 379445,258 379445,258 379445,258 379445,258 147487,886 199248,997 1571,173 

Volume Flow 
cum/hr 9022,909 9000,846 32964,41 46230,228 24699,588 35594,314 25265,561 26185,194 148,262 12852,199 2,097 

Enthalpy    Gcal/hr -460,645 -460,412 -171,844 -795,471 -864,827 -864,888 -898,925 -898,999 -557,033 -623,626 -0,39 

Mole Flow kmol/hr                       

H2O 27,715 27,715 1190 12250 12250 8527,884 8527,884 8214,536 8186,822 11060   

N2 45 45 45 45 45 45 45 45       

H2 6398,464 6398,464 2363 2363 2363 6085,116 6085,116 6398,464       

CO 47,536 47,536 4083 4083 4083 360,884 360,884 47,536       

CO2 4870,464 4870,464 835 835 835 4557,116 4557,116 4870,464       

H2S 46   46 46 46 46 46 46     46 

CH4 3 3 3 3 3 3 3 3       

H3N 0,2   0,2 0,2 0,2 0,2 0,2 0,2     0,2 

 



E) Simulation results of the air separation unit base case  
 

 

 

 

  AIR COMP1OUT COMP2OUT HE1OUT HE2OUT TOPD BOTD 

Temperature C 26,9 164,4 565,5 315 -174 -171 -156 

Pressure bar 1 3 9 3 9 8,6 8,7 

Vapor Frac 1 1 1 1 0 1 0 

Mole Flow kmol/hr 11765 11765 11765 11765 11765 9763 2002 

Mass Flow kg/hr 340696 340696 340696 340696 340696 276447 64248 

Mole Flow kmol/hr               

N2 9190,924 9190,924 9190,924 9190,924 9190,924 9189 2 

AR 108,097 108,097 108,097 108,097 108,097 86 22 

O2 2465,979 2465,979 2465,979 2465,979 2465,979 488 1978 

 

 

 

 



F) Simulation results of the gas turbine base case  
 

 

 

  AIRCOMP AIRIN NITROGEN STEAM SYNGAS TURBIN TURBOUT 

Temperature C 438 15 93 246 45 1338 741 

Pressure bar 18 1 27 32 37 2 0 

Vapor Frac 1 1 1 1 1 1 1 

Mole Flow kmol/hr 110253 110253 16375 1705 21155 141839 141839 

Mass Flow kg/hr 3181420 3181420 459474 30712 417634 4089240 4089240 

Volume Flow cum/hr 404824 2639480 18849 2048 12308 11878400 117666000 

Mole Flow kmol/hr               

AR 1014 1014 38   167 1219 1219 

CH4         11 
  

CO         10030 
  

CO2 33 33     264 10337 10337 

H2         5270 
  

N2 85248 85248 16244   1007 102499 102499 

O2 22866 22866 88     15284 15284 

H2O 1092 1092 5 1705 4407 12498 12498 

 



G) Simulation results of the Rankine cycle base case  
 

 

 

 

  CONDIN CONDOUT HP IP IPIN LPIN TURBIN 

Temperature C 247 38 40 429 558 260 558 

Pressure bar 2 0 155 53 31 4,4 125 

Vapor Frac 1 0 0 1 1 1 1 

Mole Flow kmol/hr 38979 38979 38979 38979 38979 38979 38979 

Mass Flow kg/hr 702225 702225 702225 702225 702225 702225 702225 

Volume Flow 
cum/hr 

760448 716 717 39905 85006 424688 19722 

Mole Flow kmol/hr               

H2O 38979 38979 38979 38979 38979 38979 38979 



 


